WorldWideScience

Sample records for alkali metal halides

  1. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  2. Reactions between cold methyl halide molecules and alkali-metal atoms.

    Science.gov (United States)

    Lutz, Jesse J; Hutson, Jeremy M

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  3. Theory of metal atom-water interactions and alkali halide dimers

    Science.gov (United States)

    Jordan, K. D.; Kurtz, H. A.

    1982-01-01

    Theoretical studies of the interactions of metal atoms with water and some of its isoelectronic analogs, and of the properties of alkali halides and their aggregates are discussed. Results are presented of ab initio calculations of the heats of reaction of the metal-water adducts and hydroxyhydrides of Li, Be, B, Na, Mg, and Al, and of the bond lengths and angles an; the heats of reaction for the insertion of Al into HF, H2O, NH3, H2S and CH3OH, and Be and Mg into H2O. Calculations of the electron affinities and dipole moments and polarizabilities of selected gas phase alkali halide monomers and dimers are discussed, with particular attention given to results of calculations of the polarizability of LiF taking into account electron correlation effects, and the polarizability of the dimer (LiF)2.

  4. Calculation of Interaction Parameters from Immiscible Phase Diagram of Alkali Metal or Alkali Earth Metal-Halide System by Means of Subregular Solution Model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows: The calculation of the model parameters, λ11, λ12, λ21 and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems.In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the.calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.

  5. Metal Hydride and Alkali Halide Opacities in Extrasolar Giant Planets and Cool Stellar Atmospheres

    Science.gov (United States)

    Weck, Philippe F.; Stancil, Phillip C.; Kirby, Kate; Schweitzer, Andreas; Hauschildt, Peter H.

    2006-01-01

    The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). We report our recent calculations of molecular opacities resulting from the presence of metal hydrides and alkali halides. The resulting data have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state.

  6. Enthalpic Interaction for α-Amino Acid with Alkali Metal Halides in Water

    Institute of Scientific and Technical Information of China (English)

    LU,Yan(卢雁)

    2004-01-01

    The studies of the enthalpic interaction parameters, hxy, hxyy and hxxv, of alkali metal halides with glycine,α-alanine and α-aminobutyric acid were published. Synthetic considering of the results of the studies, some interesting behaviors of the interaction between alkali metal halides and the α-amino acids have been found. The values of hxy will increase with the increase of the number of carbon atoms in alkyl side chain of amino acid molecules and decrease with the increase of the radius of the ions. The increasing of the salt's effect on the hydrophobic hydration structure as the radii of anion is more obvious than as that of cation. The value of hxxy will regularly decrease with the increase of the number of carbon atoms in the alkyl chain of amino acids and linear increase with the increase of the radius. But the relation of hxxy with the radius of cations is not evident. The value of hxyy will increase with the increase of the radii of the ions. As the increase of the number of carbon atoms of amino acids, hxyy is decreas for the ions which have lager size and there is a maximum value at α-alanine for the ions which have small size. The behaviors of the interaction mentioned above were further discussed in view of electrostatic and structural interactions.

  7. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    Science.gov (United States)

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-07

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells.

  8. Silicon halide-alkali metal flames as a source of solar grade silicon

    Science.gov (United States)

    Olson, D. B.; Miller, W. J.; Gould, R. K.

    1980-01-01

    The feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells was demonstrated. Low pressure experiments were performed demonstrating the production of free silicon and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents and relatively pure silicon was produced. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger scaled well stirred reactor was built. Experiments were performed to investigate the compatability of graphite based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  9. Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K

    Indian Academy of Sciences (India)

    Reena Gupta; Mukhtar Singh

    2005-05-01

    Viscosities and densities of sucrose in aqueous alkali metal halide solutions of different concentrations in the temperature range 293.15 to 313.15 K have been measured. Partial molar volumes at infinite dilution ($V_{2}^{0}$) of sucrose determined from apparent molar volume ($\\phi_v$) have been utilized to estimate partial molar volumes of transfer ($V^{0}_{2,tr}$) for sucrose from water to alkali metal halide solutions. The viscosity data of alkali metal halides in purely aqueous solutions and in the presence of sucrose at different temperatures (293.15, 303.15 and 313.5 K) have been analysed by the Jones-Dole equation. The nature and magnitude of solute-solvent and solute-solute interactions have been discussed in terms of the values of limiting apparent molar volume ($\\phi^{0}_{v}$), slope ($S_{v}$) and coefficients of the Jones-Dole equation. The structuremaking and structure-breaking capacities of alkali metal halides in pure aqueous solutions and in the presence of sucrose have been ascertained from temperature dependence of $\\phi^{0}_{v}$.

  10. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    Science.gov (United States)

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids.

  11. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    Energy Technology Data Exchange (ETDEWEB)

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J., E-mail: s.c.j.meskers@tue.nl [Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Gomes, Henrique L. [Instituto de Telecomunicações, Av. Rovisco, Pais 1, 1049-001 Lisboa, Portugal and Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); De Leeuw, Dago M. [Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany and King Abdulaziz University, Jeddah (Saudi Arabia)

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  12. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    Science.gov (United States)

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  13. Capacitance of the double electrical layer on the copper-group metals in molten alkali metal halides

    Science.gov (United States)

    Kirillova, E. V.; Stepanov, V. P.

    2016-08-01

    The electrochemical impedance is measured to study the capacitance of the double electrical layer of metallic Au, Ag, and Cu as a function of potential and temperature in nine molten salts, namely, the chlorides, bromides, and iodides of sodium, potassium, and cesium. The C- E curve of a gold electrode has an additional minimum in the anodic branch. This minimum for silver is less pronounced and is only observed at low ac signal frequencies in cesium halides. The additional minimum is not detected for copper in any salt under study. This phenomenon is explained on the assumption that the adsorption of halide anions on a positively charged electrode surface has a predominantly chemical rather than an electrostatic character. The specific adsorption in this case is accompanied by charge transfer through the interface and the formation of an adsorbent-adsorbate covalent bond.

  14. Electrolytic systems and methods for making metal halides and refining metals

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  15. Infrared spectra of FHF - in alkali halides

    Science.gov (United States)

    Chunnilall, C. J.; Sherman, W. F.

    1982-03-01

    The bifluoride ion, FHF -, has been substitutionally isolated within single crystal samples of several different alkali halides. Infrared spectra of these crystals have been studied for sample temperatures down to 8K when half-bandwidths of less than 1 cm -1 have been observed. (Note that at room temperature ν 3 is observed to have a half-bandwidth of about 40 cm -1). The frequency shifts and half-bandwidth changes caused by cooling are considered together with the frequency shifts caused by pressures up to 10 k bar. The low temperature spectra clearly indicate that FHF - is a linear symmetrical ion when substitutionally isolated within alkali halides of either the NaCl or CsCl structure.

  16. Thermoluminescence of alkali halides and its implications

    Energy Technology Data Exchange (ETDEWEB)

    Gartia, R.K., E-mail: rkgartia02@yahoo.in [Physics Department, Manipur University, Imphal 795003 (India); Rey, L. [Aerial-CRT-parc d' Innovation, B.P. 40443, F-67412 Illkirch Cedex (France); Tejkumar Singh, Th. [Physics Department, Manipur University, Imphal 795003 (India); Basanta Singh, Th. [Luminescence Dating Laboratory, Manipur University, Imphal 795003 (India)

    2012-03-01

    Trapping levels present in some alkali halides namely NaCl, KCl, KBr, and KI are determined by deconvolution of the thermoluminescence (TL) curves. Unlike most of the studies undertaken over the last few decades, we have presented a comprehensive picture of the phenomenon of TL as an analytical technique capable of revealing the position of the trapping levels present in the materials. We show that for all practical purposes, TL can be described involving only the three key trapping parameters, namely, the activation energy (E), the frequency factor (s), and the order of kinetics (b) even for complex glow curves having a number of TL peaks. Finally, based on these, we logically infer the importance of TL in development and characterization of materials used in dosimetry, dating and scintillation.

  17. A new mechanism for radiation damage processes in alkali halides

    NARCIS (Netherlands)

    Dubinko, V.I.; Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    1999-01-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution o

  18. Alkali halide microstructured optical fiber for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    DeHaven, S. L., E-mail: stanton.l.dehaven@nasa.gov, E-mail: russel.a.wincheski@nasa.gov; Wincheski, R. A., E-mail: stanton.l.dehaven@nasa.gov, E-mail: russel.a.wincheski@nasa.gov [NASA Langley Research Center, Hampton, VA 23681 (United States); Albin, S., E-mail: salbin@nsu.edu [Norfolk State University, Norfolk, VA 23504 (United States)

    2015-03-31

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  19. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  20. Correlation between standard enthalpy of formation, structural parameters and ionicity for alkali halides

    Directory of Open Access Journals (Sweden)

    Nasar Abu

    2013-01-01

    Full Text Available The standard enthalpy of formation (ΔHo has been considered to be an interesting and useful parameter for the correlation of various properties of alkali halides. The interrelation between ΔHo and structural parameters for the halides of Li, Na, K and Rb has been thoroughly analyzed. When cationic component element is kept constant in a homologous series of alkali halides, the negative value of ΔHo has been observed to decrease linearly with increase of interionic distance (d and accordingly following empirical equation ΔHo = α + βd (where α and β are empirical constants has been established. However, for common anionic series of alkali halides an opposite nonlinear trend has been observed with the exception of common fluorides. The correlation study on the standard enthalpy of formation has been extended in term of radius ratio and also discussed in the light of ionization energy of the metal, electron affinity of the halogen, size of the ions, ionic character of bond and lattice energy of the compound.

  1. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won;

    2016-01-01

    A new model is proposed for correlation and prediction of thermodynamic properties of electrolyte solutions. In the proposed model, terms of a second virial coefficient-type and of a KT-UNIFAC model are used to account for a contribution of binary interactions between ion and ion, and water and ion...... on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems...

  2. Structure and Bonding in Small Neutral Alkali-Halide Clusters

    CERN Document Server

    Aguado, A; López, J M; Alonso, J A

    1997-01-01

    The structural and bonding properties of small neutral alkali-halide clusters (AX)n, with n less than or equal to 10, A=Li, Na, K, Rb and X=F, Cl, Br, I, are studied using the ab initio Perturbed Ion (aiPI) model and a restricted structural relaxation criterion. A trend of competition between rock-salt and hexagonal ring-like isomers is found and discussed in terms of the relative ionic sizes. The main conclusion is that an approximate value of r_C/r_A=0.5 (where r_C and r_A are the cationic and anionic radii) separates the hexagonal from the rock-salt structures. The classical electrostatic part of the total energy at the equilibrium geometry is enough to explain these trends. The magic numbers in the size range studied are n= 4, 6 and 9, and these are universal since they occur for all alkali-halides and do not depend on the specific ground state geometry. Instead those numbers allow for the formation of compact clusters. Full geometrical relaxations are considered for (LiF)n (n=3-7) and (AX)_3 clusters, an...

  3. Dislocation unpinning model of acoustic emission from alkali halide crystals

    Indian Academy of Sciences (India)

    B P Chandra; Anubha S Gour; Vivek K Chandra; Yuvraj Patil

    2004-06-01

    The present paper reports the dislocation unpinning model of acoustic emission (AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a particular strain of the crystals. The peak value of the AE pulse rate should depend on the volume and strain rate of the crystals, and also on the pinning time of dislocations. Since the pinning time of dislocations decreases with increasing strain rate, the AE pulse rate should be weakly dependent on the strain rate of the crystals. The total number of AE should increase linearly with deformation and then it should attain a saturation value for the large deformation. By measuring the strain dependence of the AE pulse rate at a fixed strain rate, the time constant $_{\\text{s}}$ for surface annihilation of dislocations and the pinning time $_{\\text{p}}$ of the dislocations can be determined. A good agreement is found between the theoretical and experimental results related to the AE from alkali halide crystals.

  4. Upgrading platform using alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2017-01-17

    A method for removing sulfur, nitrogen or metals from an oil feedstock. The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  5. Upgrading platform using alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  6. The Effect of Radiation "Memory" in Alkali-Halide Crystals

    Science.gov (United States)

    Korovkin, M. V.; Sal'nikov, V. N.

    2017-01-01

    The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.

  7. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    Science.gov (United States)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 Fusion 4, 91 (1978).

  8. The Structure and Thermodynamics of Alkali Halide Vapors.

    Science.gov (United States)

    Hartley, John George

    A comprehensive set of electron diffraction experiments were performed on 16 of the alkali halides in the vapor phase. A 40kev electron beam was scattered from the vapor effusing out of the nozzle of a temperature controlled gas cell. The resulting data were analyzed at the University of Edinburgh with the program ED80. This resulted in values for the bond lengths of monomers and the dimers, the bond angle of the dimers and the monomer-dimer ratios. In several cases, it was possible to further refine the data to obtain information on the mean amplitudes of vibration. As a check on the accuracy of the results, the monomer bond distances obtained by electron diffraction were compared to values obtained previously by microwave spectroscopy. The average monomer bond length r_{a} is corrected to obtain the equilibrium bond distance r_{e}. This value is then compared to the value of r_{e } obtained from microwave spectroscopy and found to be in excellent agreement. The bond lengths and angles of the dimers were compared against model calculations. While no one model was found to accurately predict the dimer structure parameters of all of the alkali halides, the Rittner model of Gowda et al was found to accurately predict the structure of six of the dimers. Thermodynamical calculations were performed on the model data which resulted in theoretical curves of the monomer-dimer ratios. Comparison of these curves with the experimental monomer-dimer ratio permits an evaluation of the model vibration frequencies. The enthalpy of formation of the dimer, Delta H_sp{2}{f}(298) is examined with regard to the size of the variation necessary to bring about agreement of the experimental and model monomer-dimer ratios.

  9. "Textbook" adsorption at "nontextbook" adsorption sites: Halogen atoms on alkali halide surfaces

    OpenAIRE

    Li, B.; Michaelides, A.; Scheffler, M.

    2006-01-01

    Density-functional theory (DFT) and second order Møller-Plesset perturbation theory calculations indicate that halogen atoms bond preferentially to halide substrate atoms on a series of alkali halide surfaces, rather than to the alkali atoms as might be anticipated. An analysis of the electronic structures in each system reveals that this novel adsorption mode is stabilized by the formation of textbook two-center three-electron covalent bonds. The implications of these findings to, for exampl...

  10. An optical criterion to obtain miscible mixed crystals in alkali halides

    OpenAIRE

    2008-01-01

    This work gives a novel criterion to predict the formation of alkali halide solid solutions and discusses some results obtained in the development of ternary and quaternary miscible crystalline dielectric mixtures of alkali halides. These mixtures are miscible in any concentration of their components. The miscibility of these mixed crystals is quite related to the F center through the behavior observed in the spectral position of the optical absorption F band as a function of the lattice cons...

  11. Optical and Spectral Studies on β Alanine Metal Halide Hybrid Crystals

    Science.gov (United States)

    Sweetlin, M. Daniel; Selvarajan, P.; Perumal, S.; Ramalingom, S.

    2011-10-01

    We have synthesized and grown β alanine metal halide hybrid crystals viz. β alanine cadmium chloride (BACC), an amino acid transition metal halide complex crystal and β alanine potassium chloride (BAPC), an amino acid alkali metal halide complex crystal by slow evaporation method. The grown crystals were found to be transparent and have well defined morphology. The optical characteristics of the grown crystals were carried out with the help of UV-Vis Spectroscopy. The optical transmittances of the spectrums show that BAPC is more transparent than BACC. The Photoluminescence of the materials were determined by the Photoluminescent Spectroscopy

  12. "Textbook" adsorption at "nontextbook" adsorption sites: halogen atoms on alkali halide surfaces.

    Science.gov (United States)

    Li, Bo; Michaelides, Angelos; Scheffler, Matthias

    2006-07-28

    Density-functional theory and second order Møller-Plesset perturbation theory calculations indicate that halogen atoms bond preferentially to halide substrate atoms on a series of alkali halide surfaces, rather than to the alkali atoms as might be anticipated. An analysis of the electronic structures in each system reveals that this novel adsorption mode is stabilized by the formation of textbook two-center three-electron covalent bonds. The implications of these findings to, for example, nanostructure crystal growth, are briefly discussed.

  13. Study of alkali halide/FHF - systems at 10 - 290 K, 0 - 8 kBAR

    Science.gov (United States)

    Chunnilall, C. J.; Sherman, W. F.; Wilkinson, G. R.

    1984-03-01

    The bifluoride ion FHF -, (and FDF -), has been substitutionally isolated within single crystal samples of several alkali halides. Infrared and Raman spectra of these crystals have been studied at variable temperature and pressure. The infrared absorptions are strong, whereas the Raman is weak. At low temperatures the bands are very sharp with halfwidths less than 1 cm -1. On applying pressure, ν3 increases in frequency whereas ν2 decreases. On reducing temperature, ν3 decreases in frequency whereas ν2 increases. Hence the effect of volume contraction is overridden in the temperature dependent case. The deuterated spectra confirm that the bifluoride ion is well isolated within the alkali halide matrix.

  14. Size distributions and geometries of alkali halide nanoclusters probed using ESI FT-ICR mass spectrometry and quantum chemistry

    Science.gov (United States)

    Lemke, K.; Sadjadi, S.; Seward, T.

    2010-12-01

    The structures and energetic properties of ionic alkali metal halide clusters play a significant role in our understanding of aqueous geochemical processes such as salt dissolution, precipitation and neutralization reactions. Mass spectrometric and quantum chemical studies of such systems offer new opportunities to study the size-dependent evolution of cluster structures, the occurrence of magic number species as well as their fundamental properties. The work here presents new results for the stability, abundance and structure of pure [Na(NaClm)]+ , [K(KCl)m]+ and mixed [Na(NaCl)p(KCl)q]+ metal halide clusters with mQB3 and G4 methods and comment on the onset of the doubly charged cluster series. FT-ICR mass spectra for [Na(NaCl)n]+ clusters generated from 1mM NaCl in 20%H2O 80% acetonitrile in positive ion mode.

  15. Epitaxial Growth of a Methoxy-Functionalized Quaterphenylene on Alkali Halide Surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Sun, Rong; Parisi, Jürgen

    2015-01-01

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of lowenergy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X...

  16. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  17. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  18. Thermoluminescence response of a mixed ternary alkali halide crystals exposed to gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez M, R.; Perez S, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Vazquez P, G.; Riveros, H. [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Mexico D. F. (Mexico); Gonzalez M, P., E-mail: mijangos@cifus.uson.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Ionic crystals, mainly alkali halide crystals have been the subject of intense research for a better understanding of the luminescence properties of defects induced by ionizing radiation. The defects in crystals can be produced in appreciable concentration due to elastic stresses, radiation, and addition of impurities. These defects exhibit remarkable thermoluminescence properties. This work is concerned with the Tl properties of a ternary alkali halide crystal after being irradiated with gamma and beta rays. It has been found that the Tl glow peak of the crystal follows a rule of average associated to the Tl Temperatures of the components of the mixture, similarly to the response of europium doped binary mixed crystals KCl{sub x}KBr{sub 1-x} and KBr{sub x}RbBr{sub 1-x}. (Author)

  19. Non-linear composition dependence of the conductivity parameters in alkali halides mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zardas, Georgios E., E-mail: gzardas@phys.uoa.g [Department of Solid State Physics, Faculty of Physics, University of Athens, Panepistimiopolis, 157 84 Zografos (Greece)

    2009-06-01

    Since mixed alkali halides were found to have applications in optical, optoelectronic and electronic devices, a strong interest has recently expressed for the study of their physical properties. Here, we discuss the experimental finding that a maximum conductivity enhancement with respect to pure constituents is obtained at a certain composition. We show that this composition can be predicted from the bulk properties of the end members.

  20. Optical/IR Characteristics of Alkali Halide Aerosol Clouds over the Ocean.

    Science.gov (United States)

    2014-09-26

    Continues) 19 ABSTRACT (Continue on reverse if necessary and identify by block number) --- Artificial fogs grown on hygroscopic alkali halide...the cruise fell into one of two catagories: 1) elevated clouds or 2) surface fog banks. Both types of clouds have the potential of being useful for...8217 TABLE VI Computed Transmission Through Cloud #8 (from Size Distribution) (250 Meters Thick Cloud) Wavel ength i crons) 0.55 3.5 10.6 Rel

  1. Nanosized alkali-metal-doped ethoxotitanate clusters.

    Science.gov (United States)

    Chen, Yang; Trzop, Elzbieta; Makal, Anna; Sokolow, Jesse D; Coppens, Philip

    2013-05-06

    The synthesis and crystallographic characterization of alkali-metal-doped ethoxotitanate clusters with 28 and 29 Ti atoms as well as a new dopant-free Ti28 cluster are presented. The light-metal-doped polyoxotitanate clusters in which the alkali-metal atom is the critical structure-determining component are the largest synthesized so far. Calculations show that doping with light alkali atoms narrows the band gap compared with the nondoped crystals but does not introduce additional energy levels within the band gap.

  2. Intriguing Optoelectronic Properties of Metal Halide Perovskites.

    Science.gov (United States)

    Manser, Joseph S; Christians, Jeffrey A; Kamat, Prashant V

    2016-11-09

    A new chapter in the long and distinguished history of perovskites is being written with the breakthrough success of metal halide perovskites (MHPs) as solution-processed photovoltaic (PV) absorbers. The current surge in MHP research has largely arisen out of their rapid progress in PV devices; however, these materials are potentially suitable for a diverse array of optoelectronic applications. Like oxide perovskites, MHPs have ABX3 stoichiometry, where A and B are cations and X is a halide anion. Here, the underlying physical and photophysical properties of inorganic (A = inorganic) and hybrid organic-inorganic (A = organic) MHPs are reviewed with an eye toward their potential application in emerging optoelectronic technologies. Significant attention is given to the prototypical compound methylammonium lead iodide (CH3NH3PbI3) due to the preponderance of experimental and theoretical studies surrounding this material. We also discuss other salient MHP systems, including 2-dimensional compounds, where relevant. More specifically, this review is a critical account of the interrelation between MHP electronic structure, absorption, emission, carrier dynamics and transport, and other relevant photophysical processes that have propelled these materials to the forefront of modern optoelectronics research.

  3. Metal halide perovskites for energy applications

    Science.gov (United States)

    Zhang, Wei; Eperon, Giles E.; Snaith, Henry J.

    2016-06-01

    Exploring prospective materials for energy production and storage is one of the biggest challenges of this century. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Metal halide perovskites have emerged as a class of semiconductor materials with unique properties, including tunable bandgap, high absorption coefficient, broad absorption spectrum, high charge carrier mobility and long charge diffusion lengths, which enable a broad range of photovoltaic and optoelectronic applications. Since the first embodiment of perovskite solar cells showing a power conversion efficiency of 3.8%, the device performance has been boosted up to a certified 22.1% within a few years. In this Perspective, we discuss differing forms of perovskite materials produced via various deposition procedures. We focus on their energy-related applications and discuss current challenges and possible solutions, with the aim of stimulating potential new applications.

  4. Temperature Sensitive Optical Phenomena in Heavy Metal Halide Films.

    Science.gov (United States)

    1979-01-08

    Heavy - metal halides such as Pb!2 and HgI2 exhibit a strongly tempera- ture dependent absorption edge at visible frequencies. The shift in the absorption...AOb9 537 ROCKWELL INTERNATIONAL ANAHEIM CA ELECTRONICS RESEAR—— ETC FIG L u G TEMPERATURE SENSITIVE OPTICAL PHENOMENA IN HEAVY METAL HALIDE F—— ETC (U...PHENOMENA IN HEAVY METAL HALIDE F — ET C( U) ,JAN 79 J D MC*LLEN, D M HEINZ. F S STEARNS DAAK7O— 77—C—01 6 5 UNCLASSIFIED C79 1501 _ _ U SB

  5. Rapid yet accurate first principle based predictions of alkali halide crystal phases using alchemical perturbation

    CERN Document Server

    Solovyeva, Alisa

    2016-01-01

    We assess the predictive power of alchemical perturbations for estimating fundamental properties in ionic crystals. Using density functional theory we have calculated formation energies, lattice constants, and bulk moduli for all sixteen iso-valence-electronic combinations of pure pristine alkali halides involving elements $A \\in \\{$Na, K, Rb, Cs$\\}$ and $X \\in \\{$F, Cl, Br, I$\\}$. For rock salt, zincblende and cesium chloride symmetry, alchemical Hellmann-Feynman derivatives, evaluated along lattice scans of sixteen reference crystals, have been obtained for all respective 16$\\times$15 combinations of reference and predicted target crystals. Mean absolute errors (MAE) are on par with density functional theory level of accuracy for energies and bulk modulus. Predicted lattice constants are less accurate. NaCl is the best reference salt for alchemical estimates of relative energies (MAE $<$ 40 meV/atom) while alkali fluorides are the worst. By contrast, lattice constants are predicted best using NaF as a re...

  6. Correlation between deformation bleaching and mechanoluminescence in coloured alkali halide crystals

    Indian Academy of Sciences (India)

    B P Chandra; M Ramrakhiani; P Sahu; A M Rastogi

    2000-02-01

    The present paper reports the correlation between deformation bleaching of coloration and mechanoluminescence (ML) in coloured alkali halide crystals. When the -centre electrons captured by moving dislocations are picked up by holes, deep traps and other compatible traps, then deformation bleaching occurs. At the same time, radiative recombination of dislocation captured electrons with the holes gives rise to the mechanoluminescence. Expressions are derived for the strain dependence of the density of colour centres in deformed crystals and also for the number of colour centres bleached. So far as strain, temperature, density of colour centres, a and volume dependence are concerned, there exists a correlation between the deformation bleaching and ML in coloured alkali halide crystals. From the strain dependence of the density of colour centres in deformed crystals, the value of coefficient of deformation bleaching is determined and it is found to be 1.93 and 2.00 for KCl and KBr crystals, respectively. The value of $(D + \\mathcal{X})$ is determined from the strain dependence of the ML intensity and it is found to be 2.6 and 3.7 for KCl and KBr crystals, respectively. This gives the value of coefficient of deformation generated compatible traps $\\mathcal{X}$ to be 0.67 and 1.7 for KCl and KBr crystals, respectively.

  7. Indirect NMR spin-spin coupling constants in diatomic alkali halides.

    Science.gov (United States)

    Jaszuński, Michał; Antušek, Andrej; Demissie, Taye B; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2016-12-28

    We report the Nuclear Magnetic Resonance (NMR) spin-spin coupling constants for diatomic alkali halides MX, where M = Li, Na, K, Rb, or Cs and X = F, Cl, Br, or I. The coupling constants are determined by supplementing the non-relativistic coupled-cluster singles-and-doubles (CCSD) values with relativistic corrections evaluated at the four-component density-functional theory (DFT) level. These corrections are calculated as the differences between relativistic and non-relativistic values determined using the PBE0 functional with 50% exact-exchange admixture. The total coupling constants obtained in this approach are in much better agreement with experiment than the standard relativistic DFT values with 25% exact-exchange, and are also noticeably better than the relativistic PBE0 results obtained with 50% exact-exchange. Further improvement is achieved by adding rovibrational corrections, estimated using literature data.

  8. THEORY OF PLASTICO ML IN γ–IRRADIATED ALKALI HALIDE CRYSTALS

    Directory of Open Access Journals (Sweden)

    NAMITA RAJPUT

    2011-06-01

    Full Text Available The present paper reports the results of some theoretical approach made to the studies of mechanoluminescence (ML in coloured alkali halide crystals. It is shown that moving dislocations produced during plastic deformation of crystalline materials cause light emission due to several processes like mechanical or electrostatic interaction of dislocations with defect centres, the dielectric breakdown of adsorbed gaseous molecules by the surface accumulated dislocation charges, the generation of holes during decay of mobile dislocations on the surfaces of crystals, etc. On the basis of rate equations, expressions are derived for the rise and decay of ML intensity at a given strain rate. The estimated values of ML intensities for different crystals are found to be comparable with the experimentally observed values. The expression derived are able to explain the dependence of ML intensity on several parameters like strain-rate, defect centre density, temperature, applied stress, crystal- size etc.

  9. Alkali-metal azides interacting with metal-organic frameworks.

    Science.gov (United States)

    Armata, Nerina; Cortese, Remedios; Duca, Dario; Triolo, Roberto

    2013-01-14

    Interactions between alkali-metal azides and metal-organic framework (MOF) derivatives, namely, the first and third members of the isoreticular MOF (IRMOF) family, IRMOF-1 and IRMOF-3, are studied within the density functional theory (DFT) paradigm. The investigations take into account different models of the selected IRMOFs. The mutual influence between the alkali-metal azides and the π rings or Zn centers of the involved MOF derivatives are studied by considering the interactions both of the alkali-metal cations with model aromatic centers and of the alkali-metal azides with distinct sites of differently sized models of IRMOF-1 and IRMOF-3. Several exchange and correlation functionals are employed to calculate the corresponding interaction energies. Remarkably, it is found that, with increasing alkali-metal atom size, the latter decrease for cations interacting with the π-ring systems and increase for the azides interacting with the MOF fragments. The opposite behavior is explained by stabilization effects on the azide moieties and determined by the Zn atoms, which constitute the inorganic vertices of the IRMOF species. Larger cations can, in fact, coordinate more efficiently to both the aromatic center and the azide anion, and thus stabilizing bridging arrangements of the azide between one alkali-metal and two Zn atoms in an η(2) coordination mode are more favored.

  10. Removal of Retired Alkali Metal Test Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  11. Modeling and investigation of heavy oxide and alkali-halide scintillators for potential use in neutron and gamma detection systems

    OpenAIRE

    Cadiente, Jeremy S.

    2015-01-01

    Approved for public release; distribution is unlimited Heavy inorganic oxide and alkali-halide crystals, which previous experimental research has indicated to have fast neutron detection efficiencies well over 40%, were investigated for potential use as highly efficient gamma-neutron radiation detectors. The Monte Carlo N-Particle radiation transport code (MCNP) was used to characterize the radiation interactions in a candidate set of crystals, including Bismuth Germanate (BGO), Lead Tungs...

  12. Molecular Modeling and Monte Carlo Simulation of Concentrated Aqueous Alkali Halide Solutions at 25 C.

    Science.gov (United States)

    Llano-Restrepo, Mario Andres

    A study of concentrated aqueous alkali halide solutions is made at the molecular level, through modeling and computer simulation of their structural and thermodynamic properties. It is found that the HNC approximation is the best integral equation theory to predict such properties within the framework of the primitive model (PM). The intrinsic limitations of the PM in describing ionic association and hydration effects are addressed and discussed in order to emphasize the need for explicitly including the water molecules in the treatment of aqueous electrolyte solutions by means of a civilized model (CM). As a step toward developing a CM as simple as possible, it is shown that a modified version of the SPC model of liquid water in which the Lennard-Jones interaction between intermolecular oxygen sites is replaced by a hard core interaction, is still successful enough to predict the degree of hydrogen bonding of real water. A simple civilized model (SCM) (in which the ions are treated as hard spheres interacting through Coulombic potentials and the water molecules are simulated using the simplified SPC model) is introduced in order to study the changes in the structural features of various aqueous alkali halide solutions upon varying both the concentration and the size of the ions. Both cations and anions are found to be solvated by the water molecules at expense of a breakdown in the hydrogen-bonded water network. Hydration numbers are reported for the first time for NaBr and KBr, and the first simulation -based estimates for LiBr, NaI and KI are also obtained. In several cases, values of the hydration numbers based on the SCM are found to be in excellent agreement with available experimental results obtained from x-ray diffraction measurements. Finally, it is shown that a neoprimitive model (NPM) can be developed by incorporating some of the structural features seen in the SCM into the short-range part of the PM interionic potential via a shielded square well whose

  13. Physics of solid and liquid alkali halide surfaces near the melting point

    Science.gov (United States)

    Zykova-Timan, T.; Ceresoli, D.; Tartaglino, U.; Tosatti, E.

    2005-10-01

    This paper presents a broad theoretical and simulation study of the high-temperature behavior of crystalline alkali halide surfaces typified by NaCl(100), of the liquid NaCl surface near freezing, and of the very unusual partial wetting of the solid surface by the melt. Simulations are conducted using two-body rigid-ion Born-Mayer-Huggins-Fumi-Tosi (BMHFT) potentials, with full treatment of long-range Coulomb forces. After a preliminary check of the description of bulk NaCl provided by these potentials, which seems generally good even at the melting point, we carry out a new investigation of solid and liquid surfaces. Solid NaCl(100) is found in this model to be very anharmonic and yet exceptionally stable when hot. It is predicted by a thermodynamic integration calculation of the surface free energy that NaCl(100) should be a well-ordered, nonmelting surface, metastable even well above the melting point. By contrast, the simulated liquid NaCl surface is found to exhibit large thermal fluctuations and no layering order. In spite of that, it is shown to possess a relatively large surface free energy. The latter is traced to a surface entropy deficit, reflecting some kind of surface short-range order. We show that the surface short-range order is most likely caused by the continuous transition of the bulk ionic melt into the vapor, made of NaCl molecules and dimers rather than of single ions. Finally, the solid-liquid interface free energy is derived through Young's equation from direct simulation of partial wetting of NaCl(100) by a liquid droplet. The resulting interface free energy is large, in line with the conspicuous solid-liquid 27% density difference. A partial wetting angle near 50° close to the experimental value of 48° is obtained in the process. It is concluded that three elements, namely, the exceptional anharmonic stability of the solid (100) surface, the molecular short-range order at the liquid surface, and the costly solid-liquid interface, all

  14. Epitaxial growth of a methoxy-functionalized quaterphenylene on alkali halide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Balzer, F., E-mail: fbalzer@mci.sdu.dk [University of Southern Denmark, Mads Clausen Institute, Alsion 2, DK-6400 Sønderborg (Denmark); Sun, R. [University of Southern Denmark, Mads Clausen Institute, Alsion 2, DK-6400 Sønderborg (Denmark); Parisi, J. [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg (Germany); Rubahn, H.-G. [University of Southern Denmark, Mads Clausen Institute, Alsion 2, DK-6400 Sønderborg (Denmark); Lützen, A. [University of Bonn, Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn (Germany); Schiek, M. [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg (Germany)

    2015-12-31

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of low energy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Both domains from upright molecules as well as fiber-like crystallites from lying molecules form. Neither a wetting layer from lying molecules nor widespread epitaxial fiber growth on the substrates is detected. Our results focus on the upright standing molecules, which condense into a thin film phase with an enlarged layer spacing compared to the bulk phase. - Highlights: • Growth of a methoxy-functionalized para-phenylene on dielectric surfaces is investigated. • Low-energy electron diffraction and X-ray diffraction techniques are employed for structural characterization. • Epitaxial growth of upright molecules only is documented. • Polarized optical microscopy together with atomic force microscopy complements the findings.

  15. Vibrations of alkali metal overlayers on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rusina, G G; Eremeev, S V; Borisova, S D [Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk (Russian Federation); Echenique, P M; Chulkov, E V [Donostia International Physics Center (DIPC), 20018 San Sebastian/Donostia, Basque Country (Spain); Benedek, G [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy)], E-mail: rusina@ispms.tsc.ru

    2008-06-04

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation.

  16. Vibrations of alkali metal overlayers on metal surfaces

    Science.gov (United States)

    Rusina, G. G.; Eremeev, S. V.; Echenique, P. M.; Benedek, G.; Borisova, S. D.; Chulkov, E. V.

    2008-06-01

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation.

  17. Chemical Reactivity Perspective into the Group 2B Metals Halides.

    Science.gov (United States)

    Özen, Alimet Sema; Akdeniz, Zehra

    2016-06-30

    Chemical reactivity descriptors within the conceptual density functional theory can be used to understand the nature of the interactions between two monomers of the Group 2B metal halides. This information might be valuable in the development of adequate force law parameters for simulations in the liquid state. In this study, MX2 monomers and dimers, where M = Zn, Cd, Hg and X = F, Cl, Br, I, were investigated in terms of chemical reactivity descriptors. Relativistic effects were taken into account using the effective core potential (ECP) approach. Correlations were produced between global and local reactivity descriptors and dimerization energies. Results presented in this work represent the first systematic investigation of Group 2B metal halides in the literature from a combined point of view of both relativistic effects and chemical reactivity descriptors. Steric effects were found to be responsible for the deviation from the chemical reactivity principles. They were introduced into the chemical reactivity descriptors such as local softness.

  18. Alkali halide solutions under thermal gradients: soret coefficients and heat transfer mechanisms.

    Science.gov (United States)

    Römer, Frank; Wang, Zilin; Wiegand, Simone; Bresme, Fernando

    2013-07-11

    We report an extensive analysis of the non-equilibrium response of alkali halide aqueous solutions (Na(+)/K(+)-Cl(-)) to thermal gradients using state of the art non-equilibrium molecular dynamics simulations and thermal diffusion forced Rayleigh scattering experiments. The coupling between the thermal gradient and the resulting ionic salt mass flux is quantified through the Soret coefficient. We find the Soret coefficient is of the order of 10(-3) K(-1) for a wide range of concentrations. These relatively simple solutions feature a very rich behavior. The Soret coefficient decreases with concentration at high temperatures (higher than T ∼ 315 K), whereas it increases at lower temperatures. In agreement with previous experiments, we find evidence for sign inversion in the Soret coefficient of NaCl and KCl solutions. We use an atomistic non-equilibrium molecular dynamics approach to compute the Soret coefficients in a wide range of conditions and to attain further microscopic insight on the heat transport mechanism and the behavior of the Soret coefficient in aqueous solutions. The models employed in this work reproduce the magnitude of the Soret coefficient, and the general dependence of this coefficient with temperature and salt concentration. We use the computer simulations as a microscopic approach to establish a correlation between the sign and magnitude of the Soret coefficients and ionic solvation and hydrogen bond structure of the solutions. Finally, we report an analysis of heat transport in ionic solution by quantifying the solution thermal conductivity as a function of concentration. The simulations accurately reproduce the decrease of the thermal conductivity with increasing salt concentration that is observed in experiments. An explanation of this behavior is provided.

  19. High-Order Dispersion Coefficients for Alkali-metal Atoms

    Institute of Scientific and Technical Information of China (English)

    KANG Shuai; DING Chi-Kun; CHEN Chang-Yong; WU Xue-Qing

    2013-01-01

    High-order dispersion coefficients C9,C11,C12,and C13 for the ground-state alkali-metals were calculated by combining the l-dependent model potential of alkali-metal atoms and linear variation method based on B-spline basis functions.The results were compared.

  20. Lamp-Ballast Compatibility Index for Efficient Ceramic Metal Halide Lamp Operation

    OpenAIRE

    Sourish Chatterjee

    2013-01-01

    Development of energy efficient products and exploration of energy saving potential are major challenges for present day’s technology. Ceramic Metal Halide lamp is the latest improved version of metal halide lamp that finds its wide applications in indoor commercial lighting especially in retail shop lighting. This lamp shows better performance in terms of higher lumen per watt and colour constancy in comparison to conventional metal halide lamp. The inherent negative incremental impedance of...

  1. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both simi

  2. Superconductivity in alkali-metal-doped picene.

    Science.gov (United States)

    Mitsuhashi, Ryoji; Suzuki, Yuta; Yamanari, Yusuke; Mitamura, Hiroki; Kambe, Takashi; Ikeda, Naoshi; Okamoto, Hideki; Fujiwara, Akihiko; Yamaji, Minoru; Kawasaki, Naoko; Maniwa, Yutaka; Kubozono, Yoshihiro

    2010-03-04

    Efforts to identify and develop new superconducting materials continue apace, motivated by both fundamental science and the prospects for application. For example, several new superconducting material systems have been developed in the recent past, including calcium-intercalated graphite compounds, boron-doped diamond and-most prominently-iron arsenides such as LaO(1-x)F(x)FeAs (ref. 3). In the case of organic superconductors, however, no new material system with a high superconducting transition temperature (T(c)) has been discovered in the past decade. Here we report that intercalating an alkali metal into picene, a wide-bandgap semiconducting solid hydrocarbon, produces metallic behaviour and superconductivity. Solid potassium-intercalated picene (K(x)picene) shows T(c) values of 7 K and 18 K, depending on the metal content. The drop of magnetization in K(x)picene solids at the transition temperature is sharp (<2 K), similar to the behaviour of Ca-intercalated graphite. The T(c) of 18 K is comparable to that of K-intercalated C(60) (ref. 4). This discovery of superconductivity in K(x)picene shows that organic hydrocarbons are promising candidates for improved T(c) values.

  3. Low-Energy Grazing Ion-Scattering From Alkali-Halide Surfaces: A Novel Approach To C-14 Detection

    Science.gov (United States)

    Meyer, F. W.; Galutschek, E.; Hotchkis, M.

    2009-03-01

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. Conventional accelerator mass spectrometry (AMS) is one approach that offers sufficiently high sensitivity to avoid radiological waste and contamination issues in such studies, but requires large, expensive facilities that are usually not solely dedicated to this task. At the ORNL Multicharged Ion Research Facility (MIRF) we are exploring a small size, low cost alternative to AMS for biomedical 14C tracer studies that utilizes ECR-ion-source-generated keV-energy-range multicharged C beams grazingly incident on an alkali halide target, where efficient negative ion production by multiple electron capture takes place. By using C ion charge states of +3 or higher, the molecular isobar interference at mass 14, e.g. 12CH2 and 13CH, is eliminated. The negatively charged ions in the beam scattered from the alkali halide surface are separated from other scattered charge states by two large acceptance (˜15 msr) stages of electrostatic analysis. The N-14 isobar interference is thus removed, since N does not support a stable negative ion. Initial results for C-14 detection obtained using C-14 enriched CO2 from ANSTO will be described.

  4. Controlled in-situ dissolution of an alkali metal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  5. Estimating the hydration enthalpies of neutral alkali metal atoms.

    Science.gov (United States)

    Stace, A J

    2006-10-26

    Using existing data on the ionization energies of alkali metal atoms in small clusters of water, a thermodynamic cycle is proposed from which the hydration enthalpies of the neutral metal atoms can be estimated. Where comparisons are possible, the results are in reasonable agreement with those obtained using both experimental and ab initio methods. Application of the thermodynamic cycle to neutral alkali metal atoms solvated in ammonia yields solvation enthalpies that are significantly lower than those obtained for water.

  6. Sodium-metal halide and sodium-air batteries.

    Science.gov (United States)

    Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae

    2014-07-21

    Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems.

  7. Zintl cluster chemistry in the alkali-metal-gallium systems

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Robert [Iowa State Univ., Ames, IA (United States)

    1998-03-27

    Previous research into the alkali-metal-gallium systems has revealed a large variety of networked gallium deltahedra. The clusters are analogues to borane clusters and follow the same electronic requirements of 2n+2 skeletal electrons for closo-deltahedra. This work has focused on compounds that do not follow the typical electron counting rules. The first isolated gallium cluster was found in Cs8Ga11. The geometry of the Ga117- unit is not deltahedral but can be described as a penta-capped trigonal prism. The reduction of the charge from a closo-Ga1113- to Ga117- is believed to be the driving force of the distortion. The compound is paramagnetic because of an extra electron but incorporation of a halide atom into the structure captures the unpaired electron and forms a diamagnetic compound. A second isolated cluster has been found in Na10Ga10Ni where the tetra-capped trigonal prismatic gallium is centered by nickel. Stabilization of the cluster occurs through Ni-Ga bonding. A simple two-dimensional network occurs in the binary K2Ga3 Octahedra are connected through four waist atoms to form a layered structure with the potassium atoms sitting between the layers. Na30.5Ga60-xAgx is nonstoichiometric and needs only a small amount of silver to form (x ~ 2-6). The structure is composed of three different clusters which are interconnected to form a three-dimensional structure. The RbGa3-xAux system is also nonstoichiometric with a three-dimensional structure composed of Ga8 dodecahedra and four-bonded gallium atoms. Unlike Na30.5Ga60-xAgx, the RbGa3 binary is also stable. The binary is formally a Zintl phase but the ternary is not. Some chemistry in the alkali-metal-indium system also has been explored. A new potassium-indium binary

  8. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    Science.gov (United States)

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  9. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  10. Hall Determination of Atomic Radii of Alkali Metals

    Science.gov (United States)

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  11. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  12. Two-phase alkali-metal experiments in reduced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  13. Hydrogen storage over alkali metal hydride and alkali metal hydroxide composites

    Institute of Scientific and Technical Information of China (English)

    Pei Yu; Yong Shen Chua; Hujun Cao; Zhitao Xiong; Guotao Wu; Ping Chen

    2014-01-01

    Alkali metal hydroxide and hydride composite systems contain both protic (H bonded with O) and hydridic hydrogen. The interaction of these two types of hydrides produces hydrogen. The enthalpy of dehydrogenation increased with the increase of atomic number of alkali metals, i.e.,-23 kJ/molH2 for LiOH-LiH, 55.34 kJ/molH2 for NaOH-NaH and 222 kJ/molH2 for KOH-KH. These thermodynamic calculation results were consistent with our experimental results. H2 was released from LiOH-LiH system during ball milling. The dehydrogenation temperature of NaOH-NaH system was about 150◦C; whereas KOH and KH did not interact with each other during the heating process. Instead, KH decomposed by itself. In these three systems, NaOH-NaH was the only reversible hydrogen storage system, the enthalpy of dehydrogenation was about 55.65 kJ/molH2 , and the corresponding entropy was ca. 101.23 J/(molH2 ·K), so the temperature for releasing 1.0 bar H2 was as high as 518◦C, showing unfavorable thermodynamic properties. The activation energy for hydrogen desorption of NaOH-NaH was found to be 57.87 kJ/mol, showing good kinetic properties.

  14. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  15. IRMPD action spectroscopy of alkali metal cation-cytosine complexes: effects of alkali metal cation size on gas phase conformation.

    Science.gov (United States)

    Yang, Bo; Wu, R R; Polfer, N C; Berden, G; Oomens, J; Rodgers, M T

    2013-10-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both similar and distinctive spectral features over the range of ~1000-1900 cm(-1). The IRMPD spectra of the Li(+)(cytosine), Na(+)(cytosine), and K(+)(cytosine) complexes are relatively simple but exhibit changes in the shape and shifts in the positions of several bands that correlate with the size of the alkali metal cation. The IRMPD spectra of the Rb(+)(cytosine) and Cs(+)(cytosine) complexes are much richer as distinctive new IR bands are observed, and the positions of several bands continue to shift in relation to the size of the metal cation. The measured IRMPD spectra are compared to linear IR spectra of stable low-energy tautomeric conformations calculated at the B3LYP/def2-TZVPPD level of theory to identify the conformations accessed in the experiments. These comparisons suggest that the evolution in the features in the IRMPD action spectra with the size of the metal cation, and the appearance of new bands for the larger metal cations, are the result of the variations in the intensities at which these complexes can be generated and the strength of the alkali metal cation-cytosine binding interaction, not the presence of multiple tautomeric conformations. Only a single tautomeric conformation is accessed for all five alkali metal cation-cytosine complexes, where the alkali metal cation binds to the O2 and N3 atoms of the canonical amino-oxo tautomer of cytosine, M(+)(C1).

  16. Neuropsychiatric manifestations of alkali metal deficiency and excess

    Energy Technology Data Exchange (ETDEWEB)

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.

  17. Famed Bulgarian physicists. I. St. Petroff's Goettingen research of the photostimulated interconversions of color centers in alkali halides: the discovery of the photostimulated aggregation

    CERN Document Server

    Georgiev, Mladen

    2008-01-01

    This essay tells briefly of the life and work of one of the most successful scientists originating from a Balkan settlement whose name and popularity have greatly exceeded its realm. The word is of a discovery during WWII of the photostimulated aggregation of the F centers (else alkali atoms) dissolved from the vapor into an alkali halide crystal. Using optical absorption techniques while a grantee of Humboldt's Foundation in Goettingen, Germany between 1943-1944, he found new absorption bands pertaining to small-size F center aggregates and followed their interconversions. A primary photochemical solid state reaction was evidenced for the first time leading to nanoscale products.

  18. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings

    Science.gov (United States)

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2012-01-01

    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  19. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure.

    Science.gov (United States)

    Hinwood, A L; Stasinska, A; Callan, A C; Heyworth, J; Ramalingam, M; Boyce, M; McCafferty, P; Odland, J Ø

    2015-09-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children.

  20. Robust quantum anomalous Hall effect in ferromagnetic transition metal halides

    CERN Document Server

    Huang, Chengxi; Wu, Haiping; Deng, Kaiming; Jena, Puru; Kan, Erjun

    2016-01-01

    The quantum anomalous Hall (QAH) effect is a novel topological spintronic phenomenon arising from inherent magnetization and spin-orbit coupling. Various theoretical and experimental efforts have been devoted in search of robust intrinsic QAH insulators. However, up to now, it has only been observed in Cr or V doped (Bi,Sb)2Te3 film in experiments with very low working temperature. Based on the successful synthesis of transition metal halides, we use first-principles calculations to predict that RuI3 monolayer is an intrinsic ferromagnetic QAH insulator with a topologically nontrivial global band gap of 11 meV. This topologically nontrivial band gap at the Fermi level is due to its crystal symmetry, thus the QAH effect is robust. Its Curie temperature, estimated to be ~360 K using Monte-Carlo simulation, is above room temperature and higher than most of two-dimensional ferromagnetic thin films. We also discuss the manipulation of its exchange energy and nontrivial band gap by applying in-plane strain. Our wor...

  1. Quantum anomalous Hall effect in ferromagnetic transition metal halides

    Science.gov (United States)

    Huang, Chengxi; Zhou, Jian; Wu, Haiping; Deng, Kaiming; Jena, Puru; Kan, Erjun

    2017-01-01

    The quantum anomalous Hall (QAH) effect is a novel topological spintronic phenomenon arising from inherent magnetization and spin-orbit coupling. Various theoretical and experimental efforts have been devoted in search of intrinsic QAH insulators. However, up to now, it has only been observed in Cr or V doped (Bi,Sb ) 2T e3 film in experiments with very low working temperature. Based on the successful synthesis of transition metal halides, we use first-principles calculations to predict that the Ru I3 monolayer is an intrinsic ferromagnetic QAH insulator with a topologically nontrivial global band gap of 11 meV. This topologically nontrivial band gap at the Fermi level is due to its crystal symmetry, thus the QAH effect is robust. Its Curie temperature, estimated to be ˜360 K using Monte Carlo simulation, is above room temperature and higher than most two-dimensional ferromagnetic thin films. The inclusion of Hubbard U in the Ru-d electrons does not affect this result. We also discuss the manipulation of its exchange energy and nontrivial band gap by applying in-plane strain. Our work adds an experimentally feasible member to the QAH insulator family, which is expected to have broad applications in nanoelectronics and spintronics.

  2. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    Prasenjit Sen

    2010-04-01

    Electronic and magnetic structures of (1 0 0) films of K and Cs, having thicknesses of one to seven layers, are calculated within the plane-wave projector augmented wave (PAW) formalism of the density functional theory (DFT), using both local spin density approximation (LSDA) and the PW91 generalized gradient approximation (GGA). Only a six-layer Cs film is found to have a ferromagnetic (FM) state which is degenerate with a paramagnetic (PM) state within the accuracy of these calculations. These results are compared with those obtained from calculations on a finite-thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films and bulk hosts are also discussed.

  3. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4.

    Science.gov (United States)

    Sondhi, Sonica; Sharma, Prince; Saini, Shilpa; Puri, Neena; Gupta, Naveen

    2014-01-01

    A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC) was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km) showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.

  4. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under...

  5. Chemical compatibility of structural materials in alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Rink, D.L.; Haglund, R. [Argonne National Lab., Chicago, IL (United States)] [and others

    1995-04-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments.

  6. Influence of small dozes ultra-violet radiation on motion of dislocation in alkali-halide crystals

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The purpose of this work was research into influence of ultra-violet radiation on size of run of regional and screw dislocations in beams of dislocation sockets, formed at indentation surface of alkali-halide crystals. In experiments it was used crystals NaCl, with the quantitative maintenance of impurity 10-2 -10-3weight%, the wave length of UV-radiation λ=250 nanometers, the sizes of samples 10mm× 20mm× 2mm,temperature of samples was constant T=290 K.It is established that indentation and the simultaneous irradiation of samples a ultraviolet is increases size of run of head dispositions in dislocation sockets..It is marked, that influence UV-radiation nonequivalence for various times of an exposition. At small times (till 5 minutes) the size of run grows. The length of beams increases on ~ 50 %. At the further increase in time of influence of a ultraviolet the length of beams is reduced till the sizes corresponding stressing without an irradiation (Figs. 1, 2, 3). The effect is observed on dislocation beams of regional and screw orientations and most expressed at small loadings (in our experiments-10 grams) (Fig. 3).Observable effects are explained from positions dislocation-exciton interactions. At UV-radiation exciton cooperates with the charged step on a disposition, causing movement of a step along a disposition on one internuclear distance. Due to this interaction overcoming by a disposition of a grid of stoppers is facilitated.Big times of endurance cause a relaxation of pressure directly in a print that provides convertible movement of dispositions in area of a print and as consequence, reduction of length of beams of dislocation sockets.

  7. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)

    1993-08-14

    The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).

  8. Composition and thermodynamic properties of dense alkali metal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gabdullin, M.T. [NNLOT, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan); Ramazanov, T.S.; Dzhumagulova, K.N. [IETP, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan)

    2012-04-15

    In this work composition and thermodynamic properties of dense alkali metal plasmas (Li, Na) were investigated. Composition was derived by solving the Saha equations with corrections due to nonideality. The lowering of the ionization potentials was calculated on the basis of pseudopotentials by taking screening and quantum effects into account (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    Science.gov (United States)

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  10. The unexpected properties of alkali metal iron selenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dagotto, Elbio R [ORNL

    2013-01-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2ySe2 (A alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the ironbased superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  11. Heterometallic aluminates: alkali metals trapped by an aluminium aryloxide claw.

    Science.gov (United States)

    Muñoz, M Teresa; Cuenca, Tomás; Mosquera, Marta E G

    2014-10-14

    A series of heterometallic aluminium-alkali metal species [AlMMe2{2,6-(MeO)2C6H3O}2]n have been isolated for lithium, sodium and potassium. These compounds can be generated by the reaction of [AlMe2{2,6-(MeO)2C6H3O}]2 with the metallated phenol [M{2,6-(MeO)2C6H3O}]n or through the reaction of the mixture of AlMe3 and the appropriate alkali metal alkyl base with two equivalents of 2,6-dimethoxyphenol. In the heterometallic species obtained, the {AlMe2{2,6-(MeO)2C6H3O}2}(-) moiety is observed and could be described as a claw which fixes the alkali ion by the phenoxide oxygen atoms while the methoxy groups help to stabilize their coordination sphere. All compounds have been characterized by NMR spectroscopy and X-ray diffraction methods. Catalytic studies reveal that these compounds are active in ring-opening polymerization of L-lactide.

  12. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J.

    2014-01-01

    Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat...... to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer...... electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) – almost 27000 combinations, and have identified novel mixtures, with significantly improved storage...

  13. Recent advances in tailoring the aggregation of heavier alkaline earth metal halides, alkoxides and aryloxides from non-aqueous solvents.

    Science.gov (United States)

    Fromm, Katharina M

    2006-11-21

    This overview on one of the subjects treated in our group deals with the synthesis and study of low-dimensional polymer and molecular solid state structures formed with alkaline earth metal ions in non-aqueous solvents. We have chosen several synthetic approaches in order to obtain such compounds. The first concept deals with the "cutting out" of structural fragments from a solid state structure of a binary compound, which will be explained with reference to BaI2. Depending on the size and concentration of oxygen donor ligands, used as chemical scissors on BaI2, three-, two-, one- and zero-dimensional derived adducts of BaI2 are obtained, comparable to a structural genealogy tree for BaI2. A second part deals with the supramolecular approach for the synthesis of low dimensional polymeric compounds based on alkaline earth metal iodides, obtained by the combination of metal ion coordination with hydrogen bonding between the cationic complexes and their anions. Certain circumstances allow rules to be established for the prediction of the dimensionality of a given compound, contributing to the fundamental problem of structure prediction in crystal engineering. A third section describes a synthetic approach for generating pure alkaline earth metal cage compounds as well as alkali and alkaline earth mixed metal clusters. A first step deals with different molecular solvated alkaline earth metal iodides which are investigated as a function of the ligand size in non-aqueous solvents. These are then reacted with some alkali metal compound in order to partially or totally eliminate alkali iodide and to form the targeted clusters. These unique structures of ligand stabilized metal halide, hydroxide and/or alkoxide and aryloxide aggregates are of interest as potential precursors for oxide materials and as catalysts. Approaches to two synthetic methods of the latter, sol-gel and (MO)CVD (metal-organic chemical vapour deposition), are investigated with some of our compounds. (D

  14. Hydrogen Release Studies of Alkali Metal Amidoboranes

    Energy Technology Data Exchange (ETDEWEB)

    Luedtke, Avery T.; Autrey, Thomas

    2010-04-19

    A series of metal amido boranes LiNH2BH3 (LAB), NaNH2BH3 (SAB), LiNH(Me)BH3 (LMAB), NaNH(Me)BH3 (SMAB), KNH(Me)BH3 (PMAB), and KNH(tBu)BH3 (PBAB) were synthesized, by solution phase methods, and the thermal release of H2 in the solid state was studied. Based on the observed trends in reaction rates of H > Me > tBu and the kinetic isotope effect, the mechanism of hydrogen release from MAB compounds was found to proceed through a bimolecular mechanism involving the intermediacy of a MH (M = Li, Na, or K). The mechanism of hydrogen release from metal amidoboranes, a metal ion assisted hydride transfer, is very different than the mechanism of hydrogen release from the parent compound ammonia borane (AB). The non-volatile products formed from MAB’s are significantly different than the products formed after hydrogen release from AB. The boron containing resulting from the release of one equivalent of hydrogen from the metal amidoboranes were characterized by MAS 11B NMR spectroscopy and found to contain both BH3 and sp2 hybridized BH groups, consistent with a general structural feature MN(R)=BHN(R)MBH3. This work was funded by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy as part of the Chemical Hydrogen Storage CoE at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle. MAS NMR studies were performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL.

  15. Generation and characterization of alkali metal clusters in Y-FAU zeolites. An ESR and MAS NMR spectroscopic study

    Science.gov (United States)

    Hannus, István; Béres, Attila; Nagy, János B.; Halász, János; Kiricsi, Imre

    1997-06-01

    Charged and neutral metal clusters of various compositions and sizes can be prepared by controlling the alkali metal content by the decomposition of alkali azides and the composition of the host zeolite by ion-exchange. ESR signals show that electron transfer from alkali metal atoms to alkali metal cations does occur, but in a direction opposite to that predicted by the gas-phase thermochemistry. Alkali metal clusters proved to be very active basic catalytic centers.

  16. Alkali metal cation-hexacyclen complexes: effects of alkali metal cation size on the structure and binding energy.

    Science.gov (United States)

    Austin, C A; Rodgers, M T

    2014-07-24

    Threshold collision-induced dissociation (CID) of alkali metal cation-hexacyclen (ha18C6) complexes, M(+)(ha18C6), with xenon is studied using guided ion beam tandem mass spectrometry techniques. The alkali metal cations examined here include: Na(+), K(+), Rb(+), and Cs(+). In all cases, M(+) is the only product observed, corresponding to endothermic loss of the intact ha18C6 ligand. The cross-section thresholds are analyzed to extract zero and 298 K M(+)-ha18C6 bond dissociation energies (BDEs) after properly accounting for the effects of multiple M(+)(ha18C6)-Xe collisions, the kinetic and internal energy distributions of the M(+)(ha18C6) and Xe reactants, and the lifetimes for dissociation of the activated M(+)(ha18C6) complexes. Ab initio and density functional theory calculations are used to determine the structures of ha18C6 and the M(+)(ha18C6) complexes, provide molecular constants necessary for the thermodynamic analysis of the energy-resolved CID data, and theoretical estimates for the M(+)-ha18C6 BDEs. Calculations using a polarizable continuum model are also performed to examine solvent effects on the binding. In the absence of solvent, the M(+)-ha18C6 BDEs decrease as the size of the alkali metal cation increases, consistent with the noncovalent nature of the binding in these complexes. However, in the presence of solvent, the ha18C6 ligand exhibits selectivity for K(+) over the other alkali metal cations. The M(+)(ha18C6) structures and BDEs are compared to those previously reported for the analogous M(+)(18-crown-6) and M(+)(cyclen) complexes to examine the effects of the nature of the donor atom (N versus O) and the number donor atoms (six vs four) on the nature and strength of binding.

  17. Formation of alkali-metal nanoparticles in alkali-silicate glasses under electron irradiation and thermal processing

    Science.gov (United States)

    Bochkareva, E. S.; Sidorov, A. I.; Ignat'ev, A. I.; Nikonorov, N. V.; Podsvirov, O. A.

    2017-02-01

    Experiments and numerical simulation show that the irradiation of alkali-containing glasses using electrons at an energy of 35 keV and the subsequent thermal processing at a temperature above the vitrification point lead to the formation of spherical metal (lithium, sodium, and potassium) nanoparticles with oxide sheaths that exhibit plasmon resonances in the visible spectral range. Glasses containing two alkali metals exhibit mutual effect of metals on the formation of nanoparticles with two compositions due to the difference of ion radii and mobilities of metal ions.

  18. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations

    Science.gov (United States)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z.

    2015-07-01

    The mean ionic activity coefficients of aqueous KCl, NaF, NaI, and NaCl solutions of varying concentrations have been obtained from molecular dynamics simulations following a recently developed methodology based on gradual insertions of salt molecules [Z. Mester and A. Z. Panagiotopoulos, J. Chem. Phys. 142, 044507 (2015)]. The non-polarizable ion models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)], Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)], Reiser et al. [J. Chem. Phys. 140, 044504 (2014)], and Joung and Cheatham [J. Phys. Chem. B 112, 9020 (2008)] were used along with the extended simple point charge (SPC/E) water model [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)] in the simulations. In addition to the chemical potentials in solution used to obtain the activity coefficients, we also calculated the chemical potentials of salt crystals and used them to obtain the solubility of these alkali halide models in SPC/E water. The models of Weerasinghe and Smith [J. Chem. Phys. 119, 11342 (2003)] and Gee et al. [J. Chem. Theory Comput. 7, 1369 (2011)] provide excellent predictions of the mean ionic activity coefficients at 298.15 K and 1 bar, but significantly underpredict or overpredict the solubilities. The other two models generally predicted the mean ionic activity coefficients only qualitatively. With the exception of NaF for which the solubility is significantly overpredicted, the model of Joung and Cheatham predicts salt solubilities that are approximately 40%-60% of the experimental values. The models of Reiser et al. [J. Chem. Phys. 140, 044504 (2014)] make good predictions for the NaCl and NaI solubilities, but significantly underpredict the solubilities for KCl and NaF. We also tested the transferability of the models to temperatures much higher than were used to parametrize them by performing simulations for NaCl at 373.15 K and 1 bar, and at 473.15 K and 15.5 bar. All models overpredict the drop in the values of mean ionic

  19. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters.

    Science.gov (United States)

    Joung, In Suk; Cheatham, Thomas E

    2009-10-01

    The dynamic and energetic properties of the alkali and halide ions were calculated using molecular dynamics (MD) and free energy simulations with various different water and ion force fields including our recently developed water-model-specific ion parameters. The properties calculated were activity coefficients, diffusion coefficients, residence times of atomic pairs, association constants, and solubility. Through calculation of these properties, we can assess the validity and range of applicability of the simple pair potential models and better understand their limitations. Due to extreme computational demands, the activity coefficients were only calculated for a subset of the models. The results qualitatively agree with experiment. Calculated diffusion coefficients and residence times between cation-anion, water-cation, and water-anion showed differences depending on the choice of water and ion force field used. The calculated solubilities of the alkali-halide salts were generally lower than the true solubility of the salts. However, for both the TIP4P(EW) and SPC/E water-model-specific ion parameters, solubility was reasonably well-reproduced. Finally, the correlations among the various properties led to the following conclusions: (1) The reliability of the ion force fields is significantly affected by the specific choice of water model. (2) Ion-ion interactions are very important to accurately simulate the properties, especially solubility. (3) The SPC/E and TIP4P(EW) water-model-specific ion force fields are preferred for simulation in high salt environments compared to the other ion force fields.

  20. 78 FR 51463 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures

    Science.gov (United States)

    2013-08-20

    ... August 20, 2013 Part V Department of Energy 10 CFR Part 431 Energy Conservation Program: Energy... Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures AGENCY: Office... rulemaking (NOPR) and public meeting. SUMMARY: The Energy Policy and Conservation Act of 1975 (EPCA),...

  1. 75 FR 5544 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures: Public...

    Science.gov (United States)

    2010-02-03

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AC00 Energy Conservation Program: Energy Conservation Standards...: Any comments submitted must identify the Framework Document for energy conservation standards for... energy conservation standards for metal halide lamp fixtures. The notice provided for the submission...

  2. Periodic DFT approaches to crystalline alkali metal azides

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The energy bands, electronic structures andrelationship between structures and properties of the crys-talline alkali metal azides, LiN3, α-NaN3 and KN3, are investigated at the DFT-B3LYP level. The crystalline bulks arepredicted to be insulator, speculated from their band gaps ofca. 0.23-0.25 a.u. and from their level frontier bands. Theatomic overlaps and electron densities show that the metalsand the azides are combined by ionic bonds. The crystal lat-tice energies, being corrected for the basis set superpositionerrors, are -852.30, -771.45 and - 614.78 kJ @ mol-1 for LiN3,α-NaN3 and KN3 respectively. These values are similar tothose by Gray's approximate method. The frontier crystalorbital mainly consists of the atomic orbital of the terminalnitrogen of azides. The contribution of the metallic orbital tothe LUMO is very small. The electron transition from theHOMO to the LUMO is difficult to occur. Hence all the al-kali metal azides are expected to be insensitive explosives,according to the "principle of easiest electron transition".

  3. Integrated oil production and upgrading using molten alkali metal

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  4. Theoretical determination of the alkali-metal superoxide bond energies

    Science.gov (United States)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Sodupe, Mariona; Langhoff, Stephen R.

    1992-01-01

    The bond dissociation energies for the alkali-metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional level. Our computed D0 values are 61.4, 37.2, 40.6, and 38.4 kcal/mol for LiO2, NaO2, KO2, and RbO2, respectively. These values, which are expected to be lower bounds and accurate to 2 kcal/mol, agree well with some of the older flame data, but rule out several recent experimental measurements.

  5. Alkali-metalated forms of thiacalix[4]arenes.

    Science.gov (United States)

    Zeller, Jürgen; Radius, Udo

    2006-11-13

    The alkali metal salts [TCALi4] (1), [TCANa4] (2), and [TCALK4] (3) of fully deprotonated p-tert-butyltetrathiacalix[4]arene (H(4)TCA) are readily available from the reactions of thiacalix[4]arene and n-BuLi, NaH, or KH as deprotonating reagents. Crystals of the sodium salts 2 and the potassium salt 3 suitable for X-ray diffraction were obtained in the form of the pyridine solvates [(TCA)2Na8.8py] (2.8py) and [(TCA)2K(8).8py] (3.8py). These molecules are dimers in the solid state but are structurally not related. In addition, the reaction of H(4)TCA and lithium hydroxide afforded the structurally characterized complex [(TCA)Li5(OH).4THF] (4). The molecular structure of 4 as well as the structures of 2.8py and 3.8py reveal a close relationship to the corresponding alkali metal salts of the calix[4]arenes.

  6. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    . The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...

  7. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4.

    Directory of Open Access Journals (Sweden)

    Sonica Sondhi

    Full Text Available A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.

  8. Steric engineering of metal-halide perovskites with tunable optical band gaps.

    Science.gov (United States)

    Filip, Marina R; Eperon, Giles E; Snaith, Henry J; Giustino, Feliciano

    2014-12-15

    Owing to their high energy-conversion efficiency and inexpensive fabrication routes, solar cells based on metal-organic halide perovskites have rapidly gained prominence as a disruptive technology. An attractive feature of perovskite absorbers is the possibility of tailoring their properties by changing the elemental composition through the chemical precursors. In this context, rational in silico design represents a powerful tool for mapping the vast materials landscape and accelerating discovery. Here we show that the optical band gap of metal-halide perovskites, a key design parameter for solar cells, strongly correlates with a simple structural feature, the largest metal-halide-metal bond angle. Using this descriptor we suggest continuous tunability of the optical gap from the mid-infrared to the visible. Precise band gap engineering is achieved by controlling the bond angles through the steric size of the molecular cation. On the basis of these design principles we predict novel low-gap perovskites for optimum photovoltaic efficiency, and we demonstrate the concept of band gap modulation by synthesising and characterising novel mixed-cation perovskites.

  9. Hydride encapsulation by molecular alkali-metal clusters.

    Science.gov (United States)

    Haywood, Joanna; Wheatley, Andrew E H

    2008-07-14

    The sequential treatment of group 12 and 13 Lewis acids with alkali-metal organometallics is well established to yield so-called ''ate' complexes, whereby the Lewis-acid metal undergoes nucleophilic attack to give an anion, at least one group 1 metal acting to counter this charge. However, an alternative, less well recognised, reaction pathway involves the Lewis acid abstracting hydride from the organolithium reagent via a beta-elimination mechanism. It has recently been shown that in the presence of N,N'-bidentate ligands this chemistry can be harnessed to yield a new type of molecular main-group metal cluster in which the abstracted LiH is effectively trapped, with the hydride ion occupying an interstitial site in the cluster core. Discussion focuses on the development of this field, detailing advances in our understanding of the roles of Lewis acid, organolithium, and amine substrates in the syntheses of these compounds. Structure-types are discussed, as are efforts to manipulate cluster geometry and composition as well as hydride-coordination. Embryonic mechanistic studies are reported, as well as attempts to generate hydride-encapsulation clusters under catalytic control.

  10. Solvation structures and dynamics of alkaline earth metal halides in supercritical water: A molecular dynamics study

    Science.gov (United States)

    Keshri, Sonanki; Mandal, Ratnamala; Tembe, B. L.

    2016-09-01

    Constrained molecular dynamics simulations of alkaline earth metal halides have been carried out to investigate their structural and dynamical properties in supercritical water. Potentials of mean force (PMFs) for all the alkaline earth metal halides in supercritical water have been computed. Contact ion pairs (CIPs) are found to be more stable than all other configurations of the ion pairs except for MgI2 where solvent shared ion pair (SShIP) is more stable than the CIP. There is hardly any difference in the PMFs between the M2+ (M = Mg, Ca, Sr, Ba) and the X- (X = F, Cl, Br, I) ions whether the second X- ion is present in the first coordination shell of the M2+ ion or not. The solvent molecules in the solvation shells diffuse at a much slower rate compared to the bulk. Orientational distribution functions of solvent molecules are sharper for smaller ions.

  11. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  12. An alternative picture of alkali-metal-mediated metallation: cleave and capture chemistry.

    Science.gov (United States)

    Mulvey, Robert E

    2013-05-21

    This perspective article takes an alternative look at alkali-metal-mediated chemistry (exchange of a relatively inert C-H bond for a more reactive C-metal bond by a multicomponent reagent usually containing an alkali metal and a less electropositive metal such as magnesium or zinc). It pictures that the cleavage of selected C-H bonds can be accompanied by the capturing of the generated anion by the multi (Lewis acid)-(Lewis base) character of the residue of the bimetallic base. In this way small atoms or molecules (hydrides, oxygen-based anions) as well as sensitive organic anions (of substituted aromatic compounds, ethers or alkenes) can be captured. Cleave and capture reactions which occur in special positions on the organic substrate are also included.

  13. Examination of Solubility Models for the Determination of Transition Metals within Liquid Alkali Metals

    Directory of Open Access Journals (Sweden)

    Jeremy Isler

    2016-06-01

    Full Text Available The experimental solubility of transition metals in liquid alkali metal was compared to the modeled solubility calculated using various equations for solubility. These equations were modeled using the enthalpy calculations of the semi-empirical Miedema model and various entropy calculations. The accuracy of the predicted solubility compared to the experimental data is more dependent on which liquid alkali metal is being examined rather than the transition metal solute examined. For liquid lithium the calculated solubility by the model was generally larger than experimental values, while for liquid cesium the modeling solubility was significantly smaller than the experimental values. For liquid sodium, potassium, and rubidium the experimental solubilities were within the range calculated by this study. Few data approached the predicted temperature dependence of solubility and instead most data exhibited a less pronounced temperature dependence.

  14. Sub-millimeter Spectroscopy of Astrophysically Important Molecules and Ions: Metal Hydrides, Halides, and Cyanides

    Science.gov (United States)

    Ziurys, L. M.; Flory, M. A.; Halfen, D. T.

    2006-01-01

    With the advent of SOFIA, Herschel, and SAFIR, new wavelength regions will become routinely accessible for astronomical spectroscopy, particularly at submm frequencies (0.5-1.1 THz). Molecular emission dominates the spectra of dense interstellar gas at these wavelengths. Because heterodyne detectors are major instruments of these missions, accurate knowledge of transition frequencies is crucial for their success. The Ziurys spectroscopy laboratory has been focusing on the measurement of the pure rotational transitions of astrophysically important molecules in the sub-mm regime. Of particular interest have been metal hydride species and their ions, as well as metal halides and cyanides. A new avenue of study has included metal bearing molecular ions.

  15. Photonic Nanostructures Patterned by Thermal Nanoimprint Directly into Organo-Metal Halide Perovskites.

    Science.gov (United States)

    Pourdavoud, Neda; Wang, Si; Mayer, André; Hu, Ting; Chen, Yiwang; Marianovich, André; Kowalsky, Wolfgang; Heiderhoff, Ralf; Scheer, Hella-Christin; Riedl, Thomas

    2017-03-01

    Photonic nanostructures are created in organo-metal halide perovskites by thermal nanoimprint lithography at a temperature of 100 °C. The imprinted layers are significantly smoothened compared to the initially rough, polycrystalline layers and the impact of surface defects is substantially mitigated upon imprint. As a case study, 2D photonic crystals are shown to afford lasing with ultralow lasing thresholds at room temperature.

  16. Assessment of alkali metal coolants for the ITER blanket

    Science.gov (United States)

    Natesan, K.; Reed, C. B.; Mattas, R. F.

    1994-06-01

    The blanket system is one of the most important components of a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The blanket comparison and selection study, conducted earlier, described the overall comparative performance of different blanket concepts, including liquid metal, molten salt, water, and helium. This paper will discuss the ITER requirements for a self-cooled blanket concept with liquid lithium and for indirectly cooled concepts that use other alkali metals such as NaK. The paper addresses the thermodynamics of interactions between the liquid metals (e.g., lithium and NaK) and structural materials (e.g., V-base alloys), together with associated corrosion/compatibility issues. Available experimental data are used to assess the long-term performance of the first wall in a liquid metal environment. Other key issues include development of electrical insulator coatings on the first-wall structural material to MHD pressure drop, and tritium permeation/inventory in self-cooled and indirectly cooled concepts. Acceptable types of coatings (based on their chemical compatibility and physical properties) are identified, and surface-modification avenues to achieve these coatings on the first wall are discussed. The assessment examines the extent of our knowledge on structural materials performance in liquid metals and identifies needed research and development in several of the areas in order to establish performance envelopes for the first wall in a liquid-metal environment.

  17. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms.

    Science.gov (United States)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J; Vegge, Tejs

    2014-09-28

    Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) - almost 27,000 combinations, and have identified novel mixtures, with significantly improved storage capacities. The size of the search space and the chosen fitness function make it possible to verify that the found candidates are the best possible candidates in the search space, proving that the GA implementation is ideal for this kind of computational materials design, requiring calculations on less than two percent of the candidates to identify the global optimum.

  18. Homoepitaxial Growth of Metal Halide Crystals Investigated by Reflection High-Energy Electron Diffraction

    Science.gov (United States)

    Chen, Pei; Kuttipillai, Padmanaban S.; Wang, Lili; Lunt, Richard R.

    2017-01-01

    We report the homoepitaxial growth of a metal halide on single crystals investigated with in situ reflection high-energy electron diffraction (RHEED) and ex situ atomic force microscopy (AFM). Epitaxial growth of NaCl on NaCl (001) is explored as a function of temperature and growth rate which provides the first detailed report of RHEED oscillations for metal halide growth. Layer-by-layer growth is observed at room temperature accompanied by clear RHEED oscillations while the growth mode transitions to an island (3D) mode at low temperature. At higher temperatures (>100 °C), RHEED oscillations and AFM data indicate a transition to a step-flow growth mode. To show the importance of such metal halide growth, green organic light-emitting diodes (OLEDs) are demonstrated using a doped NaCl film with a phosphorescent emitter as the emissive layer. This study demonstrates the ability to perform in situ and non-destructive RHEED monitoring even on insulating substrates and could enable doped single crystals and crystalline substrates for a range of optoelectronic applications. PMID:28071732

  19. Thermochemical Ablation Therapy of VX2 Tumor Using a Permeable Oil-Packed Liquid Alkali Metal

    OpenAIRE

    2015-01-01

    Objective Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors. Methods Permeable oil-packed sodium–potassium (NaK) was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluat...

  20. Field emission properties of capped carbon nanotubes doped by alkali metals:a theoretical investigation

    Institute of Scientific and Technical Information of China (English)

    Jin Lei; Fu Hong-Gang; Xie Ying; Yu Hai-Tao

    2012-01-01

    The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.

  1. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning.

    Science.gov (United States)

    Shmyreva, Anna A; Safdari, Majid; Furó, István; Dvinskikh, Sergey V

    2016-06-14

    Orders of magnitude decrease of (207)Pb and (199)Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  2. Alkali-metal-supported bismuth polyhedra-principles and theoretical studies.

    Science.gov (United States)

    Monakhov, Kirill Yu; Linti, Gerald; Wolters, Lando P; Bickelhaupt, F Matthias

    2011-06-20

    We have quantum chemically investigated the structure, stability, and bonding mechanism in highly aggregated alkali-metal salts of bismuthanediide anions [RBi](2-) using relativistic density functional theory (DFT, at ZORA-BP86/TZ2P) in combination with a quantitative energy decomposition analysis (EDA). Our model systems are alkali-metal-supported bismuth polyhedra [(RBi)(n)M(2n-4)](4-) with unique interpenetrating shells of a bismuth polyhedron and an alkali-metal superpolyhedron. Furthermore, we have analyzed the trianionic inclusion complexes [M'@{(RBi)(n)M(2n-4)}](3-) involving an additional endohedral alkali-metal ion M'. The main objective is to assist the further development of synthetic approaches toward this class of compounds. Our analyses led to electron-counting rules relating, for example, the number of bonding orbitals (N(bond)) of the cage molecules [(RBi)(n)M(2n+Q)](Q) to the number of bismuth atoms (n(Bi)), alkali-metal atoms (n(M)), and net charge Q as N(bond) = n(Bi) + n(M) - Q (R = one-electron donor ligand; M = alkali metal; n = 4-12; Q = -4, -6, -8). Finally, on the basis of our findings, we predict the next members in the 5-fold symmetrical row of alkali-metallobismaspheres with a macroicosahedral arrangement.

  3. Structural properties of low-density liquid alkali metals

    Indian Academy of Sciences (India)

    A Akande; G A Adebayo; O Akinlade

    2005-12-01

    The static structure factors of liquid alkali metals have been modelled at temperatures close to their melting points and a few higher temperatures using the reverse Monte Carlo (RMC) method. The positions of 5000 atoms in a box, with full periodicity, were altered until the experimental diffraction data of the structure factor agrees with the associated model structure factor within the errors. The model generated is then analysed. The position of the first peak of the pair distribution function () does not show any significant temperature dependence and the mean bond lengths can be approximated within an interval of 3.6–5.3 Å, 4.5–6.6 Å, 4.8–6.7 Å and 5.1–7.3 Å for Na, K, Rb and Cs respectively. The cosine bond distributions show similar trend with the flattening up of the first peak with increase in temperature. In addition, the coordination numbers of these liquid metals are high due to the presence of non-covalent bonding between them. On the average, we surmise that the coordination number decreases with increase in temperature.

  4. Solid-State Nanopore Confinement for Band Gap Engineering of Metal-Halide Perovskites

    CERN Document Server

    Demchyshyn, Stepan; Groiss, Heiko; Heilbrunner, Herwig; Ulbricht, Christoph; Apaydin, Dogukan; Rütt, Uta; Bertram, Florian; Hesser, Günter; Scharber, Markus; Nickel, Bert; Sariciftci, Niyazi Serdar; Bauer, Siegfried; Głowacki, Eric Daniel; Kaltenbrunner, Martin

    2016-01-01

    Tuning the band gap of semiconductors via quantum size effects launched a technological revolution in optoelectronics, advancing solar cells, quantum dot light-emitting displays, and solid state lasers. Next generation devices seek to employ low-cost, easily processable semiconductors. A promising class of such materials are metal-halide perovskites, currently propelling research on emerging photovoltaics. Their narrow band emission permits very high colour purity in light-emitting devices and vivid life-like displays paired with low-temperature processing through printing-compatible methods. Success of perovskites in light-emitting devices is conditional upon finding reliable strategies to obtain tunability of the band gap. So far, colour can be tuned chemically by mixed halide stoichiometry, or by synthesis of colloidal particles. Here we introduce a general strategy of controlling shape and size of perovskite nanocrystallites (less than 10 nm) in domains that exhibit strong quantum size effects. Without ma...

  5. Characterization of alkali-metal and alkaline-earth nitrates by vibrational spectroscopy

    Directory of Open Access Journals (Sweden)

    Martínez, S.

    1992-09-01

    Full Text Available Infrared spectra of sodium and potassium alkaline-metal nitrates and magnesium and calcium alkali-earth nitrates in solid phase had been recorded in order to assign the fundamental bands. The influence of the dispersal médium (alkaline halide, employed in the solid sample preparation have been discussed. The quantitative measurements of the band in ten sities at 1387 cm-1 (present in the I.R. spectra of the four nitrates in KBr médium allowed us to determine the Lambert-Beer law slopes for each compound. These values are differents (bearing in mind experimental random errors, so we have could to affirm the nonexistence of solid solution between the nitrate and the alkaline halide médium. The L-B law obtained by us can be used for the Identification differentiation and quantitative analysis of these nitrates in solid phase, even if they are present in a very low concentration.

    Se ha realizado la asignación de los espectros infrarrojo (IR de los nitratos alcalinos, sódico y potásico, y de los alcalinotérreos, magnésico y cálcico, en estado sólido. Se ha visto la influencia del medio dispersante (haluro alcalino, utilizado en la preparación de la muestra sólida. El estudio cuantitativo de la absorbencia de la banda a 1.387 cm-1 (presente en los espectros IR de los cuatro nitratos en medio KBr permite determinar las pendientes de la Ley de Lambert-Beer Se comprueba que dichas pendientes son diferentes lo que conduce a poder afirmar que no se produce disolución sólida entre el KBr y el nitrato alcalino o alcalinotérreo. La determinación de la ley de Lambert-Beer permite la identificación y el análisis cualitativo y cuantitativo por espectroscopia IR de estos nitratos cuando están presentes en bajas concentraciones en muestras sólidas.

  6. Metal halide solid-state surface treatment for nanocrystal materials

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Joseph M.; Crisp, Ryan; Beard, Matthew C.

    2016-04-26

    Methods of treating nanocrystal and/or quantum dot devices are described. The methods include contacting the nanocrystals and/or quantum dots with a solution including metal ions and halogen ions, such that the solution displaces native ligands present on the surface of the nanocrystals and/or quantum dots via ligand exchange.

  7. Antimicrobial properties of metal and metal-halide nanoparticles and their potential applications

    Science.gov (United States)

    Torrey, Jason Robert

    Heavy metals, including silver and copper, have been known to possess antimicrobial properties against bacterial, fungal, and viral pathogens. Metal nanoparticles (aggregations of metal atoms 1-200 nm in size) have recently become the subject of intensive study for their increased antimicrobial properties. In the current studies, metal and metal-halide nanoparticles were evaluated for their antibacterial efficacy. Silver (Ag), silver bromide (AgBr), silver iodide (AgI), and copper iodide (CuI) nanoparticles significantly reduced bacterial numbers of the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus within 24 hours and were more effective against P. aeruginosa. CuI nanoparticles were found to be highly effective, reducing both organisms by >4.43 log 10 within 15 minutes at 60 ppm Cu. CuI nanoparticles formulated with different stabilizers (sodium dodecyl sulfate, SDS; polyvinyl pyrrolidone, PVP) were further tested against representative Gram-positive and Gram-negative bacteria, Mycobacteria, a fungus (Candida albicans ), and a non-enveloped virus (poliovirus). Both nanoparticles caused significant reductions in most of the Gram-negative bacteria within five minutes (>5.09-log10). The Gram-positive bacterial species and C. albicans were more sensitive to the CuI-SDS than the CuI-PVP nanoparticles. In contrast, the acid-fast Mycobacterium smegmatis was more resistant to CuI-SDS than CuI-PVP nanoparticles. Poliovirus was more resistant than the other organisms tested except for Mycobacterium fortuitum, which displayed the greatest resistance to CuI nanoparticles. As an example of a real world antimicrobial application, polymer coatings embedded with various concentrations of CuI nanoparticles were tested for antibacterial efficacy against P. aeruginosa and S. aureus. Polyester-epoxy powder coatings were found to display superior uniformity, stability and antimicrobial properties against both organisms (>4.92 log 10 after six hours at

  8. Is electronegativity a useful descriptor for the pseudo-alkali metal NH4?

    Science.gov (United States)

    Whiteside, Alexander; Xantheas, Sotiris S; Gutowski, Maciej

    2011-11-18

    Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined one such property--the electronegativity--for the "pseudo-alkali metal" ammonium (NH(4)), and evaluated its reliability as a descriptor versus the electronegativities of the alkali metals. The computed properties of ammonium's binary complexes with astatine and of selected borohydrides confirm the similarity of NH(4) to the alkali metal atoms, although the electronegativity of NH(4) is relatively large in comparison to its cationic radius. We have paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation and reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the molecular nature of NH(4).

  9. A contribution to the surface characterization of alkali metal sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Fantauzzi, Marzia; Rigoldi, Americo; Elsener, Bernhard; Atzei, Davide; Rossi, Antonella, E-mail: rossi@unica.it

    2014-03-01

    Highlights: • Full electronic characterization of alkali metals sulfates by X-ray photoelectron spectroscopy and X-ray induced Auger electron spectroscopy. • Curve-fitting of SKLL signals makes possible to clarify the role of the cation in the series of alkali metal sulfates. • Differences in the binding energies and Auger parameter are discussed in terms of the electronic properties and the polarizability of the cation. • The line intensities are analyzed and a thorough quantitative analysis is presented. - Abstract: The analytical characterization of surfaces of sulfur-bearing samples that present sulfides, polysulfides and/or elemental sulfur as reaction products can be difficult by simply relying on the binding energy of the S2p X-ray photoelectron signals, due to the small chemical shifts. In such cases the Auger parameter concept can be used to distinguish among different chemical states, but this requires a model to curve fit complex Auger SKLL signals in order to resolve the contributions arising from sulfur in different chemical states on the surface. With this scope a detailed X-ray photoelectron spectroscopy (XPS) and X-ray induced Auger electron spectroscopy (XAES) surface analytical study of the group IA sulfates is presented in this paper. Sulfates were chosen as model compounds for curve fitting the X-ray induced SKLL spectra since in these compounds sulfur is present in a unique chemical state. For the first time the multicomponent SKLL spectra are fitted with model functions consisting of an intense {sup 1}D and a low intensity {sup 1}S contribution with constant energy difference of 8 eV. It was found that the kinetic energy of the SK{sub 2,3}L{sub 2,3} ({sup 1}D) line increases from 2105.1 ± 0.1 to 2107.5 ± 0.2 eV whereas the corresponding S2p{sub 3/2} binding energy decreases from 169.5 ± 0.1 eV for Li{sub 2}SO{sub 4} to 167.8 ± 0.1 eV for Cs{sub 2}SO{sub 4}. Shifts to lower binding energy values are observed also for S2p, S2s and O1

  10. Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals.

    Science.gov (United States)

    Volonakis, George; Filip, Marina R; Haghighirad, Amir Abbas; Sakai, Nobuya; Wenger, Bernard; Snaith, Henry J; Giustino, Feliciano

    2016-04-07

    Lead-based halide perovskites are emerging as the most promising class of materials for next-generation optoelectronics; however, despite the enormous success of lead-halide perovskite solar cells, the issues of stability and toxicity are yet to be resolved. Here we report on the computational design and the experimental synthesis of a new family of Pb-free inorganic halide double perovskites based on bismuth or antimony and noble metals. Using first-principles calculations we show that this hitherto unknown family of perovskites exhibits very promising optoelectronic properties, such as tunable band gaps in the visible range and low carrier effective masses. Furthermore, we successfully synthesize the double perovskite Cs2BiAgCl6, perform structural refinement using single-crystal X-ray diffraction, and characterize its optical properties via optical absorption and photoluminescence measurements. This new perovskite belongs to the Fm3̅m space group and consists of BiCl6 and AgCl6 octahedra alternating in a rock-salt face-centered cubic structure. From UV-vis and photoluminescence measurements we obtain an indirect gap of 2.2 eV.

  11. Properties of Hydrated Alkali Metals Aimed at the Ion Channel Selectivity

    Institute of Scientific and Technical Information of China (English)

    AN Hai-Long; LIU Yu-Zhi; ZHANG Su-Hua; ZHAN Yong; ZHANG Hai-Lin

    2008-01-01

    The hydration structure properties of different alkali metal ions with eight water molecules and potassium ions with different numbers of water molecules are studied using the mixed density functional theory, B3LYP, with 6-311G basis set. The hydration structures are obtained from structure optimization and the optimum numbers of water molecules in the innermost hydration shell for the alkali metal ions are found. Some useful information about the ion channel selectivity is presented.

  12. Alkali Metal-incorporated Mesoporous Smectites:Crystallinity and Textural Properties

    Institute of Scientific and Technical Information of China (English)

    HE Yan-feng; Shinichiro Fujita; Nobuhiro Iwasa; Bhalchandra M. Bhanage; Masahiko Arai

    2003-01-01

    A series of mesoporous smectite-like materials incorporated with alkali metals such as Li, Na, K and Cs has been synthesized with the hydrothermal method. The crystalline and the pore structures of the materials synthesized significantly change with the introduction of alkali metals. The addition of Li gives highly ordered layer phases, while the incorporation of Cs yields much less crystalline structures. Although Na or K has little effect on the crystalline structure, they modify the pore structure.

  13. Calculated Pressure Induced BCC-FCC Phase Transitions in Alkali Metals

    OpenAIRE

    DAĞISTANLI, Hamdi; MUTLU, R. Haluk

    2008-01-01

    The partial occupation numbers and density of states (DOS), and the total DOS at the Fermi level are calculated as a function of reduced atomic volume for bcc and fcc alkali metals employing the linear-muffin-tin-orbital (LMTO) method. By means of the abrupt changes obtained in the partial and total DOS values at the Fermi level, good agreement with regard to experiment were found in predicting the bcc-fcc transition volumes of the alkali metals.

  14. Improved hydrogen desorption from lithium hydrazide by alkali metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang, E-mail: liangzeng@hiroshima-u.ac.jp [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Miyaoka, Hiroki [Institute for Sustainable Sciences and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2013-12-15

    Highlights: •LiH can dramatically improve the hydrogen desorption properties of LiNHNH{sub 2}. •KH doping had positive effect in promoting the hydrogen desorption properties of LiNHNH{sub 2}–LiH mixture. •The reaction mechanism between LiNHNH{sub 2} and LiH was studied and discussed. -- Abstract: Lithium hydrazide (LiNHNH{sub 2}), which is a white solid with 8.0 mass% of theoretical hydrogen content, was synthesized from a reaction between anhydrous hydrazine and n-butyllithium in diethyl ether. The thermodynamic properties of this compound and its detailed decomposition pathways had been investigated in our previous work. However, a number of undesired gaseous products such as hydrazine (N{sub 2}H{sub 4}) and ammonia (NH{sub 3}) were generated during the thermal decomposition of LiNHNH{sub 2}. In this work, alkali metal hydride was used to suppress the impurities in the desorbed hydrogen and improved the hydrogen desorption properties. The reaction mechanism between LiNHNH{sub 2} and LiH was also studied and discussed in this paper.

  15. Electrochemistry of ytterbium (III) in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Smolenski, V.; Novoselova, A. [Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Science, Ekaterinburg, 620219 (Russian Federation); Osipenko, A. [Research Institute of Atomic Reactors, Dimitrovgrad-10, Ulyanovsk Region, 433010 (Russian Federation); Caravaca, C. [High Level Waste Unit, Nuclear Fission Division, CIEMAT, Madrid, 28040 (Spain); Cordoba, G. de [High Level Waste Unit, Nuclear Fission Division, CIEMAT, Madrid, 28040 (Spain)], E-mail: g.cordoba@ciemat.es

    2008-12-30

    This work presents the electrochemical study of Yb(III) ions in molten alkali metal chlorides in the temperature range 723-1073 K. Transient electrochemical techniques such as linear sweep, cyclic and square wave voltammetry, and potentiometry at zero current have been used to investigate the reduction mechanism, transport parameters and thermodynamic properties of the reaction YbCl{sub 2} + 1/2Cl{sub 2} = YbCl{sub 3} The results obtained show that the reduction reaction Yb(III) + e{sup -} {r_reversible} Yb(II) is reversible being controlled by the rate of the mass transfer. The diffusion coefficient of [YbCl{sub 6}]{sup 3-} complex ions has been determined at different temperatures in the fused eutectic LiCl-KCl, the equimolar NaCl-KCl and the CsCl media. The apparent standard potential of the soluble-soluble redox system Yb(III)/Yb(II) has been obtained by cyclic voltammetry. The influence of the nature of the solvent on the electrochemical and thermodynamic properties of ytterbium compounds is discussed.

  16. On the origin of alkali metals in Europa exosphere

    Science.gov (United States)

    Ozgurel, Ozge; Pauzat, Françoise; Ellinger, Yves; Markovits, Alexis; Mousis, Olivier; LCT, LAM

    2016-10-01

    At a time when Europa is considered as a plausible habitat for the development of an early form of life, of particular concern is the origin of neutral sodium and potassium atoms already detected in its exosphere (together with magnesium though in smaller abundance), since these atoms are known to be crucial for building the necessary bricks of prebiotic species. However their origin and history are still poorly understood. The most likely sources could be exogenous and result from the contamination produced by Io's intense volcanism and/or by meteoritic bombardment. These sources could also be endogenous if these volatile elements originate directly from Europa's icy mantle. Here we explore the possibility that neutral sodium and potassium atoms were delivered to the satellite's surface via the upwelling of ices formed in contact with the hidden ocean. These metallic elements would have been transferred as ions to the ocean at early epochs after Europa's formation, by direct contact of water with the rocky core. During Europa's subsequent cooling, the icy layers formed at the top of the ocean would have kept trapped the sodium and potassium, allowing their future progression to the surface and final identification in the exosphere of the satellite. To support this scenario, we have used chemistry numerical models based on first principle periodic density functional theory (DFT). These models are shown to be well adapted to the description of compact ice and are capable to describe the trapping and neutralization of the initial ions in the ice matrix. The process is found relevant for all the elements considered, alkali metals like Na and K, as well as for Mg and probably for Ca, their respective abundances depending essentially of their solubility and chemical capabilities to blend with water ices.

  17. Effects of Heavy Metals and Saline-alkali on Growth, Physiology and Biochemistry of Orychophragmus violaceus

    Institute of Scientific and Technical Information of China (English)

    Xiaoai ZHANG; Zhihui WANG; Xinquan ZHANG; Mingyang Ll; Jing ZUO

    2012-01-01

    Abstract [Oh.jective] The aim was to study on effects of heavy metals and saline-al- kali on growth, physiology and biochemistry of Orychophragmus violaceus. [Method] Taken Orychophragmus violaceus as materials, growth, physiology and biochemistry were explored under stress of saline-alkali and heavy metals (light, moderate and se- vere saline-alkali, Pb, Pb + Cd, light saline-alkali + Pb, moderate saline-alkali + Pb, severe saline-alkali + Pb, light saline-alkali + Pb + Cd, moderate saline-alkali + Pb + Cd and severe saline-alkali + Pb + Cd) with control group set. [Result] Light stress of saline-alkali had little effect on membrane permeability, as follows: MDA contents in leaves and root systems declined by 25.6% and 9.0% compared with control group; Pb (500 mg/L) stress promoted synthetization of photosynthetic pigments, as follows: chlorophyll a and b and carotenoid increased by 0.86%, 0.69% and 6.25% than those of control group; combined stresses of Pb and Cd destroyed synthetization of photosynthetic pigments, among which carotenoid was more sensitive; under com- bined stresses of saline-alkali, Pb and Cd, POD and SOD activities, soluble saccha- rides and Pro content all increased and activities of POD and SOD in root system were both higher than those in leaves. [Conclusion] Orychophragmus violaceus is with resistance against light combined stresses of saline-alkali and Pb (500 mg/L).

  18. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition.

    Science.gov (United States)

    Weidman, Mark C; Seitz, Michael; Stranks, Samuel D; Tisdale, William A

    2016-08-23

    Colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials-exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L2[ABX3]n-1BX4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide), and n-1 is the number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield (with values over 20%). Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 to 3.7 eV. The nanoplatelets have relatively large lateral dimensions (100 nm to 1 μm), which promote self-assembly into stacked superlattice structures-the periodicity of which can be adjusted based on the nanoplatelet surface ligand length. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.

  19. Half metallic ferromagnetism in alkali metal nitrides MN (M = Rb, Cs): A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, A., E-mail: rrpalanichamy@gmail.com; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Santhosh, M., E-mail: rrpalanichamy@gmail.com; Sudhapriyanga, G., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai, Tamilnadu-625019 (India); Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil Nadu-628003 (India)

    2014-04-24

    The structural, electronic and elastic properties of two alkali metal nitrides (MN: M= Rb, Cs) are investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure the two nitrides are stable in ferromagnetic state with CsCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials are half metallic in nature. A pressure-induced structural phase transition from CsCl to ZB phase is observed in RbN and CsN.

  20. Pi resonance of chemisorbed alkali atoms on noble metals.

    Science.gov (United States)

    Borisov, A G; Sametoglu, V; Winkelmann, A; Kubo, A; Pontius, N; Zhao, J; Silkin, V M; Gauyacq, J P; Chulkov, E V; Echenique, P M; Petek, H

    2008-12-31

    We have performed a joint experimental and theoretical study of the unoccupied electronic structure of alkali adsorbates on the (111) surfaces of Cu and Ag. Combining angle- and time-resolved two-photon photoemission spectroscopy with wave packet propagation calculations we show that, along with the well known sigma resonance oriented along the surface normal, there exist long-lived alkali-localized resonances oriented parallel to the surface (pi symmetry). These new resonances are stabilized by the projected band gap of the substrate and emerge primarily from the mixing of the p and d Rydberg orbitals of the free alkali atom modified by the interaction with the surface.

  1. AMO Physics of Metal-Halide High-Intensity-Discharge Lamps

    Science.gov (United States)

    Lawler, J. E.

    2003-05-01

    Metal Halide High Intensity Discharge (MH-HID) lamps are widely used today, and are being studied for continued development, because of their superior color and efficacy [1]. MH-HID lamps are high pressure (many bar) mercury arc lamps with metal halide additives such as ScI3 or rare earth iodides. These additive salts evaporate at arc tube temperatures, the salt molecules dissociate in the arc, and the metal atoms and ions radiate strongly from the arc core to produce a pleasing white light with an excellent color temperature and color rendering index. Transition metals (e.g. Sc) and rare earth metals (e.g. Dy) have rich visible spectra. Although the plasma in these lamps is in local thermodynamic equilibrium, it is by no means easy to model due to huge temperature gradients, plasma segregation of additives, free convection cells, complex radiation transport, and other effects. Diagnostic experiments, especially in the lamps with translucent poly-crystalline alumina arc tubes [1], are equally challenging. Recent progress in the development of X-ray and optical-UV diagnostic experiments using synchrotron radiation will be summarized [2,3,4]. A possibility for combining these diagnostics to get a first look at the molecules and molecular radicals in the mantle of the arc will be described. The spectra of the metal halide molecules and radicals are almost completely unknown, but the formation of these species in the mantle is thought to protect the arc tube from chemical attack by reactive metal atoms. Recent progress toward the development of a quantitative microscopic understanding of infrared losses from the arc will be reported. [1] W. J. van den Hoek, A. G. Jack, & G. M. J. F. Luijks 2001, in Ullmann's Encyclopedia of Industrial Chemistry, 6th Ed. (Weinheim: Wiley-VCH) [2] J. J. Curry, M. Sakai, and J. E. Lawler, J. Appl. Phys. 84, 3066 (1998) [3] J. J. Curry, H. Adler, S. D. Shastri, and J. E. Lawler, Appl. Phys. Lett. 79, 1974 (2001) [4] G. A. Bonvallet, D. J

  2. Hydrogen Adsorption by Alkali Metal Graphite Intercalation Compounds

    Science.gov (United States)

    Purewal, Justin

    Adsorption occurs whenever a solid surface is exposed to a gas or liquid, and is characterized by an increase in fluid density near the interface. Adsorbents have drawn attention in the current effort to engineer materials that store hydrogen at high densities within moderate temperature and pressure regimes. Carbon adsorbents are a logical choice as a storage material due to their low costs and large surface areas. Unfortunately, carbon adsorbents suffer from a low binding enthalpy for H2 (about 5 kJ mol-1), well below the 15 to 18 kJ mol-1) that is considered optimal for hydrogen storage systems. Binding interactions can be increased by the following methods: (1) adjusting the graphite interplanar separation with a pillared structure, and (2) introducing dopant species that interact with H2 molecules by strong electrostatic forces. Graphite intercalation compounds are a class of materials that contain both pillared structures and chemical dopants, making them an excellent model system for studying the fundamentals of hydrogen adsorption in nanostructured carbons. Pressure-composition-temperature diagrams of the MC24(H 2)x graphite intercalation compounds were measured for M = (K, Rb, Cs). Adsorption enthalpies were measured as a function of H2 concentration. Notably, CsC24 had an average adsorption enthalpy of 14.9 kJ mol-1), nearly three times larger than that of pristine graphite. The adsorption enthalpies were found to be positively correlated with the alkali metal size. Adsorption capacities were negatively correlated with the size of the alkali metal. The rate of adsorption is reduced at large H2 compositions, due to the effects of site-blocking and correlation on the H2 diffusion. The strong binding interaction and pronounced molecular-sieving behavior of KC24 is likely to obstruct the translational diffusion of adsorbed H2 molecules. In this work, the diffusion of H2 adsorbed in KC24 was studied by quasielastic neutron scattering measurements and molecular

  3. Behavior of Alkali Metals and Ash in a Low-Temperature Circulating Fluidized Bed (LTCFB) Gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk

    2016-01-01

    A low-temperature circulating fluidized bed system (LTCFB) gasifier allows for pyrolysis and gasification to occurat low temperatures, thereby improving the retention of alkali and other inorganic elements within the system and minimizingthe amount of ash species in the product gas. In addition......, the low reactor temperature ensures that high-alkali biomass fuels canbe used without risk of bed defluidization. This paper presents the first investigation of the fate of alkali metals and ash in lowtemperaturegasifiers. Measurements on bed material and product gas dust samples were made on a 100 k...

  4. Multi-photon processes in alkali metal vapors

    Science.gov (United States)

    Gai, Baodong; Hu, Shu; Li, Hui; Shi, Zhe; Cai, Xianglong; Guo, Jingwei; Tan, Yannan; Liu, Wanfa; Jin, Yuqi; Sang, Fengting

    2015-02-01

    Achieving population inversion through multi-photon cascade pumping is almost always difficult, and most laser medium work under 1-photon excitation mechanism. But for alkali atoms such as cesium, relatively large absorption cross sections of several low, cascading energy levels enable them properties such as up conversion. Here we carried out research on two-photon excitation alkali fluorescence. Two photons of near infrared region are used to excite alkali atoms to n 2 D5/2, n 2 D3/2 or higher energy levels, then the blue fluorescence of (n+1) 2 P3/2,(n+1) 2 P1/2-->n 2 S1/2 are observed. Different pumping paths are tried and by the recorded spectra, transition routes of cesium are deducted and concluded. Finally the possibility of two-photon style DPALs (diode pumped alkali laser) are discussed, such alkali lasers can give output wavelengths in the shorter end of visual spectroscopy (400-460 nm) and are expected to get application in underwater communication and material laser processing.

  5. Alkali and heavy metal emissions of the PCFB-process; Alkali- ja raskasmetallipaeaestoet PCFB-prosessista

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As part of the development, 10 MW PCFB test facility was built in 1989. The test facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method of TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measurements were carried out during three test campaigns at PCFB Test Facility in Karhula. In autumn 1995 both VTT and TUT methods were used. The measurements of the following test period in spring 1996 were performed by VTT, and during the last test segment in autumn 1996 TUT method was in use. During the last test period, the TUT instrument was used as semi-continuous (3 values/minute) alkali analyzer for part of the time. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about +50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers

  6. Dissolution Process of Palladium in Hydrochloric Acid: A Route via Alkali Metal Palladates

    Science.gov (United States)

    Kasuya, Ryo; Miki, Takeshi; Morikawa, Hisashi; Tai, Yutaka

    2015-12-01

    To improve the safety of the Pd recovery processes that use toxic oxidizers, dissolution of Pd in hydrochloric acid with alkali metal palladates was investigated. Alkali metal palladates were prepared by calcining a mixture of Pd black and alkali metal (Li, Na, and K) carbonates in air. Almost the entire amount of Pd was converted into Li2PdO2 after calcination at 1073 K (800 °C) using Li2CO3. In contrast, PdO was obtained by calcination at 1073 K (800 °C) using Na and K carbonates. Our results indicated that Li2CO3 is the most active reagent among the examined alkali metal carbonates for the formation of palladates. In addition, dissolution of the resulting Li2PdO2 in HCl solutions was evaluated under various conditions. In particular, Li2PdO2 rapidly dissolved in diluted (0.1 M) HCl at ambient temperature. Solubility of Pd of Li2PdO2 was found to be 99 pct or larger after dissolution treatment at 353 K (80 °C) for 5 minutes; in contrast, PdO hardly dissolved in 0.1 M HCl. The dissolution mechanism of Li2PdO2 in HCl was also elucidated by analysis of crystal structures and particulate properties. Since our process is completely free from toxic oxidizers, the dissolution process via alkali metal palladates is much safer than currently employed methods.

  7. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    Science.gov (United States)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  8. Hyperfine-frequency shifts of alkali-metal atoms during long-range collisions

    CERN Document Server

    McGuyer, B H

    2013-01-01

    Collisions with chemically inert atoms or molecules change the hyperfine coupling of an alkali-metal atom through the hyperfine-shift interaction. This interaction is responsible for the pressure shifts of the microwave resonances of alkali-metal atoms in buffer gases, is an important spin interaction in alkali-metal--noble-gas van der Waals molecules, and is anticipated to enable the magnetoassociation of ultracold molecules such as RbSr. An improved estimate is presented for the long-range asymptote of this interaction for Na, K, Rb, and Cs. To test the results, the change in hyperfine coupling due to a static electric field is estimated and reasonable agreement is found.

  9. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, Wataru; Yoshizawa, Masahiro; Ohno Hiroyuki [Tokyo University of Agriculture and Technology (Japan). Dept. of Biotechnology; Sun, Jiazeng; Forsyth, M. [Monash University, Clayton (Australia). School of Materials Engineering; MacFarlane, D.R. [Monash University, Clayton (Australia). School of Chemistry

    2004-04-30

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10{sup -4} to 10{sup -3} S cm{sup -1} at room temperature. Gelation was found to cause little change in the {sup 7}Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids. (author)

  10. A hetero-alkali-metal version of the utility amide LDA: lithium-potassium diisopropylamide.

    Science.gov (United States)

    Armstrong, David R; Kennedy, Alan R; Mulvey, Robert E; Robertson, Stuart D

    2013-03-14

    Designed to extend the synthetically important alkali-metal diisopropylamide [N(i)Pr(2); DA] class of compounds, the first example of a hetero-alkali-metallic complex of DA has been prepared as a partial TMEDA solvate. Revealed by an X-ray crystallographic study, its structure exists as a discrete lithium-rich trinuclear Li(2)KN(3) heterocycle, with TMEDA only solvating the largest of the alkali-metals, with the two-coordinate lithium atoms being close to linearity [161.9(2)°]. A variety of NMR spectroscopic studies, including variable temperature and DOSY NMR experiments, suggests that this new form of LDA maintains its integrity in non-polar hydrocarbon solution. This complex thus represents a rare example of a KDA molecule which is soluble in non-polar medium without the need for excessive amounts of solubilizing Lewis donor being added.

  11. Structural and Magnetic Diversity in Alkali-Metal Manganate Chemistry: Evaluating Donor and Alkali-Metal Effects in Co-complexation Processes.

    Science.gov (United States)

    Uzelac, Marina; Borilovic, Ivana; Amores, Marco; Cadenbach, Thomas; Kennedy, Alan R; Aromí, Guillem; Hevia, Eva

    2016-03-24

    By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkali-metal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2 MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [{KMn(CH2SiMe3)3 ⋅C6 H6}2] (2) and [{NaMn(CH2SiMe3)3}2 (dioxane)7] (5); and to more complex supramolecular networks [{NaMn(CH2SiMe3)3}∞] (1) and [{Na2Mn2 (CH2SiMe3)6 (DABCO)2}∞] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6K2Mn2 (CH2SiMe3)4(O(CH2)2OCH=CH2)2}∞] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways.

  12. In Situ Measurement of Alkali Metals in an MSW Incinerator Using a Spontaneous Emission Spectrum

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-03-01

    Full Text Available This paper presents experimental investigations of the in situ diagnosis of the alkali metals in the municipal solid waste (MSW flame of an industrial grade incinerator using flame emission spectroscopy. The spectral radiation intensities of the MSW flame were obtained using a spectrometer. A linear polynomial fitting method is proposed to uncouple the continuous spectrum and the characteristic line. Based on spectra processing and a non-gray emissivity model, the flame temperature, emissivity, and intensities of the emission of alkali metals were calculated by means of measuring the spectral radiation intensities of the MSW flame. Experimental results indicate that the MSW flame contains alkali metals, including Na, K, and even Rb, and it demonstrates non-gray characteristics in a wavelength range from 500 nm to 900 nm. Peak intensities of the emission of the alkali metals were found to increase when the primary air was high, and the measured temperature varied in the same way as the primary air. The temperature and peak intensities of the lines of emission of the alkali metals may be used to adjust the primary airflow and to manage the feeding of the MSW to control the alkali metals in the MSW flame. It was found that the peak intensity of the K emission line had a linear relationship with the peak intensity of the Na emission line; this correlation may be attributed to their similar physicochemical characteristics in the MSW. The variation trend of the emissivity of the MSW flame and the oxygen content in the flue gas were almost opposite because the increased oxygen content suppressed soot formation and decreased soot emissivity. These results prove that the flame emission spectroscopy technique is feasible for monitoring combustion in the MSW incinerator in situ.

  13. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    Science.gov (United States)

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials.

  14. Extremely bulky amido first row transition metal(II) halide complexes: potential precursors to low coordinate metal-metal bonded systems.

    Science.gov (United States)

    Hicks, Jamie; Jones, Cameron

    2013-04-01

    Reactions of the extremely bulky potassium amide complexes, [KL'(η(6)-toluene)] or [KL"] (L'/L" = N(Ar*)(SiR3), Ar* = C6H2{C(H)Ph2}2Me-2,6,4; R = Me (L') or Ph (L")), with a series of first row transition metal(II) halides have yielded 10 rare examples of monodentate amido first row transition metal(II) halide complexes, all of which were crystallographically characterized. They encompass the dimeric, square-planar chromium complexes, [{CrL'(THF)(μ-Cl)}2] and [{CrL"(μ-Cl)}2], the latter of which displays intramolecular η(2)-Ph···Cr interactions; the dimeric tetrahedral complexes, [{ML'(THF)(μ-Br)}2] (M = Mn or Fe), [{ML"(THF)(μ-X)}2] (M = Mn, Fe or Co; X = Cl or Br) and [{CoL"(μ-Cl)}2] (which displays intramolecular η(2)-Ph···Co interactions); and the monomeric zinc amides, [L'ZnBr(THF)] (three-coordinate) and [L"ZnBr] (two-coordinate). Solution state magnetic moment determinations on all but one of the paramagnetic compounds show them to be high-spin systems. Throughout, comparisons are made with related bulky terphenyl transition metal(II) halide complexes, and the potential for the use of the prepared complexes as precursors to low-valent transition metal systems is discussed.

  15. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water

    Science.gov (United States)

    Crespo-Quesada, Micaela; Pazos-Outón, Luis M.; Warnan, Julien; Kuehnel, Moritz F.; Friend, Richard H.; Reisner, Erwin

    2016-09-01

    Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqueous solution. Field's metal, a fusible InBiSn alloy, is used to efficiently protect the perovskite from water while simultaneously allowing the photogenerated electrons to reach a Pt hydrogen evolution catalyst. A record photocurrent density of -9.8 mA cm-2 at 0 V versus RHE with an onset potential as positive as 0.95+/-0.03 V versus RHE is obtained. The photoelectrodes show remarkable stability retaining more than 80% of their initial photocurrent for ~1 h under continuous illumination.

  16. Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells.

    Science.gov (United States)

    Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J

    2016-03-09

    Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance.

  17. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    Science.gov (United States)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  18. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  19. THE EFFECT OF ALKALI METAL HALIDES ON THE STRUCTURE OF GLYCEROL FROM VISCOSITY B COEFFICIENT MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    A HAMMADI

    2002-12-01

    Full Text Available Viscosity B‑coefficients in glycerol obtained at 25 °C for many salts by a rearrangement in the Jones‑Dole expression are compared with those calculated applying existing theories, based on the model of hard‑charged spheres moving in a solvent continuum. Specific agreement between theory and experiment was not generally good. While the results show that Einstein’s relation can be applied to large aqueous ions, provided that the true volume‑fraction of the ions in solution can be ascertained; this expression does not lead to accurate B‑values in glycerol. For the ion‑size dependence of the B‑coefficient in aqueous solutions, Clark’s theoretical predictions agree with experiments qualitatively, in the case of glycerol, however, the model shows limitations even for small ions, for which the dielectric friction theory is expected to be applicable. Finally, all the above theories give a positive B‑coefficient, while experimental evidences showed that B could be negative.

  20. Comparison between alkalimetal and group 11 transition metal halide and hydride tetramers: molecular structure and bonding.

    Science.gov (United States)

    El-Hamdi, Majid; Solà, Miquel; Frenking, Gernot; Poater, Jordi

    2013-08-22

    A comparison between alkalimetal (M = Li, Na, K, and Rb) and group 11 transition metal (M = Cu, Ag, and Au) (MX)4 tetramers with X = H, F, Cl, Br, and I has been carried out by means of the Amsterdam Density Functional software using density functional theory at the BP86/QZ4P level of theory and including relativistic effects through the ZORA approximation. We have obtained that, in the case of alkalimetals, the cubic isomer of Td geometry is more stable than the ring structure with D4h symmetry, whereas in the case of group 11 transition metal tetramers, the isomer with D4h symmetry (or D2d symmetry) is more stable than the Td form. To better understand the results obtained we have made energy decomposition analyses of the tetramerization energies. The results show that in alkalimetal halide and hydride tetramers, the cubic geometry is the most stable because the larger Pauli repulsion energies are compensated by the attractive electrostatic and orbital interaction terms. In the case of group 11 transition metal tetramers, the D4h/D2d geometry is more stable than the Td one due to the reduction of electrostatic stabilization and the dominant effect of the Pauli repulsion.

  1. Surface phonons on Al(111) surface covered by alkali metals

    Science.gov (United States)

    Rusina, G. G.; Eremeev, S. V.; Borisova, S. D.; Sklyadneva, I. Yu.; Chulkov, E. V.

    2005-06-01

    We investigated the vibrational and structural properties of the Al(111)-(3×3)R30°-AM (AM=Na,K,Li) adsorbed systems using interaction potentials from the embedded-atom method. The surface relaxation, surface phonon dispersion, and polarization of vibrational modes for the alkali adatoms and the substrate atoms as well as the local density of states are discussed. Our calculated structural parameters are in close agreement with experimental and ab initio results. The obtained vibrational frequencies compare fairly well with the available experimental data.

  2. Synthetic, structural, and theoretical investigations of alkali metal germanium hydrides--contact molecules and separated ions.

    Science.gov (United States)

    Teng, Weijie; Allis, Damian G; Ruhlandt-Senge, Karin

    2007-01-01

    The preparation of a series of crown ether ligated alkali metal (M=K, Rb, Cs) germyl derivatives M(crown ether)nGeH3 through the hydrolysis of the respective tris(trimethylsilyl)germanides is reported. Depending on the alkali metal and the crown ether diameter, the hydrides display either contact molecules or separated ions in the solid state, providing a unique structural insight into the geometry of the obscure GeH3- ion. Germyl derivatives displaying M--Ge bonds in the solid state are of the general formula [M([18]crown-6)(thf)GeH3] with M=K (1) and M=Rb (4). The compounds display an unexpected geometry with two of the GeH3 hydrogen atoms closely approaching the metal center, resulting in a partially inverted structure. Interestingly, the lone pair at germanium is not pointed towards the alkali metal, rather two of the three hydrides are approaching the alkali metal center to display M--H interactions. Separated ions display alkali metal cations bound to two crown ethers in a sandwich-type arrangement and non-coordinated GeH3- ions to afford complexes of the type [M(crown ether)2][GeH3] with M=K, crown ether=[15]crown-5 (2); M=K, crown ether=[12]crown-4 (3); and M=Cs, crown ether=[18]crown-6 (5). The highly reactive germyl derivatives were characterized by using X-ray crystallography, 1H and 13C NMR, and IR spectroscopy. Density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) calculations were performed to analyze the geometry of the GeH3- ion in the contact molecules 1 and 4.

  3. Modified PVA-CA blend ultrafiltration membrane by alkali metal chloride

    Institute of Scientific and Technical Information of China (English)

    张启修; 邱运仁

    2003-01-01

    The modified PVA-CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water. The effects of different concentration of alkali metal chloride on the properties of membranes were investigated. The results show that when the mass fraction of the salt in the casting solution is not greater than 1%, the property of rejection of the alkali metal salt modified ultrafiltration PVA-CA blend membrane has little change compared with that of the unmodified PVA-CA blend membrane, but the permeation flux is much greater than that of the unmodified membrane under the same operation condition. When the mass fraction of the salt is greater than 1.5%, the permeate flux increases much greater than that of the unmodified membrane, but the property of rejection of the modified ultrafiltration membrane decreases greatly. The results also show that the contact angle of the salt modified PVA-CA blend UF membrane decreases but the swelling in water increases with the increment of the mass fraction of alkali metal salts. Furthermore, the NaCl modified PVA-CA blend membrane has a slightly lower swelling and a little smaller contact angle of water than the KCl modified PVA-CA blend membrane does when the mass fraction of salts is the same.

  4. Phonon dispersion in alkali metals and their equiatomic sodium-based binary alloys

    Institute of Scientific and Technical Information of China (English)

    Aditya M. VORA

    2008-01-01

    In the present article, the theoretical calcula-tions of the phonon dispersion curves (PDCs) of five alkali metals viz. Li, Na, K, Rb, Cs and their four equia-tomic sodium-based binary alloys viz. Na0.5Li0.5,Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5 to second order in a local model potential is discussed in terms of the real-space sum of the Born yon Karman central force con-stants. Instead of the concentration average of the force constants of pure alkali metals, the pseudo-alloy-atom (PAA) is adopted to directly compute the force constants of the four equiatomic sodium based binary alloys and was successfully applied. The exchange and correlation functions due to the Hartree (H) and Ichimaru-Utsumi (IU) are used to investigate the influence of the screening effects. The phonon frequencies of alkali metals and their four equiatomic sodium-based binary alloys in the longit-udinal branch are more sensitive to the exchange and cor-relation effects in comparison with the transverse branches. The PDCs of pure alkali metals are found in qualitative agreement with the available experimental data. The frequencies in the longitudinal branch are sup-pressed rather due to IU-screening function than those due to static H-screening function.

  5. Cations in a Molecular Funnel: Vibrational Spectroscopy of Isolated Cyclodextrin Complexes with Alkali Metals

    NARCIS (Netherlands)

    Gamez, F.; Hurtado, P.; Hortal, A. R.; Martinez-Haya, B.; G. Berden,; Oomens, J.

    2013-01-01

    The benchmark inclusion complexes formed by -cyclodextrin (CD) with alkali-metal cations are investigated under isolated conditions in the gas phase. The relative CD-M+ (M=Li+, Na+, K+, Cs+) binding affinities and the structure of the complexes are determined from a combination of mass spectrometry,

  6. Absorption Spectroscopy of Rubidium in an Alkali Metal Dispenser Cell and Bleached Wave Analysis

    Science.gov (United States)

    2015-03-26

    resulted in a transmission too low below the detection limit of the photodiodes. When the current ceased, the spectrum almost immediately returned to a...absorption spectrum of a rubidium alkali metal dispenser (AMD) cell was obtained in order to determine the system’s suitability for use in a diode ...18 8. Cell Pressure vs. Required Current .............................................................................. 20 9. Time vs. Rubidium

  7. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.

    2012-12-03

    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  8. Charge-carrier dynamics in hybrid metal halide perovskites (Conference Presentation)

    Science.gov (United States)

    Milot, Rebecca L.; Rehman, Waqaas; Eperon, Giles E.; Snaith, Henry J.; Johnston, Michael B.; Herz, Laura M.

    2016-09-01

    Hybrid metal halide perovskites are attractive components for many optoelectronic applications due to a combination of their superior charge transport properties and relative ease of fabrication. A complete understanding of the nature of charge transport in these materials is therefore essential for current and future device development. We have evaluated two systems - the standard perovskite methylammonium lead triiodide (CH3NH3PbI3) and a series of mixed-iodide/bromide formamidinium lead perovskites - in an effort to determine what effect structural and chemical composition have on optoelectronic properties including mobility, charge-carrier recombination dynamics, and charge-carrier diffusion length. The photoconductivity in thin films of CH3NH3PbI3was investigated from 8 K to 370 K across three structural phases [1]. While the monomolecular charge-carrier recombination rate was found to increase with rising temperature indicating a mechanism dominated by ionized impurity mediated recombination, the bimolecular rate constant decreased with rising temperature as charge-carrier mobility declined. The Auger rate constant was highly phase specific, suggesting a strong dependence on electronic band structure. For the mixed-halide formamidinuim lead bromide-iodide perovskites, HC(NH2)2Pb(BryI1-y)3, bimolecular and Auger charge-carrier recombination rate constants strongly correlated with bromide content, which indicated a link with electronic structure [2]. Although HC(NH2)2PbBr3 and HC(NH2)2PbI3 exhibited high charge-carrier mobilities and diffusion lengths exceeding 1 μm, mobilities for mixed Br/I perovskites were all lower as a result of crystalline phase disorder.

  9. Lanthanide Single-Molecule Magnets Framed by Alkali Metals & Magnetic and Spectroscopic Studies of 3d Transition Metal Complexes

    DEFF Research Database (Denmark)

    Konstantatos, Andreas

    )imino)- methyl)benzene-1,2-diol]. Using this ligand, we were able to synthesize four different families of lanthanide complexes framed by alkali metals. Throughout the chapter we demonstrate how we can exploit the presence of the coordinated alkali metal ions in order to induce changes to the structure....... In Chapter 3 we present the results of our work with third row (3d) transition metal ions and their complexes. Specifically, in section 2.1 we report a series of complexes synthesized using a tripodal hexadentate Schiff-base ligand. The ligand demonstrates the ability to form mononuclear or trinuclear...... complexes of M3+ or M2+ metal ions (M: 3d transition metal) with the preference to either approximate octahedral or trigonal prismatic coordination geometry. A detailed magnetic characterization for most of the complexes is presented where a trinuclear Co2+ cluster stands out for its pronounced SMM...

  10. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity

    Institute of Scientific and Technical Information of China (English)

    Yan Cao; Yunxia Zhao; Fujiao Song; Qin Zhong

    2014-01-01

    Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-1(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11%increase in adsorption capacity at 298 K and 18 bar as compared with HKUST-1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.

  11. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  12. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    KAUST Repository

    Alahmary, Fatimah S.

    2014-05-01

    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  13. The different poisoning behaviors of various alkali metal containing compounds on SCR catalyst

    Science.gov (United States)

    Du, Xuesen; Yang, Guangpeng; Chen, Yanrong; Ran, Jingyu; Zhang, Li

    2017-01-01

    Alkali metals are poisonous to the metal oxide catalyst for NO removal. The chemical configuration of alkali containing substance and interacting temperature can affect the poisoning profile. A computational method based on Frontier Molecular Orbital analysis was proposed to determine the reacting behavior of various alkali-containing substances with SCR catalyst. The results reveal that the poisoning reactivities of various substances can be ranked as: E (MOH) > E (M2SO4) > E(MCl) > E(MNO3) > E(MHSO4). The experimental activity tests of the catalysts calcined at stepped temperatures show that NaOH can react with the catalyst below 200 °C. NaCl and NaNO3 start to react with the catalyst at a temperature between 300 and 400 °C. Unlike MOH, MCl and MNO3, which can produce volatile or decomposable species for the anions after reacting with the catalyst, M2SO4 and MHSO4 will leave both cations and anions on the catalyst surface. The sulfate ions left on the catalyst can generate active acid sites for NH3 adsorption. The experimental results also show that Na2SO4 and NaHSO4 will not lower the NO conversion. The after-reaction influences of various alkali metals were studied using theoretical and experimental methods. The theoretical results show that the acidity decreases with doping of alkali metal. Experiments show a consistent result that the NO conversion decreases as undoped >LiCl > NaCl > KCl.

  14. Thermodynamic study of alkali metals release in pressurised fluidised-bed combustion and gasification of peat

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Backman, R.; Korhonen, M.

    1988-01-01

    A combined-cycle power generation system incorporating pressurised fluidised-bed combustion (PFBC) or gasification is considered a promising approach for electricity generation using solid fuels such as peat. In these systems, the high-pressure hot flue gas is expanded in a gas turbine. Peat contains sodium and potassium which are released in combustion and gasification. These are corrosive elements that can cause severe damage to the turbine blades if not suppressed. Multicomponent, multiphase equilibrium calculations were carried out for atmospheric and pressurised fluidised-bed operating conditions to determine the relative distribution of the two metals (Na and K) in the gas and condensed phases. Dependence of the alkali volatilisation on the operating temperature, pressure, the chlorine-content and the total alkali-content of the feedstock was studied. The results show that the alkali release in the vapour-phase could be much higher than acceptable to a gas turbine, particularly under gasification conditions. Hence the necessity to remove the volatilised alkali-metal compounds is more acute in gasification than in combustion. Both sodium and potassium are present as chlorides and to a lesser extent as hydroxides in the gas phase in both modes of operation (i.e. combustion and gasification). However, whereas under combustion conditions both metals seem to condense as sulphates (Na/sub 2/SO4 and K/sub 2/SO4), in gasification, chlorides and carbonates dominate in the condensed phase. The alkali-metals volatilisation shows strong dependence on the operating pressure of the system as well as on the chlorine-content of the feedstock. It decreases markedly with the former but increases sharply with the latter.

  15. Composite Hybrid Cluster Built from the Integration of Polyoxometalate and a Metal Halide Cluster: Synthetic Strategy, Structure, and Properties.

    Science.gov (United States)

    Li, Xin-Xiong; Ma, Xiang; Zheng, Wen-Xu; Qi, Yan-Jie; Zheng, Shou-Tian; Yang, Guo-Yu

    2016-09-06

    A step-by-step synthetic strategy, setting up a bridge between the polyoxometalate (POM) and metal halide cluster (MHC) systems, is demonstrated to construct an unprecedented composite hybrid cluster built up from one high-nuclearity cationic MHC [Cu8I6](2+) and eight Anderson-type anionic POMs [HCrMo6O18(OH)6](2-) cross-linked by a tripodal alcohol derivative.

  16. Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental–Theoretical Study

    OpenAIRE

    Endres, James; Egger, David A.; Kulbak, Michael; Kerner, Ross A.; Zhao, Lianfeng; Silver, Scott H.; Hodes, Gary; Rand, Barry P.; Cahen, David; Kronik, Leeor; Kahn, Antoine

    2016-01-01

    We report valence and conduction band densities of states measured via ultraviolet and inverse photoemission spectroscopies on three metal halide perovskites, specifically methylammonium lead iodide and bromide and cesium lead bromide (MAPbI3, MAPbBr3, CsPbBr3), grown at two different institutions on different substrates. These are compared with theoretical densities of states (DOS) calculated via density functional theory. The qualitative agreement achieved between experiment and theory lead...

  17. Structure and properties of alizarin complex formed with alkali metal hydroxides in methanol solution.

    Science.gov (United States)

    Jeliński, Tomasz; Cysewski, Piotr

    2016-06-01

    Quantum chemical computations were used for prediction of the structure and color of alizarin complex with alkali metal hydroxides in methanolic solutions. The color prediction relying on the single Gaussian-like band once again proved the usefulness of the PBE0 density functional due to the observed smallest color difference between computed and experimentally derived values. It was found that the alkali metal hydroxide molecules can bind to the two oxygen atoms of both hydroxyl groups of alizarin or to one of these atoms and the oxygen atom from the keto group in a complex with three methanol molecules. This means that two electronic transitions need to be taken into account when considering the spectra of the studied complexes. The resulting bond lengths and angles are correlated with the properties of the alkali metal atoms. The molar mass, the atomic radius, and the Pauling electronegativity of studied metals are quite accurate predictors of the geometric properties of hydroxide complexes with alizarin in methanol solution. Graphical abstract The spectra of the neutral and monoanionic form of alizarin together with color changes resulting from addition of different metal hydroxides and represented in CIE color space.

  18. Speciation of phytate ion in aqueous solution. Alkali metal complex formation in different ionic media.

    Science.gov (United States)

    De Stefano, Concetta; Milea, Demetrio; Pettignano, Alberto; Sammartano, Silvio

    2003-08-01

    The acid-base properties of phytic acid [ myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate)] (H(12)Phy; Phy(12-)=phytate anion) were studied in aqueous solution by potentiometric measurements ([H+]-glass electrode) in lithium and potassium chloride aqueous media at different ionic strengths (0iodide (Et(4)NI; e.g., at I=0.5 mol L(-1), log K(3)(H)=11.7, 8.0, 9.1, and 9.1 in Et(4)NI, LiCl, NaCl and KCl, respectively; the protonation constants in Et(4)NI and NaCl were already reported), owing to the strong interactions occurring between the phytate and alkaline cations present in the background salt. We explained this in terms of complex formation between phytate and alkali metal ions. Experimental evidence allows us to consider the formation of 13 mixed proton-metal-ligand complexes, M(j)H(i)Phy((12-i-j)-), (M+ =Li+, Na+, K+), with jstability of alkali metal complexes follows the trend Li+ > or =Na+K+. Some measurements were also performed at constant ionic strength (I=0.5 mol L(-1)), using different mixtures of Et(4)NI and alkali metal chlorides, in order to confirm the formation of hypothesized and calculated metal-proton-ligand complex species and to obtain conditional protonation constants in these multi-component ionic media.

  19. Microstructured hydroxyl environments and Raman spectroscopy in selected basic transition-metal halides

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-Dong; Meng Dong-Dong; Hagihala Masato; Zheng Xu-Guang

    2011-01-01

    Raman vibrational spectra of the selected basic(hydroxyl OH and deuteroxyl OD)transition-metal halides,geometrically frustrated material series α-,β-,γ-Cu2(OH)3Cl,α-Cu2(OH)3Br,β-Ni2(OH)3Cl,β-Co2(OH)3Cl,β-Co2(OH)3Br,γ-Cu2(OD)3Cl,and β-Co2(OD)3Cl are measured at room temperature and analysed to investigate the relationship between the microstructured OH environments and their respective Raman spectra.Among these selected samples,the last two are used to determine the OH stretching vibration region(3600 cm-1-3300 cm-1)and OH bending vibration region(1000 cm-1-600 cm-1)of OH systems in the spectra.Through the comparative analysis of the distances d(metal-O),d(O-halogen),and d(OH),the strong metal-O interaction and trimeric hydrogen bond(C3υ,Cs,or C1 symmetry)are found in every material,but both determine simultaneously an ultimate d(OH),and therefore an OH stretching vibration frequency.According to the approximately linear relationship between the OH stretching vibration frequency and d(OH),some unavailable d(OH)are guessed and some doubtful d(OH)are suggested to be corrected.In addition,it is demonstrated in brief that the OH bending vibration frequency is also of importance to check the more detailed crystal microstructure relating to the OH group.

  20. Electrodeposition of alkali and alkali-earth metals on liquid lead cathodes in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, C.; De Cordoba, G. [CIEMAT/DE/DFN/URAA. Avda. Complutense, 22. 28040 Madrid (Spain)

    2008-07-01

    Pyrochemical processing of spent nuclear fuel leads to the dissolution as chlorides of fission products (FPs) that have to be removed in order to recycle the salt. Precipitation technique have been tested for the removal of these FPs in the LiCl-KCl, salt selected as reference, with different results. Salt decontamination from lanthanides can be easily achieved as solid precipitates of oxychlorides or single phosphates; however, for the alkaline and alkaline-earth metals this technique is not suitable. Within the EUROPART project (VI FP of the EC), a new route that consist of the electrodeposition of these FP on a liquid lead cathode (LLC) has been considered, including the Li and K constituting the electrolyte. First results obtained with Sr and Cs are presented herein. Although according to the thermodynamic potential values, the electrodeposition order on LLC is Ba, Sr, Li, K and Cs, during our experiments it was not possible to distinguish the electrochemical signals corresponding to the individual elements. (authors)

  1. Alkali-crown ether complexes at metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Thontasen, Nicha; Deng, Zhitao; Rauschenbach, Stephan [Max Planck Institute for Solid State Research, Stuttgart (Germany); Levita, Giacomo [University of Trieste, Trieste (Italy); Malinowski, Nikola [Max Planck Institute for Solid State Research, Stuttgart (Germany); Bulgarian Academy of Sciences, Sofia (Bulgaria); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); EPFL, Lausanne (Switzerland)

    2010-07-01

    Crown ethers are polycyclic ethers which, in solution, selectively bind cations depending on the size of the ring cavity. The study of a single host-guest complex is highly desirable in order to reveal the characteristics of these specific interactions at the atomic scale. Such detailed investigation is possible at the surface where high resolution imaging tools like scanning tunneling microscopy (STM) can be applied. Here, electrospray ion beam deposition (ES-IBD) is employed for the deposition of Dibenzo-24-crown-8 (DB24C8)-H{sup +}, -Na{sup +} and -Cs{sup +} complexes on a solid surface in ultrahigh vacuum (UHV). Where other deposition techniques have not been successful, this deposition technique combines the advantages of solution based preparation of the complex ions with a highly clean and controlled deposition in UHV. Single molecular structures and the cation-binding of DB24C8 at the surface are studied in situ by STM and MALDI-MS (matrix assisted laser desorption ionization mass spectrometry). The internal structure of the complex, i.e. ring and cavity, is observable only when alkali cations are incorporated. The BD24C8-H{sup +} complex in contrast appears as a compact feature. This result is in good agreement with theoretical models based on density functional theory calculations.

  2. Complexes of bis(cyclopentadienyl)hydridorhenium with group-II metal halides

    Energy Technology Data Exchange (ETDEWEB)

    Ishchenko, V.M.; Arkhireeva, T.M.; Bulychev, B.M.; Soloveichik, G.L.; Nikolaeva, S.N.

    1986-11-01

    It has been shown that the interaction of bis(cyclopentadienyl)hydridorhenium (Cp/sub 2/ReH, where Cp = eta/sup 5 -/C/sub 5/H/sub 5/) with the halides of zinc, cadmium, beryllium, and magnesium in diethyl ether results in the formation of complex compounds with the general formula Cp/sub 2/ReH MHal/sub 2/. The replacement of ether by tetrahydrofuran in the case of zinc derivatives gives monosolvates with the formula Cp/sub 2/ReH x ZnHal/sub 2/ x THF (Hal = Br, I). On the basis of data from IR and PMR spectroscopy it has been concluded that the bonding of the metal-containing fragments in these complexes is realized either as a result of an Re :..-->.. M donor-acceptor interaction (the complexes with ZnHal/sub 2/ and CdI/sub 2/) or as a result of the formation of a mixed bond (the complexes with BeCl/sub 2/ and MgHal/sub 2/).

  3. Ab Initio Molecular Dynamics of Dimerization and Clustering in Alkali Metal Vapors.

    Science.gov (United States)

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-06-30

    Alkali metals are known to form dimers, trimers, and tetramers in their vapors. The mechanism and regularities of this phenomenon characterize the chemical behavior of the first group elements. We report ab initio molecular dynamics (AIMD) simulations of the alkali metal vapors and characterize their structural properties, including radial distribution functions and atomic cluster size distributions. AIMD confirms formation of Men, where n ranges from 2 to 4. High pressure sharply favors larger structures, whereas high temperature decreases their fraction. Heavier alkali metals maintain somewhat larger fractions of Me2, Me3, and Me4, relative to isolated atoms. A single atom is the most frequently observed structure in vapors, irrespective of the element and temperature. Due to technical difficulties of working with high temperatures and pressures in experiments, AIMD is the most affordable method of research. It provides valuable understanding of the chemical behavior of Li, Na, K, Rb, and Cs, which can lead to development of new chemical reactions involving these metals.

  4. Tuning the work function of ultrathin oxide films on metals by adsorption of alkali atoms.

    Science.gov (United States)

    Martinez, Umberto; Giordano, Livia; Pacchioni, Gianfranco

    2008-04-28

    We report a theoretical investigation of the adsorption of alkali metal atoms deposited on ultrathin oxide films. The properties of Li, Na, and K atoms adsorbed on SiO(2)/Mo(112) and of K on MgO / Ag(100) and TiO(2)/Pt(111) have been analyzed with particular attention to the induced changes in the work function of the system, Phi. On the nonreducible SiO(2) and MgO oxide films there is a net transfer of the outer ns electron of the alkali atom to the metal substrate conduction band; the resulting surface dipole substantially lowers Phi. The change in Phi depends (a) on the adsorption site (above the oxide film or at the interface) and (b) on the alkali metal coverage. Deposition of K on reducible TiO(2) oxide films results in adsorbed K(+) ions and in the formation of Ti(3+) ions. No charge transfer to the metal substrate is observed but also in this case the surface dipole resulting from the K-TiO(2) charge transfer has the effect to considerably reduce the work function of the system.

  5. Development and testing of on-line analytical instrumentation for alkali and heavy metal release in pressurised conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V.; Oikari, R. [Tampere Univ. of Technology (Finland)

    1997-10-01

    The purpose of the project is to demonstrate in industrial conditions and further develop the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) developed at Tampere University of Technology (TUT). The demonstration takes place in joint measuring campaigns, where two other continuous alkali measurement methods, ELIF and surface ionisation, are being simultaneously demonstrated. A modification of PEARLS will also be developed for the continuous measurement of heavy metal concentrations. A market study of continuous measuring techniques for alkali and heavy metals is further part of the project. The method will be demonstrated in two pressurised fluidised bed combustion facilities. One of these is the 10 MW PCFB of Foster Wheeler Energia Oy in Karhula. The second one is yet to be decided. The first measuring campaign is scheduled for the spring of 1997 in Karhula. In 1996 the group at TUT participated in the performance of a market study regarding continuous measuring techniques for alkali and heavy metal concentrations. A draft report was submitted to and approved by the EC. Development work on PEARLS in 1996 has centered around the construction of a calibration device for alkali measurements. The device can be used by all three measuring techniques in the project to check readings against a known alkali concentration at controlled and known conditions. In 1996 PEARLS was applied for alkali measurement at several pressurised combustion installations of laboratory and industrial pilot scale

  6. "Doubly magic" conditions in magic-wavelength trapping of ultracold alkali-metal atoms.

    Science.gov (United States)

    Derevianko, Andrei

    2010-07-16

    In experiments with trapped atoms, atomic energy levels are shifted by the trapping optical and magnetic fields. Regardless of this strong perturbation, precision spectroscopy may be still carried out using specially crafted, "magic" trapping fields. Finding these conditions for particularly valuable microwave transitions in alkali-metal atoms has so far remained an open challenge. Here I demonstrate that the microwave transitions in alkali-metal atoms may be indeed made impervious to both trapping laser intensity and fluctuations of magnetic fields. I consider driving multiphoton transitions between the clock levels and show that these "doubly magic" conditions are realized at special values of trapping laser wavelengths and fixed values of relatively weak magnetic fields. This finding has implications for precision measurements and quantum information processing with qubits stored in hyperfine manifolds.

  7. Emission Channeling Studies of the Lattice Site of Oversized Alkali Atoms Implanted in Metals

    CERN Multimedia

    2002-01-01

    % IS340 \\\\ \\\\ As alkali atoms have the largest atomic radius of all elements, the determination of their lattice configuration following implantation into metals forms a critical test for the various models predicting the lattice site of implanted impurity atoms. The site determination of these large atoms will especially be a crucial check for the most recent model that relates the substitutional fraction of oversized elements to their solution enthalpy. Recent exploratory $^{213}$Fr and $^{221}$Fr $\\alpha$-emission channeling experiments at ISOLDE-CERN and hyperfine interaction measurements on Fr implanted in Fe gave an indication for anomalously large substitutional fractions. To investigate further the behaviour of Fr and other alkali atoms like Cs and Rb thoroughly, more on-line emission channeling experiments are needed. We propose a number of shifts for each element, where the temperature of the implanted metals will be varied between 50$^\\circ$ and 700$^\\circ$~K. Temperature dependent measurements wi...

  8. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  9. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  10. The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters

    CERN Document Server

    Bonatsos, Dennis; Raychev, P P; Roussev, R P; Terziev, P A; Bonatsos, Dennis

    1999-01-01

    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.

  11. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    OpenAIRE

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M. -A.; Hexemer, A.; Hibberd, A. M.; Kimball, D. F. Jackson; C. Jaye; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the stu...

  12. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    OpenAIRE

    Seltzer, S. J.

    2011-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the stud...

  13. Orbital Magnetism and Dynamics in Alkali Metal Clusters

    CERN Document Server

    Nesterenko, V O; De Souza-Cruz, F F; Marinelli, J R

    2000-01-01

    Two remarkable orbital magnetic resonances, M1 scissor mode and M2 twist mode, are predicted in deformed and spherical metal clusters, respectively. We show that these resonances provide a valuable information about many cluster properties (quadrupole deformation, magnetic susceptibility, single-particle spectrum, etc.)

  14. Alkali metal and simple gas atom adsorption and coadsorption on transition metal surfaces

    CERN Document Server

    Norris, A G

    2000-01-01

    system is formed by adsorption of potassium or cesium on the Ni(100)c(2x2)-O overlayer. The difficulty of the structural fit is compounded' by the size of the unit cell. In this study, Anomalous Scattering was used to investigate whether there is a contribution from the nickel substrate to the reconstruction. Measurements of the fractional order rods at 10 eV and 200 eV below the nickel K edge (8333 eV) showed no discernible differences and involvement of the nickel substrate in the reconstruction can be eliminated. Alkali metal coadsorption systems represent a step along the pathway from simple model adsorbate overlayers to more technologically relevant real systems. Such is their complexity, however, that very few systems have been solved structurally. Presented here are SXRD and STM investigations of two such systems. The first study involves potassium adsorption on the Ni(100)(2x2)p4g-N surface, where a clock reconstruction is present with the nickel substrate atoms rotated in alternate clockwise and anti...

  15. Spinel Metal Oxide-Alkali Carbonate-Based, Low-Temperature Thermochemical Cycles for Water Splitting and CO_2 Reduction

    OpenAIRE

    Xu, Bingjun; Bhawe, Yashodhan; Davis, Mark E.

    2013-01-01

    A manganese oxide-based, thermochemical cycle for water splitting below 1000 °C has recently been reported. The cycle involves the shuttling of Na+ into and out of manganese oxides via the consumption and formation of sodium carbonate, respectively. Here, we explore the combinations of three spinel metal oxides and three alkali carbonates in thermochemical cycles for water splitting and CO_2 reduction. Hydrogen evolution and CO_2 reduction reactions of metal oxides with a given alkali carbona...

  16. Unraveling the absorption spectra of alkali metal atoms attached to helium nanodroplets.

    Science.gov (United States)

    Bünermann, Oliver; Droppelmann, Georg; Hernando, Alberto; Mayol, Ricardo; Stienkemeier, Frank

    2007-12-13

    The absorption spectra of the first electronic exited state of alkali metal atoms on helium nanodroplets formed of both 4He and 3He isotopes were studied experimentally as well as theoretically. In the experimental part new data on the 2palkali metal atoms with helium nanodroplets, a model calculation was performed. New helium density profiles as well as a refined model allowed us to achieve good agreement with the experimental findings. For the first time the red-shifted intensities in the lithium and sodium spectra are explained in terms of enhanced binding configurations in the excited state displaced spatially from the ground state configurations.

  17. Column IIIA metal film deposition by dissociative photoionization of metal halide vapors

    Science.gov (United States)

    Geohegan, D. B.; Eden, J. G.

    1984-11-01

    Films of column IIIA metals (In, Al, and Tl) have been deposited on several different substrates (stainless steel, nickel, copper, and silver) by dissociatively photoionizing the corresponding metal iodide in a uniform electric field. Thin (≲0.2 μm) indium films have been grown on nickel by photoionizing indium monoiodide (InI) vapor with an argon fluoride (ArF) excimer laser at 193 nm. A similar process has resulted in thallium films produced from thallium iodide (TlI) vapor with a high pressure xenon lamp.

  18. Technetium dichloride: a new binary halide containing metal-metal multiple bonds.

    Science.gov (United States)

    Poineau, Frederic; Malliakas, Christos D; Weck, Philippe F; Scott, Brian L; Johnstone, Erik V; Forster, Paul M; Kim, Eunja; Kanatzidis, Mercouri G; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2011-06-15

    Technetium dichloride has been discovered. It was synthesized from the elements and characterized by several physical techniques, including single crystal X-ray diffraction. In the solid state, technetium dichloride exhibits a new structure type consisting of infinite chains of face sharing [Tc(2)Cl(8)] rectangular prisms that are packed in a commensurate supercell. The metal-metal separation in the prisms is 2.127(2) Å, a distance consistent with the presence of a Tc≡Tc triple bond that is also supported by electronic structure calculations.

  19. Alkali metal mediated C-C bond coupling reaction.

    Science.gov (United States)

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2](-) was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  20. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    CERN Document Server

    Seltzer, S J; Donaldson, M H; Balabas, M V; Barber, S K; Bernasek, S L; Bouchiat, M -A; Hexemer, A; Hibberd, A M; Kimball, D F Jackson; Jaye, C; Karaulanov, T; Narducci, F A; Rangwala, S A; Robinson, H G; Voronov, D L; Yashchuk, V V; Pines, A; Budker, D

    2010-01-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We present a survey of modern surface science techniques applied to the study of paraffin coatings, in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present with...

  1. Impurity detection in alkali-metal vapor cells via nuclear magnetic resonance

    Science.gov (United States)

    Patton, B.; Ishikawa, K.

    2016-11-01

    We use nuclear magnetic resonance spectroscopy of alkali metals sealed in glass vapor cells to perform in situ identification of chemical contaminants. The alkali Knight shift varies with the concentration of the impurity, which in turn varies with temperature as the alloy composition changes along the liquidus curve. Intentional addition of a known impurity validates this approach and reveals that sodium is often an intrinsic contaminant in cells filled with distilled, high-purity rubidium or cesium. Measurements of the Knight shift of the binary Rb-Na alloy confirm prior measurements of the shift's linear dependence on Na concentration, but similar measurements for the Cs-Na system demonstrate an unexpected nonlinear dependence of the Knight shift on the molar ratio. This non-destructive approach allows monitoring and quantification of ongoing chemical processes within the kind of vapor cells which form the basis for precise sensors and atomic frequency standards.

  2. Influence of alkaline earth metals on molecular structure of 3-nitrobenzoic acid in comparison with alkali metals effect.

    Science.gov (United States)

    Samsonowicz, M; Regulska, E; Lewandowski, W

    2011-11-01

    The influence of beryllium, magnesium, calcium, strontium and barium cations on the electronic system of 3-nitrobenzoic acid was studied in comparison with studied earlier alkali metal ions. The vibrational FT-IR (in KBr and ATR techniques) and (1)H and (13)C NMR spectra were recorded for 3-nitrobenzoic acid and its salts. Characteristic shifts in IR and NMR spectra along 3-nitrobenzoates of divalent metal series Mg→Ba were compared with series of univalent metal Li→Cs salts. Good correlations between the wavenumbers of the vibrational bands in the IR spectra for 3-nitrobenzoates and ionic potential, electronegativity, inverse of atomic mass, atomic radius and ionization energy of metals were found for alkaline earth metals as well as for alkali metals. The density functional (DFT) hybrid method B3LYP with two basis sets: 6-311++G** and LANL2DZ were used to calculate optimized geometrical structures of studied compounds. The theoretical wavenumbers and intensities of IR spectra as well as chemical shifts in NMR spectra were obtained. Geometric aromaticity indices, atomic charges, dipole moments and energies were also calculated. The calculated parameters were compared to experimental characteristic of studied compounds.

  3. Structural and Dynamical Trends in Alkali-Metal Silanides Characterized by Neutron-Scattering Methods

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean-Noel; Zhou, Wei; Janot, Raphael; Skripov, Alexander V.; Udovic, Terrence J.

    2016-09-29

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH3, where M = K, Rb, Cs, K0.5Rb0.5, K0.5Cs0.5, and Rb0.5Cs0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (..alpha..) and ordered (..beta..) phases for temperatures above and below about 200-250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a red shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order-disorder (..beta..-..alpha..) phase transition, and measurements upon cooling of the ..alpha..-phase revealed the known strong hysteresis for reversion back to the ..beta..-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH3- anions in the ..alpha..- and ..beta..-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. This dynamical result might provide some insights concerning the enthalpy-entropy compensation effect previously observed for these potentially promising hydrogen storage materials.

  4. Unconventional superconductivity in electron-doped layered metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Yuichi, E-mail: ykasahara@scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Kuroki, Kazuhiko, E-mail: kuroki@phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Yamanaka, Shoji, E-mail: syamana@hiroshima-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Taguchi, Yasujiro, E-mail: y-taguchi@riken.jp [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-07-15

    In this review, we present a comprehensive overview of superconductivity in electron-doped metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) with layered crystal structure and two-dimensional electronic states. The parent compounds are band insulators with no discernible long-range ordered state. Upon doping tiny amount of electrons, superconductivity emerges with several anomalous features beyond the conventional electron–phonon mechanism, which stimulate theoretical investigations. We will discuss experimental and theoretical results reported thus far and compare the electron-doped layered nitride superconductors with other superconductors.

  5. Subtask 12E1: Compatibility of structural materials in liquid alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Rink, D.L.; Haglund, R.; Clark, R.W. [Argonne National Lab., IL (United States)

    1995-03-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures that are in the range of interest for the International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal environments. Candidate structural materials are being evaluated for their compatibility, interstitial-element transfer, and corrosion in liquid alkali-metal systems such as lithium and NaK. Type 316 stainless steel and V-5Cr-5Ti coupon specimens with and without prealuminizing treatment have been exposed to NaK and lithium environments of commercial purity for times up to 3768 h at temperatures between 300 and 400{degrees}C. 13 refs., 8 figs., 3 tabs.

  6. Alkali and heavy metal emissions of the PCFB-process; Alkalipaeaestoet PCFB-prosessissa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P. [Foster Wheeler Energia Oy, Karhula (Finland)

    1996-12-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As a part of the development, 10 MW PCFB Test Facility was built in 1989. The Test Facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The project Y44 `Alkali and heavy metal emissions of the PCFB-process` was part of national LIEKKI 2 research program. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method by TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about + 50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers. The measurements and development of the analyses methods are planned to be continued during PCFB test runs in spring 1996 for example within Joule II research program. (author)

  7. The influence of chlorine on the fate and activity of alkali metals during the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Struis, R.; Scala, C. von; Schuler, A.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Chlorine clearly inhibits the CO{sub 2}-gasification reaction of charcoal at 800{sup o}C. From this and other observations the picture emerges that the reduction in the gasification reactivity of the charcoal is intimately related to the deactivation of the catalytically active alkali metals residing in the wood due to the formation of the chloride salt. It is argued that the heavy metal chlorides will likely transfer the chlorine to the indigenous alkali metals during the pyrolysis stage of the wood. The fate of the thus formed alkali metal chlorides can then be either their removal from the sample (evaporation), or, when present at the gasification stage, re-activation (i.e., de-chlorination) under our gasification conditions. (author) 3 figs., 4 refs.

  8. Antenna induced hot restrike of a ceramic metal halide lamp recorded by high-speed photography

    Science.gov (United States)

    Hermanns, P.; Hoebing, T.; Bergner, A.; Ruhrmann, C.; Awakowicz, P.; Mentel, J.

    2016-03-01

    The hot restrike is one of the biggest challenges in operating ceramic metal halide lamps with mercury as buffer gas. Compared to a cold lamp, the pressure within a ceramic burner is two orders of magnitude higher during steady state operation due to the high temperature of the ceramic tube and the resulting high mercury vapour pressure. Room temperature conditions are achieved after 300 s of cooling down in a commercial burner, enclosed in an evacuated outer bulb. At the beginning of the cooling down, ignition voltage rises up to more than 14 kV. A significant reduction of the hot-restrike voltage can be achieved by using a so called active antenna. It is realized by a conductive sleeve surrounding the burner at the capillary of the upper electrode. The antenna is connected to the lower electrode of the lamp, so that its potential is extended to the vicinity of the upper electrode. An increased electric field in front of the upper electrode is induced, when an ignition pulse is applied to the lamp electrodes. A symmetrically shaped ignition pulse is applied with an amplitude, which is just sufficient to re-ignite the hot lamp. The re-ignition, 60 s after switching off the lamp, when the mercury pressure starts to be saturated, is recorded for both polarities of the ignition pulse with a high-speed camera, which records four pictures within the symmetrically shaped ignition pulse with exposure times of 100 ns and throws of 100 ns. The pictures show that the high electric field and its temporal variation establish a local dielectric barrier discharge in front of the upper electrode inside the burner, which covers the inner wall of the burner with a surface charge. It forms a starting point of streamers, which may induce the lamp ignition predominantly within the second half cycle of the ignition pulse. It is found out that an active antenna is more effective when the starting point of the surface streamer in front of the sleeve is a negative surface charge on the

  9. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  10. Low-temperature operation of copper-vapor lasers by using vapor-complex reaction of metallic copper and metal halide

    OpenAIRE

    Saito, Hiroshi; Taniguchi, Hiroshi

    1985-01-01

    The first successful use of vapor-complex reactions for a laser is reported. Vapor-complex reactions between metallic copper and metal halides are found effective in reducing the operating temperature in copper-vapor lasers. By using a vapor-complex reaction of Cu+AlBr3, a laser oscillation starts at a reservoir temperature of about 25°C. The results obtained by the mass spectroscopic analysis support the presumption that the copper vapor is generated through a vapor-complex reaction process.

  11. Electric dipole polarizabilities of Rydberg states of alkali-metal atoms

    Science.gov (United States)

    Yerokhin, V. A.; Buhmann, S. Y.; Fritzsche, S.; Surzhykov, A.

    2016-09-01

    Calculations of the static electric-dipole scalar and tensor polarizabilities are presented for two alkali-metal atoms, Rb and Cs, for the n S , n P½,3 /2 , and n D3 /2 ,5 /2 states with large principal quantum numbers up to n =50 . The calculations are performed within an effective one-electron approximation, based on the Dirac-Fock Hamiltonian with a semiempirical core-polarization potential. The obtained results are compared with those from a simpler semiempirical approach and with available experimental data.

  12. Antiproton and proton collisions with the alkali-metal atoms Li, Na, and K

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2008-01-01

    Single-electron ionization and excitation cross sections as well as cross sections for excitation into the first excited p state of the alkali-metal atoms Li(2s), Na(3s), and K(4s) colliding with antiprotons and protons were calculated using a time-dependent channel-coupling approach....... For antiprotons an impact-energy range from 0.25 to 1000 keV and for protons from 2 to 1000 keV was considered. The target atoms are treated as effective one-electron systems using a model potential. The results are compared with theoretical and experimental data from literature and calculated cross sections...

  13. Van der Waals coefficients for alkali metal clusters and their size dependence

    Indian Academy of Sciences (India)

    Arup Banerjee; Manoj K Harbola

    2006-02-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, but are quite simple in the hydrodynamic approach. We show that for interactions between the clusters of the same sizes, 6 and 8 scale as the sixth and the eighth power of the cluster radius, respectively, and approach their classically predicted values for the large size clusters.

  14. Shortcuts for understanding rovibronic spectroscopy of ultracold alkali metal diatomic molecules

    Science.gov (United States)

    Stwalley, William C.; Bellos, Michael; Carollo, Ryan; Banerjee, Jayita; Bermudez, Matthew

    2012-08-01

    The high-resolution rovibronic spectroscopies of cold and ultracold molecules (e.g. supersonic molecular beam excitation spectra (MB), photoassociation spectra of ultracold atoms (PA), resonance-enhanced multiphoton ionization spectra (REMPI), stimulated Raman transfer (SRT) spectra) are of major current interest. This manuscript summarizes the significant level of understanding of these various spectroscopies, enabled by using simple graphical and semiclassical ideas and shortcuts. Physical realizations of these spectroscopies will be illustrated using the alkali metal diatomic molecules, both homonuclear (e.g. Rb2) and heteronuclear (e.g. KRb).

  15. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    Science.gov (United States)

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  16. Alkali metal-cationized serine clusters studied by sonic spray ionization tandem mass spectrometry.

    Science.gov (United States)

    Nanita, Sergio C; Sokol, Ewa; Cooks, R Graham

    2007-05-01

    Serine solutions containing salts of alkali metals yield magic number clusters of the type (Ser(4)+C)(+), (Ser(8)+C)(+), (Ser(12)+C)(+), and (Ser(17)+2C)(+2) (where C = Li(+), Na(+), K(+), Rb(+), or Cs(+)), in relative abundances which are strongly dependent on the cation size. Strong selectivity for homochirality is involved in the formation of serine tetramers cationized by K(+), Rb(+), and Cs(+). This is also the case for the octamers cationized by the smaller alkalis but there is a strong preference for heterochirality in the octamers cationized by the larger alkali cations. Tandem mass spectrometry shows that the octamers and dodecamers cationized by K(+), Rb(+), and Cs(+) dissociate mainly by the loss of Ser(4) units, suggesting that the neutral tetramers are the stable building blocks of the observed larger aggregates, (Ser(8)+C)(+) and (Ser(12)+C)(+). Remarkably, although the Ser(4) units are formed with a strong preference for homochirality, they aggregate further regardless of their handedness and, therefore, with a preference for the nominally racemic 4D:4L structure and an overall strong heterochiral preference. The octamers cationized by K(+), Rb(+), or Cs(+) therefore represent a new type of cluster ion that is homochiral in its internal subunits, which then assemble in a random fashion to form octamers. We tentatively interpret the homochirality of these tetramers as a consequence of assembly of the serine molecules around a central metal ion. The data provide additional evidence that the neutral serine octamer is homochiral and is readily cationized by smaller ions.

  17. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.;

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily f...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society......The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily...

  18. Direct surface charging and alkali-metal doping for tuning the interlayer magnetic order in planar nanostructures

    Science.gov (United States)

    Dasa, Tamene R.; Stepanyuk, Valeri S.

    2015-08-01

    The continuous reduction of magnetic units to ultrasmall length scales inspires efforts to look for a suitable means of controlling magnetic states. In this study, we show two surface charge alteration techniques for tuning the interlayer exchange coupling of ferromagnetic layers separated by paramagnetic spacers. Our ab initio study reveals that already a modest amount of extra charge can switch the mutual alignment of the magnetization from antiferromagnetic to ferromagnetic or vice versa. We also propose adsorption of alkali metals as an alternative way of varying the electronic and chemical properties of magnetic surfaces. Clear evidence is found that the interlayer magnetic order can be reversed by adsorbing alkali metals on the magnetic layer. Moreover, alkali-metal overlayers strongly enhance the perpendicular magnetic anisotropy in FePt thin films. These findings combined with atomistic spin model calculations suggest that the electronic or ionic way of surface charging can have a crucial role for magnetic hardening and spin state control.

  19. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    Science.gov (United States)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  20. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water

    OpenAIRE

    Crespo-Quesada, Micaela; Pazos-Outón, Luis M.; Warnan, Julien; Kuehnel, Moritz F; Friend, Richard H.; Reisner, Erwin

    2016-01-01

    Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqu...

  1. Metal-mediated aminocatalysis provides mild conditions: Enantioselective Michael addition mediated by primary amino catalysts and alkali-metal ions

    Directory of Open Access Journals (Sweden)

    Matthias Leven

    2013-01-01

    Full Text Available Four catalysts based on new amides of chiral 1,2-diamines and 2-sulfobenzoic acid have been developed. The alkali-metal salts of these betaine-like amides are able to form imines with enones, which are activated by Lewis acid interaction for nucleophilic attack by 4-hydroxycoumarin. The addition of 4-hydroxycoumarin to enones gives ee’s up to 83% and almost quantitative yields in many cases. This novel type of catalysis provides an effective alternative to conventional primary amino catalysis were strong acid additives are essential components.

  2. Alkali metal control over N-N cleavage in iron complexes.

    Science.gov (United States)

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L

    2014-12-03

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2.

  3. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  4. Challenges and Prospect of Non-aqueous Non-alkali (NANA) Metal-Air Batteries.

    Science.gov (United States)

    Gelman, Danny; Shvartsev, Boris; Ein-Eli, Yair

    2016-12-01

    Non-aqueous non-alkali (NANA) metal-air battery technologies promise to provide electrochemical energy storage with the highest specific energy density. Metal-air battery technology is particularly advantageous being implemented in long-range electric vehicles. Up to now, almost all the efforts in the field are focused on Li-air cells, but other NANA metal-air battery technologies emerge. The major concern, which the research community should be dealing with, is the limited and rather poor rechargeability of these systems. The challenges we are covering in this review are related to the initial limited discharge capacities and cell performances. By comprehensively reviewing the studies conducted so far, we show that the implementation of advanced materials is a promising approach to increase metal-air performance and, particularly, metal surface activation as a prime achievement leading to respectful discharge currents. In this review, we address the most critical areas that need careful research attention in order to achieve progress in the understanding of the physical and electrochemical processes in non-aqueous electrolytes applied in beyond lithium and zinc air generation of metal-air battery systems.

  5. Researches of the electrotechnical laboratory. No. 973: Study on alkali metal thermoelectric converter

    Science.gov (United States)

    Tanaka, K.; Negishi, A.; Honda, T.; Fujii, T.; Masuda, T.; Nozaki, K.

    1995-03-01

    The alkali metal thermoelectric converter (AMTEC) utilizing the sodium ion conducting Beta' '- alumina solid electrolyte (BASE) is a device to convert heat energy to electric energy directly. It is characterized by high conversion efficiencies (20 to 40 percent), high power densities (1 W/sq cm), no moving parts, low maintenance requirements, high durability, and efficiency independent of size. Because of these merits, AMTEC is one of the most promising candidate for dispersed small scale power station, remote power station and aerospace power systems. In this paper, the theoretical and experimental studies on the thin film electrodes characteristics, power generating characteristics, cell efficiency, integral electrode with large current lead, porous metal current lead, series connected cells power generation, potassium AMTEC, wick return AMTEC and system analysis for space and grand use are reported.

  6. The contents of alkali and alkaline earth metals in soils of the southern Cis-Ural region

    Science.gov (United States)

    Asylbaev, I. G.; Khabirov, I. K.

    2016-01-01

    The contents and distribution patterns of alkali and alkaline earth metals in soils and rocks of the southern Cis-Ural region were studied. A database on the contents of these metals was developed, the soils were classified with respect to their provision with these metals, and corresponding schematic maps showing their distribution in soils of the region were compiled. It was found that the contents of these metals decrease from east to west (from the Yuryuzan-Aisk Piedmont Plain to the Ufa Plateau and to the Belebeevsk Upland), and their distribution patterns change. Among alkali metals, the highest accumulation in the soils is typical of potassium, sodium, and cesium; among alkaline earth metals, of strontium and barium.

  7. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    Science.gov (United States)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  8. On halide derivatives of rare-earth metal(III) oxidomolybdates(VI) and -tungstates(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Schleid, Thomas; Hartenbach, Ingo [Stuttgart Univ. (Germany). Inst. for Inorganic Chemistry

    2016-11-01

    Halide derivatives of rare-earth metal(III) oxidomolybdates(VI) have been investigated comprehensively over the last decade comprising the halogens fluorine, chlorine, and bromine. Iodide-containing compounds are so far unknown. The simple composition REXMoO{sub 4} (RE=rare-earth element, X=halogen) is realized for X=F almost throughout the complete lanthanide series as well as for yttrium. While ytterbium and lutetium do not form any fluoride derivative, for lanthanum, only a fluoride-deprived compound with the formula La{sub 3}FMo{sub 4}O{sub 16} is realized. Moreover, molybdenum-rich compounds with the formula REXMo{sub 2}O{sub 7} are also known for yttrium and the smaller lanthanoids. For X=Cl the composition REClMoO{sub 4} is known for yttrium and the whole lanthanide series, although, four different structure types were identified. Almost the same holds for X=Br, however, only two different structure types are realized in this class of compounds. In the case of halide derivatives of rare-earth metal(III) oxidotungstates(VI) the composition REXWO{sub 4} is found for chlorides and bromides only, so far. Due to the similar size of Mo{sup 6+} and W{sup 6+} cations, the structures found for the tungstates are basically the same as for the molybdates. With the larger lanthanides, the representatives for both chloride and bromide derivates exhibit similar structural motifs as seen in the molybdates, however, the crystal structure cannot be determined reliably. In case of the smaller lanthanoids, the chloride derivatives are isostructural with the respective molybdates, although the existence ranges differ slightly. The same is true for rare-earth metal(III) bromide oxidotungstates(VI).

  9. Variable charge and electrical double layer of mineral-water interfaces: silver halides versus metal (hydr)oxides.

    Science.gov (United States)

    Hiemstra, Tjisse

    2012-11-01

    Classically, silver (Ag) halides have been used to understand thermodynamic principles of the charging process and the corresponding development of the electrical double layer (EDL). A mechanistic approach to the processes on the molecular level has not yet been carried out using advanced surface complexation modeling (SCM) as applied to metal (hydr)oxide interfaces. Ag halides and metal (hydr)oxides behave quite differently in some respect. The location of charge in the interface of Ag halides is not a priori obvious. For AgI(s), SCM indicates the separation of interfacial charge in which the smaller silver ions are apparently farther away from the surface than iodide. This charge separation can be understood from the surface structure of the relevant crystal faces. Charge separation with positive charge above the surface is due to monodentate surface complex formation of Ag(+) ions binding to I sites located at the surface. Negative surface charge is due to the desorption of Ag(+) ions out of the lattice. These processes can be described with the charge distribution (CD) model. The MO/DFT optimized geometry of the complex is used to estimate the value of the CD. SCM reveals the EDL structure of AgI(s), having two Stern layers in series. The inner Stern layer has a very low capacitance (C(1) = 0.15 ± 0.01 F/m(2)) in comparison to that of metal (hydr)oxides, and this can be attributed to the strong orientation of the (primary) water molecules on the local electrostatic field of the Ag(+) and I(-) ions of the surface (relative dielectric constant ε(r) ≈ 6). Depending on the extent of water ordering, mineral surfaces may in principle develop a second Stern layer. The corresponding capacitance (C(2)) will depend on the degree of water ordering that may decrease in the series AgI (C(2) = 0.57 F/m(2)), goethite (C(2) = 0.74 F/m(2)), and rutile (C(2) = ∞), as discussed. The charging principles of AgI minerals iodargyrite and miersite may also be applied to minerals

  10. Nature of the Charge Localized Between Alkali Adatoms and Metal Substrates

    OpenAIRE

    Wertheim, G. K.; Riffe, D. Mark; Citrin, P. H.

    1994-01-01

    Two previously unappreciated features in photoemission spectra from alkali atoms adsorbed on W(110), namely, the sign of the alkali-induced surface-atom core-level shift of the substrate at low coverage and the very large alkali shallow core-hole lifetime width at all coverages, show that the alkali-substrate interaction is not well described by a transfer of alkali charge. Instead, both features point to the formation of a charge cloud between the alkali adatom and substrate that is d...

  11. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  12. Metal halide hydrates as lewis acid catalysts for the conjugated friedel-crafts reactions of indoles and activated olefins

    Energy Technology Data Exchange (ETDEWEB)

    Schwalm, Cristiane S.; Ceschi, Marco Antonio; Russowsky, Dennis, E-mail: dennis@iq.ufrgs.b [Universidade Federal do Rio Grande do Sul (IQ/UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica

    2011-07-01

    Metal halide hydrates such as SnCl{sub 2{center_dot}}2H{sub 2}O, MnCl{sub 2{center_dot}}4H{sub 2}O, SrCl{sub 2{center_dot}}6H{sub 2}O, CrCl{sub 2{center_dot}}6H{sub 2}O, CoCl{sub 2{center_dot}}6H{sub 2}O e CeCl{sub 3{center_dot}}7H{sub 2}O were investigated as mild Lewis acids catalysts for the conjugate Friedel-Crafts reaction between indoles and activated olefins. The reactions were carried out with aliphatic unsaturated ketones over a period of days at room temperature, while chalcones reacted only under reflux conditions. The reactions with nitrostyrene s were either performed in solvent or under solventless conditions. In all cases reasonable to good yields were obtained. (author)

  13. Transient Response of Organo-Metal-Halide Solar Cells Analyzed by Time-Resolved Current-Voltage Measurements

    Directory of Open Access Journals (Sweden)

    M. Greyson Christoforo

    2015-11-01

    Full Text Available The determination of the power conversion efficiency of solar cells based on organo-metal-halides is subject to an ongoing debate. As solar cell devices may exhibit very slow transient response, current-voltage scans in different directions may not be congruent, which is an effect often referred to as hysteresis. We here discuss time-resolved current-voltage measurements as a means to evaluate appropriate delay times (voltage settling times to be used in current-voltage measurements of solar cells. Furthermore, this method allows the analysis of transient current response to extract time constants that can be used to compare characteristic differences between devices of varying architecture types, selective contacts and changes in devices due to storage or degradation conditions.

  14. Revealing the ultrafast charge carrier dynamics in organo metal halide perovskite solar cell materials using time resolved THz spectroscopy.

    Science.gov (United States)

    Ponseca, C S; Sundström, V

    2016-03-28

    Ultrafast charge carrier dynamics in organo metal halide perovskite has been probed using time resolved terahertz (THz) spectroscopy (TRTS). Current literature on its early time characteristics is unanimous: sub-ps charge carrier generation, highly mobile charges and very slow recombination rationalizing the exceptionally high power conversion efficiency for a solution processed solar cell material. Electron injection from MAPbI3 to nanoparticles (NP) of TiO2 is found to be sub-ps while Al2O3 NPs do not alter charge dynamics. Charge transfer to organic electrodes, Spiro-OMeTAD and PCBM, is sub-ps and few hundreds of ps respectively, which is influenced by the alignment of energy bands. It is surmised that minimizing defects/trap states is key in optimizing charge carrier extraction from these materials.

  15. Alkali metal salts of formazanate ligands : diverse coordination modes as a result of the nitrogen-rich [NNCNN] ligand backbone

    NARCIS (Netherlands)

    Travieso-Puente, Raquel; Chang, Mu-Chieh; Otten, Edwin

    2014-01-01

    Alkali metal salts of redox-active formazanate ligands were prepared, and their structures in the solid-state and in solution are determined. The nitrogen-rich [NNCNN] backbone of formazanates results in a varied coordination chemistry, with both the internal and terminal nitrogen atoms available fo

  16. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions

    DEFF Research Database (Denmark)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-01

    We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense...

  17. Synthesis and Selective Coloration of Monoaza Crown Ethers Bearing Picrylamino-type Side Arms for Alkali Metal Salts and Methylamine

    Institute of Scientific and Technical Information of China (English)

    Wei ZENG; Zhi Hua MAO; Mi GONG; Chun Chun ZHANG; Sheng Ying QIN; Jun SU

    2003-01-01

    N-pivot lariat ethers with picrylamino group as a chromophore (1, 2 and 3) have been prepared by reaction of N-(4-aminoaryl)monoaza crown ethers with picryl chrolide, and the selective coloration of 1, 2 and 3 for alkali metal salts and amines has been studied by UV-Vis spectra.

  18. LDA or GGA? A combined experimental inelastic neutron scattering and ab initio lattice dynamics study of alkali metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, G.D. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Departamento de Quimica, Universidad Nacional de la Patagonia SJB, Ciudad Universitaria, 9005 Comodoro Rivadavia (Argentina); Colognesi, D. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano s.n.c., 50019 Sesto Fiorentino (Finland) (Italy); Mitchell, P.C.H. [School of Chemistry, University of Reading, RG6 6AD (United Kingdom); Ramirez-Cuesta, A.J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); School of Chemistry, University of Reading, RG6 6AD (United Kingdom)], E-mail: a.j.ramirez-cuesta@rl.ac.uk

    2005-10-31

    In a previous work, we carried out inelastic neutron scattering (INS) spectroscopy experiments and preliminary first principles calculations on alkali metal hydrides. The complete series of alkali metal hydrides, LiH, NaH, KH, RbH and CsH was measured in the high-resolution TOSCA INS spectrometer at ISIS. Here, we present the results of ab initio electronic structure calculations of the properties of the alkali metal hydrides using both the local density approximation (LDA) and the generalized gradient approximation (GGA), using the Perdew-Burke-Ernzerhof (PBE) parameterization. Properties calculated were lattice parameters, bulk moduli, dielectric constants, effective charges, electronic densities and inelastic neutron scattering (INS) spectra. We took advantage of the currently available computer power to use full lattice dynamics theory to calculate thermodynamic properties for these materials. For the alkali metal hydrides (LiH, NaH, KH, RbH and CsH) using lattice dynamics, we found that the INS spectra calculated using LDA agreed better with the experimental data than the spectra calculated using GGA. Both zero-point effects and thermal contributions to free energies had an important effect on INS and several thermodynamic properties.

  19. Difference of coordination between alkali- and alkaline-earth-metal ions to a symmetrical α,α',δ,δ'-tetramethylcucurbit[6]uril.

    Science.gov (United States)

    Chen, Wen-Jian; Yu, Da-Hai; Xiao, Xin; Zhang, Yun-Qian; Zhu, Qian-Jiang; Xue, Sai-Feng; Tao, Zhu; Wei, Gang

    2011-08-01

    To explore differences in coordination between alkali- and alkaline-earth-metal ions and cucurbit[n]urils, a water-soluble α,α',δ,δ'-tetramethylcucurbit[6]uril (TMeQ[6]) was used to synthesize a series of complexes and their supramolecular assemblies, based on the coordination of TMeQ[6] with alkali- and alkaline-earth-metal ions. The complexes and corresponding supramolecular assemblies were structurally characterized by single-crystal X-ray diffraction. Unlike cucurbituril (Q[6]), which formed the metal-Q[6] polymers based on the direct coordination of carbonyl oxygen atoms to the alkali-metal ions, TMeQ[6] formed metal-TMeQ[6] polymers based on the direct coordination of carbonyl oxygen atoms with the alkaline-earth-metal ions rather than the alkali-metal ions.

  20. Analysis of Interatomic Separation-Pressure Relations for Alkali Halides and Periclase(MgO)%碱卤化合物和MgO的离子间距-压强关系分析

    Institute of Scientific and Technical Information of China (English)

    刘泉; 陈立溁

    2005-01-01

    A new method for the determination of interatomic separation-pressure relations is investigated and applied for alkali halides and MgO crystals. The method is developed by using Hildebrand approximation and an ionic model based on Harrison's treatment of overlap repulsive potential which takes into account the interactions up to second neighbors. The van der Waals dipole-dipole and dipole-quadrupole interactions calculated by more accurate methods are also included in the present work. It is found that the new method yield satisfactory results in agreement with the available experimental data.%给出了一种新的方法来决定固体的离子间距与压强的关系,并将这种方法应用到碱卤化合物和MgO晶体.这种新方法的理论基础是利用Hildebrand近似、并运用Harrison的处理方法来考虑排斥能,即考虑离子间的相互作用直到次临近离子.还利用了更精确的方法来计算偶极子-偶极子和偶极子-四极子之间的相互作用.利用这种新方法得到的结果和实验结果吻合得很好.

  1. Magnetism in alkali-metal-doped wurtzite semiconductor materials controlled by strain engineering

    Science.gov (United States)

    Guo, J. H.; Li, T. H.; Liu, L. Z.; Hu, F. R.

    2016-09-01

    The study of the magnetism and optical properties of semiconductor materials by defect engineering has attracted much attention because of their potential uses in spintronic and optoelectronic devices. In this paper, first-principle calculations discloses that cationic vacancy formation energy of the doped wurtzite materials can be sharply decreased due to alkali metal dopants and shows that their magnetic properties strongly depend on defect and doping concentration. This effect can be ascribed to the volume change induced by foreign elements doped into the host system and atomic population's difference. The symmetric deformation induced by biaxial strain can further regulate this behavior. Our results suggest that the formation of cationic vacancy can be tailored by strain engineering and dopants incorporation.

  2. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A.B.; Kudyakov, V.Ya.; Smirnov, M.V.; Moskalenko, N.I. (AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii)

    1984-08-01

    The coefficient of HfCl/sub 4/ and ZrCl/sub 4/ separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl/sub 4/+HfCl/sub 4/). HfCl/sub 4/ and ZrCl/sub 4/ are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl.

  3. Alkali-metal electron spin density shift induced by a helium nanodroplet

    Science.gov (United States)

    Koch, Markus; Callegari, Carlo; Ernst, Wolfgang E.

    2010-04-01

    Helium (He) nanodroplets provide a cold and virtually unperturbing environment for the study of weakly bound molecules and van der Waals aggregates. High resolution microwave spectroscopy and the detection of electron spin transitions in doped He droplets have recently become possible. Measurements of hyperfine-resolved electron spin resonance in potassium (39K) and rubidium (85Rb) atoms on the surface of He droplets show small line shifts relative to the bare atoms. These shifts were recorded for all 2I + 1 components (I is the nuclear spin) of a transition at high accuracy for He droplets ranging in size from 1000 to 15,000 He atoms. Evaluation of the spectra yields the influence of the He environment on the electron spin density at the alkali-metal nucleus. A semi-empirical model is presented that shows good qualitative agreement with the measured droplet size dependent increase of Fermi contact interaction at the nuclei of dopant K and Rb.

  4. Structural systematic and crystal chemistry of novel borates with REE, Pb, Sr, and alkali metals

    Energy Technology Data Exchange (ETDEWEB)

    Belokoneva, E.L. [Moscow State Univ., Moscow (Russian Federation). Dept. of Crystallography and Crystal Chemistry

    2013-11-01

    Crystal structures of novel borates with REE, Pb, Sr and alkali metals were analyzed using classical fundamental buildings blocks approach. It is demonstrated that hexa-, penta-, tetra-, tri- and diborates subdivisions in systematic are real families of structures with the common peculiarities. According to the symmetrical way and the degree of FBB condensation structural-generic rows exist in every of subdivisions. Mega- or polyborates subdivision is valid for the structures with the different types of simplest FBB. In all new complex borates it is possible to separate FBB of equal or different types which are presented in isolated form or are connected into chains, layers or frameworks, and to find unexpected correlation between structures. The possibility to recognize and to visualize in this approach the polarity or non-polarity of the structural units and correspondingly the polarity or nonpolarity of the structures in the whole is very important for the conclusion on structure-properties relation. (orig.)

  5. An analytical model of Faraday rotation in hot alkali metal vapours

    CERN Document Server

    Kemp, Stefan L; Cornish, Simon L

    2011-01-01

    We report a thorough investigation into the absorptive and dispersive properties of hot caesium vapour, culminating in the development of a simple analytical model for off-resonant Faraday rotation. The model, applicable to all hot alkali metal vapours, is seen to predict the rotation observed in caesium, at temperatures as high as 115 $^{\\circ}$C, to within 1% accuracy for probe light detuned by greater than 2 GHz from the $D_{2}$ lines. We also demonstrate the existence of a weak probe intensity limit, below which the effect of hyperfine pumping is negligible. Following the identification of this regime we validate a more comprehensive model for the absorption and dispersion in the vicinity of the $D_{2}$ lines, implemented in the form of a computer code. We demonstrate the ability of this model to predict Doppler-broadened spectra to within 0.5% rms deviation for temperatures up to 50 $^{\\circ}$C.

  6. Momentum densities and Compton profiles of alkali-metal atoms

    Indian Academy of Sciences (India)

    Pranab Sarkar; Anupam Sarkar; S N Roy; B Talukdar

    2003-03-01

    It is assumed that the dynamics of valence electrons of alkali-metal atoms can be well accounted for by a quantum-defect theoretic model while the core electrons may be supposed to move in a self-consistent field. This model is used to study the momentum properties of atoms from 3Li to 37Rb. The numerical results obtained for the momentum density, moments of momentum density and Compton profile are found to be in good agreement with the results of more detailed configuration-interaction calculations for the atom 3Li. Similar results for 11Na, 19K and 37Rb are compared with the corresponding Hartree–Fock–Roothaan values only, for want of data from other realistic calculations.

  7. Alkali metal compatibility testing of candidate heater head materials for a Stirling engine heat transport system

    Science.gov (United States)

    Noble, Jack E.; Hickman, Gary L.; Grobstein, Toni

    The authors describe work performed as part of the 25-kWe advanced Stirling conversion system project. Liquid alkali metal compatibility is being assessed in an ongoing test program to evaluate candidate heater head materials and fabrication processes at the temperatures and operating conditions required for Stirling engines. Specific materials under evaluation are alloy 713LC, alloy 713LC coated with nickel aluminide, and Udimet 720, each in combination with Waspaloy. The tests were run at a constant 700 C. A eutectic alloy of sodium and potassium (NaK) was the working fluid. Titanium sheet in the system was shown to be an effective oxygen getter. Metallographic and microchemical examination of material surfaces, joints, and their interfaces revealed little or no corrosion after 1000 h. Tests are in progress, with up to 10,000 h exposure.

  8. Alkali activation of recovered fuel-biofuel fly ash from fluidised-bed combustion: Stabilisation/solidification of heavy metals.

    Science.gov (United States)

    Yliniemi, Juho; Pesonen, Janne; Tiainen, Minna; Illikainen, Mirja

    2015-09-01

    Recovered fuel-biofuel fly ash from a fluidized bed boiler was alkali-activated and granulated with a sodium-silicate solution in order to immobilise the heavy metals it contains. The effect of blast-furnace slag and metakaolin as co-binders were studied. Leaching standard EN 12457-3 was applied to evaluate the immobilisation potential. The results showed that Ba, Pb and Zn were effectively immobilised. However, there was increased leaching after alkali activation for As, Cu, Mo, Sb and V. The co-binders had minimal or even negative effect on the immobilisation. One exception was found for Cr, in which the slag decreased leaching, and one was found for Cu, in which the slag increased leaching. A sequential leaching procedure was utilized to gain a deeper understanding of the immobilisation mechanism. By using a sequential leaching procedure it is possible fractionate elements into watersoluble, acid-soluble, easily-reduced and oxidisable fractions, yielding a total 'bioavailable' amount that is potentially hazardous for the environment. It was found that the total bioavailable amount was lower following alkali activation for all heavy metals, although the water-soluble fraction was higher for some metals. Evidence from leaching tests suggests the immobilisation mechanism was chemical retention, or trapping inside the alkali activation reaction products, rather than physical retention, adsorption or precipitation as hydroxides.

  9. Molten salt phase diagram evaluation by pattern recognition:Part Ⅰ Divalent rare earth halide and alkali metal halide binary systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    At present CALPHAD (CALculation of PHAse Diagram) technique is not capable of predicting whether there exists intermediate compound, much less predicting the formulae, the number, and the melting congruence of intermediate compounds. To solve this problem, a new approach called the phase diagram evaluation by pattern recognition (PDEPR) was improved. The micro-parameters, such as the radius and the electronegativity of the element, were used as original features and then they were transformed and spanned to the different features in multi-dimensional space.Then a set of classifying functions were obtained to predict the information of intermediate compounds in REX2-AX systems (RE-rare earth element; A-Li, Na, K, Rb, and Cs; X F, Cl, Br, and 1). It is comparatively important for the design of materials.

  10. UV-visible spectroscopic analysis of electrical properties in alkali metal-doped amorphous zinc tin oxide thin-film transistors.

    Science.gov (United States)

    Lim, Keon-Hee; Kim, Kyongjun; Kim, Seonjo; Park, Si Yun; Kim, Hyungjun; Kim, Youn Sang

    2013-06-04

    Solution-processed and alkali metals, such as Li and Na, are introduced in doped amorphous zinc tin oxide (ZTO) semiconductor TFTs, which show better electrical performance, such as improved field effect mobility, than intrinsic amorphous ZTO semiconductor TFTs. Furthermore, by using spectroscopic UV-visible analysis we propose a comprehensive technique for monitoring the improved electrical performance induced by alkali metal doping in terms of the change in optical properties. The change in the optical bandgap supported by the Burstein-Moss theory could successfully show a mobility increase that is related to interstitial doping of alkali metal in ZTO semiconductors.

  11. Room temperature inorganic ``quasi-molten salts`` as alkali-metal electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, K.; Zhang, S.; Angell, C.A. [Arizona State Univ., Tempe, AZ (United States). Dept. of Chemistry

    1996-11-01

    Room temperature inorganic liquids of high ionic conductivity have been prepared by reacting Lewis acid AlCl with sulfonyl chlorides. The mechanism is not clear at this time since a crystal structure study of the 1:1 complex with CH{sub 3}SO{sub 2}Cl (T{sub m} = 30 C) is not consistent with a simple chloride transfer to create AlClO{sub 4}{sup {minus}} anions. The liquid is in a state somewhere between ionic and molecular. A new term quasi-molten salt is adopted to describe this state. A comparably conducting liquid can be made using BCL{sub 3} in place of AlCl{sub 3}. Unlike their organic counterparts based on ammonium cations (e.g., pyridinium or imidazolium) which reduce in the presence of alkali metals, this inorganic class of cation shows great stability against electrochemical reduction (ca. {minus}1.0 V vs. Li{sup +}/Li), with the useful consequence that reversible lithium and sodium metal deposition/stripping can be supported. The electrochemical window for these quasi-salts with AlCl{sub 3} ranges up to 5.0 V, and their room temperature conductivities exceed 10{sup {minus}4} S/cm. They dissolve lithium and sodium tetrachloroaluminates up to mole fraction {approximately} 0.6 at 100 C and intermediate compositions are permanently stable at ambient. The resultant lithium or sodium salt solutions exhibit electrochemical windows of 4.5--5.0 V vs. Li{sup +}/Li or Na{sup +}/Na and show room temperature conductivities of 10{sup {minus}3.0}--10{sup {minus}2.5} S/cm. In preliminary charge/discharge tests, the cell Li/``quasi-ionic liquid electrolyte``/Li{sub 1+x}Mn{sub 2}O{sub 4} showed a discharge capacity of ca. 110 mAh/(g of cathode) and sustained 80% of the initial capacity after 60 cycles, indicating that these quasi-molten salt-based electrolytes are promising candidates for alkali-metal batteries.

  12. Alkali metal pool boiler life tests for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding an alkali metal pool boiler heat transport system to supply heat more uniformly to the heater head tubes. One issue with liquid metal pool boilers is unstable boiling. Stable boiling is obtained with an enhanced boiling surface containing nucleation sites that promote continuous boiling. Over longer time periods, it is possible that the boiling behavior of the system will change. An 800-h life test was conducted to verify that pool boiling with the chosen fluid/surface combination remains stable as the system ages. The apparatus uses NaK boiling on a - 100 + 140 stainless steel sintered porous layer, with the addition of a small amount of xenon. Pool boiling remained stable to the end of life test. The pool boiler life test included a total of 82 cold starts, to simulate startup each morning, and 60 warm restarts, to simulate cloud cover transients. The behavior of the cold and warm starts showed no significant changes during the life test. In the experiments, the fluid/surface combination provided stable, high-performance boiling at the operating temperature of 700 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  13. Stability of alkali-metal hydrides: effects of n-type doping

    Science.gov (United States)

    Olea Amezcua, Monica Araceli; de La Peña Seaman, Omar; Rivas Silva, Juan Francisco; Heid, Rolf; Bohnen, Klaus-Peter

    Metal hydrides could be considered ideal solid-state hydrogen storage systems, they have light weight and high hydrogen volumetric densities, but the hydrogen desorption process requires excessively high temperatures due to their high stability. Efforts have been performed to improve their dehydrogenation properties, based on the introduction of defects, impurities and doping. We present a systematic study of the n-type (electronic) doping effects on the stability of two alkali-metal hydrides: Na1-xMgxH and Li1-xBexH. These systems have been studied within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the self-consistent version of the virtual crystal approximation to model the doping. The full-phonon dispersions are analyzed for several doping content, paying special attention to the crystal stability. It is found a doping content threshold for each system, where they are close to dynamical instabilities, which are related to charge redistribution in interstitial zones. Applying the quasiharmonic approximation, the vibrational free energy, the linear thermal expansion and heat capacities are obtained for both hydrides systems and are analyzed as a function of the doping content. This work is partially supported by the VIEP-BUAP 2016 and CONACYT-México (No.221807) projects.

  14. Phosphenium Hydride Reduction of [(cod)MX2] (M = Pd, Pt; X = Cl, Br): Snapshots on the Way to Phosphenium Metal(0) Halides and Synthesis of Metal Nanoparticles.

    Science.gov (United States)

    Nickolaus, Jan; Imbrich, Dominik A; Schlindwein, Simon H; Geyer, Adrian H; Nieger, Martin; Gudat, Dietrich

    2017-03-06

    The outcome of the reduction of [(cod)PtX2] (X = Cl, Br; cod = 1,5-cyclooctadiene) with N-heterocyclic phosphenium hydrides (R)NHP-H depends strongly on the steric demand of the N-aryl group R and the nature of X. Reaction of [(cod)PtCl2] with (Dipp)NHP-H featuring bulky N-Dipp groups produced an unprecedented monomeric phosphenium metal(0) halide [((Dipp)NHP)((Dipp)NHP-H)PtCl] stabilized by a single phosphine ligand. The phosphenium unit exhibits a pyramidal coordination geometry at the phosphorus atom and may according to DFT calculations be classified as a Z-type ligand. In contrast, reaction of [(cod)PtBr2] with the sterically less protected (Mes)NHP-H afforded a mixture of donor-ligand free oligonuclear complexes [{((Mes)NHP)PtBr}n] (n = 2, 3), which are structural analogues of known palladium complexes with μ2-bridging phosphenium units. All reductions studied proceed via spectroscopically detectable intermediates, several of which could be unambiguously identified by means of multinuclear ((1)H, (31)P, (195)Pt) NMR spectroscopy and computational studies. The experimental findings reveal that the phosphenium hydrides in these multistep processes adopt a dual function as ligands and hydride transfer reagents. The preference for the observed intricate pathways over seemingly simpler ligand exchange processes is presumably due to kinetic reasons. The attempt to exchange the bulky phosphine ligand in [((Dipp)NHP)((Dipp)NHP-H)PtCl] by Me3P resulted in an unexpected isomerization to a platinum(0) chlorophosphine complex via a formal chloride migration from platinum to phosphorus, which accentuates the electrophilic nature of the phosphenium ligand. Phosphenium metal(0) halides of platinum further show a surprising thermal stability, whereas the palladium complexes easily disintegrate upon gentle heating in dimethyl sulfoxide to yield metal nanoparticles, which were characterized by TEM and XRD studies.

  15. Application of the Melting Electrodes in Metal Halide Lamps%熔融电极在金卤灯中的应用

    Institute of Scientific and Technical Information of China (English)

    朱惠冲; 周文华

    2012-01-01

    对石英和陶瓷金卤灯电极放电端部预先进行熔融处理,可以使其晶相结构更加致密、均匀,达到耐轰击的效果。通过试验验证。熔融电极达到了大幅提升金卤灯光通维持率和寿命、减轻金卤灯配套电感镇流器产生频闪等效果。%Melting the discharge end of electrode could make the crystal structure of electrode used for metal lamp more compact and homogeneous thereby enhance the bombardment resistance. Test demonstration shows could not only improve the lumen maintenance and lifetime of metal halide lamp greatly, but also reduce the effect during the operation with magnetic ballasts. halide that it strobe

  16. Energetics and bonding in aluminosilicate rings with alkali metal and alkaline-earth metal charge-compensating cations.

    Science.gov (United States)

    Gatti, Carlo; Ottonello, Giulio; Richet, Pascal

    2012-08-23

    The stabilizing effect of alkali and alkaline-earth metal ions on the oxygen donors of four- and six-membered faujausite-like rings has been calculated in terms of Kohn-Sham core-level (O1s) energy shifts with respect to these same complexes without cations. The results confirm and complement earlier investigations by Vayssilov and co-workers where Na(+) and K(+) were the only complexing cations. The oxygen donor centers in six-membered rings are stabilized by -3.6 ± 0.4, -3.9 ± 0.5, -7.3 ± 0.1, and -7.6 ± 0.2 eV by K(+), Na(+), Ca(2+), and Mg(2+) adions, respectively. The energy shifts are even greater for four-membered rings where the stabilization effects attain -3.7 ± 0.1, -4.1 ± 0.1, -8.1 ± 0.1, and -9.0 ± 0.1 eV, respectively. These effects are also observed on the low-lying σ-bonding and antibonding molecular orbitals (MOs) of the oxygen framework, but in a less systematic fashion. Clear relationships with the core-level shifts are found when the effects of alkali metal complexation are evaluated through electron localization/delocalization indices, which are defined in terms of the whole wave function and not just of the individual orbitals. Complexation with cations not only involves a small but significant electron sharing of the cation with the oxygen atoms in the ring but also enhances electron exchange among oxygen atoms while reducing that between the O atoms and the Si or Al atoms bonded to them. Such changes slightly increase from Na to K and from Mg to Ca, whereas they are significantly enhanced for alkaline-earth metals relative to alkali metals. With respect to Al-free complexes, Si/Al substitution and cation charge compensation generally enhance electron delocalization among the O atoms, except between those that are linked through an Al atom, and cause either an increased or a decreased Si-O ionicity (smaller/higher electron exchange) depending on the position of O in the chain relative to the Al atom(s). The generally increased

  17. Binding and selectivity of phenazino-18-crown-6-ether with alkali, alkaline earth and toxic metal species: A DFT study

    Science.gov (United States)

    Islam, Nasarul; Chimni, Swapandeep Singh

    2017-02-01

    The interactions of phenazino-crown ether ligands with alkali, alkaline earth and selected toxic species were investigated using density functional theory modelling by employing B3PW91/6-311G ++ (d, p) level of theory. The complex stability was analysed in terms of binding energies, perturbation energies, position of highest molecular orbital and energy gap values. In general, the complexes formed by P18C6-1a ligand with metal cations were found to be more stable than those with P18C6-1b. Among alkali and alkaline earth metals complexes having highest stability was observed for the complex formed by P18C6-1a with Be2+. Computational calculations of P18C6 ligand with toxic metal ions reveals that the P18C6-Cr6+ metal complexes acquire envelop like geometry, leading to higher binding energy values. Comparing the binding energies of neutral and monocations of Ag and Hg, the former had higher value both in neutral as well as monocation state. Thus, the stability of metal complexes is determined not only by the ligand but also by the type of metal ion. In solvent systems the stability constants of metal complexes were found increasing with decreasing permittivity of the solvent. This reflects the inherited polar character of the protic solvents stabilises the cation, resulting in decrease of effective interaction of ligand with the metal ion.

  18. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow

    Energy Technology Data Exchange (ETDEWEB)

    R. Fahmi; A.V. Bridgwater; L.I. Darvell; J.M. Jones; N. Yates; S. Thain; I.S. Donnison [Aston University, Birmingham (United Kingdom). Bio-Energy Research Group, Chemical Engineering and Applied Chemistry

    2007-07-15

    The effect of alkali metals on the thermal degradation of biomass during combustion and pyrolysis has been investigated for 19 Lolium and Festuca grass varieties. These samples have been grown under the same conditions, but has been genetically mutated to give varying lignin contents in the range 2-6% measured by Klason. These grasses also have a high alkali metal content resulting in a high ash content. In order to compare the Lolium and Festuca grasses willow chip and switchgrass were also studied to act as a reference fuels. All samples were subjected to different washing conditions to investigate the effect of decreasing the metal content. The resulting biomass samples were studied for pyrolysis characteristics using thermogravimetric analysis (TGA) and pyrolysis gas chromatography-mass spectrometry (pyroprobe-GC/MS) and for combustion characteristics by TGA. A strong catalytic effect of metals, particularly potassium, was observed in both pyrolysis and combustion. Also, it was found that as the lignin content increases, the metal content (especially potassium and sodium) decreases. Furthermore, the char yield from pyrolysis (measured at 773 K from TGA pyrolysis traces) increases as metals increase, and hence char yield increases as the lignin content decreases. Py-GCMS showed that peak intensities varied for untreated and treated samples; in particular the levoglucosan yield is higher and the hydroxyacetaldehyde yield is lower for treated (low metal content) samples. This supports previous work mechanisms by Liden et al. in which alkali metals promote an ionic route that favours ring-scission and hydroxyacetaldehyde formation. 13 refs., 10 figs., 4 tabs.

  19. Charge-transfer gap closure in transition-metal halides under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A.L.; Yu, P.Y.

    1995-01-01

    Insulator-to-metal transition induced by pressure has been studied in three transition metal iodides: NiI{sub 2}, CoI{sub 2} and FeI{sub 2} using optical absorption and resistivity measurements at room temperature. Comparisons between the results obtained by these two techniques suggested that the closure of the charge-transfer gap is the principal mechanism responsible for the insulator-to-metal transition in these materials.

  20. Shifts in the ESR spectra of alkali-metal atoms (Li, Na, K, Rb) on helium nanodroplets.

    Science.gov (United States)

    Hauser, Andreas W; Gruber, Thomas; Filatov, Michael; Ernst, Wolfgang E

    2013-03-18

    He-droplet-induced changes of the hyperfine structure constants of alkali-metal atoms are investigated by a combination of relativistically corrected ab initio methods with a simulation of the helium density distribution based on He density functional theory. Starting from an accurate description of the variation of the hyperfine structure constant in the M-He diatomic systems (M=Li, Na, K, Rb) as a function of the interatomic distance we simulate the shifts induced by droplets of up to 10,000 (4)He atoms. All theoretical predictions for the relative shifts in the isotropic hyperfine coupling constants of the alkali-metal atoms attached to helium droplets of different size are then tied to a single, experimentally derived parameter of Rb.

  1. Characterization of Adsorbed Alkali Metal Ions in 2:1 Type Clay Minerals from First-Principles Metadynamics.

    Science.gov (United States)

    Ikeda, Takashi; Suzuki, Shinichi; Yaita, Tsuyoshi

    2015-07-30

    Adsorption states of alkali metal ions in three kinds of 2:1 type clay minerals are systematically investigated via first-principles-based metadynamics. Our reconstructed free energy surfaces in a two-dimensional space of coordination numbers specifically employed as collective variables for describing the interlayer cations show that an inner-sphere (IS) complex is preferentially formed for Cs(+) in the 2:1 type trioctahedral clay minerals with saponite-like compositions, where lighter alkali metal ions show a tendency to form an outer-sphere one instead. The strong preference for an IS complex observed for Cs(+) is found to result partially from the capability of recognizing selectively Cs(+) ions at the basal O atoms with the Lewis basicity significantly enhanced by the isomorphic substitution in tetrahedral sheets.

  2. Ab initio quantum Monte Carlo study of the binding of a positron to alkali-metal hydrides.

    Science.gov (United States)

    Kita, Yukiumi; Maezono, Ryo; Tachikawa, Masanori; Towler, Mike D; Needs, Richard J

    2011-08-07

    Quantum Monte Carlo methods are used to investigate the binding of a positron to the alkali-metal hydrides, XH (X = Na and K). We obtain positron affinities for the NaH and KH molecules of 1.422(10) eV and 2.051(39) eV, respectively. These are considerably larger than the previous results of 1.035 eV and 1.273 eV obtained from multireference single- and double-excitation configuration interaction calculations. Together with our previous results for [LiH;e(+)] [Y. Kita et al., J. Chem. Phys. 131, 134310 (2009)], our study confirms the strong correlation between the positron affinity and dipole moment of alkali-metal hydrides.

  3. The relationship between molecular structure and biological activity of alkali metal salts of vanillic acid: Spectroscopic, theoretical and microbiological studies

    Science.gov (United States)

    Świsłocka, Renata; Piekut, Jolanta; Lewandowski, Włodzimierz

    In this paper we investigate the relationship between molecular structure of alkali metal vanillate molecules and their antimicrobial activity. To this end FT-IR, FT-Raman, UV absorption and 1H, 13C NMR spectra for lithium, sodium, potassium, rubidium and caesium vanillates in solid state were registered, assigned and analyzed. Microbial activity of studied compounds was tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Proteus vulgaris, Bacillus subtilis and Candida albicans. In order to evaluate the dependence between chemical structure and biological activity of alkali metal vanillates the statistical analysis was performed for selected wavenumbers from FT-IR spectra and parameters describing microbial activity of vanillates. The geometrical structures of the compounds studied were optimized and the structural characteristics were determined by density functional theory (DFT) using at B3LYP method with 6-311++G** as basis set. The obtained statistical equations show the existence of correlation between molecular structure of vanillates and their biological properties.

  4. Optical detection of sodium salts of fluoride, acetate and phosphate by a diacylhydrazine ligand by the formation of a colour alkali metal complex

    Indian Academy of Sciences (India)

    Purnandhu Bose; Ranjan Dutta; I Ravikumar; Pradyut Ghosh

    2011-11-01

    A solution of N, N'-diacylhydrazine ligand in organic solvent is potential for colourimetric detection of F−/AcO−/PO$^{3−}_{4}$ via -NH deprotonation, tautomerization and its stabilization as a colour alkali metal complex.

  5. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Science.gov (United States)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  6. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution.

    Science.gov (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio

    2016-01-01

    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand).

  7. Collisions of alkali-metal atoms Cs and Rb in the ground state. Spin exchange cross sections

    Science.gov (United States)

    Kartoshkin, V. A.

    2016-09-01

    Collisions of alkali-metal atoms 133Cs and 85Rb in the ground state are considered in the energy interval of 10-4-10-2 au. Complex cross sections of the spin exchange, which allow one to calculate the processes of polarization transfer and the relaxation times, as well as the magnetic resonance frequency shifts caused by spin exchange Cs-Rb collisions, are obtained.

  8. Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator.

    Science.gov (United States)

    Jia, Yufei; Kerner, Ross A; Grede, Alex J; Brigeman, Alyssa N; Rand, Barry P; Giebink, Noel C

    2016-07-13

    Organic-inorganic lead halide perovskite semiconductors have recently reignited the prospect of a tunable, solution-processed diode laser, which has the potential to impact a wide range of optoelectronic applications. Here, we demonstrate a metal-clad, second-order distributed feedback methylammonium lead iodide perovskite laser that marks a significant step toward this goal. Optically pumping this device with an InGaN diode laser at low temperature, we achieve lasing above a threshold pump intensity of 5 kW/cm(2) for durations up to ∼25 ns at repetition rates exceeding 2 MHz. We show that the lasing duration is not limited by thermal runaway and propose instead that lasing ceases under continuous pumping due to a photoinduced structural change in the perovskite that reduces the gain on a submicrosecond time scale. Our results indicate that the architecture demonstrated here could provide the foundation for electrically pumped lasing with a threshold current density Jth < 5 kA/cm(2) under sub-20 ns pulsed drive.

  9. Studies on crystal structures, optical and electrical properties of viologen cation salts of d10 metal halide anions

    Science.gov (United States)

    Du, Haijuan; Li, Yaru; Xu, Manman; Niu, Yunyin; Hou, Hongwei

    2017-04-01

    Construction of viologen cation salts of d10 metal halide anions (inorganic-organic hybrid materials) with semiconducting properties via supramolecular design and aggregate enable the hybrid materials multifunctionality. Our interest focused on the use of the viologen derivatives as the building units because they were redox-active units and more suited to yield new generation of multifunctional networks. In the present investigation, three new inorganic-organic hybrid semiconductors {[bbpyb]·[AgBr3]}n (1) [1, 3-PMBP][Zn2Cl5.1Br0.9] (2) and [1, 3-PMBP][Zn2Br6] (3) (bbpyb = 1,1″-(1,4-butanediyl)bis[4,4‧-bipyridinium]bis[bromide], 1,3-PMBP = 1,1″-[1,3-phenylene-bis(methylene)]bis-4,4‧-bipyridinium-bisbromide) were synthesized. More importantly, great efforts were devoted to investigate their properties, such as optical and electrical properties. 1-3 exhibited photochromism, which can be ascribed to the intermolecular charge transfer to yield radicals. Fabricating the appropriate inorganic and organic units controllably within photosensitive materials at a molecular level is critical for the development of new photochromic inorganic-organic hybrids.

  10. An Alkali-Vapor Cell with Metal Coated Windows for Efficient Application of an Electric Field

    CERN Document Server

    Sarkisyan, D; Guena, J; Lintz, M; Bouchiat, M A; Sarkisyan, David; Gu\\'{e}na, Jocelyne; Lintz, Michel; Bouchiat, Marie-Anne

    2005-01-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2 kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no ...

  11. Alkali-vapor cell with metal coated windows for efficient application of an electric field

    Science.gov (United States)

    Sarkisyan, D.; Sarkisyan, A. S.; Guéna, J.; Lintz, M.; Bouchiat, M.-A.

    2005-05-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no magnetic part. The use of this kind of cell has resulted in an improvement of the signal-to-noise ratio in the measurement of parity violation in cesium vapor underway at ENS, Paris. The technique can be applied to other situations where a brazed assembly would give rise to unacceptably large birefringence in the windows.

  12. Faraday effect in alkali-metal vapors in a strong bichromatic field of laser light

    Science.gov (United States)

    Karagodova, T. Ya.; Kuptsova, A. V.

    2002-04-01

    Results of a numerical study of the Faraday effect arising upon propagation of the light beams with the frequencies ω L1 (resonant to the nS 1/2- nP 1/2, 3/2 transitions) and ω L2 (resonant to the nP 1/2, 3/2-( n+2) S 1/2 transitions) through alkali-metal vapors are presented. Characteristics of the magneto-optical rotation spectra at each of the frequencies are strongly affected by the second intense radiation field resonant to the adjacent transition. When the atoms interact with two strong light waves, resonant to adjacent transitions, and with a magnetic field, the shape of the Faraday rotation spectra depends on the energy shifts of the atomic states that arise due to the dynamic Stark effect and the Zeeman effect (the Paschen-Back or an intermediate-type effect), as well as due to the difference of populations of these states caused by the interaction of the atoms with the fields. The results obtained show that in the frequency selection method, based on the resonance Faraday effect, the frequency of the generated narrow-band beam can be tuned by the intensity of the strong wave, resonant to the transition between the excited states.

  13. Universal ultracold collision rates for polar molecules of two alkali-metal atoms.

    Science.gov (United States)

    Julienne, Paul S; Hanna, Thomas M; Idziaszek, Zbigniew

    2011-11-14

    Universal collision rate constants are calculated for ultracold collisions of two like bosonic or fermionic heteronuclear alkali-metal dimers involving the species Li, Na, K, Rb, or Cs. Universal collisions are those for which the short range probability of a reactive or quenching collision is unity such that a collision removes a pair of molecules from the sample. In this case, the collision rates are determined by universal quantum dynamics at very long range compared to the chemical bond length. We calculate the universal rate constants for reaction of the reactive dimers in their ground vibrational state v = 0 and for vibrational quenching of non-reactive dimers with v ≥ 1. Using the known dipole moments and estimated van der Waals coefficients of each species, we calculate electric field dependent loss rate constants for collisions of molecules tightly confined to quasi-two-dimensional geometry by a one-dimensional optical lattice. A simple scaling relation of the quasi-two-dimensional loss rate constants with dipole strength, trap frequency and collision energy is given for like bosons or like fermions. It should be possible to stabilize ultracold dimers of any of these species against destructive collisions by confining them in a lattice and orienting them with an electric field of less than 20 kV cm(-1).

  14. Exchange-correlation interaction and AO-hybridization of alkali-metal atomic clusters.

    Science.gov (United States)

    Liu, Xuan; Ito, Haruhiko; Torikai, Eiko

    2013-09-19

    The structure of alkali-metal atomic clusters is optimized with B3P86 hybrid functional for the highest spin state as well as with B3LYP hybrid functional for the lowest spin state. A dramatic change from plane to solid occurs in the highest spin state when the number of constituent atoms is four. The binding, exchange, and correlation energies are evaluated for both the highest and lowest spin states. Next, we explore the dependence of the exchange and correlation energies on the binding energy. The exchange energy contributes to the formation of the highest spin clusters, whereas the correlation energy contributes to the formation of the lowest spin clusters. The highest spin clusters are most stable when the exchange energy is a minimum. Then, to see why the ferromagnetic bond among spin-aligned identical atoms arises against Pauli exclusion principle, we estimate the mixing ratio of p orbitals in molecular orbitals. The s-p hybridization increases the binding energy in absolute value due to the extensive overlap of molecular orbitals and leads to generation of the highest spin clusters.

  15. Study of Spectral Character of Alkali Metals Using Microwave Plasma Torch Simultaneous Spectrometer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A microwave plasma torch(MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward power was 100 W. The argon flow rate that was used to sustain the Ar-MPT included the flow rate of carrier gas and the flow rate of support gas, which were 0.8 and 1.0 L/min, respectively. The HCl concentration in the solution was 0.02 mol/L. The observation height was 9.0 mm. The detection limits of Li, Na, K, Rb, and Cs were 0.0003, 0.0004, 0.009, 0.07 and2.4 mg/L, respectively, and the results obtained by the Ar-MPT were compared with those obtained by argon inductively coupled plasma(Ar-ICP) and argon microwave induced plasma(Ar-MIP). The interference effects of several matrix elements were also studied.

  16. Recent Advances In Alkali Metal Thermoelectric Converter (AMTEC) Electrode Performance And Modeling

    Science.gov (United States)

    Bankston, C. P.; Williams, R. M.; Jeffries-Nakamura, B.; Loveland, M. E.; Underwood, M. L.; Cole, T.

    1988-04-01

    The Alkali Metal Thermoelectric Converter (AMTEC) is a direct energy conversion device, utilizing a high sodium vapor pressure or activity ratio across a beta"-alumina solid electrolyte (BASE). It has been operated at a device efficiency of 19% and at power densities near 1.0 W/cm2. This paper describes progress on the remaining scien-tific issue which must be resolved to demonstrate AMTEC feasibility for space power systems: a stable, high power density electrode. Two electrode systems have recently been discovered at JPL that now have the potential to meet space power requirements. One of these is a very thin sputtered molybdenum film, less than 0.5 micron thick, with over-lying current collection grids. This electrode has experimentally demonstrated stable performance at 0.4-0.5 W/cm2 for hundreds of hours. Recent modeling results show that at least 0.7 W/cm2 can be achieved. The model of electrode performance now includes all loss mechanisms, including charge transfer resistances at the electrode/electrolyte interface. A second electrode composition, co-sputtered platinum/tungsten, has demon-strated 0.8 W/cm2 for 160 hours. Systems studies show that a stable electrode performance of 0.6 W/cm2 will enable high efficiency (near 20%) space power systems.

  17. Quantum control of the hyperfine-coupled electron and nuclear spins in alkali-metal atoms

    Science.gov (United States)

    Merkel, Seth T.; Jessen, Poul S.; Deutsch, Ivan H.

    2008-08-01

    We study quantum control of the full hyperfine manifold in the ground-electronic state of alkali-metal atoms based on applied radio frequency and microwave fields. Such interactions should allow essentially decoherence-free dynamics and the application of techniques for robust control developed for NMR spectroscopy. We establish the conditions under which the system is controllable in the sense that one can generate an arbitrary unitary map on the system. We apply this to the case of Cs133 with its d=16 dimensional Hilbert space of magnetic sublevels in the 6S1/2 state, and design control wave forms that generate an arbitrary target state from an initial fiducial state. We develop a generalized Wigner function representation for this space consisting of the direct sum of two irreducible representations of SU(2), allowing us to visualize these states. The performance of different control scenarios is evaluated based on the ability to generate a high-fidelity operation in an allotted time with the available resources. We find good operating points commensurate with modest laboratory requirements.

  18. Atomic many-body effects and Lamb shifts in alkali metals

    Science.gov (United States)

    Ginges, J. S. M.; Berengut, J. C.

    2016-05-01

    We present a detailed study of the radiative potential method [V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A 72, 052115 (2005), 10.1103/PhysRevA.72.052115], which enables the accurate inclusion of quantum electrodynamics (QED) radiative corrections in a simple manner in atoms and ions over the range 10 ≤Z ≤120 , where Z is the nuclear charge. Calculations are performed for binding energy shifts to the lowest valence s , p , and d waves over the series of alkali-metal atoms Na to E119. The high accuracy of the radiative potential method is demonstrated by comparison with rigorous QED calculations in frozen atomic potentials, with deviations on the level of 1%. The many-body effects of core relaxation and second- and higher-order perturbation theory on the interaction of the valence electron with the core are calculated. The inclusion of many-body effects tends to increase the size of the shifts, with the enhancement particularly significant for d waves; for K to E119, the self-energy shifts for d waves are only an order of magnitude smaller than the s -wave shifts. It is shown that taking into account many-body effects is essential for an accurate description of the Lamb shift.

  19. Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption.

    Science.gov (United States)

    Zukal, Arnošt; Mayerová, Jana; Čejka, Jiří

    2010-01-01

    Mesoporous aluminosilicate adsorbents for carbon dioxide were prepared by the grafting of aluminium into SBA-15 silica using an aqueous solution of aluminium chlorohydrate. As the ion exchange sites are primarily associated with the presence of tetrahedrally coordinated aluminium, extra-framework aluminium on the SBA-15 surface was inserted into the silica matrix by a treatment with an aqueous solution of NH(4)OH. Synthesized mesoporous aluminosilicate preserving all the characteristic features of a mesoporous molecular sieve was finally modified by the alkali metal cation exchange. To examine carbon dioxide adsorption on prepared materials, adsorption isotherms in the temperature range from 0 °C to 60 °C were measured. Based on the known temperature dependence of adsorption isotherms, isosteric adsorption heats giving information on the surface energetics of CO(2) adsorption were calculated and discussed. The comparison of carbon dioxide isotherms obtained on aluminosilicate SBA-15, aluminosilicate SBA-15 containing cations Na(+) and K(+) and activated alumina F-200 reveals that the doping with sodium or potassium cations dramatically enhances adsorption in the region of equilibrium pressures lower than 10 kPa. Therefore, synthesized aluminosilicate adsorbents doped with Na(+) or K(+) cations are suitable for carbon dioxide separation from dilute gas mixtures.

  20. Alkali metal salts of formazanate ligands: diverse coordination modes as a result of the nitrogen-rich [NNCNN] ligand backbone.

    Science.gov (United States)

    Travieso-Puente, Raquel; Chang, Mu-Chieh; Otten, Edwin

    2014-12-28

    Alkali metal salts of redox-active formazanate ligands were prepared, and their structures in the solid-state and in solution are determined. The nitrogen-rich [NNCNN] backbone of formazanates results in a varied coordination chemistry, with both the internal and terminal nitrogen atoms available for bonding with the alkali metal. The potassium salt K[PhNNC(p-tol)NNPh]·2THF (1-K) is dimeric in the solid state and even in THF solution, as a result of the K atom bridging via interaction with a terminal N atom and the aromatic ring of a second unit. Conversely, for the compounds Na[MesNNC(CN)NNMes]·2THF (2-Na) and Na[PhNNC((t)Bu)NNPh] (3-Na) polymeric and hexameric structures are found in the solid state respectively. The preference for binding the alkali metal through internal N atoms (1-K and 2-Na) to give a 4-membered chelate, or via internal/external N atoms (5-membered chelate in 3-Na), contrasts with the 6-membered chelate mode observed in our recently reported formazanate zinc complexes.

  1. Properties of alkali metal atoms deposited on a MgO surface: a systematic experimental and theoretical study.

    Science.gov (United States)

    Finazzi, Emanuele; Di Valentin, Cristiana; Pacchioni, Gianfranco; Chiesa, Mario; Giamello, Elio; Gao, Hongjun; Lian, Jichun; Risse, Thomas; Freund, Hans-Joachim

    2008-01-01

    The adsorption of small amounts of alkali metal atoms (Li, Na, K, Rb, and Cs) on the surface of MgO powders and thin films has been studied by means of EPR spectroscopy and DFT calculations. From a comparison of the measured and computed g values and hyperfine coupling constants (hfccs), a tentative assignment of the preferred adsorption sites is proposed. All atoms bind preferentially to surface oxide anions, but the location of these anions differs as a function of the deposition temperature and alkali metal. Lithium forms relatively strong bonds with MgO and can be stabilized at low temperatures on terrace sites. Potassium interacts very weakly with MgO and is stabilized only at specific sites, such as at reverse corners where it can interact simultaneously with three surface oxygen atoms (rubidium and cesium presumably behave in the same way). Sodium forms bonds of intermediate strength and could, in principle, populate more than a single site when deposited at room temperature. In all cases, large deviations of the hfccs from the gas-phase values are observed. These reductions in the hfccs are due to polarization effects and are not connected to ionization of the alkali metal, which would lead to the formation of an adsorbed cation and a trapped electron. In this respect, hydrogen atoms behave completely differently. Under similar conditions, they form (H(+))(e(-)) pairs. The reasons for this different behavior are discussed.

  2. UV and IR spectroscopy of cold 1,2-dimethoxybenzene complexes with alkali metal ions.

    Science.gov (United States)

    Inokuchi, Yoshiya; Boyarkin, Oleg V; Ebata, Takayuki; Rizzo, Thomas R

    2012-04-01

    We report UV photodissociation (UVPD) and IR-UV double-resonance spectra of 1,2-dimethoxybenzene (DMB) complexes with alkali metal ions, M(+)·DMB (M = Li, Na, K, Rb, and Cs), in a cold, 22-pole ion trap. The UVPD spectrum of the Li(+) complex shows a strong origin band. For the K(+)·DMB, Rb(+)·DMB, and Cs(+)·DMB complexes, the origin band is very weak and low-frequency progressions are much more extensive than that of the Li(+) ion. In the case of the Na(+)·DMB complex, spectral features are similar to those of the K(+), Rb(+), and Cs(+) complexes, but vibronic bands are not resolved. Geometry optimization with density functional theory indicates that the metal ions are bonded to the oxygen atoms in all the M(+)·DMB complexes. For the Li(+) complex in the S(0) state, the Li(+) ion is located in the same plane as the benzene ring, while the Na(+), K(+), Rb(+), and Cs(+) ions are located off the plane. In the S(1) state, the Li(+) complex has a structure similar to that in the S(0) state, providing the strong origin band in the UV spectrum. In contrast, the other complexes show a large structural change in the out-of-plane direction upon S(1)-S(0) excitation, which results in the extensive low-frequency progressions in the UVPD spectra. For the Na(+)·DMB complex, fast charge transfer occurs from Na(+) to DMB after the UV excitation, making the bandwidth of the UVPD spectrum much broader than that of the other complexes and producing the photofragment DMB(+) ion.

  3. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  4. New class of scorpionate: tris(tetrazolyl)-iron complex and its different coordination modes for alkali metal ions.

    Science.gov (United States)

    Park, Ka Hyun; Lee, Kang Mun; Go, Min Jeong; Choi, Sung Ho; Park, Hyoung-Ryun; Kim, Youngjo; Lee, Junseong

    2014-08-18

    We report formation of a new metallascorpionate ligand, [FeL3](3-) (IPtz), containing a Fe core and three 5-(2-hydroxyphenyl)-1H-tetrazole (LH2) ligands. It features two different binding sites, oxygen and nitrogen triangles, which consist of three oxygen or nitrogen donors from tetrazole. The binding affinities of the complex for three alkali metal ions were studied using UV spectrophotometry titrations. All three alkali metal ions show high affinities and binding constants (>3 × 10(6) M(-1)), based on the 1:1 binding isotherms to IPtz. The coordination modes of the alkali metals and IPtz in the solid were studied using X-ray crystallography; two different electron-donor sites show different coordination numbers for Li(+), Na(+), and K(+) ions. The oxygen triangles have the κ(2) coordination mode with Li(+) and κ(3) coordination mode with Na(+) and K(+) ions, whereas the nitrogen triangles show κ(3) coordination with K(+) only. The different binding affinities of IPtz in the solid were manipulated using multiple metal precursors. A Fe-K-Zn trimetallic complex was constructed by assembly of an IPtz ligand, K, and Zn precursors and characterized using X-ray crystallography. Oxygen donors are coordinated with the K ion via the κ(3) coordination mode, and nitrogen donors are coordinated with Zn metal by κ(3) coordination. The solid-state structure was confirmed to be a honeycomb coordination polymer with a one-dimensional infinite metallic array, i.e., -(K-K-Fe-Zn-Fe-K)n-.

  5. Modulation of the work function of fullerenes C{sub 60} and C{sub 70} by alkali-metal adsorption: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Hong [Institute of Architecture and Engineering, Weifang University of Science and Technology, Weifang 262700 (China); Xu, Shunfu, E-mail: xushunfu2009@gmail.com [Institute of Architecture and Engineering, Weifang University of Science and Technology, Weifang 262700 (China); Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China); Liu, Weihui [Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China); Sun, Yueqiang; Liu, Xiangfa; Zheng, Xinqing; Li, Sen; Zhang, Qiang; Zhu, Ziliang; Zhang, Xiaochun; Dong, Chengguo [Institute of Architecture and Engineering, Weifang University of Science and Technology, Weifang 262700 (China); Li, Chun [Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yuan, Guang, E-mail: yuanguang@ouc.edu.cn [Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China); Research Institute of Electronics, University of Shizuoka, Hamamasu 432-8011 (Japan); Mimura, Hitenori [Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2013-11-15

    The impact of alkali-metal (Li/Na/Cs) adsorption on work function of fullerenes C{sub 60} and C{sub 70} was investigated by first-principles calculations. After adsorption, the work functions of fullerenes C{sub 60} and C{sub 70} decrease distinctly and vary linearly with the electronegativity of the alkali metal elements, and the positions where the alkali atoms are adsorbed considerably influence the work functions. On the contrary, a vacancy defect elevates the work functions of the fullerenes C{sub 60} and C{sub 70}. The variation in the work functions rests with variation in Fermi level (which are attributed to charge transfer) and variation in vacuum levels (which are attributed to the induced dipole moments). Moreover, alkali-metal adsorption can also improve the electric conductivity of a fullerene mixture of C{sub 60} and C{sub 70}.

  6. Adsorption of superfluid 4He films on planar heavy-alkali metals studied with the Orsay-Trento density functional

    Science.gov (United States)

    Szybisz, Leszek

    2003-04-01

    The wetting of planar surfaces of alkali metals (Cs, Rb, K, and Na) by superfluid 4He films at T=0 K is theoretically studied. Calculations have been carried out by using the Orsay-Trento nonlocal density functional and the adsorption potential of Chizmeshya-Cole-Zaremba. Surface tensions and contact angles are determined for several approximations. We find that the conclusion on the wetting of an Rb substrate is sensible to the gradient-gradient term in the functional and the softness of the He-metal interaction.

  7. Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    Science.gov (United States)

    Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.

    2006-01-01

    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.

  8. METALLIC PHASE AND INSULATING CHARACTER OF ALKALI-EARTH METAL DOPED C60

    Institute of Scientific and Technical Information of China (English)

    曹阳; 陈良进; 陈波; 冯建文; 陈文建

    1995-01-01

    The three dimensional EHMO crystal orbital calculations for crystalline Ba6 C60,Ca3 C60 and Ca5 C60 are reported.The ground state of partially doped Ca3 C60 is found to be insulating with an indrect energy gap of 0.5eV.In contrast,the Ca5 C60 forms a metallic conducting phase with a set of three half-filled bands crossing the Fermi level which is Found to locate close to a peak of the density of state. The character of crystal orbitals near the Fermilevel for both Ca3 C60 and Ca5 C60 is completely carbon-like.In both cases the Ca3 atoms are almost fully ionized and C60 molecules form a stable negative charge state with six to ten additional electrons.The conductivity of Ba6 C60 is resuted from the incomplete charge tranfer.The valance charge of every Ba ion is about 0.33.The total charge tranfer of six Ba atoms is almost the same as that of five Ca atoms.

  9. Study on the Characteristics of an Alkali-Metal Thermoelectric Power Generation System

    Science.gov (United States)

    Lee, Wook-Hyun; Hwang, Hyun-Chang; Lee, Ji-Su; Kim, Pan-Jo; Lim, Sang-Hyuk; Rhi, Seok-Ho; Lee, Kye-Bock; Lee, Ki-Woo

    2015-10-01

    In the present study, a numerical simulation and experimental studies of an alkali-metal thermoelectric energy converter (AMTEC) system were carried out. The present, unique AMTEC model consists of an evaporator, a β-alumina solid electrolyte (BASE) tube, a condenser, and an artery cable wick. The key points for operation of the present AMTEC were 1100 K in the evaporator and 600 K in the condenser. A numerical model based on sodium-saturated porous wicks was developed and shown to be able to simulate the AMTEC system. The simulation results show that the AMTEC system can generate up to 100 W with a given design. The AMTEC system developed in the present work and used in the practical investigations could generate an electromotive force of 7 V. Artery wick and evaporator wick structures were simulated for the optimum design. Both sodium-saturated wicks were affected by numerous variables, such as the input heat power, cooling temperature, sodium mass flow rate, and capillary-driven fluid flow. Based on an effective thermal conductivity model, the presented simulation could successfully predict the system performance. Based on the numerical simulation, the AMTEC system operates with efficiency near 10% to 15%. In the case of an improved BASE design, the system could reach efficiency of over 30%. The system was designed for 0.6 V power, 25 A current, and 100 W power input. In addition, in this study, the temperature effects in each part of the AMTEC system were analyzed using a heat transfer model in porous media to apply to the computational fluid dynamics at a predetermined temperature condition for the design of a 100-W AMTEC prototype. It was found that a current density of 0.5 A/cm2 to 0.9 A/cm2 for the BASE is suitable when the temperatures of the evaporator section and condenser section are 1100 K and 600 K, respectively.

  10. Thermal Decomposition of Anhydrous Alkali Metal Dodecaborates M2B12H12 (M = Li, Na, K

    Directory of Open Access Journals (Sweden)

    Liqing He

    2015-11-01

    Full Text Available Metal dodecaborates M2/nB12H12 are regarded as the dehydrogenation intermediates of metal borohydrides M(BH4n that are expected to be high density hydrogen storage materials. In this work, thermal decomposition processes of anhydrous alkali metal dodecaborates M2B12H12 (M = Li, Na, K synthesized by sintering of MBH4 (M = Li, Na, K and B10H14 have been systematically investigated in order to understand its role in the dehydrogenation of M(BH4n. Thermal decomposition of M2B12H12 indicates multistep pathways accompanying the formation of H-deficient monomers M2B12H12−x containing the icosahedral B12 skeletons and is followed by the formation of (M2B12Hzn polymers. The decomposition behaviors are different with the in situ formed M2B12H12 during the dehydrogenation of metal borohydrides.

  11. UV-B response of cucumber seedlings grown under metal halide and high pressure sodium/deluxe lamps

    Energy Technology Data Exchange (ETDEWEB)

    Krizek, D.T.; Kramer, G.F.; Mirecki, R.M. (Climate Stress Laboratory, ARS, USDA, Beltsville, MD (United States)); Upadhyaya, A. (Center for Agricultural Biotechnology, Univ. of Maryland, College Park, MD (United States))

    1993-01-01

    UV-B-sensitive (Poinsett) and -insensitive (Ashley) cultivars of cucumber (Cucumis sativus L.) were grown in growth chambers at 600 [mu]mol m[sup -2] s[sup -1] of photosynthetically active radiation provided by metal halide (MH) or high pressure sodium/deluxe (HPS/DX) lamps. Plants were irradiated 15 days from seeding for 6 h per day under 18.2 kJ m[sup -2] day[sup -1] of biologically effective UV-B (UV-B[sub BE]) radiation. One of the most pronounced effects of UV-B was a 27 to 78% increase in phenylalanine ammonialyase (PAL) activity. UV-B also increased total polyamines. Catalase and superoxide dismutase varied greatly in their response to UV-B. There were no interactive effects on PAL or catalase activity, or total polyamines. There was a UV x PAR source interaction for superoxide dismutase activity. UV-B increased chlorosis and decreased height, dry weight and leaf area. Stem elongation, biomass production leaf enlargement and chlorosis were greater under HPS/DX lamps than under MH lamps. Chlorosis was greater in Poinsett than in Ashley and in lower leaves than in upper ones. Aside from chlorosis, there were no interactive effects of UV-B, PAR source of cultivar on any of the growth parameters measured, suggesting that the grown response of cucumber seedlings to UV-B is unaffected by PAR source or cultivar. Similarly, except for SOD activity, the biochemical response to UV-B was also not influenced by Par source or cultivar. (au) (42 refs.)

  12. Influence of alkali metal doping on surface properties and catalytic activity/selectivity of CaO catalysts in oxidative coupling of methane

    Institute of Scientific and Technical Information of China (English)

    V.H.Rane; S.T.Chaudhari; V.R.Choudhary

    2008-01-01

    Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca = 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm3·g-1·h-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.

  13. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications

    Science.gov (United States)

    Song, Zhaoning; Watthage, Suneth C.; Phillips, Adam B.; Heben, Michael J.

    2016-04-01

    Organo-metal halide perovskite-based solar cells have been the focus of intense research over the past five years, and power conversion efficiencies have rapidly been improved from 3.8 to >21%. This article reviews major advances in perovskite solar cells that have contributed to the recent efficiency enhancements, including the evolution of device architecture, the development of material deposition processes, and the advanced device engineering techniques aiming to improve control over morphology, crystallinity, composition, and the interface properties of the perovskite thin films. The challenges and future directions for perovskite solar cell research and development are also discussed.

  14. Plasma assisted measurements of alkali metal concentrations in pressurised combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland)

    1997-10-01

    In this project the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) was developed, tested and demonstrated in pressurised combustion facilities. The PEARLS method has been developed at Tampere University of Technology (TUT). During 1994-1996 the PEARLS method was developed from the laboratory level to an industrial prototype. The alkali measuring instrument has been tested and used for regular measurements in four different pressurised combustion installations ranging up to industrial pilot scale. The installations are: (1) a pressurised entrained flow reactor (PEFR) at VTT Energy in Jyvaeskylae, Finland (2) a pressurised fluidised bed combustion facility, called FRED, at DMT in Essen, Germany. (3) a 10 MW pressurised circulating fluidised bed combustion pilot plant at Foster Wheeler Energia Oy in Karhula, Finland (4) PFBC Research Facility at ABB Carbon in Finspaang, Sweden

  15. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-06

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions.

  16. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Alkali metal salts of rutin - Synthesis, spectroscopic (FT-IR, FT-Raman, UV-VIS), antioxidant and antimicrobial studies.

    Science.gov (United States)

    Samsonowicz, M; Kamińska, I; Kalinowska, M; Lewandowski, W

    2015-12-05

    In this work several metal salts of rutin with lithium, sodium, potassium, rubidium and cesium were synthesized. Their molecular structures were discussed on the basis of spectroscopic (FT-IR, FT-Raman, UV-VIS) studies. Optimized geometrical structure of rutin was calculated by B3LYP/6-311++G(∗∗) method and sodium salt of rutin were calculated by B3LYP/LanL2DZ method. Metal chelation change the biological properties of ligand therefore the antioxidant (FRAP and DPPH) and antimicrobial activities (toward Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumonia, Candida albicans and Saccharomyces cerevisiae) of alkali metal salts were evaluated and compared with the biological properties of rutin.

  18. Nuclear Wavepacket Dynamics of Alkali Adsorbates on Metal Surfaces Studied by Time-Resolved Second Harmonic Generation

    Directory of Open Access Journals (Sweden)

    Kazuya Watanabe

    2012-01-01

    Full Text Available This paper reviews recent efforts to understand the dynamics of coherent surface vibrations of alkali atoms adsorbed on metal surfaces. Time-resolved second harmonic generation is used for the coherent excitation and detection of the nuclear wavepacket dynamics of the surface modes. The principles of the measurement and the experimental details are described. The main focus is on coverage and excitation photon energy dependences of the coherent phonon dynamics for Na-, K-, and Cs-covered Cu(111. The excitation mechanism of the coherent phonon has been revealed by the ultrafast time-domain technique and theoretical modelings.

  19. Syntheses and Structures of Alkali Metal Rare Earth Polyphosphates CsLn(PO3)4 (Ln = La, Ce)

    Institute of Scientific and Technical Information of China (English)

    ZHU Jing; CHENG Wen-Dan; ZHANG Hao; WU Dong-Sheng; ZHAO Dan

    2008-01-01

    Alkali metal-rare earth polyphosphates, CsLn(PO3)4 (Ln = La, Ce), were synthesized by the high temperature solution reaction and studied by single-crystal X-ray diffraction technique. They crystallize in the monoclinic space group P21 (Z = 2) and feature infinite PO4 spiral chains linked with neighboring CsO10 and LnO8 polyhedra. In addition, theoretically calculated energy band structure and density of states (DOS) by the density functional theory(DFT) predict that the solid-state compound CsLa(PO3)4 possesses insulative character.

  20. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light

    Science.gov (United States)

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-09-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach.

  1. Catalysis by alkali and alkaline-earth metal ions in nucleophilic attack of methoxide ion on crown ethers bearing an intra-annular acetoxy group

    NARCIS (Netherlands)

    Cacciapaglia, Roberta; Lucente, Silvia; Mandolini, Luigi; Doorn, van Arie R.; Reinhoudt, David N.; Verboom, Willem

    1989-01-01

    Rates of reaction of methoxide ion with crown ethers bearing an intra-annular acetoxy group are markedly enhanced by alkali and alkaline-earth metal bromides as a result of much stronger interactions of the metal ions with transition states than with reactants. Rates of reactions of methoxide ion w

  2. Variable Charge and Electrical Double Layer of Mineral-Water Interfaces: Silver Halides versus Metal (Hydr)Oxides

    NARCIS (Netherlands)

    Hiemstra, T.

    2012-01-01

    Classically, silver (Ag) halides have been used to understand thermodynamic principles of the charging process and the corresponding development of the electrical double layer (EDL). A mechanistic approach to the processes on the molecular level has not yet been carried out using advanced surface co

  3. Plasma assisted measurements of alkali metal concentrations in pressurized combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland). Dept. of Physics

    1996-12-01

    The plasma assisted method for continuous measurement of alkali concentrations in product gas flows of pressurized energy processes will be tested and applied at the 1.6 MW PFBC/G facility at Delft University of Technology in the Netherlands. During the reporting period the alkali measuring device has been tested under pressurized conditions at VTT Energy, DMT, Foster-Wheeler Energia and ABB Carbon. Measurements in Delft will be performed during 1996 after installation of the hot gas filter. The original plan for measurements in Delft has been postponed due to schedule delays in Delft. The results are expected to give information about the influence of different process conditions on the generation of alkali vapours, the comparison of different methods for alkali measurement and the specific performance of our system. This will be the first test of the plasma assisted measurement method in a gasification process. The project belongs to the Joule II extension program under contract JOU2-CT93-0431. (author)

  4. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  5. Superconductivity and electrical resistivity in alkali metal doped fullerides: Phonon mechanism

    Indian Academy of Sciences (India)

    Dinesh Varshney; A Dube; K K Choudhary; R K Singh

    2005-04-01

    We consider a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. Electronic parameter as repulsive parameter and the attractive coupling strength are obtained within the random phase approximation. Transition temperature, c, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported c (≈ 20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. To illustrate the usefulness of the above approach, the carbon isotope exponent and the pressure effect are also estimated. Temperature dependence of electrical resistivity is then analysed within the same model phonon spectrum. It is inferred from the two-peak model for phonon density of states that high frequency intramolecular phonon modes play a major role in pairing mechanism with possibly some contribution from alkali-C60 phonon to describe most of the superconducting and normal state properties of doped fullerides.

  6. Modeling of catalytically active metal complex species and intermediates in reactions of organic halides electroreduction.

    Science.gov (United States)

    Lytvynenko, Anton S; Kolotilov, Sergey V; Kiskin, Mikhail A; Eremenko, Igor L; Novotortsev, Vladimir M

    2015-02-28

    The results of quantum chemical modeling of organic and metal-containing intermediates that occur in electrocatalytic dehalogenation reactions of organic chlorides are presented. Modeling of processes that take place in successive steps of the electrochemical reduction of representative C1 and C2 chlorides - CHCl3 and Freon R113 (1,1,2-trifluoro-1,2,2-trichloroethane) - was carried out by density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2). It was found that taking solvation into account using an implicit solvent model (conductor-like screening model, COSMO) or considering explicit solvent molecules gave similar results. In addition to modeling of simple non-catalytic dehalogenation, processes with a number of complexes and their reduced forms, some of which were catalytically active, were investigated by DFT. Complexes M(L1)2 (M = Fe, Co, Ni, Cu, Zn, L1H = Schiff base from 2-pyridinecarbaldehyde and the hydrazide of 4-pyridinecarboxylic acid), Ni(L2) (H2L2 is the Schiff base from salicylaldehyde and 1,2-ethylenediamine, known as salen) and Co(L3)2Cl2, representing a fragment of a redox-active coordination polymer [Co(L3)Cl2]n (L3 is the dithioamide of 1,3-benzenedicarboxylic acid), were considered. Gradual changes in electronic structure in a series of compounds M(L1)2 were observed, and correlations between [M(L1)2](0) spin-up and spin-down LUMO energies and the relative energies of the corresponding high-spin and low-spin reduced forms, as well as the shape of the orbitals, were proposed. These results can be helpful for determination of the nature of redox-processes in similar systems by DFT. No specific covalent interactions between [M(L1)2](-) and the R113 molecule (M = Fe, Co, Ni, Zn) were found, which indicates that M(L1)2 electrocatalysts act rather like electron transfer mediators via outer-shell electron transfer. A relaxed surface scan of the adducts {M(L1)2·R113}(-) (M = Ni or Co) versus the distance between the

  7. Study of complexation between two 1,3-alternate calix[4]crown derivatives and alkali metal ions by electrospray ionization mass spectrometry and density functional theory calculations

    Science.gov (United States)

    Shamsipur, Mojtaba; Allahyari, Leila; Fasihi, Javad; Taherpour, Avat (Arman); Asfari, Zuhair; Valinejad, Azizollah

    2016-03-01

    Complexation of two 1,3-alternate calix[4]crown ligands with alkali metals (K+, Rb+ and Cs+) has been investigated by electrospray ionization mass spectrometry (ESI-MS) and density functional theory calculations. The binding selectivities of the ligands and the binding constants of their complexes in solution have been determined using the obtained mass spectra. Also the percentage of each formed complex species in the mixture of each ligand and alkali metal has been experimentally evaluated. For both calix[4]crown-5 and calix[4]crown-6 ligands the experimental and theoretical selectivity of their alkali metal complexes found to follow the trend K+ > Rb+ > Cs+. The structures of ligands were optimized by DFT-B3LYP/6-31G method and the structures of complexes were obtained by QM-SCF-MO/PM6 method and discussed in the text.

  8. Alkali metal adsorption on Ge(0 0 1)-c(2 × 4) surface: 0.25 monolayer of Na, K, Rb and Cs

    Energy Technology Data Exchange (ETDEWEB)

    Stankiewicz, B., E-mail: bst@ifd.uni.wroc.pl [Institute of Experimental Physics, University of Wrocław, Pl. Maxa Borna 9, 50-204 Wrocław (Poland); Mikołajczyk, P. [Nokia Solutions and Networks, Gen. J. Bema Str. 2, 50-265 Wrocław (Poland)

    2014-05-01

    Highlights: • We examine alkali metals adsorption on the Ge(0 0 1)-c(2 × 4) surface. • We calculated atomic and electronic structures using local-orbital and plane-waves methods. • We simulated expected scanning tunneling microscopy images. - Abstract: Alkali metals on Ge(0 0 1) surface reveal different adsorption energy depending on the initial substrate reconstruction and the adsorption site. The theoretical analysis of adsorption of 0.25 monolayer of alkali metals (Na, K, Rb and Cs) on Ge(0 0 1)-c(2 × 4) surface is presented. Stable adsorption sites are found and adsorption energy, atomic and electronic structures are given. The simulated STM images are also presented for the discussed adsorbed surface structures.

  9. Distribution and uptake of {sup 137}Cs in relation to alkali metals in a perhumid montane forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Chao, J.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China)], E-mail: jhchao@mx.nthu.edu.tw; Chiu, C.Y. [Research Center for Biodiversity, Academia Sinica, Taipei 11529, Taiwan (China); Lee, H.P. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2008-10-15

    We determined the content of radiocesium ({sup 137}Cs) and alkali metals in soils, plants (2 ferns, a shrub and moss) and rainwater collected in an undisturbed forest ecosystem. The {sup 137}Cs activity and the isotopic ratio of {sup 137}Cs/Cs in the samples were used to interpret the distribution and uptake of {sup 137}Cs and the alkali metals in plants. As a whole, the {sup 137}Cs in plants was assimilated together with K but was not dependent on Cs. Different adaptations of fern species collected in ecological niches cause them to have different {sup 137}Cs/Cs ratios. Diplopterygium glaucum is distributed at the edges of the forest; it usually has shallow organic layers, and the root takes up more stable Cs from mineral layers, leading to lower {sup 137}Cs/Cs ratios than that in the understory Plagiogyria formosana and Rhododendron formosanum species. The steady supply of stable Cs through the uptake by D. glaucum from deep soils may gradually dilute the {sup 137}Cs concentration and thus explain the lower {sup 137}Cs/Cs ratio in the fern samples. The {sup 137}Cs is predicted to be proportional to the Cs content across plant species in the biological cycle once isotopic equilibrium is attained.

  10. Synthesis and exchange properties of sulfonated poly(phenylene sulfide) with alkali metal ions in organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Son, Won Keun [Chungnam National Univ., Taejon (Korea, Republic of); Kim, Sang Hern [Taejon National Univ., Taejon (Korea, Republic of); Park, Soo Gil [Chungbuk National Univ., Cheongju (Korea, Republic of)

    2001-01-01

    Sulfonated poly(phenylene sulfide) (SPPS) polymers were prepared by sulfonation of poly[methyl[4-(phenylthio)phenyl] sulfonium trifluoromethanesulfonate] (PPST) with fumic sulfonic acid (10% SO{sub 3}-H{sub 2}SO{sub 4}) and demethylation with aqueous NaOH solution. The equilibrium constants of ion exchange reactions between alkali metal cations (Li{sup +}, Na{sup +}, and K{sup +}) and SPPS ion exchanger in organic solvents such as in organic solvents such as tetrahydrofuran (THF) and dioxane were measured. The equilibrium constants of ion exchange reactions increased as the polarity of the solvent increased, and the reaction temperature decreased. The equilibrium constants of the ion exchange reaction (K{sub eq}) also increased in the order of Li{sup +}, Na{sup +}, and K{sup +}. To elucidate the spontaneity of the exchange reaction in organic solvents, the enthalpy, entropy, and Gibbs free energy were calculated. The enthalpy of reaction ranged from -0.88 to -1.33 kcal/mol, entropy ranged from 1.42 to 4.41 cal/Kmol, and Gibbs free energy ranged from -1.03 to -2.55 kcal/mol. Therefore, the exchange reactions were spontaneous because the Gibbs free energies were negative. The SPPS ion exchanger and alkali metal ion bounding each other produced good ion exchange capability in organic solvents.

  11. Influence of alkali metal cations on the thermal, mechanical and morphological properties of rectorite/chitosan bio-nanocomposite films.

    Science.gov (United States)

    Babul Reddy, A; Jayaramudu, J; Siva Mohan Reddy, G; Manjula, B; Sadiku, E R

    2015-05-20

    The main theme of this work is to study the influence of ion-exchangeable alkali metal cations, such as: Li(+), Na(+), K(+), and Cs(+) on the thermal, mechanical and morphological properties. In this regard, a set of rectorite/chitosan (REC-CS) bio-nanocomposite films (BNCFs) was prepared by facile reaction of chitosan with ion-exchanged REC clay. The microstructure and morphology of BNCFs were investigated with XRD, TEM, SEM and AFM. Thermal and tensile properties of BNCFs were also investigated. As revealed from TEM and XRD results, the BNCFs featured a mixed morphology. Some intercalated clay sheets, together with nano-sized clay tactoids were obtained in LiREC/CS, NaREC/CS and KREC/CS of the BNCFs. From fractured surface study, via SEM, it was observed that the dispersion of chitosan polymer attaches to (and covers) the clay platelets. FTIR confirmed strong hydrogen bonds between clay and chitosan polymer. In addition, the thermal stabilities significantly varied when alkali metal cations varied from Li(+) to Cs(+). The BNCFs featured high tensile strengths (up to 84 MPa) and tensile moduli (up to 45 GPa). After evaluating these properties of BNCFs, we came to conclusion that these bio-nano composites can be used for packaging applications.

  12. Molecular dynamics evidence for alkali-metal rattling in the β-pyrochlores, AOs2O6 (A = K, Rb, Cs).

    Science.gov (United States)

    Shoko, E; Peterson, V K; Kearley, G J

    2013-11-27

    We have used ab initio molecular dynamics simulations validated against inelastic neutron scattering data to study alkali-metal dynamics in the β-pyrochlore osmates AOs2O6 (A=K, Rb, Cs) at 300 K to gain insight into the microscopic nature of rattling dynamics in these materials. Our results provide new evidence at the microscopic level for rattling dynamics: (1) the elemental magnitude spectra calculated from the MD show a striking dominance by the alkali metals at low energies indicating weak coupling to the cage, (2) the atomic root-mean-square displacements for the alkali metals are significantly larger than for the other atoms, e.g., 25% and 150% larger than O and Os, respectively, in KOs2O6, and (3) motions of the alkali metals are weakly correlated to the dynamics in their immediate environment, e.g. K in KOs2O6 is 6 times less sensitive to its local environment than Os, indicating weak bonding of the K. There is broadening of the elemental spectra of the alkali metals from Cs to K corresponding to a similar broadening of the local potential around these atoms as determined from potential of mean-force calculations. This feature of the spectra is partly explained by the well-known increase in the relative cage volume with decreasing atomic size of the alkali metal. We find that for the smallest rattler in this series (K) the larger relative cage volume allows this atom freedom to explore a large space inside the cage leading to vibration at a broader range of frequencies, hence a broader spectrum. Thus, since K is considered the best rattler in this series, these findings suggest that a significant feature of a good rattler is the ability to vibrate at several different but closely spaced frequencies.

  13. Prospects for sympathetic cooling of polar molecules: NH with alkali-metal and alkaline-earth atoms--a new hope.

    Science.gov (United States)

    Soldán, Pavel; Zuchowski, Piotr S; Hutson, Jeremy M

    2009-01-01

    We explore the potential energy surfaces for NH molecules interacting with alkali-metal and alkaline-earth atoms using highly correlated ab initio electronic structure calculations. The surfaces for interaction with alkali-metal atoms have deep wells dominated by covalent forces. The resulting strong anisotropies will produce strongly inelastic collisions. The surfaces for interaction with alkaline-earth atoms have shallower wells that are dominated by induction and dispersion forces. For Be and Mg the anisotropy is small compared to the rotational constant of NH, so that collisions will be relatively weakly inelastic. Be and Mg are thus promising coolants for sympathetic cooling of NH to the ultracold regime.

  14. The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells.

    Science.gov (United States)

    Dymshits, Alex; Henning, Alex; Segev, Gideon; Rosenwaks, Yossi; Etgar, Lioz

    2015-03-03

    Cross-sections of a hole-conductor-free CH3NH3PbI3 perovskite solar cell were characterized with Kelvin probe force microscopy. A depletion region width of about 45 nm was determined from the measured potential profiles at the interface between CH3NH3PbI3 and nanocrystalline TiO2, whereas a negligible depletion was measured at the CH3NH3PbI3/Al2O3 interface. A complete solar cell can be realized with the CH3NH3PbI3 that functions both as light harvester and hole conductor in combination with a metal oxide. The band diagrams were estimated from the measured potential profile at the interfaces, and are critical findings for a better understanding and further improvement of perovskite based solar cells.

  15. Release and sorption of alkali metals in coal fired combined cycle power systems; Freisetzung und Einbindung von Alkalimetallverbindungen in kohlebefeuerten Kombikraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael

    2009-07-01

    Coal fired combined cycle power systems will be a sufficient way to increase the efficiency of coal combustion. However, combined cycle power systems require a reliable hot gas cleanup. Especially alkali metals, such as sodium and potassium, can lead to hot corrosion of the gas turbine blading if they condensate as sulphates. The actual work deals with the release and sorption of alkali metals in coal fired combined cycle power systems. The influence of coal composition, temperature and pressure on the release of alkali species in coal combustion was investigated and the relevant release mechanisms identified. Alumosilicate sorbents have been found that reduce the alkali concentration in the hot flue gas of the Circulating Pressurized Fluidized Bed Combustion 2{sup nd} Generation (CPFBC 2{sup nd} Gen.) at 750 C to values sufficient for use in a gas turbine. Accordingly, alumosilicate sorbents working at 1400 C have been found for the Pressurized Pulverized Coal Combustion (PPCC). The sorption mechanisms have been identified. Thermodynamic calculations were performed to upscale the results of the laboratory experiments to conditions prevailing in power systems. According to these calculations, there is no risk of hot corrosion in both processes. Furthermore, thermodynamic calculations were performed to investigate the behaviour of alkali metals in an IGCC with integrated hot gas cleanup and H{sub 2} membrane for CO{sub 2} sequestration. (orig.)

  16. Metal Halide Optical Glasses.

    Science.gov (United States)

    1988-01-01

    while some of the multi- component "modified" glasses (e.g., ZBLAN ) could easily be cast into pieces several mm thick. 23 The difference between the...energy. 7-1 0 Typical plots pf 24 of log Iqi versus ]/Tf for ZB-I, ZBL, ZBLA, ZBLAN and ZBLALi glasses are presented in Fig. 3. These plots are linear... ZBLAN glasses are more resistant to devitrification than the corresponding ZBLLi or ZBLN glasses , although this does not appear to be manifested in

  17. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

    Science.gov (United States)

    Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang

    2016-06-01

    The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

  18. Noble metal superparticles and methods of preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yugang; Hu, Yongxing

    2016-07-12

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution is cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.

  19. A curious interplay in the films of N-heterocyclic carbene Pt(II) complexes upon deposition of alkali metals.

    Science.gov (United States)

    Makarova, Anna A; Grachova, Elena V; Niedzialek, Dorota; Solomatina, Anastasia I; Sonntag, Simon; Fedorov, Alexander V; Vilkov, Oleg Yu; Neudachina, Vera S; Laubschat, Clemens; Tunik, Sergey P; Vyalikh, Denis V

    2016-05-06

    The recently synthesized series of Pt(II) complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned Pt(II) complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination Pt(II) centre to Pt(0) and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system "Pt complex-alkali metal ion"; the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the Pt(II) complexes for a variety of biomedical, sensing, chemical, and electronic applications.

  20. Thermal and optical properties of Nd3+ doped lead zinc borate glasses—Influence of alkali metal ions

    Science.gov (United States)

    Sasi Kumar, M. V.; Rajesh, D.; Balakrishna, A.; Ratnakaram, Y. C.

    2013-04-01

    In the present investigation a new series of six different Nd3+ doped alkali and mixed alkali (Li, Na, K, Li-Na, Li-K and Na-K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd-Ofelt (J-O) theory has been applied to calculate J-O intensity parameters, Ωλ (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (AT), branching ratios (β), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) were calculated using J-O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σP) are obtained for all the observed emission transitions.

  1. Thermal and optical properties of Nd{sup 3+} doped lead zinc borate glasses—Influence of alkali metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sasi Kumar, M.V.; Rajesh, D.; Balakrishna, A. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Ratnakaram, Y.C., E-mail: ratnakaramsvu@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2013-04-15

    In the present investigation a new series of six different Nd{sup 3+} doped alkali and mixed alkali (Li, Na, K, Li–Na, Li–K and Na–K) heavy metal (PbO and ZnO) borate glasses were prepared using the melt quenching technique. The amorphous nature of the glass systems has been identified based on the X-ray diffraction analysis. The glass transition studies were carried out using differential scanning calorimetry (DSC). Optical properties were studied by measuring the optical absorption and near infrared luminescence spectra. The Judd–Ofelt (J–O) theory has been applied to calculate J–O intensity parameters, Ω{sub λ} (λ=2, 4 and 6) and in turn used to estimate radiative properties of certain transitions. Spectroscopic parameters such as transition probabilities (A{sub T}), branching ratios (β), radiative lifetimes (τ{sub R}) and integrated absorption cross-sections (Σ) were calculated using J–O intensity parameters for all transitions. Using emission spectra, experimental branching ratios and stimulated emission cross-sections (σ{sub P}) are obtained for all the observed emission transitions.

  2. A curious interplay in the films of N-heterocyclic carbene PtII complexes upon deposition of alkali metals

    Science.gov (United States)

    Makarova, Anna A.; Grachova, Elena V.; Niedzialek, Dorota; Solomatina, Anastasia I.; Sonntag, Simon; Fedorov, Alexander V.; Vilkov, Oleg Yu.; Neudachina, Vera S.; Laubschat, Clemens; Tunik, Sergey P.; Vyalikh, Denis V.

    2016-05-01

    The recently synthesized series of PtII complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned PtII complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination PtII centre to Pt0 and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system “Pt complex-alkali metal ion” the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the PtII complexes for a variety of biomedical, sensing, chemical, and electronic applications.

  3. Temperature-Dependent Electrical Conductivity Measurements on Hydrated and Alkali-metal Intercalated Zeolite LTA and FAU

    Science.gov (United States)

    Yumoto, Kenji; Suzuki, Yoshinori; Wada, Noboru

    2007-03-01

    Zeolite LTA and FAU films were made from zeolite powders using a hydrothermal method. Electrical conductivity measurement were performed on the zeolite films in temperature range between 180 K and 430 K, using an LCR meter with the sweeping frequency varied from 20 to 1 MHz and drawing the Cole-Cole plots. The resistivities of both hydrated LTA and FAU zeolites increased with increasing the sample temperature from RT to 430 K, which might be caused by loss of water molecules from the pores of zeolite crystals. Also, the resistivities increased with decreasing the sample temperature from RT to 180 K, probably caused by freezing of water molecules in the zeolite. When the dehydrated zeolite samples were intercalated with alkali metals (Rb and K), the resistivities of the samples did not vary much at RT. However, the resistivities of the intercalated zeolite films decreased drastically by four orders of magnitude when the sample temperature was varied from RT to 180 K. We speculate that the dynamics of alkali atoms in the zeolite pores (electron-phonon scattering) may be responsible for the drastic change in the electrical conductivity.

  4. First-principles study of a double-cation alkali metal borohydride LiK(BH{sub 4}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiaobing; Yu Weiyang; Tang Biyu [Key Laboratory of Low Dimensional Materials and Application Technology of the Ministry of Education, Department of Physics, Xiangtan University, Hunan Province, 411105 (China)], E-mail: tangbiyu@gxu.edu.cn

    2008-11-05

    Metal borohydrides have been attracting great interest as potential candidates for use as advanced hydrogen storage materials because of their high gravimetric hydrogen densities. In the present study, first-principles calculations have been performed for the newly reported dual-cation alkali metal borohydride LiK(BH{sub 4}){sub 2}, using density functional theory (DFT) within the generalized gradient approximation and the projected augmented wave method. LiK(BH{sub 4}){sub 2} is found to have an orthorhombic structure in the space group Pnma (No 62) with nearly ideal tetrahedral shape. It is an insulating material having a DFT-calculated wide band gap of 6.08 eV. Analysis of the electronic structure shows an ionic interaction between metal cations and (BH{sub 4}){sup -} and the covalent B-H interaction within the (BH{sub 4}){sup -} tetrahedron. The enthalpy of the formation reaction from primary elements is calculated and found to be -449.8 kJ mol{sup -1}. The decomposition temperature (T{sub dec}) of LiK(BH{sub 4}){sub 2} lies between those of LiBH{sub 4} and KBH{sub 4}, which suggests that the hydrogen decomposition temperature of metal borohydrides can be precisely adjusted by the appropriate combination of cations.

  5. Hydrothermal synthesis of mixed rare earth-alkali metal or ammonium fluorides

    Institute of Scientific and Technical Information of China (English)

    由芳田; 黄世华; 时秋峰

    2010-01-01

    The recent results on hydrothermal synthesis of mixed rare earth-alkali or ammonium fluorides were presented. The initial ratios of the starting materials, pH value and reaction temperature were the critical factors for obtaining the single-phase product. Four main types of complex rare earth fluorides, AREF4, A2REF5, ARE2F7 and ARE3F10 (A=Na+, K+, Rb+, NH4+), appeared in the primary hydrothermal reactions. The correlation between cation sizes and the formation of mixed rare earth fluorides under mild hydro...

  6. Friction-reducing and antiwear behavior of metal halide-stabilized linear phosphazene derivatives as lubricants for a steel-on-steel contact

    Institute of Scientific and Technical Information of China (English)

    ZHU; Jiamei; LIU; Weimin; LIANG; Yongmin

    2005-01-01

    A series of novel metal halide-stabilized linear phosphazene derivatives were synthesized. The friction-reducing and antiwear abilities of the resulting products as the lubricants for a steel-on-steel contact were comparatively investigated on an Optimol SRV oscillating friction and wear tester. The morphology of the worn steel surface was observed on a scanning electron microscope, while the chemical states of some typical elements on the worn steel surface were examined by means of X-ray photoelectron spectroscopy. It was found that both the side branch structures and central metals influenced the friction-reducing and antiwear behaviors of the synthetic derivatives as the lubricants, which was related to the different adsorption activities of the organic compounds composed of different organic ingredients and metallic ions on a nascent metal surface. All the synthetic lubricants except for the iron (III) derivative showed increased antiwear abilities with increasing metallic ionic radius. A protective layer originated from the tribochemical reaction together with the adsorbed boundary lubricating layer containing organic fluorine compounds, nitrogen oxide, and Fe3(PO4)2 plays an important role in improving the friction and wear behavior of the steel-on-steel system.

  7. Vanadium oxide based cpd. useful as a cathode active material - is used in lithium or alkali metal batteries to prolong life cycles

    DEFF Research Database (Denmark)

    1997-01-01

    , V and oxygen where at least some of the V is in the tetravalent state. USE-(I) is a cathode active material in electric current producing storage cells. ADVANTAGE-Use of (I) in Li or alkali metal batteries gives prolonged life cycles.Storage cells using (I) have improved capacity during charge...

  8. Cation and anion dependence of stable geometries and stabilization energies of alkali metal cation complexes with FSA(-), FTA(-), and TFSA(-) anions: relationship with physicochemical properties of molten salts.

    Science.gov (United States)

    Tsuzuki, Seiji; Kubota, Keigo; Matsumoto, Hajime

    2013-12-19

    Stable geometries and stabilization energies (Eform) of the alkali metal complexes with bis(fluorosulfonyl)amide, (fluorosulfonyl)(trifluoromethylslufonyl)amide and bis(trifluoromethylsulfonyl)amide (FSA(-), FTA(-) and TFSA(-)) were studied by ab initio molecular orbital calculations. The FSA(-) complexes prefer the bidentate structures in which two oxygen atoms of two SO2 groups have contact with the metal cation. The FTA(-) and TFSA(-) complexes with Li(+) and Na(+) prefer the bidentate structures, while the FTA(-) and TFSA(-) complexes with Cs(+) prefer tridentate structures in which the metal cation has contact with two oxygen atoms of an SO2 group and one oxygen atom of another SO2 group. The two structures are nearly isoenergetic in the FTA(-) and TFSA(-) complexes with K(+) and Rb(+). The magnitude of Eform depends on the alkali metal cation significantly. The Eform calculated for the most stable TFSA(-) complexes with Li(+), Na(+), K(+), Rb(+) and Cs(+) cations at the MP2/6-311G** level are -137.2, -110.5, -101.1, -89.6, and -84.1 kcal/mol, respectively. The viscosity and ionic conductivity of the alkali TFSA molten salts have strong correlation with the magnitude of the attraction. The viscosity increases and the ionic conductivity decreases with the increase of the attraction. The melting points of the alkali TFSA and alkali BETA molten salts also have correlation with the magnitude of the Eform, which strongly suggests that the magnitude of the attraction play important roles in determining the melting points of these molten salts. The anion dependence of the Eform calculated for the complexes is small (less than 2.9 kcal/mol). This shows that the magnitude of the attraction is not the cause of the low melting points of alkali FTA molten salts compared with those of corresponding alkali TFSA molten salts. The electrostatic interactions are the major source of the attraction in the complexes. The electrostatic energies for the most stable TFSA

  9. Hyperfine-induced quadrupole moments of alkali-metal atom ground states and their implications for atomic clocks

    CERN Document Server

    Derevianko, Andrei

    2016-01-01

    Spherically-symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to non-vanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for $^{133}$Cs atomic clocks, the spatial gradients of electric fields must be smaller than $30 \\, \\mathrm{V}/\\mathrm{cm}^2$ to guarantee fractional inaccuracies below $10^{-16}$.

  10. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  11. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. H.; Luo, H.; Qu, T. L., E-mail: qutianliang@nudt.edu.cn; Yang, K. Y.; Ding, Z. C. [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-10-15

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of {sup 87}Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the {sup 87}Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the {sup 87}Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  12. The Trapping and Cooling of Alkalis Metal Atoms%碱金属原子的囚禁与冷却

    Institute of Scientific and Technical Information of China (English)

    邓海明; 李璋

    2012-01-01

      描述了如何利用激光以及磁场构建光学粘胶、激光阱、磁阱、磁光阱等实现对碱金属的囚禁与冷却,旨在明晰的呈现BEC实验实现的关键技术、物理原理以及各种装置的优缺点。%  This essay describes how to use laser and magnetic field to construct optical molasses ,laser trap ,mag-netic trap and magneto -optical trap to trap and cool alkali-metal atoms .It presents clearly the key experimental technologies of Bose-Einstein condensate ,the physical principle and the relative advantages and disadvantages of different equipments .

  13. One- and two-photon spectroscopy of highly excited states of alkali-metal atoms on helium nanodroplets.

    Science.gov (United States)

    Pifrader, Alexandra; Allard, Olivier; Auböck, Gerald; Callegari, Carlo; Ernst, Wolfgang E; Huber, Robert; Ancilotto, Francesco

    2010-10-28

    Alkali-metal atoms captured on the surface of superfluid helium droplets are excited to high energies (≈3 eV) by means of pulsed lasers, and their laser-induced-fluorescence spectra are recorded. We report on the one-photon excitation of the (n+1)p←ns transition of K, Rb, and Cs (n=4, 5, and 6, respectively) and on the two-photon one-color excitation of the 5d←5s transition of Rb. Gated-photon-counting measurements are consistent with the relaxation rates of the bare atoms, hence consistent with the reasonable expectation that atoms quickly desorb from the droplet and droplet-induced relaxation need not be invoked.

  14. Crown-Ether Derived Graphene Hybrid Composite for Membrane-Free Potentiometric Sensing of Alkali Metal Ions.

    Science.gov (United States)

    Olsen, Gunnar; Ulstrup, Jens; Chi, Qijin

    2016-01-13

    We report the design and synthesis of newly functionalized graphene hybrid material that can be used for selective membrane-free potentiometric detection of alkali metal ions, represented by potassium ions. Reduced graphene oxide (RGO) functionalized covalently by 18-crown[6] ether with a dense surface coverage is achieved by the introduction of a flexible linking molecule. The resulting hybrid composite is highly stable and is capable of detecting potassium ions down to micromolar ranges with a selectivity over other cations (including Ca(2+), Li(+), Na(+), NH4(+)) at concentrations up to 25 mM. This material can be combined further with disposable chips, demonstrating its promise as an effective ion-selective sensing component for practical applications.

  15. Synthesis and Crystal Structure of A New Armed-tetraazacrown Ether and Its Liquid Membrane Transport of Alkali Metal Cations

    Institute of Scientific and Technical Information of China (English)

    马淑兰; 朱文祥; 董淑静; 郭倩玲; 佘远斌

    2003-01-01

    A new tetra-N-substituted tetraazacrown ether derivative, 4,7,13,16-tetra ( 2-cyanobenzyl)-1, 10-dioxa-4, 7, 13, 16-tetraazacy-dooctademne, C44H48N8O2, has been synthesized and struc-turally characterized. It crystallizes in the monoclinic system,Slmeegroup P21/c with a = 1.1176(3) nm, b =2.1906(7) nm,c=0.8430(3)nm, V=2.0132(10)nm3, β = 102.740(5)°,Z=4, Dc= 1.189 g/cm3, final R1=0.0460, wR2=0.0803.The liquid membrane transports of alkali metal cations using the new macrocyde as the ion-carrier were also studied. Com-pared with some macrocyclic ligands, our newly synthesized lig.and showed a good selectivity ratio for Na Na+/Li+.

  16. Heavy main-group iodometallates hybridized by alkali metal via 1,10-Phenanthroline-5,6-dione

    Indian Academy of Sciences (India)

    Mengfan Yin; Gengxing Cai; Peng Wang; Xihui Chao; Jibo Liu; Haohong Li; Zhirong Chen

    2015-09-01

    Alkali metals were introduced into heavy main-group iodometallates to get two new IA/IVAheterometallic frameworks [PbI3K(pdon)(H2O)2] (1) and {[Pb3I9K2(pdon)2(H3O)]·H2O} (2) (pdon=1,10-phenanthroline-5,6-dione), which were obtained as single phases by hydrothermal method at different pH values. Compounds 1 and 2 are three-dimensional heterometallic frameworks constructed from the linkage of pdon ligand between iodometallate chains and potassium oxides/iodide clusters. Specially, these two heterometallic frameworks exhibit broadened absorption bands at 700 and 750 nm compared with those of bulk PbI2 and pdon ligand. The band gap of 2 is wider than that of 1, which is due to the absence of · · · interaction in 2. Their thermal stabilities are also discussed.

  17. A Strained Disilane-Promoted Carboxylation of Organic Halides with CO2 under Transition-Metal-Free Conditions.

    Science.gov (United States)

    Mita, Tsuyoshi; Suga, Kenta; Sato, Kaori; Sato, Yoshihiro

    2015-11-01

    By using a strained four-membered ring disilane (3,4-benzo-1,1,2,2-tetraethyldisilacyclobutene) and CsF, a wide range of aryl, alkenyl, alkynyl, benzyl, allyl, and alkyl halides was successfully carboxylated under an ambient CO2 atmosphere (CO2 balloon) at room temperature within 2 h. In this carboxylation, a highly reactive silyl anion, which is generated from the disilane and CsF, is a key to facilitating the formation of a carbanion equivalent. The resulting anionic species can be trapped with CO2 to produce carboxylic acids with high efficiency.

  18. Certain lubricating features of mineral oils that contain halog variably valent metal halides. Nekotoryye osobennosti smazyvayushchego deystviya mineral'nykh masel, soderzhashchikh galogenidy metallov peremennoy valentnosti

    Energy Technology Data Exchange (ETDEWEB)

    Babel' , V.G.; Bayramukov, M.D.; Proskuryakov, V.A.

    1982-01-01

    Discusses literature data on the mechanism of anti-wear and antiscuff properties of organic additives that contain sulphur, sulphur and phosphorus, phosphorus and chlorine, as well as some variable valent metals. Examines potential application of inorganic salts -- halides -- as additives to oils in order to improve the tribologic properties and discusses selection of an oil-soluble media and stability of lubricating formulas. Based on tests on a laboratory tribologic unit (ChShM, MI-1M) high efficiency of these additives was noted in comparison with organic acid salts and the commercial LZ-23k additive. The positive role of hydrochloric acid in small quantities is shown, when the friction surface is treated with copper and lead chlorides.

  19. Partial Oxidation of Butane to Syngas over Nickel SupportedCatalysts Modified by Alkali Metal Oxide and Rare-Earth Metal Oxide

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The partial oxidation of butane (POB) to syngas over nickel supported catalysts was first investigated with a flow-reactor, TG and UVRRS. The NiO/g-Al2O3 is the most suitable for the POB among NiO/g-Al2O3, NiO/MgO and NiO/SiO2. And the reaction performance of the NiO/g-Al2O3 shows little difference from those of the nickel supported catalysts modified by alkali metal oxide and rare-earth metal oxide. However, modification with Li2O and La2O3 can suppress carbon-deposition of the NiO/g-Al2O3, which contains graphite-like species during the POB reaction.

  20. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals

    Science.gov (United States)

    Pazoki, Meysam; Jacobsson, T. Jesper; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2016-04-01

    Organic and inorganic lead halogen perovskites, and in particular, C H3N H3Pb I3 , have during the last years emerged as a class of highly efficient solar cell materials. Herein we introduce metalorganic halogen perovskite materials for energy-relevant applications based on alkaline-earth metals. Based on the classical notion of Goldschmidt's rules and quantum mechanical considerations, the three alkaline-earth metals, Ca, Sr, and Ba, are shown to be able to exchange lead in the perovskite structure. The three alkaline-earth perovskites, C H3N H3Ca I3,C H3N H3Sr I3 , and C H3N H3Ba I3 , as well as the reference compound, C H3N H3Pb I3 , are in this paper investigated with density functional theory (DFT) calculations, which predict these compounds to exist as stable perovskite materials, and their electronic properties are explored. A detailed analysis of the projected molecular orbital density of states and electronic band structure from DFT calculations were used for interpretation of the band-gap variations in these materials and for estimation of the effective masses of the electrons and holes. Neglecting spin-orbit effects, the band gap of MACa I3,MASr I3 , and MABa I3 were estimated to be 2.95, 3.6, and 3.3 eV, respectively, showing the relative change expected for metal cation exchange. The shifts in the conduction band (CB) edges for the alkaline-earth perovskites were quantified using scalar relativistic DFT calculations and tight-binding analysis, and were compared to the situation in the more extensively studied lead halide perovskite, C H3N H3Pb I3 , where the change in the work function of the metal is the single most important factor in tuning the CB edge and band gap. The results show that alkaline-earth-based organometallic perovskites will not work as an efficient light absorber in photovoltaic applications but instead could be applicable as charge-selective contact materials. The rather high CB edge and the wide band gap together with the large

  1. Cation-π interaction of alkali metal ions with C24 fullerene: a DFT study.

    Science.gov (United States)

    Moradi, Morteza; Peyghan, Ali Ahmadi; Bagheri, Zargham; Kamfiroozi, Mohammad

    2012-08-01

    Using first principle calculations, we investigated cation-π interactions between alkali cations (Li(+), Na(+), and K(+)) and pristine C(24) or doped fullerenes of BC(23), and NC(23). The most suitable adsorption site is found to be atop the center of a six-membered ring of the exterior surface of C(24) molecule. Interaction energies of these cations decreased in the order: Li(+) > Na(+) > K(+), with values of -31.82, -22.36, and -15.68 kcal mol(-1), respectively. It was shown that the interaction energies are increased and decreased by impurity doping of B and N atoms in adjacent wall of adsorption site, depending on electron donating or receptivity of the doping atoms.

  2. First structural evidence for multiple alkali metals between sandwich decks in a metallocene.

    Science.gov (United States)

    Jeletic, Matthew; Perras, Frédéric A; Gorelsky, Serge I; Le Roy, Jennifer J; Korobkov, Ilia; Bryce, David L; Murugesu, Muralee

    2012-07-14

    A tetralithio salt (1) derived by treating 1,4-bis(trimethylsilyl)-cyclooctatriene with (n)BuLi serves as the first structural evidence for a multi-alkali metallocene. Single-crystal XRD confirms two Li(+) each asymmetrically bind to η(3) and η(4) between two COT'' rings and two Li(+) terminally bind to η(3). Solid-state NMR studies confirm the presence of two distinct lithium ion sites while the solution NMR studies suggest the formation of an (COT'' dianion) ion-pair in solution. Further treating of the tetralithio salt with NaCl leads to linear sodium polymeric chains. Therefore, simply changing the ionic radius changes the molecular structure.

  3. Theory of alkali-metal-induced reconstructions of fcc(100) surfaces

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Jacobsen, Karsten Wedel

    1992-01-01

    Calculations of missing-row reconstruction energies of the fcc(100) surfaces of the metals Al, Ni, Pd, Pt, Cu, Ag, and Au have been performed with the effective-medium theory with and without the presence of a potassium overlayer. It is shown that the tendency to reconstruct in the presence......-metal-induced reconstruction of fcc(110) surfaces are pointed out....

  4. Tris-[8]annulenyl Isocyanurate Trianion Triradical and Hexa-anion from the Alkali Metal Reduction of [8]Annulenyl Isocyanate.

    Science.gov (United States)

    Peters, Steven J; Klen, Joseph R

    2015-06-05

    The solution phase alkali metal reduction of [8]annulenyl isocyanate (C8H7NCO) yields an EPR spectrum, which reveals electron couplings to seven protons and only one nitrogen. Although this strongly suggested that the C8H7NCO anion radical was generated, experiments on the oxidized product reveal the actual reduced species to be tris-[8]annulenyl isocyanurate. Unlike the previously studied phenyl isocyanurate anion radical, the unpaired electron(s) is now localized within an [8]annulenyl moiety. Further exposure to metal results in the formation of an equilibrium mixture of trianion triradical and trianion radical species. The cyclotrimerization to form the isocyanurate is proposed to be driven by a reactive C8H7NCO dianion, which is produced from the large equilibrium disproportionation of the anion radical. Exhaustive reduction of the tris-[8]annulenyl isocyanurate with potassium in THF generates the first-ever observed hexa-anion of an isocyanurate. NMR analysis reveals that the polarity of the carbonyl bonds within this hexa-anion is augmented and is caused by the close proximity of K(+) ions, which are tightly ion paired to the three [8]annulenyl dianion rings. These preliminary studies on the reduction of C8H7NCO suggest that polymeric materials (e.g., polyisocyanates) made from this isocyanate might exhibit unique properties.

  5. The electronic properties of bare and alkali metal adsorbed two-dimensional GeSi alloy sheet

    Science.gov (United States)

    Qiu, Wenhao; Ye, Han; Yu, Zhongyuan; Liu, Yumin

    2016-09-01

    In this paper, the structural and electronic properties of both bare and alkali metal (AM) atoms adsorbed two-dimensional GeSi alloy sheet (GeSiAS) are investigated by means of first-principles calculations. The band gaps of bare GeSiAS are shown slightly opened at Dirac point with the energy dispersion remain linear due to the spin-orbit coupling effect at all concentrations of Ge atoms. For metal adsorption, AM atoms (including Li, Na and K) prefer to occupy the hexagonal hollow site of GeSiAS and the primary chemical bond between AM adatom and GeSiAS is ionic. The adsorption energy has an increase tendency with the increase of the Ge concentration in supercell. Besides, single-side adsorption of AM atoms introduces band gap at Dirac point, which can be tuned by the Ge concentration and the species of AM atoms. The strong relation between the band gaps and the distribution of Si and Ge atoms inside GeSiAS are also demonstrated. The opened band gaps of AM covered GeSiAS range from 14.8 to 269.1 meV along with the effective masses of electrons ranging from 0.013 to 0.109 me, indicating the high tunability of band gap as well as high mobility of carriers. These results provide a development in two-dimensional alloys and show potential applications in novel micro/nano-electronic devices.

  6. Atomic many-body effects and Lamb shifts in alkali metals

    CERN Document Server

    Ginges, J S M

    2016-01-01

    We present a detailed study of the Flambaum-Ginges radiative potential method which enables the accurate inclusion of quantum electrodynamics (QED) radiative corrections in a simple manner in atoms, ions, and molecules over the range 10<=Z<=120, where Z is the nuclear charge. Calculations are performed for binding energy shifts to the lowest valence s, p, and d waves over the series of alkali atoms Na to E119. The high accuracy of the radiative potential method is demonstrated by comparison with rigorous QED calculations in frozen atomic potentials, with deviations on the level of 1%. The many-body effects of core relaxation and second- and higher-order perturbation theory on the interaction of the valence electron with the core are calculated. The inclusion of many-body effects tends to increase the size of the shifts, with the enhancement particularly significant for d waves; for K to E119, the self-energy shifts for d waves are only an order of magnitude smaller than the s-wave shifts. It is shown th...

  7. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-05

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  8. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    Science.gov (United States)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  9. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  10. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    Science.gov (United States)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  11. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J. [Electrical Engineering and Plasma Technology, Ruhr University Bochum, D-44780 Bochum (Germany); Denissen, C.; Suijker, J. [Philips Lighting, Category Professional Lamps, P.O. Box 80020, NL-5600JM Eindhoven (Netherlands)

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  12. Analysis of molecular structure, spectroscopic properties (FT-IR, micro-Raman and UV-vis) and quantum chemical calculations of free and ligand 2-thiopheneglyoxylic acid in metal halides (Cd, Co, Cu, Ni and Zn).

    Science.gov (United States)

    Gökce, Halil; Bahçeli, Semiha

    2013-12-01

    In this study, molecular geometries, experimental vibrational wavenumbers, electronic properties and quantum chemical calculations of 2-thiopheneglyoxylic acid molecule, (C6H4O3S), and its metal halides (Cd, Co, Cu, Ni and Zn) which are used as pharmacologic agents have been investigated experimentally by FT-IR, micro-Raman and UV-visible spectroscopies and elemental analysis. Meanwhile the vibrational calculations were verified by DFT/B3LYP method with 6-311++G(d,p) and LANL2DZ basis sets in the ground state, for free TPGA molecule and its metal halide complexes, respectively, for the first time. The calculated fundamental vibrational frequencies for the title compounds are in a good agreement with the experimental data.

  13. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS2

    Directory of Open Access Journals (Sweden)

    X. D. Li

    2015-05-01

    Full Text Available Single adsorption of different atoms on pristine two-dimensional monolayer MoS2 have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS2. Additionally, local or long-range magnetic moments of two-dimensional MoS2 sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS2 monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  14. Structural and optical characterization of Er-alkali-metals codoped MgO nanoparticles synthesized by solution combustion route

    Science.gov (United States)

    Sivasankari, J.; Selvakumar Sellaiyan, S.; Sankar, S.; Devi, L. Vimala; Sivaji, K.

    2017-01-01

    Pure MgO, rare-earth (Er) doped MgO (MgO:Er), and alkali metal ions (Li, Na and K) co-doped MgO:Er [i.e. MgO: Er+X (X=Li, Na, and K)] nanopowders were synthesized by solution combustion method and characterized. The XRD analysis reveals the cubic structure and the substitution of dopants and co-dopants in MgO. Annealing at 800 °C, increases the sizes of nano-crystallites of all samples appreciably, indicating the grain growth and the improvement in crystallinity of all the samples. Increase in lattice parameter, d spacing and band gap were observed after annealing. Structural and morphological analysis using scanning electron microscope (SEM) and transmission electron microscope (TEM) studies has shown that the samples contain structures like agglomerated clusters. FT-IR spectra confirm the stretching mode of hydroxyl groups, carbonate and presence of MgO bonding. The characteristic wavelength ranging from 2600 cm-1 to 3000 cm-1 were assigned to transition of 4S3/2→4I13/2 and 4I11/2→4I15/2 of Er3+.

  15. Effect of semicore banding on heavy-alkali-metal lattice constants: Corrections to the frozen-core approximation

    Science.gov (United States)

    Yang, L. H.; Smith, A. P.; Benedek, R.; Koelling, D. D.

    1993-06-01

    Equilibrium lattice constants and bulk moduli of the heavy alkali metals K, Rb, and Cs were calculated using the Troullier-Martins pseudopotentials and plane-wave basis functions. The treatment of the outermost p-shell electrons as Bloch states yielded lattice constants 2-3 % larger than those obtained within the frozen-core approximation (including the partial core correction of Louie, Froyen, and Cohen [Phys. Rev. B 26, 1738 (1982)]), which narrows a long-standing discrepancy between local-density functional theory and experiment. Predicted bulk moduli are 30-50 % larger than measured values, within either treatment. The band dispersion of the semicore states (with bandwidths 0.067, 0.14, and 0.25 eV for K, Rb, and Cs) is attributed primarily to core-electron-conduction-electron hybridization rather than direct core-core overlap. The semicore density of states has a flat line shape, rather than the peaked shape expected for an idealized tight-binding band.

  16. Fast ionic conduction in tetravalent metal pyrophosphate-alkali carbonate composites: New potential electrolytes for intermediate-temperature fuel cells

    Science.gov (United States)

    Singh, Bhupendra; Bhardwaj, Aman; Gautam, Sandeep K.; Kumar, Devendra; Parkash, Om; Kim, In-Ho; Song, Sun-Ju

    2017-03-01

    Here we present a report on synthesis and characterization of tetravalent metal pyrophosphate (TMP) and alkali carbonate (A2CO3; A = Li and/or Na) composites. The TMP-carbonate composites are prepared by mixing indium-doped tin pyrophosphate or yttrium-doped zirconium pyrophosphate with Li2CO3 or an eutectic mixture of Li2CO3-Na2CO3 in different wt.% ratios. The phase composition, microstructure and electrical conductivity of the sintered specimen are analyzed. In addition, the effect of different TMP and A2CO3 phases is investigated. A maximum ionic conductivity of 5.5 × 10-2 S cm-1 at 630 °C is observed in this study with a Sn0.9In0.1P2O7-Li2CO3 composite. Based on the literature data, TMP-carbonate composites can be considered to be primarily a proton and oxygen-ion co-ionic conductor and, therefore, have strong potential as electrolytes in fuel cells in 500-700 °C range.

  17. Fates and roles of alkali and alkaline earth metal species during the pyrolysis and gasification of a Victorian lignite

    Energy Technology Data Exchange (ETDEWEB)

    Mody, D.; Wu, H.; Li, C. [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Dept. of Chemical Engineering

    2000-07-01

    The transformation of alkali and alkaline earth metal (AAEM) species in a Victorian lignite during the pyrolysis and subsequent gasification in CO{sub 2} was studied in a novel quartz fluidised-bed reactor. Lignite samples prepared by physically adding NaCl and ion-exchanging Na{sup +} and Ca{sup ++} into the lignite were used to investigate the effects of chemical forms and valency of the AAEM species in the substrate lignite on their transformation during pyrolysis and gasification. Carboxyl-bound Na was found to be less volatile than Na present as NaCl, but more volatile than carboxyl-bound Ca during pyrolysis at temperatures between 400 and 900{sup o}C. However, the carboxyl-bound Na was volatilised to a much greater extent than the carboxyl-bound Ca in the same lignite during pyrolysis. It was seen that the loading of NaCl into the lignite did not significantly affect the char reactivity in the fluidised-bed reactor at 900{sup o}C.

  18. Effect of charge density in chain extension reactions involving complexes of 4, 4'-diaminodiphenylmethane and various alkali metal salts

    Science.gov (United States)

    Deshmukh, Subrajeet; Carrasquillo, Katherine; Tsai, Fang Chang; Wu, Lina; Hsu, Shaw Ling; University of Massachusetts Amherst Team

    Controlling the reaction of methylene diphenyl diisocyanate (MDI)-terminated polyester prepolymer and 4, 4'-diaminodiphenylmethane (MDA) is extremely important in many large scale applications. The ion-diamine complex has the advantage of blocking the instantaneous reaction between the diamine and isocyanate from taking place until it is released at elevated temperatures. We synthesized complexes of MDA with various alkali metal salts. These complexes create a barrier between the diamine and isocyanate thus preventing the premature reaction. We compared the complexes in terms of their dissociation and the subsequent curing with the prepolymer. Charge density had a tremendous effect. DSC showed that Na complexes dissociated at a lower temperature and needed less energy to dissociate than the Li complexes. The effect of change in cation on complex dissociation was more pronounced compared to the change in anion. Also, the ionic liquid introduced greatly altered the dissociation behavior. Temperature and time resolved IR spectroscopy was used to monitor the urea and NH band. By DSC and IR, we showed that NaCl complex is best suited for the curing of prepolymer with regards to curing temperature and energy.

  19. Chemical state analysis of trace-level alkali metals sorbed in micaceous oxide by total reflection X-ray photoelectron spectroscopy

    Science.gov (United States)

    Baba, Y.; Shimoyama, I.; Hirao, N.

    2016-10-01

    In order to determine the chemical states of radioactive cesium (137Cs or 134Cs) sorbed in clay minerals, chemical states of cesium as well as the other alkali metals (sodium and rubidium) sorbed in micaceous oxides have been investigated by X-ray photoelectron spectroscopy (XPS). Since the number of atoms in radioactive cesium is extremely small, we specially focused on chemical states of trace-level alkali metals. For this purpose, we have measured XPS under X-ray total reflection (TR) condition. For cesium, it was shown that ultra-trace amount of cesium down to about 100 pg cm-2 can be detected by TR-XPS. This amount corresponds to about 200 Bq of 137Cs (t1/2 = 30.2 y). It was demonstrated that ultra-trace amount of cesium corresponding to radioactive cesium level can be measured by TR-XPS. As to the chemical states, it was found that core-level binding energy in TR-XPS for trace-level cesium shifted to lower-energy side compared with that for thicker layer. A reverse tendency is observed in sodium. Based on charge transfer within a simple point-charge model, it is concluded that chemical bond between alkali metal and micaceous oxide for ultra-thin layer is more polarized that for thick layer.

  20. 异核碱金属原子间的三体相互作用系数%Three-body dispersion coefficients for heteronuclear alkali-metal atoms

    Institute of Scientific and Technical Information of China (English)

    谢柏东; 黄时中

    2013-01-01

    By utilizing the model potential for alkali-metal atoms and the variationally stable method, the three-body dispersion coefficients for heteronuclear interactions of the alkali-metal atoms are calculated for the first time. In order to illustrate the reliability of the calculated results, the multipolar polarizabil-ities of the alkali-metal atoms are also calculated and compared with those of the previous calculations and experimental data. The results show that the present three-body dispersion coefficients are reliable.%利用碱金属原子的模型势和稳定变分法,首次计算了异核碱金属原子间的三体相互作用系数.为了说明计算结果的精度,同时计算了碱金属原子的电多级极化率.与其他作者的理论数据和有关实验数据的比较表明,本文所得到的异核碱金属原子间的三体相互作用系数是可靠的.

  1. Partial alkali-metal ion extraction from K0.8(Li0.27Ti1.73)O4 using PTFE as an extraction reagent.

    Science.gov (United States)

    Ozawa, Tadashi C; Sasaki, Takayoshi

    2014-10-21

    The alkali-metal ion extraction ability of an inert material, polytetrafluoroethylene (PTFE; empirical formula CF2), was clarified by characterizing a partially alkali-metal ion-extracted layered compound, K0.8(Li0.27Ti1.73)O4. Washing K0.8(Li0.27Ti1.73)O4 in water extracts only 44% of the interlayer K(+) and no intralayer Li(+); on the other hand, 53% of the interlayer K(+) and approximately 10% of the intralayer Li(+) ions were extracted from K0.8(Li0.27Ti1.73)O4 by the reaction with PTFE at 350 °C under flowing Ar. A systematic decrease in the lattice parameters a and c along the intralayer directions and an increase in b along the interlayer direction were observed, consistent with the alkali-metal ion deintercalation amount as a function of the reaction temperatures and the reacted PTFE amounts. After the reaction with K0.8(Li0.27Ti1.73)O4 : CF2 = 1 : 0.6 in mol, the lattice parameter b increased to 1.5607(3) nm from 1.5522(2) of the pristine K0.8(Li0.27Ti1.73)O4, and this change in the lattice parameter was approximately one order of magnitude larger than those in a and c.

  2. Influence of alkali metal superoxides on structure, electronic, and optical properties of Be12O12 nanocage: Density functional theory study

    Science.gov (United States)

    Raoof Toosi, Ali; Shamlouei, Hamid Reza; Hesari, Asghar Mohammadi

    2016-09-01

    The effect of alkali metal superoxides M3O (M = Li, Na, K) on the electronic and optical properties of a Be12O12 nanocage was studied by density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The energy gaps (Eg) of all configurations were calculated. Generally, the adsorption of alkali metal superoxides on the Be12O12 nanocage causes a decrease of Eg. Electric dipole moment μ, polarizability α, and static first hyperpolarizability β were calculated and it was shown that the adsorption of alkali metal superoxides on Be12O12 increases its polarizability. It was found that the absorption of M3O on Be12O12 nanocluster improves its nonlinear optical properties. The highest first hyperpolarizability (β ≈ 214000 a.u.) is obtained in the K3O-Be12O12 nanocluster. The TD-DFT calculations were performed to investigate the origin of the first hyperpolarizabilities and it was shown that a higher first hyperpolarizability belongs to the structure that has a lower transition energy.

  3. A negative ion source for alkali ions

    NARCIS (Netherlands)

    Vermeer, A.; Zwol, N.A. van

    1980-01-01

    An ion source is described which delivers negative alkali ions. With this source, which consists of a duoplasmatron and a charge exchange canal with alkali vapour, negative Li, Na and K ions are produced. The oven in which alkali metals are evaporated can reach temperatures up to 575°C.

  4. Heat transfer and flow in high-temperature alkali-metal heat pipes

    Science.gov (United States)

    Nosach, N. A.; Gontarev, Iu. K.; Prisniakov, V. F.; Iakovenko, A. G.; Kostornov, A. G.

    1982-06-01

    An experimental study of the dynamics of heat pipes with steel wool and metal fiber wicks, in particular of startup and transition from one operating mode to another, is presented. The dynamics effect of the initial heat flux in the evaporator when NaK is the working fluid is determined. The effect of interaction between the liquid and vapor phases on the heat and mass transfer from the vapor condensing on the pipe wall is analyzed.

  5. Effects of Alkali and Alkaline Earth Metals on N-Containing Species Release during Rice Straw Pyrolysis

    Directory of Open Access Journals (Sweden)

    Pan Gao

    2015-11-01

    Full Text Available To study the effects of inherent and external alkali and alkaline earth metallic species (AAEMs, i.e., K, Ca and Mg on the behavior of N-containing species release during rice straw (RS pyrolysis, different pretreatments were applied in numerous experiments. Results indicate that ammonia (NH3 and hydrogen cyanide (HCN are the major N-containing species and that the yields of isocyanic acid (HNCO and nitric oxide (NO are relatively low. The removal of inhert AAEMs shifts N-containing species release to a high-temperature zone according to volatile release behavior because of the increase in activation energy. The formation selectivity of NH3, HNCO, and NO increases by demineralized pretreatment, whereas HCN selectivity decreases. The formation of HNCO is mainly affected by alkaline earth metal. N-containing species release occurs in low temperatures with the addition of external AAEMs. The activation energy of samples impregnated with CaCl2 and MgCl2 sharply decreases compared to the original RS. The total yields of N-containing species are reduced significantly in the presence of KCl, CaCl2, and MgCl2 as additives. The inhibition ability of AAEMs follows the sequence MgCl2 > CaCl2 > KCl. The inhibition effect of MgCl2 can be improved by solution immersion compared with solid powder mixing. The clean biomass pyrolysis and gasification technology with low N-containing species content may be developed according to the results.

  6. Recent advances in technetium halide chemistry.

    Science.gov (United States)

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc

  7. Dipole Polarizability of Alkali-Metal (Na, K, Rb) - Alkaline-Earth-Metal (Ca,Sr) Polar molecules - Prospects of Alignment

    CERN Document Server

    Gopakumar, Geetha; Hada, Masahiko; Kajita, Masatoshi

    2014-01-01

    Electronic open-shell ground-state properties of selected alkali-metal (AM) - alkaline-earth-metal (AEM) polar molecules are investigated. We determine potential energy curves of the 2{\\Sigma}+ ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes (23Na, 39K, 85Rb) - (40Ca, 88Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  8. Alkali metal – yttrium borohydrides: The link between coordination of small and large rare-earth

    Energy Technology Data Exchange (ETDEWEB)

    Sadikin, Yolanda [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Stare, Katarina [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerjeva 5, SI-1000 Ljubljana (Slovenia); Schouwink, Pascal [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland); Brix Ley, Morten; Jensen, Torben R. [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C (Denmark); Meden, Anton [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerjeva 5, SI-1000 Ljubljana (Slovenia); Černý, Radovan, E-mail: radovan.cerny@unige.ch [Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva (Switzerland)

    2015-05-15

    The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five new compounds and four further ones known from previous work on the homoleptic borohydrides. Crystal structures have been solved and refined from synchrotron X-ray powder diffraction, thermal stability of new compounds have been investigated and ionic conductivity measured for selected samples. Significant coordination flexibility for Y{sup 3+} is revealed, which allows the formation of both octahedral frameworks and tetrahedral complex anions with the tetrahydroborate anion BH{sub 4} both as a linker and terminal ligand. Bi- and trimetallic cubic double-perovskites c-A{sub 3}Y(BH{sub 4}){sub 6} or c-A{sub 2}LiY(BH{sub 4}){sub 6} (A=Rb, Cs) form in all the investigated systems, with the exception of the Li–K–Y system. The compounds with the stoichiometry AY(BH{sub 4}){sub 4} crystallize in all investigated systems with a great variety of structure types which find their analog amongst metal oxides. In-situ formation of a new borohydride – closo-borane is observed during decomposition of all double perovskites. - Graphical abstract: The system Li–A–Y–BH{sub 4} (A=K, Rb, Cs) is found to contain five novel compounds and four further ones previously reported. Significant coordination flexibility of Y{sup 3+} is revealed, which can be employed to form both octahedral frameworks and tetrahedral complex anions, very different structural topologies. Versatility is also manifested in three different simultaneously occurring coordination modes of borohydrides for one metal cation, as proposed by DFT optimization of the monoclinic KY(BH{sub 4}){sub 4} structural model observed by powder diffraction. - Highlights: • The system Li-A-Y-BH{sub 4} (A=K, Rb, Cs) contains nine compounds in total. • Y{sup 3+} forms octahedral frameworks and tetrahedral complex anions. • Bi- and trimetallic double-perovskites crystallize in most systems. • Various AY(BH{sub 4}){sub 4} crystallize with

  9. Complex formation during dissolution of metal oxides in molten alkali carbonates

    DEFF Research Database (Denmark)

    Li, Qingfeng; Borup, Flemming; Petrushina, Irina;

    1999-01-01

    Dissolution of metal oxides in molten carbonates relates directly to the stability of materials for electrodes and construction of molten carbonate fuel cells. In the present work the solubilities of PbO, NiO, Fe2O3,and Bi2O3 in molten Li/K carbonates have been measured at 650 degrees C under...... carbon dioxide atmosphere. It is found that the solubilities of NiO and PbO decrease while those of Fe2O3 and Bi2O3 remain approximately constant as the lithium mole fraction increases from 0.43 to 0.62 in the melt. At a fixed composition of the melt, NiO and PbO display both acidic and basic dissolution...

  10. Interaction of Cu(+) with cytosine and formation of i-motif-like C-M(+)-C complexes: alkali versus coinage metals.

    Science.gov (United States)

    Gao, Juehan; Berden, Giel; Rodgers, M T; Oomens, Jos

    2016-03-14

    The Watson-Crick structure of DNA is among the most well-known molecular structures of our time. However, alternative base-pairing motifs are also known to occur, often depending on base sequence, pH, or the presence of cations. Pairing of cytosine (C) bases induced by the sharing of a single proton (C-H(+)-C) may give rise to the so-called i-motif, which occurs primarily in expanded trinucleotide repeats and the telomeric region of DNA, particularly at low pH. At physiological pH, silver cations were recently found to stabilize C dimers in a C-Ag(+)-C structure analogous to the hemiprotonated C-dimer. Here we use infrared ion spectroscopy in combination with density functional theory calculations at the B3LYP/6-311G+(2df,2p) level to show that copper in the 1+ oxidation state induces an analogous formation of C-Cu(+)-C structures. In contrast to protons and these transition metal ions, alkali metal ions induce a different dimer structure, where each ligand coordinates the alkali metal ion in a bidentate fashion in which the N3 and O2 atoms of both cytosine ligands coordinate to the metal ion, sacrificing hydrogen-bonding interactions between the ligands for improved chelation of the metal cation.

  11. Low temperature alkali metal-sulfur batteries. Final report, December 1, 1974-November 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Brummer, S.B.; Rauh, R.D.; Abraham, K.M.; Dampier, F.W.; Subrahmanyam, V.; Pearson, G.F.; Surprenant, J.K.; Buzby, J.M.

    1980-03-01

    Work on the development of rechargeable, ambient-temperature Li/sulfur and Li/metal sulfide batteries is reported. The Li/S system has the cathode material dissolved in the electrolyte, as Li/sub 2/S/sub n/. Tetrahydrofuran, 1M LiAsF/sub 6/, is one of the more attractive electrolytes discovered for this cell, since it can dissolve up to approx. 10M S as Li/sub 2/Sn. Despite the oxidative nature of the electrolyte, Li is stable in it and can be electrodeposited from it on battery charge. Cells of the configuration Li 5M S (as Li/sub 2/S/sub n/), THF, 1M LiAsF/sub 6//carbon can be discharged at 50/sup 0/C with a utilization of nearly 1.5e/sup -//S at the C/3 rate. This corresponds to the rate-capacity goal for this battery in its proposed vehicular or load-leveling applications. Further improvements in rate are possible. Rechargeability of 135 cycles of 0.1 e/sup -//S and approx. 45 cycles of 0.5 e/sup -//S was demonstrated. The self-discharge reaction keeps the Li electrode free of electrically isolated dendrites. Ultimate failure on cycling is due to cathode depletion via precipitation of Li/sub 2/S on the anode in a form insoluble in the electrolyte. Attempts to solubilize the Li/sub 2/S by the internal generation of an oxidizing scavenger (e.g., Br/sub 2/) or by addition of Lewis acids have met only with limited success. Cells of configuration Li/THF, 1M LiAsF/sub 6//insoluble metal sulfide were investigated, using the following cathodes: CuS, NiS, SiS/sub 2/, MnS/sub 2/, FeS, and Bi/sub 2/S/sub 3/. Of these, the most promising new material in terms of energy density and rechargeability is CuS. Well over 100 cycles for Li/CuS cells with moderate cathode loadings were demonstrated. CuS compares favorably with TiS/sub 2/ in terms of energy density and rechargeability and is superior in terms of economics. 39 figures, 19 tables.

  12. Comparison of dissociation mechanism between collisionally activated dissociation and charge inversion using alkali metal targets for chlorophenol isomers

    Science.gov (United States)

    Hayakawa, Shigeo; Kawamura, Yoshiaki; Takahashi, Yutaka

    2005-11-01

    Chlorinated aromatic compounds are well-known environmental pollutants whose toxicities depend dramatically on the chlorine substitution pattern, making differentiation of chlorophenol isomers important for environmental analysis. Collisionally activated dissociation (CAD) spectra and charge inversion spectra of ortho-, meta-, and para-chlorophenols (ClC6H4OH) and their partially deuterated forms (ClC6H4OD) were measured using alkali metal targets. The peaks associated with C6H4O+ and C5H5Cl+ ions observed in the CAD spectra result from the loss of HCl and CO fragments, respectively, after the re-arrangement of the hydroxyl hydrogen atom. The peaks associated with C6H4OH- and ClC6H4O- ions observed in the charge inversion spectra result from Cl loss and from hydroxyl bond dissociation, respectively. Isomeric differentiation is possible based on the clear differences observed in the relative intensities of these pairs of peaks. Although the intensities of the peaks associated with C6H4O+ relative to those of C5H5Cl+ in the CAD spectra are independent of the target species, the intensities of the peaks associated with C6H4OH- relative to those of ClC6H4O- in the charge inversion spectra are target dependent. The isomeric dependence of the positive ion distribution patterns in the CAD spectra is proposed to be due to the differences in the rate of the hydrogen atom re-arrangement process. In contrast, the isomeric dependence of the negative ion distribution patterns in the charge inversion spectra is attributed to differences in the bond strength involved in the direct dissociation process in the neutral intermediate species.

  13. Use of alkali metal salts to prepare high purity single-walled carbon nanotube solutions and thin films

    Science.gov (United States)

    Ashour, Rakan F.

    Single-walled carbon nanotubes (SWCNTs) display interesting electronic and optical properties desired for many advanced thin film applications, such as transparent conductive electrodes or thin-film transistors. Large-scale production of SWCNTs generally results in polydispersed mixtures of nanotube structures. Since SWCNT electronic character (conducting or semiconducting nature) depends on the nanotube structure, application performance is being held back by this inability to discretely control SWCNT synthesis. Although a number of post-production techniques are able to separate SWCNTs based on electronic character, diameter, or chirality, most still suffer from the disadvantage of high costs of materials, equipment, or labor intensity to be relevant for large-scale production. On the other hand, chromatographic separation has emerged as a method that is compatible with large scale separation of metallic and semiconducting SWCNTs. In this work, SWCNTs, in an aqueous surfactant suspension of sodium dodecyl sulfate (SDS), are separated by their electronic character using a gel chromatography process. Metallic SWCNTs (m-SWCNTs) are collected as initial fractions since they show minimum interaction with the gel medium, whereas, semiconducting SWCNTs (sc- SWCNTs) remain adsorbed to the gel. The process of sc-SWCNT retention in the gel is found to be driven by the packing density of SDS around the SWCNTs. Through a series of separation experiments, it is shown that sc-SWCNTs can be eluted from the gel simply by disturbing the configuration of the SDS/SWCNT micellar structure. This is achieved by either introducing a solution containing a co-surfactant, such as sodium cholate (SC), or solutions of alkali metal ionic salts. Analysis of SWCNT suspensions by optical absorption provides insights into the effect of changing the metal ion (M+ = Li+, Na+, and K+) in the eluting solution. Salts with smaller metal ions (e.g. Li+) require higher concentrations to achieve

  14. CO2 Extraction from Ambient Air Using Alkali-Metal Hydroxide Solutions Derived from Concrete Waste and Steel Slag

    Science.gov (United States)

    Stolaroff, J. K.; Lowry, G. V.; Keith, D. W.

    2003-12-01

    To mitigate global climate change, deep reductions in CO2 emissions are required in the coming decades. Carbon sequestration will play a crucial role in this reduction. Early adoption of carbon sequestration in low-cost niche markets will help develop the technology and experience required for large-scale deployment. One such niche may be the use of alkali metals from industrial waste streams to form carbonate minerals, a safe and stable means of sequestering carbon. In this research, the potential of using two industrial waste streams---concrete and steel slag---for sequestering carbon is assessed. The scheme is outlined as follows: Ca and Mg are leached with water from a finely ground bed of steel slag or concrete. The resulting solution is sprayed through air, capturing CO2 and forming solid carbonates, and collected. The feasibility of this scheme is explored with a combination of experiments, theoretical calculations, cost accounting, and literature review. The dissolution kinetics of steel slag and concrete as a function of particle size and pH is examined. In stirred batch reactors, the majority of Ca which dissolved did so within the first hour, yielding between 50 and 250 (mg; Ca)/(g; slag) and between 10 and 30 (mg; Ca)/(g; concrete). The kinetics of dissolution are thus taken to be sufficiently fast to support the type of scheme described above. As proof-of-concept, further experiments were performed where water was dripped slowly through a stagnant column of slag or concrete and collected at the bottom. Leachate Ca concentrations in the range of 15 mM were achieved --- sufficient to support the scheme. Using basic physical principles and numerical methods, the quantity of CO2 captured by falling droplets is estimated. Proportion of water loss and required pumping energy is similarly estimated. The results indicate that sprays are capable of capturing CO2 from the air and that the water and energy requirements are tractable. An example system for

  15. Synthesis of monomeric and polymeric alkali and alkaline earth metal complexes using a phosphinoselenoic amide ligand in metal coordination sphere

    Indian Academy of Sciences (India)

    Jayeeta Bhattacharjee; Ravi K Kottalanka; Harinath Adimulam; Tarun K Panda

    2014-09-01

    We report the monomeric complexes of magnesium and calcium of composition [M(THF){2-Ph2P(Se)N(CMe3)}2] [M= Mg (3), n = 1 andM = Ca (4), n = 2)] and polymeric complexes of potassium and barium of composition [K(THF)2{Ph2P(Se)N(CMe3)}] (2) and [K(THF)Ba{Ph2P(Se)N(CMe3)}3](5) respectively. The potassium complex 2 was readily prepared by the reaction of potassium bis(trimethylsilyl)amide with phosphinoselenoic amide ligand (1) at ambient temperature. The calcium complex 4 was prepared by two synthetic routes: in the first method, commonly known as salt metathesis reaction, the potassium complex 2 was made to react with alkaline earth metal diiodide at room temperature to afford the corresponding calcium complex. The metal bis(trimethylsilyl)amides were made to react with protic ligand 1 in the second method to eliminate the volatile bis(trimethyl)silyl amine. The magnesium complex 3 and barium complex 5 were prepared only through the first method. Solid-state structures of all the new complexes were established by single crystal X-ray diffraction analysis. The smaller ionic radii of Mg2+ (0.72Å) and Ca2+ (0.99Å) ions form the monomeric complex, whereas the larger ions K+ (1.38Å) and Ba2+ (1.35Å) were found to form onedimensional polymeric complexes with monoanionic ligand 1. Compound 2 serves an example of magnesium complex with a Mg-Se direct bond.

  16. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111)

    Science.gov (United States)

    Xin, Hongliang; Linic, Suljo

    2016-06-01

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  17. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    Science.gov (United States)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  18. Crystal Structure and Topological Aspects of the High-Temperature Phases of the Alkali-metal Oxalates M-2 C2O4(M= K,Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Dinnebier,R.; Vensky, S.; Jensen, M.; Hanson, J.

    2005-01-01

    The high-temperature phases of the alkali-metal oxalates M{sub 2}[C{sub 2}O{sub 4}] (M=K, Rb, Cs), and their decomposition products M{sub 2}[CO{sub 3}] (M=K, Rb, Cs), were investigated by fast, angle-dispersive X-ray powder diffraction with an image-plate detector, and also by simultaneous differential thermal analysis (DTA)/thermogravimetric analysis (TGA)/mass spectrometry (MS) and differential scanning calorimetry (DSC) techniques. The following phases, in order of decreasing temperature, were observed and crystallographically characterized (an asterisk denotes a previously unknown modification): *{alpha}-K{sub 2}[C{sub 2}O{sub 4}], *{alpha}-Rb{sub 2}[C{sub 2}O{sub 4}], *{alpha}-Cs{sub 2}[C{sub 2}O{sub 4}], {alpha}-K{sub 2}[CO{sub 3}], *{alpha}-Rb{sub 2}[CO{sub 3}], and *{alpha}-Cs{sub 2}[CO{sub 3}] in space group P6{sub 3}/mmc; *{beta}-Rb{sub 2}[C{sub 2}O{sub 4}], *{beta}-Cs{sub 2}[C{sub 2}O{sub 4}], *{beta}-Rb{sub 2}[CO{sub 3}], and *{beta}-Cs{sub 2}[CO{sub 3}] in Pnma; {gamma}-Rb{sub 2}[C{sub 2}O{sub 4}], {gamma}-Cs[C{sub 2}O{sub 4}], {gamma}-Rb{sub 2}[CO{sub 3}], and {gamma}-Cs{sub 2}[CO{sub 3}] in P2{sub 1}/c; and {delta}-K{sub 2}[C{sub 2}O{sub 4}] and {delta}-Rb{sub 2}[C{sub 2}O{sub 4}] in Pbam. With respect to the centers of gravity of the oxalate and carbonate anions, respectively, the crystal structures of all known alkali-metal oxalates and carbonates belong to the AlB{sub 2} family, and adopt either the AlB{sub 2} or the Ni{sub 2}In arrangement depending on the size of the cation and the temperature. Despite the different sizes and constitutions of the carbonate and oxalate anions, the high-temperature phases of the alkali-metal carbonates M{sub 2}[CO{sub 3}] (M=K, Rb, Cs), exhibit the same sequence of basic structures as the corresponding alkali-metal oxalates. The topological aspects and order-disorder phenomena at elevated temperature are discussed.

  19. Spectrum, radial wave functions, and hyperfine splittings of the Rydberg states in heavy alkali-metal atoms

    Science.gov (United States)

    Sanayei, Ali; Schopohl, Nils

    2016-07-01

    We present numerically accurate calculations of the bound-state spectrum of the highly excited valence electron in the heavy alkali-metal atoms solving the radial Schrödinger eigenvalue problem with a modern spectral collocation method that applies also for a large principal quantum number n ≫1 . As an effective single-particle potential we favor the reputable potential of Marinescu et al. [Phys. Rev. A 49, 982 (1994)], 10.1103/PhysRevA.49.982. Recent quasiclassical calculations of the quantum defect of the valence electron agree for orbital angular momentum l =0 ,1 ,2 ,... overall remarkably well with the results of the numerical calculations, but for the Rydberg states of rubidium and also cesium with l =3 this agreement is less fair. The reason for this anomaly is that in rubidium and cesium the potential acquires for l =3 deep inside the ionic core a second classical region, thus invalidating a standard Wentzel-Kramers-Brillouin (WKB) calculation with two widely spaced turning points. Comparing then our numerical solutions of the radial Schrödinger eigenvalue problem with the uniform analytic WKB approximation of Langer constructed around the remote turning point rn,j ,l (" close=")n -δ0)">+ we observe everywhere a remarkable agreement, apart from a tiny region around the inner turning point rn,j ,l (-). For s states the centrifugal barrier is absent and no inner turning point exists: rn,j ,0 (-)=0 . With the help of an ansatz proposed by Fock we obtain for the s states a second uniform analytic approximation to the radial wave function complementary to the WKB approximation of Langer, which is exact for r →0+ . From the patching condition, that is, for l =0 the Langer and Fock solutions should agree in the intermediate region 0 application we consider recent spectroscopic data for the hyperfine splittings of the isotopes 85Rb and 87Rb and find a remarkable agreement with the predicted scaling relation An,j ,0 (HFS )=const .

  20. Atomic arrangement and electron band structure of Si(1 1 1)-ß-√3 x √3-Bi reconstruction modified by alkali-metal adsorption: ab initio study.

    Science.gov (United States)

    Eremeev, S V; Chukurov, E N; Gruznev, D V; Zotov, A V; Saranin, A A

    2015-08-05

    Using ab initio calculations, atomic structure and electronic properties of Si(1 1 1)[Formula: see text]-Bi surface modified by adsorption of 1/3 monolayer of alkali metals, Li, Na, K, Rb and Cs, have been explored. Upon adsorption of all metals, a similar atomic structure develops at the surface where twisted chained Bi trimers are arranged into a honeycomb network and alkali metal atoms occupy the [Formula: see text] sites in the center of each honeycomb unit. Among other structural characteristics, the greatest variation concerns the relative heights at which alkali metals reside with respect to Bi-trimer layer. Except for Li, the other metals reside higher than Bi layer and their heights increase with atomic number. All adsorbed surface structures display similar electron band structures of which the most essential feature is metallic surface-state band with a giant spin splitting. This electronic property allows one to consider the Si(1 1 1)[Formula: see text]-Bi surfaces modified by alkali metal adsorption as a set of material systems showing promise for spintronic applications.

  1. Atomic arrangement and electron band structure of Si(1 1 1)-ß-\\sqrt{3}\\times \\sqrt{3} -Bi reconstruction modified by alkali-metal adsorption: ab initio study

    Science.gov (United States)

    Eremeev, S. V.; Chukurov, E. N.; Gruznev, D. V.; Zotov, A. V.; Saranin, A. A.

    2015-08-01

    Using ab initio calculations, atomic structure and electronic properties of Si(1 1 1)\\sqrt{3}× \\sqrt{3} -Bi surface modified by adsorption of 1/3 monolayer of alkali metals, Li, Na, K, Rb and Cs, have been explored. Upon adsorption of all metals, a similar atomic structure develops at the surface where twisted chained Bi trimers are arranged into a honeycomb network and alkali metal atoms occupy the {{T}4} sites in the center of each honeycomb unit. Among other structural characteristics, the greatest variation concerns the relative heights at which alkali metals reside with respect to Bi-trimer layer. Except for Li, the other metals reside higher than Bi layer and their heights increase with atomic number. All adsorbed surface structures display similar electron band structures of which the most essential feature is metallic surface-state band with a giant spin splitting. This electronic property allows one to consider the Si(1 1 1)\\sqrt{3}× \\sqrt{3} -Bi surfaces modified by alkali metal adsorption as a set of material systems showing promise for spintronic applications.

  2. Novel Alkali-Metal Coordination in Phenoxides: Powder Diffraction Results on C(6)H(5)OM (M = Li, Na, K, Rb, Cs).

    Science.gov (United States)

    Dinnebier, R. E.; Pink, Maren; Sieler, J.; Stephens, P. W.

    1997-07-30

    We report the ab initio structure solutions of C(6)H(5)OM (M = K, Rb, Cs) by high-resolution powder X-ray diffraction. The compounds, which are of interest for reactions of the Kolbe-Schmitt type, are isostructural. The crystal structures are orthorhombic, space group Pna2(1), Z = 12, with lattice parameters (a, b, c in Å) 14.1003(1), 17.9121(1), and 7.16475(1) for the K compound, 14.4166(2), 18.2028(2), and 7.4009(1) for the Rb compound, and 14.8448(2), 18.5070(2), and 7.6306(1) for the Cs compound. They have a chain structure [M([6])] along the crystallographic c axis. This is a very unusual arrangement in which two different alkali-metal coordination spheres are observed: a distorted octahedron and a 3-fold oxygen coordination. In the latter, the 3-fold-coordinated unsaturated alkali metals additionally show weak interactions with phenyl rings. We also give powder patterns for the compounds with M = Li, Na. The former crystallizes in the monoclinic space group P2(1)/a with lattice parameters a = 22.594 Å, b = 4.7459 Å, c= 10.053 Å, and beta = 97.82 degrees with Z = 8, but no structure solution was possible. The powder pattern for the Na phenolate is in agreement with the earlier single-crystal structure.

  3. Electrochemical Doping of Halide Perovskites with Ion Intercalation.

    Science.gov (United States)

    Jiang, Qinglong; Chen, Mingming; Li, Junqiang; Wang, Mingchao; Zeng, Xiaoqiao; Besara, Tiglet; Lu, Jun; Xin, Yan; Shan, Xin; Pan, Bicai; Wang, Changchun; Lin, Shangchao; Siegrist, Theo; Xiao, Qiangfeng; Yu, Zhibin

    2017-01-24

    Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40% reduction of transmittance in the 450-850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.

  4. Bio-conventional bleaching of kadam kraft-AQ pulp by thermo-alkali-tolerant xylanases from two strains of Coprinellus disseminatus for extenuating adsorbable organic halides and improving strength with optical properties and energy conservation.

    Science.gov (United States)

    Lal, Mohan; Dutt, Dharm; Tyagi, C H

    2012-04-01

    Two novel thermo-alkali-tolerant crude xylanases namely MLK-01 (enzyme-A) and MLK-07 (enzyme-B) from Coprinellus disseminatus mitigated kappa numbers of Anthocephalus cadamba kraft-AQ pulps by 32.5 and 34.38%, improved brightness by 1.5 and 1.6% and viscosity by 5.75 and 6.47% after (A)XE(1) and (B)XE(1)-stages, respectively. The release of reducing sugars and chromophores was the highest during prebleaching of A. cadamba kraft-AQ pulp at enzyme doses of 5 and 10 IU/g, reaction times 90 and 120 min, reaction temperatures 75 and 65°C and consistency 10% for MLK-01 and MLK-07, respectively. MLK-07 was more efficient than MLK01 in terms of producing pulp brightness, improving mechanical strength properties and reducing pollution load. MLK-01 and MLK-07 reduced AOX by 19.51 and 42.77%, respectively at 4% chlorine demands with an increase in COD and colour due to removal of lignin carbohydrates complexes. A. cadamba kraft-AQ pulps treated with xylanases from MLK-01 to MLK-07 and followed by CEHH bleaching at half chlorine demand (2%) showed a drastic reduction in brightness with slight improvement in mechanical strength properties compared to pulp bleached at 4% chlorine demand. MLK-01 reduced AOX, COD and colour by 43.83, 39.03 and 27.71% and MLK-07 by 38.34, 40.48 and 30.77%, respectively at half chlorine demand compared to full chlorine demand (4%). pH variation during prebleaching of A. cadamba kraft-AQ pulps with strains MLK-01 and MLK-07 followed by CEHH bleaching sequences showed a decrease in pulp brightness, AOX, COD and colour with an increase in mechanical strength properties, pulp viscosity and PFI revolutions to get a beating level of 35 ± 1 °SR at full chlorine demand.

  5. Production of Synthesis Gas via Methane Reforming with CO2 on Ni/SiO2 Catalysts Promoted by Alkali and Alkaline Earth Metals

    Institute of Scientific and Technical Information of China (English)

    陈平; 侯昭胤; 郑小明

    2005-01-01

    Ni/SiO2 catalysts promoted by alkali metals K and Cs or alkaline earth metals Mg, Ca, Sr and Ba were prepared, characterized by H2-TPR and XRD, and used for the production of synthesis gas via methane reforming with CO2. Though K and Cs promoted Ni catalysts could eliminate coke deposition, the reforming activity of these promoted catalysts was decreased heavily. Mg and Ca promoted Ni/SiO2 catalysts exhibited excellent coke resistance ability with minor loss of the reforming activity of Ni/SiO2. Ba showed poor coke resistance ability and small amount of Sr increased the formation of coke. The possible mechanism of these promoters was discussed.

  6. Fragmentation study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, using post-source decay matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Kéki, S; Deák, G; Zsuga, M

    2001-12-01

    A post-source decay matrix-assisted laser desorption/ionization mass spectrometric (PSD-MALDI-MS) study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, is reported. The fragmentations of rutin were performed by selecting the [R + Cat]+ peaks for PSD, where R represents a rutin molecule and Cat an alkali metal ion (Li+, Na+, K+). The PSD-MALDI mass spectra showed, depending on Cat, different fragmentation patterns with respect to both the quality and quantity of the fragment ions formed. The intensity of fragmentation decreased in the order Li+ > Na+ > K+. The fragmentation mechanism and an explanation for the observed differences are suggested.

  7. Dispersion C3 coefficients for the alkali-metal atoms interacting with a graphene layer and with a carbon nanotube

    CERN Document Server

    Arora, Bindiya; Sahoo, B K

    2013-01-01

    We evaluate separation dependent van der Waal dispersion ($C_3$) coefficients for the interactions of the Li, Na, K and Rb alkali atoms with a graphene layer and with a single walled carbon nanotube (CNT) using the hydrodynamic and Dirac models. The results from both the models are evaluated using accurate values of the dynamic polarizabilities of the above atoms. Accountability of these accurate values of dynamical polarizabilities of the alkali atoms in determination of the above $C_3$ coefficients are accentuated by comparing them with the coefficients evaluated using the dynamic dipole polarizabilities estimated from the single oscillator approximation which are typically employed in the earlier calculations. For practical description of the atom-surface interaction potentials the radial dependent $C_3$ coefficients are given for a wide range of separation distances between the ground states of the considered atoms and the wall surfaces and also for different values of nanotube radii. The coefficients for...

  8. Two-photon photoemission investigation of electronic and dynamical properties of alkali atoms adsorbed on noble metal surfaces

    Science.gov (United States)

    Sametoglu, Vahit

    We present a systematic time-resolved two-photon photoemission study of the electronic and dynamical properties of Li through Cs adsorbed on Cu(111) and Ag(111) surfaces. A fundamental problem in surface science is how to describe the electronic structure of a chemisorption interface based on the intrinsic properties of the interacting materials. Because of their simple s-electron structure, elements of the alkali atom group comprise paradigmatic adsorbates in many theories of chemisorption, whereas the complementary experimental studies are sparse and incomplete. Through a combination of spectroscopic and femtosecond time-resolved surface measurements, we are able to probe systematically the binding energies, symmetries, and electron and nuclear relaxation dynamics of the initially unoccupied alkali atom resonances. As a prelude, we study the two-photon photoemission process occurring at the bare Ag(111) surface. We develop a quantitative model for two-photon photoemission process, where the nonresonant and k-dependent two-photon absorption between the lower and upper sp-bands is modeled by the optical Bloch equations, and the angle-dependent intensities are described by the Fresnel equations. Our two-photon photoemission spectra of Li through Cs chemisorbed Cu(111) and Ag(111) surfaces reveal two resonances with the m = 0 and m = +/-1 symmetry ('m' is the projection of the orbital angular momentum 'l' onto the surface plane). For the m = 0 resonance, which is derived from the hybridization of the ns and npz orbitals of alkali atoms, we find a binding energy of 1.84--1.99 eV below the vacuum level, which is independent of the alkali atom period, and tunes with coverage in a universal manner. At 0.3--0.7 eV higher energy, we discover and identify the m = +/-1 resonance by its characteristic angular intensity distribution, which derives from the antisymmetry of the npx and npy orbitals. We implement a quantitative model for the alkali atom chemisorption based on the

  9. Photodynamic therapy using a novel irradiation source, LED lamp, is similarly effective to photodynamic therapy using diode laser or metal-halide lamp on DMBA- and TPA-induced mouse skin papillomas.

    Science.gov (United States)

    Takahashi, Hidetoshi; Nakajima, Susumu; Ogasawara, Koji; Asano, Ryuji; Nakae, Yoshinori; Sakata, Isao; Iizuka, Hajime

    2014-08-01

    Photodynamic therapy (PDT) is useful for superficial skin tumors such as actinic keratosis and Bowen disease. Although PDT is non-surgical and easily-performed treatment modality, irradiation apparatus is large and expensive. Using 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-ο-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin papilloma model, we compared the efficacy of TONS501- and ALA-PDT with a LED lamp, a diode laser lamp or a metal-halide lamp on the skin tumor regression. TONS501-PDT using 660 nm LED lamp showed anti-tumor effect at 1 day following the irradiation and the maximal anti-tumor effect was observed at 3 days following the irradiation. There was no significant difference in the anti-tumor effects among TONS501-PDT using LED, TONS501-PDT using diode laser, and 5-aminolevulinic acid hydrochloride (ALA)-PDT using metal-halide lamp. Potent anti-tumor effect on DMBA- and TPA-induced mouse skin papilloma was observed by TONS501-PDT using 660 nm LED, which might be more useful for clinical applications.

  10. Counterion influence on the vibrational wavenumbers in ternary and quaternary metal hydride salts, A2MH6 (A = alkali metal, alkaline earth, and lanthanides; M = Ir, Fe, Ru, Os, Pt, Mn).

    Science.gov (United States)

    Gilson, Denis F R; Moyer, Ralph O

    2012-02-06

    The wavenumbers of the ν(3) metal-hydrogen stretching mode (T(1u)) in the IR spectra of both ternary and quaternary hexahydrido salts of transition metals from groups 7 to 10 ([Mn(I)H(6)](5-), [Fe(II)H(6)](4-), [Ru(II)H(6)](4-), [Os(II)H(6)](4-), [Ir(III)H(6)](3-), and [Pt(IV)H(6)](2-)) depend linearly upon the ionization energies of the counterions (alkali metal, alkaline earth, and lanthanide) with a separate line for each metal. This relationship provides quantitative support for the charge-transfer mechanism for explaining the stabilities of these compounds.

  11. The Nature of Metal-Metal Interactions in Dimeric Hydrides and Halides of Group 11 Elements in the Light of High Level Relativistic Calculations.

    Science.gov (United States)

    Dem'yanov, Piotr I; Polestshuk, Pavel M; Kostin, Vladimir V

    2017-03-08

    The titular calculations show that charges at metal atoms M are apparently the main factor governing the nature of M⋅⋅⋅M interactions in two-nuclear coinage-metal complexes, and there are certain critical values of positive charges on M atoms, on exceeding which the pair-wise M⋅⋅⋅M interactions and/or the binding between M atoms in such complexes become repulsive despite negative formation energies of such complexes, short M-M internuclear distances, and the existence of a bond critical point (BCP) between M atoms.

  12. Promoting alkali and alkaline-earth metals on MgO for enhancing CO2 capture by first-principles calculations.

    Science.gov (United States)

    Kim, Kiwoong; Han, Jeong Woo; Lee, Kwang Soon; Lee, Won Bo

    2014-12-07

    Developing next-generation solid sorbents to improve the economy of pre- and post-combustion carbon capture processes has been challenging for many researchers. Magnesium oxide (MgO) is a promising sorbent because of its moderate sorption-desorption temperature and low heat of sorption. However, its low sorption capacity and thermal instability need to be improved. Various metal-promoted MgO sorbents have been experimentally developed to enhance the CO2 sorption capacities. Nevertheless, rigorous computational studies to screen an optimal metal promoter have been limited to date. We conducted first-principles calculations to select metal promoters of MgO sorbents. Five alkali (Li-, Na-, K-, Rb-, and Cs-) and 4 alkaline earth metals (Be-, Ca-, Sr-, and Ba-) were chosen as a set of promoters. Compared with the CO2 adsorption energy on pure MgO, the adsorption energy on the metal-promoted MgO sorbents is higher, except for the Na-promoter, which indicates that metal promotion on MgO is an efficient approach to enhance the sorption capacities. Based on the stabilized binding of promoters on the MgO surface and the regenerability of sorbents, Li, Ca, and Sr were identified as adequate promoters among the 9 metals on the basis of PW91/GGA augmented with DFT+D2. The adsorption energies of CO2 on metal-promoted MgO sorbents for Li, Ca, and Sr atoms are -1.13, -1.68, and -1.48 eV, respectively.

  13. Novel Silver Cobaltacarborane Complexes with a Linearly Bridging Halide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Seo; Bae, Hye Jin; Do, Youngkyu [KAIST, Daejeon (Korea, Republic of); Park, Youngwhan [LG Chem/Research Park, Daejeon (Korea, Republic of); Go, Min Jeong; Lee, Junseong [Chonnam National Univ., Gwangju (Korea, Republic of)

    2013-10-15

    The structural versatility of halides mainly originates from their coordinating abilities of adopting a bridging bond between two or more metal atoms, as well as a terminal bond. Moreover, a halide bridging bond angle is so flexible that thermodynamic stability can be endowed with proper geometry, which conceptually varies from acute to right, obtuse, and linear. In spite of innumerable reports on molecular metal halides, examples of the linearly bridging fashion are very scarce. The reason for the rarity of the linear M. X. M arrangement can be easily explained by the VSEPR (Valence Shell Electron Pair Repulsion) concept. The linear M. X. M formation has only been achieved by adopting a macrocyclic chelate ligand, which is structurally demanding, so that the VSEPR repulsions among lone-pair electrons on the halide atom could be overcome.

  14. Preparation of Cyclic Urethanes from Amino Alcohols and Carbon Dioxide Using Ionic Liquid Catalysts with Alkali Metal Promoters

    Directory of Open Access Journals (Sweden)

    Masahiko Arai

    2006-10-01

    Full Text Available Several ionic liquids were applied as catalysts for the synthesis of cyclicurethanes from amino alcohols and pressurized CO2 in the presence of alkali metalcompounds as promoters. A comparative study was made for the catalytic performanceusing different ionic liquids, substrates, promoters, and pressures. The optimum catalyticsystem was BMIM-Br promoted by K2CO3, which, for 1-amino-2-propanol, produced cyclicurethane in 40% yield with a smaller yield of substituted cyclic urea and no oligomericbyproducts. For other amino alcohols, cyclic urethanes, cyclic ureas, and/or undesiredbyproducts were produced in different yields depending on the substrates used. Possiblereaction mechanisms are proposed.

  15. Purification and Characterization of an Extracellular, Thermo-Alkali-Stable, Metal Tolerant Laccase from Bacillus tequilensis SN4

    OpenAIRE

    Sonica Sondhi; Prince Sharma; Shilpa Saini; Neena Puri; Naveen Gupta

    2014-01-01

    A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC) was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (k cat/K m) showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibite...

  16. Quantum-chemistry based calibration of the alkali metal cation series (Li(+)-Cs(+)) for large-scale polarizable molecular mechanics/dynamics simulations.

    Science.gov (United States)

    Dudev, Todor; Devereux, Mike; Meuwly, Markus; Lim, Carmay; Piquemal, Jean-Philip; Gresh, Nohad

    2015-02-15

    The alkali metal cations in the series Li(+)-Cs(+) act as major partners in a diversity of biological processes and in bioinorganic chemistry. In this article, we present the results of their calibration in the context of the SIBFA polarizable molecular mechanics/dynamics procedure. It relies on quantum-chemistry (QC) energy-decomposition analyses of their monoligated complexes with representative O-, N-, S-, and Se- ligands, performed with the aug-cc-pVTZ(-f) basis set at the Hartree-Fock level. Close agreement with QC is obtained for each individual contribution, even though the calibration involves only a limited set of cation-specific parameters. This agreement is preserved in tests on polyligated complexes with four and six O- ligands, water and formamide, indicating the transferability of the procedure. Preliminary extensions to density functional theory calculations are reported.

  17. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    Science.gov (United States)

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca.

  18. Alkali metal non-stoichiometric effects in (K{sub 0.5}Na{sub 0.5})NbO{sub 3} based piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. C.; Yeo, H. G.; Cho, J. H.; Sung, Y. S.; Kim, M. H.; Song, T. K.; Kim, S. S. [Changwon National University, Changwon (Korea, Republic of); Choi, B. C. [Pukyung National University, Busan (Korea, Republic of); Choi, K. S. [Sunchon National University, Sunchon, Chonnam (Korea, Republic of)

    2010-01-15

    Alkali-metal-excess lead-free 0.93(K{sub 0.5}Na{sub 0.5}){sub (1+x)}NbO{sub 3}-0.07LiNbO{sub 3} (KNNL) piezoelectric ceramics were prepared by using a solid state reaction. The contents of both K and Na were simultaneously controlled to 4 mol% excess. From X-ray diffraction and temperature-dependent dielectric constant measurements, a polymorphic phase transition (PPT) between the tetragonal and orthorhombic phases was observed by changing the stoichiometry of x. With increasing (K+Na) content, the PPT temperature increased, but the Curie temperature decreased. The highest piezoelectric constant was 189 pC/N for x = 0.01, where the PPT temperature was around room temperature.

  19. Complete Series of Alkali-Metal M(BH3NH2BH2NH2BH3) Hydrogen-Storage Salts Accessed via Metathesis in Organic Solvents.

    Science.gov (United States)

    Owarzany, Rafał; Fijalkowski, Karol J; Jaroń, Tomasz; Leszczyński, Piotr J; Dobrzycki, Łukasz; Cyrański, Michał K; Grochala, Wojciech

    2016-01-04

    We report a new efficient way of synthesizing high-purity hydrogen-rich M(BH3NH2BH2NH2BH3) salts (M = Li, Na, K, Rb, Cs). The solvent-mediated metathetic synthesis applied here uses precursors containing bulky organic cations and weakly coordinating anions. The applicability of this method permits the entire series of alkali-metal M(BH3NH2BH2NH2BH3) salts (M = Li, Na, K, Rb, Cs) to be obtained, thus enabling their comparative analysis in terms of crystal structures and hydrogen-storage properties. A novel polymorphic form of Verkade's base (C18H39N4PH)(BH3NH2BH2NH2BH3) precursor was also characterized structurally. For all compounds, we present a comprehensive structural, spectroscopic, and thermogravimetric characterization (PXRD, NMR, FTIR, Raman, and TGA/DSC/MS).

  20. Volatilisation of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Quyn, Dimple Mody; Li, Chun-Zhu [CRC for Clean Power from Lignite, Department of Chemical Engineering, PO Box 36, Monash University, Victoria 3800 (Australia); Hayashi, Jun-ichiro [Centre for Advanced Research of Energy Conversion Materials, Hokkaido University, N13-W8, Kita-ku, Sapporo 060-8628 (Japan)

    2005-08-25

    A Victorian brown coal was gasified in a bench-scale quartz fluidised-bed/fixed-bed reactor in order to study the volatilisation of Na, Ca, and Mg during devolatilisation and gasification and their roles in the reactivity of chars. It was found that the majority of Na was volatilised at 900 {sup o}C under all conditions and that a Na retention limit was achieved in the char with the progress of CO{sub 2} gasification. In some cases, the presence of CO{sub 2} during devolatilisation enhanced the Na retention in the char. In contrast, the retention of Ca (and Mg) was unaffected by CO{sub 2} during devolatilisation at 900C but decreased drastically upon nascent char gasification. The fundamental differences in volatilisation between the alkali and alkaline earth metallic species are discussed in this paper.

  1. Size-specific interaction of alkali metal ions in the solvation of M+-benzene clusters by Ar atoms.

    Science.gov (United States)

    Huarte-Larrañaga, F; Aguilar, A; Lucas, J M; Albertí, M

    2007-08-23

    The size-specific influence of the M+ alkali ion (M = Li, Na, K, Rb, and Cs) in the solvation process of the M+-benzene clusters by Ar atoms is investigated by means of molecular dynamic simulations. To fully understand the behavior observed in M+-bz-Ar(n) clusters, solvation is also studied in clusters containing either M+ or benzene only. The potential energy surfaces employed are based on a semiempirical bond-atom decomposition, which has been developed previously by some of the authors. The outcome of the dynamics is analyzed by employing radial distribution functions, studying the evolution of the distances between the Ar atoms and the alkali ion M+ or the benzene molecule for all M+-bz-Ar(n) clusters. For all members, in the M+-bz series, the benzene molecule (bz) is found to remain strongly bound to M+ even in the presence of solvent atoms. The radial distribution functions for the heavier clusters (K+-bz, Rb+-bz, and Cs+-bz), are found to be different than for the lighter (Na+-bz and Li+-bz) ones.

  2. QED radiative corrections and many-body effects in atoms: the Uehling potential and shifts in alkali metals

    CERN Document Server

    Ginges, J S M

    2015-01-01

    We consider the largest (Uehling) contribution to the one-loop vacuum polarization correction to the binding energies in neutral alkali atoms, from Na through to the superheavy element E119. We use the relativistic Hartree-Fock method to demonstrate the importance of core relaxation effects. These effects are sizeable everywhere, though particularly important for orbitals with angular momentum quantum number l > 0. For d waves, the Uehling shift is enhanced by many orders of magnitude: for Cs the enhancement is more than four orders of magnitude and for the lighter alkali atoms it is even larger. We also study the effects of second- and higher-order many-body perturbation theory on the valence level shifts through inclusion of the correlation potential. The many-body enhancement mechanisms that operate in the case of the Uehling potential apply also to the case of the larger QED self-energy radiative corrections. The huge enhancement for d level shifts makes high-precision studies of transition frequencies in...

  3. Alkali metal ion catalysis and inhibition in nucleophilic displacement reactions at phosphorus centers: ethyl and methyl paraoxon and ethyl and methyl parathion.

    Science.gov (United States)

    Um, Ik-Hwan; Shin, Young-Hee; Lee, Seung-Eun; Yang, Kiyull; Buncel, Erwin

    2008-02-01

    We report on the ethanolysis of the P=O and P=S compounds ethyl and methyl paraoxon (1a and 1b) and ethyl and methyl parathion (2a and 2b). Plots of spectrophotometrically measured rate constants, kobsd versus [MOEt], the alkali ethoxide concentration, show distinct upward and downward curvatures, pointing to the importance of ion-pairing phenomena and a differential reactivity of free ions and ion pairs. Three types of reactivity and selectivity patterns have been discerned: (1) For the P=O compounds 1a and 1b, LiOEt > NaOEt > KOEt > EtO-; (2) for the P=S compound 2a, KOEt > EtO- > NaOEt > LiOEt; (3) for P=S, 2b, 18C6-crown-complexed KOEt > KOEt = EtO(-) > NaOEt > LiOEt. These selectivity patterns are characteristic of both catalysis and inhibition by alkali-metal cations depending on the nature of the electrophilic center, P=O vs P=S, and the metal cation. Ground-state (GS) vs transition-state (TS) stabilization energies shed light on the catalytic and inhibitory tendencies. The unprecedented catalytic behavior of crowned-K(+) for the reaction of 2b is noteworthy. Modeling reveals an extreme steric interaction for the reaction of 2a with crowned-K(+), which is responsible for the absence of catalysis in this system. Overall, P=O exhibits greater reactivity than P=S, increasing from 50- to 60-fold with free EtO(-) and up to 2000-fold with LiOEt, reflecting an intrinsic P=O vs P=S reactivity difference (thio effect). The origin of reactivity and selectivity differences in these systems is discussed on the basis of competing electrostatic effects and solvational requirements as function of anionic electric field strength and cation size (Eisenman's theory).

  4. sup 29 Si magic angle spinning NMR spectra of alkali metal, alkaline earth metal, and rare earth metal ion exchanged Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Kueijung; Chern, Jeryoung (Tsinghua Univ., Taiwan (China))

    1989-02-23

    The variation of the extraframework cation location in groups IA and IIA metals and rare earth metal (RE) Y zeolites as a function of the dehydration and the rehydration is monitored by {sup 29}Si MAS NMR. Unheated hydrated zeolites give similar {sup 29}Si spectra as they present the similar cation distributions. Upon dehydration a high-field shift is observed which correlates with the distortion of bond angles in silicon-oxygen tetrahedra. The line shapes of {sup 29}Si spectra depend on the nature and the location of the exchangeable cations and the occupancy of the different sites in dehydrated and rehydrated states. The correlation between the line shape of {sup 29}Si spectra and the migration of cations from the supercages to the sodalite cages after heating treatment was studied. The results of {sup 29}Si NMR agree with the known structure data.

  5. Structures of Hydrated Alkali Metal Cations, M+(H2O)nAr (m = Li, Na, K, rb and Cs, n = 3-5), Using Infrared Photodissociation Spectroscopy and Thermodynamic Analysis

    Science.gov (United States)

    Ke, Haochen; van der Linde, Christian; Lisy, James M.

    2014-06-01

    Alkali metal cations play vital roles in chemical and biochemical systems. Lithium is widely used in psychiatric treatment of manic states and bipolar disorder; Sodium and potassium are essential elements, having major biological roles as electrolytes, balancing osmotic pressure on body cells and assisting the electroneurographic signal transmission; Rubidium has seen increasing usage as a supplementation for manic depression and depression treatment; Cesium doped compounds are used as essential catalysts in chemical production and organic synthesis. Since hydrated alkali metal cations are ubiquitous and the basic form of the alkali metal cations in chemical and biochemical systems, their structural and thermodynamic properties serve as the foundation for modeling more complex chemical and biochemical processes, such as ion transport and ion size-selectivity of ionophores and protein channels. By combining mass spectrometry and infrared photodissociation spectroscopy, we have characterized the structures and thermodynamic properties of the hydrated alkali metal cations, i.e. M+(H2O)nAr, (M = Li, Na, K, Rb and Cs, n = 3-5). Ab initio calculations and RRKM-EE (evaporative ensemble) calculations were used to assist in the spectral assignments and thermodynamic analysis. Results showed that the structures of hydrated alkali metal cations were determined predominantly by the competition between non-covalent interactions, i.e. the water---water hydrogen bonding interactions and the water---cation electrostatic interactions. This balance, however, is very delicate and small changes, i.e. different cations, different levels of hydration and different effective temperatures clearly impact the balance.

  6. 基于光谱吸收法的碱金属原子配比检测方法研究%Measurement of Mole Ratio for Alkali Metal Mixture by Using Spectral Absorption Method

    Institute of Scientific and Technical Information of China (English)

    邹升; 张红; 陈瑶; 陈熙源

    2015-01-01

    The ratio of alkali metal mixture is one of the most important parameters in gauge head belonging to the ultra‐sensitiv‐ity inertial measurement equipment ,which is required to detect precisely .According to the feature that ratio of alkali metal is re‐lated to alkali metal vapor density ,the theory of optical depth is used to detect the ratio of alkali metal in the present article .The result shows that the data got by the theory of optical depth compared with empirical formula differs at three orders of magni‐tude ,which can’t ensure the accuracy .By changing the data processing method ,model between spectral absorption rate and temperature in cell is established .The temperature in alkali metal cell is calibrated by spectral absorption rate .The ratio of alkali metal atoms in the cell is analyzed by calculating the alkali density with empirical formula .The computational error is less than 10% .%碱金属混合物原子配比是超高灵敏惯性测量装置表头的重要参数,需精确测量。针对碱金属配比与碱金属蒸汽密度相关的特点,提出运用光深理论检测碱金属配比。结果表明:受多种因素影响,光深理论得到的碱金属蒸汽密度与饱和蒸汽压经验公式计算的结果相差3个数量级,无法保证碱金属配比的测量精度;改变数据处理方法,建立光谱吸收率与气室内部温度的映射模型,运用光谱吸收率标定碱金属气室内部温度,通过碱金属饱和蒸汽压经验公式计算气室内部碱金属原子的配比,多组数据分析表明:检测误差在10%以内。

  7. Alkali-Metal-Mediated Magnesiations of an N-Heterocyclic Carbene: Normal, Abnormal, and "Paranormal" Reactivity in a Single Tritopic Molecule.

    Science.gov (United States)

    Martínez-Martínez, Antonio J; Fuentes, M Ángeles; Hernán-Gómez, Alberto; Hevia, Eva; Kennedy, Alan R; Mulvey, Robert E; O'Hara, Charles T

    2015-11-16

    Herein the sodium alkylmagnesium amide [Na4Mg2(TMP)6(nBu)2] (TMP=2,2,6,6-tetramethylpiperidide), a template base as its deprotonating action is dictated primarily by its 12 atom ring structure, is studied with the common N-heterocyclic carbene (NHC) IPr [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]. Remarkably, magnesiation of IPr occurs at the para-position of an aryl substituent, sodiation occurs at the abnormal C4 position, and a dative bond occurs between normal C2 and sodium, all within a 20 atom ring structure accommodating two IPr(2-). Studies with different K/Mg and Na/Mg bimetallic bases led to two other magnesiated NHC structures containing two or three IPr(-) monoanions bound to Mg through abnormal C4 sites. Synergistic in that magnesiation can only work through alkali-metal mediation, these reactions add magnesium to the small cartel of metals capable of directly metalating a NHC.

  8. Identifying the presence of a disulfide linkage in peptides by the selective elimination of hydrogen disulfide from collisionally activated alkali and alkaline earth metal complexes.

    Science.gov (United States)

    Kim, Hugh I; Beauchamp, J L

    2008-01-30

    We report a new method for identifying disulfide linkages in peptides using mass spectrometry. This is accomplished by collisional activation of singly charged cationic alkali and alkaline earth metal complexes, which results in the highly selective elimination of hydrogen disulfide (H2S2). Complexes of peptides possessing disulfide bonds with sodium and alkaline earth metal are generated using electrospray ionization (ESI). Isolation followed by collision induced dissociation (CID) of singly charged peptide complexes results in selective elimination of H2S2 to leave newly formed dehydroalanine residues in the peptide. Further activation of the product yields sequence information in the region previously short circuited by the disulfide bond. For example, singly charged magnesium and calcium ion bound complexes of [Lys8]-vasopressin exhibit selective elimination of H2S2 via low-energy CID. Further isolation of the product followed by CID yields major b- and z-type fragments revealing the peptide sequence in the region between the newly formed dehydroalanine residues. Numerous model peptides provide mechanistic details for the selective elimination of H2S2. The process is initiated starting with a metal stabilized enolate anion at Cys, followed by cleavage of the S-C bond. An examination of the peptic digest of insulin provides an example of the application of the selective elimination of H2S2 for the identification of peptides with disulfide linkages. The energetics and mechanisms of H2S2 elimination from model compounds are investigated using density functional theory (DFT) calculations.

  9. Structural changes of polyacids initiated by their neutralization with various alkali metal hydroxides. Diffusion studies in poly(acrylic acid)s.

    Science.gov (United States)

    Masiak, Michal; Hyk, Wojciech; Stojek, Zbigniew; Ciszkowska, Malgorzata

    2007-09-27

    The changes in the three-dimensional structure of the poly(acrylic acid), PAA, induced by incorporation of various alkali-metal counterions have been evaluated by studying diffusion of an uncharged probe (1,1'-ferrocenedimethanol) in the polymeric media. The studies are supported by the measurements of conductivity and viscosity of the polymeric media. Solutions of linear PAA of four different sizes (molecular weights: 450,000, 750,000, 1,250,000, 4,000,000) were neutralized with hydroxides of alkali metals of group 1 of the periodic table (Li, Na, K, Rb, Cs) to the desired neutralization degree. The transport properties of the obtained polyacrylates were monitored by measuring the changes in the probe diffusion coefficient during the titration of the polyacids. The probe diffusivity was determined from the steady-state current of the probe voltammetric oxidation at disk microelectrodes. Diffusivity of the probe increases with the increase in the degree of neutralization and with the increase in viscosity. It reaches the maximum value at about 60-80% of the polyacid neutralization. The way the probe diffusion coefficients change is similar in all polyacid solutions and gels. The increase in the size of a metal cation causes, in general, an enhancement in the transport of probe molecules. The biggest differences in the probe diffusivities are between lithium and cesium polyacrylates. The differences between the results obtained for cesium and rubidium are not statistically significant due to lack of good precision of the voltammetric measurements. The measurements of the electric conductivity of polyacrylates and the theoretical predictions supplemented the picture of electrostatic interactions between the polyanionic chains and the metal cations of increasing size. In all instances of the PAAs, the viscosity of the solutions rapidly increases in the 0-60% range of neutralization and then becomes constant in the 60-100% region. With the exception of the shortest

  10. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    Science.gov (United States)

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition.

  11. FT-IR, micro-Raman and UV-vis spectroscopic and quantum chemical investigations of free 2,2'-dithiodipyridine and its metal (Co, Cu and Zn) halide complexes.

    Science.gov (United States)

    Gökce, Halil; Bahçeli, Semiha

    2013-10-01

    In this study the elemental analysis results, molecular geometries, vibrational and electronic absorption spectra of free 2,2'-dithiodipyridine(C10H8N2S2), (or DTDP) (with synonym, 2,2'-dipyridyl disulfide) and M(C10H8N2S2)Cl2 (M=Co, Cu and Zn) complexes have been reported. Vibrational wavenumbers of free DTDP and its metal halide complexes have been calculated by using DFT/B3LYP calculation method with 6-31++G(d,p) and Lanl2DZ basis sets, respectively, in the ground state, for the first time. The calculated fundamental vibrational frequencies are in a good agreement with experimental data. The HOMO, LUMO and MEP analyses of all compounds are performed by DFT method.

  12. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Dezhi; Kuang, Xiaoyu, E-mail: scu-kuang@163.com; Gao, Yufeng; Huo, Dongming [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China)

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  13. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Science.gov (United States)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-01

    In this paper, we systematically investigate the electronic structure for the 2Σ+ ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  14. An Improved Red Spectrum of the Methane or T Dwarf SDSS 1624+0029: The Role of the Alkali Metals.

    Science.gov (United States)

    Liebert; Reid; Burrows; Burgasser; Kirkpatrick; Gizis

    2000-04-20

    A Keck II low-resolution spectrum shortward of 1 µm is presented for SDSS 1624+0029, the first field methane or T dwarf discovered in the Sloan Digital Sky Survey. Significant flux is detected down to the spectrum's short-wavelength limit of 6200 Å. The spectrum exhibits a broad absorption feature centered at 7700 Å, which we interpret as the K i lambdalambda7665, 7699 resonance doublet. The observed flux declines shortward of 7000 Å, most likely owing to the red wing of the Na i doublet. Both Cs i doublet lines are detected more strongly than in an earlier red spectrum. Neither Li i absorption nor Halpha emission are detected. An exploratory model fit to the spectrum suggests that the shape of the red spectrum can be primarily accounted for by the broad wings of the K i and Na i doublets. This behavior is consistent with the argument proffered by Burrows, Marley, & Sharp that strong alkali absorption is principally responsible for depressing T dwarf spectra shortward of 1 µm. In particular, there seems no compelling reason at this time to introduce dust or an additional opacity source in the atmosphere of the Sloan object. The width of the K i and strengths of the Cs i lines also indicate that the Sloan object is warmer than Gl 229B.

  15. Skylab experiments on semiconductors and alkali halides. [single crystal growth

    Science.gov (United States)

    Lundquist, C. A.

    1974-01-01

    The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

  16. Far Infrared Optical Spectroscopy of Alkali Halide-Polymer Composites

    Science.gov (United States)

    McWhirter, J. T.; Broderick, S. D.; Rodriguez, G. A.

    1998-03-01

    Composite samples of small (dimension polytetrafluoroethylene) have been prepared. The far infrared optical spectra of these samples are presented, spanning a temperature range of 300 to thermal expansion, using published values for the mode Gruneisen parameter and the temperature dependence of the lattice thermal coefficient. In contrast, the linewidth (phonon lifetime) of the composite samples is roughly twice as large as that observed for thin film and bulk crystals, and has a much stronger temperature dependence as well.

  17. Cold ablation driven by localized forces in alkali halides

    NARCIS (Netherlands)

    Hada, Masaki; Zhang, Dongfang; Pichugin, Kostyantyn; Hirscht, Julian; Kochman, Micha A.; Hayes, Stuart A.; Manz, Stephanie; Gengler, Regis Y. N.; Wann, Derek A.; Seki, Toshio; Moriena, Gustavo; Morrison, Carole A.; Matsuo, Jiro; Sciaini, German; Miller, R. J. Dwayne

    2014-01-01

    Laser ablation has been widely used for a variety of applications. Since the mechanisms for ablation are strongly dependent on the photoexcitation level, so called cold material processing has relied on the use of high-peak-power laser fluences for which nonthermal processes become dominant; often r

  18. Binding energy referencing for XPS in alkali metal-based battery materials research (I): Basic model investigations

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, S., E-mail: s.oswald@ifw-dresden.de

    2015-10-01

    Highlights: • We point to a not seriously solved conflict in energy scale referencing of Li metal samples in XPS. • Model experiments at Li-, Na-metal and Li-doped HOPG samples were used to classify the effects. • Binding energy shifts up to 3 eV are observed when the alkaline metal is present in metallic state. • A phenomenological explanation based on an electrostatic interaction is suggested. • Consequences for energy scale correction depending on the kind of surface species are followed. - Abstract: For the investigation of chemical changes in Li- and Na-ion battery electrode systems, X-ray photoelectron spectroscopy (XPS) is a well-accepted method. Charge compensation and referencing of the binding energy (BE) scale is necessary to account for the involved mostly non-conducting species. Motivated by a conflict in energy scale referencing of Li-metal samples discussed earlier by several authors, further clarifying experimental results on several Li containing reference materials are presented and extended by similar experiments for Na. When correlating the peak positions of characteristic chemical species in all the different prepared model sample states, there seems to be a systematic deviation in characteristic binding energies of several eV if lithium is present in its metallic state. Similar results were found for sodium. The observations are furthermore confirmed by the implementation of inert artificial energy reference material, such as implanted argon or deposited gold. The behavior is associated with the high reactivity of metallic lithium and a phenomenological explanation is proposed for the understanding of the observations. Consequences for data interpretation in Li-ion battery research will be discussed for various applications in part (II)

  19. The Research Progress of Determination Method for Impurities in High Purity Alkali Metal Salt%高纯碱金属盐中杂质测定方法的研究进展

    Institute of Scientific and Technical Information of China (English)

    王晓辉

    2011-01-01

    高纯碱金属盐的纯度对其应用有很大影响,痕量杂质元素含量的严格控制和准确测定非常重要.本文对高纯碱金属盐中的杂质分析方法(原子吸收光谱法、分光光度法、电感耦合等离子体光谱法、电感耦合等离子体质谱法、离子色谱法等)进行了综述.%The purity of high purity alkali metal salt effects the application a lot. The strictly control and accurate determination of trace impurity is very important. The analysis methods (atomic absorption spectrometry, spectrophotometry, ICP-AES, ICP-MS, ion chromatography) for impurities in high purity alkali metal salt are summarized in this paper.

  20. Method for estimating the lattice thermal conductivity of metallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, D.W.; Williams, R.K.

    1978-08-01

    A method is described for calculating the lattice thermal conductivity of alloys as a function of temperature and composition for temperatures above theta/sub D//2 using readily available information about the atomic species present in the alloy. The calculation takes into account phonon interactions with point defects, electrons and other phonons. Comparisons between experimental thermal conductivities (resistivities) and calculated values are discussed for binary alloys of semiconductors, alkali halides and metals. A discussion of the theoretical background is followed by sufficient numerical work to facilitate the calculation of lattice thermal conductivity of an alloy for which no conductivity data exist.

  1. Photoionization in alkali lasers.

    Science.gov (United States)

    Knize, R J; Zhdanov, B V; Shaffer, M K

    2011-04-11

    We have calculated photoionization rates in alkali lasers. The photoionization of alkali atoms in the gain medium of alkali lasers can significantly degrade the laser performance by reducing the neutral alkali density and with it the gain. For a ten atmosphere Rb laser and a Cs exciplex laser, the photoionization induced alkali atom loss rates are greater than 10(5) sec(-1). These high loss rates will quickly deplete the neutral alkali density, reducing gain, and may require fast, possibly, supersonic flow rates to sufficiently replenish the neutral medium for CW operation.

  2. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded.

  3. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sellaiyan, S.; Uedono, A. [University of Tsukuba, Division of Applied Physics, Tsukuba, Ibaraki (Japan); Sivaji, K.; Janet Priscilla, S. [University of Madras, Department of Nuclear Physics, Chennai (India); Sivasankari, J. [Anna University, Department of Physics, Chennai (India); Selvalakshmi, T. [National Institute of Technology, Nanomaterials Laboratory, Department of Physics, Tiruchirappalli (India)

    2016-10-15

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F{sub 2} {sup 2+} and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F{sub 2} {sup 2+} to F{sup +} and this F{sup +} is converted into F centers at 416 nm. (orig.)

  4. Structures and heats of formation of simple alkali metal compounds: hydrides, chlorides, fluorides, hydroxides, and oxides for Li, Na, and K.

    Science.gov (United States)

    Vasiliu, Monica; Li, Shenggang; Peterson, Kirk A; Feller, David; Gole, James L; Dixon, David A

    2010-04-01

    Geometry parameters, frequencies, heats of formation, and bond dissociation energies are predicted for simple alkali metal compounds (hydrides, chlorides, fluorides, hydroxides and oxides) of Li, Na, and K from coupled cluster theory [CCSD(T)] calculations including core-valence correlation with the aug-cc-pwCVnZ basis set (n = D, T, Q, and 5). To accurately calculate the heats of formation, the following additional correction were included: scalar relativistic effects, atomic spin-orbit effects, and vibrational zero-point energies. For calibration purposes, the properties of some of the lithium compounds were predicted with iterative triple and quadruple excitations via CCSDT and CCSDTQ. The calculated geometry parameters, frequencies, heats of formation, and bond dissociation energies were compared with all available experimental measurements and are in excellent agreement with high-quality experimental data. High-level calculations are required to correctly predict that K(2)O is linear and that the ground state of KO is (2)Sigma(+), not (2)Pi, as in LiO and NaO. This reliable and consistent set of calculated thermodynamic data is appropriate for use in combustion and atmospheric simulations.

  5. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    Science.gov (United States)

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors.

  6. A computational insight into a metal mediated pathway for the ring-opening polymerization (ROP) of lactides by an ionic {(NHC)2Ag}(+)X(-) (X = halide) type N-heterocyclic carbene (NHC) complex.

    Science.gov (United States)

    Stephen, Raji; Sunoj, Raghavan B; Ghosh, Prasenjit

    2011-10-21

    A metal mediated coordination-insertion pathway for the ring-opening polymerization (ROP) of L-lactide by an ionic {(NHC)(2)Ag}(+)X(-) (X = halide) type silver complex of N-heterocyclic carbene (NHC) has been investigated using the density functional theory (DFT) method. A clear insight into the lactide insertion process could be obtained by modeling two consecutive monomer addition steps with the first one mimicking chain initiation with the second representing a propagation step. In particular, in each of the cycles, the reaction initiates with the formation of a lactide coordinated species, [1+LL] and [2+LL] that transforms into a metal bound cyclic lactide intermediate, I([1+LL]→2) and I([2+LL]→3), which subsequently ring opens to give the lactide inserted products, 2 and 3. The estimated overall activation barrier for the initiation step is 42.0 kcal mol(-1) while the same for the propagation step is 31.5 kcal mol(-1). Studies on higher monomer insertions showed a decrease in the relative product energies as anticipated for an addition polymerization pathway.

  7. Crystal structures and hydrogen bonding in the isotypic series of hydrated alkali metal (K, Rb and Cs complexes with 4-aminophenylarsonic acid

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2017-02-01

    Full Text Available The structures of the alkali metal (K, Rb and Cs complex salts with 4-aminophenylarsonic acid (p-arsanilic acid manifest an isotypic series with the general formula [M2(C6H7AsNO32(H2O3], with M = K {poly[di-μ3-4-aminophenylarsonato-tri-μ2-aqua-dipotassium], [K2(C6H7AsNO32(H2O3], (I}, Rb {poly[di-μ3-4-aminophenylarsonato-tri-μ2-aqua-dirubidium], [Rb2(C6H7AsNO32(H2O3], (II}, and Cs {poly[di-μ3-4-aminophenylarsonato-tri-μ2-aqua-dirubidium], [Cs2(C6H7AsNO32(H2O3], (III}, in which the repeating structural units lie across crystallographic mirror planes containing two independent and different metal cations and a bridging water molecule, with the two hydrogen p-arsanilate ligands and the second water molecule lying outside the mirror plane. The bonding about the two metal cations in all complexes is similar, one five-coordinate, the other progressing from five-coordinate in (I to eight-coordinate in both (II and (III, with overall M—O bond-length ranges of 2.694 (5–3.009 (7 (K, 2.818 (4–3.246 (4 (Rb and 2.961 (9–3.400 (10 Å (Cs. The additional three bonds in (II and (III are the result of inter-metal bridging through the water ligands. Two-dimensional coordination polymeric structures with the layers lying parallel to (100 are generated through a number of bridging bonds involving the water molecules (including hydrogen-bonding interactions, as well as through the arsanilate O atoms. These layers are linked across [100] through amine N—H...O hydrogen bonds to arsonate and water O-atom acceptors, giving overall three-dimensional network structures.

  8. Milk-alkali syndrome

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  9. Spectroscopic (FT-IR, FT-Raman, UV) and microbiological studies of di-substituted benzoates of alkali metals

    Science.gov (United States)

    Kalinowska, M.; Świsłocka, R.; Borawska, M.; Piekut, J.; Lewandowski, W.

    2008-06-01

    The FT-IR, FT-Raman and UV spectra of 3,5-dihydroxybenzoic and 3,5-dichlorobenzoic acids as well as lithium, sodium, potassium, rubidium, caesium 3,5-dihydroxy- and 3,5-dichlorobenzoates were recorded, assigned and compared. The theoretical geometries, Mulliken atomic charges, IR wavenumbers were obtained in B3LYP/6-311++G** level. On the basis of the gathered experimental and theoretical data the effect of metals and substituents on the electronic system of studied compounds were investigated. Moreover, the antimicrobiological activity of studied compounds against two species of bacteria: Bacillus subtilis, Staphylococus aureus and one species of yeast: Candida albicans were studied after 24 and 48 h of incubation. The attempt was made, to find out whether there is any correlation between the first principal component and the degree of growth inhibition exhibited by studied compounds in relation to selected microorganisms.

  10. Study of structural and spectroscopic behavior of Sm3+ ions in lead-zinc borate glasses containing alkali metal ions

    Science.gov (United States)

    Sasi Kumar, M. V.; Babu, S.; Rajeswara Reddy, B.; Ratnakaram, Y. C.

    2017-02-01

    High luminescence behavior of rare earth inorganic glasses have a variety of uses in the industry. In the past few decades, rare earth ions with characteristic photonics applications are being hosted by heavy metal oxide glasses. Among the rare earth ions Sm3+ ion has features which make it apt for high density optical storage. The authors of the paper have experimented to synthesize Sm3+ doped glasses. In this regard a new series of borate glasses doped with 1 mol% Sm3+ ion are developed by using melt-quenching technique. XRD, FTIR, optical absorption, luminescence techniques are used to study the various characteristics of Sm3+ ion in the present glass matrices. The XRD spectra confirms the amorphous nature of glasses. Further, the researchers have used differential thermal analysis to study the glass transition temperature. The structural groups in the prepared glasses are studied using Fourier transform infrared spectra. From the measurement of its optical absorption, three phenomenological Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6) have been computed. Based on these Judd-Ofelt intensity parameters, radiative properties such as radiative probabilities (Arad), branching ratios (β), and radiative life time (τR) are calculated. The excitation spectra of Sm3+ doped lithium heavy metal borate glass matrix is recorded under the emission wavelength of 600 nm. The emission spectra are recorded under 404 nm excitation wavelength. From various emission transitions, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 bands could be of interest for various applications. The decay profiles of 4G5/2 level exhibit single exponential nature in all the prepared glass matrices. The potassium glass matrix exhibits higher quantum efficiency than the other glass matrices. Finally, by going through these several spectroscopic characterizations, it is concluded that the prepared Sm3+ doped lead-zinc borate glasses might be useful for visible light applications.

  11. EPR, ELDOR, and ENDOR studies of alkali metal- o-dimesitoylbenzene radical complexes in solution. II. The lithium and sodium complexes

    Science.gov (United States)

    van der Drift, E.; Smidt, J.

    A combined EPR-ELDOR-ENDOR study on ion pairs of o-dimesitoylbenzene anions with Li or Na cations provides a unique description of the alkali relaxation pattern in terms of dipolar and quadrupolar relaxation resulting from molecular tumbling. Internal motions in the chelating ring structure appear to be of minor importance. From the EPR and ELDOR results a variety of structural information is obtained: spectral densities, rotational correlation time of the complex, and anisotropic magnetic interactions of the alkali nucleus.

  12. Controllable formation of heterotrimetallic coordination compounds: systematically incorporating lanthanide and alkali metal ions into the manganese 12-metallacrown-4 framework.

    Science.gov (United States)

    Azar, Michael R; Boron, Thaddeus T; Lutter, Jacob C; Daly, Connor I; Zegalia, Kelcie A; Nimthong, Ruthairat; Ferrence, Gregory M; Zeller, Matthias; Kampf, Jeff W; Pecoraro, Vincent L; Zaleski, Curtis M

    2014-02-01

    structures available through the metallacrown analogy, these complexes allow for the mixing and matching of a diverse range of metals that might permit the fine-tuning of molecular properties where one day they may be exploited as magnetic materials or luminescent agents.

  13. The Synthesis and Characterization of Ionic Liquids for Alkali-Metal Batteries and a Novel Electrolyte for Non-Humidified Fuel Cells

    Science.gov (United States)

    Tucker, Telpriore G.

    This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy. Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl 4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC. Battery testing based on [EMI+][FeCl4 -] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br 7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4 +][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements. Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases

  14. Making and Breaking of Lead Halide Perovskites.

    Science.gov (United States)

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  15. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80–150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic–inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  16. Site Preference in Multimetallic Nanoclusters: Incorporation of Alkali Metal Ions or Copper Atoms into the Alkynyl-Protected Body-Centered Cubic Cluster [Au7 Ag8 (C≡C(t) Bu)12 ]().

    Science.gov (United States)

    Wang, Yu; Su, Haifeng; Ren, Liting; Malola, Sami; Lin, Shuichao; Teo, Boon K; Häkkinen, Hannu; Zheng, Nanfeng

    2016-11-21

    The synthesis, structure, substitution chemistry, and optical properties of the gold-centered cubic monocationic cluster [Au@Ag8 @Au6 (C≡C(t) Bu)12 ](+) are reported. The metal framework of this cluster can be described as a fragment of a body-centered cubic (bcc) lattice with the silver and gold atoms occupying the vertices and the body center of the cube, respectively. The incorporation of alkali metal atoms gave rise to [Mn Ag8-n Au7 (C≡C(t) Bu)12 ](+) clusters (n=1 for M=Na, K, Rb, Cs and n=2 for M=K, Rb), with the alkali metal ion(s) presumably occupying the vertex site(s), whereas the incorporation of copper atoms produced [Cun Ag8 Au7-n (C≡C(t) Bu)12 ](+) clusters (n=1-6), with the Cu atom(s) presumably occupying the capping site(s). The parent cluster exhibited strong emission in the near-IR region (λmax =818 nm) with a quantum yield of 2 % upon excitation at λ=482 nm. Its photoluminescence was quenched upon substitution with a Na(+) ion. DFT calculations confirmed the superatom characteristics of the title compound and the sodium-substituted derivatives.

  17. Crystal structures and topological aspects of the high-temperature phases and decomposition products of the alkali-metal oxalates M2[C2O4] (M=K, Rb, Cs).

    Science.gov (United States)

    Dinnebier, Robert E; Vensky, Sascha; Jansen, Martin; Hanson, Jonathan C

    2005-02-04

    The high-temperature phases of the alkali-metal oxalates M2[C2O4] (M = K, Rb, Cs), and their decomposition products M2[CO3] (M = K, Rb, Cs), were investigated by fast, angle-dispersive X-ray powder diffraction with an image-plate detector, and also by simultaneous differential thermal analysis (DTA)/thermogravimetric analysis (TGA)/mass spectrometry (MS) and differential scanning calorimetry (DSC) techniques. The following phases, in order of decreasing temperature, were observed and crystallographically characterized (an asterisk denotes a previously unknown modification): *alpha-K2[C2O4], *alpha-Rb2[C2O4], *alpha-Cs2[C2O4], alpha-K2[CO3], *alpha-Rb2[CO3], and *alpha-Cs2[CO3] in space group P6(3)/mmc; *beta-Rb2[C2O4], *beta-Cs2[C2O4], *beta-Rb2[CO3], and *beta-Cs2[CO3] in Pnma; gamma-Rb2[C2O4], gamma-Cs[C2O4], gamma-Rb2[CO3], and gamma-Cs2[CO3] in P2(1)/c; and delta-K2[C2O4] and delta-Rb2[C2O4] in Pbam. With respect to the centers of gravity of the oxalate and carbonate anions, respectively, the crystal structures of all known alkali-metal oxalates and carbonates belong to the AlB2 family, and adopt either the AlB2 or the Ni2In arrangement depending on the size of the cation and the temperature. Despite the different sizes and constitutions of the carbonate and oxalate anions, the high-temperature phases of the alkali-metal carbonates M2[CO3] (M = K, Rb, Cs), exhibit the same sequence of basic structures as the corresponding alkali-metal oxalates. The topological aspects and order-disorder phenomena at elevated temperature are discussed.

  18. The role of the alkali and chalcogen atoms on the stability of the layered chalcogenide \\mathbf{{{A}_{2}}{{M}^{II}}M_{3}^{\\,IV}{{Q}_{8}}} (A  =  alkali-metal M  =  metal-cations Q  =  chalcogen) compounds: a density functional theory investigation within van der Waals corrections

    Science.gov (United States)

    Besse, Rafael; Da Silva, Juarez L. F.

    2017-01-01

    There is a great interest to design two-dimensional (2D) chalcogenide materials, however, our atomistic understanding of the major physical parameters that drive the formation of 2D or three-dimensional (3D) chalcogenides is far from satisfactory, in particular, for complex quaternary systems. To address this problem, we selected a set of quaternary 2D and 3D chalcogenide compounds, namely, {{\\text{A}}2}\\text{ZnS}{{\\text{n}}3}{{\\text{Q}}8} (A  =  Li, K, Cs; Q  =  S, Se, Te), which were investigated by density functional theory calculations within van der Waals (vdW) corrections. Employing experimental crystal structures and well designed crystal modifications, we found that the average atomic radius of the alkali-metal, A, and chalcogen, Q, species play a crucial role in the stability of the 2D structures. For example, the 2D structures are energetically favored for smaller (R1.8~{\\mathring{\\text{A}}}) average atomic radius, while 3D structures are favored at intermediate average atomic radius. Those results are explained in terms of strain minimization and Coulomb repulsion of the anionic species in the structure framework. Furthermore, the equilibrium lattice parameters are in excellent agreement with experimental results. Thus, the present insights can help in the design of stable quartenary 2D chalcogenide compounds.

  19. Dynamic chiral-at-metal stability of tetrakis(d/l-hfc)Ln(III) complexes capped with an alkali metal cation in solution.

    Science.gov (United States)

    Lin, Yiji; Zou, Fang; Wan, Shigang; Ouyang, Jie; Lin, Lirong; Zhang, Hui

    2012-06-14

    Chiral tetrakis(β-diketonate) Ln(III) complexes Δ-[NaLa(d-hfc)(4)(CH(3)CN)] (1) and Λ-[NaLa(l-hfc)(4) (CH(3)CN)] (2) (d/l-hfc(-) = 3-heptafluo-robutylryl-(+)/(-)-camphorate) are a pair of enantiomers and crystallize in the same Sohncke space group (P2(1)2(1)2(1)) with dodecahedral (DD) geometry. Typically positive and negative exciton splitting patterns around 320 nm were observed in the solid-state circular dichroism (CD) spectra of complexes 1 and 2, which indicate that their shell configurational chiralities are Δ and Λ, respectively. The apparent bisignate couplets in the solid-state CD spectra of [CsLn(d-hfc)(4)(H(2)O)] [Ln = La (3), Yb (5)] and [CsLn(l-hfc)(4)(H(2)O)] [Ln = La (4), Yb (6)] show that they are a pair of enantiomers and their absolute configurations are denoted Δ and Λ, respectively. The crystallographic data of 5 reveals that its coordination polyhedron is the square antiprism (SAP) geometry and it undergoes a phase transition from triclinic (α phase, P1) to monoclinic (β phase, C2) upon cooling. The difference between the two phases is brought about by the temperature dependent behaviour of the coordination water molecules, but this did not affect the configurational chirality of the Δ-SAP-[Yb(d-hfc)(4)](-) moiety. Furthermore, time-dependent CD, UV-vis and (19)F NMR were applied to study the solution behavior of these complexes. It was found that the chiral-at-metal stability of the three pairs of complexes is different and affected by both the Ln(3+) and M(+) ion size. The results show that the Cs(+) cation can retain the metal center chirality and stablize the structures of [Ln(d/l-hfc)(4)](-) or the dissociated tris(d/l-hfc)Ln(III) species in solution for a longer time than that of the Na(+) cation, and it is important that the Cs(+) ion successfully lock the configurational chirality around the Yb(3+) center of the complex species in solution. This is reasoned by the short Cs(+)···FC, Cs(+)···O-Yb and Cs(+)···Yb(3

  20. Novel Power Supply Equipment Used for High-Pressure Metal Halide Discharge Lamp%一种高气压金属卤化物气体放电灯用新型电源的原理研究

    Institute of Scientific and Technical Information of China (English)

    王汝文; 姚晓莉; 姚建军

    2001-01-01

    提出一种用于高气压金属卤化物气体放电灯供电电源的新型主电路拓扑.不需设置专门提供起燃脉冲的高压脉冲发生器,只须改变电路工作频率,即能满足这类灯在起燃、负阻运行、稳态运行各阶段对电源不同输出特性的要求.电路结构简单,装置体积小.在负载稳定运行后,电源输出特性近似电流源,开关器件电流幅值较低,并可实现零电流换相.讨论了这种电源的工作原理和系统结构,并给出了模拟负载的PSPICE仿真和实验室试验结果,表明其完全符合电路的工作原理和设计思想.%A new circuit topology of power supply for high-pressure metal halide discharge lamp is proposed. Without a high voltage pulse generator for firing the lamp, the supply can apply voltage in three different modes for the lamp operation from firing to steady state through modulation of the switch operation frequency. The supply circuit scheme is simplified and its volume can be also reduced. The switches in propsed supply can operate in lower current amplitude, nearly current source and ZCS mode. The principle of the supply and its scheme were described. Some simulation and experiment results for modeling load were given as well.

  1. 氢原子能级与碱金属原子能级的比较研究%Comparative Studying of Hydrogen Atomic Energy Level and Alkali Metal Atomic Energy Level

    Institute of Scientific and Technical Information of China (English)

    王建伟; 蒲小芹

    2014-01-01

    The article by Bohr theory and The analysis of forces method, considered the interaction of different sit-uation, hydrogen atoms with alkali metal atomic energy level structure have been analyzed, and the numerical cal-culation, energy level diagram have been drawn out., Hydrogen energy and alkali metal atomic energy level were compared, by using the method of comparative study on the similarities and differences are found out.%运用玻尔理论及受力分析的方法,考虑相互作用的不同情况,分析了氢原子与碱金属原子能级结构,并进行了数值计算,画出了能级结构图。再运用比较研究的方法对氢原子能级与碱金属原子能级进行比较,找出其相同点及不同点。

  2. Mechanism of Effect of Copper and Alkali Metal on Properties of Varistor Ceramics%铜和碱金属影响压敏陶瓷性能的机理

    Institute of Scientific and Technical Information of China (English)

    曹全喜; 籍聪麟; 周晓华; 高锦秀

    2001-01-01

    从对ZnO和SrTiO3的晶体结构参数的计算出发,论述了铜和碱金属原子在这两种晶体中所处的位置。实验结果证实,同一种原子在不同的材料中可以起不同的作用。文章还讨论了这些杂质对压敏陶瓷的压敏电压、电容量、有效相对介电系数影响的机理。%According to the crystal structures of ZnO and SrTiO3,the positions of copper atoms and alkali metal atoms in the ceramic materials are discussed.It is shown as experiment result that the same atoms could have different roles in different crystal structures.The mechanism that copper atoms and alkali metal atoms have effects on breakdown voltage,capacitance and effective relative pemrmittivity of varistor ceramics are researched in the paper.

  3. A multinuclear solid-state NMR study of alkali metal ions in tetraphenylborate salts, M[BPh4] (M = Na, K, Rb and Cs): what is the NMR signature of cation-pi interactions?

    Science.gov (United States)

    Wu, Gang; Terskikh, Victor

    2008-10-16

    We report a multinuclear solid-state ( (23)Na, (39)K, (87)Rb, (133)Cs) NMR study of tetraphenylborate salts, M[BPh 4] (M = Na, K, Rb, Cs). These compounds are isostructural in the solid state with the alkali metal ion surrounded by four phenyl groups resulting in strong cation-pi interactions. From analyses of solid-state NMR spectra obtained under stationary and magic-angle spinning (MAS) conditions at 11.75 and 21.15 T, we have obtained the quadrupole coupling constants, C Q, and the chemical shift tensor parameters for the alkali metal ions in these compounds. We found that the observed quadrupole coupling constant for M (+) in M[BPh 4] is determined by a combination of nuclear quadrupole moment, Sternheimer antishielding factor, and unit cell dimensions. On the basis of a comparison between computed paramagnetic and diamagnetic contributions to the total chemical shielding values for commonly found cation-ligand interactions, we conclude that cation-pi interactions give rise to significantly lower paramagnetic shielding contributions than other cation-ligand interactions. As a result, highly negative chemical shifts are expected to be the NMR signature for cations interacting exclusively with pi systems.

  4. Simultaneous Synthesis of Dimethyl Carbonate and Poly(ethylene terephthalate) Using Alkali Metals as Catalysts%碱金属化合物催化同时合成碳酸二甲酯和聚对苯二甲酸乙二醇酯

    Institute of Scientific and Technical Information of China (English)

    张丹; 王庆印; 姚洁; 王越; 曾毅; 王公应

    2007-01-01

    Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carried out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3: 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.

  5. Directed reflectivity, long life AMTEC condenser (DRC). Final report of Phase II SBIR program[Alkali Metal ThermoElectric Converter

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Thomas K.

    2001-09-10

    The Alkali Metal Thermal to Electric Converter (AMTEC) is a static energy conversion device that operates at high thermal to electric conversion efficiencies that are essentially independent of size, have reached 19% and are expected to reach 25% to 30% in 1997. AMTEC systems have been chosen by NASA and DOE for spacecraft applications and have considerable promise for a wide variety of terrestrial applications. Reduction of parasitic heat losses in AMTEC systems related to radiative heat transfer from the hot side to the condenser can make a substantial contribution to system efficiency. Through design, analysis and the fabrication and testing of cells and systems, the proposed program to develop a Directed Reflectivity Condenser (DRC) has investigated the feasibility of an improved AMTEC condenser component. Phase 1 work showed the potential for adding from 4% to 7% to overall system efficiency for identical operating conditions using the concept. A detailed thermal analysis of several DRC capped cell designs was carried out and some of the conditions under which a DRC, used as the condenser at an end cap of a cylindrical converter, can reduce thermal radiation related losses were determined. A model experimental converter was built and tested to compare DRC and planar condenser surfaces. The results of both analysis and experiment indicate that for moderate aspect ratios of a cylindrical, end condensed converter, the DRC can reduce overall thermal losses by up to 4%. The initial effort in Phase 2 extended the analysis to a novel 150 watt radial AMTEC cell design. This analysis indicated that for the effective aspect ratio of this new converter design, the system performance at the 100+ watt level was not significantly improved by use of a DRC type condenser surface. Further analyses however showed that for cylindrical, end-condensed converters, optimized for use with internal radiation shields, the use of DRC surfaces on the side walls of the converter could be

  6. First-principles study on saturated adsorption of alkali metal atoms on silicene%硅烯饱和吸附碱金属原子的第一性原理研究∗

    Institute of Scientific and Technical Information of China (English)

    黄艳平; 袁健美; 郭刚; 毛宇亮

    2015-01-01

    基于密度泛函理论的第一性原理计算,研究了硅烯饱和吸附碱金属元素原子的稳定性、微观几何结构和电子性质,并与纯硅烯及其饱和氢化结构进行了对比分析.研究发现复合物SiX (X =Li, Na, K, Rb)的形成能都是负的,相对于纯硅烯来说可以稳定存在. Bader电荷分析表明,电荷从碱金属原子转移至硅原子.从成键方式来看,硅烯与氢原子形成共价键,而与碱金属原子之间形成的键主要是离子性成键,但还存在部分共价关联成分.能带计算表明,锂原子饱和吸附在硅烯形成的复合物SiLi是直接带隙的半导体,带隙大小为0.34 eV.其他碱金属饱和吸附在硅烯上形成的复合物都表现为金属性.%Based on density functional first-principles calculations, we study the stability, micro-geometry, and electronic properties of alkali metal atoms adsorbed on silicene, and perform the comparison between pure and hydrogen-saturated silicenes. We found that all the formation energies of SiX (X = Li, Na, K and Rb) are negative, indicating that the relative structural stability of these new compounds is higher than silicene. Bader charge analysis shows that electric charge is transferred from Si atoms to H atoms in SiH compound, but in SiX the direction of charge transfer is opposite, i.e., the charge is transferred from alkali metal atoms to Si atoms. From the viewpoint of chemical bonding, it can be regarded that valence bond is formed between Si atoms and H atoms, and the bonds between Si and alkali metal atoms are mainly ionic, but there exists covalent contribution. From the band structure calculations, it is also found that the new type compound SiLi is a semiconductor with a direct band gap of 0.34 eV; however, all the other compounds of SiX(X =Na, K and Rb) exhibit metallic property.

  7. Atomic structure of metal-halide perovskites from first principles: The chicken-and-egg paradox of the organic-inorganic interaction

    Science.gov (United States)

    Li, Jingrui; Rinke, Patrick

    2016-07-01

    We have studied the prototype hybrid organic-inorganic perovskite CH3NH3PbI3 and its three close relatives, CH3NH3SnI3 ,CH3NH3PbCl3 , and CsPbI3, using relativistic density function theory. The long-range van der Waals (vdW) interactions were incorporated into the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional using the Tkatchenko-Scheffler pairwise scheme. Our results reveal that hydrogen bonding, which is well described by the PBE functional, plays a decisive role for the structural parameters of these systems, including the position and orientation of the organic cation as well as the deformation of the inorganic framework. The magnitude of the inorganic-framework deformation depends sensitively on the orientation of the organic cation, and directly influences the stability of the hybrid perovskites. Our results suggest that the organic and the inorganic components complement each other; the low symmetry of the organic cation is the origin of the inorganic-framework deformation, which then aids the overall stabilization of the hybrid perovskite structure. This stabilization is indirectly affected by vdW interactions, which lead to smaller unit-cell volumes than in PBE and therefore modulate the interaction between the organic cation and the inorganic framework. The vdW-induced lattice-constant corrections are system dependent and lead to PBE+vdW lattice constants in good agreement with experiment. Further insight is gained by analyzing the vdW contributions. In all iodide-based hybrid perovskites, the interaction between the organic cation and the iodide anions provides the largest lattice-constant change, followed by iodine-iodine and the organic cation—heavy-metal cation interaction. These corrections follow an almost linear dependence on the lattice constant within the range considered in our study and are therefore approximately additive.

  8. 双层石墨烯吸附碱金属原子的第一性原理研究%First-principles study of alkali metal adsorptions on bilayer graphene

    Institute of Scientific and Technical Information of China (English)

    杨绍斌; 李思南; 唐树伟; 沈丁; 孙闻; 董伟

    2016-01-01

    基于密度泛函的第一性原理方法,研究了Li、Na、K和Rb碱金属原子吸附在双层石墨烯( BLG)表面的吸附能、迁移行为、电子性能。研究发现,Li和Na原子在BLG表面吸附易形成团簇,K和Rb原子能够分散吸附。碱金属原子在BLG表面的扩散能垒随原子半径的增加而减小。碱金属原子吸附使电子部分转移至BLG,使体系Fermi能级贯穿导带,表现出金属性。电荷密度差和电荷转移的分析表明,Li、Na、K和Rb与BLG表面以离子键结合。%Using the first-principles method based on the density functional theory, the adsorption energies, migration processes and electronic properties for the Li, Na, K and Rb adsorbed on the bilayer graphene ( BLG) were calculated. The calculated adsorption energies indicate that both Li and Na atoms tend to aggregate into clusters, and the K and Rb atoms can dispersive on the BLG. The energy barriers for alkali-metal atoms migra-tion decrease with the increasing of the atomic radius. The adsorption systems exhibit metallic character since the Fermi level shifts up into the conduction band due to the electrons transfer from adatoms to the BLG. Analysis of the charge density differences and electronic structures of these adsorption systems shows that ionic bond takes place between the alkali-metal atoms ( Li, Na, K and Rb) and the BLG.

  9. Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites.

    Science.gov (United States)

    Glaser, Tobias; Müller, Christian; Sendner, Michael; Krekeler, Christian; Semonin, Octavi E; Hull, Trevor D; Yaffe, Omer; Owen, Jonathan S; Kowalsky, Wolfgang; Pucci, Annemarie; Lovrinčić, Robert

    2015-08-06

    The organic cation and its interplay with the inorganic lattice underlie the exceptional optoelectronic properties of organo-metallic halide perovskites. Herein we report high-quality infrared spectroscopic measurements of methylammonium lead halide perovskite (CH3NH3Pb(I/Br/Cl)3) films and single crystals at room temperature, from which the dielectric function in the investigated spectral range is derived. Comparison with electronic structure calculations in vacuum of the free methylammonium cation allows for a detailed peak assignment. We analyze the shifts of the vibrational peak positions between the different halides and infer the extent of interaction between organic moiety and the surrounding inorganic cage. The positions of the NH3(+) stretching vibrations point to significant hydrogen bonding between the methylammonium and the halides for all three perovskites.

  10. Microfabrication of MEMS alkali metal vapor cells for chip-scale atomic devices%芯片级原子器件MEMS碱金属蒸气腔室制作

    Institute of Scientific and Technical Information of China (English)

    尤政; 马波; 阮勇; 陈硕; 张高飞

    2013-01-01

    提出了基于两步低温阳极键合工艺的碱金属蒸气腔室制作方法,用于实现原子钟、原子磁力计及原子陀螺仪等器件的芯片级集成.由微机电系统(MEMS)体硅工艺制备了腔室结构.首先采用标准工艺将刻蚀有腔室的硅圆片与Pyrex玻璃阳极键合成预成型腔室,然后引入氮缓冲气体和由惰性石蜡包覆的微量碱金属铷或铯.通过两步阳极键合来密封腔室,键合温度低于石蜡燃点198℃.第一步键合预封装腔室,键合电压小于缓冲气体的击穿电压.第二步键合在大气氛围中进行,电压增至1 200 V来增强封装质量.通过高功率激光器局部加热释放碱金属,同时在腔壁上形成均匀的石蜡镀层以延长极化原子寿命.本文实现了160℃的低温阳极键合封装,键合率达到95%以上.封装的碱金属铷释放后仍具有金属光泽,实现的最小双腔室体积为6.5 mm×4.5 mm×2 mm.铷的吸收光谱表明铷有效地封装在腔室中,证明两步低温阳极键合工艺制作碱金属蒸气腔室是可行的.%This paper reported on the microfabrication of alkali metal vapor cells based on the two-step low temperature anodic bonding for the chip-scale integration of atomic clock,atomic magnetometer,atomic gyroscope and other atomic devices.Cell structures were fabricated by Micro-electromechanical System (MEMS) bulk silicon process,and the etched silicon with cells was firstly bonded to Pyrex glass to fabricate preformed chambers by the standard anodic bonding process.Then,nitrogen buffer gas and micro-scale alkali metal (rubidium or cesium) were introduced into the preformed cells.The two-step anodic bonding process was used to seal the cells at a temperature lower than the paraffin flash point (198 ℃).In the first step,bonding voltage was lower than the breakdown voltage of nitrogen buffer gas to pre-seal the cells.In the second step,the bonding was in air atmosphere,and the bonding voltage increased up to 1

  11. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    Science.gov (United States)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  12. Ab initio study of the adsorption, diffusion, and intercalation of alkali metal atoms on the (0001) surface of the topological insulator Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Ryabishchenkova, A. G., E-mail: ryaange@gmail.com; Otrokov, M. M.; Kuznetsov, V. M.; Chulkov, E. V. [Tomsk State University (Russian Federation)

    2015-09-15

    Ab initio study of the adsorption, diffusion, and intercalation of alkali metal adatoms on the (0001) step surface of the topological insulator Bi{sub 2}Se{sub 3} has been performed for the case of low coverage. The calculations of the activation energies of diffusion of adatoms on the surface and in van der Waals gaps near steps, as well as the estimate of diffusion lengths, have shown that efficient intercalation through steps is possible only for Li and Na. Data obtained for K, Rb, and Cs atoms indicate that their thermal desorption at high temperatures can occur before intercalation. The results have been discussed in the context of existing experimental data.

  13. Promoting oxygen vacancy formation and p-type conductivity in SrTiO3via alkali metal doping: a first principles study.

    Science.gov (United States)

    Triggiani, Leonardo; Muñoz-García, Ana B; Agostiano, Angela; Pavone, Michele

    2016-10-19

    Strontium titanate (SrTiO3, STO) is a prototypical perovskite oxide, widely exploited in many technological applications, from catalysis to energy conversion devices. In the context of solid-oxide fuel cells, STO has been recently applied as an epitaxial substrate for nano-sized layers of mixed ion-electron conductive catalysts with enhanced electrochemical performances. To extend the applications of such heterogeneous nano-cathodes in real devices, also the STO support should be active for both electron transport and oxide diffusion. To this end, we explored using first-principles calculations the strategy of doping of STO at the Sr site with sodium and potassium. These two ions fit in the perovskite structure and induce holes in the STO valence band, so as to obtain the desired p-type electronic conduction. At the same time, the doping with alkali ions also promotes the formation of oxygen vacancies in STO, a prerequisite for effective oxide diffusion. Analysis of electron density rearrangements upon defect formation allows relating the favorable vacancy formation energies to an improved electronic delocalization over the oxide sub-lattice, as observed in closely related materials (e.g. Sr2Fe1.5Mo0.5O6). Overall, our results suggest the alkali-doped STO as a new potential substrate material in nanoscale heterogeneous electrodes for solid oxide electrochemical cells.

  14. Halogen versus halide electronic structure

    Institute of Scientific and Technical Information of China (English)

    Willem-Jan; van; Zeist; F.Matthias; Bickelhaupt

    2010-01-01

    Halide anions X-are known to show a decreasing proton affinity(PA),as X descends in the periodic table along series F,Cl,Br and I.But it is also well-known that,along this series,the halogen atom X becomes less electronegative(or more electropositive).This corresponds to an increasing energy of the valence np atomic orbital(AO) which,somewhat contradictorily,suggests that the electron donor capability and thus the PA of the halides should increase along the series F,Cl,Br,I.To reconcile these contradictory observations,we have carried out a detailed theoretical analysis of the electronic structure and bonding capability of the halide anions X-as well as the halogen radicals X-,using the molecular orbital(MO) models contained in Kohn-Sham density functional theory(DFT,at SAOP/TZ2P as well as OLYP/TZ2P levels) and ab initio theory(at the HF/TZ2P level).We also resolve an apparent intrinsic contradiction in Hartree-Fock theory between orbital-energy and PA trends.The results of our analyses are of direct relevance for understanding elementary organic reactions such as nucleophilic substitution(SN2) and base-induced elimination(E2) reactions.

  15. Alkali and Halogen Chemistry in Volcanic Gases on Io

    CERN Document Server

    Schaefer, L

    2004-01-01

    We use chemical equilibrium calculations to model the speciation of alkalis and halogens in volcanic gases emitted on Io. The calculations cover wide temperature (500-2000 K) and pressure (10^-6 to 10^+1 bars) ranges, which overlap the nominal conditions at Pele (T = 1760 K, P = 0.01 bars). About 230 compounds of 11 elements (O, S, Li, Na, K, Rb, Cs, F, Cl, Br, I) are considered. We predict the major alkali and halogen species in a Pele-like volcanic gas and the major alklai and halogen condensates. We also model disequilibrium chemistry of the alkalis and halogens in the volcanic plume. Based on this work and our prior modeling for Na, K, and Cl in a volcanic plume, we predict the major loss processes for the alkali halide gases are photolysis and/or condensation onto grains. On the basis of elemental abundances and photochemical lifetimes, we recommend searching for gaseous KCl, NaF, LiF, LiCl, RbF, RbCl, CsF, and CsCl around volcanic vents during eruptions. Based on abundance considerations and observation...

  16. Influence of the alkali metal cation on the fragmentation of monensin in ESI-MS/MS Influência de cátions de metais alcalinos sobre a fragmentação de monensina em ESI-MS/MS

    Directory of Open Access Journals (Sweden)

    Norberto Peporine Lopes

    2006-09-01

    Full Text Available The MS/MS fragmentation of the alkali metal complexes of monensin A are studied. The increase in alkali metal ionic radii decreases the ability of the Grob-Wharton fragmentation mechanism to occur and reduces the overall degree of fragmentation. Conversely, the electronegativity of the metal cation is related to the number of fragment ions observed.O presente trabalho relata os estudos de fragmentação por espectrometria de massas seqüencial de complexos formados pela monensina A e uma série de metais alcalinos. Foi observado que o aumento do raio iônico do metal alcalino levou a uma diminuição do mecanismo de fragmentação do tipo Grob-Wharton e ao grau de fragmentação. Por outro lado, a maior eletronegatividade mostrou estar relacionada ao número de fragmentos observados.

  17. Study on migration behavior of alkali metals during co-gasification of corn stalk and PE%玉米秸秆与塑料PE共气化过程中碱金属迁移行为的研究

    Institute of Scientific and Technical Information of China (English)

    杨天华; 肖蕾; 开兴平; 丁一; 陈志敏; 李润东

    2013-01-01

    The migration behavior of alkali metals during co-gasification of cornstalk and PE in a fixed bed at different temperatures was studied on the thermodynamic equilibrium calculation,the X-ray power diffraction and scanning electron microscope/energy dispersive spectrometer.The results indicat that the alkali chlorides (KCl、K2Cl2 、NaCl)are the main components in gaseous.There is a large amounts of C and H in the fules with the mixed of plastic PE.The H makes the C1 prefer HC1 to KC1,meanwhile,the release radio of K is lower than the cornstalk gasification cause of the C easily reacted with K than Na.Alkali metal compounds in ashes are mainly in the forms of KCl,NaCl,K2SO4,KAlSi3O8,KAlSiO4,NaAlSi3O8,NaAlSiO4.The KCl,NaC1 begin to release when the reacting temperature above 800 ℃ and most of K,Na,Cl are easily deposited on the edge of the hole.%选取一定混合比例的玉米秸秆与塑料PE制成混合燃料,采用固定床实验台,通过改变反应温度,并结合化学热力学平衡分析、X射线衍射及扫描电子显微电镜能谱分析技术对共气化过程中碱金属的迁移行为进行研究.结果表明,气化气中碱金属以气态组元KCl、K2Cl2、NaCl形式存在.混合燃料中掺入塑料PE后,C、H含量增加,H使得共气化反应中更容易与Cl反应生成HCl,而非KCl,同时C更容易与K结合,导致K的释放率低于单独玉米秸秆气化,但使Na释放率增加.灰中碱金属化合物以KCl、NaCl、K2SO4、KAlSi3O8、KAlSiO4、NaAlSi3O8、NaAlSiO4为主,气化温度高于800℃后灰中K、Na、Cl更易沉积于微孔边缘.

  18. Computational screening of mixed metal halide ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich;

    the search spaces consists of millions combinations, which makes a GA ideal, to reduce the number of necessary calculations. We are screening for a one step release from either a hexa or octa ammine, and we have found promising candidates, which will be further investigated ? both computationally...

  19. Binding to Redox-Inactive Alkali and Alkaline Earth Metal Ions Strongly Deactivates the C-H Bonds of Tertiary Amides toward Hydrogen Atom Transfer to Reactive Oxygen Centered Radicals.

    Science.gov (United States)

    Salamone, Michela; Carboni, Giulia; Mangiacapra, Livia; Bietti, Massimo

    2015-09-18

    The effect of alkali and alkaline earth metal ions on the reactions of the cumyloxyl radical (CumO(•)) with N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMA) was studied by laser flash photolysis. In acetonitrile, a >2 order of magnitude decrease in the rate constant for hydrogen atom transfer (HAT) from the C-H bonds of these substrates (kH) was measured after addition of Li(+). This behavior was explained in terms of a strong interaction between Li(+) and the oxygen atom of both DMF and DMA that increases the extent of positive charge on the amide, leading to C-H bond deactivation toward HAT to the electrophilic radical CumO(•). Similar effects were observed after addition of Ca(2+), which was shown to strongly bind up to four equivalents of the amide substrates. With Mg(2+), weak C-H deactivation was observed for the first two substrate equivalents followed by stronger deactivation for two additional equivalents. No C-H deactivation was observed in DMSO after addition of Li(+) and Mg(2+). These results point toward the important role played by metal ion Lewis acidity and solvent Lewis basicity, indicating that C-H deactivation can be modulated by varying the nature of the metal cation and solvent and allowing for careful control over the HAT reactivity of amide substrates.

  20. Mechanistic Aspects of Aryl-Halide Oxidative Addition, Coordination Chemistry, and Ring-Walking by Palladium.

    Science.gov (United States)

    Zenkina, Olena V; Gidron, Ori; Shimon, Linda J W; Iron, Mark A; van der Boom, Milko E

    2015-11-01

    This contribution describes the reactivity of a zero-valent palladium phosphine complex with substrates that contain both an aryl halide moiety and an unsaturated carbon-carbon bond. Although η(2) -coordination of the metal center to a C=C or C≡C unit is kinetically favored, aryl halide bond activation is favored thermodynamically. These quantitative transformations proceed under mild reaction conditions in solution or in the solid state. Kinetic measurements indicate that formation of η(2) -coordination complexes are not nonproductive side-equilibria, but observable (and in several cases even isolated) intermediates en route to aryl halide bond cleavage. At the same time, DFT calculations show that the reaction with palladium may proceed through a dissociation-oxidative addition mechanism rather than through a haptotropic intramolecular process (i.e., ring walking). Furthermore, the transition state involves coordination of a third phosphine to the palladium center, which is lost during the oxidative addition as the C-halide bond is being broken. Interestingly, selective activation of aryl halides has been demonstrated by adding reactive aryl halides to the η(2) -coordination complexes. The product distribution can be controlled by the concentration of the reactants and/or the presence of excess phosphine.

  1. Rydberg Matter clusters of alkali metal atoms: the link between meteoritic matter, polar mesosphere summer echoes (PMSE), sporadic sodium layers, polar mesospheric clouds (PMCs, NLCs), and ion chemistry

    CERN Document Server

    Olofson, Frans; Holmlid, Leif

    2010-01-01

    A material exists which links together the influx of meteoritic matter from interplanetary space, the polar mesosphere summer echoes (PMSE), the sporadic sodium layers, the polar mesospheric clouds (PMCs, NLCs), and the observed ion chemistry in the mesosphere. The evidence in these research fields is here analyzed and found to agree well with the properties of Rydberg Matter (RM). This material has been studied with numerous methods in the laboratory. Alkali atoms, mainly Na, reach the mesosphere in the form of interplanetary (meteoritic, cometary) dust. The planar RM clusters NaN usually contain N = 19, 37 or 61 atoms, and have the density of air at 90 km altitude where they float. The diameters of the clusters are 10-100 nm from laboratory high precision radio frequency spectroscopic studies. Such experiments show that RM clusters interact strongly with radar frequencies: this explains the radio frequency heating and reflection studies of PMSE layers. The clusters give the low temperature in the mesosphere...

  2. Alkali promotion of N-2 dissociation over Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using self-consistent density functional calculations, we show that adsorbed Na and Cs lower the barrier for dissociation of N2 on Ru(0001). Since N2 dissociation is a crucial step in the ammonia synthesis reaction, we explain in this way the experimental observation that alkali metals promote...... the ammonia synthesis reaction over Ru catalysts. We also show that the origin of this effect is predominantly a direct electrostatic attraction between the adsorbed alkali atoms and the dissociating molecule....

  3. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  4. Vibrational spectra of discrete UO22+ halide complexes in the gas phase

    NARCIS (Netherlands)

    Groenewold, G. S.; van Stipdonk, M. J.; Oomens, J.; de Jong, W. A.; Gresham, G. L.; McIlwain, M. E.

    2010-01-01

    The intrinsic binding of halide ions to the metal center in the uranyl molecule is a topic of ongoing research interest in both the actinide separations and theoretical communities. Investigations of structure in the condensed phases are frequently obfuscated by solvent interactions that can alter l

  5. Calculation of Radiative Corrections to E1 matrix elements in the Neutral Alkalis

    Energy Technology Data Exchange (ETDEWEB)

    Sapirstein, J; Cheng, K T

    2004-09-28

    Radiative corrections to E1 matrix elements for ns-np transitions in the alkali metal atoms lithium through francium are evaluated. They are found to be small for the lighter alkalis but significantly larger for the heavier alkalis, and in the case of cesium much larger than the experimental accuracy. The relation of the matrix element calculation to a recent decay rate calculation for hydrogenic ions is discussed, and application of the method to parity nonconservation in cesium is described.

  6. Absorption spectra of alkali-C₆₀ nanoclusters.

    Science.gov (United States)

    Rabilloud, Franck

    2014-10-28

    We investigate the absorption spectra of alkali-doped C60 nanoclusters, namely C60Nan, C60Kn, and C60Lin, with n = 1, 2, 6, 12, in the framework of the time-dependent density-functional theory (TDDFT). We study the dependence of the absorption spectra on the nature of the alkali. We show that in few cases the absorption spectra depend on the arrangement of the alkali atoms over the fullerene, though sometimes the absorption spectra do not allow us to distinguish between different configurations. When only one or two alkali atoms are adsorbed on the fullerene, the optical response of alkali-doped C60 is similar to that of the anion C60(-) with a strong response in the UV domain. In contrast, for higher concentration of alkali, a strong optical response is predicted in the visible range, particularly when metal-metal bonds are formed. The weak optical response of the I(h)-symmetry C60Li12 is proposed to be used as a signature of its structure.

  7. Catalysis by desolvation: the catalytic prowess of SAM-dependent halide-alkylating enzymes.

    Science.gov (United States)

    Lohman, Danielle C; Edwards, David R; Wolfenden, Richard

    2013-10-02

    In the biological fixation of halide ions, several enzymes have been found to catalyze alkyl transfer from S-adenosylmethionine to halide ions. It proves possible to measure the rates of reaction of the trimethylsulfonium ion with I(-), Br(-), Cl(-), F(-), HO(-), and H2O in water at elevated temperatures. Comparison of the resulting second-order rate constants, extrapolated to 25 °C, with the values of k(cat)/K(m) reported for fluorinase and chlorinase indicates that these enzymes enhance the rates of alkyl halide formation by factors of 2 × 10(15)- and 1 × 10(17)-fold, respectively. These rate enhancements, achieved without the assistance of cofactors, metal ions, or general acid-base catalysis, are the largest that have been reported for an enzyme that acts on two substrates.

  8. New Alkali-Metal- and 2-Phenethylamine-Intercalated Superconductors Ax(C8H11N)yFe1-zSe (A = Li, Na) with the Largest Interlayer Spacings and Tc ˜ 40 K

    Science.gov (United States)

    Hatakeda, Takehiro; Noji, Takashi; Sato, Kazuki; Kawamata, Takayuki; Kato, Masatsune; Koike, Yoji

    2016-10-01

    New FeSe-based intercalation superconductors, Ax(C8H11N)yFe1-zSe (A = Li, Na), with Tc = 39-44 K have been successfully synthesized via the intercalation of alkali metals and 2-phenethylamine into FeSe. The interlayer spacings, namely, the distances between neighboring Fe layers, d, of Ax(C8H11N)yFe1-zSe (A = Li, Na) are 19.04(6) and 18.0(1) Å, respectively. These d values are the largest among those of the FeSe-based intercalation compounds and are understood to be due to the intercalation of two molecules of 2-phenethylamine in series perpendicular to the FeSe layers. It appears that the relationship between Tc and d in the FeSe-based intercalation superconductors is not domic but Tc is saturated at ˜45 K, which is comparable to the Tc values of single-layer FeSe films, for d ≥ 9 Å.

  9. Competitive binding exchange between alkali metal ions (K+, Rb+, and Cs+) and Na+ ions bound to the dimeric quadruplex [d(G4T4G4)]2: a 23Na and 1H NMR study.

    Science.gov (United States)

    Cesare Marincola, Flaminia; Virno, Ada; Randazzo, Antonio; Mocci, Francesca; Saba, Giuseppe; Lai, Adolfo

    2009-12-01

    A comparative study of the competitive cation exchange between the alkali metal ions K+, Rb+, and Cs+ and the Na+ ions bound to the dimeric quadruplex [d(G4T4G4)]2 was performed in aqueous solution by a combined use of the 23Na and 1H NMR spectroscopy. The titration data confirm the different binding affinities of these ions for the G-quadruplex and, in particular, major differences in the behavior of Cs+ as compared to the other ions were found. Accordingly, Cs+ competes with Na+ only for the binding sites at the quadruplex surface (primarily phosphate groups), while K+ and Rb+ are also able to replace sodium ions located inside the quadruplex. Furthermore, the 1H NMR results relative to the CsCl titration evidence a close approach of Cs+ ions to the phosphate groups in the narrow groove of [d(G4T4G4)]2. Based on a three-site exchange model, the 23Na NMR relaxation data lead to an estimate of the relative binding affinity of Cs+ versus Na+ for the quadruplex surface of 0.5 at 298 K. Comparing this value to those reported in the literature for the surface of the G-quadruplex formed by 5'-guanosinemonophosphate and for the surface of double-helical DNA suggests that topology factors may have an important influence on the cation affinity for the phosphate groups on DNA.

  10. The calcium-alkali syndrome

    OpenAIRE

    Arroyo, Mariangeli; Fenves, Andrew Z.; Emmett, Michael

    2013-01-01

    The milk-alkali syndrome was a common cause of hypercalcemia, metabolic alkalosis, and renal failure in the early 20th century. It was caused by the ingestion of large quantities of milk and absorbable alkali to treat peptic ulcer disease. The syndrome virtually vanished after introduction of histamine-2 blockers and proton pump inhibitors. More recently, a similar condition called the calcium-alkali syndrome has emerged as a common cause of hypercalcemia and alkalosis. It is usually caused b...

  11. Electron spin resonance study of electron localization and dynamics in metal-molten salt solutions: comparison of M-MX and Ln-LnX sub 3 melts (M alkali metal, Ln = rare earth metal, X = halogen)

    CERN Document Server

    Terakado, O; Freyland, W

    2003-01-01

    We have studied the electron spin resonance (ESR) spectra in liquid K-KCl and M-(NaCl/KCl) sub e sub u sub t mixtures at different concentrations in salt-rich melts approaching the metal-nonmetal transition region. In both systems F-centre-like characteristics are found. Strongly exchange narrowed signals clearly indicate that fast electron exchange occurs on the picosecond timescale. In contrast, the ESR spectra of a (NdCl sub 2)(NdCl sub 3)-(LiCl/KCl) sub e sub u sub t melt are characterized by a large line width of the order of 10 sup 2 mT which decreases with increasing temperature. In this case, the g-factor and correlation time are consistent with the model of intervalence charge transfer, which is supported by recent conductivity and optical measurements. The different transport mechanisms will be discussed.

  12. Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing.

    Science.gov (United States)

    Era, Masanao; Komatsu, Yumeko; Sakamoto, Naotaka

    2016-04-01

    Spin-coated films of a lead halide, PbX: X = I and Br, layered perovskites having cyclohexenylethyl ammonium molecule as an organic layer, which were mixed with other metal halide-based layered perovskites consisting of various divalent metal halides (for example, Ca2, Cdl2, FeI2, SnBr2 and so on), were prepared. The results of X-ray diffraction measurements exhibited that solid solution formation between PbX-based layered perovskite and other divalent metal halide-based layered perovskites was observed up to very high molar concentration of 50 molar% in the mixed film samples when divalent cations having ionic radius close to that of Pb2+ were employed. In the solid solution films, the exciton emission was much enhanced at room temperature. Exciton emission intensity of Pbl-based layered perovskite mixed with Cal-based layered perovskite (20 molar%) is about 5 times large that of the pristine Pbl-based layered perovskite, and that of PbBr-based layered perovskite mixed with SnBr-based layered perovskite (20 molar%) was also about 5 times large that of the pristine PbBr-based layered perovskite at room temperature.

  13. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

    Science.gov (United States)

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; de Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V.

    2015-08-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ~10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440-700 nm) with low pump thresholds down to 5+/-1 μJ cm-2 and high values of modal net gain of at least 450+/-30 cm-1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals.

  14. Epitaxial Halide Perovskite Lateral Double Heterostructure.

    Science.gov (United States)

    Wang, Yiping; Chen, Zhizhong; Deschler, Felix; Sun, Xin; Lu, Toh-Ming; Wertz, Esther A; Hu, Jia-Mian; Shi, Jian

    2017-03-28

    Epitaxial III-V semiconductor heterostructures are key components in modern microelectronics, electro-optics, and optoelectronics. With superior semiconducting properties, halide perovskite materials are rising as promising candidates for coherent heterostructure devices. In this report, spinodal decomposition is proposed and experimentally implemented to produce epitaxial double heterostructures in halide perovskite system. Pristine epitaxial mixed halide perovskites rods and films were synthesized via van der Waals epitaxy by chemical vapor deposition method. At room temperature, photon was applied as a knob to regulate the kinetics of spinodal decomposition and classic coarsening. By this approach, halide perovskite double heterostructures were created carrying epitaxial interfaces and outstanding optical properties. Reduced Fröhlich electron-phonon coupling was discovered in coherent halide double heterostructure, which is hypothetically attributed to the classic phonon confinement effect widely existing in III-V double heterostructures. As a proof-of-concept, our results suggest that halide perovskite-based epitaxial heterostructures may be promising for high-performance and low-cost optoelectronics, electro-optics, and microelectronics. Thus, ultimately, for practical device applications, it may be worthy to pursue these heterostructures via conventional vapor phase epitaxy approaches widely practised in III-V field.

  15. Distinguishing Isomeric Peptides: The Unimolecular Reactivity and Structures of (LeuPro)M(+) and (ProLeu)M(+) (M = Alkali Metal).

    Science.gov (United States)

    Jami-Alahmadi, Yasaman; Linford, Bryan D; Fridgen, Travis D

    2016-12-29

    The unimolecular chemistries and structures of gas-phase (ProLeu)M(+) and (LeuPro)M(+) complexes when M = Li, Na, Rb, and Cs have been explored using a combination of SORI-CID, IRMPD spectroscopy, and computational methods. CID of both (LeuPro)M(+) and (ProLeu)M(+) showed identical fragmentation pathways and could not be differentiated. Two of the fragmentation routes of both peptides produced ions at the same nominal mass as (Pro)M(+) and (Leu)M(+), respectively. For the litiated peptides, experiments revealed identical IRMPD spectra for each of the m/z 122 and 138 ions coming from both peptides. Comparison with computed IR spectra identified them as the (Pro)Li(+) and (Leu)Li(+), and it is concluded that both zwitterionic and canonical forms of (Pro)Li(+) exist in the ion population from CID of both (ProLeu)Li(+) and (LeuPro)Li(+). The two isomeric peptide complexes could be distinguished using IRMPD spectroscopy in both the fingerprint and the CH/NH/OH regions. The computed IR spectra for the lowest energy structures of each charge solvated complexes are consistent with the IRMPD spectra in both regions for all metal cation complexes. Through comparison between the experimental spectra, it was determined that in lithiated and sodiated ProLeu, metal cation is bound to both carbonyl oxygens and the amine nitrogen. In contrast, the larger metal cations are bound to the two carbonyls, while the amine nitrogen is hydrogen bonded to the amide hydrogen. In the lithiated and sodiated LeuPro complexes, the metal cation is bound to the amide carbonyl and the amine nitrogen while the amine nitrogen is hydrogen bonded to the carboxylic acid carbonyl. However, there is no hydrogen bond in the rubidiated and cesiated complexes; the metal cation is bound to both carbonyl oxygens and the amine nitrogen. Details of the position of the carboxylic acid C═O stretch were especially informative in the spectroscopic confirmation of the lowest energy computed structures.

  16. Alkali Aggregate Reaction in Alkali Slag Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By means of "Mortar Bar Method",the ratio of cement to aggregate was kept as a constant 1∶2.25,the water-cement ratio of the mixture was 0.40,and six prism specimens were prepared for each batch of mixing proportions with dimensions of 10×10×60mm3 at 38±2℃ and RH≥95%, the influences of content and particle size of active aggregate, sort and content of alkali component and type of slag on the expansion ratios of alkali-activated slag cement(ASC) mortars due to alkali aggregate reaction(AAR) were studied. According to atomic absorption spectrometry,the amount of free alkali was measured in ASC mortars at 90d.The results show above factors affect AAR remarkably,but no dangerous AAR will occur in ASC system when the amount of active aggregate is below 15% and the mass fraction of alkali is not more than 5% (Na2O).Alkali participated in reaction as an independent component, and some hydrates containing alkali cations were produced, free alkalis in ASC system can be reduced enormously.Moreover,slag is an effective inhibitor, the possibility of generating dangerous AAR in ASC system is much lower at same conditions than that in ordinary Portland cement system.

  17. Natural Alkali Shifts to the Methanol Business

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Inner Mongolia Yuanxing Natural Alkali Co., Ltd. (Natural Alkali SZ: 000683) established in 1997 is a large chemical enterprise with new energy as its leading business and natural gas chemicals and natural alkali chemicals as the supplement business.

  18. Liquid alkali metals - Equation of state and reduced-pressure, bulk-modulus, sound-velocity, and specific-heat functions

    Science.gov (United States)

    Schlosser, Herbert; Ferrante, John

    1989-01-01

    The previous work of Schlosser and Ferrante (1988) on universality in solids is extended to the study of liquid metals. As in the case of solids, to a good approximation, in the absence of phase transitions, plots of the logarithm of the reduced-pressure function H, of the reduced-isothermal-bulk-modulus function b, and of the reduced-sound-velocity function v are all linear in 1-X. Finally, it is demonstrated that ln(Cp/C/v) is also linear in 1-X, where X = (V/V/0/)exp 1/3), and V(0) is the volume at zero pressure.

  19. Orbital Feshbach Resonance in Alkali-Earth Atoms.

    Science.gov (United States)

    Zhang, Ren; Cheng, Yanting; Zhai, Hui; Zhang, Peng

    2015-09-25

    For a mixture of alkali-earth atomic gas in the long-lived excited state ^{3}P_{0} and the ground state ^{1}S_{0}, in addition to nuclear spin, another "orbital" index is introduced to distinguish these two internal states. In this Letter we propose a mechanism to induce Feshbach resonance between two atoms with different orbital and nuclear spin quantum numbers. Two essential ingredients are the interorbital spin-exchange process and orbital dependence of the Landé g factors. Here the orbital degrees of freedom plays a similar role as the electron spin degree of freedom in magnetic Feshbach resonance in alkali-metal atoms. This resonance is particularly accessible for the ^{173}Yb system. The BCS-BEC crossover in this system requires two fermion pairing order parameters, and displays a significant difference compared to that in an alkali-metal system.

  20. Structures and Nonlinear Optical Properties of Alkali Metal-Doped t-Bu-calix[4]arene Molecules%碱金属掺杂叔丁基杯[4]芳烃体系的结构及非线性光学性质

    Institute of Scientific and Technical Information of China (English)

    侯娜; 李莹; 吴迪; 李志儒

    2014-01-01

    采用密度泛函理论B3LYP方法得到了M@t-Bu-calix[4]arene和(M@t-Bu-calix[4]arene)Li′(M=Li, Na, K)体系的几何结构.其中(M@t-Bu-calix[4]arene)Li′(M=Li, Na, K)三个体系各有5个稳定异构体,在前三个异构体中,碱金属与t-Bu-calix[4]arene分子间具有很强的相互作用能,说明了体系的稳定性.在部分(M@t-Bu-calix[4]arene)Li异构体中Li′原子以阴离子形式存在,整个体系表现出碱金属化物的特性.此外,使用CAM-B3LYP方法计算了t-Bu-calix[4]arene及碱金属掺杂后体系的非线性光学性质.结果表明, t-Bu-calix[4]arene内部掺杂一个碱金属原子M后,体系的一阶超极化率(β0)有较大提高,而在配体外部又掺杂一个Li原子后,体系具有更大的β0值.其中(M@t-Bu-calix[4]arene)Li′体系的MLi′-4异构体表现出最高的β0值(41827-114354 a.u.),并且随着M原子序数的增加而逐渐增大.可见,碱金属掺杂是提高t-Bu-calix[4]arene非线性光学响应的一种有效策略.%Using density functional theory with the B3LYP functional, the optimized geometrical structures of the M@t-Bu-calix[4]arene and (M@t-Bu-calix[4]arene)Li′(M=Li, Na, K) compounds were obtained. Five stable isomers were identified for each bi-alkali-metal-doped (M@t-Bu-calix[4]arene)Li′species. The first three low-lying isomers have considerable intramolecular interaction energies between alkali metal atoms and the t-Bu-calix[4]arene molecule, indicating their stabilities. According to natural bond orbital analyses, the outside Li′atom is negatively charged in some (M@t-Bu-calix[4]arene)Li′structures, indicating the alkalide characteristics of these isomers. In addition, the nonlinear optical (NLO) properties of isolated and alkali-metal-doped t-Bu-calix [4]arene molecules were calculated using the CAM-B3LYP method. The results indicate that the single-doped effect of alkali metal M greatly enhances the first hyperpolarizability (β0) of the t-Bu-calix[4]arene molecule. In

  1. Facilitated alkali ion transfer at the water 1,2-dichloroethane interphase Ab-initio calculations concerning alkaline metal cation - 1,10-phenanthroline complexes

    CERN Document Server

    Sánchez, C; Baruzzi, A M; Leiva, E P M

    1997-01-01

    A series of calculations on the energetics of complexation of alkaline metals with 1,10-phenanthroline are presented. It is an experimental fact that the ordering of the free energy of transfer across the water - 1,2-dichloroethane interphase is governed by the charge / size ratio of the diferent cations; the larger cations showing the lower free energy of transfer. This ordering of the free energies of transfer is reverted in the presence of 1,10-phenanthroline in the organic phase. We have devised a thermodynamic cycle for the transfer process and by means of ab-initio calculations have drawn the conclusion that in the presence of phen the free energy of transfer is governed by the stability of the PHEN/M $^{+}$complex, which explains the observed tendency from a theoretical point of view.

  2. Room temperature oxidative intercalation with chalcogen hydrides: Two-step method for the formation of alkali-metal chalcogenide arrays within layered perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Ranmohotti, K.G. Sanjaya; Montasserasadi, M. Dariush; Choi, Jonglak; Yao, Yuan; Mohanty, Debasish; Josepha, Elisha A.; Adireddy, Shiva; Caruntu, Gabriel [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States); Wiley, John B., E-mail: jwiley@uno.edu [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States)

    2012-06-15

    Highlights: ► Topochemical reactions involving intercalation allow construction of metal chalcogenide arrays within perovskite hosts. ► Gaseous chalcogen hydrides serve as effect reactants for intercalation of sulfur and selenium. ► New compounds prepared by a two-step intercalation strategy are presented. -- Abstract: A two-step topochemical reaction strategy utilizing oxidative intercalation with gaseous chalcogen hydrides is presented. Initially, the Dion-Jacobson-type layered perovskite, RbLaNb{sub 2}O{sub 7}, is intercalated reductively with rubidium metal to make the Ruddlesden-Popper-type layered perovskite, Rb{sub 2}LaNb{sub 2}O{sub 7}. This compound is then reacted at room-temperature with in situ generated H{sub 2}S gas to create Rb-S layers within the perovskite host. Rietveld refinement of X-ray powder diffraction data (tetragonal, a = 3.8998(2) Å, c = 15.256(1) Å; space group P4/mmm) shows the compound to be isostructural with (Rb{sub 2}Cl)LaNb{sub 2}O{sub 7} where the sulfide resides on a cubic interlayer site surrounded by rubidium ions. The mass increase seen on sulfur intercalation and the refined S site occupation factor (∼0.8) of the product indicate a higher sulfur content than expected for S{sup 2−} alone. This combined with the Raman studies, which show evidence for an H-S stretch, indicate that a significant fraction of the intercalated sulfide exists as hydrogen sulfide ion. Intercalation reactions with H{sub 2}Se{sub (g)} were also carried out and appear to produce an isostructural selenide compound. The utilization of such gaseous hydride reagents could significantly expand multistep topochemistry to a larger number of intercalants.

  3. Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation

    KAUST Repository

    Minenkov, Yury

    2017-03-07

    In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes of Li, Be, Na, Mg, Ca, Sr, Ba and Pb(ii). Two strategies were investigated: in the former, only valence electrons were included in the correlation treatment, giving rise to the computationally very efficient FC (frozen core) approach; in the latter, all non-ECP electrons were included in the correlation treatment, giving rise to the AE (all electron) approach. Apart from reactions involving Li and Be, the FC approach resulted in non-homogeneous performance. The FC approach leads to very small errors (<2 kcal mol-1) for some reactions of Na, Mg, Ca, Sr, Ba and Pb, while for a few reactions of Ca and Ba deviations up to 40 kcal mol-1 have been obtained. Large errors are both due to artificial mixing of the core (sub-valence) orbitals of metals and the valence orbitals of oxygen and halogens in the molecular orbitals treated as core, and due to neglecting core-core and core-valence correlation effects. These large errors are reduced to a few kcal mol-1 if the AE approach is used or the sub-valence orbitals of metals are included in the correlation treatment. On the technical side, the CCSD(T) and DLPNO-CCSD(T) results differ by a fraction of kcal mol-1, indicating the latter method as the perfect choice when the CPU efficiency is essential. For completely black-box applications, as requested in catalysis or thermochemical calculations, we recommend the DLPNO-CCSD(T) method with all electrons that are not covered by effective core potentials included in the correlation treatment and correlation-consistent polarized core valence basis sets of cc-pwCVQZ(-PP) quality.

  4. Atomic Resolution Imaging of Halide Perovskites.

    Science.gov (United States)

    Yu, Yi; Zhang, Dandan; Kisielowski, Christian; Dou, Letian; Kornienko, Nikolay; Bekenstein, Yehonadav; Wong, Andrew B; Alivisatos, A Paul; Yang, Peidong

    2016-12-14

    The radiation-sensitive nature of halide perovskites has hindered structural studies at the atomic scale. We overcome this obstacle by applying low dose-rate in-line holography, which combines aberration-corrected high-resolution transmission electron microscopy with exit-wave reconstruction. This technique successfully yields the genuine atomic structure of ultrathin two-dimensional CsPbBr3 halide perovskites, and a quantitative structure determination was achieved atom column by atom column using the phase information of the reconstructed exit-wave function without causing electron beam-induced sample alterations. An extraordinarily high image quality enables an unambiguous structural analysis of coexisting high-temperature and low-temperature phases of CsPbBr3 in single particles. On a broader level, our approach offers unprecedented opportunities to better understand halide perovskites at the atomic level as well as other radiation-sensitive materials.

  5. Harmonic dynamical behaviour of thallous halides

    Indian Academy of Sciences (India)

    Sarvesh K Tiwari; L J Shukla; K S Upadhyaya

    2010-05-01

    Harmonic dynamical behaviour of thallous halides (TlCl and TlBr) have been studied using the new van der Waals three-body force shell model (VTSM), which incorporates the effects of the van der Waals interaction along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of rigid shell model (RSM). Phonon dispersion curves (PDC), variations of Debye temperature with absolute temperature and phonon density of state (PDS) curves have been reported for thallous halides using VTSM. Comparison of experimental values with those of VTSM and TSM are also reported in the paper and a good agreement between experimental and VTSM values has been found, from which it may be inferred that the incorporation of van der Waals interactions is essential for the complete harmonic dynamical behaviour of thallous halides.

  6. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.

    Science.gov (United States)

    Liu, Yuanyue; Xiao, Hai; Goddard, William A

    2016-05-11

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.

  7. X-ray Scintillation in Lead Halide Perovskite Crystals

    Science.gov (United States)

    Birowosuto, M. D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C.

    2016-11-01

    Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (EDBE)PbCl4 hybrid perovskite crystals. X-ray excited thermoluminescence measurements indicate the absence of deep traps and a very small density of shallow trap states, which lessens after-glow effects. All perovskite single crystals exhibit high X-ray excited luminescence yields of >120,000 photons/MeV at low temperature. Although thermal quenching is significant at room temperature, the large exciton binding energy of 2D (EDBE)PbCl4 significantly reduces thermal effects compared to 3D perovskites, and moderate light yield of 9,000 photons/MeV can be achieved even at room temperature. This highlights the potential of 2D metal halide perovskites for large-area and low-cost scintillator devices for medical, security and scientific applications.

  8. The influence of halides in polyoxotitanate cages; dipole moment, splitting and expansion of d-orbitals and electron-electron repulsion.

    Science.gov (United States)

    Hanf, Schirin; Matthews, Peter D; Li, Ning; Luo, He-Kuan; Wright, Dominic S

    2017-01-03

    Metal-doped polyoxotitanate (M-POT) cages have been shown to be efficient single-source precursors to metal-doped titania [TiO2(M)] (state-of-the-art photocatalytic materials) as well as molecular models for the behaviour of dopant metal ions in bulk titania. Here we report the influence halide ions have on the optical and electronic properties of a series of halide-only, and cobalt halide-'doped' POT cages. In this combined experimental and computational study we show that halide ions can have several effects on the band gaps of halide-containing POT cages, influencing the dipole moment (hole-electron separation) and the structure of the valance band edge. Overall, the band gap behaviour stems from the effects of increasing orbital energy moving from F to I down Group 17, as well as crystal-field splitting of the d-orbitals, the potential effects of the Nephelauxetic influence of the halides and electron-electron repulsion.

  9. Formation and Stability of High-Spin Alkali Clusters

    Science.gov (United States)

    Schulz, C. P.; Claas, P.; Schumacher, D.; Stienkemeier, F.

    2004-01-01

    Helium nanodroplet isolation has been applied to agglomerate alkali clusters at temperatures of 380mK. The very weak binding to the surface of the droplets allows a selection of only weakly bound, high-spin states. Here we show that larger clusters of alkali atoms in high-spin states can be formed. The lack of strong bonds from pairing electrons makes these systems nonmetallic, vanderWaals like complexes of metal atoms. We find that sodium and potassium readily form such clusters containing up to 25atoms. In contrast, this process is suppressed for rubidium and cesium. Apparently, for these heavy alkalis, larger high-spin aggregates are not stable and depolarize spontaneously upon cluster formation.

  10. Use of precalciners to remove alkali from raw materials in the cement industry. Final report, July 1978-July 1980

    Energy Technology Data Exchange (ETDEWEB)

    Gartner, E.M.

    1980-07-01

    The objective of this work was to develop an efficient means of removing alkali metal compounds (alkalies) from high-alkali aluminosilicate raw materials of the type commonly used as part of cement raw mixes in order to increase the energy efficiency of cement manufacture. The intention of this project was to determine whether the high-alkali raw materials could be pyroprocessed separately to remove the alkalies before they entered the rotary kiln, where they would be mixed with the other raw feed components. If this could be achieved, considerable savings could be made in the energy required to remove alkalies, compared to conventional methods in which the cement raw mix must be treated as a whole. Two different methods of alkali removal were examined, namely, vaporization of alkalies at relatively low temperatures; and alkali-rich melt separation at relativey high temperatures. The results showed that the removal of alkalies by pyroprocessing of high-alkali raw feed components separate from the other cement raw mix components is not likely to be a practical alternative to the best available conventional precalciner technology. (LCL)

  11. Energetics and dynamics in organic-inorganic halide perovskite photovoltaics and light emitters

    Science.gov (United States)

    Chien Sum, Tze; Chen, Shi; Xing, Guichuan; Liu, Xinfeng; Wu, Bo

    2015-08-01

    The rapid transcendence of organic-inorganic metal halide perovskite solar cells to above the 20% efficiency mark has captivated the broad photovoltaic community. As the efficiency race continues unabated, it is essential that fundamental studies keep pace with these developments. Further gains in device efficiencies are expected to be increasingly arduous and harder to come by. The key to driving the perovskite solar cell efficiencies towards their Shockley-Queisser limit is through a clear understanding of the interfacial energetics and dynamics between perovskites and other functional materials in nanostructured- and heterojunction-type devices. In this review, we focus on the current progress in basic characterization studies to elucidate the interfacial energetics (energy-level alignment and band bending) and dynamical processes (from the ultrafast to the ultraslow) in organic-inorganic metal halide perovskite photovoltaics and light emitters. Major findings from these studies will be distilled. Open questions and scientific challenges will also be highlighted.

  12. Green Synthesis and Regioselective Control of Sn/I2 Mediated Allylation of Carbonyl Compounds with Crotyl Halide in Water

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yan; ZHA,Zhang-Gen; ZHOU,Yu-Qing; WANG,Zhi-Yong

    2004-01-01

    @@ Barbier-type carbonyl allylation is particularly useful due to ease of operation and the availability and tractability of allylic substrates,[1] Metals such as indium, zinc and tin are often used as the mediator. Here we present a green approach toward the synthesis, that is, Sn/I2 mediated allylation of carbonyl compounds with crotyl halide in water.

  13. Enhanced Quantum Efficiency From Hybrid Cesium Halide/Copper Photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Gong, Yu; Hess, Wayne P.

    2014-04-28

    The quantum efficiency of Cu is found to increase dramatically when coated by a CsI film and then irradiated by a UV laser. Over three orders of magnitude quantum efficiency enhancement at 266 nm is observed in CsI/Cu(100), indicating potential application in future photocathode devices. Upon laser irradiation, a large work function reduction to a value less than 2 eV is also observed, significantly greater than for similarly treated CsBr/Cu(100). The initial QE enhancement, prior to laser irradiation, is attributed to interface interaction, surface cleanliness and the intrinsic properties of the Cs halide film. Further QE enhancement following activation is attributed to formation of inter-band states and Cs metal accumulation at the interface induced by laser irradiation.

  14. Development of Detection Method for Chlorates of Alkali Metals in Cosmetics%化妆品中碱金属氯酸盐的检测方法研究

    Institute of Scientific and Technical Information of China (English)

    杨轶眉; 李勤; 薛峰

    2014-01-01

    A thin layer chromatography(TCL)&potentiometric titration method was developed for the determination of chlo-rates of alkali metals in cosmetics. Chlorates were separated from other halates by thin layer chromatography and identified by the oxidation of iodide to form iodine. After identification,chlorate was reduced by zinc powder under acid conditions. The formed chloride was measured by potentiometric titration using a silver nitrate solution. The results showed that the recovery of the method was in the range of 81.4% to 105.2% under the concentration of 0.03% to 3.41% while being counted as chlorate ions(with relative standard deviation of not more than 10% ). Additionally,the detection and quantification limits were found to be 0.03% and 0.10% respectively.%建立了薄层色谱法和电位滴定法联用测定化妆品中碱金属氯酸盐含量的方法。用薄层色谱将氯酸盐从其他卤酸盐中分离,与碘化物形成碘来鉴别碱金属的氯酸盐。通过鉴别试验后,在酸性条件下氯酸盐被锌粉还原,所形成的氯化物用硝酸银溶液进行电位滴定。试验结果表明:在0.03%~3.41%(以氯酸根离子计)的质量分数范围内,加标回收率为81.4%~105.2%,相对标准偏差(RSD)≤10%;定性检出限为0.03%(质量分数),定量检出限为0.10%(质量分数)。

  15. Alkali-metal ion coordination in uranyl(VI) poly-peroxide complexes in solution. Part 1: the Li⁺, Na⁺ and K⁺--peroxide-hydroxide systems.

    Science.gov (United States)

    Zanonato, Pier Luigi; Di Bernardo, Plinio; Vallet, Valerie; Szabó, Zoltán; Grenthe, Ingmar

    2015-01-28

    The alkali metal ions Li(+), Na(+) and K(+) have a profound influence on the stoichiometry of the complexes formed in uranyl(VI)-peroxide-hydroxide systems, presumably as a result of a templating effect, resulting in the formation of two complexes, M[(UO2)(O2)(OH)]2(-) where the uranyl units are linked by one peroxide bridge, μ-η(2)-η(2), with the second peroxide coordinated "end-on", η(2), to one of the uranyl groups, and M[(UO2)(O2)(OH)]4(3-), with a four-membered ring of uranyl ions linked by μ-η(2)-η(2) peroxide bridges. The stoichiometry and equilibrium constants for the reactions: M(+) + 2UO2(2+) + 2HO2(-) + 2H2O → M[(UO2)(O2)(OH)]2(-) + 4H(+) (1) and M(+) + 4UO2(2+) + 4HO2(-) + 4H2O → M[(UO2)(O2)(OH)]4(3-) + 8H(+) (2) have been measured at 25 °C in 0.10 M (tetramethyl ammonium/M(+))NO3 ionic media using reaction calorimetry. Both reactions are strongly enthalpy driven with large negative entropies of reaction; the observation that ΔH(2) ≈ 2ΔH(1) suggests that the enthalpy of reaction is approximately the same when peroxide is added in bridging and "end-on" positions. The thermodynamic driving force in the reactions is the formation of strong peroxide bridges and the role of M(+) cations is to provide a pathway with a low activation barrier between the reactants and in this way "guide" them to form peroxide bridged complexes; they play a similar role as in the synthesis of crown-ethers. Quantum chemical (QC) methods were used to determine the structure of the complexes, and to demonstrate how the size of the M(+)-ions affects their coordination geometry. There are several isomers of Na[(UO2)(O2)(OH)]2(-) and QC energy calculations show that the ones with a peroxide bridge are substantially more stable than the ones with hydroxide bridges. There are isomers with different coordination sites for Na(+) and the one with coordination to the peroxide bridge and two uranyl oxygen atoms is the most stable one.

  16. Positron collisions with alkali-metal atoms

    Science.gov (United States)

    Gien, T. T.

    1990-01-01

    The total cross sections for positron and electron collisions with potassium, sodium, lithium and rubidium are calculated, employing the modified Glauber approximation. The Modified Glauber cross sections for positron collision with potassium and sodium at low intermediate energies are found to agree reasonably well with existing experimental data.

  17. Temperature dependence of pulse-induced mechanoluminescence excitation in coloured alkali halide crystals

    Indian Academy of Sciences (India)

    Namita Rajput; S Tiwari; B P Chandra

    2004-12-01

    In practice, the relative efficiencies of different crystals are often determined under identical conditions of temperature and excitation. If the temperature of a crystal is increased or decreased with respect to room temperature, luminescence efficiency may get increased or decreased according to the composition of the crystal. When coloured crystals of NaCl, NaBr, KCl and KBr are excited by pulse-induced excitation at different temperatures, the mechanoluminescence (ML) intensity increases with temperature. The ML intensity of first peak, ml, second peak, _m2 and the total ML intensity, T, initially increase with temperature and then tend to attain an optimum value for a particular temperature of crystals. The ratio, m2/ml, is found to increase with increasing temperature of the crystals. The expression derived on the basis of rate equations, are able to explain the temperature dependence of ML intensity on several parameters.

  18. Dipole-driven self-organization of zwitterionic molecules on alkali halide surfaces

    Directory of Open Access Journals (Sweden)

    Laurent Nony

    2012-03-01

    Full Text Available We investigated the adsorption of 4-methoxy-4′-(3-sulfonatopropylstilbazolium (MSPS on different ionic (001 crystal surfaces by means of noncontact atomic force microscopy. MSPS is a zwitterionic molecule with a strong electric dipole moment. When deposited onto the substrates at room temperature, MSPS diffuses to step edges and defect sites and forms disordered assemblies of molecules. Subsequent annealing induces two different processes: First, at high coverage, the molecules assemble into a well-organized quadratic lattice, which is perfectly aligned with the directions of the substrate surface (i.e., rows of equal charges and which produces a Moiré pattern due to coincidences with the substrate lattice constant. Second, at low coverage, we observe step edges decorated with MSPS molecules that run along the direction. These polar steps most probably minimize the surface energy as they counterbalance the molecular dipole by presenting oppositely charged ions on the rearranged step edge.

  19. A study on the electrochemical behaviour of polypyrrole films in concentrated aqueous alkali halide electrolytes

    DEFF Research Database (Denmark)

    Jafeen, M. J. M.; Careem, M.A.; Skaarup, Steen

    2014-01-01

    deposited on gold-coated quartz crystals by electropolymerization and simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance techniques were used. During the first redox cycle, while large water movement is observed along with the counter ions in dilute electrolytes, such water...

  20. Refractive Index of Alkali Halides and Its Wavelength and Temperature Derivatives.

    Science.gov (United States)

    1975-05-01

    P. and Schaller, D., " Refractometric Measurements on Crystals and Comparison of Isomorphic Salts With Noble Gas Resembling and Non-Resembling Cations...P. and Heigl, A., " Refractometric Measurements on Crystals," Z. Kristallogr., 77, 84-121, 1931. 88. Wulff, P., "An Interferometric Method to