WorldWideScience

Sample records for alignment material properties

  1. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  2. Stress relaxation properties of four orthodontic aligner materials: A 24-hour in vitro study.

    Science.gov (United States)

    Lombardo, Luca; Martines, Elisa; Mazzanti, Valentina; Arreghini, Angela; Mollica, Francesco; Siciliani, Giuseppe

    2017-01-01

    To investigate the stress release properties of four thermoplastic materials used to make orthodontic aligners when subjected to 24 consecutive hours of deflection. Four types of aligner materials (two single and two double layered) were selected. After initial yield strength testing to characterize the materials, each sample was subjected to a constant load for 24 hours in a moist, temperature-regulated environment, and the stress release over time was measured. The test was performed three times on each type of material. All polymers analyzed released a significant amount of stress during the 24-hour period. Stress release was greater during the first 8 hours, reaching a plateau that generally remained constant. The single-layer materials, F22 Aligner polyurethane (Sweden & Martina, Due Carrare, Padova, Italy) and Duran polyethylene terephthalate glycol-modified (SCHEU, Iserlohn, Germany), exhibited the greatest values for both absolute stress and stress decay speed. The double-layer materials, Erkoloc-Pro (Erkodent, Pfalzgrafenweiler, Germany) and Durasoft (SCHEU), exhibited very constant stress release, but at absolute values up to four times lower than the single-layer samples tested. Orthodontic aligner performance is strongly influenced by the material of their construction. Stress release, which may exceed 50% of the initial stress value in the early hours of wear, may cause significant changes in the behavior of the polymers at 24 hours from the application of orthodontic loads, which may influence programmed tooth movement.

  3. Electrical Properties of Composite Materials with Electric Field-Assisted Alignment of Nanocarbon Fillers

    Science.gov (United States)

    Yakovenko, Olena; Matzui, Ludmila; Danylova, Ganna; Zadorozhnii, Victor; Vovchenko, Ludmila; Perets, Yulia; Lazarenko, Oleksandra

    2017-07-01

    The article reports about electric field-induced alignment of the carbon nanoparticles embedded in epoxy matrix. Optical microscopy was performed to consider the effect of the electric field magnitude and configuration, filler morphology, and aspect ratio on alignment process. Characteristic time of aligned network formation was compared with modeling predictions. Carbon nanotube and graphite nanoplatelet rotation time was estimated using an analytical model based on effective medium approach. Different depolarization factor was applied according to the geometries of the particle and electric field. Solid nanocomposites were fabricated by using AC electric field. We have investigated concentration dependence of electrical conductivity of graphite nanoplatelets/epoxy composites using two-probe technique. It was established that the electrical properties of composites with random and aligned filler distribution are differ by conductivity value at certain filler content and distinguish by a form of concentration dependence of conductivity for fillers with different morphology. These differences were explained in terms of the dynamic percolation and formation of various conductive networks: chained in case of graphite nanoplatelets and crossed framework in case of carbon nanotubes filler.

  4. The influence of specimen thickness and alignment on the material and failure properties of electrospun polycaprolactone nanofiber mats.

    Science.gov (United States)

    Mubyana, Kuwabo; Koppes, Ryan A; Lee, Kristen L; Cooper, James A; Corr, David T

    2016-11-01

    Electrospinning is a versatile fabrication technique that has been recently expanded to create nanofibrous structures that mimic ECM topography. Like many materials, electrospun constructs are typically characterized on a smaller scale, and scaled up for various applications. This established practice is based on the assumption that material properties, such as toughness, failure stress and strain, are intrinsic to the material, and thus will not be influenced by specimen geometry. However, we hypothesized that the material and failure properties of electrospun nanofiber mats vary with specimen thickness. To test this, we mechanically characterized polycaprolactone (PCL) nanofiber mats of three different thicknesses in response to constant rate elongation to failure. To identify if any observed thickness-dependence could be attributed to fiber alignment, such as the effects of fiber reorientation during elongation, these tests were performed in mats with either random or aligned nanofiber orientation. Contrary to our hypothesis, the failure strain was conserved across the different thicknesses, indicating similar maximal elongation for specimens of different thickness. However, in both the aligned and randomly oriented groups, the ultimate tensile stress, short-range modulus, yield modulus, and toughness all decreased with increasing mat thickness, thereby indicating that these are not intrinsic material properties. These findings have important implications in engineered scaffolds for fibrous and soft tissue applications (e.g., tendon, ligament, muscle, and skin), where such oversights could result in unwanted laxity or reduced resistance to failure. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2794-2800, 2016. © 2016 Wiley Periodicals, Inc.

  5. Synthesis, transfer printing, electrical and optical properties, and applications of materials composed of self-assembled, aligned single-walled carbon nanotubes

    Science.gov (United States)

    Pint, Cary L.

    ). Next, as the SWNTs produced in supergrowth are notably large in diameter (2-5 nm), this work provides the first characterization of these SWNTs using combined microscopy and infrared polarized absorption studies. Perfectly aligned SWNTs are transferred to infrared optical windows and mounted in a rotatable vacuum cell in which polarization dependent characterization is carried out. By modeling features observed in absorption to expected optical excitonic transition energies, diameter distributions are rapidly extracted. In addition, other concepts of optical characterization in ultra-long aligned SWNTs are explored. For example, the concept of using polarized near-IR characterization for such SWNT samples is inadequate to characterize the bulk alignment due to the mismatch of the excitation wavelength and the SWNT length. Therefore, comparing anisotropy in polarized near-IR Raman or absorption gives substantially different results than anisotropic electrical transport measurements. In addition to optical characterization, this work uniquely finds that the electrical transport properties of SWNTs is ultimately limited by SWNT-SWNT junctions. This is evident in temperature-dependent DC and AC conductivity measurements that emphasize localization-induced transport characteristics. A number of non-classical electrical transport features are observed that can simply be related to the sensitivity of electrical transport to SWNT-SWNT junctions. This means that despite the incredible electrical properties of individual SWNTs, it is necessary to focus on the growth and processing of ultra-long SWNTs in order to realistically make nanotube-based materials comparable in transport characteristics to conventional materials. Finally, this work concludes by demonstrating progress on the fabrication of new SWNT-based applications. First of all, a new type of solid-state supercapacitor material is fabricated where vertically aligned SWNT are coated with metal-oxide dielectric and

  6. Inkjet printing of magnetic materials with aligned anisotropy

    Science.gov (United States)

    Song, Han; Spencer, Jeremy; Jander, Albrecht; Nielsen, Jeffrey; Stasiak, James; Kasperchik, Vladek; Dhagat, Pallavi

    2014-05-01

    3-D printing processes, which use drop-on-demand inkjet printheads, have great potential in designing and prototyping magnetic materials. Unlike conventional deposition and lithography, magnetic particles in the printing ink can be aligned by an external magnetic field to achieve both high permeability and low hysteresis losses, enabling prototyping and development of novel magnetic composite materials and components, e.g., for inductor and antennae applications. In this work, we report an inkjet printing technique with magnetic alignment capability. Magnetic films with and without particle alignment are printed, and their magnetic properties are compared. In the alignment-induced hard axis direction, an increase in high frequency permeability and a decrease in hysteresis losses are observed. Our results suggest that unique magnetic structures with arbitrary controllable anisotropy, not feasible otherwise, may be fabricated via inkjet printing.

  7. CMS Tracker alignment and material budget measurement

    CERN Document Server

    Migliore, Ernesto

    2011-01-01

    The CMS Silicon Tracker consists of 1440 pixel modules and 15 148 strip modules covering an area of about 200 square meters. To achieve an optimal track-parameter resolution, the position and orientation of the modules must be determined with a precision of a few microns and an accurate representation of the distribution of material in the Tracker is needed. Results of the alignment of the Tracker are presented, based on the analysis of data from cosmic ray muons and proton-proton collisions. The alignment is validated by data-driven studies and compared with predictions from a detailed detector simulation. Reconstructed photon conversions and nuclear interactions are used to evaluate the material in the Tracker.

  8. Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials

    Science.gov (United States)

    Nellis, William J.; Maple, M. Brian

    1992-01-01

    A method for mechanically aligning oriented superconducting or permanently magnetic materials for further processing into constructs. This pretreatment optimizes the final crystallographic orientation and, thus, properties in these constructs. Such materials as superconducting fibers, needles and platelets are utilized.

  9. Plasmonic Properties of Vertically Aligned Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Nanowires (NWs/Ag sheath composites were produced to investigate plasmonic coupling between vertically aligned NWs for surface-enhanced Raman scattering (SERS applications. In this investigation, two types of vertical NW arrays were studied; those of ZnO NWs grown on nanosphere lithography patterned sapphire substrate via vapor-liquid-solid (VLS mechanism and Si NW arrays produced by wet chemical etching. Both types of vertical NW arrays were coated with a thin layer of silver by electroless silver plating for SERS enhancement studies. The experimental results show extremely strong SERS signals due to plasmonic coupling between the NWs, which was verified by COMSOL electric field simulations. We also compared the SERS enhancement intensity of aligned and random ZnO NWs, indicating that the aligned NWs show much stronger and repeatable SERS signal than those grown in nonaligned geometries.

  10. Anisotropic properties of aligned SWNT modified poly (methyl ...

    Indian Academy of Sciences (India)

    The electrical and mechanical properties of PMMA/SWNT composite were studied as a function of SWNT orientation and concentration. The aligned SWNT modified PMMA/SWNT composite presented highly anisotropic properties. The experimental results showed that the electrical conductivity and mechanical properties of ...

  11. Law - temperature material properties

    International Nuclear Information System (INIS)

    Van Sciver, S.W.

    1986-01-01

    This chapter is a survey of those properties which are of greatest importance to cryogenics. Included in the discussion are the behavior of the heat capacity, electrical and thermal conductivities, thermal contraction, and some special properties of materials--specifically magnetic spin systems and superconductors. Most of the descriptions are on the basis of thermodynamic or solid-state physics principles. Figures show Deybe specific heat and internal energy functions, and the Brillouin function for different total spin quantum numbers

  12. The alignment of carbon nanotubes: an effective route to extend their excellent properties to macroscopic scale.

    Science.gov (United States)

    Sun, Xuemei; Chen, Tao; Yang, Zhibin; Peng, Huisheng

    2013-02-19

    To improve the practical application of carbon nanotubes, it is critically important to extend their physical properties from the nanoscale to the macroscopic scale. Recently, chemists aligned continuous multiwalled carbon nanotube (MWCNT) sheets and fibers to produce materials with high mechanical strength and electrical conductivity. This provided an important clue to the use of MWCNTs at macroscopic scale. Researchers have made multiple efforts to optimize this aligned structure and improve the properties of MWCNT sheets and fibers. In this Account, we briefly highlight the new synthetic methods and promising applications of aligned MWCNTs for organic optoelectronic materials and devices. We describe several general methods to prepare both horizontally and perpendicularly aligned MWCNT/polymer composite films, through an easy solution or melting process. The composite films exhibit the combined properties of being flexible, transparent, and electrically conductive. These advances may pave the way to new flexible substrates for organic solar cells, sensing devices, and other related applications. Similarly, we discuss the synthesis of aligned MWCNT/polymer composite fibers with interesting mechanical and electrical properties. Through these methods, we can incorporate a wide variety of soluble or fusible polymers for such composite films and fibers. In addition, we can later introduce functional polymers with conjugated backbones or side chains to improve the properties of these composite materials. In particular, cooperative interactions between aligned MWCNTs and polymers can produce novel properties that do not occur individually. Common examples of this are two types of responsive polymers, photodeformable azobenzene-containing liquid crystalline polymer and chromatic polydiacetylene. Aligning the structure of MWCNTs induces the orientation of azobenzene-containing mesogens, and produces photodeformable polymer elastomers. This strategy also solves the long

  13. Electrical properties of materials

    CERN Document Server

    Solymar, L; Syms, R R A

    2014-01-01

    An informal and highly accessible writing style, a simple treatment of mathematics, and clear guide to applications have made this book a classic text in electrical and electronic engineering. Students will find it both readable and comprehensive. The fundamental ideas relevant to the understanding of the electrical properties of materials are emphasized; in addition, topics are selected in order to explain the operation of devices having applications (or possible future applications) in engineering. The mathematics, kept deliberately to a minimum, is well within the grasp of a second-year student. This is achieved by choosing the simplest model that can display the essential properties of a phenomenom, and then examining the difference between the ideal and the actual behaviour. The whole text is designed as an undergraduate course. However most individual sections are self contained and can be used as background reading in graduate courses, and for interested persons who want to explore advances in microele...

  14. Mechanical properties of aligned carbon nanotube architectures: origin from 3D morphology

    Science.gov (United States)

    Stein, Itai Y.; Wardle, Brian L.

    The scale-dependent properties of carbon nanotubes (CNTs) continue to motivate their study for next-generation material architectures. While recent work has shown that aligned CNT arrays can be made on the cm-scale, such systems exhibit properties that are orders of magnitude below those predicted by existing theories. This deviation mainly stems from the rudimentary assumptions made about the CNT morphology: CNTs are either devoid of local curvature (i.e. waviness) or have waviness that is easy to model, e.g. using helices and sine waves. Here, we use a simulation framework comprised of 105 CNTs with realistic 3D stochastic morphologies to elucidate the role morphology plays in the orders of magnitude over-prediction of the effective stiffness of aligned CNT structures. Application to aligned CNT polymer and carbon matrix nanocomposites reveals that the elimination of the torsion deformation mechanism, which dominates the effective compliance of CNT arrays, through CNT interactions with the matrix is responsible for the stiffness enhancement in CNT nanocomposites. This works paves the way to more accurate property prediction of CNT nanocomposites, and further work to predict the transport properties of aligned CNT architectures is planned.

  15. Mechanical property and biological performance of electrospun silk fibroin-polycaprolactone scaffolds with aligned fibers.

    Science.gov (United States)

    Yuan, Han; Shi, Hongfei; Qiu, Xushen; Chen, Yixin

    2016-01-01

    The mechanical strength, biocompatibility, and sterilizability of silk fibroin allow it to be a possible candidate as a natural bone regenerate material. To improve mechanical character and reinforce the cell movement induction, silk fibroin (SF)-polycaprolactone (PCL) alloy was fabricated by electrospinning techniques with a rotating collector to form aligned fibrous scaffolds and random-oriented scaffolds. The scanning electron microscope image of the scaffold and the mechanical properties of the scaffold were investigated by tensile mechanical tests, which were compared to random-oriented scaffolds. Furthermore, mesenchymal stem cells were planted on these scaffolds to investigate the biocompatibility, elongation, and cell movement in situ. Scanning electron microscopy shows that 91% fibers on the aligned fibroin scaffold were distributed between the dominant direction ±10°. With an ideal support for stem cell proliferation in vitro, the aligned fibrous scaffold induces cell elongation at a length of 236.46 ± 82 μm and distribution along the dominant fiber direction with a cell alignment angle at 6.57° ± 4.45°. Compared with random-oriented scaffolds made by artificial materials, aligned SF-PCL scaffolds could provide a moderate mesenchymal stem cell engraftment interface and speed up early stage cell movement toward the bone defect.

  16. Material properties in complement activation

    DEFF Research Database (Denmark)

    Moghimi, S. Moein; Andersen, Alina Joukainen; Ahmadvand, Davoud

    2011-01-01

    activation differently and through different sensing molecules and initiation pathways. The importance of material properties in triggering complement is considered and mechanistic aspects discussed. Mechanistic understanding of complement events could provide rational approaches for improved material design...

  17. Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers.

    Science.gov (United States)

    Ramón-Azcón, Javier; Ahadian, Samad; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Kaji, Hirokazu; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Khademhosseini, Ali; Matsue, Tomokazu

    2013-08-07

    Dielectrophoresis is used to align carbon nanotubes (CNTs) within gelatin methacrylate (GelMA) hydrogels in a facile and rapid manner. Aligned GelMA-CNT hydrogels show higher electrical properties compared with pristine and randomly distributed CNTs in GelMA hydrogels. The muscle cells cultured on these materials demonstrate higher maturation compared with cells cultured on pristine and randomly distributed CNTs in GelMA hydrogels. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Theoretical band alignment in an intermediate band chalcopyrite based material

    Science.gov (United States)

    Castellanos Águila, J. E.; Palacios, P.; Conesa, J. C.; Arriaga, J.; Wahnón, P.

    2017-12-01

    Band alignment is key to enhance the performance of heterojunction for chalcopyrite thin film solar cells. In this paper we report ab initio calculations of the electronic structures of CuGaS2:Cr with various Cr compositions, CuAlSe2 and ZnSe and the band alignment between their interfaces. We use density functional theory and the more accurate self-consistent GW scheme to obtain improved bulk band-gaps and band offsets. Band alignments of the interfacial region for CuGaS2:Cr/CuAlSe2 and CuGaS2:Cr/ZnSe systems were aligned with respect of an average electrostatic potential. Our results are in good agreement with experimental values for the bulk band-gaps. These theoretical band alignments show a characteristic staggered band alignment for the design of heterojunction devices in photovoltaic applications.

  19. Effects of variable attachment shapes and aligner material on aligner retention.

    Science.gov (United States)

    Dasy, Hiltrud; Dasy, Andreas; Asatrian, Greg; Rózsa, Noémi; Lee, Hao-Fu; Kwak, Jin Hee

    2015-11-01

    To evaluate the retention of four types of aligners on a dental arch with various attachments. For this study, three casts were manufactured, two of which contained attachments (ellipsoid and beveled), and one without any attachments to serve as a control. Four types of aligners were thermoformed: Clear-Aligner (CA)-soft, CA-medium, and CA-hard, with various thicknesses, and Essix ACE. Measurements of vertical displacement force during aligner removal were performed with the Gabo Qualimeter Eplexor. Means and standard deviations were next compared between different aligner thicknesses and attachment shapes. CA-soft, CA-medium, and CA-hard did not present a significant increase in retention, except when used in the presence of attachments. Additionally, CA-medium and CA-hard required significantly more force for removal. Essix ACE demonstrated a significant decrease in retention when used with ellipsoid attachments. The force value for Essix ACE removal from the cast with beveled attachments was comparable to that of CA-medium. Forces for aligner removal from the model without attachments showed a linear trend. Essix ACE did not show a continuous increase in retention for each model. Overall, ellipsoid attachments did not present a significant change in retention. In contrast, beveled attachments improved retention. Ellipsoid attachments had no significant influence on the force required for aligner removal and hence on aligner retention. Essix ACE showed significantly less retention than CA-hard on the models with attachments. Furthermore, beveled attachments were observed to increase retention significantly, compared with ellipsoid attachments and when using no attachments.

  20. Porous Materials - Structure and Properties

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1997-01-01

    The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete and the p...... and the properties of lime mortar....

  1. Optical properties of advanced materials

    CERN Document Server

    Kajikawa, Kotaro

    2013-01-01

    In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include:  quantum structures of sem...

  2. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    Science.gov (United States)

    Brown, Brian L.; Martinez, Patricia; Zakhidov, Anvar A.; Shaner, Eric A.; Lee, Mark

    2015-07-01

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, the microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. This is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.

  3. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Brian L. [Univ. of Texas, Dallas, TX (United States); Martinez, Patricia [Univ. of Texas, Dallas, TX (United States); Zakhidov, Anvar A. [Univ. of Texas, Dallas, TX (United States); Shaner, Eric A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Mark [Univ. of Texas, Dallas, TX (United States)

    2015-07-06

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, the microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. Finally, this is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.

  4. Concrete deck material properties.

    Science.gov (United States)

    2009-01-01

    The two-fold focus of this study was (a) to develop an understanding of the mechanisms responsible for causing : cracking in the concrete; and (b) to study the influence of the local materials on the performance of NYSDOTs HP : concrete mixture. R...

  5. Thermomechanical properties of mullitic materials

    OpenAIRE

    Jan Urbánek; Jirí Hamáček; Jan Macháček; Jaroslav Kutzendörfer; Jana Hubálková

    2017-01-01

    Mechanical tests provide important information about the properties and behaviour of materials. Basic tests include the measurement of flexural strength and in case of refractory materials, the measurement of flexural strength at high temperatures as well. The dependence of flexural strength on the temperature of ceramic materials usually exhibits a constant progression up to a certain temperature, where the material starts to melt and so the curve begins to decline. However, it was discovere...

  6. PR2ALIGN: a stand-alone software program and a web-server for protein sequence alignment using weighted biochemical properties of amino acids.

    Science.gov (United States)

    Kuznetsov, Igor B; McDuffie, Michael

    2015-05-07

    Alignment of amino acid sequences is the main sequence comparison method used in computational molecular biology. The selection of the amino acid substitution matrix best suitable for a given alignment problem is one of the most important decisions the user has to make. In a conventional amino acid substitution matrix all elements are fixed and their values cannot be easily adjusted. Moreover, most existing amino acid substitution matrices account for the average (dis)similarities between amino acid types and do not distinguish the contribution of a specific biochemical property to these (dis)similarities. PR2ALIGN is a stand-alone software program and a web-server that provide the functionality for implementing flexible user-specified alignment scoring functions and aligning pairs of amino acid sequences based on the comparison of the profiles of biochemical properties of these sequences. Unlike the conventional sequence alignment methods that use 20x20 fixed amino acid substitution matrices, PR2ALIGN uses a set of weighted biochemical properties of amino acids to measure the distance between pairs of aligned residues and to find an optimal minimal distance global alignment. The user can provide any number of amino acid properties and specify a weight for each property. The higher the weight for a given property, the more this property affects the final alignment. We show that in many cases the approach implemented in PR2ALIGN produces better quality pair-wise alignments than the conventional matrix-based approach. PR2ALIGN will be helpful for researchers who wish to align amino acid sequences by using flexible user-specified alignment scoring functions based on the biochemical properties of amino acids instead of the amino acid substitution matrix. To the best of the authors' knowledge, there are no existing stand-alone software programs or web-servers analogous to PR2ALIGN. The software is freely available from http://pr2align.rit.albany.edu.

  7. Importance of the alignment of polar π conjugated molecules inside carbon nanotubes in determining second-order non-linear optical properties.

    Science.gov (United States)

    Yumura, Takashi; Yamamoto, Wataru

    2017-09-20

    We employed density functional theory (DFT) calculations with dispersion corrections to investigate energetically preferred alignments of certain p,p'-dimethylaminonitrostilbene (DANS) molecules inside an armchair (m,m) carbon nanotube (n × DANS@(m,m)), where the number of inner molecules (n) is no greater than 3. Here, three types of alignments of DANS are considered: a linear alignment in a parallel fashion and stacking alignments in parallel and antiparallel fashions. According to DFT calculations, a threshold tube diameter for containing DANS molecules in linear or stacking alignments was found to be approximately 1.0 nm. Nanotubes with diameters smaller than 1.0 nm result in the selective formation of linearly aligned DANS molecules due to strong confinement effects within the nanotubes. By contrast, larger diameter nanotubes allow DANS molecules to align in a stacking and linear fashion. The type of alignment adopted by the DANS molecules inside a nanotube is responsible for their second-order non-linear optical properties represented by their static hyperpolarizability (β 0 values). In fact, we computed β 0 values of DANS assemblies taken from optimized n × DANS@(m,m) structures, and their values were compared with those of a single DANS molecule. DFT calculations showed that β 0 values of DANS molecules depend on their alignment, which decrease in the following order: linear alignment > parallel stacking alignment > antiparallel stacking alignment. In particular, a linear alignment has a β 0 value more significant than that of the same number of isolated molecules. Therefore, the linear alignment of DANS molecules, which is only allowed inside smaller diameter nanotubes, can strongly enhance their second-order non-linear optical properties. Since the nanotube confinement determines the alignment of DANS molecules, a restricted nanospace can be utilized to control their second-order non-linear optical properties. These DFT findings can assist in the

  8. Mechanical Properties of Materials

    CERN Document Server

    Pelleg, Joshua

    2013-01-01

    The subject of mechanical behavior has been in the front line of basic studies in engineering curricula for many years.  This textbook was written for engineering students with the aim of presenting, in a relatively simple manner, the basic concepts of mechanical behavior in solid materials. A second aim of the book is to guide students in their laboratory experiments by helping them to understand their observations in parallel with the lectures of their various courses; therefore the first chapter of the book is devoted to mechanical testing. Another aim of the book is to provide practicing engineers with basic help to bridge the gap of time that has passed from their graduation up to their actual involvement in engineering work. The book also serves as the basis for more advanced studies and seminars when pursuing courses on a graduate level. The content of this textbook and the topics discussed correspond to courses that are usually taught in universities and colleges all over the world, but with a differ...

  9. Material Properties at Low Temperature

    CERN Document Server

    Duthil, P

    2014-07-17

    From ambient down to cryogenic temperatures, the behaviour of materials changes greatly. Mechanisms leading to variations in electrical, thermal, mechanical, and magnetic properties in pure metals, alloys, and insulators are briefly introduced from a general engineering standpoint. Data sets are provided for materials commonly used in cryogenic systems for design purposes.

  10. Mechanical properties of nanophase materials

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, R.W. [Argonne National Lab., IL (United States); Fougere, G.E. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering

    1993-11-01

    It has become possible in recent years to synthesize new materials under controlled conditions with constituent structures on a nanometer size scale (below 100 nm). These novel nanophase materials have grain-size dependent mechanical properties significantly different than those of their coarser-grained counterparts. For example, nanophase metals are much stronger and apparently less ductile than conventional metals, while nanophase ceramics are more ductile and more easily formed than conventional ceramics. The observed mechanical property changes are related to grain size limitations and/or the large percentage of atoms in grain boundary environments; they can also be affected by such features as flaw populations, strains and impurity levels that can result from differing synthesis and processing methods. An overview of what is presently known about the mechanical properties of nanophase materials, including both metals and ceramics, is presented. Some possible atomic mechanisms responsible for the observed behavior in these materials are considered in light of their unique structures.

  11. Mechanical properties of nanostructure of biological materials

    Science.gov (United States)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  12. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly decreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  13. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.

    Science.gov (United States)

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P; Ritchie, Robert O

    2015-12-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required.

  14. Thermomechanical properties of mullitic materials

    Directory of Open Access Journals (Sweden)

    Jan Urbánek

    2017-12-01

    Full Text Available Mechanical tests provide important information about the properties and behaviour of materials. Basic tests include the measurement of flexural strength and in case of refractory materials, the measurement of flexural strength at high temperatures as well. The dependence of flexural strength on the temperature of ceramic materials usually exhibits a constant progression up to a certain temperature, where the material starts to melt and so the curve begins to decline. However, it was discovered that ceramic mullitic material with a 63 wt.% of Al2O3 exhibits a relatively significant maximum level of flexural strength at about 1000 °C and refractory mullitic material with a 60 wt.% of Al2O3 also exhibits a similar maximum level at about 1100 °C. The mentioned maximum is easily reproducible, but it has no connection with the usual changes in structure of material during heating. The maximum was also identified by another measurement, for example from the progression of the dynamic Young’s modulus or from deflection curves. The aim of this work was to analyse and explain the reason for the flexural strength maximum of mullitic materials at high temperatures.

  15. [Mechanical properties of thermoplastic materials].

    Science.gov (United States)

    Zhang, Ning; Bai, Yu-xing; Zhang, Kun-ya

    2010-09-14

    To investigate the mechanical properties of various brands of thermoplastic materials under different test conditions so as to analyze their influencing factors so as to provide a reference for improving the effect of invisible orthodontics. Three brands of thermoplastic materials, DR, Biolon and Erkodent, were selected. They were tested by Instron testing machine to measure their maximal stress and modulus under different processing modes, including pre-thermoforming, post-thermoforming and dipped in artificial saliva for two weeks after thermoforming. The data were analyzed by SPSS 11.5. Analyzed the mechanical properties change-trend under each test condition. The modulus (MPa) and maximum stress (MPa) of control group were significantly higher than those of thermoforming group (DR: 9.63±0.68 vs 7.85±0.61, 267±8 vs 199±6; Erkodent: 8.28±0.28 vs 7.59±0.45, 226±6 vs 199±6; Biolon: 8.85±0.41 vs 7.07±0.22, 237±6 vs 169±7, all P<0.05). The modulus (MPa) and maximum stress (MPa) of thermoforming group were significantly lower than those of saliva immersion group (DR: 7.85±0.61 vs 9.14±0.41, 199±6 vs 243±7; Erkodent: 7.59 ± 0.45 vs 8.38±0.29, 199±6 vs 212±7; Biolon: 7.07±0.22 vs 7.90±0.31, 169±7 vs 197±5, all P<0.05). The different brands of thermoplastic materials have different mechanical properties. The different processing modes influence the mechanical properties of thermoplastic materials. The mechanical properties decrease after thermoforming and increase after saliva immersion.

  16. A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials.

    Science.gov (United States)

    Liang, Qizhen; Yao, Xuxia; Wang, Wei; Liu, Yan; Wong, Ching Ping

    2011-03-22

    Thermally conductive functionalized multilayer graphene sheets (fMGs) are efficiently aligned in large-scale by a vacuum filtration method at room temperature, as evidenced by SEM images and polarized Raman spectroscopy. A remarkably strong anisotropy in properties of aligned fMGs is observed. High electrical (∼386 S cm(-1)) and thermal conductivity (∼112 W m(-1) K(-1) at 25 °C) and ultralow coefficient of thermal expansion (∼-0.71 ppm K(-1)) in the in-plane direction of A-fMGs are obtained without any reduction process. Aligned fMGs are vertically assembled between contacted silicon/silicon surfaces with pure indium as a metallic medium. Thus-constructed three-dimensional vertically aligned fMG thermal interfacial material (VA-fMG TIM) architecture has significantly higher equivalent thermal conductivity (75.5 W m(-1) K(-1)) and lower contact thermal resistance (5.1 mm2 K W(-1)), compared with their counterpart from A-fMGs that are recumbent between silicon surfaces. This finding provides a throughout approach for a graphene-based TIM assembly as well as knowledge of vertically aligned graphene architectures, which may not only facilitate graphene's application in current demanding thermal management but also promote its widespread applications in electrodes of energy storage devices, conductive polymeric composites, etc.

  17. Preparation and gas-sensing property of parallel-aligned ZnO ...

    Indian Academy of Sciences (India)

    aligned zinc acetate/PVA composite nanofibrous films, which were entwined closely onto a ceramic tube and then were calcined to obtain the parallel-aligned ZnO nanofibrous film sensors. Surface morphology, microstructure and gas sensing characteristics were systematically investigated. 2. Experimental. 2.1 Materials.

  18. Incorporation of a Decorin Biomimetic Enhances the Mechanical Properties of Electrochemically Aligned Collagen Threads

    Science.gov (United States)

    Kishore, Vipuil; Paderi, John E.; Akkus, Anna; Smith, Katie M.; Balachandran, Dave; Beaudoin, Stephen; Panitch, Alyssa; Akkus, Ozan

    2011-01-01

    Orientational anisotropy of collagen molecules is integral for the mechanical strength of collagen-rich tissues. We have previously reported a novel methodology to synthesize highly oriented electrochemically aligned collagen (ELAC) threads with mechanical properties converging upon those of native tendon. Decorin, a small leucine rich proteoglycan (SLRP), binds to fibrillar collagen and has been suggested to enhance the mechanical properties of tendon. Based on the structure of natural decorin, we have previously designed and synthesized a peptidoglycan (DS-SILY) that mimics decorin both structurally and functionally. In this study, we investigated the effect of the incorporation of DS-SILY on the mechanical properties and structural organization of ELAC threads. The results indicated that the addition of DS-SILY at a molar ratio of 30:1 (Collagen:DS-SILY) significantly enhanced the ultimate stress and ultimate strain of the ELAC threads. Furthermore, differential scanning calorimetry revealed that the addition of DS-SILY at a molar ratio of 30:1 resulted in a more thermally stable collagen structure. However, addition of DS-SILY at a higher concentration (10:1 Collagen:DS-SILY) yielded weaker threads with mechanical properties comparable to collagen control threads. Transmission emission microscopy revealed that the addition of DS-SILY at a higher concentration (10:1) resulted in pronounced aggregation of collagen fibrils. More importantly, these aggregates were not aligned along the long axis of the ELAC thereby compromising on the overall tensile properties of the material. We conclude that incorporation of an optimal amount of DS-SILY is a promising approach to synthesize mechanically competent collagen based biomaterials for tendon tissue engineering applications. PMID:21356334

  19. Gear materials, properties, and manufacture

    National Research Council Canada - National Science Library

    Davis, J. R

    2005-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Gear Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  20. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking.

    Science.gov (United States)

    Uetani, Kojiro; Ata, Seisuke; Tomonoh, Shigeki; Yamada, Takeo; Yumura, Motoo; Hata, Kenji

    2014-09-03

    Electrostatic flocking is applied to create an array of aligned carbon fibers from which an elastomeric thermal interface material (TIM) can be fabricated with a high through-plane thermal conductivity of 23.3 W/mK. A high thermal conductivity can be achieved with a significantly low filler level (13.2 wt%). As a result, this material retains the intrinsic properties of the matrix, i.e., elastomeric behavior. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials

    International Nuclear Information System (INIS)

    Nellis, W.J.; Maple, M.B.

    1992-01-01

    This patent describes a method of fabricating oriented compacts of superconducting and/or permanent magnetic material. It comprises: providing a base layer of support material, mechanically orienting aligned superconducting or permanently magnetic particles into the desired orientation on the base layer, without mixing the particles with a liquid, optionally covering the particles with a support material, fabricating the base layer and oriented particles assemblage into a desired construct and recovering the resulting fabricated material

  2. Determination of reliable material properties

    International Nuclear Information System (INIS)

    Roos, E.; Foehl, J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. Chapter 5 is about the determination of reliable material properties. This concerns mainly mechanical test procedures and their interpretation. Some background concerning crack and fracture mechanisms is given

  3. Effects of joint alignment and type on mechanical properties of thermoplastic articulated ankle-foot orthosis.

    Science.gov (United States)

    Gao, Fan; Carlton, William; Kapp, Susan

    2011-06-01

    Articulated or hinged ankle-foot orthosis (AFO) allow more range of motion. However, quantitative investigation on articulated AFO is still sparse. The objective of the study was to quantitatively investigate effects of alignment and joint types on mechanical properties of the thermoplastic articulated AFO. Tamarack dorsiflexion assist flexure joints with three durometers (75, 85 and 95) and free motion joint were tested. The AFO joint was aligned with the center of the motor shaft (surrogate ankle joint), 10 mm superior, inferior, anterior and posterior with respect to the motor shaft center. The AFO was passively moved from 20° plantar flexion to 15° dorsiflexion at a speed of 10°/s using a motorized device. Mechanical properties including index of hysteresis, passive resistance torque and quasi-static stiffness (at neutral, 5°, 10° and 15° in plantar flexion) were quantified. Significant effects of joint types and joint alignment on the mechanical properties of an articulated thermoplastic AFO were revealed. Specifically, center alignment showed minimum resistance and stiffness while anterior and posterior alignment showed significantly higher resistance and stiffness. The dorsiflexion assist torques at neutral position ranged from 0.69 ± 0.09 to 1.88 ± 0.10 Nm. Anterior and posterior alignment should be avoided as much as possible. The current study suggested that anterior and posterior alignment be avoided as much as possible in clinical practice due to potential skin irritation and increase in stress around the ankle joint.

  4. Tensile Mechanical Properties and Dynamic Collagen Fiber Re-Alignment of the Murine Cervix are Dramatically Altered Throughout Pregnancy.

    Science.gov (United States)

    Barnum, Carrie E; Fey, Jennifer L; Weiss, Stephanie N; Barila, Guillermo; Brown, Amy G; Connizzo, Brianne K; Shetye, Snehal S; Elovitz, Michal A; Soslowsky, Louis J

    2017-06-01

    The cervix is a unique organ able to dramatically change its shape and function by serving as a physical barrier for the growing fetus and then undergoing dramatic dilation allowing for delivery of a term infant. As a result, the cervix endures changing mechanical forces from the growing fetus. There is an emerging concept that the cervix may change or remodel "early" in many cases of spontaneous preterm birth (sPTB). However, the mechanical role of the cervix in both normal and preterm birth remains unclear. Therefore, the primary objective of this study was to determine the mechanical and structural responses of murine cervical tissue throughout a normal gestational time course. In this study, both tissue structural and material properties were determined via a quasi-static tensile load-to-failure test, while simultaneously obtaining dynamic collagen fiber re-alignment via cross-polarization imaging. This study demonstrated that the majority of the mechanical properties evaluated decreased at midgestation and not just at term, while collagen fiber re-alignment occurred earlier in the loading curve for cervices at term. This suggests that although structural changes in the cervix occur throughout gestation, the differences in material properties function in combination with collagen fiber re-alignment as mechanical precursors to regulate term gestation. This work lays a foundation for investigating cervical biomechanics and the role of the cervix in preterm birth.

  5. Microstructure and properties of ceramic materials

    International Nuclear Information System (INIS)

    Yen Tungsheng

    1984-01-01

    Ceramics materials study is an important field in modern materials science. Each side presented 19 papers most of which were recent investigations giving rather extensive coverage of microstructure and properties of new materials. (Auth.)

  6. Tunable terahertz transmission properties of aligned Ni-nanowire arrays.

    Science.gov (United States)

    Xiang, Wenfeng; Liu, Yi; Hu, Minghao; Guo, Haizhong

    2017-11-27

    Aligned Ni nanowire (NW) arrays were investigated for terahertz (THz) wave modulation. By adjusting the NW density and order of the NW arrays, the resonant frequency and intensity of the THz waves can be effectively tuned. The tuning range of the resonant frequency is about 0.29 THz, and a transmittance of less than 40% in the frequency region from 0.5 to 2 THz is achieved by changing the NW density. Although the order of the NW arrays has no influence on the resonant frequency, the transmittance can be tuned about 21%. The ability to tune the intensity and resonant frequency effectively and the ease of fabrication of the Ni-NW arrays make them the potential candidates for THz tunable filters, intensity modulators, and spatial light modulators.

  7. Optical properties of orthodontic aligners--spectrophotometry analysis of three types before and after aging.

    Science.gov (United States)

    Lombardo, Luca; Arreghini, Angela; Maccarrone, Roberta; Bianchi, Anna; Scalia, Santo; Siciliani, Giuseppe

    2015-01-01

    The aim was to assess and compare absorbance and transmittance values of three types of clear orthodontic aligners before and after two cycles of in vitro aging. Nine samples of orthodontic aligners from three different manufacturers (Invisalign, Align Technology, Santa Clara, CA, USA; All-In, Micerium, Avegno, GE, Italy; F22 Aligner, Sweden & Martina, Due Carrare, PD, Italy) were selected, and each sample was subjected to spectrophotometry analysis of both its transmittance and absorbance a total of 27 times. Samples were subsequently aged in vitro at a constant temperature in artificial saliva supplemented with food colouring for two cycles of 14 days each. The spectrophotometry protocol was then repeated, and the resulting data were analysed and compared by means of ANOVA (p aligners tested yielded lower transmittance and higher absorbance values after aging, but the difference was not significant in any case. That being said, the F22 aligners were found to be most transparent, both before and after aging, followed by Invisalign and All-In, and these differences were statistically significant. Commercial aligners possess significantly different optical, and therefore aesthetic, properties, both as delivered and following aging.

  8. Electro-magnetic properties of composites with aligned Fe-Co hollow fibers

    Directory of Open Access Journals (Sweden)

    Seungchan Cho

    2016-05-01

    Full Text Available A novel Fe-Co binary hollow fiber was synthesized by electroless plating using hydrolyzed polyester fiber and its anisotropy characteristic was investigated for electromagnetic wave absorbing materials. The hollow fibers in parallel with magnetic field show higher saturated magnetization of 202 emu/g at the applied magnetic field of 10 kOe and lower coercivity (27.658 Oe, compared with the random and vertical oriented hollow fibers. From complex permittivity measurement, the Fe-Co hollow fiber composites clearly display a single dielectric resonance, located at ∼14 GHz. The Fe-Co hollow fibers not only provide excellent EM properties in GHz frequency ranges, resulting mainly from the strong resonance, but also adjust the soft magnetic properties through fiber alignments. The cavitary structure of the Fe-Co hollow fibers, not only giving rise to a dielectric loss resonance and also adjusting its peak frequency, may be a pathway to useful EM wave absorptive devices in GHz frequency ranges.

  9. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2005-01-01

    Provides detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. This textbook emphasizes understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors and features an extensive collection of tables of material parameters, figures, and problems.

  10. Influence of filler alignment in the mechanical and electrical properties of carbon nanotubes/epoxy nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Felisberto, M. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); INQUIMAE-CONICET-UBA, Pab II Ciudad Universitaria, Buenos Aires 1428 (Argentina); Arias-Duran, A. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Ramos, J.A.; Mondragon, I. [Dep. Ingenieria Quimica y M. Ambiente. Esc. Politecnica. UPV/EHU, Pza. Europa 1, Donostia-San Sebastian 20018 (Spain); Candal, R. [INQUIMAE-CONICET-UBA, Pab II Ciudad Universitaria, Buenos Aires 1428 (Argentina); Escuela de Ciencia y Tecnologia-UNSAM, San Martin, Prov. De Buenos Aires (Argentina); Goyanes, S. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Rubiolo, G.H., E-mail: rubiolo@cnea.gov.ar [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Dep. Materiales, Comision Nacional de Energia Atomica (CNEA-CAC), Avda Gral Paz 1499, B1650KNA San Martin (Argentina)

    2012-08-15

    In this work, we report the mechanical and electrical properties of carbon nanotubes/epoxy composites prepared with aligned and randomly oriented nanotubes as filler. The samples are disks of 30 mm in diameter and 3 mm in thickness. To obtain the carbon nanotubes alignment, an external electric field (250 VAC; 50 Hz) was applied through the thickness of the sample during all the cure process. The AC electrical current was measured, during the cure, as a strategy to determine the optimum time in which the alignment reaches the maximum value. DC conductivity measured after the cure shows a percolation threshold in the filler content one order of magnitude smaller for composites with aligned nanotubes than for composites with randomly oriented filler (from 0.06 to 0.5 wt%). In the percolation threshold, the achieved conductivity was 1.4 Multiplication-Sign 10{sup -5} Sm{sup -1}. In both cases, aligned and randomly distributed carbon nanotube composites, the wear resistance increases with the addition of the filler while the Rockwell hardness decreases independently of the nanotubes alignment.

  11. Design of materials with prescribed nonlinear properties

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole; Jensen, Jakob Søndergaard

    2014-01-01

    We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests...

  12. Preparation and gas-sensing property of parallel-aligned ZnO ...

    Indian Academy of Sciences (India)

    Parallel-aligned zinc oxide (ZnO) nanofibrous films fabricated by using electrospinning technique were used in gas sensors for the detection of ethanol and ... State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China; Zhuxi ...

  13. High-Throughput Image Analysis of Fibrillar Materials: A Case Study on Polymer Nanofiber Packing, Alignment, and Defects in Organic Field Effect Transistors.

    Science.gov (United States)

    Persson, Nils E; Rafshoon, Joshua; Naghshpour, Kaylie; Fast, Tony; Chu, Ping-Hsun; McBride, Michael; Risteen, Bailey; Grover, Martha; Reichmanis, Elsa

    2017-10-18

    High-throughput discovery of process-structure-property relationships in materials through an informatics-enabled empirical approach is an increasingly utilized technique in materials research due to the rapidly expanding availability of data. Here, process-structure-property relationships are extracted for the nucleation, growth, and deposition of semiconducting poly(3-hexylthiophene) (P3HT) nanofibers used in organic field effect transistors, via high-throughput image analysis. This study is performed using an automated image analysis pipeline combining existing open-source software and new algorithms, enabling the rapid evaluation of structural metrics for images of fibrillar materials, including local orientational order, fiber length density, and fiber length distributions. We observe that microfluidic processing leads to fibers that pack with unusually high density, while sonication yields fibers that pack sparsely with low alignment. This is attributed to differences in their crystallization mechanisms. P3HT nanofiber packing during thin film deposition exhibits behavior suggesting that fibers are confined to packing in two-dimensional layers. We find that fiber alignment, a feature correlated with charge carrier mobility, is driven by increasing fiber length, and that shorter fibers tend to segregate to the buried dielectric interface during deposition, creating potentially performance-limiting defects in alignment. Another barrier to perfect alignment is the curvature of P3HT fibers; we propose a mechanistic simulation of fiber growth that reconciles both this curvature and the log-normal distribution of fiber lengths inherent to the fiber populations under consideration.

  14. Properties of compression moulded new fully biobased thermoset composites with aligned flax fibre textiles

    DEFF Research Database (Denmark)

    Pohl, Th.; Bierer, M.; Natter, E.

    2011-01-01

    mechanical performance and excellent fire resistance. In the present study, aligned natural fibre textiles, randomly oriented natural fibre textiles and glass fibre textiles have been hand laid up and impregnated with the furan resin to form prepregs. After precuring, the prepregs were consolidated......The development of aligned natural fibre reinforced composites utilising biobased thermosets is an essential step towards the manufacture of ecofriendly composite systems. In many cases, the matrix system, which is usually oil based in nature, is disregarded. Therefore, a new fully biobased...... thermoset composite with aligned flax fibre textiles was developed using a bioderived matrix resin. The thermoset furan resin has recently received interest due to its good environmental profile containing no petrochemicals, using water as solvent and biomass as raw material. The new resin also shows good...

  15. Spin-crossover materials properties and applications

    CERN Document Server

    Halcrow, Malcolm A

    2013-01-01

    The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applicat

  16. Acoustical properties of double porosity granular materials.

    Science.gov (United States)

    Venegas, Rodolfo; Umnova, Olga

    2011-11-01

    Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating properties. An emerging field is the study of the acoustical properties of multiscale porous materials. An example of these is a granular material in which the particles are porous. In this paper, analytical and hybrid analytical-numerical models describing the acoustical properties of these materials are introduced. Image processing techniques have been employed to estimate characteristic dimensions of the materials. The model predictions are compared with measurements on expanded perlite and activated carbon showing satisfactory agreement. It is concluded that a double porosity granular material exhibits greater low-frequency sound absorption at reduced weight compared to a solid-grain granular material with similar mesoscopic characteristics.

  17. Tailoring of epoxy material properties

    NARCIS (Netherlands)

    Nakka, J.S.

    2010-01-01

    This research work is aimed to understand the effect of resin chemistry on the physical properties (e.g. moduli, viscoelasticity, moisture uptake, coefficient of thermal expansion) of cured aromatic epoxy-amine thermoset resins. This understanding will result into a good first approximation of the

  18. Dynamic properties of ceramic materials

    International Nuclear Information System (INIS)

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process

  19. Properties and characterization of modern materials

    CERN Document Server

    Altenbach, Holm

    2017-01-01

    This book focuses on robust characterization and prediction methods for materials in technical applications as well as the materials’ safety features during operation. In particular, it presents methods for reliably predicting material properties, an aspect that is becoming increasingly important as engineering materials are pushed closer and closer to their limits to boost the performance of machines and structures. To increase their engineering value, components are now designed under the consideration of their multiphysical properties and functions, which requires much more intensive investigation and characterization of these materials. The materials covered in this monograph range from metal-based groups such as lightweight alloys, to advanced high-strength steels and modern titanium alloys. Furthermore, a wide range of polymers and composite materials (e.g. with micro- and nanoparticles or fibres) is covered. The book explores methods for property prediction from classical mechanical characterization-...

  20. Magnetic materials fundamentals, products, properties, applications

    CERN Document Server

    Hilzinger, Rainer

    2013-01-01

    At a practical level, this compendium reviews the basics of soft and hard magnetic materials, discusses the advantages of the different processing routes for the exploitation of the magnetic properties and hence assists in proper, fail-safe and economic application of magnetic materials. Essential guidelines and formulas for the calculation of the magnetic and electrical properties, temperature and long-term stability of permanent magnets, of inductive components and magnetic shielding are compiled. Selected fields of application and case studies illustrate the large diversity of technical applications. Application engineers will appreciate the comprehensive compilation of the properties and detailed characteristic curves of modern soft and hard magnetic materials. Materials scientists will enjoy the presentation of the different processing routes and their impact on the magnetic properties and students will profit from the survey from the basics of magnetism down to the applications in inductive components, ...

  1. Mechanical properties of graphites and carbon materials

    International Nuclear Information System (INIS)

    Jouquet, Gilbert.

    1977-01-01

    The mechanical behavior of graphites and artificial carbons is related to the structure of these materials. The influence of structural modifications in a graphite monocrystal on the deformation and fracture properties is studied [fr

  2. Excitonic properties of graphene-based materials.

    Science.gov (United States)

    Wang, Min; Li, Chang Ming

    2012-02-21

    First-principle density functional theory (DFT) calculations with quasiparticle corrections and many body effects are performed to study the electronic and optical properties of graphene-based materials. This review summarizes the excitonic properties including optical transition spectra and the distribution of exciton wavefunctions, thus providing the theoretical knowledge and predictions for promising optical applications of graphene materials. This journal is © The Royal Society of Chemistry 2012

  3. Macroscopic properties of model disordered materials

    International Nuclear Information System (INIS)

    Knackstedt, M.A.; Roberts, A.P.

    1996-01-01

    Disordered materials are ubiquitous in nature and in industry. Soils, sedimentary rocks, wood, bone, polymer composites, foams, catalysts, gels, concretes and ceramics have properties that depend on material structure. Present techniques for predicting properties are limited by the theoretical and computational difficulty of incorporating a realistic description of material structure. A general model for microstructure was recently proposed by Berk [Berk, Phys.Rev.A, 44 5069 (1991)]. The model is based on level cuts of a Gaussian random field with arbitrary spectral density. The freedom in specifying the parameters of the model allows the modeling of physical materials with diverse morphological characteristics. We have shown that the model qualitatively accounts for the principal features of a wider variety of disordered materials including geologic media, membranes, polymer blends, ceramics and foams. Correlation functions are derived for the model microstructure. From this characterisation we derive mechanical and conductive properties of the materials. Excellent agreement with experimentally measured properties of disordered solids is obtained. The agreement provides a strong hint that it is now possible to correlate effective physical properties of porous solids to microstructure. Simple extensions to modelling properties of non-porous multicomponent blends; metal alloys, ceramics, metal/matrix and polymer composites are also discussed

  4. Important physical properties of peat materials

    Science.gov (United States)

    D.H. Boelter

    1968-01-01

    Peat materials from 12 bogs in northern Minnesota, U.S.A., showed significant differences in physical properties. It is pointed out that 1) these properties can be related to the hydrology of organic soils only if the soils represent undisturbed field conditions, and 2) volumetric expressions of water content are necessary to correctly evaluate the amount of water in a...

  5. Virtual materials design using databases of calculated materials properties

    International Nuclear Information System (INIS)

    Munter, T R; Landis, D D; Abild-Pedersen, F; Jones, G; Wang, S; Bligaard, T

    2009-01-01

    Materials design is most commonly carried out by experimental trial and error techniques. Current trends indicate that the increased complexity of newly developed materials, the exponential growth of the available computational power, and the constantly improving algorithms for solving the electronic structure problem, will continue to increase the relative importance of computational methods in the design of new materials. One possibility for utilizing electronic structure theory in the design of new materials is to create large databases of materials properties, and subsequently screen these for new potential candidates satisfying given design criteria. We utilize a database of more than 81 000 electronic structure calculations. This alloy database is combined with other published materials properties to form the foundation of a virtual materials design framework (VMDF). The VMDF offers a flexible collection of materials databases, filters, analysis tools and visualization methods, which are particularly useful in the design of new functional materials and surface structures. The applicability of the VMDF is illustrated by two examples. One is the determination of the Pareto-optimal set of binary alloy methanation catalysts with respect to catalytic activity and alloy stability; the other is the search for new alloy mercury absorbers.

  6. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  7. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  8. Effect of metallic silver nanoparticles on the alignment and relaxation behaviour of liquid crystalline material in smectic C* phase

    Science.gov (United States)

    Vimal, Tripti; Kumar Gupta, Swadesh; Katiyar, Rohit; Srivastava, Atul; Czerwinski, Michal; Krup, Katarzyna; Kumar, Sandeep; Manohar, Rajiv

    2017-09-01

    The influence of silver nanoparticles dispersed in a Ferroelectric Liquid Crystal (FLC) on the properties of the resultant composite system has been investigated by thermal, electro-optical, and dielectric methods. We show that the concentration of thiol capped silver nanoparticles is a critical factor in governing the alignment of nanoparticles (NPs) in the host FLC. The orientation of NPs in composite samples affects the ordering of the LC (Liquid Crystal) phase and consequently changes the various phase transition temperatures of the host LC. Formation of self-assembled 2D (two dimensional) arrays of nanoparticles is observed for high concentration of dopant in the LC, oriented perpendicular to the direction of rubbing. We propose that the molecular interaction between the thiol capped NPs and LC molecules is the key factor behind such an arrangement of NPs. Orientation of NPs has affected the relaxation behaviour and various other material parameters, significantly. A noteworthy change in DC conductivity articulates our proposed idea of the formation of 2D array of NPs perpendicular to the direction of rubbing. This comprehensive study endorses the importance of dopant concentration in modifying the properties of the host LC material.

  9. Thermal properties of two-dimensional materials

    International Nuclear Information System (INIS)

    Zhang Gang; Zhang Yong-Wei

    2017-01-01

    Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS 2 and WS 2 ), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS 2 and the new strategy for thermal management of MoS 2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator. (topical reviews)

  10. Role of material property gradient and anisotropy in thermoelectric materials

    International Nuclear Information System (INIS)

    Wang, X; Pan, E; Albrecht, J D

    2008-01-01

    It was recently discovered that inclusions, fatigue damage and other types of material imperfections and defects in metals can be nondestructively detected by noncontacting magnetic measurements that sense the thermoelectric currents produced by directional heating and cooling. Since detection of small defects in thermoelectric materials is ultimately limited by intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected, a thorough study is required on their impact on the nondestructive capability. Therefore, in this investigation the induced electric current densities and thermal fluxes are first derived for a steady line heat source in an inhomogeneous and anisotropic thermoelectric material. The exact closed-form solutions are obtained by converting the original problem into two inhomogeneous Helmholtz equations via eigenvalue/eigenvector separation. The material properties are assumed to vary exponentially in the same manner in an arbitrary direction. For the corresponding homogeneous but anisotropic material case, we also present an elegant formulation based on the complex variable method. It is shown that the induced magnetic fields can be expressed in a concise and exact closed form for a line heat source in an infinite homogeneous anisotropic material and in one of the two bonded anisotropic half-planes. Our numerical results demonstrate clearly that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields

  11. Sintered soft magnetic materials. Properties and applications

    Science.gov (United States)

    Bas, J. A.; Calero, J. A.; Dougan, M. J.

    2003-01-01

    A comparison is presented of the characteristics and production requirements of a variety of materials used to produce sintered soft magnetic parts. These include pure iron, phosphorous-iron, silicon-iron, nickel-iron, and cobalt-iron, together with new coated materials based on encapsulated iron powders. In these bonded materials an organic and/or inorganic insulator is used to coat the metallic powder particles giving a magnetic composite. The suitability of the different materials for use in both direct and alternating current applications is reviewed, and examples are provided of their application in both the automotive and other sectors. The results of a comparative study of motors using stators and rotors based on both conventional laminated materials and the insulated iron powders are presented, in which the new materials show advantages of reduced hysteresis losses at high frequencies, and isotropy of magnetic properties. Nevertheless, the applications of these materials in electrical motors requires the modification of existing designs.

  12. Cutting and Folding for Tunable Materials Properties

    Science.gov (United States)

    Damasceno, Pablo; Dodd, Paul; Shyu, Terry; Shlian, Matthew; Shtein, Max; Kotov, Nicholas; Glotzer, Sharon

    2014-03-01

    Despite the small set of building blocks used for their assembly, naturally occurring materials such as proteins show remarkable diversity in their mechanical properties ranging from something resembling rubber-low stiffness, high resilience and extensibility-to silk-high stiffness and strength. Moreover, their self-folding properties inspire the design of structures capable of tunable reconfiguration. Motivated by such versatility, we report on simulations and experiments for the design of nanocomposites sheets whose mechanical properties can be made tunable via ``secondary structures'' patterning. Our simulations reveal the main cutting features needed to obtain desired material extensibility. Additionally, we study how similar sheets could self-fold into their desired ``native'' structure via stochastic forces. Our results open the possibilities for manufacture of flexible and reconfigurable materials with targeted strength and extensibility. Research supported by the National Science Foundation, Emerging Frontiers in Research and Innovation Award # EFRI-1240264.

  13. The flexural properties of endodontic post materials.

    Science.gov (United States)

    Stewardson, Dominic A; Shortall, Adrian C; Marquis, Peter M; Lumley, Philip J

    2010-08-01

    To measure the flexural strengths and moduli of endodontic post materials and to assess the effect on the calculated flexural properties of varying the diameter/length (D/L) ratio of three-point bend test samples. Three-point bend testing of samples of 2mm diameter metal and fiber-reinforced composite (FRC) rods was carried out and the mechanical properties calculated at support widths of 16 mm, 32 mm and 64 mm. Weibull analysis was performed on the strength data. The flexural strengths of all the FRC post materials exceeded the yield strengths of the gold and stainless steel samples; the flexural strengths of two FRC materials were comparable with the yield strength of titanium. Stainless steel recorded the highest flexural modulus while the titanium and the two carbon fiber materials exhibited similar values just exceeding that of gold. The remaining glass fiber materials were of lower modulus within the range of 41-57 GPa. Weibull modulus values for the FRC materials ranged from 16.77 to 30.09. Decreasing the L/D ratio produced a marked decrease in flexural modulus for all materials. The flexural strengths of FRC endodontic post materials as new generally exceed the yield strengths of metals from which endodontic posts are made. The high Weibull modulus values suggest good clinical reliability of FRC posts. The flexural modulus values of the tested posts were from 2-6 times (FRC) to 4-10 times (metal) that of dentin. Valid measurement of flexural properties of endodontic post materials requires that test samples have appropriate L/D ratios. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Size-tunable band alignment and optoelectronic properties of transition metal dichalcogenide van der Waals heterostructures

    Science.gov (United States)

    Zhao, Yipeng; Yu, Wangbing; Ouyang, Gang

    2018-01-01

    2D transition metal dichalcogenide (TMDC)-based heterostructures exhibit several fascinating properties that can address the emerging market of energy conversion and storage devices. Current achievements show that the vertical stacked TMDC heterostructures can form type II band alignment and possess significant optoelectronic properties. However, a detailed analytical understanding of how to quantify the band alignment and band offset as well as the optimized power conversion efficiency (PCE) is still lacking. Herein, we propose an analytical model to exhibit the PCEs of TMDC van der Waals (vdW) heterostructures and explore the intrinsic mechanism of photovoltaic conversion based on the detailed balance principle and atomic-bond-relaxation correlation mechanism. We find that the PCE of monolayer MoS2/WSe2 can be up to 1.70%, and that of the MoS2/WSe2 vdW heterostructures increases with thickness, owing to increasing optical absorption. Moreover, the results are validated by comparing them with the available evidence, providing realistic efficiency targets and design principles. Highlights • Both electronic and optoelectronic models are developed for vertical stacked MoS2/WSe2 heterostructures. • The underlying mechanism on size effect of electronic and optoelectronic properties for vertical stacked MoS2/WSe2 heterostructures is clarified. • The macroscopically measurable quantities and the microscopical bond identities are connected.

  15. Hemostatic properties of glucosamine-based materials.

    Science.gov (United States)

    Fischer, Thomas H; Bode, Arthur P; Demcheva, Marina; Vournakis, John N

    2007-01-01

    Glucosamine- and N-acetyl glucosamine-containing polymers are being used in an increasing number of biomedical applications, including in products for surface (topical) hemostasis. The studies presented here investigate the relationship between the structure (conformation) and function (activation of hemostasis) of glucosamine-based materials. Several polymer systems were studied, including fibers isolated from a microalgal source containing poly-N-acetyl glucosamine polymers that are organized in a parallel, hydrogen-bonded tertiary structure and can be chemically modified to an antiparallel orientation; and gel formulation derivatives of the microalgal fibers consisting of partially deacetylated (F2 gel) and fully deacetylated (F3 gel) polymers. Comparison of the properties of the poly-N-acetyl glucosamine fiber-derived materials with chitin, chitosan, and commercial chitosan-based products are presented. Several studies were performed with the glucosamine-based materials, including (1) an analysis of the ability of materials to activate platelets and turnover of the intrinsic coagulation cascade, (2) an examination of the viscoelastic properties of mixtures of platelet-rich plasma and the glucosamine-based materials via thromboelastography, and (3) scanning electron microscopic studies to examine the morphology of the glucosamine-based materials. The results presented demonstrate that hemostatic responses to the glucosamine-based materials studied are highly dependent on their chemical nature and tertiary/quaternary structure. The unique natural microalgal fibers were found to have strongly prohemostatic activity compared to the other materials studied. (c) 2006 Wiley Periodicals, Inc.

  16. Properties and Alignment of Interstellar Dust Grains toward Type Ia Supernovae with Anomalous Polarization Curves

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Institute of Theoretical Physics, Goethe Universität Frankfurt, D-60438 Frankfurt am Main (Germany)

    2017-02-10

    Recent photometric and polarimetric observations of Type Ia supernovae (SNe Ia) show unusually low total-to-selective extinction ratios ( R {sub V} < 2) and wavelengths of maximum polarization ( λ{sub max} < 0.4 μ m) for several SNe Ia, which indicates peculiar properties of interstellar (IS) dust in the SN-hosted galaxies and/or the presence of circumstellar (CS) dust. In this paper, we use an inversion technique to infer the best-fit grain size distribution and the alignment function of interstellar grains along the lines of sight toward four SNe Ia with anomalous extinction and polarization data (SN 1986G, SN 2006X, SN 2008fp, and SN 2014J). We find that to reproduce low values of R{sub V}, a significant enhancement in the mass of small grains of radius a < 0.1 μ m is required. For SN 2014J, a simultaneous fit to its observed extinction and polarization is unsuccessful if all the data are attributed to IS dust (model 1), but a good fit is obtained when accounting for the contribution of CS dust (model 2). For SN 2008fp, our best-fit results for model 1 show that in order to reproduce an extreme value of λ{sub max} ∼ 0.15 μ m, small silicate grains must be aligned as efficiently as big grains. For this case, we suggest that strong radiation from the SN can induce efficient alignment of small grains in a nearby intervening molecular cloud via the radiative torque (RAT) mechanism. The resulting time dependence polarization from this RAT alignment model can be tested by observing at ultraviolet wavelengths.

  17. Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties.

    Science.gov (United States)

    Wang, Xina; Zhu, Haojun; Xu, Yeming; Wang, Hao; Tao, Yin; Hark, Suikong; Xiao, Xudong; Li, Quan

    2010-06-22

    Vertically aligned ZnO/CdTe core-shell nanocable arrays-on-indium tin oxide (ITO) are fabricated by electrochemical deposition of CdTe on ZnO nanorod arrays in an electrolyte close to neutral pH. By adjusting the total charge quantity applied during deposition, the CdTe shell thickness can be tuned from several tens to hundreds of nanometers. The CdTe shell, which has a zinc-blende structure, is very dense and uniform both radially and along the axial direction of the nanocables, and forms an intact interface with the wurtzite ZnO nanorod core. The absorption of the CdTe shell above its band gap ( approximately 1.5 eV) and the type II band alignment between the CdTe shell and the ZnO core, respectively, demonstrated by absorption and photoluminescence measurements, make a nanocable array-on-ITO architecture a promising photoelectrode with excellent photovoltaic properties for solar energy applications. A photocurrent density of approximately 5.9 mA/cm(2) has been obtained under visible light illumination of 100 mW cm(-2) with zero bias potential (vs saturated calomel electrode). The neutral electrodeposition method can be generally used for plating CdTe on nanostructures made of different materials, which would be of interest in various applications.

  18. Static mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Suzuki, Hideaki

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of unconfined compression tests, one-dimensional consolidation tests, consolidated-undrained triaxial compression tests and consolidated-undrained triaxial creep tests that aim at getting hold of static mechanical properties. We can get hold of the relationship between the dry density and tensile stress etc. by Brazilian tests, between the dry density and unconfined compressive strength etc. by unconfined compression tests, between the consolidation stress and void ratio etc. by one-dimensional consolidation tests, the stress pass of each effective confining pressure etc. by consolidated-undrained triaxial compression tests and the axial strain rate with time of each axial stress etc. by consolidated-undrained triaxial creep tests. (author)

  19. ESR dosimetric properties of some biomineral materials

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Gamal M. [Department of Ionizing Radiation Metrology, National Institute for Standards (NIS), Tersa Street, El-Haram, El-Giza, P.O. Box 136 Giza, El-Giza (Egypt)]. E-mail: gamalhassan65@hotmail.com; Sharaf, M.A. [Department of Ionizing Radiation Metrology, National Institute for Standards (NIS), Tersa Street, El-Haram, El-Giza, P.O. Box 136 Giza, El-Giza (Egypt)

    2005-02-01

    Dosimetric properties of g-irradiated modern coral and bioactive glass (Bio-G) samples analyzed with electron spin resonance (ESR) have been separately reported (Hassan et al., 2004; Sharaf and Hassan, 2004) and compared with alanine. These are combined here to allow a three-way comparison between these materials.

  20. Material properties of ceramics for dental applications

    Science.gov (United States)

    Quinn, Janet Bernice

    2000-12-01

    Ceramic tooth-replacement materials have been greatly improved since their introduction near the end of the eighteenth century, but still have problems concerning clinical performance and aesthetics. Material property testing has advanced as well as the ability to form new dental ceramics. The purpose of this study was to test some of the new materials according to recently developed standards, and to utilize the results to better understand, predict and determine how to improve dental material performance and machinability. Aspects of this study include unique applications of testing methodology and the development of a new edge chipping test. A new brittleness parameter, B, is introduced. Unlike previously suggested brittleness parameters, B has theoretical significance as a volume energy to surface energy ratio. The ascertained properties were used to evaluate the dental ceramics. Toughness-related parameters were important in the clinical results, and correlations with microstructural characteristics indicate potential improvements as well as limitations. A good fit to a model predicting toughness increases with grain size, for example, suggests processing-induced thermal mismatch stresses as a toughening mechanism in glass-ceramics. Stresses that are too high, however, can result in local microcracking and a decrease in toughness. Machinability is of particular importance in fabricating dental components, which have complicated shapes and tight tolerances. As there is no currently accepted quantitative definition of machinability, a subjective analysis involving professional machinists and a regression analysis was used. Material properties and a theoretical model for material removal rates, based on lateral crack formation, were compared with the subjective machinability rankings. Although there were differences among the machinists' criteria, hardness was found to be the single most effective property in predicting machinability. High temperature properties

  1. Informatics derived materials databases for multifunctional properties.

    Science.gov (United States)

    Broderick, Scott; Rajan, Krishna

    2015-02-01

    In this review, we provide an overview of the development of quantitative structure-property relationships incorporating the impact of data uncertainty from small, limited knowledge data sets from which we rapidly develop new and larger databases. Unlike traditional database development, this informatics based approach is concurrent with the identification and discovery of the key metrics controlling structure-property relationships; and even more importantly we are now in a position to build materials databases based on design 'intent' and not just design parameters. This permits for example to establish materials databases that can be used for targeted multifunctional properties and not just one characteristic at a time as is presently done. This review provides a summary of the computational logic of building such virtual databases and gives some examples in the field of complex inorganic solids for scintillator applications.

  2. Microstructures and mechanical properties of aging materials

    International Nuclear Information System (INIS)

    Liaw, P.K.; Viswanathan, R.; Murty, K.L.; Simonen, E.P.; Frear, D.

    1993-01-01

    This book contains a collection of papers presented at the symposium on ''Microstructures and Mechanical Properties of Aging Materials,'' that was held in Chicago, IL. November 2-5, 1992 in conjunction with the Fall Meeting of The Minerals, Metals and Materials Society (TMS). The subjects of interest in the symposium included: (1) mechanisms of microstructural degradation, (2) effects of microstructural degradation on mechanical behavior, (3) development of life prediction methodology for in-service structural and electronic components, (4) experimental techniques to monitor degradation of microstructures and mechanical properties, and (5) effects of environment on microstructural degradation and mechanical properties. Individual papers have been processed separately for inclusion in the appropriate data bases

  3. Data base on structural materials aging properties

    International Nuclear Information System (INIS)

    Oland, C.B.

    1992-01-01

    The US Nuclear Regulatory Commission has initiated a Structural Aging Program at the Oak Ridge National Laboratory to identify potential structural safety issues related to continued service of nuclear power plants and to establish criteria for evaluating and resolving these issues. One of the tasks in this program focuses on the establishment of a Structural Materials Information Center where long-term and environment-dependent properties of concretes and other structural materials are being collected and assembled into a data base. These properties will be used to evaluate the current condition of critical structural components in nuclear power plants and to estimate the future performance of these materials during the continued service period

  4. Hole-Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer: ITIC Photovoltaic Materials.

    Science.gov (United States)

    Eastham, Nicholas D; Logsdon, Jenna L; Manley, Eric F; Aldrich, Thomas J; Leonardi, Matthew J; Wang, Gang; Powers-Riggs, Natalia E; Young, Ryan M; Chen, Lin X; Wasielewski, Michael R; Melkonyan, Ferdinand S; Chang, Robert P H; Marks, Tobin J

    2018-01-01

    Bulk-heterojunction organic photovoltaic materials containing nonfullerene acceptors (NFAs) have seen remarkable advances in the past year, finally surpassing fullerenes in performance. Indeed, acceptors based on indacenodithiophene (IDT) have become synonymous with high power conversion efficiencies (PCEs). Nevertheless, NFAs have yet to achieve fill factors (FFs) comparable to those of the highest-performing fullerene-based materials. To address this seeming anomaly, this study examines a high efficiency IDT-based acceptor, ITIC, paired with three donor polymers known to achieve high FFs with fullerenes, PTPD3T, PBTI3T, and PBTSA3T. Excellent PCEs up to 8.43% are achieved from PTPD3T:ITIC blends, reflecting good charge transport, optimal morphology, and efficient ITIC to PTPD3T hole-transfer, as observed by femtosecond transient absorption spectroscopy. Hole-transfer is observed from ITIC to PBTI3T and PBTSA3T, but less efficiently, reflecting measurably inferior morphology and nonoptimal energy level alignment, resulting in PCEs of 5.34% and 4.65%, respectively. This work demonstrates the importance of proper morphology and kinetics of ITIC → donor polymer hole-transfer in boosting the performance of polymer:ITIC photovoltaic bulk heterojunction blends. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Visual perception of materials and their properties.

    Science.gov (United States)

    Fleming, Roland W

    2014-01-01

    Misidentifying materials-such as mistaking soap for pâté, or vice versa-could lead to some pretty messy mishaps. Fortunately, we rarely suffer such indignities, thanks largely to our outstanding ability to recognize materials-and identify their properties-by sight. In everyday life, we encounter an enormous variety of materials, which we usually distinguish effortlessly and without error. However, despite its subjective ease, material perception poses the visual system with some unique and significant challenges, because a given material can take on many different appearances depending on the lighting, viewpoint and shape. Here, I use observations from recent research on material perception to outline a general theory of material perception, in which I suggest that the visual system does not actually estimate physical parameters of materials and objects. Instead-I argue-the brain is remarkably adept at building 'statistical generative models' that capture the natural degrees of variation in appearance between samples. For example, when determining perceived glossiness, the brain does not estimate parameters of the BRDF. Instead, it uses a constellation of low- and mid-level image measurements to characterize the extent to which the surface manifests specular reflections. I argue that these 'statistical appearance models' are both more expressive and easier to compute than physical parameters, and therefore represent a powerful middle way between a 'bag of tricks' and 'inverse optics'. Copyright © 2013 The Author. Published by Elsevier Ltd.. All rights reserved.

  6. Well-aligned ZnO nanowires with excellent field emission and photocatalytic properties

    Science.gov (United States)

    Chu, Fu-Hsuan; Huang, Chun-Wei; Hsin, Cheng-Lun; Wang, Chun-Wen; Yu, Shih-Ying; Yeh, Ping-Hung; Wu, Wen-Wei

    2012-02-01

    Well-aligned ZnO nanowires (NWs) were successfully synthesized on Si(100) by the process of carbothermal reduction and vapor-liquid-solid method. Scanning electron microscopy and transmission electron microscopy results confirmed that ZnO NWs were single crystalline wurtzite structures and grew along the [0001] direction. The influences of substrate temperature and total pressure on the growth were discussed. The well-aligned ZnO NWs show good field emission properties, and the emitter constructed of pencil-like ZnO NWs exhibited a low turn-on field (3.82 V μm-1) and a high field enhancement factor (β = 2303). Finally, we demonstrated that the as-prepared ZnO NWs with small diameter on the substrate have good photocatalytic activity toward degradation of methylene blue. Using ZnO NWs with Au nanoparticles (NPs) would decrease the recombination rate of hole-electron pairs due to the great shift of the Fermi level to the conduction band. Hence, adding Au NPs was a promising method to enhance the photocatalytic performance of ZnO NWs. It is significant that photocatalyst fabricated by ZnO NWs can apply to the degradation of organic pollution, and solve the environmental issues.Well-aligned ZnO nanowires (NWs) were successfully synthesized on Si(100) by the process of carbothermal reduction and vapor-liquid-solid method. Scanning electron microscopy and transmission electron microscopy results confirmed that ZnO NWs were single crystalline wurtzite structures and grew along the [0001] direction. The influences of substrate temperature and total pressure on the growth were discussed. The well-aligned ZnO NWs show good field emission properties, and the emitter constructed of pencil-like ZnO NWs exhibited a low turn-on field (3.82 V μm-1) and a high field enhancement factor (β = 2303). Finally, we demonstrated that the as-prepared ZnO NWs with small diameter on the substrate have good photocatalytic activity toward degradation of methylene blue. Using ZnO NWs with Au

  7. Beyond local effective material properties for metamaterials

    Science.gov (United States)

    Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.

    2018-02-01

    To discuss the properties of metamaterials on physical grounds and to consider them in applications, effective material parameters are usually introduced and assigned to a given metamaterial. In most cases, only weak spatial dispersion is considered. It allows to assign local material properties, e.g., a permittivity and a permeability. However, this turned out to be insufficient. To solve this problem, we study here the effective properties of metamaterials with constitutive relations beyond a local response and take strong spatial dispersion into account. This research requires two contributions. First, bulk properties in terms of eigenmodes need to be studied. We particularly investigate the isofrequency surfaces of their dispersion relation are investigated and compared to those of an actual metamaterial. The significant improvement to effectively describe it provides evidence for the necessity to use nonlocal material laws in the effective description of metamaterials. Second, to be able to capitalize on such constitutive relations, also interface conditions need to be known. They are derived in this contribution for our form of the nonlocality using a generalized (weak) formulation of Maxwell's equations. Based on such interface conditions, Fresnel expressions are obtained that predict the amplitude of the reflected and transmitted plane wave upon illuminating a slab of such a nonlocal metamaterial. This all together offers the necessary means for the in-depth analysis of metamaterials characterized by strong spatial dispersion. The general formulation we choose here renders our approach applicable to a wide class of metamaterials.

  8. A smart predictor for material property testing

    International Nuclear Information System (INIS)

    Wang, Wilson; Kanneg, Derek

    2008-01-01

    A reliable predictor is very useful for real-world industrial applications to forecast the future behavior of dynamic systems. A smart predictor, based on a novel recurrent neural fuzzy (RNF) scheme, is developed in this paper for multi-step-ahead prediction of material properties. A systematic investigation based on two benchmark data sets is conducted in terms of performance and efficiency. Analysis results reveal that, of the data-driven forecasting schemes, predictors based on step input patterns outperform those based on sequential input patterns; the RNF predictor outperforms those based on recurrent neural networks and ANFIS schemes in multi-step-ahead prediction of nonlinear time series. An adaptive Levenberg–Marquardt training technique is adopted to improve the robustness and convergence of the RNF predictor. Furthermore, the proposed smart predictor is implemented for material property testing. Investigation results show that the developed RNF predictor is a reliable forecasting tool for material property testing; it can capture and track the system's dynamic characteristics quickly and accurately. It is also a robust predictor to accommodate different system conditions

  9. A Semi-Automatic Alignment Method for Math Educational Standards Using the MP (Materialization Pattern) Model

    Science.gov (United States)

    Choi, Namyoun

    2010-01-01

    Educational standards alignment, which matches similar or equivalent concepts of educational standards, is a necessary task for educational resource discovery and retrieval. Automated or semi-automated alignment systems for educational standards have been recently available. However, existing systems frequently result in inconsistency in…

  10. Evaluation of material properties determining the moisture transfer

    Directory of Open Access Journals (Sweden)

    Vestfálova M.

    2013-04-01

    Full Text Available Due to solution the problems of moisture transfer is necessary to deal with two mechanisms of transfer: the molecular mass transfer and mass transfer by convection. Transfer driving force is the difference of concentrations of moisture, respectively the difference of partial vapour pressure. For molecular transfer is deciding value the coefficient of diffusivity, i.e. the property of the material. For mass transfer by convection is deciding the convection mass transfer coefficient, which depends on many parameters, but for one particular arrangement of the experiment will be influenced primarily velocity of the flow. Experimentally detectable is the overall moisture transfer caused by both mechanisms, i.e. the overall moisture transfer coefficient. Our goal was to attempt to evaluate the value of coefficient of diffusivity of some materials from the set of measured date. The date was obtained in different modes on different samples of materials. The next goal was to evaluate the dependence of the convection mass transfer coefficient on the speed of flow for the experiment alignment.

  11. Properties of nanoclay PVA composites materials

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2012-03-01

    Full Text Available Polyvinyl alcohol (PVA/ Na-rich Montmorillonite (MMT nanocomposites were prepared using solution method to create polymer-clay nanocomposite (PCN material. The PCN material was studied using X-ray diffraction (XRD, demonstrating polymer-clay intercalation that has a high d-spacing (lower diffraction angles in the PCN XRD pattern, compared to the pure MMT clay XRD pattern, which has a low d-spacing (high diffraction angles. The nano-scanning electron microscope (NSEM was used to study the morphological image of the PVA, MMT and PCN materials. The results showed that intercalation that took place between the PVA and MMT produced the PCN material. The mechanical properties of the pure PVA and the intercalated polymer material were studied. It was found that the small amount of MMT clay made the tensile modulus and percentage of the total elongation of the nano-composite significantly higher than the pure PVA polymer value, due to polymer-clay intercalation. The thermal stability of the intercalated polymer has been studied using thermal analytical techniques such as thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The results showed that the PCN material is more thermally stable than the pure PVA polymer.

  12. Magnetic properties of Martian surface material

    Science.gov (United States)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  13. Acoustical properties of highly porous fibrous materials

    Science.gov (United States)

    Lambert, R. F.

    1979-01-01

    Highly porous, fibrous bulk sound absorbing materials are studied with a view toward understanding their acoustical properties and performance in a wide variety of applications including liners of flow ducts. The basis and criteria for decoupling of acoustic waves in the pores of the frame and compressional waves in the frame structure are established. The equations of motion are recast in a form that elucidates the coupling mechanisms. The normal incidence surface impedance and absorption coefficient of two types of Kevlar 29 and an open celled foam material are studied. Experimental values and theoretical results are brought into agreement when the structure factor is selected to provide a fit to the experimental data. A parametric procedure for achieving that fit is established. Both a bulk material quality factor and a high frequency impedance level are required to characterize the real and imaginary part of the surface impedance and absorption coefficient. A derivation of the concepts of equivalent density and dynamic resistance is presented.

  14. Optical properties of orthodontic aligners?spectrophotometry analysis of three types before and after aging

    OpenAIRE

    Lombardo, Luca; Arreghini, Angela; Maccarrone, Roberta; Bianchi, Anna; Scalia, Santo; Siciliani, Giuseppe

    2015-01-01

    Background The aim was to assess and compare absorbance and transmittance values of three types of clear orthodontic aligners before and after two cycles of in vitro aging. Methods Nine samples of orthodontic aligners from three different manufacturers (Invisalign, Align Technology, Santa Clara, CA, USA; All-In, Micerium, Avegno, GE, Italy; F22 Aligner, Sweden & Martina, Due Carrare, PD, Italy) were selected, and each sample was subjected to spectrophotometry analysis of both its transmittanc...

  15. AGC 2 Irradiated Material Properties Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbaugh, David Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-05-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.

  16. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding.

    Science.gov (United States)

    Yousefi, Nariman; Sun, Xinying; Lin, Xiuyi; Shen, Xi; Jia, Jingjing; Zhang, Biao; Tang, Benzhong; Chan, Mansun; Kim, Jang-Kyo

    2014-08-20

    Nanocomposites that contain reinforcements with preferred orientation have attracted significant attention because of their promising applications in a wide range of multifunctional fields. Many efforts have recently been focused on developing facile methods for preparing aligned graphene sheets in solvents and polymers because of their fascinating properties including liquid crystallinity and highly anisotropic characteristics. Self-aligned in situ reduced graphene oxide (rGO)/polymer nanocomposites are prepared using an all aqueous casting method. A remarkably low percolation threshold of 0.12 vol% is achieved in the rGO/epoxy system owing to the uniformly dispersed, monolayer graphene sheets with extremely high aspect ratios (>30000). The self-alignment into a layered structure at above a critical filler content induces a unique anisotropy in electrical and mechanical properties due to the preferential formation of conductive and reinforcing networks along the alignment direction. Accompanied by the anisotropic electrical conductivities are exceptionally high dielectric constants of over 14000 with 3 wt% of rGO at 1 kHz due to the charge accumulation at the highly-aligned conductive filler/insulating polymer interface according to the Maxwell-Wagner-Sillars polarization principle. The highly dielectric rGO/epoxy nanocomposites with the engineered structure and properties present high performance electromagnetic interference shielding with a remarkable shilding efficiency of 38 dB. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Physical Properties of Synthetic Resin Materials

    Science.gov (United States)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  18. Properties of Sealing Materials in Groundwater Wells

    DEFF Research Database (Denmark)

    Köser, Claus

    boreholes which in some cases can act as direct openings down to aquifers. The reasons for this may include bad or missing seal. In this context, Schmidt (1999) concluded that there is no proven way to make a clay seal with the desired tightness. This thesis deals primarily with the properties of bentonite...... pellets as sealing material in groundwater wells. The way and the pattern, in which bentonite pellets are deposited, have been shown to have an effect on the swelling pressure of the bentonite seal. During the transport phase of pellets from the terrain to a given sedimentation depth, a sorting process...... on the maximum swelling pressure; i) the bulk density of the sample, and ii) whether the sample is sorted or unsorted. CT scans (Computed Tomography) have been used to evaluate certain properties of bentonite seals in a limited volume. In this context, a set of algorithms to convert CT numbers (HU unit...

  19. High field dielectric properties of piezoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, M.; Cain, M

    1999-05-01

    These guidelines are intended to enable a user to perform high field dielectric measurements on piezoelectric ceramic materials such as PZT (lead zirconium titanate). Many of the properties of piezoelectric ceramics such as PZT are highly dependant on the applied field, and therefore to make intelligent design choices, the dielectric properties are required at these field levels. These guidelines cover measurements at a fixed frequency of 1 kHz, to enable comparison with measurements made at low field. The measurement methods could all safely be extended from line frequency up to several tens of kHz, to cover a broad range of applications. However, for frequencies in the MHz range and above different factors need to be considered which are not covered in this guide. The guidelines give some general advice on high field dielectric measurements followed by a detailed description of three different measurement methods:Schering bridge; impedance analysis; and PE hysteresis loop methods. (author)

  20. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2010-01-01

    This fourth edition of the well-established Fundamentals of Semiconductors serves to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. The approach is physical and intuitive rather than formal and pedantic. Theories are presented to explain experimental results. This textbook has been written with both students and researchers in mind. Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors. The explanations are based on physical insights. Each chapter is enriched by an extensive collection of tables of material parameters, figures, and problems. Many of these problems "lead the student by the hand" to arrive at the results. The major changes made in the fourth edition include: an extensive appendix about the important and by now well-established deep center known as the DX center, additional problems...

  1. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    1996-01-01

    Fundamentals of Semiconductors attempts to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors The approach is physical and intuitive rather than formal and pedantic Theories are presented to explain experimental results This textbook has been written with both students and researchers in mind Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors The explanations are based on physical insights Each chapter is enriched by an extensive collection of tables of material parameters, figures and problems Many of these problems 'lead the student by the hand' to arrive at the results

  2. Cement replacement materials. Properties, durability, sustainability

    International Nuclear Information System (INIS)

    Ramezanianpour, Ali Akbar

    2014-01-01

    The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.

  3. Photorefractive optics materials, properties, and applications

    CERN Document Server

    Yu, Francis T S

    1999-01-01

    The advances of photorefractive optics have demonstrated many useful and practical applications, which include the development of photorefractive optic devices for computer communication needs. To name a couple significant applications: the large capacity optical memory, which can greatly improve the accessible high-speed CD-ROM and the dynamic photorefractive gratings, which can be used for all-optic switches for high-speed fiber optic networks. This book is an important reference both for technical and non-technical staffs who are interested in this field. * Covers the recent development in materials, phenomena, and applications * Includes growth, characterization, dynamic gratings, and liquid crystal PR effect * Includes applications to photonic devices such as large capacity optical memory, 3-D interconnections, and dynamic holograms * Provides the recent overall picture of current trends in photorefractive optics * Includes optical and electronic properties of the materials as applied to dynamic photoref...

  4. Materials with complex behaviour II properties, non-classical materials and new technologies

    CERN Document Server

    Oechsner, Andreas

    2012-01-01

    This book reviews developments and trends in advanced materials and their properties; modeling and simulation of non-classical materials and new technologies for joining materials. Offers tools for characterizing and predicting properties and behavior.

  5. Mechanical properties of dental investment materials.

    Science.gov (United States)

    Low, D; Swain, M V

    2000-07-01

    Measurement of the elastic modulus (E) of investment materials has been difficult because of their low strength. However, these values are essential for engineering simulation and there are many methods available to assess the elasticity of materials. The present study compared two different methods with one of the methods being non-destructive in nature and can be used for specimens prepared for other tests. Two different types of investment materials were selected, gypsum-and phosphate-bonded. Method 1 is a traditional three-point bending test. Twelve rectangular bars with dimension of (70 x 9 x 3 mm) were prepared and placed on supports 56.8 mm apart. The test was conducted at a cross-head speed of 1 mm/min by use of a universal testing machine. The load applied to the test specimen and the corresponding deflection were measured until the specimen fractured. The E value was calculated from a linear part of the stress-strain plot. Method 2 is an ultra micro-indentation system to determine near surface properties of materials with nanometer resolution. The measurement procedure was programmed such that the specimens were indented with an initial contact force of 5 mN then followed by a maximum force of 500 mN. Measurement consisted of 10 indentations conducted with a spherical stainless steel indenter (R = 250 microm) that were equally spaced (500 microm). The E value rose asymptotically with depth of penetration and would approach the three-point bending test value at approximately four time's maximum contact depth for both materials. Both methods are practical ways of measuring the E of investment materials. Copyright 2000 Kluwer Academic Publishers

  6. Direct-write 3D printing of composite materials with magnetically aligned discontinuous reinforcement

    Science.gov (United States)

    Martin, Joshua J.; Caunter, Andrew; Dendulk, Amy; Goodrich, Scott; Pembroke, Ryan; Shores, Dan; Erb, Randall M.

    2017-05-01

    Three-dimensional (3D) printing of fiber reinforced composites represents an enabling technology that may bring toughness and specific strength to complex parts. Recently, direct-write 3D printing has been offered as a promising route to manufacturing fiber reinforced composites that show high specific strength. These approaches primarily rely on the use of shear-alignment during the extrusion process to align fibers along the printing direction. Shear alignment prevents fibers from being oriented along principle stress directions of the final designed part. This paper describes a new direct-write style 3D printing system that incorporates magnetic fields to actively control the orientation of reinforcing fibers during the printing of fiber reinforced composites. Such a manufacturing system is fraught with complications from the high shear dominated alignment experienced by the fibers during extrusion to the slow magnetic alignment dynamics of fibers in viscous media. Here we characterize these issues and suggest effective operating windows in which magnetic alignment is a viable approach to orienting reinforcing particles during direct-write 3D printing.

  7. Assembling and properties of the polymer-particle nanostructured materials

    Science.gov (United States)

    Sheparovych, Roman

    Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of interest for the obtained nanocomposites. Applying a magnetic field induces a reversible 1D ordering of the magnetically susceptible particles. This property was employed in the fabrication of the permanent chains of magnetite nanocrystals (d=15nm). In the assembling process the aligned particles were bound together using polyelectrolyte macromolecules. The basics of the binding process involved an electrostatic interaction between the positively charged polyelectrolyte and the negative surface of the particles (aqueous environment). Adsorption of the polymer molecules onto several adjacent particles in the aligned 1D aggregate results in the formation of the permanent particulate chains. Positive charges of the adsorbed polyelectrolyte molecules stabilize the dispersion of the obtained nanostructures in water. Magnetization measurements revealed that superparamagnetic nanoparticles, being assembled into 1D ordered structures, attain magnetic coercivity. This effect originates from the magnetostatic interaction between the neighboring magnetite nanocrystals. The preferable dipole alignment of the assembled nanoparticles is directed along the chain axis. Another system studied in this project includes polymer-particle responsive surface coatings. Tethered polymer chains and particles bearing different functionalities change surface properties upon restructuring of the composite layer. When the environment favors polymer swelling (good solvent), the polymer chains segregate to the surface and cover the particles. In the opposite case

  8. Emergent material properties of developing epithelial tissues.

    Science.gov (United States)

    Machado, Pedro F; Duque, Julia; Étienne, Jocelyn; Martinez-Arias, Alfonso; Blanchard, Guy B; Gorfinkiel, Nicole

    2015-11-23

    Force generation and the material properties of cells and tissues are central to morphogenesis but remain difficult to measure in vivo. Insight is often limited to the ratios of mechanical properties obtained through disruptive manipulation, and the appropriate models relating stress and strain are unknown. The Drosophila amnioserosa epithelium progressively contracts over 3 hours of dorsal closure, during which cell apices exhibit area fluctuations driven by medial myosin pulses with periods of 1.5-6 min. Linking these two timescales and understanding how pulsatile contractions drive morphogenetic movements is an urgent challenge. We present a novel framework to measure in a continuous manner the mechanical properties of epithelial cells in the natural context of a tissue undergoing morphogenesis. We show that the relationship between apicomedial myosin fluorescence intensity and strain during fluctuations is consistent with a linear behaviour, although with a lag. We thus used myosin fluorescence intensity as a proxy for active force generation and treated cells as natural experiments of mechanical response under cyclic loading, revealing unambiguous mechanical properties from the hysteresis loop relating stress to strain. Amnioserosa cells can be described as a contractile viscoelastic fluid. We show that their emergent mechanical behaviour can be described by a linear viscoelastic rheology at timescales relevant for tissue morphogenesis. For the first time, we establish relative changes in separate effective mechanical properties in vivo. Over the course of dorsal closure, the tissue solidifies and effective stiffness doubles as net contraction of the tissue commences. Combining our findings with those from previous laser ablation experiments, we show that both apicomedial and junctional stress also increase over time, with the relative increase in apicomedial stress approximately twice that of other obtained measures. Our results show that in an epithelial

  9. Material property measurements with post-processed thermal image data

    Science.gov (United States)

    Welch, Christopher S.; Winfree, William P.; Heath, D. M.; Cramer, Elliott; Howell, Patricia

    1990-01-01

    Some of the applications to materials evaluation and property determination of thermographic NDE using digital postprocessing of sequences of thermograms are demonstrated. A generic description is given of the steps used in postprocessing for obtaining material property values.

  10. Amorphous and nanocrystalline materials preparation, properties, and applications

    CERN Document Server

    Inoue, A

    2001-01-01

    Amorphous and nanocrystalline materials are a class of their own. Their properties are quite different to those of the corresponding crystalline materials. This book gives systematic insight into their physical properties, structure, behaviour, and design for special advanced applications.

  11. Towards properties on demand in quantum materials

    Science.gov (United States)

    Basov, D. N.; Averitt, R. D.; Hsieh, D.

    2017-11-01

    The past decade has witnessed an explosion in the field of quantum materials, headlined by the predictions and discoveries of novel Landau-symmetry-broken phases in correlated electron systems, topological phases in systems with strong spin-orbit coupling, and ultra-manipulable materials platforms based on two-dimensional van der Waals crystals. Discovering pathways to experimentally realize quantum phases of matter and exert control over their properties is a central goal of modern condensed-matter physics, which holds promise for a new generation of electronic/photonic devices with currently inaccessible and likely unimaginable functionalities. In this Review, we describe emerging strategies for selectively perturbing microscopic interaction parameters, which can be used to transform materials into a desired quantum state. Particular emphasis will be placed on recent successes to tailor electronic interaction parameters through the application of intense fields, impulsive electromagnetic stimulation, and nanostructuring or interface engineering. Together these approaches outline a potential roadmap to an era of quantum phenomena on demand.

  12. Polarization properties of below-threshold harmonics from aligned molecules H2+ in linearly polarized laser fields.

    Science.gov (United States)

    Dong, Fulong; Tian, Yiqun; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun

    2015-07-13

    We investigate the polarization properties of below-threshold harmonics from aligned molecules in linearly polarized laser fields numerically and analytically. We focus on lower-order harmonics (LOHs). Our simulations show that the ellipticity of below-threshold LOHs depends strongly on the orientation angle and differs significantly for different harmonic orders. Our analysis reveals that this LOH ellipticity is closely associated with resonance effects and the axis symmetry of the molecule. These results shed light on the complex generation mechanism of below-threshold harmonics from aligned molecules.

  13. Self-adapting denoising, alignment and reconstruction in electron tomography in materials science

    Energy Technology Data Exchange (ETDEWEB)

    Printemps, Tony, E-mail: tony.printemps@cea.fr [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Mula, Guido [Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, S.P. 8km 0.700, 09042 Monserrato (Italy); Sette, Daniele; Bleuet, Pierre; Delaye, Vincent; Bernier, Nicolas; Grenier, Adeline; Audoit, Guillaume; Gambacorti, Narciso; Hervé, Lionel [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2016-01-15

    An automatic procedure for electron tomography is presented. This procedure is adapted for specimens that can be fashioned into a needle-shaped sample and has been evaluated on inorganic samples. It consists of self-adapting denoising, automatic and accurate alignment including detection and correction of tilt axis, and 3D reconstruction. We propose the exploitation of a large amount of information of an electron tomography acquisition to achieve robust and automatic mixed Poisson–Gaussian noise parameter estimation and denoising using undecimated wavelet transforms. The alignment is made by mixing three techniques, namely (i) cross-correlations between neighboring projections, (ii) common line algorithm to get a precise shift correction in the direction of the tilt axis and (iii) intermediate reconstructions to precisely determine the tilt axis and shift correction in the direction perpendicular to that axis. Mixing alignment techniques turns out to be very efficient and fast. Significant improvements are highlighted in both simulations and real data reconstructions of porous silicon in high angle annular dark field mode and agglomerated silver nanoparticles in incoherent bright field mode. 3D reconstructions obtained with minimal user-intervention present fewer artefacts and less noise, which permits easier and more reliable segmentation and quantitative analysis. After careful sample preparation and data acquisition, the denoising procedure, alignment and reconstruction can be achieved within an hour for a 3D volume of about a hundred million voxels, which is a step toward a more routine use of electron tomography. - Highlights: • Goal: perform a reliable and user-independent 3D electron tomography reconstruction. • Proposed method: self-adapting denoising and alignment prior to 3D reconstruction. • Noise estimation and denoising are performed using wavelet transform. • Tilt axis determination is done automatically as well as projection alignment.

  14. Fundamental Material Properties Underlying Solid Oxide Electrochemistry

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Holtappels, Peter

    2012-01-01

    in the TPB region. Also, segregations to the surfaces and interfaces of the electrode materials, which may affect the electrode reaction mechanism, are very dependent on the exact history of fabrication and operation. The positive effects of even small concentrations of nanoparticles in the electrodes may...... is not applicable for composite porous electrodes, and we claim that even in the case of simple model electrodes no clear evidences of charge transfer limitations following Butler- Volmer have been reported. Thus, we find overall that the large differences in the literature reports indicate that no universal truth...... such as “this is the rate limiting step of H2 oxidation in a Ni-zirconia cermet electrode...” will ever be found because the actual electrode properties are so dependent on the fabrication and operation history of the electrode. This does not mean, however, that deep knowledge of mechanisms of specific SOC...

  15. Mechanical properties of low dimensional materials

    Science.gov (United States)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  16. Synthesis, structural, and field electron emission properties of quasi-aligned carbon nanotubes from gutter oil

    International Nuclear Information System (INIS)

    Suriani, A.B.; Dalila, A.R.; Mohamed, A.; Soga, T.; Tanemura, M.

    2015-01-01

    Quasi-aligned carbon nanotubes (CNTs) have been successfully synthesised from the simple pyrolysis of gutter oil as starting material and ferrocene as a catalyst. The synthesis process was performed at synthesis and vaporisation temperatures of 800 and 250 °C, respectively, in a thermal chemical vapour deposition furnace. The CNTs synthesised using gutter oil have an overall diameter of about 30–50 nm, length of 30 μm, I D /I G ratio of 0.66, and purity of 81%, comparable to those obtained using conventional carbon sources. A field electron emission study of the CNTs exhibited a low turn-on and threshold field of 1.94 and 2.94 V μm −1 , which corresponded to current densities of 100 μA cm −2 and 1.0 mA cm −2 , respectively which indicate that the CNTs synthesised are suitable candidates for use as field electron emitters. The synthesised CNTs from gutter oil also open up potential mass production applications in energy storage devices. This study demonstrates that gutter oil, a low-cost and readily available resource, can be used as an inexpensive carbon source for the mass production of CNTs. - Highlights: • Gutter oil was used as starting material to synthesise CNTs by TCVD method. • CNTs of good quality (I D /I G  ∼ 0.66 and purity ∼ 81%) were successfully produced. • The synthesised CNTs show a potential for field electron emission application.

  17. Millimeter wave surface resistance of grain-aligned Y1Ba2Cu3O(x) bulk material

    International Nuclear Information System (INIS)

    Wosik, J.; Kranenburg, R.A.; Wolfe, J.C.; Selvamanickam, V.; Salama, K.

    1990-04-01

    Measurements are reported of the millimeter-wave surface resistance of grain-aligned YBa2Cu3O(x) bulk material grown by a liquid-phase process. The measurements were performed by replacing the endplate of a TE(011) cylindrical copper cavity with the superconducting sample. Surface resistance was measured for samples with surfaces oriented perpendicular and parallel to the c-axis of the grains. For the parallel configuration, the surface resistance at 77 K and 80 GHz is given. For a very well-aligned sample with a very low density of Y2BaCuO(y) precipitates, measured in the perpendicular configuration, the transition width (10-90 percent) is about 2 K and the surface resistance is derived at 88 K. The effect of microstructure on surface resistance is discussed. 19 refs

  18. Millimeter wave surface resistance of grain-aligned Y1Ba2Cu3O(x) bulk material

    Science.gov (United States)

    Wosik, J.; Kranenburg, R. A.; Wolfe, J. C.; Selvamanickam, V.; Salama, K.

    1991-01-01

    Measurements of the millimeter wave surface resistance of grain-aligned YBa2Cu3O(x) bulk material grown by a liquid phase process are reported. The measurements were performed by replacing the endplate of a TE011 cylindrical copper cavity with the superconducting sample. Surface resistance was measured for samples with surfaces oriented perpendicular and parallel to the c-axis of the grains. It is shown that, for the parallel configuration, the surface resistance at 77 K and 80 GHz is typically near 100 milliohms. For a very well-aligned sample with a very low density of Y2BaCuO(y) precipitates, measured in the perpendicular configuration, the transition width (10-90 percent) is about 2 K, and the surface resistance is less than 50 milliohms at 88 K. The effect of microstructure on surface resistance is discussed.

  19. Millimeter wave surface resistance of grain-aligned Y1Ba2Cu3Ox bulk material

    International Nuclear Information System (INIS)

    Wosik, J.; Kranenburg, R.A.; Wolfe, J.C.; Selvamanickam, V.; Salama, K.

    1991-01-01

    We report measurements of the millimeter wave surface resistance of grain-aligned YBa 2 Cu 3 O x bulk material grown by a liquid phase process. The measurements were performed by replacing the endplate of a TE 011 cylindrical copper cavity with the superconducting sample. Surface resistance was measured for samples with surfaces oriented perpendicular and parallel to the c-axis of the grains. We show that, for the parallel configuration, the surface resistance at 77 K and 80 GHz is typically near 100 mΩ. For a very well-aligned sample with a very low density of Y 2 BaCuO y precipitates, measured in the perpendicular configuration, the transition width (10%--90%) is about 2 K and the surface resistance is less than 50 mΩ at 88 K. The effect of microstructure on surface resistance is discussed

  20. Determining Surface Material Properties Using Satellite Imaging

    Science.gov (United States)

    Gloudeman, C.; Gerace, A. D.

    2017-12-01

    Knowledge of soil moisture content is necessary for drought monitoring, crop irrigation, and water runoff. Remote sensing techniques provide a more efficient alternative to traditional field measurements for determining soil moisture content. Thermal infrared sensors from Landsat, MODIS Aqua & Terra, and AVHRR MetOp A & B satellites were used to find thermal inertia, which is highly correlated with soil moisture. A diurnal cycle is converted from band effective radiance to Land Surface Temperature (LST) using Planck's Law for blackbody radiation and a modified split-window algorithm. The THERM model for finding expected LST is then used to determine the material properties. A second approach was used to calculate apparent thermal inertia and soil moisture content from day/ night pairs of LST. For this method, only the MODIS Aqua LST product was used.To this end, we have observed clear differences in moisture between areas of vegetation and sand and between different crop fields. Our results indicate that matching the observed data with the THERM model could be improved with increased satellite measurements.

  1. Unsaturated hydraulic property of buffer material

    International Nuclear Information System (INIS)

    Suzuki, Hideaki; Fujita, Tomoo

    1999-09-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanism, infiltration of groundwater from the surrounding rock into the EBS, generation of swelling pressure in the buffer due to water infiltration and the stress imposed by the overburden pressure. These phenomena are not all independent, but can be strongly influenced by, and coupled with, each other. Evaluating these coupled thermo-hydro-mechanical phenomena is important in order to clarify the initial transient behavior of the engineered barrier system within the near-field. This report describes the results on measurement of chemical potential, water diffusivity, and thermal water diffusivity of bentonite that is considered as a candidate material of buffer and on comparison between measurements and theoretical studies for these properties. The following results are identified; (l) The hysteresis of chemical potential in wet and dry conditions for compacted bentonite is not shown clearly. The chemical potential depends on temperature and amount of montmorillonite. When chemical potential of compacted bentonite is zero, the specimen is saturated. The van Genuchten model is applicable to the measured chemical potential of compacted bentonite. (2) The Darcy's law and Philip and de Vries model are applicable to the measured water diffusivity and thermal water diffusivity of compacted bentonite. (author)

  2. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-08-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices.

  3. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.

    Science.gov (United States)

    Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang

    2015-04-29

    The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the

  4. Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays.

    Science.gov (United States)

    Kang, Min-Gyu; Oh, Seung-Min; Jung, Woo-Suk; Moon, Hi Gyu; Baek, Seung-Hyub; Nahm, Sahn; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-05-08

    Piezoelectric materials capable of converting between mechanical and electrical energy have a great range of potential applications in micro- and nano-scale smart devices; however, their performance tends to be greatly degraded when reduced to a thin film due to the large clamping force by the substrate and surrounding materials. Herein, we report an effective method for synthesizing isolated piezoelectric nano-materials as means to relax the clamping force and recover original piezoelectric properties of the materials. Using this, environmentally friendly single-crystalline NaxK1-xNbO3 (NKN) piezoelectric nano-rod arrays were successfully synthesized by conventional pulsed-laser deposition and demonstrated to have a remarkably enhanced piezoelectric performance. The shape of the nano-structure was also found to be easily manipulated by varying the energy conditions of the physical vapor. We anticipate that this work will provide a way to produce piezoelectric micro- and nano-devices suitable for practical application, and in doing so, open a new path for the development of complex metal-oxide nano-structures.

  5. The Setup Design for Selective Laser Sintering of High-Temperature Polymer Materials with the Alignment Control System of Layer Deposition

    Directory of Open Access Journals (Sweden)

    Alexey Nazarov

    2018-03-01

    Full Text Available This paper presents the design of an additive setup for the selective laser sintering (SLS of high-temperature polymeric materials, which is distinguished by an original control system for aligning the device for depositing layers of polyether ether ketone (PEEK powder. The kinematic and laser-optical schemes are given. The main cooling circuits are described. The proposed technical and design solutions enable conducting the SLS process in different types of high-temperature polymer powders. The principles of the device adjustment for depositing powder layers based on an integral thermal analysis are disclosed. The PEEK sinterability was shown on the designed installation. The physic-mechanical properties of the tested 3D parts were evaluated in comparison with the known data and showed an acceptable quality.

  6. Supporting Instruction By Defining Conceptual Relevance Of Materials: Alignment Of Resources To An Earth Systems Framework

    Science.gov (United States)

    Menicucci, A. J.; Bean, J. R.

    2017-12-01

    Environmental, geological, and climatological sciences are important facets of physical science education. However, it is often difficult for educators to acquire the necessary resources to facilitate content explanations, and demonstration of the conceptual links between individual lessons. The Understanding Global Change (UGC) Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley is aligning new and existing Earth systems educational resources that are high-quality, interactive and inquiry based. Learning resources are organized by the UGC framework topics (Causes of Change, How the Earth System Works, and Measurable Changes), and focus on exploring topic relationships. Resources are currently aligned with both the UGC framework and the Next Generation Science Standards (NGSS), facilitating broad utility among K-16 educators. The overarching goal of the UGC Project is to provide the necessary resources that guide the construction of coherent, interdisciplinary instructional units. These units can be reinforced through system models, providing visual learning scaffolds for assessments of student content knowledge. Utilizing the central framework of UGC alleviates the long-standing problem of creating coherent instructional units from multiple learning resources, each organized and categorized independently across multiple platforms that may not provide explicit connections among Earth science subjects UGC topic cross listing of learning modules establishes conceptual links. Each resource is linked across several Earth system components, facilitating exploration of relationships and feedbacks between processes. Cross listed topics are therefore useful for development of broad picture learning goals via targeted instructional units. We also anticipate cultivating summaries of the explicit conceptual links explored in each resource from both current teachers and content specialists. Insructional units currated and aligned under the UGC

  7. Tuning vertical alignment and field emission properties of multi-walled carbon nanotube bundles

    Science.gov (United States)

    Sreekanth, M.; Ghosh, S.; Srivastava, P.

    2018-01-01

    We report the growth of vertically aligned carbon nanotube bundles on Si substrate by thermal chemical vapor deposition technique. Vertical alignment was achieved without any carrier gas or lithography-assisted deposition. Growth has been carried out at 850 °C for different quantities of solution of xylene and ferrocene ranging from 2.25 to 3.00 ml in steps of 0.25 ml at a fixed concentration of 0.02 gm (ferrocene) per ml. To understand the growth mechanism, deposition was carried out for different concentrations of the solution by changing only the ferrocene quantity, ranging from 0.01 to 0.03 gm/ml. A tunable vertical alignment of multi-walled carbon nanotubes (CNTs) has been achieved by this process and examined by scanning and transmission electron microscopic techniques. Micro-crystalline structural analysis has been done using Raman spectroscopy. A systematic variation in field emission (FE) current density has been observed. The highest FE current density is seen for the film grown with 0.02 gm/ml concentration, which is attributed to the better alignment of CNTs, less structural disorder and less entanglement of CNTs on the surface. The alignment of CNTs has been qualitatively understood on the basis of self-assembled catalytic particles.

  8. ACOUSTIC ENERGY AT CHANGE OF TREATED COMPOSITE MATERIAL DISPERSION PROPERTIES

    Directory of Open Access Journals (Sweden)

    Sergii Filonenko

    2016-12-01

    Full Text Available Purpose: The aim of this study is to investigate the influence of treated composite material dispersion properties on acoustic radiation energy, which appears during composite material machining. Methods: The researches were grounded on simulation of acoustic radiation energy at change of mechanically treated composite material properties dispersion for the mechanical model of its surface layer destruction. The data processing with definition of acoustic radiation statistical energy parameters was conducted. The analysis of acoustic emission energy parameters sensitivity to change of composite material properties dispersion, and as the analysis of influencing of composite material properties dispersion on AE amplitude and energy parameters was conducted. Results: Were obtained that at decreasing of composite material properties dispersion there is increasing an average level of acoustic radiation energy and value of its deviation. Is determined, that at decreasing of composite material properties dispersion the greatest increasing there is an acoustic emission energy average level dispersion. It is show that the increasing of acoustic radiation energy parameters advances increasing its amplitude parameters. Discussion: The simulation of acoustic radiation energy at composite material machining for the mechanical model surface layer destruction at decreasing of composite material properties dispersion (spread is conducted. It is shown, that the decreasing of composite material properties dispersion does not influence on acoustic radiation energy nature change. At the same time, the ascending parameter, that describing of composite material properties dispersion decreasing, results in increase of acoustic radiation signal energy parameters. The obtained outcomes can be used at mining methods of verification, diagnostic and monitoring of composite material machining technological processes. Thus during the composite material machining is possible

  9. Chromonic liquid crystals: properties and applications as functional materials.

    Science.gov (United States)

    Tam-Chang, Suk-Wah; Huang, Liming

    2008-05-07

    Chromonic liquid crystals (or chromonics) are formed by the self-organization of aromatic compounds with ionic or hydrophilic groups in aqueous solutions. This review summarizes the research on chromonic liquid crystals in the last two decades. The research embraced the studies of commercially available chromonic dyes and drugs, the syntheses and investigations of molecularly designed mesogens, the invention of novel processes for aligning chromonic liquid crystals, and the development of new applications as functional materials and biosensors.

  10. Cytocompatibility and Antibacterial Properties of Capping Materials

    Directory of Open Access Journals (Sweden)

    Claudio Poggio

    2014-01-01

    Full Text Available The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply, Calcicur (Voco, Calcimol LC (Voco, TheraCal LC (Bisco, MTA Angelus (Angelus, and Biodentine (Septodont. To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity.

  11. Cytocompatibility and Antibacterial Properties of Capping Materials

    Science.gov (United States)

    Arciola, Carla Renata; Monaco, Annachiara; Lombardini, Marco

    2014-01-01

    The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), and Biodentine (Septodont). To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity. PMID:24959601

  12. Cytocompatibility and Antibacterial Properties of Capping Materials

    OpenAIRE

    Poggio, Claudio; Arciola, Carla Renata; Beltrami, Riccardo; Monaco, Annachiara; Dagna, Alberto; Lombardini, Marco; Visai, Livia

    2014-01-01

    The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), and Biodentine (Septodont). To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towa...

  13. Metallurgy and properties of plasma spray formed materials

    Science.gov (United States)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  14. Effect of particle Alignment on mechanical properties of neat cellulose nanocrystal films

    Science.gov (United States)

    Alexander B. Reising; Robert J. Moon; Jeffrey P. Youngblood

    2012-01-01

    Shear-based film casting methods were used to cast neat films from wood-based cellulose nanocrystal (CNC) suspensions. The degree of CNC alignment in dried films was characterized using the Hermans order parameter (S), and the film elastic modulus (E), ultimate tensile strength (σf ), elongation at failure (εf...

  15. Preparation and gas-sensing property of parallel-aligned ZnO ...

    Indian Academy of Sciences (India)

    Parallel-aligned zinc oxide (ZnO) nanofibrous films fabricated by using electrospinning technique were used in gas sensors for the detection of .... of the sensor were measured on a static system in laboratory condition (25 ... SEM images of fibres before being sintered (b), after being sintered (c) and high magnification (d).

  16. Interface Properties in Extruded FRC-Materials

    DEFF Research Database (Denmark)

    Stang, Henrik

    1997-01-01

    reinforced cementitious material extruded by the developed process. It is further more shown that the fiber-matrix bond is highly dependent on the relative slip at the interface and a bond-slip relationship is suggested for the extruded material. The observed very high fiber-matrix bond is explained...

  17. New elastoplastic materials with performance properties

    Directory of Open Access Journals (Sweden)

    Sanda VISAN,

    2009-06-01

    Full Text Available The fabrication of high performance materials using EPDM rubber and polyethylene mixtures with a low cost, nonpolluting and minimum investment technology is studied. These new materials can be used for obtaining a lot of goods for the economy, sport and private life.

  18. Electromagnetic, mechanical, and transport properties of composite materials

    CERN Document Server

    Pal, Rajinder

    2012-01-01

    Applications of Composite MaterialsElectromagnetic Properties of Composites: Static Electromagnetic Properties of CompositesElectrical Conductivity of CompositesDielectric Properties of CompositesMagnetic Properties of CompositesElectromagnetic Properties of Composites: General Treatment of Electromagnetic Phenomena in CompositesMaxwell Equations and the Generalized Conductivity PrincipleComplex Electromagnetic Properties of CompositesMechanical Properties of CompositesMechanical Properties of Dilute Particulate-Filled CompositesMechanical Properties of Concentrated Pore-Solid CompositesEffective Young's Modulus of Concentrated CompositesEffective Shear Modulus of Concentrated CompositesMechanical Properties of Concentrated Composites of Randomly Oriented Platelets Interfacial and Interphase Effects on Mechanical Properties of CompositesViscoelastic Behavior of CompositesTransport Properties of Composites: Heat Transfer in CompositesGeneral Introduction to Heat TransferFundamentals of Conductive Heat Transfer...

  19. The influence of protective properties of packaging materials and ...

    African Journals Online (AJOL)

    The influence of protective properties of packaging materials and modified atmosphere on quality changes of dried apricot is shown in this paper. In our investigation, we used four different characteristic combinations of packaging materials with different barrier properties for packaging of dried apricot: ...

  20. Textile materials for lightweight constructions technologies, methods, materials, properties

    CERN Document Server

    2016-01-01

    In this book, experts on textile technologies convey both general and specific informa­tion on various aspects of textile engineering, ready-made technologies, and textile chemistry. They describe the entire process chain from fiber materials to various yarn constructions, 2D and 3D textile constructions, preforms, and interface layer design. In addition, the authors introduce testing methods, shaping and simulation techniques for the characterization of and structural mechanics calculations on anisotropic, pliable high-performance textiles, including specific examples from the fields of fiber plastic composites, textile concrete, and textile membranes. Readers will also be familiarized with the potential offered by increasingly popular textile structures, for instance in the fields of composite technology, construction technology, security technology, and membrane technology. Textile materials and semi-finished products have widely varied potential characteristics, and are commonly used as essential element...

  1. Diffuse scattering and the fundamental properties of materials

    CERN Document Server

    EIce, Gene; Barabash, Rozaliya

    2009-01-01

    Diffuse Scattering-the use of off-specular X-Rays and neutrons from surfaces and interfaces-has grown rapidly as a tool for characterizing the surface properties of materials and related fundamental structural properties. It has proven to be especially useful in the understanding of local properties within materials. This book reflects the efforts of physicists and materials scientists around the world who have helped to refine the techniques and applications of diffuse scattering. Major topics specifically covered include: -- Scattering in Low Dimensions -- Elastic and Thermal Diffuse Scattering from Alloys -- Scattering from Complex and Disordered Materials -- Scattering from Distorted Crystals.

  2. Materials with a cluster structure. New properties, new possibilities

    International Nuclear Information System (INIS)

    Svechnikov, S.

    1998-01-01

    The author examines the structural special features, growth relationships and physical properties of a group of relatively new materials which includes quasicrystals, fullerites, aerogels, porous silicon. These materials are interesting because of their cluster structure. They include metallic alloys, semiconductor and molecular crystals, and disordered solidified gels. The nanocrystalline structure of the cluster materials determines their characteristic properties and unconventional properties, including those used in applied aspects. Special attention is given to the role of noise regarded as the statistical aspect in the formation of the cluster structure of the material in the aggregation condition, limited by diffusion during growth under highly non-equilibrium conditions. (author)

  3. Superconductivity and magnetism: Materials properties and developments

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, N.H.; Bay, N.; Grivel, J.C. (eds.) [and others

    2003-07-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T{sub c} superconductivity, magnetic superconductors, MgB{sub 2}, CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  4. Superconductivity and magnetism: Materials properties and developments

    International Nuclear Information System (INIS)

    Andersen, N.H.; Bay, N.; Grivel, J.C.

    2003-01-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T c superconductivity, magnetic superconductors, MgB 2 , CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  5. Comparative study of hygrothermal properties of five thermal insulation materials

    OpenAIRE

    Laure Ducoulombier; Zoubeir Lafhaj

    2017-01-01

    The objective of this article is to carry out a comparative study of the main hygrothermal properties of five thermal insulation materials for buildings. These properties are necessary for a correct prediction of heat and moisture transfers through the walls and the selection of the most appropriate materials according to the specific buildings. The studied materials were glass wool, rock wool, expanded polystyrene, wood fiberboard and polyester fiberfill. The article is divided into three pa...

  6. Dependences of ultrasonic properties on the propagation angle with respect to the trabecular alignment in trabecular bone

    International Nuclear Information System (INIS)

    Lee, Kang Il

    2014-01-01

    The present study aims to investigate the dependences of ultrasonic properties on the propagation angle with respect to the trabecular alignment in 12 bovine femoral trabecular bone samples. The phase velocity and the attenuation coefficient of the fast wave measured at 0.5 MHz were found to decrease significantly with increasing angle and had their maximum values at 0 .deg. , i.e., for wave propagation in a direction parallel to the predominant trabecular alignment. The present study applied the angle-dependent Biot model by introducing anisotropy into the Biot model through the angle-dependent Young's, bulk, and shear moduli of the skeletal frame for trabecular bone to predict the measurements. Good agreement between the measurements and the prediction of the fast wave velocity suggests that the anisotropic fast wave velocity as a function of the propagation angle is mainly due to the variation in the elastic moduli of the skeletal frame with respect to the trabecular alignment.

  7. The ground state properties of spin-aligned atomic hydrogen, deuterium, and tritium

    Science.gov (United States)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R. W.

    1975-01-01

    The internal energy, pressure, and compressibility of ground-state, spin-aligned atomic hydrogen, deuterium, and tritium are calculated assuming that all pair interactions occur via the atomic triplet (spin-aligned) potential. The conditions required to obtain atomic hydrogen and its isotopes in bulk are discussed; such a development would be of value in propulsion systems because of the light mass and energetic recombination of atomic hydrogen. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K, and that tritium forms a liquid with a binding energy of approximately -0.75 K per atom at a molar volume of 130 cu cm per mole. The pair distribution function for these systems is calculated, and the predicted superfluid behavior of atomic triplet hydrogen and tritium is briefly discussed.

  8. Dielectric properties of materials at microwave frequencies

    Directory of Open Access Journals (Sweden)

    Ivo Křivánek

    2008-01-01

    Full Text Available The paper introduces the review of the present state of art in the measurement of the interaction of electromagnetic waves with different kinds of materials. It is analysis of the possibilities of the mea­surement of the interaction of high frequencies waves (microwaves with materials and proposal of the experimental method for the studies mentioned above.The electromagnetic field consists of two components: electric and magnetic field. The influence of these components on materials is different. The influence of the magnetic field is negligible and it has no impact on practical use. The influence of the electric field is strong as the interaction between them results in the creation of electric currents in the material (Křivánek and Buchar, 1993.Experiments focused on the evaluation of the complex dielectric permitivity of different materials have been performed. The permitivity of solid material is also measurable by phasemethod, when the specimen is a part of transmission sub-circuit. Microwave instrument for complex permittivity measurement works in X frequency band (8.2–12.5 GHz, the frequency 10.1 GHz was used for all the measurement in the laboratory of physics, Mendel University in Brno. The extensive number of experimental data have been obtained for different materials. The length of the square side of the ae­rial open end was 50 mm and internal dimensions of waveguides were 23 mm × 10 mm. The samples have form of the plate shape with dimensions 150 mm × 150 mm × 4 mm.

  9. Adsorption Properties of Chalk Reservoir Materials

    DEFF Research Database (Denmark)

    Okhrimenko, Denis

    Understanding adsorption energetics and wetting properties of calcium carbonate surfaces is essential for developing remediation strategies for aquifers, improving oil recovery, minimising risk in CO2 storage and optimising industrial processes. This PhD was focussed on comparing the vapour....../gas adsorption properties of synthetic calcium carbonate phases (calcite, vaterite and aragonite) with chalk, which is composed of biogenic calcite (>98%). In combination with data from nanotechniques, the results demonstrate the complexity of chalk behavior and the role of nanoscale clay particles. The results...

  10. Dielectric properties of vertically aligned multi-walled carbon nanotubes in the terahertz and mid-infrared range

    Science.gov (United States)

    Thomson, Mark D.; Zouaghi, Wissem; Meng, Fanqi; Wiecha, Matthias M.; Rabia, Kaneez; Heinlein, Thorsten; Hussein, Laith; Babu, Deepu; Yadav, Sandeep; Engstler, Jörg; Schneider, Jörg J.; Nicoloso, Norbert; Rychetský, Ivan; Kužel, Petr; Roskos, Hartmut G.

    2018-01-01

    We investigate the broadband dielectric properties of vertically aligned, multi-wall carbon nanotubes (VACNT), over both the terahertz (THz) and mid-infrared spectral ranges. The nominally undoped, metallic VACNT samples are probed at normal incidence, i.e. the response is predominantly due to polarisation perpendicular to the CNT axis. A detailed comparison of various conductivity models and previously reported results is presented for the non-Drude behaviour we observe in the conventional THz range (up to 2.5 THz). Extension to the mid-infrared range reveals an absorption peak at \

  11. Mechanical properties of structural materials in HLM

    International Nuclear Information System (INIS)

    Moisa, A. E.; Valeca, S.; Pitigoi, V.

    2016-01-01

    The Generation IV nuclear systems are nowadays in the design stage, and this is one of the reasons of testing stage for candidate materials. The purpose of this paper is to present the tensile tests, for candidate materials. The studied test are: on temperature of 500°C in air, on mechanical testing machine Walter + Bie by using the furnace of the testing machine, and environmental molten lead using testing machine Instron, equipped with a lead testing device attached to it. Also the mechanical parameters will be determined on tensile strength and yield strength for steel 316L material to be used as candidate in achieving LFR reactor vessel type, and the microstructural analysis of surface breaking will be performed by electronic microscopy. The paper will present the main components, the operating procedure of the testing system, and the results of tensile tests in molten lead. (authors)

  12. Electronic and optical properties of hydrogenated group-IV multilayer materials.

    Science.gov (United States)

    Pontes, Renato Borges; Mançano, Rosana Rabelo; da Silva, Rafael; Cótica, Luiz Fernando; Miwa, Roberto Hiroki; Padilha, José Eduardo

    2018-03-08

    Hydrogenated group-IV layered materials are semiconducting forms of silicene, germanene and stanene. We systematically studied the evolution of the structural, electronic and optical properties of these 2D materials as a function of the number of layers. We verify that the exfoliation energy increases upon the increase of the atomic number (Si → Sn) of the group-IV material. We show that silicane, independent of the number of layers, is an indirect band gap (Γ-M) material. This behavior is different from both germanane and stanane, which are direct band gap (Γ point) semiconductors. The calculated optical spectra show, for all systems, a red shift in the absorption edges and an enhanced absorption of the visible light for the in-plane (α ‖ ) component upon the increase in the number of layers and, also as a function of the increasing atomic number. Our findings also indicate that: (i) (XH 2 ) m (YH 2 ) n vdW heterostructures will always present a type-I band alignment for X = Si and Y = Ge or Sn, whereas (ii) for X = Ge and Y = Sn, the band alignment can be tuned (type-I ↔ type-II) by the number of layers (m,n).

  13. Mechanical properties of graphite and carbon materials

    International Nuclear Information System (INIS)

    Jouquet, G.

    1976-01-01

    The elastic properties of the graphite monocrystal, the role of internal characteristics (texture, porosity) on the mechanical behavior of carbons, effects caused by the gaseous environment and neutron irradiation, and the resistance of graphites to cyclic mechanical stresses are discussed [fr

  14. Material, compressional and mechanical properties of Borassus ...

    African Journals Online (AJOL)

    The compressional and mechanical properties of tablet formulations incorporating native and modified Borassus aethiopum starches as binder were evaluated. The native Borassus aethiopum starch (BAS) was modified to yield fully gelatinised starch (FGBAS) and microcrystalline starch (MBAS). The compressional ...

  15. Self-aligned optical couplings by self-organized waveguides toward luminescent targets in organic/inorganic hybrid materials.

    Science.gov (United States)

    Yoshimura, Tetsuzo; Iida, Makoto; Nawata, Hideyuki

    2014-06-15

    Self-organization of optical waveguides is observed between two opposed optical fibers placed in a photosensitive organic/inorganic hybrid material, Sunconnect. A luminescent target containing coumarin 481 was deposited onto the edge of one of the two fibers at the core. When a 448-nm write beam was introduced from the other fiber, the write beam and the luminescence from the photoexcited target increased the refractive index of Sunconnect to induce self-focusing. Traces of waveguides were seen to grow from the cores of both fibers and merged into a single self-aligned optical coupling between the fibers. This optical solder functionality enabled increases in both coupling efficiency and tolerance to lateral misalignment of the fibers.

  16. Probabilistic Modeling of Graded Timber Material Properties

    DEFF Research Database (Denmark)

    Faber, M. H.; Köhler, J.; Sørensen, John Dalsgaard

    2004-01-01

    The probabilistic modeling of timber material characteristics is considered with special emphasis to the modeling of the effect of different quality control and selection procedures used as means for quality grading in the production line. It is shown how statistical models may be established on ...

  17. Material properties under intensive dynamic loading

    CERN Document Server

    Cherne, Frank J; Zhernokletov, Mikhail V; Glushak, B L; Zocher, Marvin A

    2007-01-01

    Understanding the physical and thermomechanical response of materials subjected to intensive dynamic loading is a challenge of great significance in engineering today. This volume assumes the task of gathering both experimental and diagnostic methods in one place, since not much information has been previously disseminated in the scientific literature.

  18. Concrete deck material properties : final report.

    Science.gov (United States)

    2009-01-01

    The two-fold focus of this study was (a) to develop an understanding of the mechanisms responsible for causing : cracking in the concrete; and (b) to study the influence of the local materials on the performance of NYSDOTs HP : concrete mixture. R...

  19. Finite Element Method for Analysis of Material Properties

    DEFF Research Database (Denmark)

    Rauhe, Jens Christian

    and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using...

  20. Characterization of Mechanical Properties of Aligned Date Palm Frond Fiber-Reinforced Low Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Khaled AlZebdeh

    2017-06-01

    Full Text Available In recent decades, natural fibers have received attention of scientists and researchers due to their ecofriendly characteristics that qualify them as potential reinforcement in polymer composites in place of synthetic fibers.  In this study, an experimental investigation has been conducted to evaluate the effect of orientation of fibers on mechanical properties of a newly developed bio-composite in which date palm fronds (DPF are embedded as fibers in low-density polyethylene (LDPE matrix. Three bio-composite sheets with orientations of 0°, 45° and 90°, respectively have been fabricated after the date palm fronds were chemically treated. The fabricated composite specimens are tested under tensile load using Universal Testing Machine (UTM in accordance with the ASTM D-638 standard. Then, a comparison of the experimental results against analytical results is made to examine the accuracy and agreement between the two. An inconsistency in moduli, as was discovered, is attributed to the adhesion quality between the fibers and surrounding matrix. Output results help to assess the applicability of such class of bio-composites in real-life applications.  The results of tensile strength, Young’s modulus, and elongation at break revealed that date palm fronds can be used as reinforcement material in polymer-based composites for low strength applications.

  1. Structure-property relationships of multiferroic materials: A nano perspective

    Science.gov (United States)

    Bai, Feiming

    The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT

  2. Magnetic Properties of Nanoparticles of Antiferromagnetic Materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Bødker, Franz

    2003-01-01

    The magnetic properties of antiferromagnetic nanoparticles have been studied by Mossbauer spectroscopy and neutron scattering. Temperature series of Mossbauer spectra of non-interacting, superparamagnetic hematite nanoparticles were fitted by use of the Blume-Tjon relaxation model. It has been...... found that the magnetic anisotropy energy constant increases significantly with decreasing particle size. Neutron scattering experiments on similar samples give new information on both superparamagnetic relaxation and collective magnetic excitations. There is good agreement between the values...

  3. IMAP: Interferometry for Material Property Measurement in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B.D.; Miller, S.L.; de Boer, M.P.

    1999-03-10

    An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.

  4. Size-Dependent Materials Properties Toward a Universal Equation

    Directory of Open Access Journals (Sweden)

    Guisbiers G

    2010-01-01

    Full Text Available Abstract Due to the lack of experimental values concerning some material properties at the nanoscale, it is interesting to evaluate this theoretically. Through a “top–down” approach, a universal equation is developed here which is particularly helpful when experiments are difficult to lead on a specific material property. It only requires the knowledge of the surface area to volume ratio of the nanomaterial, its size as well as the statistic (Fermi–Dirac or Bose–Einstein followed by the particles involved in the considered material property. Comparison between different existing theoretical models and the proposed equation is done.

  5. Thermal and Electrical Properties of Nanocomposites, Including Material Properties

    NARCIS (Netherlands)

    Kochetov, R.

    2012-01-01

    The research described in this thesis is part of a state-funded IOP-EMVT project in cooperation with industrial companies, aiming at the design, assessment and implementation of new, environmental friendly (e.g. oil and SF6 - free) solid dielectric materials. A large disadvantage of solid polymer

  6. Properties of cathode materials in alkaline cells

    International Nuclear Information System (INIS)

    Salkind, A.J.; McBreen, J.; Freeman, R.; Parkhurst, W.A.

    1985-01-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve-type silver-zinc batteries, a new material - AgNiO/sub 2/ - and several nickel electrodes for nickel-cadmium and nickel-hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities detected by XPS and SAM. After the first discharge AgNiO/sub 2/ can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic-bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)/sub 2/ largely eliminate this

  7. Properties of cathode materials in alkaline cells

    Science.gov (United States)

    Salkind, A. J.; McBreen, J.; Freeman, R.; Parkhurst, W. A.

    1984-04-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve type silver zinc batteries, a new material - AgNiO2 and several nickel electrodes for nickel cadmium and nickel hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities. After the first discharge AgNiO2 can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)2 largely eliminate this.

  8. Optical properties of nanostructured materials: a review

    Science.gov (United States)

    Flory, François; Escoubas, Ludovic; Berginc, Gérard

    2011-01-01

    Depending on the size of the smallest feature, the interaction of light with structured materials can be very different. This fundamental problem is treated by different theories. If first order theories are sufficient to describe the scattering from low roughness surfaces, second order or even higher order theories must be used for high roughness surfaces. Random surface structures can then be designed to distribute the light in different propagation directions. For complex structures such as black silicon, which reflects very little light, the theory needs further development. When the material is periodically structured, we speak about photonic crystals or metamaterials. Different theoretical approaches have been developed and experimental techniques are rapidly progressing. However, some work still remains to understand the full potential of this field. When the material is structured in dimension much smaller than the wavelength, the notion of complex refractive index must be revisited. Plasmon resonance can be excited by a progressing wave on metallic nanoparticles inducing a shaping of the absorption band and of the dispersion of the extinction coefficient. This addresses the problem of the permittivity of such metallic nanoparticles. The coupling between several metallic nanoparticles induces a field enhancement in the surrounding media, which can increase phenomena like scattering, absorption, luminescence, or Raman scattering. For semiconductor nanoparticles, electron confinement also induces a modulated absorption spectra. The refractive index is then modified. The bandgap of the material is changed because of the discretization of the electron energy, which can be controlled by the nanometers size particles. Such quantum dots behave like atoms and become luminescent. The lifetime of the electron in the excited states are much larger than in continuous energy bands. Electrons in coupled quantum dots behave as they do in molecules. Many applications

  9. Knowledge processes, distribution and alignment: Spatio-materialities and transformations in MRI praxis

    DEFF Research Database (Denmark)

    Yoshinaka, Yutaka

    2002-01-01

    may have their origins (the particular sociotechnical contingencies as well as time of their initial materialization) far removed from the very scanning session in question, they enter into its particular make-up and enactment in and through their relationality in the collective of practice at hand......, in light of the distributed work and effects that characterize their materialization and articulation, both within—and subsequent to—the immediate confines of such production and use. The paper is based on an ethnographic study of a relatively routinized MRI practice at a neuroradiology department...... (PACS). Paradoxically, in spite of MRI being a digital modality, the very sociomaterial contingencies of IT and electronic media come to have significant bearing on the spaces in which MRI’s can be articulated in practice through ‘filmless’ radiology....

  10. Investigation of the liquid crystal alignment layer: effect on electrical properties

    International Nuclear Information System (INIS)

    Abderrahmen, Asma; Romdhane, Fayda Fekih; Gharbi, Abdelhafidh; Ouada, Hafedh Ben

    2008-01-01

    We investigate the electrical behavior of a symmetric liquid crystal (LC) cell: elecrode-silane-LC-silane-electrode. The silane (chlorodimethyloctadecyl-silane) layer induces a homeotropic orientation of the nematic liquid crystal (NLC) molecules. The wettability technique is used to detect the change of the surface energy of the electrode upon cleaning and silane layer deposition. We report on the dynamic impedance measurements of the nematic liquid crystal cell. It is found that the silane alignment layer has a blocking effect on the liquid crystal (LC) cell. We also study the relaxation behavior of the cell which is later assimilated as an electrical equivalent circuit

  11. Effects of powder flowability on the alignment degree and magnetic properties for NdFeB sintermagnets

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. [School of Physics and Microelectronics, Shandong University, 250100 (China); Gao, R.W. [School of Physics and Microelectronics, Shandong University, 250100 (China)]. E-mail: gaorwbox@sdu.edu.cn; Han, G.B. [School of Physics and Microelectronics, Shandong University, 250100 (China); Bai, G. [School of Physics and Microelectronics, Shandong University, 250100 (China); Liu, T. [School of Physics and Microelectronics, Shandong University, 250100 (China); Wang, B. [School of Physics and Microelectronics, Shandong University, 250100 (China); Yantai Shougang Magnetic Material CO, LTD, 265500 (China)

    2006-04-15

    The magnetic powders for sintered NdFeB magnets have been prepared by using the strip casting (SC), hydrogen decrepitation (HD) and jet milling (JM) techniques. The effects of powder flowability and addition of a lubricant on the alignment degree and the hard magnetic properties of sintered magnets have been studied. The results show that the main factor affecting powder flowability is the aggregation of magnetic particles for powders in a loose state, but it is the friction between the powder particles for powders that are in a compact state. The addition of a lubricant with suitable dose can slightly prevent the congregating of powders, obviously decrease the friction between the powder particles, improve the powder flowability, and increase the alignment degree, remanence and energy product density of sintered magnets. Mixing a suitable dose of lubricant and adopting rubber isostatic pressing (RIP) with a pulse magnetic field, we have succeeded in producing the sintered NdFeB magnet with high hard magnetic properties of B {sub r}=14.57 KG, {sub j}H {sub c}=14.43 KOe (BH){sub max}=51.3 MGOe.

  12. Enhancing Crystallinity and Orientation by Hot-Stretching to Improve the Mechanical Properties of Electrospun Partially Aligned Polyacrylonitrile (PAN) Nanocomposites

    Science.gov (United States)

    Song, Zhenyu; Hou, Xiaoxiao; Zhang, Liqun; Wu, Sizhu

    2011-01-01

    Partially aligned polyacrylonitrile (PAN)-based nanofibers were electrospun from PAN and PAN/single-walled carbon nanotubes (SWNTs) in a solution of dimethylformamide (DMF) to make the nanofiber composites. The as-spun nanofibers were then hot-stretched in the oven to enhance its orientation and crystallinity. With the introduction of SWNTs and by the hot-stretched process, the mechanical properties will be enhanced correspondingly. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray scattering (XRD), differential scanning calorimetry (DSC), and the tensile test were used to characterize the microstructure and performances of the nanofibers. The orientation and crystallinity of the as-spun and hot-stretched nanofibers confirmed by X-ray have increased. Differential scanning calorimetry showed that the glass transition temperature of PAN increased about 3 °C by an addition of 0.75 wt% SWNTs indicating a strong interfacial interaction between PAN and SWNTs. The tensile strength and the modulus of the nanofibers increased revealing significant load transfer across the nanotube-matrix interface. For PAN nanofibers, the improved fiber alignment, orientation and crystallinity resulted in enhanced mechanical properties, such as the tensile strength and modulus of the nanofibers. It was concluded that the hot-stretched nanofiber and the PAN/SWNTs nanofibers can be used as a potential precursor to produce high-performance nanocomposites. PMID:28879944

  13. Enhancing Crystallinity and Orientation by Hot-Stretching to Improve the Mechanical Properties of Electrospun Partially Aligned Polyacrylonitrile (PAN Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Hou

    2011-04-01

    Full Text Available Partially aligned polyacrylonitrile (PAN-based nanofibers were electrospun from PAN and PAN/single-walled carbon nanotubes (SWNTs in a solution of dimethylformamide (DMF to make the nanofiber composites. The as-spun nanofibers were then hot-stretched in the oven to enhance its orientation and crystallinity. With the introduction of SWNTs and by the hot-stretched process, the mechanical properties will be enhanced correspondingly. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray scattering (XRD, differential scanning calorimetry (DSC, and the tensile test were used to characterize the microstructure and performances of the nanofibers. The orientation and crystallinity of the as-spun and hot-stretched nanofibers confirmed by X-ray have increased. Differential scanning calorimetry showed that the glass transition temperature of PAN increased about 3 °C by an addition of 0.75 wt% SWNTs indicating a strong interfacial interaction between PAN and SWNTs. The tensile strength and the modulus of the nanofibers increased revealing significant load transfer across the nanotube-matrix interface. For PAN nanofibers, the improved fiber alignment, orientation and crystallinity resulted in enhanced mechanical properties, such as the tensile strength and modulus of the nanofibers. It was concluded that the hot-stretched nanofiber and the PAN/SWNTs nanofibers can be used as a potential precursor to produce high-performance nanocomposites.

  14. Enhancing Crystallinity and Orientation by Hot-Stretching to Improve the Mechanical Properties of Electrospun Partially Aligned Polyacrylonitrile (PAN) Nanocomposites.

    Science.gov (United States)

    Song, Zhenyu; Hou, Xiaoxiao; Zhang, Liqun; Wu, Sizhu

    2011-04-06

    Partially aligned polyacrylonitrile (PAN)-based nanofibers were electrospun from PAN and PAN/single-walled carbon nanotubes (SWNTs) in a solution of dimethylformamide (DMF) to make the nanofiber composites. The as-spun nanofibers were then hot-stretched in the oven to enhance its orientation and crystallinity. With the introduction of SWNTs and by the hot-stretched process, the mechanical properties will be enhanced correspondingly. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray scattering (XRD), differential scanning calorimetry (DSC), and the tensile test were used to characterize the microstructure and performances of the nanofibers. The orientation and crystallinity of the as-spun and hot-stretched nanofibers confirmed by X-ray have increased. Differential scanning calorimetry showed that the glass transition temperature of PAN increased about 3 °C by an addition of 0.75 wt% SWNTs indicating a strong interfacial interaction between PAN and SWNTs. The tensile strength and the modulus of the nanofibers increased revealing significant load transfer across the nanotube-matrix interface. For PAN nanofibers, the improved fiber alignment, orientation and crystallinity resulted in enhanced mechanical properties, such as the tensile strength and modulus of the nanofibers. It was concluded that the hot-stretched nanofiber and the PAN/SWNTs nanofibers can be used as a potential precursor to produce high-performance nanocomposites.

  15. Web-based material property database system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W. K.; Huh, Y. H.; Moon, H. G. [Korea Research Institute of Standards and Science, Taejon (Korea, Republic of)

    2000-07-01

    This is to describe about power installations established by Korea Research Institute of Standards and Science and about the contents and function of database on creep and fatigue of high temperature resistance steel used in petrolium chemical plant. The database can be searched through commercial web browser and can also be available by plotting the relationship between collection of data at different temperature of material's creep rupture, creep deformation, creep crack growth, low cycle fatigue, high cycle fatigue, and fatigue crack growth and database. (Hong, J. S.)

  16. Thermophysical Properties of Heat Resistant Shielding Material

    International Nuclear Information System (INIS)

    Porter, W.D.

    2004-01-01

    This project was aimed at determining thermal conductivity, specific heat and thermal expansion of a heat resistant shielding material for neutron absorption applications. These data are critical in predicting the structural integrity of the shielding under thermal cycling and mechanical load. The measurements of thermal conductivity and specific heat were conducted in air at five different temperatures (-31 F, 73.4 F, 140 F, 212 F and 302 F). The transient plane source (TPS) method was used in the tests. Thermal expansion tests were conducted using push rod dilatometry over the continuous range from -40 F (-40 C) to 302 F (150 C)

  17. Long term monitoring of mechanical properties of FRP repair materials.

    Science.gov (United States)

    2013-06-01

    Over the years, Fiber Reinforced Polymer (FRP) composites have gained popularity in transportation infrastructure as a material able to restore and increase the capacity of existing concrete elements. Properties such as a high strength to weight rati...

  18. Role of Interfaces in Mechanical Properties of Polycrystalline Materials

    Indian Academy of Sciences (India)

    Role of Interfaces in Mechanical Properties of Polycrystalline Materials. Atul H. Chokshi; Department of Metallurgy; Indian Institute of Science; Bangalore 560 012; E-mail: achokshi@met.iisc.ernet.in.

  19. Spectroscopic properties of rare earths in optical materials

    CERN Document Server

    Parisi, Jürgen; Osgood, R; Warlimont, Hans; Liu, Guokui; Jacquier, Bernard

    2005-01-01

    Aimed at researchers and graduate students, this book provides up-to-date information for understanding electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties include electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions on materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.

  20. MD-portal Materials Database: Effective Materials Property Information Management in Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyeonggeun; Kil, Soyeon; Kwon, Junhyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The collective properties of the nuclear materials are defined as standard industrial codes such as ASME codes. While in service, the materials are aged and degraded, and the initial properties are changed according to the operating environments. These changes are a matter of substantial concern of the operators, regulators, and researchers in nuclear fields. Hence, the material property database considering the degradation is required, and the successful management and use of material property information must be responsive to the continuing changes and increasing complexity in nuclear engineering materials. Recently, the nuclear materials division in the Korea Atomic Energy Research Institute (KAERI) launched a comprehensive portal website for nuclear material information, which is known as the MD-portal. The MD-portal contains various technical documents on the degradation and development of nuclear materials. Additionally, the nuclear materials database (MatDB) is incorporated in it. The MatDB covers the mechanical properties of various nuclear structural materials used as the components: a reactor pressure vessel, steam generator, and primary and secondary piping. In this study, we introduced the MD-portal MatDB briefly, and showed an application of the MatDB to the real case of material degradations in NPPs.

  1. Tensiography instrumentation for measuring liquid material properties

    Energy Technology Data Exchange (ETDEWEB)

    Tiernan, K.; Kennedy, D.; McMillan, N

    2005-05-15

    An on-line process control of liquids represents a very cost effective and economical way of quality testing fluids. The Tensiography equipment incorporated for this quality technique operates on the principle that all liquids have unique properties and characteristics. Using fibre optic technology and electronic control systems, a fingerprint or trace of a liquid can be taken and recorded on file for future reference. With time other batches of the same liquid can be compared to the original and any major discrepancies can be used to signal quality problems. The technique can be applied to lubricants, alcohols, perfumes, and water. This paper discusses the design of such a system, the methods of testing, errors in the signals produced, correction methods, and some industrial applications for quality checking and control.

  2. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  3. Surface properties of copper based cermet materials

    Energy Technology Data Exchange (ETDEWEB)

    Voinea, M. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)], E-mail: m.voinea@unitbv.ro; Vladuta, C.; Bogatu, C.; Duta, A. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)

    2008-08-25

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO{sub x} cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO{sub x} was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components.

  4. Studies of the dynamic properties of materials using neutron scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Windsor, C.G.

    1985-09-01

    The dynamic properties of materials using the neutron scattering technique is reviewed. The basic properties of both nuclear scattering and magnetic scattering are summarized. The experimental methods used in neutron scattering are described, along with access to neutron sources, and neutron inelastic instruments. Applied materials science using inelastic neutron scattering; rotational tunnelling of a methyl group; molecular diffusion from quasi-elastic scattering; and the diffusion of colloidal particles and poly-nuclear complexes; are also briefly discussed. (U.K.)

  5. Liquid Crystalline Semiconductors Materials, properties and applications

    CERN Document Server

    Kelly, Stephen; O'Neill, Mary

    2013-01-01

    This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of t...

  6. Solder joint technology materials, properties, and reliability

    CERN Document Server

    Tu, King-Ning

    2007-01-01

    Solder joints are ubiquitous in electronic consumer products. The European Union has a directive to ban the use of Pb-based solders in these products on July 1st, 2006. There is an urgent need for an increase in the research and development of Pb-free solders in electronic manufacturing. For example, spontaneous Sn whisker growth and electromigration induced failure in solder joints are serious issues. These reliability issues are quite complicated due to the combined effect of electrical, mechanical, chemical, and thermal forces on solder joints. To improve solder joint reliability, the science of solder joint behavior under various driving forces must be understood. In this book, the advanced materials reliability issues related to copper-tin reaction and electromigration in solder joints are emphasized and methods to prevent these reliability problems are discussed.

  7. MIDAS (Material Implementation, Database, and Analysis Source): A comprehensive resource of material properties

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M; Norquist, P; Barton, N; Durrenberger, K; Florando, J; Attia, A

    2010-12-13

    MIDAS is aimed to be an easy-to-use and comprehensive common source for material properties including both experimental data and models and their parameters. At LLNL, we will develop MIDAS to be the central repository for material strength related data and models with the long-term goal to encompass other material properties. MIDAS will allow the users to upload experimental data and updated models, to view and read materials data and references, to manipulate models and their parameters, and to serve as the central location for the application codes to access the continuously growing model source codes. MIDAS contains a suite of interoperable tools and utilizes components already existing at LLNL: MSD (material strength database), MatProp (database of materials properties files), and MSlib (library of material model source codes). MIDAS requires significant development of the computer science framework for the interfaces between different components. We present the current status of MIDAS and its future development in this paper.

  8. Role of Interfaces in Mechanical Properties of Polycrystalline Materials

    Indian Academy of Sciences (India)

    Table of contents. Role of Interfaces in Mechanical Properties of Polycrystalline Materials · Slide 2 · Slide 3 · Slide 4 · Mechanical Properties · Slide 6 · Slide 7 · Commercial Applications · Slide 9 · Slide 10 · Grain Boundary Sliding and Slip · Slide 12 · Slide 13 · Role of Grain Boundaries · Superplasticity in Zirconia · Slide 16.

  9. Large-scale aligned silicon carbonitride nanotube arrays: Synthesis, characterization, and field emission property

    International Nuclear Information System (INIS)

    Liao, L.; Xu, Z.; Liu, K. H.; Wang, W. L.; Liu, S.; Bai, X. D.; Wang, E. G.; Li, J. C.; Liu, C.

    2007-01-01

    Large-scale aligned silicon carbonitride (SiCN) nanotube arrays have been synthesized by microwave-plasma-assisted chemical vapor deposition using SiH 4 , CH 4 , and N 2 as precursors. The three elements of Si, C, and N are chemically bonded with each other and the nanotube composition can be adjusted by varying the SiH 4 concentration, as revealed by electron energy loss spectroscopy and x-ray photoelectron spectroscopy. The evolution of microstructure of the SiCN nanotubes with different Si concentrations was characterized by high-resolution transmission electron microscopy and Raman spectroscopy. The dependence of field emission characteristics of the SiCN nanotubes on the composition has been investigated. With the increasing Si concentration, the SiCN nanotube exhibits more favorable oxidation resistance, which suggests that SiCN nanotube is a promising candidate as stable field emitter

  10. Comparative study of hygrothermal properties of five thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Laure Ducoulombier

    2017-09-01

    Full Text Available The objective of this article is to carry out a comparative study of the main hygrothermal properties of five thermal insulation materials for buildings. These properties are necessary for a correct prediction of heat and moisture transfers through the walls and the selection of the most appropriate materials according to the specific buildings. The studied materials were glass wool, rock wool, expanded polystyrene, wood fiberboard and polyester fiberfill. The article is divided into three parts. The first part presents the phenomena of hygrothermal transfers in walls in order to understand the need for determining specific properties of the insulating materials. The second part describes in details the five studied insulating materials and the methods used for the characterization and identification of their main properties. Finally, the last part presents the experimental results and makes comparisons between materials. The differences between the insulating materials are brought out, such as the strong dependence of the thermal conductivity of polystyrene on temperature, or the good permeability of fibrous insulating materials to water vapor. A detailed analysis of the obtained results is presented.

  11. The design and modeling of periodic materials with novel properties

    Science.gov (United States)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  12. Understanding Materials Science History · Properties · Applications

    CERN Document Server

    Hummel, Rolf E

    2005-01-01

    This introduction to materials science both for students of engineering and physics and for the interested general public examines not only the physical and engineering properties of virtually all kinds of materials, but also their history, uses, development, and some of the implications of resource depletion and recycling. It covers all topics on materials from an entirely novel perspective: the role materials have played throughout history in the development of humankind and technologies. Specifically, it shows the connection between the technical and the cultural, economic, ecological, and societal aspects of materials science. It aims to whet the appetite of its readers and inspire them to further explore the properties and applications of metals, alloys, ceramics, plastics, and electronic materials by presenting easily understandable explanations and entertaining historical facts. It is also intended to raise the reader’s awareness of their obligations to society as practicing engineers and scientists....

  13. SiC/SiC Cladding Materials Properties Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormal operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.

  14. Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material

    Science.gov (United States)

    Ahmed, Bilal; Kumar, Sumeet; Ojha, Animesh K.; Donfack, P.; Materny, A.

    2017-03-01

    In this work, we have performed a facile and controlled synthesis of WO3 nanorods and sheets in different crystal phases (triclinic, orthorhombic and monoclinic) of WO3 using the sol-gel method. The detailed structures of the synthesized materials were examined by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy measurements. The shapes and crystal phases of the WO3 nanostructures were found to be highly dependent on the calcination temperature. The variation in crystalline phases and shapes is modified the electronic structure of the samples, which causes a variation in the value of optical band gap. The value of the Raman line intensity ratio I264/I320 has been successfully used to identify the structural transition from the triclinic to the orthorhombic phase of WO3. The PL spectra of the synthesized products excited at wavelengths 380, 400, and 420 nm exhibit intense emission peaks that cover the complete visible range (blue-green-red). The emission peaks at 460 and 486 nm were caused by the near band-edge and band to band transition, respectively. The peaks in spectral range 500-600 nm might be originated from the presence of oxygen vacancies lying within the energy band gap. The synthesized WO3 nanostructures showed improved photocatalytic activity for the photodegradation of MB dye. The enhanced photocatalytic activity of WO3 nanosheets compared to WO3 nanorods for photodegradation of methylene blue (MB) dye could be due to the shape of the nanostructured WO3. The sheet type of structure provides more active surface for the interaction of dye molecules compared to the rods, which results in a more efficient degradation of the dye molecules.

  15. Impact of carbonation on water transport properties of cementitious materials

    International Nuclear Information System (INIS)

    Auroy, Martin

    2014-01-01

    Carbonation is a very well-known cementitious materials pathology. It is the major cause of reinforced concrete structures degradation. It leads to rebar corrosion and consequent concrete cover cracking. In the framework of radioactive waste management, cement-based materials used as building materials for structures or containers would be simultaneously submitted to drying and atmospheric carbonation. Although scientific literature regarding carbonating is vast, it is clearly lacking information about the influence of carbonation on water transport properties. This work then aimed at studying and understanding the change in water transport properties induced by carbonation. Simultaneously, the representativeness of accelerated carbonation (in the laboratory) was also studied. (author) [fr

  16. Stochasticity in materials structure, properties, and processing—A review

    Science.gov (United States)

    Hull, Robert; Keblinski, Pawel; Lewis, Dan; Maniatty, Antoinette; Meunier, Vincent; Oberai, Assad A.; Picu, Catalin R.; Samuel, Johnson; Shephard, Mark S.; Tomozawa, Minoru; Vashishth, Deepak; Zhang, Shengbai

    2018-03-01

    We review the concept of stochasticity—i.e., unpredictable or uncontrolled fluctuations in structure, chemistry, or kinetic processes—in materials. We first define six broad classes of stochasticity: equilibrium (thermodynamic) fluctuations; structural/compositional fluctuations; kinetic fluctuations; frustration and degeneracy; imprecision in measurements; and stochasticity in modeling and simulation. In this review, we focus on the first four classes that are inherent to materials phenomena. We next develop a mathematical framework for describing materials stochasticity and then show how it can be broadly applied to these four materials-related stochastic classes. In subsequent sections, we describe structural and compositional fluctuations at small length scales that modify material properties and behavior at larger length scales; systems with engineered fluctuations, concentrating primarily on composite materials; systems in which stochasticity is developed through nucleation and kinetic phenomena; and configurations in which constraints in a given system prevent it from attaining its ground state and cause it to attain several, equally likely (degenerate) states. We next describe how stochasticity in these processes results in variations in physical properties and how these variations are then accentuated by—or amplify—stochasticity in processing and manufacturing procedures. In summary, the origins of materials stochasticity, the degree to which it can be predicted and/or controlled, and the possibility of using stochastic descriptions of materials structure, properties, and processing as a new degree of freedom in materials design are described.

  17. Non-woven and aligned electrospun multicomponent luminescent polymer nanofibers: effects of aggregated morphology on the photophysical properties

    International Nuclear Information System (INIS)

    Wang, Cheng-Ting; Kuo, Chi-Ching; Chen, Hsieh-Chih; Chen, Wen-Chang

    2009-01-01

    In this paper, the morphology and photophysical properties of non-woven and aligned ES nanofibers prepared from the ternary blends of poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) / poly(2,3-dibutoxy-1,4-phenylene vinylene) (DB-PPV) / poly(methyl methacrylate) (PMMA) using a single-capillary spinneret are reported. Various PFO and DB-PPV phase-separated structures in the ES nanofibers were found by two different solvents: ellipsoidal DB-PPV (10-40 nm) and fiber-like PFO (20-40 nm) in the PMMA using chloroform, while fiber-like DB-PPV (10-20 nm) and fiber-like PFO (20-30 nm) using chlorobenzene. Such different PFO and DB-PPV structures resulted in various energy transfer/emission colors in the ES nanofibers. Moreover, highly aligned luminescence PFO/DB-PPV/PMMA blend ES nanofibers prepared from chlorobenzene showed a much higher polarized emission than the non-woven and the emission colors changed from blue to greenish-blue to green as the DB-PPV composition increased. The different polarized emission characteristics between PFO and DB-PPV in the ES nanofibers also led to varied emission colors at different angles. The present study suggests the morphologies and emission characteristics of the multicomponent ES nanofibers could be efficiently tuned through solvent types and blend ratios of semiconducting polymers.

  18. Non-woven and aligned electrospun multicomponent luminescent polymer nanofibers: effects of aggregated morphology on the photophysical properties.

    Science.gov (United States)

    Wang, Cheng-Ting; Kuo, Chi-Ching; Chen, Hsieh-Chih; Chen, Wen-Chang

    2009-09-16

    In this paper, the morphology and photophysical properties of non-woven and aligned ES nanofibers prepared from the ternary blends of poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) / poly(2,3-dibutoxy-1,4-phenylene vinylene) (DB-PPV) / poly(methyl methacrylate) (PMMA) using a single-capillary spinneret are reported. Various PFO and DB-PPV phase-separated structures in the ES nanofibers were found by two different solvents: ellipsoidal DB-PPV (10-40 nm) and fiber-like PFO (20-40 nm) in the PMMA using chloroform, while fiber-like DB-PPV (10-20 nm) and fiber-like PFO (20-30 nm) using chlorobenzene. Such different PFO and DB-PPV structures resulted in various energy transfer/emission colors in the ES nanofibers. Moreover, highly aligned luminescence PFO/DB-PPV/PMMA blend ES nanofibers prepared from chlorobenzene showed a much higher polarized emission than the non-woven and the emission colors changed from blue to greenish-blue to green as the DB-PPV composition increased. The different polarized emission characteristics between PFO and DB-PPV in the ES nanofibers also led to varied emission colors at different angles. The present study suggests the morphologies and emission characteristics of the multicomponent ES nanofibers could be efficiently tuned through solvent types and blend ratios of semiconducting polymers.

  19. Tribological properties of silicate materials on nano and microscale

    International Nuclear Information System (INIS)

    Tordjeman, Ph.; Morel, N.; Ramonda, M.

    2009-01-01

    We studied the friction properties of four model silicate materials at the nanoscale and microscale. From nanotribology, we characterized the tribological properties at single asperity contact scale and from microtribology, we characterized the tribological properties at multi asperity contact scale. First, for each material we measured chemical composition by XPS, Young's modulus by acoustical microscopy and roughness σ by atomic force microscopy (AFM). Second, we measured the nanofriction coefficients with an AFM and the microfriction coefficients with a ball probe tribometer, for three hardnesses of the ball probe. We identified one friction mechanism at the nanoscale (sliding friction) and two friction mechanisms at the microscale (sliding friction and yielding friction). Comparison of the nano and microfriction coefficients at the same sliding friction regime shown, that the tribological properties of these materials didn't depend on roughness.

  20. Liquid crystallinity driven highly aligned large graphene oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Kim, Sang Ouk, E-mail: sangouk.kim@kaist.ac.kr [Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)

    2015-04-15

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.

  1. Nuclear materials thermo-physical property database and property analysis using the database

    International Nuclear Information System (INIS)

    Jeong, Yeong Seok

    2002-02-01

    It is necessary that thermo-physical properties and understand of nuclear materials for evaluation and analysis to steady and accident states of commercial and research reactor. In this study, development of nuclear materials thermo-properties database and home page. In application of this database, it is analyzed of thermal conductivity, heat capacity, enthalpy, and linear thermal expansion of fuel and cladding material and compared thermo-properties model in nuclear fuel performance evaluation codes with experimental data in database. Results of compare thermo-property model of UO 2 fuel and cladding major performance evaluation code, both are similar

  2. Effective elastic properties of sintered materials with branched cracks

    Science.gov (United States)

    Fedelinski, Piotr

    2018-01-01

    The aim of work is analysis of sintered materials with branched cracks growing from the voids situated at corners of fibers. The material is modelled as a two-dimensional linear-elastic structure using the boundary element method (BEM). The materials without voids and with voids having different shapes are considered. The influence of lengths of cracks and shapes of voids on stress intensity factors (SIF) and effective elastic properties (the Young modulus and the Poisson ratio) are studied. The overall properties of the sintered materials are determined by considering the representative volume element (RVE) with large number of branched cracks. The sensitivity of effective elastic properties on boundary conditions imposed on the RVE is studied.

  3. Further developments in material properties determined by vibration analysis

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang; Andreasen, Lotte; Seifert, Mette

    1997-01-01

    have been studied by testing a number of building materials. The method has been PC-integrated with the Brüel & Kjær's type 3550 vibration equipment - and special user menus have been developed to facilitate handling of the method in practice. Limits on range of test frequencies applied are discussed...... as theoretical aspects with respect to the handling of mathematics involved to convert vibration signals to material properties. The latter aspects are referred to in this research note where the numerical part of the method described in Materialenyt 1 (1995) is imporved.The reader of this note is assumed......A method was described in Materialnyt 1 (1995) on "Material properties determined by vibration analysis". This new method of materials testing has been further developed as the result of research at the Building Materials Laboratory, Technical University of Denmark.Practical aspects of the method...

  4. A summary of the fatigue properties of wind turbine materials

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Herbert J. [Sandia National Labs., Wind Energy Technology Dept., Albuquerque, NM (United States)

    2000-07-01

    Modern wind turbines are fatigue-critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue-critical structures, e.g. an aeroplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialised to materials typically used in wind turbines. This article reviews the fatigue data that have been developed especially for wind turbines. Major sections are devoted to the properties developed for metals (primarily aluminium), wood and fibreglass. Special emphasis is placed on the fibreglass discussion because this material is currently the material of choice for wind turbine blades. The article focuses on the data developed in the US, but cites European references that provide important insights. (Author)

  5. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    DEFF Research Database (Denmark)

    Warner, Terence Edwin

    -specialists, who are interested in learning more about how technological ceramic materials and artificial minerals are made. Finally, the author assumes that the reader is familiar with the basic principles and concepts of materials chemistry (or at least has access to such knowledge), such as; thermodynamic......The synthesis of high quality material is an essential step in the process of obtaining meaningful information about the material’s properties, and therefore, is an important link between physics and chemistry. Semiconductors; superconductors; solid-electrolytes; glasses; pigments; dielectric......? This book attempts to address this problem by offering the reader clear and detailed descriptions on how to prepare a selection of fifteen inorganic materials that exhibit important optical, magnetic, electrical and thermal properties; on a laboratory scale. The materials and chemical syntheses have been...

  6. Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electrohydrodynamic nanowire template for enhanced gas-sensing properties.

    Science.gov (United States)

    Yin, Zhouping; Wang, Xiaomei; Sun, Fazhe; Tong, Xiaohu; Zhu, Chen; Lv, Qiying; Ye, Dong; Wang, Shuai; Luo, Wei; Huang, YongAn

    2017-09-22

    Gas sensing performance can be improved significantly by the increase in both the effective gas exposure area and the surface reactivitiy of ZnO nanorods. Here, we propose aligned hierarchical Ag/ZnO nano-heterostructure arrays (h-Ag/ZnO-NAs) via electrohydrodynamic nanowire template, together with a subsequent hydrothermal synthesis and photoreduction reaction. The h-Ag/ZnO-NAs scatter at top for higher specific surface areas with the air, simultaneously contact at root for the electrical conduction. Besides, the ZnO nanorods are uniformly coated with dispersed Ag nanoparticles, resulting in a tremendous enhancement of the surface reactivity. Compared with pure ZnO, such h-Ag/ZnO-NAs exhibit lower electrical resistance and faster responses. Moreover, they demonstrate enhanced NO 2 gas sensing properties. Self-assembly via electrohydrodynamic nanowire template paves a new way for the preparation of high performance gas sensors.

  7. Properties of Extruded PS-212 Type Self-Lubricating Materials

    Science.gov (United States)

    Waters, W. J.; Sliney, H. E.; Soltis, R. F.

    1993-01-01

    Research has been underway at the NASA Lewis Research Center since the 1960's to develop high temperature, self-lubricating materials. The bulk of the research has been done in-house by a team of researchers from the Materials Division. A series of self-lubricating solid material systems has been developed over the years. One of the most promising is the composite material system referred to as PS-212 or PM-212. This material is a powder metallurgy product composed of metal bonded chromium carbide and two solid lubricating materials known to be self-lubricating over a wide temperature range. NASA feels this material has a wide potential in industrial applications. Simplified processing of this material would enhance its commercial potential. Processing changes have the potential to reduce processing costs, but tribological and physical properties must not be adversely affected. Extrusion processing has been employed in this investigation as a consolidation process for PM-212/PS-212. It has been successful in that high density bars of EX-212 (extruded PM-212) can readily be fabricated. Friction and strength data indicate these properties have been maintained or improved over the P.M. version. A range of extrusion temperatures have been investigated and tensile, friction, wear, and microstructural data have been obtained. Results indicate extrusion temperatures are not critical from a densification standpoint, but other properties are temperature dependent.

  8. Properties of structural materials in liquid metal environment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Borgstedt, H.U. [ed.

    1991-12-15

    The International Working Group on Fast Reactors (IWGFR) Specialists Meeting on Properties of Structural Materials in Liquid Metal Environment was held during June 18 to June 20, 1991, at the Nuclear Research Centre (Kernforschungszentrum) in Karlsruhe, Germany. The Specialists Meeting was divided into five technical sessions which addressed topics as follows: Creep-Rupture Behaviour of Structural Materials in Liquid Metal Environment; Behaviour of Materials in Liquid Metal Environments under Off-Normal Conditions;Fatigue and Creep-Fatigue of Structural Materials in Liquid Metal Environment; Crack Propagation in Liquid Sodium; and Conclusions and recommendations. Individual papers have been cataloged separately.

  9. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  10. Thermophysical properties of materials for water cooled reactors

    International Nuclear Information System (INIS)

    1997-06-01

    The IAEA Co-ordinated Research Programme (CRP) to establish a thermophysical properties data base for light and heavy water reactor materials was organized within the framework of the IAEA's International Working Group on Advanced Technologies for Water Cooled Reactors. The work within the CRP started in 1990. The objective of the CRP was to collect and systemaize a thermophysical properties data base for light and heavy water reactor materials under normal operating, transient and accident conditions. The important thermophysical properties include thermal conductivity, thermal diffusivity, specific heat capacity, enthalpy, thermal expansion and others. These properties as well as the oxidation of zirconium-based alloys, the thermophysical characteristics of high temperature concrete-core melt interaction and the mechanical properties of construction materials are presented in this report. It is hoped that this report will serve as a useful source of thermophysical properties data for water cooled reactor analyses. The properties data are maintained on the THERSYST system at the University of Stuttgart, Germany and are internationally available. Refs, figs, tabs

  11. Elastic properties of synthetic materials for soft tissue modeling

    International Nuclear Information System (INIS)

    Mansy, H A; Grahe, J R; Sandler, R H

    2008-01-01

    Mechanical models of soft tissue are useful for studying vibro-acoustic phenomena. They may be used for validating mathematical models and for testing new equipment and techniques. The objective of this study was to measure density and visco-elastic properties of synthetic materials that can be used to build such models. Samples of nine different materials were tested under dynamic (0.5 Hz) compressive loading conditions. The modulus of elasticity of the materials was varied, whenever possible, by adding a softener during manufacturing. The modulus was measured over a nine month period to quantify the effect of ageing and softener loss on material properties. Results showed that a wide range of the compression elasticity modulus (10 to 1400 kPa) and phase (3.5 0 -16.7 0 ) between stress and strain were possible. Some materials tended to exude softener over time, resulting in a weight loss and elastic properties change. While the weight loss under normal conditions was minimal in all materials (<3% over nine months), loss under accelerated weight-loss conditions can reach 59%. In the latter case an elasticity modulus increase of up to 500% was measured. Key advantages and limitations of candidate materials were identified and discussed

  12. Control over magnetic properties in bulk hybrid materials

    Science.gov (United States)

    Urban, Christian; Quesada, Adrian; Saerbeck, Thomas; Rubia, Miguel Angel De La; Garcia, Miguel Angel; Fernandez, Jose Francisco; Schuller, Ivan K.; UCSD Collaboration; Instituto de Ceramica, Madrid Collaboration; Institut Laue-Langevin, Grenoble Collaboration

    We present control of coercivity and remanent magnetization of a bulk ferromagnetic material embedded in bulk vanadium sesquioxide (V2O3) by using a standard bulk synthesis procedure. The method generalizes the use of structural phase transitions of one material to control structural and magnetic properties of another. A structural phase transition (SPT) in the V2O3 host material causes magnetic properties of Ni to change as function of temperature. The remanent magnetization and the coercivity are reversibly controlled by the SPT without additional external magnetic fields. The reversible tuning shown here opens the pathway for controlling the properties of a vast variety of magnetic hybrid bulk systems. This Work is supported by the Office of Basic Energy Science, U.S. Department of Energy, BES-DMS funded by the Department of Energy's Office of Basic Energy Science, DMR under grant DE FG02 87ER-45332.

  13. Ternary gypsum-based materials: Composition, properties and utilization

    Science.gov (United States)

    Doleželová, M.; Svora, P.; Vimmrová, A.

    2017-10-01

    In spite of the fact that gypsum is one of the most environmentally friendly binders, utilization of gypsum products is relatively narrow. The main problem of gypsum materials is their low resistance to the wet environment and radical decrease of mechanical properties with increasing moisture. The solution of the problem could be in use of composed gypsum-based binders, usually ternary, comprising gypsum, pozzolan and alkali activator of pozzolan reaction. These materials have a better moisture resistance and often also better mechanical properties. Paper provides literature survey of the possible compositions, properties and ways of utilization of the composed gypsum-based binders with latent hydraulic and pozzolan materials together with some results of present research performed by authors.

  14. Bone strength and material properties of the glenoid

    DEFF Research Database (Denmark)

    Frich, Lars Henrik; Jensen, N.C.; Odgaard, A.

    1997-01-01

    of the cortical bone to the total glenoid strength was assessed by compression tests of pristine and cancellous-free glenoid specimens. Strength decreased by an average of 31% after the cancellous bone was removed. The material properties of the glenoid cancellous bone were determined by axial compression tests......The quality of the glenoid bone is important to a successful total shoulder replacement. Finite element models have been used to model the response of the glenoid bone to an implanted prosthesis. Because very little is known about the bone strength and the material properties at the glenoid......, these models were all based on assumptions that the material properties of the glenoid were similar to those of the tibial plateau. The osteopenetrometer was used to assess the topographic strength distribution at the glenoid. Strength at the proximal subchondral level of the glenoid averaged 66.9 MPa. Higher...

  15. Atomistic methodologies for material properties of 2D materials at the nanoscale

    Science.gov (United States)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our

  16. Micro-mechanical properties of bio-materials

    Science.gov (United States)

    Zakiev, V.; Markovsky, A.; Aznakayev, E.; Zakiev, I.; Gursky, E.

    2005-09-01

    Investigation of physical-mechanical characteristics of stomatologic materials (ceramics for crowns, silver amalgam, cements and materials on a polymeric basis) properties by the modern methods and correspondence their physical-mechanical properties to the physical-mechanical properties of native teeth is represented. The universal device "Micron-Gamma" is built for this purpose. This device allows investigate the physical-mechanical characteristics of stomatologic materials (an elastic modulus, micro-hardness, destruction energy, resistance to scratching) by the methods of continuous indentation, scanning and pricking. A new effective method as well as its device application for the investigation of surface layers of materials and their physical-mechanical properties by means of the constant indenting of an indenter is realized. This method is based on the automatic registration of loading (P) on the indenter with the simultaneous measurement of its indentation depth (h). The results of investigations are presented on a loading diagram P=f(h) and as a digital imaging on the PC. This diagram allows get not only more diverse characteristics in the real time regime but also gives new information about the stomatologic material properties. Therefore, we can to investigate the wide range of the physical-mechanical properties of stomatologic materials. "Micron-alpha" is digital detection device for light imaging applications. It enables to detect the very low material surface relief heights and restoration of surface micro topography by a sequence data processing of interferential data of partially coherent light also. "Micron-alpha" allows: to build 2D and 3D imaging of a material surface; to estimate the quantitatively characteristics of a material surface; to observe the imaging interferential pictures both in the white and in the monochromatic light; to carry out the investigation of blood cells, microbes and biological macromolecules profiles. The method allows

  17. From Tomography to Material Properties of Thermal Protection Systems

    Science.gov (United States)

    Mansour, Nagi N.; Panerai, Francesco; Ferguson, Joseph C.; Borner, Arnaud; Barnhardt, Michael; Wright, Michael

    2017-01-01

    A NASA Ames Research Center (ARC) effort, under the Entry Systems Modeling (ESM) project, aims at developing micro-tomography (micro-CT) experiments and simulations for studying materials used in hypersonic entry systems. X-ray micro-tomography allows for non-destructive 3D imaging of a materials micro-structure at the sub-micron scale, providing fiber-scale representations of porous thermal protection systems (TPS) materials. The technique has also allowed for In-situ experiments that can resolve response phenomena under realistic environmental conditions such as high temperature, mechanical loads, and oxidizing atmospheres. Simulation tools have been developed at the NASA Ames Research Center to determine material properties and material response from the high-fidelity tomographic representations of the porous materials with the goal of informing macroscopic TPS response models and guiding future TPS design.

  18. Physicomechanical properties of porous fiber materials and prediction of them

    International Nuclear Information System (INIS)

    Kostornov, A.G.; Galstyan, L.G.

    1985-01-01

    A comparison is presented of the experimentally determined values of certain properties of porous fiber materials obtained by the optimum method from monodisperse fibers of copper, nickel, and Nichrome of different diameters with the corresponding theoretical values. The electrical conductivity, tensile strength, and modulus of elasticity, the basic properties of a porous body, which are determined both by the structural characteristics of the elements and by the condition of the interparticle contacts, were considered

  19. The Representation and Exchange of Material and Other Engineering Properties

    OpenAIRE

    Swindells, Norman

    2009-01-01

    The representation of information and its exchange in a communication requires the use of a common information model to define the semantics and syntax of the representation and a common dictionary to define the meaning of the data items. These fundamental concepts are the basis of the new standard ISO 10303-235: 'Engineering properties for product design and verification' for the computer representation and exchange of material and any other engineering properties of a product and to provide...

  20. Handbook on dielectric and thermal properties of microwaveable materials

    CERN Document Server

    Komarov, Vyacheslav V

    2012-01-01

    The application of microwave energy for thermal processing of different materials and substances is a rapidly growing trend in modern science and engineering. In fact, optimal design work involving microwaves is impossible without solid knowledge of the properties of these materials. Here s a practical reference that collects essential data on the dielectric and thermal properties of microwaveable materials, saving you countless hours on projects in a wide range of areas, including microwave design and heating, applied electrodynamics, food science, and medical technology. This unique book provides hard-to-find information on complex dielectric permittivity of media at industrial, scientific, and medical frequencies (430 MHz, 915MHz, 2.45GHz, 5.8 GHz, and 24.125GHz). Written by a leading expert in the field, this authoritative book does an exceptional job at presenting critical data on various materials and explaining what their key characteristics are concerning microwaves.

  1. Fabrication, properties, and tritium recovery from solid breeder materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.E. (Argonne National Lab., IL (USA)); Kondo, T. (Japan Atomic Energy Research Inst., Tokyo (Japan)); Roux, N. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Tanaka, S. (Tokyo Univ. (Japan)); Vollath, D. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.))

    1991-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Experimental Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 133 refs., 1 fig.

  2. INVESTIGATION OF TRIBOLOGICAL PROPERTIES CuSn10 BEARING MATERIAL

    Directory of Open Access Journals (Sweden)

    Bekir Sadık ÜNLÜ

    2005-01-01

    Full Text Available Bronzes which copper based alloys is widely used because of properties physical, thermal and tribological as journal bearing material. This material that has tribological performance good conclusions gives at journal bearings. In this study, CuSn10 bronze that were manufactured journal bearings friction and wear properties has been examined and compared. SAE 1050 steel shaft has been used as counter abrader. Experiments have been carried out 10 N and 20 N loads, 750 and 1500 rpm, dry and lubricated conditions by using radial journal bearing wear test rig. As a results, high friction coefficient and weigh loss have been obtained at dry condition more than lubricated condition.

  3. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    CERN Document Server

    Warner, Terence E

    2010-01-01

    Intended as a textbook for courses involving preparative solid-state chemistry, this book offers clear and detailed descriptions on how to prepare a selection of inorganic materials that exhibit important optical, magnetic and electrical properties, on a laboratory scale. The text covers a wide range of preparative methods and can be read as separate, independent chapters or as a unified coherent body of work. Discussions of various chemical systems reveal how the properties of a material can often be influenced by modifications to the preparative procedure, and vice versa. References to miner

  4. Materials used to simulate physical properties of human skin.

    Science.gov (United States)

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Overview of European Community (Activity 3) work on materials properties of fast reactor structural materials

    International Nuclear Information System (INIS)

    Wood, D.S.

    The Fast Reactor Coordinating Committee set up in 1974 the Working Group Codes and Standards, and organized its work into four main activities: Manufacturing standards, Structural analysis, Materials and Classification of components. The main purpose of materials activity is to compare and contrast existing national specifications and associated properties relevant to structural materials in fast reactors. Funds are available on a yearly basis for tasks to be carried out through Study Contracts. At present about four Study Contract Reports are prepared each year

  6. Synthesis and optimization of the magnetic properties of aligned strontium ferrite nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Fatemeh, E-mail: F.Ebrahimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Bakhshi, Saeed Reza [Department of Materials Engineering, Malek Ashtar University of Technology, Shahin shahr (Iran, Islamic Republic of); Ashrafizadeh, Fakhreddin [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Ghasemi, Ali, E-mail: parastoo_phys@yahoo.com [Department of Materials Engineering, Malek Ashtar University of Technology, Shahin shahr (Iran, Islamic Republic of)

    2016-04-15

    Highlights: • Dip coating method was used to synthesize strontium ferrite nanowires in template. • Size of nanowires was controlled via anodization parameters. • Fe/Sr ratio was optimized in precursor. • Magnetic properties of nanowires and nanopowders were compared. - Abstract: High aspect ratio strontium hexaferrite nanowires were fabricated by dip coating in alumina template. Fe/Sr ratio was changed from 10 to 12 in precursor, and the samples were annealed at a range of temperatures 500–900 °C in order to optimize the magnetic properties of strontium ferrite in the form of nanowires. Field emission scanning electron microscope (FESEM) proved the formation of nanowires in the templates, while TEM images revealed a high degree of crystallinity. The ferrites were further characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectrometer (EDS). Magnetic properties of the specimens were studied by a SQUID at 10–300 K. The results showed that the coercivity of packed density nanowires in the template was much less than that of the nanopowders. On the other hand, the coercivity of nanowires at ambient temperature was less than low temperature coercivity.

  7. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization.

    Science.gov (United States)

    Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin; Chen, Qing

    2018-03-23

    Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced.

  8. The synthesis and properties of nanoscale ionic materials

    KAUST Repository

    Rodriguez, Robert Salgado

    2010-02-17

    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached to the core, and an oppositely charged canopy. The hybrid nature of NIMs allows for their properties to be engineered by selectively varying their components. The unique properties associated with these systems can help overcome some of the issues facing the implementation of nanohybrids to various commercial applications, including carbon dioxide capture,water desalinization and as lubricants. Copyright © 2010 John Wiley & Sons, Ltd.

  9. The Representation and Exchange of Material and Other Engineering Properties

    Directory of Open Access Journals (Sweden)

    Norman Swindells

    2009-09-01

    Full Text Available The representation of information and its exchange in a communication requires the use of a common information model to define the semantics and syntax of the representation and a common dictionary to define the meaning of the data items. These fundamental concepts are the basis of the new standard ISO 10303-235: 'Engineering properties for product design and verification' for the computer representation and exchange of material and any other engineering properties of a product and to provide an audit trail for the derivation of the property value. A related dictionary conforming to ISO 13584 can define testing methods and their properties and enable the information model to be used for any property of any product.

  10. Ultra-violet Sensing Characteristic and Field Emission Properties of Vertically Aligned Aluminum Doped Zinc Oxide Nanorod Arrays

    Science.gov (United States)

    Mamat, M. H.; Khusaimi, Z.; Malek, M. F.; Musa, M. Z.; Rusop, M.

    2011-05-01

    Ultra-violet (UV) sensing behavior and field emission characteristic have been investigated on vertically aligned aluminum (Al) doped zinc oxide (ZnO) nanorod arrays prepared using sol-gel immersion method. Uniform and high coverage density of ZnO nanorod arrays have been succesfully deposited on seeded-catalyst coated substrates. The synthesized nanorods have diameter sizes between 50 nm to 150 nm. The XRD spectra show Al doped ZnO nanorod array has high crystallinity properties with the dominancy of crystal growth along (002) plane or c-axis. UV photoresponse measurement indicates that Al doped ZnO nanorod array sensitively detects UV light as shown by conductance increment after UV illumination exposure. The nanorod array shows good field emission properties with low turn on field and threshold field at 2.1 V/μm and 5.6 V/μm, respectively. The result suggested that Al doped ZnO nanorod arrays prepared by low-cost sol-gel immersion method show promising result towards fabrication of multi applications especially in UV photoconductive sensor and field emission displays.

  11. Sorption-desorption properties of saponite-containing material

    Science.gov (United States)

    Morozova, M. V.; Frolova, M. A.; Makhova, T. A.

    2017-11-01

    The sorption mechanism of the mineral additive showed that self-saturation of the saponite-containing material with water vapors has a long-term nature (12 days). The nature of desorption differs from adsorption isotherm, i.e. the adsorption/desorption hysteresis is observed. Saponite-containing material samples studied after moisture desorption using infrared spectroscopy demonstrated that chemical compounds in the material have the ability to form calcium silicate hydrates when saturated with water. This fact along with the additive capability to control the water-cement ratio during concrete curing contributes to significantly better physical and chemical properties (strength, frost resistance) of the concrete composite.

  12. Characterization of mouthguard materials: thermal properties of commercialized products.

    Science.gov (United States)

    Gould, Trenton E; Piland, Scott G; Shin, Junghwan; McNair, Olivia; Hoyle, Charles E; Nazarenko, Sergei

    2009-12-01

    Several mechanisms have been purported to describe how mouthguards protect the orofacial complex against injury. As the properties needed for these mechanisms to be effective are temperature and frequency dependent, the specific aim of this study was to provide a comprehensive thermal characterization of commercial mouthguard materials. Five commercially representative thermoplastic mouthguard materials (Essix Resin, Erkoflex, Proform-regular, Proform-laminate, and Polyshok) were tested. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) techniques were implemented to measure thermal transitions and mechanical properties. Measurements were conducted three times per sample. One-way ANOVA and one-sample t-tests were used to test for differences between commercial products on selected mean thermal property values. The DSC measurements indicated no differences between commercial materials for mean glass transition (p=0.053), onset melt (p=0.973), or peak melt (p=0.436) temperatures. Likewise, DMA measurements revealed no differences between commercial materials for the mean glass transition (p=0.093), storage modulus (p=0.257), or loss modulus (p=0.172) properties, respectively. The one-sample t-tests revealed that glass transition temperatures were different from intra-oral temperature (psensitive to repetitive heating and cooling cycles, prolonged thermal treatment, and have glass transitions well below their end-use intra-oral temperature. As such, these materials are functioning as elastomers and not optimal mechanical damping materials. Dental clinicians, healthcare practitioners, or end-users should be aware that these materials are at best problematic with respect to this protective mechanism.

  13. Thermal properties of hemp fibre non-woven materials

    Science.gov (United States)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-12-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies - thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used - Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised.

  14. Thermal properties of hemp fibre non-woven materials

    International Nuclear Information System (INIS)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-01-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies – thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used – Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised

  15. Estimating the Material Properties of Fabric from Video (Open Access)

    Science.gov (United States)

    2014-03-03

    under var - ious unknown wind forces, and recover two key material properties of the fabric: stiffness and area weight. We ex- tend features previously...Portilla and E. P. Simoncelli. A parametric texture model based on joint statistics of complex wavelet coefficients. IJCV, 2000. 5, 6 [13] C. Schuldt

  16. Adjustment of Part Properties for an Elastomeric Laser Sintering Material

    Science.gov (United States)

    Wegner, A.; Ünlü, T.

    2018-03-01

    Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.

  17. Realization of prediction of materials properties by ab initio ...

    Indian Academy of Sciences (India)

    Ab initio treatment is becoming realistic to predict physical, chemical, and even mechanical properties of academically and industrially interesting materials. There is, however, some limitation in size and time of the system up to the order of several hundred atoms and ∼ 1 pico second, even if we use the fastest ...

  18. Microstructure and mechanical properties of SiC materials

    International Nuclear Information System (INIS)

    Yarahmadi, M.

    1985-01-01

    The effect of the microstructure on the mechanical properties of SiC materials of different chemical composition (SSiC, SiSiC, and RSiC) was investigated. Furthermore, the creep strength was determined on oxidized samples and on non-pretreated samples. (HSCH)

  19. Low temperature radiative properties of materials used in cryogenics

    Czech Academy of Sciences Publication Activity Database

    Musilová, Věra; Hanzelka, Pavel; Králík, Tomáš; Srnka, Aleš

    2005-01-01

    Roč. 45, č. 8 (2005), s. 529-536 ISSN 0011-2275 R&D Projects: GA AV ČR(CZ) IBS2065109 Keywords : structural materials * radiant properties * cryostats Subject RIV: BJ - Thermodynamics Impact factor: 0.762, year: 2005

  20. Mechanics of advanced materials analysis of properties and performance

    CERN Document Server

    Matveenko, Valery

    2015-01-01

    The last decades have seen a large extension of types of materials employed in various applications. In many cases these materials demonstrate mechanical properties and performance that vary significantly from those of their traditional counterparts. Such uniqueness is sought – or even specially manufactured – to meet increased requirements on modern components and structures related to their specific use. As a result, mechanical behaviors of these materials under different loading and environmental conditions are outside the boundaries of traditional mechanics of materials, presupposing development of new characterization techniques, theoretical descriptions and numerical tools. The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc.

  1. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    on the electron and phonon transport was analyzed and discussed in detail. In order to solve the problems of high thermal conductivity without the deterioration of electrical conductivity by nanostructuring for conventional ZnO materials, the doped ZnCdO material was proposed as a new n-type oxide thermoelectric...... material. The material is sintered in air in order to maintain the oxygen stoichiometry and avoid the stability issues. The successful alloying of CdO with ZnO at a molar ratio of 1:9 resulted in a significant reduction of thermal conductivity up to 7-fold at room temperature. By careful selection......O. Following that, the nanostructuring effect for Al-doped ZnO was systematically investigated using samples with different microstructure morphologies. At last, the newly developed ZnCdO materials with superior thermoelectric properties and thermal stability were introduced as promising substitutions...

  2. How to determine composite material properties using numerical homogenization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe

    2014-01-01

    Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how...... the basic code, which computes the effective elasticity tensor of a two material composite, where one material could be void, is easily extended to include more materials. Furthermore, extensions to homogenization of conductivity, thermal expansion, and fluid permeability are described in detail. The unit...... cell of the periodic material can take the shape of a square, rectangle, or parallelogram, allowing for all kinds of 2D periodicities. © 2013 Elsevier B.V. All rights reserved....

  3. Longitudinal ultrasonic velocity as a predictor of material properties of porous materials

    International Nuclear Information System (INIS)

    Panakkal, J.P.

    1996-01-01

    Nondestructive evaluation/characterization of porous materials using ultrasonic velocity is demonstrated taking examples from various types of materials-structural, nuclear, clay and other ceramics and powder metallurgy compacts. A general relationship between sintered density and longitudinal ultrasonic velocity is established for porous materials. A good correlation has been obtained between elastic moduli and ultrasonic velocity. The values are compared with various theories of ultrasound propagation in materials. It has also been shown ultrasonic velocity is a useful tool for monitoring fabrication parameters, tensile strength and thermal conductivity of porous materials. This paper demonstrates that measurement of a single parameter i.e. ultrasonic velocity is useful as a predictor of diverse material properties of porous materials. (author)

  4. Estimation technique on thermal properties data of reactor materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1998-01-01

    This study aims at rapid measurement of thermal properties (thermal conductivity, thermal diffusivity, specific heat capacity, and emissivity) with the highest precision and till ultra high temperature in the world under identifying high temperature materials expected at reactor engineering in future such as plasma facing materials of nuclear fusion reactor. It was conducted by setting some sub-theme such as highly precise measurement and characterization of thermal properties, estimation technique of their data. Thus, precise measurement on specific heat capacity of meso-phase graphite was conducted. Between those at 1000degC and 3000degC a difference of about 5% was observed. As a result, it was found that it was required for highly precise estimation of thermal property data to consider value of the specific heat capacity. (G.K.)

  5. Defect-related luminescent materials: synthesis, emission properties and applications.

    Science.gov (United States)

    Zhang, Cuimiao; Lin, Jun

    2012-12-07

    Luminescent materials have found a wide variety of applications, including information displays, lighting, X-ray intensification and scintillation, and so on. Therefore, much effort has been devoted to exploring novel luminescent materials so far. In the past decade, defect-related luminescent materials have inspired intensive research efforts in their own right. This kind of luminescent material can be basically classified into silica-based materials, phosphate systems, metal oxides, BCNO phosphors, and carbon-based materials. These materials combine several favourable attributes of traditional commercially available phosphors, which are stable, efficient, and less toxic, being free of the burdens of intrinsic toxicity or elemental scarcity and the need for stringent, intricate, tedious, costly, or inefficient preparation steps. Defect-related luminescent materials can be produced inexpensively and on a large scale by many approaches, such as sol-gel process, hydro(solvo)thermal reaction, hydrolysis methods, and electrochemical methods. This review article highlights the recent advances in the chemical synthesis and luminescent properties of the defect-related materials, together with their control and tuning, and emission mechanisms (solid state physics). We also speculate on their future and discuss potential developments for their applications in lighting and biomedical fields.

  6. Identification of material properties of sandwich structure with piezoelectric patches

    Directory of Open Access Journals (Sweden)

    Zemčík R.

    2008-11-01

    Full Text Available The work focuses on light-weight sandwich structures made of carbon-epoxy skins and foam core which have unique bending stiffness compared to conventional materials. The skins are manufactured by vacuum autoclave technology from unidirectional prepregs and the sandwich is then glued together. The resulting material properties of the structure usually differ from those provided by manufacturer or even those obtained from experimental tests on separate materials, which makes computational models unreliable. Therefore, the properties are identified using the combination of experimental analysis of the sandwich with attached piezoelectric transducer and corresponding static and modal finite element analyses. Simple mathematical optimization with repetitive finite element solution is used. The model is then verified by transient analysis when the piezoelectric patch is excited by harmonic signals covering the first two eigen-frequencies and the induced oscillations are measured by laser sensor.

  7. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  8. Material Properties Analysis of Structural Members in Pumpkin Balloons

    Science.gov (United States)

    Sterling, W. J.

    2003-01-01

    The efficient design, service-life qualification, and reliability predictions for lightweight aerospace structures require careful mechanical properties analysis of candidate structural materials. The demand for high-quality laboratory data is particularly acute when the candidate material or the structural design has little history. The pumpkin-shaped super-pressure balloon presents both challenges. Its design utilizes load members (tendons) extending from apex to base around the gas envelope to achieve a lightweight structure. The candidate tendon material is highly weight-efficient braided HM cord. Previous mechanical properties studies of Zylon have focused on fiber and yarn, and industrial use of the material in tensile applications is limited. For high-performance polymers, a carefully plamed and executed properties analysis scheme is required to ensure the data are relevant to the desired application. Because no directly-applicable testing standard was available, a protocol was developed based on guidelines fiom professional and industry organizations. Due to the liquid-crystalline nature of the polymer, the cord is very stiff, creeps very little, and does not yield. Therefore, the key material property for this application is the breaking strength. The pretension load and gauge length were found to have negligible effect on the measured breaking strength over the ranges investigated. Strain rate was found to have no effect on breaking strength, within the range of rates suggested by the standards organizations. However, at the lower rate more similar to ULDB operations, the strength was reduced. The breaking strength increased when the experiment temperature was decreased from ambient to 183K which is the lowest temperature ULDB is expected to experience. The measured strength under all test conditions was well below that resulting from direct scale-up of fiber strength based on the manufacturers data. This expected result is due to the effects of the

  9. Mechanical properties of polymer-infiltrated-ceramic-network materials.

    Science.gov (United States)

    Coldea, Andrea; Swain, Michael V; Thiel, Norbert

    2013-04-01

    To determine and identify correlations between flexural strength, strain at failure, elastic modulus and hardness versus ceramic network densities of a range of novel polymer-infiltrated-ceramic-network (PICN) materials. Four ceramic network densities ranging from 59% to 72% of theoretical density, resin infiltrated PICN as well as pure polymer and dense ceramic cross-sections were subjected to Vickers Indentations (HV 5) for hardness evaluation. The flexural strength and elastic modulus were measured using three-point-bending. The fracture response of PICNs was determined for cracks induced by Vickers-indentation. Optical and scanning electron microscopy (SEM) was employed to observe the indented areas. Depending on the density of the porous ceramic the flexural strength of PICNs ranged from 131 to 160MPa, the hardness values ranged between 1.05 and 2.10GPa and the elastic modulus between 16.4 and 28.1GPa. SEM observations of the indentation induced cracks indicate that the polymer network causes greater crack deflection than the dense ceramic material. The results were compared with simple analytical expressions for property variation of two phase composite materials. This study points out the correlation between ceramic network density, elastic modulus and hardness of PICNs. These materials are considered to more closely imitate natural tooth properties compared with existing dental restorative materials. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  10. Innovativeness as an emergent property: a new alignment of comparative and experimental research on animal innovation

    Science.gov (United States)

    Griffin, Andrea S.

    2016-01-01

    Innovation and creativity are key defining features of human societies. As we face the global challenges of the twenty-first century, they are also facets upon which we must become increasingly reliant. But what makes Homo sapiens so innovative and where does our high innovation propensity come from? Comparative research on innovativeness in non-human animals allows us to peer back through evolutionary time and investigate the ecological factors that drove the evolution of innovativeness, whereas experimental research identifies and manipulates underpinning creative processes. In commenting on the present theme issue, I highlight the controversies that have typified this research field and show how a paradigmatic shift in our thinking about innovativeness will contribute to resolving these tensions. In the past decade, innovativeness has been considered by many as a trait, a direct product of cognition, and a direct target of selection. The evidence I review here suggests that innovativeness will be hereon viewed as one component, or even an emergent property of a larger array of traits, which have evolved to deal with environmental variation. I illustrate how research should capitalize on taxonomic diversity to unravel the full range of psychological processes that underpin innovativeness in non-human animals. PMID:26926287

  11. Innovativeness as an emergent property: a new alignment of comparative and experimental research on animal innovation.

    Science.gov (United States)

    Griffin, Andrea S

    2016-03-19

    Innovation and creativity are key defining features of human societies. As we face the global challenges of the twenty-first century, they are also facets upon which we must become increasingly reliant. But what makes Homo sapiens so innovative and where does our high innovation propensity come from? Comparative research on innovativeness in non-human animals allows us to peer back through evolutionary time and investigate the ecological factors that drove the evolution of innovativeness, whereas experimental research identifies and manipulates underpinning creative processes. In commenting on the present theme issue, I highlight the controversies that have typified this research field and show how a paradigmatic shift in our thinking about innovativeness will contribute to resolving these tensions. In the past decade, innovativeness has been considered by many as a trait, a direct product of cognition, and a direct target of selection. The evidence I review here suggests that innovativeness will be hereon viewed as one component, or even an emergent property of a larger array of traits, which have evolved to deal with environmental variation. I illustrate how research should capitalize on taxonomic diversity to unravel the full range of psychological processes that underpin innovativeness in non-human animals. © 2016 The Author(s).

  12. Material Properties of High-Speed Steel Rolls

    Directory of Open Access Journals (Sweden)

    Shaohua Wu

    2017-03-01

    Full Text Available Recently, it has been required to improve the material properties of high-speed steel (HSS rolls, because of the low wear resistance and low mechanical properties. To improve them, several new steels have been proposed, which have high wear resistance as well as excellent mechanical properties, e.g., hardness and tensile properties, where additional elements (V, Cr and W were employed. However, their steels may have still technical issues, as the roll surfaces become roughened during the production process. The reason for this problem is found to be affected by the oxidation of the HSS surface. In this work, we have provided the suggestions to make high wear resistance of the HSS rolls

  13. Hypervelocity penetration against mechanical properties of target materials

    Science.gov (United States)

    Ariffin, M. M.; Roslan, M. H.; Ishak, M. T.; Hamid, M. H. A.; Katim, N. I. A.; Hashim, F. R.; Razali, S.

    2018-02-01

    Sustainable development is growing importance issues nowadays and requires the consideration of environmental criteria to develop of all new materials and equipment. A better balance must be found in properties of oils so that the impact on the environment can be minimized. In transformers, a stable liquid, inert, with good electrical and thermal properties is necessary and the liquid must be non-toxic to environment and readily biodegradable. The objective of this research is to make a comparative study of different vegetable oils: palm oil, corn oil, rice bran oil and analyze the dielectric properties such as relative permittivity, dielectric constant and resistivity with variation temperature 30°C-90°C and breakdown voltage with different ageing time 30 days, 90 days and 180 days. The dielectric properties data of the vegetable oils are compared with the transformer oil (mineral oil) and appropriate causes for similarities and different have been discussed.

  14. Microstructure characterization and magnetic properties of nano structured materials

    International Nuclear Information System (INIS)

    Sun, X.C.

    2000-01-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe 78 Si 9 B 13 ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy (Eds.); selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  15. Microstructure characterization and magnetic properties of nano structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.C

    2000-07-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe{sub 78}Si{sub 9}B{sub 13} ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy [eds.]; selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  16. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    International Nuclear Information System (INIS)

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-01-01

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grüneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  17. Study of chemical and physical properties of synthetic carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaloc, M.; Lesko, J.; Martineg, P.; Rojak, A.; Roubicek, V.; Weiss, Z.

    1980-01-01

    Results are presented of studying the chemical and physical properties of 17 samples of synthetic carbonaceous materials (''carbons'') of different origin and with different degree of thermal treatment, and for comparison two samples of natural graphite were tested. For all the samples an analysis was made of the element composition and they were studied by the methods DTA, TGA, IR-spectrometry, x-ray analysis and electron screen microscopy. The studies indicated that proper combination of these methods can provide a high quality evaluation of the initial materials and the processes of their processing, and also the attained carbonaceous materials from the viewpoint of using them in the modern sectors of technology: electrical metallurgy, electrical chemistry and electrothermal production, nuclear technology, production of semiconductor materials, etc.

  18. Correlation of macroscopic material properties with microscopic nuclear data

    International Nuclear Information System (INIS)

    Simons, R.L.

    1981-01-01

    Two primary irradiation-induced changes occur during neutron irradiation: the displacement of atoms forming crystal defects and the transmutation of atoms into either gaseous or solid products. The material scientist studying irradiation damage to material by fusion-produced neutrons is faced with several questions: Is the nature of high-energy (14-MeV) displacement damage the same as or different from that caused by fission neutrons (< 2 MeV). How do the high helium concentrations expected in a fusion environment affect the material properties. What effects do solid transmutation products have on the behavior of the irradiated materials. In the past few years, much work has been done to answer these questions. This paper reviews recent work in this area

  19. Disclinations in bulk nanostructured materials: their origin, relaxation and role in material properties

    International Nuclear Information System (INIS)

    Nazarov, Ayrat A

    2013-01-01

    The role of disclinations in the processing, microstructure and properties of bulk nanostructured materials is reviewed. Models of grain subdivision during severe plastic deformation (SPD) based on the disclination concept, a structural model of the bulk nanostructured materials processed by SPD are presented. The critical strength of triple junction disclinations is estimated. Kinetics of relaxation of triple junction disclinations and their role in the grain boundary diffusion are studied. (review)

  20. Thermal property tuning in aligned carbon nanotube films and random entangled carbon nanotube films by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Department of Materials Science and Engineering, Texas A& M University, College Station, Texas 77843 (United States); Chen, Di; Wang, Xuemei [Department of Nuclear Engineering, Texas A& M University, College Station, Texas 77843 (United States); Bykova, Julia S.; Zakhidov, Anvar A. [The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080 (United States); Shao, Lin, E-mail: lshao@tamu.edu [Department of Materials Science and Engineering, Texas A& M University, College Station, Texas 77843 (United States); Department of Nuclear Engineering, Texas A& M University, College Station, Texas 77843 (United States)

    2015-10-12

    Ion irradiation effects on thermal property changes are compared between aligned carbon nanotube (A-CNT) films and randomly entangled carbon nanotube (R-CNT) films. After H, C, and Fe ion irradiation, a focusing ion beam with sub-mm diameter is used as a heating source, and an infrared signal is recorded to extract thermal conductivity. Ion irradiation decreases thermal conductivity of A-CNT films, but increases that of R-CNT films. We explain the opposite trends by the fact that neighboring CNT bundles are loosely bonded in A-CNT films, which makes it difficult to create inter-tube linkage/bonding upon ion irradiation. In a comparison, in R-CNT films, which have dense tube networking, carbon displacements are easily trapped between touching tubes and act as inter-tube linkage to promote off-axial phonon transport. The enhancement overcomes the phonon transport loss due to phonon-defect scattering along the axial direction. A model is established to explain the dependence of thermal conductivity changes on ion irradiation parameters including ion species, energies, and current.

  1. Use of thermal-inertia properties for material identification

    Science.gov (United States)

    Schieldge, J. P.; Kahle, A. B.; Alley, R. E.; Gillespie, A. R.

    1980-01-01

    It is noted that a knowledge of the thermal inertia of the earth's surface can be used in geologic mapping as a complement to surface reflectance data as provided by Landsat. Thermal inertia, which is a body property, cannot be determined directly but can be inferred from radiation temperature measurements made at various times in the diurnal heating cycle, combined with a model of the surface heating processes. A model of this type is developed and applied along with temperature measurements made in the field and by satellite to determine thermal properties of surface materials. An example from a test site in western Nevada is used to demonstrate the utility of this technique.

  2. Thermophysical properties of new materials; Proprietes thermophysiques des materiaux nouveaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `thermo-kinetics` section of the French association of thermal engineers. This book of proceedings contains 5 papers entitled: `characterization of thermal properties using periodical methods at the Odeillo test centre: developments and applications`; `measurement of the distribution of local thermophysical properties by IR images processing and averaging technique`; `extension of shock probes to the characterization of multi-layers - development of a simple device for the characterization of insulating materials or shear fluids`; `thermal local diffusivity of constituents of carbon/carbon composites`; `new method for the thermal diffusivity measurement of thermo-hardenable resins during polymerization`. (J.S.)

  3. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  4. Analysis of Mechanical Properties of Fabrics of Different Raw Material

    Directory of Open Access Journals (Sweden)

    Aušra ADOMAITIENĖ

    2011-07-01

    Full Text Available The study analyzes dependence of mechanical properties (breaking force, elongation at break, static friction force and static friction coefficient on integrated fabric structure factor j and raw material density r, among the fabrics of different raw material (cotton, wool, polypropylene, polyester and polyacrylnitrile and woven in different conditions. The received results demonstrate that sometimes strong dependences exist (wool, polypropylene and polyacrylnitrile, whereas in some cases (cotton and polyester there is no correlation. It was also discovered that the breaking force and elongation at break in the direction of weft increase, when fabric structure becomes more rigid. In the meantime variations of the curves in the direction of warp are insignificant. Regarding static friction force and static friction coefficient (found in two cases, when fabrics were rubbing against leather and materials, it was discovered that consistency of the curves is irregular, i. e. they either increase or decrease, when integrated fabric structure factor j growth. It was also identified that some dependences are not strong and relationship between explored and analyzed factors does not exist. Variation of all these mechanical properties with respect to material density r enables to conclude that increase of material density r results in poor dependences or they are whatsoever non-existent.http://dx.doi.org/10.5755/j01.ms.17.2.487

  5. Effective Thermal Expansion Property of Consolidated Granular Materials.

    Science.gov (United States)

    Küçük, Gülşad; Gonzalez, Marcial; Cuitiño, Alberto M

    2017-11-09

    Thermally-assisted compaction of granular materials is of keen interest in many engineering applications. A proper estimation of the material behavior of compacted granular materials is contingent upon the knowledge of microstructure formation, which is highly dependent on the bulk material properties and processing conditions, during the deformation stage. Originating from the pair interactions between particles, the macroscopic properties are obtained using various homogenization techniques and postulating continuum constitutive laws. While pioneers in this field have laid fundamental groundwork regarding effective medium descriptions, there exists a discrepancy between discrete and continuum level solutions. In our previous work, we elaborated a Particle Mechanics Approach (PMA) that integrates thermal contact and Hertzian deformation models to understand the thermo-mechanically-coupled consolidation problem. We also considered the analogous problem from the perspective of the conventional Continuum Mechanics Approach (CMA). In this study, following the multi-scale modeling framework, we propose an effective thermal expansion coefficient for the thermally-assisted compaction of granular materials.

  6. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  7. Relationships between fracture toughness and other material properties. Final report

    International Nuclear Information System (INIS)

    Perra, M.; Finnie, I.

    1974-01-01

    The key experimental and analytical studies which have led to our present understanding of the mechanisms of ductile fracture are reviewed. It is concluded that insufficient progress has been made in the quantitative description of ductile separation mechanisms on a microscale to allow the realistic prediction of fracture toughness from material properties and microstructure. An experimental study of ductile fracture is underway which has the aim of determining the growth rate of voids in known plastic deformation fields as a function of triaxiality of stress and material work-hardening. Novel specimens of particularly well characterized microstructure are utilized

  8. Surface Antibacterial Properties of Four Tooth-Colored Restorative Materials

    Directory of Open Access Journals (Sweden)

    F. Shirani

    2008-03-01

    Full Text Available Objective: This study investigated the antibacterial properties of an ion-releasing resin composite (Degufill, a hybrid resin composite (InTen-S, a compomer (Compoglass F and a resin-modified glass ionomer (Vitremer against streptococcus mutans.Materials and Methods: The bacteria were derived from the dental plaque and cultured on blood agar plates. Eppendorf tubes were filled by unset restorative materials. A narrow conical cavity was created in the center of each material, prior to curing and the bacterial suspension was placed into each cavity. Each tube was incubated for the selected time pe-riods of 8, 24, 48 hours and 5 days and the procedure was repeated five times. After the incubation period, the suspensions were removed and the number of viable bacteria was evaluated. The data were analyzed using two-way ANOVA, one-way ANOVA and Tukey HSD tests.Results: After the incubation periods of 8, 24 and 48 hours, all restorative materials ex-cept InTen-S showed significant growth inhibition when compared to the control group. There was a significant difference in the number of bacterial colonies in different incuba-tion periods. The interaction between the materials and time intervals was also significant (P<0.05.Conclusion: The method used in this study was almost successful in ranking restorative dental materials according to their antibacterial effects. InTen-S showed no inhibitory ef-fect on bacterial growth, while other materials, especially Vitremer, showed considerable antibacterial effects.

  9. Electrospun Poly(lactic acid)-Based Fibrous Nanocomposite Reinforced by Cellulose Nanocrystals: Impact of Fiber Uniaxial Alignment on Microstructure and Mechanical Properties.

    Science.gov (United States)

    Huan, Siqi; Liu, Guoxiang; Cheng, Wanli; Han, Guangping; Bai, Long

    2018-03-12

    Uniform poly(lactic acid)/cellulose nanocrystal (PLA/CNC) fibrous mats composed of either random or aligned fibers reinforced with up to 20 wt % CNCs were successfully produced by two different electrospinning processes. Various concentrations of CNCs could be stably dispersed in PLA solution prior to fiber manufacture. The microstructure of produced fibrous mats, regardless of random or aligned orientation, was transformed from smooth to nanoporous surface by changing CNC loading levels. Aligning process through secondary stretching during high-speed collection can also affect the porous structure of fibers. With the same CNC loading, fibrous mats produced with aligned fibers had higher degree of crystallinity than that of fibers with random structure. The thermal properties and mechanical performances of PLA/CNC fibrous mats can be enhanced, showing better enhancement effect of aligned fibrous structure. This results from a synergistic effect of the increased crystallinity of fibers, the efficient stress transfer from PLA to CNCs, and the ordered arrangement of electrospun fibers in the mats. This research paves a way for developing an electrospinning system that can manufacture high-performance CNC-enhanced PLA fibrous nanocomposites.

  10. Temporal properties of material categorization and material rating: visual vs non-visual material features.

    Science.gov (United States)

    Nagai, Takehiro; Matsushima, Toshiki; Koida, Kowa; Tani, Yusuke; Kitazaki, Michiteru; Nakauchi, Shigeki

    2015-10-01

    Humans can visually recognize material categories of objects, such as glass, stone, and plastic, easily. However, little is known about the kinds of surface quality features that contribute to such material class recognition. In this paper, we examine the relationship between perceptual surface features and material category discrimination performance for pictures of materials, focusing on temporal aspects, including reaction time and effects of stimulus duration. The stimuli were pictures of objects with an identical shape but made of different materials that could be categorized into seven classes (glass, plastic, metal, stone, wood, leather, and fabric). In a pre-experiment, observers rated the pictures on nine surface features, including visual (e.g., glossiness and transparency) and non-visual features (e.g., heaviness and warmness), on a 7-point scale. In the main experiments, observers judged whether two simultaneously presented pictures were classified as the same or different material category. Reaction times and effects of stimulus duration were measured. The results showed that visual feature ratings were correlated with material discrimination performance for short reaction times or short stimulus durations, while non-visual feature ratings were correlated only with performance for long reaction times or long stimulus durations. These results suggest that the mechanisms underlying visual and non-visual feature processing may differ in terms of processing time, although the cause is unclear. Visual surface features may mainly contribute to material recognition in daily life, while non-visual features may contribute only weakly, if at all. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Mechanical Properties of Materials with Nanometer Scale Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  12. Q4 Titanium 6-4 Material Properties Development

    Science.gov (United States)

    Cooper, Kenneth; Nettles, Mindy

    2015-01-01

    This task involves development and characterization of selective laser melting (SLM) parameters for additive manufacturing of titanium-6%aluminum-4%vanadium (Ti-6Al-4V or Ti64). SLM is a relatively new manufacturing technology that fabricates complex metal components by fusing thin layers of powder with a high-powered laser beam, utilizing a 3D computer design to direct the energy and form the shape without traditional tools, dies, or molds. There are several metal SLM technologies and materials on the market today, and various efforts to quantify the mechanical properties, however, nothing consolidated or formal to date. Meanwhile, SLM material fatigue properties of Ti64 are currently highly sought after by NASA propulsion designers for rotating turbomachinery components.

  13. Bone strength and material properties of the glenoid

    DEFF Research Database (Denmark)

    Frich, Lars Henrik; Jensen, N.C.; Odgaard, A.

    1997-01-01

    of the cortical bone to the total glenoid strength was assessed by compression tests of pristine and cancellous-free glenoid specimens. Strength decreased by an average of 31% after the cancellous bone was removed. The material properties of the glenoid cancellous bone were determined by axial compression tests...... ratio was 5.2, indicating strong anisotropy. The apparent density was an average 0.35 gr. cm-3, and the Poisson ratio averaged 0.263. According to our findings the anisotropy of the glenoid cancellous bone, details concerning the strength distribution, and the load-bearing function of the cortical shell......The quality of the glenoid bone is important to a successful total shoulder replacement. Finite element models have been used to model the response of the glenoid bone to an implanted prosthesis. Because very little is known about the bone strength and the material properties at the glenoid...

  14. Effective Materials Property Information Management for the 21st Century

    Science.gov (United States)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2009-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fueled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality and traceability of data, as well as control of access to sensitive information such as proprietary data. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single "gold source" of materials information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  15. Effective Materials Property Information Management for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Cebon, David [Cambridge University; Barabash, Oleg M [ORNL

    2011-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fuelled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data pedigree traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  16. Assessment of the material properties of a fire damaged building

    OpenAIRE

    Oladipupo OLOMO; Olufikayo ADERINLEWO; Moses TANIMOLA; Silvana CROOPE

    2012-01-01

    This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive) tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concr...

  17. Phase change - memory materials - composition, structure, and properties

    Czech Academy of Sciences Publication Activity Database

    Frumar, M.; Frumarová, Božena; Wágner, T.; Hrdlička, M.

    2007-01-01

    Roč. 18, suppl.1 (2007), S169-S174 ISSN 0957-4522. [International Conference on Optical and Optoelectronic Properties of Materials and Applications 2006. Darwin, 16.06.2006-20.06.2006] R&D Projects: GA ČR GA203/06/0627 Institutional research plan: CEZ:AV0Z40500505 Keywords : phase change memory Subject RIV: CA - Inorganic Chemistry Impact factor: 0.947, year: 2007

  18. From properties to materials: An efficient and simple approach

    Science.gov (United States)

    Huwig, Kai; Fan, Chencheng; Springborg, Michael

    2017-12-01

    We present an inverse-design method, the poor man's materials optimization, that is designed to identify materials within a very large class with optimized values for a pre-chosen property. The method combines an efficient genetic-algorithm-based optimization, an automatic approach for generating modified molecules, a simple approach for calculating the property of interest, and a mathematical formulation of the quantity whose value shall be optimized. In order to illustrate the performance of our approach, we study the properties of organic molecules related to those used in dye-sensitized solar cells, whereby we, for the sake of proof of principle, consider benzene as a simple test system. Using a genetic algorithm, the substituents attached to the organic backbone are varied and the best performing molecules are identified. We consider several properties to describe the performance of organic molecules, including the HOMO-LUMO gap, the sunlight absorption, the spatial distance of the orbitals, and the reorganisation energy. The results show that our method is able to identify a large number of good candidate structures within a short time. In some cases, chemical/physical intuition can be used to rationalize the substitution pattern of the best structures, although this is not always possible. The present investigations provide a solid foundation for dealing with more complex and technically relevant systems such as porphyrins. Furthermore, our "properties first, materials second" approach is not limited to solar-energy harvesting but can be applied to many other fields, as briefly is discussed in the paper.

  19. From properties to materials: An efficient and simple approach.

    Science.gov (United States)

    Huwig, Kai; Fan, Chencheng; Springborg, Michael

    2017-12-21

    We present an inverse-design method, the poor man's materials optimization, that is designed to identify materials within a very large class with optimized values for a pre-chosen property. The method combines an efficient genetic-algorithm-based optimization, an automatic approach for generating modified molecules, a simple approach for calculating the property of interest, and a mathematical formulation of the quantity whose value shall be optimized. In order to illustrate the performance of our approach, we study the properties of organic molecules related to those used in dye-sensitized solar cells, whereby we, for the sake of proof of principle, consider benzene as a simple test system. Using a genetic algorithm, the substituents attached to the organic backbone are varied and the best performing molecules are identified. We consider several properties to describe the performance of organic molecules, including the HOMO-LUMO gap, the sunlight absorption, the spatial distance of the orbitals, and the reorganisation energy. The results show that our method is able to identify a large number of good candidate structures within a short time. In some cases, chemical/physical intuition can be used to rationalize the substitution pattern of the best structures, although this is not always possible. The present investigations provide a solid foundation for dealing with more complex and technically relevant systems such as porphyrins. Furthermore, our "properties first, materials second" approach is not limited to solar-energy harvesting but can be applied to many other fields, as briefly is discussed in the paper.

  20. Measurement of Mechanical Properties of Cantilever Shaped Materials

    Directory of Open Access Journals (Sweden)

    Thomas Thundat

    2008-05-01

    Full Text Available Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young’s modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature

  1. Optical properties and band alignments in ZnTe nanoparticles/MoS2 layer hetero-interface using SE and KPFM studies

    Science.gov (United States)

    Sharma, Intu; Mehta, B. R.

    2017-11-01

    Integration of a layered two-dimensional (2D) material with a non-2D material provides a platform where one can modulate and achieve the properties desired for various next-generation electronic and opto-electronic applications. Here, we investigated ZnTe nanoparticles/MoS2 hetero-interfaces with the thickness of the MoS2 varying from few to multilayer. High-resolution transmission electron microscopy was used to observe the crystalline behaviour of the ZnTe nanoparticles, while the number of MoS2 layers was investigated using Raman measurements. Spectroscopic ellipsometry (SE) analysis based on the five-layer fitting model was used to analyse the optical behaviour of the heterojunction, where the excitonic features corresponding to the MoS2 layers and absorption features due to the ZnTe nanoparticles are observed. From the Kelvin probe force microscopy (KPFM) measurements, the surface potential (SP) of the ZnTe nanoparticles/MoS2 is found to be different in comparison with the SP of the ZnTe nanoparticles and MoS2, which is indicative of the charge transfer at the ZnTe nanoparticles/MoS2 hetero-interface. Various parameters obtained using SE and KPFM measurements were used to propose energy band alignments at the ZnTe nanoparticles/MoS2 hetero-interface. In addition, an interface photovoltage of 193 mV was obtained by carrying out KPFM measurements under illuminating condition.

  2. Rheological properties of cementitious materials containing mineral admixtures

    Energy Technology Data Exchange (ETDEWEB)

    C.K. Park; M.H. Noh; T.H. Park [Korea Institute of Industrial Technology, Cheonan (Republic of Korea)

    2005-05-01

    The rheological properties of cementitious materials containing fine particles, such as mineral admixtures (MA), were investigated using a Rotovisco RT 20 rheometer (Haake) with a cylindrical spindle. The mineral admixtures were finely ground blast furnace slag, fly ash and silica fume. The cementitious materials were designed as one, two and three components systems by replacement of ordinary Portland cement (OPC) with these mineral admixtures. The rheological properties of one-component system (OPC) were improved with increasing the dosage of PNS-based superplasticizer. For two-components systems, yield stress and plastic viscosity decreased with replacing OPC with blast furnace slag (BFS) and fly ash (FA). In the case of OPC-silica fume (SF) system, yield stress and plastic viscosity steeply increased with increasing SF. For three components systems, both OPC-BFS-SF and OPC-FA-SF systems, the rheological properties improved, compared with the sample with SF. In the two and three components systems, the rheological properties of samples containing BFS improved much more than with FA replacement alone.

  3. Regional material properties of the human hip joint capsule ligaments.

    Science.gov (United States)

    Hewitt, J; Guilak, F; Glisson, R; Vail, T P

    2001-05-01

    The hip joint capsule functions to constrain translation between the femur and acetabulum while allowing rotational and planar movements. Despite the crucial role it plays in the pathogenesis of hip instability, little is known about its biomechanical properties. The goal of this study was to determine the regional material properties of the iliofemoral and ischiofemoral ligaments of the capsule. Ten human cadaveric specimens of each ligament were tested to failure in tension. The stress at failure, strain at failure, strain energy density at failure, toe- and linear-region elastic moduli, and the Poisson's ratio were measured for each ligament. The strain to failure was greatest in the ischiofemoral ligament, while no significant difference was noted in failure stress by region or ligament. The Young's moduli of elasticity ranged from 76.1 to 285.8 MPa among the different ligaments, and were generally consistent with properties previously reported for the shoulder capsule. The elastic moduli and strain energy density at failure differed by region. No significant differences in Poisson's ratio were found by region or ligament. The average Poisson's ratio was approximately 1.4, consistent with anisotropic behavior of ligamentous tissues. Understanding the material properties of the hip capsule may help the orthopaedic surgeon better understand normal ligament function, and thereby choose a surgical approach or strategy of repair. Furthermore, knowledge of the normal mechanical function of the hip capsule ligaments could assist in the evaluation of the success of a repair.

  4. Template synthesis and magnetic properties of highly aligned barium hexaferrite (BaFe12O19) nanofibers

    International Nuclear Information System (INIS)

    Huang, Boneng; Li, Congju; Wang, Jiaona

    2013-01-01

    Using electrospun poly(ethylene terephthalate)/citric acid (PET/CA) microfibers as the template, highly aligned barium hexaferrite (BaFe 12 O 19 ) nanofibers with diameters of ca. 800 nm and lengths up to 2 cm were synthesized by sol–gel precursor coating technique and subsequent high temperature calcination. Structural and morphological investigations revealed that individual BaFe 12 O 19 nanofibers were composed of numerous nanocrystallites stacking alternatively along the nanofiber axis, the average grain size was ca. 225 nm and the single crystallites on each BaFe 12 O 19 nanofibers were of random orientations. The formation mechanism of aligned BaFe 12 O 19 nanofibers was proposed based on experiment. The magnetic measurement revealed that the aligned BaFe 12 O 19 nanofibers exhibited orientation-dependent magnetic behavior with respect to the applied magnetic field. The magnetic anisotropy with the easy magnetizing axis along the length of the nanofibers was due to the shape anisotropy. Such aligned magnetic nanofibers can find relevance in application requiring an orientation-dependent physical response. - Highlights: ► A simple method was used to synthesize the aligned BaFe 12 O 19 nanofibers. ► The aligned BaFe 12 O 19 nanofibers display an obvious orientation-dependent magnetic behavior. ► The method can be readily applied to other aligned one-dimensional inorganic nanomaterials

  5. Aging and the Haptic Perception of Material Properties.

    Science.gov (United States)

    Norman, J Farley; Adkins, Olivia C; Hoyng, Stevie C; Dowell, Catherine J; Pedersen, Lauren E; Gilliam, Ashley N

    2016-12-01

    The ability of 26 younger (mean age was 22.5 years) and older adults (mean age was 72.6 years) to haptically perceive material properties was evaluated. The participants manually explored (for 5 seconds) 42 surfaces twice and placed each of these 84 experimental stimuli into one of seven categories: paper, plastic, metal, wood, stone, fabric, and fur/leather. In general, the participants were best able to identify fur/leather and wood materials; in contrast, recognition performance was worst for stone and paper. Despite similar overall patterns of performance for younger and older participants, the younger adults' recognition accuracies were 26.5% higher. The participants' tactile acuities (assessed by tactile grating orientation discrimination) affected their ability to identify surface material. In particular, the Pearson r correlation coefficient relating the participants' grating orientation thresholds and their material identification performance was -0.8: The higher the participants' thresholds, the lower the material recognition ability. While older adults are able to effectively perceive the solid shape of environmental objects using the sense of touch, their ability to perceive surface materials is significantly compromised.

  6. Static Magnetic Properties of AL800 Garnet Material

    Energy Technology Data Exchange (ETDEWEB)

    Kuharik, J. [Fermilab; Madrak, R. [Fermilab; Makarov, A. [Fermilab; Pellico, W. [Fermilab; Sun, S. [Fermilab; Tan, C. Y. [Fermilab; Terechkine, I. [Fermilab

    2017-05-17

    A second harmonic tunable RF cavity is being devel-oped for the Fermilab Booster. This device, which prom-ises reduction of the particle beam loss at the injection, transition, and extraction stages, employs perpendicularly biased garnet material for frequency tuning. The required range of the tuning is significantly wider than in previously built and tested tunable RF devices. As a result, the mag-netic field in the garnet comes fairly close to the gyromag-netic resonance line at the lower end of the frequency range. The chosen design concept of a tuner for the cavity cannot ensure uniform magnetic field in the garnet mate-rial; thus, it is important to know the static magnetic prop-erties of the material to avoid significant increase in the lo-cal RF loss power density. This report summarizes studies performed at Fermilab to understand variations in the mag-netic properties of the AL800 garnet material used to build the tuner of the cavity.

  7. Engineering Properties and Correlation Analysis of Fiber Cementitious Materials.

    Science.gov (United States)

    Lin, Wei-Ting; Wu, Yuan-Chieh; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi

    2014-11-20

    This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%), water/cement ratio (0.35 and 0.55) and steel fiber dosage (0.5%, 1.0% and 2.0%). The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result.

  8. Engineering Properties and Correlation Analysis of Fiber Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Wei-Ting Lin

    2014-11-01

    Full Text Available This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%, water/cement ratio (0.35 and 0.55 and steel fiber dosage (0.5%, 1.0% and 2.0%. The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result.

  9. Material properties from contours: New insights on object perception.

    Science.gov (United States)

    Pinna, Baingio; Deiana, Katia

    2015-10-01

    In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties. Copyright © 2015. Published by Elsevier Ltd.

  10. GPR Laboratory Tests For Railways Materials Dielectric Properties Assessment

    Directory of Open Access Journals (Sweden)

    Francesca De Chiara

    2014-10-01

    Full Text Available In railways Ground Penetrating Radar (GPR studies, the evaluation of materials dielectric properties is critical as they are sensitive to water content, to petrographic type of aggregates and to fouling condition of the ballast. Under the load traffic, maintenance actions and climatic effects, ballast condition change due to aggregate breakdown and to subgrade soils pumping, mainly on existing lines with no sub ballast layer. The main purpose of this study was to validate, under controlled conditions, the dielectric values of materials used in Portuguese railways, in order to improve the GPR interpretation using commercial software and consequently the management maintenance planning. Different materials were tested and a broad range of in situ conditions were simulated in laboratory, in physical models. GPR tests were performed with five antennas with frequencies between 400 and 1800 MHz. The variation of the dielectric properties was measured, and the range of values that can be obtained for different material condition was defined. Additionally, in situ GPR measurements and test pits were performed for validation of the dielectric constant of clean ballast. The results obtained are analyzed and the main conclusions are presented herein.

  11. Biaxial magnetic grain alignment

    International Nuclear Information System (INIS)

    Staines, M.; Genoud, J.-Y.; Mawdsley, A.; Manojlovic, V.

    2000-01-01

    Full text: We describe a dynamic magnetic grain alignment technique which can be used to produce YBCO thick films with a high degree of biaxial texture. The technique is, however, generally applicable to preparing ceramics or composite materials from granular materials with orthorhombic or lower crystal symmetry and is therefore not restricted to superconducting applications. Because magnetic alignment is a bulk effect, textured substrates are not required, unlike epitaxial coated tape processes such as RABiTS. We have used the technique to produce thick films of Y-247 on untextured silver substrates. After processing to Y-123 the films show a clear enhancement of critical current density relative to identically prepared untextured or uniaxially textured samples. We describe procedures for preparing materials using magnetic biaxial grain alignment with the emphasis on alignment in epoxy, which can give extremely high texture. X-ray rocking curves with FWHM of as little as 1-2 degrees have been measured

  12. Nanoscale defect architectures and their influence on material properties

    Science.gov (United States)

    Campbell, Branton

    2006-10-01

    Diffraction studies of long-range order often permit one to unambiguously determine the atomic structure of a crystalline material. Many interesting material properties, however, are dominated by nanoscale crystal defects that can't be characterized in this way. Fortunately, advances in x-ray detector technology, synchrotron x-ray source brightness, and computational power make it possible to apply new methods to old problems. Our research group uses multi-megapixel x-ray cameras to map out large contiguous volumes of reciprocal space, which can then be visually explored using graphics engines originally developed by the video-game industry. Here, I will highlight a few recent examples that include high-temperature superconductors, colossal magnetoresistors and piezoelectric materials.

  13. Inelastic Neutron Scattering, Dynamics of Atoms and Novel Material Properties

    Science.gov (United States)

    Chaplot, S. L.

    2010-12-01

    We review our research on properties of two important functional materials in which dynamics plays an essential role, namely, fast-ion conductors and negative thermal expansion materials. We bring out the underlying role of the lattice dynamics in terms of the soft phonon modes in both cases. Then, using molecular dynamics simulation we show the mechanism of the fast-ion conduction that occurs at about 0.8 times the overall melting temperature in Li2O, UO2 and ThO2. We obtain numerical measures of the phonon anharmonicity from neutron-inelastic experiments and also lattice dynamics computations and quantitatively derive the negative expansion coefficient in several crystalline materials that is found to match well with direct diffraction measurements.

  14. Influence of binding material of PZT coating on microresonator's electrical and mechanical properties

    Science.gov (United States)

    Janusas, Giedrius; Guobiene, Asta; Palevicius, Arvydas; Brunius, Alfredas; Cekas, Elingas; Baltrusaitis, Valentinas; Sakalys, Rokas

    2017-06-01

    Microresonators are fundamental components integrated in hosts of MEMS applications: covering the automotive sector, the telecommunication industry, electronic equipment for surface/material characterization and motion sensing, and etc. The aim of this paper is to investigate the mechanical and electrical properties of PZT film fabricated with three binding materials: polyvinyl butyral (PVB), polymethyl methacrylate (PMMA) and polystyrene (PS) and to evaluate applicability in control of microresonators Q factor. Micro particles of PZT powder were mixed with 20% solution of PVB, PMMA and PS in benzyl alcohol. For investigation of mechanical and electrical properties multilayer cantilevers were made. Obtained PZT and polymer paste was screen printed on copper (thickness 40 μm) using polyester monofilament screen meshes (layer thickness 50 μm) and dried for 30 min at 100°C. Electric dipoles of the PZT particles in composite material were aligned using high voltage generator (5 kV) and a custom-made holder. Electric field was held for 30 min. Surfaces of the applied films were investigated by Atomic Force Microscope NanoWizard(R)3 NanoScience. Dynamic and electrical characteristics of the multilayer were investigated using laser triangular displacement sensor LK-G3000. The measured vibration amplitude and generated electrical potential was collected with USB oscilloscope PicoScope 3424. As the results showed, these cantilevers were able to transform mechanical strain energy into electric potential and, v.v. However, roughness of PZT coatings with PMMA and PS were higher, what could be the reason of the worse quality of the top electrode. However, the main advantage of the created composite piezoelectric material is the possibility to apply it on any uniform or non-uniform vibrating surface and to transform low frequency vibrations into electricity.

  15. Preparation and properties on hollow nano-structured smoke material

    Science.gov (United States)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were

  16. Influence of man-made aluminosilicate raw materials on physical and mechanical properties of building materials.

    Science.gov (United States)

    Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.

    2018-03-01

    It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.

  17. Dispersion and alignment of carbon nanotubes in polymer based composites

    Science.gov (United States)

    Camponeschi, Erin Lynn

    This research is intended to create usable carbon nanotube polymer based composites for structural applications by effectively aligning and dispersing the carbon nanotubes in a polymer matrix. The motivation for this research is to create very lightweight, high strength materials that will surpass their predecessors: carbon fibers. The final product then can be used in applications across the industries. This research determined the effect of three different surface-active agents and two different aligning methods on the structural features and mechanical properties of the polymer-based composite. The three types of surface-active agents used in this research are a surfactant and two different block copolymers. From this research, it will be determined how different surface-active agents adequately disperse the carbon nanotube, and the effects the dispersing agent have on a final dispersed product. In addition, the dispersing agent effects on the alignment of the carbon nanotubes and the final product can be compared. The two alignment techniques used in this research were alignment via shear flow and tethering iron oxide particles to the carbon nanotubes to induce alignment in a magnetic field. The method of shear aligning carbon nanotubes is very simplistic in theory, but actual application becomes much more challenging. This research illustrates the effects on shear alignment in a viscous polymer flow and then applies those theories to polymers. This work then compares the different alignment techniques to determine the overall increase of properties and the effective carbon nanotube alignment. This research provides a framework for the creation of dispersed and aligned composites that can be expanded upon and improved to further develop the carbon nanotubes as possible replacement fillers for composite materials.

  18. Effective Materials Property Information Management for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Cebon, David [Cambridge University; Arnold, Steve [National Aeronautics and Space Administration (NASA)

    2010-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in industry, research organizations and government agencies. In part these are fuelled by the demands for higher efficiency in material testing, product design and development and engineering analysis. But equally important, organizations are being driven to employ sophisticated methods and software tools for managing their mission-critical materials information by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Furthermore the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analysis approaches, particularly for composite materials, requires both processing of much larger volumes of test data for development of constitutive models and much more complex materials data input requirements for Computer-Aided Engineering (CAE) software. And finally, the globalization of engineering processes and outsourcing of design and development activities generates much greater needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands. They have evolved from hard copy archives, through simple electronic databases, to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access control, version control, and quality control; (ii) a wide range of data import, export and analysis capabilities; (iii) mechanisms for ensuring that all data is traceable to its pedigree sources: details of testing programs, published sources, etc; (iv) tools for searching, reporting and viewing the data; and (v

  19. Efficient strategy to Cu/Si catalyst into vertically aligned carbon ...

    Indian Academy of Sciences (India)

    Vertically aligned carbon nanotubes; drop cast method; electron microscopes; electrical properties. Abstract. Bamboo-shaped vertically aligned carbon nanotubes (bs-VACNTs) were fabricated on Cu/Si catalyst by chemical vapour deposition (CVD) technique under the atmospheric pressure. The catalytic material (Cu/Si) ...

  20. Nonlinear optical properties and nonlinear optical probes of organic materials

    Science.gov (United States)

    Meredith, Gerald R.

    1992-02-01

    Nonlinear optical processes and electro-optical effects are expected to have increasing importance as the information age matures and photonics augment electronics in various high density and high bandwidth technologies. Whereas for electronics the emphasis is in construction of smaller device structures from a few parent materials, for organic materials the direction of materials research has been reversed. For some time it's been known that some molecular structures engender exceptionally large molecular nonlinear-polarization responses. If such molecules could be assembled in convenient, versatile, and reliable ways, the resulting materials would be very useful or even enabling in various photonics applications. The mature science and art of chemistry allows very good control over molecular composition and structure and, as will be illustrated in this talk, our knowledge of hyperpolarizability structure- property relationships is advancing rapidly. However, the science of fabrication and arrangement in molecular ensembles and polymers is rather primitive. Thus the goal to develop the appropriately structured materials for utilization in nonlinear and electro-optics has fostered the widespread use of nonlinear optical processes to probe the nature of supramolecular order and assembly. Examples of intrinsic and artificially assembled structures of crystals, molecular aggregates, polymeric orientational electrets and molecular mono- and multi-layer thin films will be shown. Nonlinear optical processes, primarily second-harmonic generation, provide unique probes of these structures, their assembly, and evolution.

  1. Electronic and Thermal Properties of Puckered Orthorhombic Materials

    Science.gov (United States)

    Fei, Ruixiang

    Puckered orthorhombic crystals, such as black phosphorus and group IV monochalcogenides, are attracting tremendous attention because of their new exotic properties, which are of great interests for fundamental science and novel applications. Unlike those well studied layered hexagonal materials such as graphene and transition metal dichalcogenides, the puckered orthorhombic crystals possess highly asymmetrical in-plane crystal structures. Understanding the unique properties emerginge from their low symmetries is an intriguing and useful process, which gives insight into experimental observation and sheds light on manipulating their properties. In this thesis, we study and predict various properties of orthorhombic materials by using appropriate theoretical techniques such as first-principles calculations, Monte-Carlo simulations, and k · p models. In the first part of the thesis, we deal with the anisotropic electric and thermal properties of a typical puckered orthorhombic crystal, black phosphorus. We first study the electric properties in monolayer and few-layer black phosphorus, where the unique, anisotropic electrical conductance is founded. Furthermore, we find that the anisotropy of the electrical conductance can be rotated by 90° through applying appropriate uniaxial or biaxial strain. Beyond electrical conductance, we, for the first time, predict that the thermal conductance of black phosphorus is also anisotropic and, particularly, the preferred conducting direction is perpendicular to the preferred electrical conducting direction. Within the reasonable estimation regime, the thermoelectric figure of merit (ZT) ultimately reaches 1 at room temperature using only moderate doping. The second part of this thesis focuses on the electronic polarization of non-centrosymmetric puckered materials-group IV monochalcogenide. We propose that monolayer group IV monochalcogenides are a new class of two-dimensional (2D) ferroelectric materials with spontaneous in

  2. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

    Directory of Open Access Journals (Sweden)

    Almudena Díaz-García

    2017-01-01

    Full Text Available Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  3. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties.

    Science.gov (United States)

    Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa

    2017-01-25

    Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  4. Materials Selection, Synthesis, and Dielectrical Properties of PVC Nanocomposites

    Directory of Open Access Journals (Sweden)

    Youssef Mobarak

    2013-01-01

    Full Text Available Materials selection process for electrical insulation application was carried out using Cambridge Engineering Selector (CES program. Melt mixing technique was applied to prepare polyvinyl-chloride- (PVC- nanofumed silica and nanomontmorillonite clay composites. Surface analysis and particles dispersibility were examined using scanning electron microscope. Dielectrical properties were assessed using Hipot tester. An experimental work for dielectric loss of the nanocomposite materials has been investigated in a frequency range of 10 Hz–50 kHz. The initial results using CES program showed that microparticles of silica and clay can improve electrical insulation properties and modulus of elasticity of PVC. Nano-montmorillonite clay composites were synthesized and characterized. Experimental analyses displayed that trapping properties of matrix are highly modified by the presence of nanofillers. The nanofumed silica and nanoclay particles were dispersed homogenously in PVC up to 10% wt/wt. Dielectric loss tangent constant of PVC-nanoclay composites was decreased successfully from 0.57 to 0.5 at 100 Hz using fillers loading from 1% to 10% wt/wt, respectively. Nano-fumed silica showed a significant influence on the electrical resistivity of PVC by enhancing it up to 1 × 1011 Ohm·m.

  5. Affects of Microgravity on the Polymerization and Material Properties of Biomedical Grade Polymers

    Science.gov (United States)

    Crane, Deborah J.

    2002-01-01

    the material of choice in the production of acetabular cups for hip and tibial cradles for knee orthopeadic implant components for over 30 years. Although UHMWPE is used for more than 1.5 million implants a year in the United States alone and more than 3 million implant surgeries a year worldwide, problems with debris particle formation, pitting and fracture continue to induce premature failure of implant components. chains produced during polymerization are capable of packing into crystalline structures called lamellae, which are embedded within randomly oriented amorphous regions. Crosslinks, or tie molecules bridge the crystalline structures, which contribute to the materials' toughness and strength as a biomedical material. Research has been conducted providing evidence that a crosslinked gradient at the articulating surface of the polymer component provides resistance to surface degradation and subsequent debris formation. Recently, the introduction of highly crosslinked UHMWPE had proven to reduce some of the problems associated with the applications of this polymer as a biomedical material and was seen as the answer to solving the continuing problems associated with UHMWPE implant components. Yet current research into the fatigue characteristics of highly crosslinked UHMWPE has shown that subsurface crack propagation and subsequent delamination continues to produce problematic debris generation. Studies have shown that various sterilization and accelerated aging (to emulate natural oxidation rates) protocols adversely effects the material properties. Additional research has shown that alignment of the lamellae, caused by processing technique, fabrication or surface articulation may be the precursor to debris particle formation. Processing techniques performed under high pressure has proven to effect the width of the crystalline lamellae and therefore, the material's response to wear and fracture. UHMWP due to a microgravity environment, which could be

  6. EXAMINING COMFORT PROPERTIES OF LEATHER and ARTIFICIAL LEATHER COVER MATERIALS

    Directory of Open Access Journals (Sweden)

    ÇETİN Münire Sibel

    2016-05-01

    Full Text Available The analysis and regulation of workplace, working instruments, the comfort of office chair, business environment (sound, lighting, climate, vibration, temperature, and humidity, work and break times, analysis and editing of the organization, are some of the topics of interest of ergonomics. Environmental impact and conditions have important role on the employee’s working comfortably and efficiently. Therefore these conditions need to be aligned to the human body nature. Unsuitable working conditions (noise, etc. cause additional load, which the human body endures, and this additional load reveals the signs of tiredness in the body. Even an office environment, unsuitable physical environment impairs health of workers and reduces the performance. Therefore, office climate, environmental factors such as lighting and noise must be harmonized with the employee’s body nature in all working environments. Seating comfort is one of the important factors affecting the performance of employees in the office environment. There are so many studies about chair dimensions and the disorders on human body which were caused by the inappropriate chair dimensions and sitting positions. However, there are a spot of studies about the surface of the chair and the discomfort caused by the chair cover and its negative performance effects. In this study, some results of seat cover analysis for the design of an ergonomic chair. Recently, ease of cleaning, low cost advantages caused the increasing of the use of artificial leather especially on the surface of the seat used in offices. The physical properties of natural leather and artificial leather were compared as the candidate covers to be used on the design of an ergonomic office chair.

  7. Electrical and Nonlinear Optical Properties of Novel Organic Materials

    Science.gov (United States)

    Navin, Y. Narayana; Bappalige, N.

    2011-07-01

    The single crystals of organic nonlinear optical material 1-(2, 4-dichlorophenyl) -3-(4-dimethyl amino-phenyl)-2-propenone (DDAP ) and 4—Bromo 2-nitro aniline (BNA) were grown by solvent evaporation technique using ethanol as solvent. The grown crystals were characterized by IR, 1H NMR and mass spectroscopy to confirm the formation of the compound. Electrical property and non linear optical (NLO) properties of these two crystals were studied in detail. DDAP crystals crystallize in the monoclinic system with space group P2l/C. The second harmonic generation efficiency of DDAP is found to be 0.07 times that of KDP and that of BNA is 12 times that of KDP. Conductance of BNA is higher than that of DDAP.

  8. Structure, Morphology and Properties of Carbon Nanotube Containing Polymeric Materials

    Science.gov (United States)

    Li, Lingyu; Kodjie, Steve; Li, Christopher

    2006-03-01

    Carbon nanotubes (CNTs) are considered an ideal reinforcing fillers in polymer nanocomposites because of their high aspect ratio, nanosize diameter, very low density and excellent physical properties (such as extremely high mechanical strength, high electrical and thermal conductivity),. However, in order to achieve homogeneous dispersion of CNTs without damaging their extraordinary properties, non-covalent functionalization is an essential step. Our study of functionalization of CNTs via controlled polymer crystallization method has resulted in the formation of ``nano hybrid shish-kebab'' (NHSK), which is CNT periodically decorated with polymer lamellar crystals. By tuning the experimental parameters such as concentration of polymer and crystallization temperature, hybrid polymer spherulite with CNT inside was achieved. This can be considered as CNT reinforced composite with ideally controlled CNT dispersion. Both Nylon 6, 6 and PE were used as the matrix materials. Excellent dispersion of CNTs in polymer matrix was achieved and the nanocomposites showed improved thermal stability.

  9. Confinement Effect on Material Properties of RC Beams Under Flexure

    Science.gov (United States)

    Kulkarni, Sumant; Shiyekar, Mukund Ramchandra; Shiyekar, Sandip Mukund

    2017-12-01

    In structural analysis, especially in indeterminate structures, it becomes essential to know the material and geometrical properties of members. The codal provisions recommend elastic properties of concrete and steel and these are fairly accurate enough. The stress-strain curve for concrete cylinder or a cube specimen is plotted. The slope of this curve is modulus of elasticity of plain concrete. Another method of determining modulus of elasticity of concrete is by flexural test of a beam specimen. The modulus of elasticity most commonly used for concrete is secant modulus. The modulus of elasticity of steel is obtained by performing a tension test of steel bar. While performing analysis by any software for high rise building, cross area of plain concrete is taken into consideration whereas effects of reinforcement bars and concrete confined by stirrups are neglected. Present aim of study is to determine elastic properties of reinforced cement concrete beam. Two important stiffness properties such as AE and EI play important role in analysis of high rise RCC building idealized as plane frame. The experimental program consists of testing of beams (model size 150 × 150 × 700 mm) with percentage of reinforcement varying from 0.54 to 1.63% which commensurate with existing Codal provisions of IS:456-2000 for flexural member. The effect of confinement is considered in this study. The experimental results are verified by using 3D finite element techniques.

  10. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [ORNL; Pallin, Simon B [ORNL

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  11. Process design of press hardening with gradient material property influence

    International Nuclear Information System (INIS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-01-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  12. Process design of press hardening with gradient material property influence

    Science.gov (United States)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  13. Measurements of interface fracture properties of composite materials

    International Nuclear Information System (INIS)

    Ashkenazi, D.; Bank-Sills, L.; Travitzky, N.; Eliasi, R.

    1998-01-01

    In this investigation, interface Fracture properties are measured. To this end, glass/epoxy Brazilian disk specimens are studied. In order to calibrate the specimen, a numerical procedure is used. The finite element method is employed to derive stress intensity factors as a function of loading angle and crack length. By means of the weight friction method together with finite elements, a correction to the stress intensity factors for residual thermal stresses is obtained. These are combined to determine the critical interface energy release rate as a function of phase angle Tom the measured load and crack length at Fracture. A series of tests on a glass/epoxy material pair were carried out. It may be observed from the results that the residual thermal stresses resulting from the material mismatch greatly affect the interface toughness values

  14. Properties and processing of nanocrystalline materials. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Valiev, R.Z.

    1996-01-22

    The present Report completes the investigations in the frame of the project for the first year. It is important to estimate our achievements in the investigation of properties of nanocrystalline materials obtained by severe plastic deformation and their production. We think that the main results obtained can be summarized as follows: (1) We performed an improvement of the die-set for equal channel (ECA) pressing and torsion under high pressure with the aim to increase dimensions of the samples produced and to conduct processing of low ductile materials. (2) It was established that in pure metals severe plastic deformation led to the formation of an ultra fine-grained structure with a mean grain size of 100-200 nm, while in alloys due to severe plastic deformation and/or special methods of treatment (a decrease in the temperature of deformation, an increase of the pressure applied etc.) the grain size could be decreased down to a few tens of manometers.

  15. Pulsed power experiments in hydrodynamics and material properties

    CERN Document Server

    Reinovsky, R E

    1999-01-01

    A new application for high performance pulsed power program, the production of high energy density environments in materials for the study of material properties and hydrodynamics in complex geometries, has joined family of radiation source applications in the Stockpile Stewardship. The principle tool for producing high energy density environments is the high precision, magnetically imploded, near-solid density liner. The most attractive pulsed power system for driving such experiments is an ultra-high current, low impedance, microsecond time scale source that is economical both to build and operate. The 25-MJ Atlas capacitor bank system currently under construction at Los Alamos is the first system of its scale specifically designed to drive high precision solid liners. Delivering 30 MA, Atlas will provide liner velocities 12-15 km/sec and kinetic energies of 1-2 MJ /cm with extensive diagnostics and excellent reproducibility. Explosive flux compressor technology provides access to currents exceeding 100 MA ...

  16. Influence of texture on the physical properties of materials

    International Nuclear Information System (INIS)

    Penelle, R.; Baudin, T.

    1996-01-01

    The principles of crystallographic texture characterization by the means of X-ray or neutron diffraction statistical techniques are reviewed, and examples of their application to the study of the effects of texture on the properties of materials are presented: texture of magnetic steels, magneto-crystalline anisotropy, elasticity anisotropy and Young's modulus, plastic anisotropy (textural hardening), residual stresses. Neutron diffraction allows for the continuous monitoring of the recrystallization texture generation kinetics during in-situ annealing or for the follow-up of phase transformations. Backscattered electron diffraction allows for the quantification of the spatial distribution of grain and grain joint orientations and thus microstructure reconstruction

  17. Vanadium Doped Tungsten Oxide Material - Electrical Physical and Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shishkin N. Y.

    2008-05-01

    Full Text Available The electrical physical and sensing (to VOCs and inorganic gases properties of vanadium doped tungsten oxide in the regions of phase transition temperature were investigated. Vanadium oxide (II dimerization was observed in the doped material, corresponding to new phase transition. The extreme sensitivity and selectivity to chemically active gases and vapors in small concentrations: CO, NOx, NH3 acetone, ethanol near phase transitions temperature was found. Sensor elements were manufactured for the quantitative detection (close to 1 ppm of alcohol and ammonia.

  18. Research on the icephobic properties of fluoropolymer-based materials

    Science.gov (United States)

    Yang, Shuqing; Xia, Qiang; Zhu, Lin; Xue, Jian; Wang, Qingjun; Chen, Qing-min

    2011-03-01

    Fluoropolymer, because of the extremely low surface energy, could be non-stick to water and thus could be a good candidate as anti-icing materials. In this paper, the icephobic properties of a series of fluoropolymer materials including pristine PTFE plates (P-PTFE), sandblasted PTFE plates (SB-PTFE), two PTFE coatings (SNF-1 and SNF-CO1), a fluorinated room-temperature vulcanized silicone rubber coating (F-RTV) and a fluorinated polyurethane coating (F-PU) have been investigated by using SEM, XPS, ice adhesion strength (tensile and shear) tests, and static and dynamic water contact angle analysis. Results show that the fluoropolymer material with a smooth surface can significantly reduce ice adhesion strength but do not show obvious effect in reducing ice accretion at -8 °C. Fluoropolymers with sub-micron surface structures can improve the hydrophobicity at normal temperature. It leads to an efficient reduction in the ice accretion on the surface at -8 °C, due to the superhydrophobicity of the materials. But the hydrophobicity of this surface descends at a low temperature with high humidity. Consequently, once ice layer formed on the surface, the ice adhesion strength enhanced rapidly due to the existence of the sub-micron structures. Ice adhesion strength of fluoropolymers is highly correlated to CA reduction observed when the temperature was changed from 20 °C to -8 °C. This property is associated with the submicron structure on the surface, which allows water condensed in the interspace between the sub-micron protrudes at a low temperature, and leads to a reduced contact angle, as well as a significantly increased ice adhesion strength.

  19. Fast and simple method for prediction of the micromechanical parameters and macromechanical properties of composite materials

    OpenAIRE

    Delgado Aguilar, Marc; Julián Pérez, Fernando; Pèlach Serra, Maria Àngels; Espinach Orús, Xavier; Méndez González, José Alberto; Mutjé Pujol, Pere

    2016-01-01

    The method described in the present work was assessed through the production of composite materials made of polypropylene reinforced with chemical thermomechanical pulp of hemp core fibers. Composite materials were obtained by extrusion and injection molding, and by the addition of a coupling agent to ensure a good interphase between fiber and matrix. In all cases, the composite materials were considered as semi-aligned reinforced. Tensile strength was selected as a representative...

  20. 14 CFR 23.613 - Material strength properties and design values.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction § 23.613 Material strength properties and design values. (a) Material strength...

  1. Transport properties of damaged materials. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  2. Transport properties of damaged materials. Cementitious barriers partnership

    International Nuclear Information System (INIS)

    Langton, C.

    2014-01-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  3. Thermophysical properties study of micro/nanoscale materials

    Science.gov (United States)

    Feng, Xuhui

    Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and

  4. Elucidating the role of interfacial materials properties in microfluidic packages.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Thayne L.

    2013-01-01

    The purpose of this work was to discover a method to investigate the properties of interfaces as described by a numerical physical model. The model used was adopted from literature and applied to a commercially available multiphysics software package. By doing this the internal properties of simple structures could be elucidated and then readily applied to more complex structures such as valves and pumps in laminate microfluidic structures. A numerical finite element multi-scale model of a cohesive interface comprised of heterogeneous material properties was used to elucidate irreversible damage from applied strain energy. An unknown internal state variable was applied to characterize the damage process. Using a constrained blister test, this unknown internal state variable could be determined for an adherend/adhesive/adherend body. This is particularly interesting for laminate systems with microfluidic and microstructures contained within the body. A laminate structure was designed and fabricated that could accommodate a variety of binary systems joined using nearly any technique such as adhesive, welding (solvent, laser, ultrasonic, RF, etc.), or thermal. The adhesive method was the most successful and easy to implement but also one of the more difficult to understand, especially over long periods of time. Welding methods are meant to achieve a bond that is similar to bulk properties and so are easier to predict. However, methods of welding often produce defects in the bonds.. Examples of the test structures used to elucidate the internal properties of the model were shown and demonstrated. The real life examples used this research to improve upon current designs and aided in creating complex structures for sensor and other applications.

  5. Experimental Study on the Comparison of the Material Properties of Glass Wool Used as Building Materials

    Directory of Open Access Journals (Sweden)

    Kyoung-Woo KIM

    2014-04-01

    Full Text Available Artificial mineral fibers such as glass wool or stone wool are commonly used in building walls, ceilings and floors as a major insulation material for buildings. Among the material properties of building materials, thermal conductivity, the sound absorption coefficient, compressibility, and dynamic stiffness are regarded as important performance requirements since they directly affect the thermal and acoustic properties of the building. This study measured the changes of the thermal and acoustical performances of glass wool that was actually installed for a long time to the outer wall of a building as an insulation material through a comparison with recently produced glass wool. The results showed that the measured thermal conductivities of the old and the new specimens both rise with an increase of temperature, showing quite similar results in both specimens over temperature ranges of (0 – 20 ºC. The noise reduction coefficient decreased by 0.1 in the old specimen and the difference of the compressibilities in both specimens was shown to be 7.32 mm. The dynamic stiffness of the old specimen was found to be 1.28 MN/m3 higher than that of the new specimen.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.3714

  6. Ultrafast control and monitoring of material properties using terahertz pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Lab. for Ultrafast Materials Optical Science (LUMOS)

    2016-05-02

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi2Se3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.

  7. Analysis of material properties for MEMS using interferometric measurements

    Science.gov (United States)

    O'Mahony, Conor; Hill, Martin; Mathewson, Alan

    2003-03-01

    As the scope and depth of research into microelectromechanical systems increases, the issue of mechanical characterisation has emerged as a major consideration in device design. It is now common to include a set of test structures on a MEMS wafer for extraction of thin film material properties (in particular, residual stress and Young's modulus). These structures usually consist of micromachined beams and strain gauges, and measurement techniques include tensile testing, electromechanical characterisation, SEM imaging, and Raman spectroscopy. However, some of these tests are destructive and difficult to carry out at wafer scale. This work uses electrostatic actuation to pull fixed-fixed beams towards the substrate, and a white-light interferometer to record the beam deflection profile. Finite-element simulation software is employed to model this deflection, and to estimate the material properties which minimise the difference between the measured and simulated profiles. The test is non-destructive, suitable for wafer-level characterisation, and the structures involved require less die space than other methods. We have developed a 1.5mm surface micromachining process for the fabrication of composite and monolayer structures with applications in relay switching, optical imaging and radio-frequency components. This work presents results obtained using interferometric analysis for both monolayer (titanium) and composite (SiOx - metal) thin films fabricated with this process.

  8. Material properties of zooplankton and nekton from the California current

    Science.gov (United States)

    Becker, Kaylyn

    This study measured the material properties of zooplankton, Pacific hake (Merluccius productus), Humboldt squid (Dosidicus gigas), and two species of myctophids (Symbolophorus californiensis and Diaphus theta) collected from the California Current ecosystem. The density contrast (g) was measured for euphausiids, decapods (Sergestes similis), amphipods (Primno macropa, Phronima sp., and Hyperiid spp.), siphonophore bracts, chaetognaths, larval fish, crab megalopae, larval squid, and medusae. Morphometric data (length, width, and height) were collected for these taxa. Density contrasts varied within and between zooplankton taxa. The mean and standard deviation for euphausiid density contrast were 1.059 +/- 0.009. Relationships between zooplankton density contrast and morphometric measurements, geographic location, and environmental conditions were investigated. Site had a significant effect on euphausiid density contrast. Density contrasts of euphausiids collected in the same geographic area approximately 4-10 days apart were significantly higher (p tentacle, braincase, eyes, pen, and beak. The density contrasts varied within and between fish taxa, as well as among squid body parts. Effects of animal length and environmental conditions on nekton density contrast were investigated. The sound speed contrast (h) was measured for Pacific hake flesh, myctophid flesh, Humboldt squid mantle, and Humboldt squid braincase. Sound speed varied within and between nekton taxa. The material properties reported in this study can be used to improve target strength estimates from acoustic scattering models which would increase the accuracy of biomass estimates from acoustic surveys for these zooplankton and nekton.

  9. Material Properties of Three Candidate Elastomers for Space Seals Applications

    Science.gov (United States)

    Bastrzyk, Marta B.; Daniels, Christopher C.; Oswald, Jay J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2010-01-01

    A next-generation docking system is being developed by the National Aeronautics and Space Administration (NASA) to support Constellation Space Exploration Missions to low Earth orbit (LEO), to the Moon, and to Mars. A number of investigations were carried out to quantify the properties of candidate elastomer materials for use in the main interface seal of the Low Impact Docking System (LIDS). This seal forms the gas pressure seal between two mating spacecraft. Three candidate silicone elastomer compounds were examined: Esterline ELA-SA-401, Parker Hannifin S0383-70, and Parker Hannifin S0899-50. All three materials were characterized as low-outgassing compounds, per ASTM E595, so as to minimize the contamination of optical and solar array systems. Important seal properties such as outgas levels, durometer, tensile strength, elongation to failure, glass transition temperature, permeability, compression set, Yeoh strain energy coefficients, coefficients of friction, coefficients of thermal expansion, thermal conductivity and diffusivity were measured and are reported herein.

  10. Photoelectric response properties under UV/red light irradiation of ZnO nanorod arrays coated with vertically aligned MoS2 nanosheets

    Science.gov (United States)

    Zhang, Yuzhu; Xu, Jianping; Shi, Shaobo; Gao, Yanyan; Zhao, Xiangguo; Wei, Chengtai; Zhang, Xiaosong; Li, Lan

    2017-10-01

    MoS2 with layered structure and distinct physical properties has attracted attention for electronic or optoelectronic devices. The photoelectric response properties of MoS2/ZnO heterojunctions based devices fabricated by spin-coating MoS2 nanosheets solutions on ZnO nanorod arrays (NRs) were investigated. The results revealed that MoS2 nanosheets were vertically aligned on the surface of ZnO NRs and the devices exhibit good photoresponse stability and reproducibility under UV and red light illuminations. The vertically aligned MoS2 nanosheets facilitate the fast photogenerated carrier separation and transport. The devices with few-layered MoS2 nanosheets show a high responsivity and detectivity under UV and red light illuminations, which can be attributed to small contact resistance between MoS2 nanosheets and ZnO NRs. These results provide important insights in the facile fabrication strategy and understanding electronic and optoelectronic devices based on the heterostructures with vertically aligned MoS2.

  11. ABINIT: First-principles approach to material and nanosystem properties

    Science.gov (United States)

    Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M.; Deutsch, T.; Genovese, L.; Ghosez, Ph.; Giantomassi, M.; Goedecker, S.; Hamann, D. R.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; Mancini, M.; Mazevet, S.; Oliveira, M. J. T.; Onida, G.; Pouillon, Y.; Rangel, T.; Rignanese, G.-M.; Sangalli, D.; Shaltaf, R.; Torrent, M.; Verstraete, M. J.; Zerah, G.; Zwanziger, J. W.

    2009-12-01

    ABINIT [ http://www.abinit.org] allows one to study, from first-principles, systems made of electrons and nuclei (e.g. periodic solids, molecules, nanostructures, etc.), on the basis of Density-Functional Theory (DFT) and Many-Body Perturbation Theory. Beyond the computation of the total energy, charge density and electronic structure of such systems, ABINIT also implements many dynamical, dielectric, thermodynamical, mechanical, or electronic properties, at different levels of approximation. The present paper provides an exhaustive account of the capabilities of ABINIT. It should be helpful to scientists that are not familiarized with ABINIT, as well as to already regular users. First, we give a broad overview of ABINIT, including the list of the capabilities and how to access them. Then, we present in more details the recent, advanced, developments of ABINIT, with adequate references to the underlying theory, as well as the relevant input variables, tests and, if available, ABINIT tutorials. Program summaryProgram title: ABINIT Catalogue identifier: AEEU_v1_0 Distribution format: tar.gz Journal reference: Comput. Phys. Comm. Programming language: Fortran95, PERL scripts, Python scripts Computer: All systems with a Fortran95 compiler Operating system: All systems with a Fortran95 compiler Has the code been vectorized or parallelized?: Sequential, or parallel with proven speed-up up to one thousand processors. RAM: Ranges from a few Mbytes to several hundred Gbytes, depending on the input file. Classification: 7.3, 7.8 External routines: (all optional) BigDFT [1], ETSF IO [2], libxc [3], NetCDF [4], MPI [5], Wannier90 [6] Nature of problem: This package has the purpose of computing accurately material and nanostructure properties: electronic structure, bond lengths, bond angles, primitive cell size, cohesive energy, dielectric properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear couplings, electronic and

  12. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    Science.gov (United States)

    Ashrafuzzaman, Md; Lampson, M. A.; Greathouse, D. V.; Koeppe, R. E., II; Andersen, O. S.

    2006-07-01

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)—Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly—alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  13. Evolution of material properties during free radical photopolymerization

    Science.gov (United States)

    Wu, Jiangtao; Zhao, Zeang; Hamel, Craig M.; Mu, Xiaoming; Kuang, Xiao; Guo, Zaoyang; Qi, H. Jerry

    2018-03-01

    Photopolymerization is a widely used polymerization method in many engineering applications such as coating, dental restoration, and 3D printing. It is a complex chemical and physical process, through which a liquid monomer solution is rapidly converted to a solid polymer. In the most common free-radical photopolymerization process, the photoinitiator in the solution is exposed to light and decomposes into active radicals, which attach to monomers to start the polymerization reaction. The activated monomers then attack Cdbnd C double bonds of unsaturated monomers, which leads to the growth of polymer chains. With increases in the polymer chain length and the average molecular weight, polymer chains start to connect and form a network structure, and the liquid polymer solution becomes a dense solid. During this process, the material properties of the cured polymer change dramatically. In this paper, experiments and theoretical modeling are used to investigate the free-radical photopolymerization reaction kinetics, material property evolution and mechanics during the photopolymerization process. The model employs the first order chemical reaction rate equations to calculate the variation of the species concentrations. The degree of monomer conversion is used as an internal variable that dictates the mechanical properties of the cured polymer at different curing states, including volume shrinkage, glass transition temperature, and nonlinear viscoelastic properties. To capture the nonlinear behavior of the cured polymer under low temperature and finite deformation, a multibranch nonlinear viscoelastic model is developed. A phase evolution model is used to describe the mechanics of the coupling between the crosslink network evolution and mechanical loading during the curing process. The comparison of the model and the experimental results indicates that the model can capture property changes during curing. The model is further applied to investigate the internal stress

  14. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.

  15. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    Science.gov (United States)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  16. Material properties of various intraocular lenses in an experimental study.

    Science.gov (United States)

    Tehrani, Mana; Dick, H Burkhard; Wolters, Beate; Pakula, Tadeusz; Wolf, Evan

    2004-01-01

    With the recent introduction of small-incision cataract surgery, requirements for intraocular lens (IOL) flexibility, strength and hydrophilicity have rapidly evolved. The IOL surface, however, remains a critical factor influencing uveal biocompatibility. To objectively quantify factors of material properties of various IOLs using contact angle measurements, differential scanning calorimetry, dynamic-mechanical measurements and scanning electron microscopy. In our study, 17 currently available IOLs were investigated using contact angle measurements to assess hydrophilicity and biocompatibility, as well as differential scanning calorimetry for the estimation of glass transition temperature. Mechanical capacity and flexibility were investigated using dynamic-mechanical measurements. Additional analysis of the IOL surface was performed using scanning electron microscopy. The contact angle measurements of the studied IOLs revealed similar values within each group. The silicone IOLs had values between 106 and 119 degrees. The PMMA IOLs were found to have a narrower range of values, between 73.2 and 75.5 degrees. Lenses made of hydrogel had values between 59.2 and 69.1 degrees. The heparin-modified surface showed the lowest contact angle of 56.5 degrees. The glass transition temperature was determined by dynamic differential scanning calorimetry. The resulting values were between 118.8 and 113.5 degrees C for PMMA IOLs, 15.5 and 14.0 degrees C for acrylic IOLs, and -91.7 and -119.6 degrees C for silicone IOLs. The dynamic-mechanical measurements revealed that PMMA lenses manifested characteristics similar to glass, whereas silicone lenses had characteristics similar to rubber. Acrylic lenses were between rubber and glass. Scanning electron microscopy revealed smooth dispersion of fibrin on hydrophobic IOLs and a relative lack of fibrin adhesion on hydrophilic materials. These results demonstrate that material properties of various IOL materials are consistent within

  17. Study on magnetic property and fracture behavior of magnetic materials

    International Nuclear Information System (INIS)

    Miya, Kenzo; Demachi, Kazuyuki; Aoto, Kazumi; Nagae, Yuji

    2002-04-01

    Establishment of evaluation methods of material degradation before crack initiation is needed very much to enhance the reliability of structural components. We remark magnetic methods in this report. Our objectives are to reveal the relation between degradation and magnetic property and to develop evaluation methods of material degradation, especially plastic deformation and stress corrosion cracking (SCC). In the former part of this report, evaluation methods for plastic deformation are discussed. At first, the study that shows the relation between the magnetic flux leakage and plastic deformation is reviewed. We developed the inverse analysis method of magnetization to specify the degradation distribution. Moreover, we propose inverse analysis of magnetic susceptibility for quantitative evaluation. In the latter part, the topic is SCC. We measured the magnetic flux leakage from the sample induced a SCC crack (Inconel 600). Inconel 600 is a paramagnetic material at room temperature but the sample shows ferromagnetic and the magnetic flux leakage was changed near the SCC crack. The possibility of detection of a SCC crack is shown by the inverse analysis result from the magnetic flux leakage. Finally, it is recognized by observation of the micro magnetic distributions by using a magnetic force microscope that the magnetization has relation with chromium depletion near grain boundaries and it is weak near the SCC crack. From these results, the magnetic method is very effective for evaluation of degradation. (author)

  18. Effects of material properties on soft contact dynamics

    International Nuclear Information System (INIS)

    Khurshid, A.; Malik, M.A.; Ghafoor, A.

    2009-01-01

    The superiority of deformable human fingertips as compared to hard robot gripper fingers for grasping and manipulation has led to a number of investigations with robot hands employing elastomers or materials such as fluids or powders beneath a membrane at the fingertips. In this paper, to analyze the stability of dynamic control of an object grasped between two soft fingertips through a soft interface using the viscoelastic material between the manipulating fingers and a manipulated object is modeled through bond graph method (BGM). The fingers are made viscoelastic by using springs and dampers. Detailed bond graph modeling (BGM) of the contact phenomenon with two soft-finger contacts considered to be placed against each other on the opposite sides of the grasped object as is generally the case in a manufacturing environment is presented. The stiffness of the springs is exploited in order to achieve the stability in the soft-grasping which includes friction between the soft finger contact surfaces and the object, The paper also analyses stability of dynamic control through a soft interface between a manipulating finger and a manipulated object. It is shown in the paper that the system stability depends on the visco-elastic material properties of the soft interface. Method of root locus is used to analyze this phenomenon. The paper shows how the weight of the object coming downward is controlled by the friction between the fingers and the object during the application of contact forces by varying the damping and the stiffness in the soft finger. (author)

  19. Specialists meeting on properties of primary circuit structural materials including environmental effects

    International Nuclear Information System (INIS)

    1977-01-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials

  20. A comparative study of two different clear aligner systems.

    Science.gov (United States)

    Ercoli, Federica; Tepedino, Michele; Parziale, Vincenzo; Luzi, Cesare

    2014-05-02

    This study aims to compare the 'Nuvola®' system with 'Fantasmino®' system, examine their material properties, and define the indications for use of the aligners. Two groups of patients were selected and were respectively treated with Nuvola® aligner and Fantasmino® system. The goal of treatment has been achieved with the two systems. The two types of aligners have shown differences during the treatment. Fantasmino® system has elastic properties of high performance, but its size does not encourage compliance throughout the day. Nuvola® system determines good tooth movement and its size facilitates the patient's collaboration. In both aligner systems, difficulties were found in the correction of torque information and rotations.

  1. Extended liner performance for hydrodynamics and material properties experiments

    CERN Document Server

    Reinovsky, R E

    2001-01-01

    Summary form only given, as follows. Over the last few years a new application for high performance pulsed power, the production of high energy density environments for the study of material properties under extreme conditions and hydrodynamics in complex geometries has joined the traditional family of radiation source applications. The newly commissioned Atlas pulsed power system at Los Alamos has replaced its predecessor, Pegasus, and joined the Shiva Star system at AFRL, Albuquerque and a variety of flux compression systems, principally at the All Russian Scientific Research Institute of Experimental Physics (VNIIEF) as ultra high current drivers for the high precision, magnetically imploded, near-solid density liner that is used to create the needed environments. Three families of experiments: the production of ultra strong shocks (>10 Mbar), the production of strongly coupled plasmas by liner compression of an initially dense plasma of a few eV temperature, and the compression of a magnetized plasma for ...

  2. Global sensitivity analysis of multiscale properties of porous materials

    Science.gov (United States)

    Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.

    2018-02-01

    Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.

  3. Study of adsorption properties on lithium doped activated carbon materials

    International Nuclear Information System (INIS)

    Los, S.; Daclaux, L.; Letellier, M.; Azais, P.

    2005-01-01

    A volumetric method was applied to study an adsorption coefficient of hydrogen molecules in a gas phase on super activated carbon surface. The investigations were focused on getting the best possible materials for the energy storage. Several treatments on raw samples were used to improve adsorption properties. The biggest capacities were obtain after high temperature treatment at reduced atmosphere. The adsorption coefficient at 77 K and 2 MPa amounts to 3.158 wt.%. The charge transfer between lithium and carbon surface groups via the doping reaction enhanced the energy of adsorption. It was also found that is a gradual decrease in the adsorbed amount of H 2 molecules due to occupation active sites by lithium ions. (author)

  4. Assessment of the material properties of a fire damaged building

    Directory of Open Access Journals (Sweden)

    Oladipupo OLOMO

    2012-12-01

    Full Text Available This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concrete samples, tensile strength test on the steel samples and chemical tests involving the assessment of the quantities of cement, sulphates and chloride concentrations in the samples. A redesign of the building elements was also carried out and the results were compared with the existing design. The non-destructive test results indicated compressive strengths as low as 9.9 N/mm2, the tensile strength test indicated a maximum strength of 397.48 N/mm2 and the chemical test indicated chloride contents as high as 0.534 g per gramme of concrete. These properties deviated significantly from standard requirements. Based on these results, it was concluded that the remains of the building should be demolished.

  5. Analysis of nonlinear optical properties in donor–acceptor materials

    International Nuclear Information System (INIS)

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-01-01

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au 2 S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude

  6. Hygrothermal Material Properties for Soils in Building Science

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. However they are important when numerical simulation of coupled heat and moisture transport for below-grade building components are performed as their temperature and moisture content has an influence on the durability of the below-grade building component. Soils can be classified by soil texture. According to the Unified Soil Classification System (USCA), 12 different soils can be defined on the basis of three soil components: clay, sand, and silt. This study shows how existing material properties for typical American soils can be transferred and used for the calculation of the coupled heat and moisture transport of building components in contact with soil. Furthermore a thermal validation with field measurements under known boundary conditions is part of this study, too. Field measurements for soil temperature and moisture content for two specified soils are carried out right now under known boundary conditions. As these field measurements are not finished yet, the full hygrothermal validation is still missing

  7. Radiological properties of a wax-gypsum compensator material

    International Nuclear Information System (INIS)

    Plessis, F.C.P. du; Willemse, C.A.

    2005-01-01

    In this paper the radiological properties of a compensator material consisting of wax and gypsum is presented. Effective attenuation coefficients (EACs) have been determined from transmission measurements with an ion chamber in a Perspex phantom. Measurements were made at 80 and 100 cm source-to-skin distance (SSD) for beam energies of 6, 8, and 15 MV, for field sizes ranging from narrow beam geometries up to 40x40 cm 2 , and at measurement depths of maximum dose build-up, 5 and 10 cm. A parametrization equation could be constructed to predict the EAC values within 4% uncertainty as a function of field size and depth of measurement. The EAC dependence on off-axis position was also quantified at each beam energy and SSD. It was found that the compensator material reduced the required thickness for compensation by 26% at 8 MV when compared to pure paraffin wax for a 10x10 cm 2 field. Relative surface ionization (RSI) measurements have been made to quantify the effect of scattered electrons from the wax-gypsum compensator. Results indicated that for 80 cm SSD the RSI would exceed 50% for fields larger than 15x15 cm 2 . At 100 cm SSD the RSI values were below 50% for all field sizes used

  8. Hypervelocity penetration against mechanical properties of target materials

    Science.gov (United States)

    Kamarudin, Khairul Hasni; Abdullah, Mohamad Faizal; Zaidi, Ahmad Mujahid Ahmad; Nor, Norazman M.; Ismail, Ariffin; Yusof, Mohammed Alias; Hilmi, Ahmad Humaizi

    2018-02-01

    This paper study the mechanical properties behavior of metal plates against hypervelocity penetration caused by shaped charge. Five different materials were used as target specimen fabricated from welded stacks of material plates, namely Rolled Homogeneous Armor (RHA), Hardox-500, mild steel, aluminum and brass. Specimens had undergone an initial monolithic test consist of tensile tests and microstructure observations, followed by series of hydrodynamics penetration blast tests using shape charge mechanism. Results from blast test shows that the least penetrated specimen is RHA (58mm) followed by Hardox-500 (92 mm), mild steel (110 mm), Brass (155 mm) and aluminum 238 mm). Comparing these with the specimen yield strength from the tensile test results shows that Hardox-500 has higher yield strength (Sy) followed by RHA, mild steel, brass and aluminum, which are 1370 MPa, 1320 MPa, 280,221 respectively, which are not inversely proportional to the penetration. However, the ultimate tensile strength (Sut) where the RHA were the highest followed by Hardox-500, mild steel, brass and aluminum, were inversely proportional with the depth of penetration. The penetration results also show consistence relation with energy absorption.

  9. Alignment validation

    Energy Technology Data Exchange (ETDEWEB)

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  10. Electrical and optoelectronic properties of two-dimensional materials

    Science.gov (United States)

    Wang, Qiaoming

    Electrical and optoelectronic properties of bulk semiconductor materials have been extensively explored in last century. However, when reduced to one-dimensional and two-dimensional, many semiconductors start to show unique electrical and optoelectronic behaviors. In this dissertation, electrical and optoelectronic properties of one-dimensional (nanowires) and two-dimensional semiconductor materials are investigated by various techniques, including scanning photocurrent microscopy, scanning Kelvin probe microscopy, Raman spectroscopy, photoluminescence, and finite-element simulations. In our work, gate-tunable photocurrent in ZnO nanowires has been observed under optical excitation in the visible regime, which originates from the nanowire/substrate interface states. This gate tunability in the visible regime can be used to enhance the photon absorption efficiency, and suppress the undesirable visible-light photodetection in ZnO-based solar cells. The power conversion efficiency of CuInSe2/CdS core-shell nanowire solar cells has been investigated. The highest power conversion efficiency per unit area/volume is achieved with core diameter of 50 nm and the thinnest shell thickness. The existence of the optimal geometrical parameters is due to a combined effect of optical resonances and carrier transport/dynamics. Significant current crowding in two-dimensional black phosphorus field-effect transistors has been found, which has been significantly underestimated by the commonly used transmission-line model. This current crowding can lead to Joule heating close to the contacts. New van der Waals metal-semiconductor junctions have been mechanically constructed and systematically studied. The photocurrent on junction area has been demonstrated to originate from the photothermal effect rather than the photovoltaic effect. Our findings suggest that a reasonable control of interface/surface state properties can enable new and beneficial functionalities in nanostructures. We

  11. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  12. Characterization of electrical and optical properties of silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Guobin

    2009-12-04

    In this work, the electrical and luminescence properties of a series of silicon based materials used for photovoltaics, microelectronics and nanoelectronics have been investigated by means of electron beam induced current (EBIC), cathodoluminescence (CL), photoluminescence (PL) and electroluminescence (EL) methods. Photovoltaic materials produced by block casting have been investigated by EBIC on wafers sliced from different parts of the ingot. Various solar cell processings have been compared in parallel wafers by means of EBIC collection efficiency measurements and contrast-temperature C(T) behaviors of the extended defects, i. e. dislocations and grain boundaries (GBs). It was found that the solar cell processing with phosphorus diffusion gettering (PDG) followed with a SiN firing greatly reduces the recombination activity of extended defects at room temperature, and improves the bulk property simultaneously. A remaining activity of the dislocations indicates the limitation of the PDG at extended defects. Abnormal behavior of the dislocation activity after certain solar cell processes was also observed in the region with high dislocation density, the dislocations are activated after certain solar cell processings. In order to evaluate the properties of a thin polycrystalline silicon layer prepared by Al-induced layer exchange (Alile) technique, epitaxially layer grown on silicon substrate with different orientations was used as a model system to investigate the impact by the process temperature and the substrates. EBIC energy dependent collection efficiency measurements reveal an improvement of the epilayer quality with increasing substrate temperature during the growth from 450 C to 650 C, and a decrease of epilayer quality at 700 C. PL measurements on the epitaxially grown Si layer on silicon substrates revealed no characteristic dislocation-related luminescence (DRL) lines at room temperature and 77 K, while in the samples prepared by Alile process, intense

  13. Assessing material properties for fusion applications by ion beams

    Science.gov (United States)

    Catarino, N.; Dias, M.; Jepu, I.; Alves, E.

    2017-10-01

    The plasma-facing materials in the ITER divertor area must withstand unusual events, such as the edge-localized modes (ELMS). At the point when an ELM occurs, up to 30% of the energy can be deposited on the plasma-facing boundary in the form of the heat and particle load causing material loss due to sublimation. Tungsten is a promising candidate as a plasma-facing material in the ITER divertor area since it has a high melting point, good thermal conductivity and low sputtering yield, which minimizes the plasma contamination. However their brittleness at low temperatures which is worsened by irradiation is an issue. One strategy to modulate the properties of tungsten is alloying this element with other refractory metals, such as tantalum that shows higher toughness, lower activation and higher radiation resistance. In the present study tungsten-tantalum alloys (W-Ta) were produced by Ta implantation. The fundamental mechanisms which govern the behaviour of defect dynamics in W-Ta materials under reactor conditions, were simulated by the implantation of He and D. The microstructure observations of the W plates that after single Ta implantation revealed crater-like cavities and a more severe effect after D implantation. The effect increase with the increasing of D fluence. However at fluences higher than 1021D/m the effect is reduced. In addition, blistering was observed in W-Ta plates implanted with He. The D retention in the W-Ta alloys increases with the implanted fluence with tendency for saturation for high fluences. Moreover the results show that D retention is higher after sequential He and D implantation than for single D implantation. The diffractogram of W-Ta alloys implanted with He evidenced the presence of broadened W peaks associated with stress induced by irradiation, which may cause internal stress field resulting in a distortion of the crystal lattice. These irradiation defects can be observed in the D release spectra where three peaks are associated

  14. Optical and physical properties of ceramic crystal laser materials

    Science.gov (United States)

    Simmons, Jed A.

    Historically ceramic crystal laser material has had disadvantages compared to single crystal laser material. However, progress has been made in the last decade and a half to overcome the disadvantages associated with ceramic crystal. Today, because of the promise of ceramic crystal as a high power laser material, investigation into its properties, both physical and optical, is warranted and important. Thermal expansion was measured in this thesis for Nd:YAG (yttrium aluminum garnet) ceramic crystal using an interferometric method. The interferometer employed a spatially filtered HeNe at 633 nm wavelength. Thermal expansion coefficients measured for the ceramic crystal samples were near the reported values for single crystal Nd:YAG. With a similar experimental setup as that for the thermal expansion measurements, dn/dT for ceramic crystal Nd:YAG was measured and found to be slightly higher than the reported value for single crystal. Depolarization loss due to thermal gradient induced stresses can limit laser performance. As a result this phenomenon was modeled for ceramic crystal materials and compared to single crystals for slab and rod shaped gain media. This was accomplished using COMSOL Multiphysics, and MATLAB. Results indicate a dependence of the depolarization loss on the grain size where the loss decreases with decreased grain size even to the point where lower loss may be expected in ceramic crystals than in single crystal samples when the grain sizes in the ceramic crystal are sufficiently small. Deformation-induced thermal lensing was modeled for a single crystal slab and its relevance to ceramic crystal is discussed. Data indicates the most notable cause of deformation-induced thermal lensing is a consequence of the deformation of the top and bottom surfaces. Also, the strength of the lensing along the thickness is greater than the width and greater than that due to other causes of lensing along the thickness of the slab. Emission spectra, absorption

  15. Recommended reference materials for realization of physicochemical properties pressure-volume-temperature relationships

    CERN Document Server

    Herington, E F G

    1977-01-01

    Recommended Reference Materials for Realization of Physicochemical Properties presents recommendations of reference materials for use in measurements involving physicochemical properties, namely, vapor pressure; liquid-vapor critical temperature and critical pressure; orthobaric volumes of liquid and vapor; pressure-volume-temperature properties of the unsaturated vapor or gas; and pressure-volume-temperature properties of the compressed liquid. This monograph focuses on reference materials for vapor pressures at temperatures up to 770 K, as well as critical temperatures and critical pressures

  16. Combining adhesive contact mechanics with a viscoelastic material model to probe local material properties by AFM.

    Science.gov (United States)

    Ganser, Christian; Czibula, Caterina; Tscharnuter, Daniel; Schöberl, Thomas; Teichert, Christian; Hirn, Ulrich

    2017-12-20

    Viscoelastic properties are often measured using probe based techniques such as nanoindentation (NI) and atomic force microscopy (AFM). Rarely, however, are these methods verified. In this article, we present a method that combines contact mechanics with a viscoelastic model (VEM) composed of springs and dashpots. We further show how to use this model to determine viscoelastic properties from creep curves recorded by a probe based technique. We focus on using the standard linear solid model and the generalized Maxwell model of order 2. The method operates in the range of 0.01 Hz to 1 Hz. Our approach is suitable for rough surfaces by providing a defined contact area using plastic pre-deformation of the material. The very same procedure is used to evaluate AFM based measurements as well as NI measurements performed on polymer samples made from poly(methyl methacrylate) and polycarbonate. The results of these measurements are then compared to those obtained by tensile creep tests also performed on the same samples. It is found that the tensile test results differ considerably from the results obtained by AFM and NI methods. The similarity between the AFM results and NI results suggests that the proposed method is capable of yielding results comparable to NI but with the advantage of the imaging possibilities of AFM. Furthermore, all three methods allowed a clear distinction between PC and PMMA by means of their respective viscoelastic properties.

  17. Colour and Optical Properties of Materials: An Exploration of the Relationship Between Light, the Optical Properties of Materials and Colour

    Science.gov (United States)

    Tilley, Richard J. D.

    2003-05-01

    Colour is an important and integral part of everyday life, and an understanding and knowledge of the scientific principles behind colour, with its many applications and uses, is becoming increasingly important to a wide range of academic disciplines, from physical, medical and biological sciences through to the arts. Colour and the Optical Properties of Materials carefully introduces the science behind the subject, along with many modern and cutting-edge applications, chose to appeal to today's students. For science students, it provides a broad introduction to the subject and the many applications of colour. To more applied students, such as engineering and arts students, it provides the essential scientific background to colour and the many applications. Features: * Introduces the science behind the subject whilst closely connecting it to modern applications, such as colour displays, optical amplifiers and colour centre lasers * Richly illustrated with full-colour plates * Includes many worked examples, along with problems and exercises at the end of each chapter and selected answers at the back of the book * A Web site, including additional problems and full solutions to all the problems, which may be accessed at: www.cardiff.ac.uk/uwcc/engin/staff/rdjt/colour Written for students taking an introductory course in colour in a wide range of disciplines such as physics, chemistry, engineering, materials science, computer science, design, photography, architecture and textiles.

  18. EXAMINING COMFORT PROPERTIES OF LEATHER and ARTIFICIAL LEATHER COVER MATERIALS

    OpenAIRE

    ÇETİN Münire Sibel; KARABAY Gülseren; ÖZTÜRK Hasan; KURUMER Gülseren

    2016-01-01

    The analysis and regulation of workplace, working instruments, the comfort of office chair, business environment (sound, lighting, climate, vibration, temperature, and humidity), work and break times, analysis and editing of the organization, are some of the topics of interest of ergonomics. Environmental impact and conditions have important role on the employee’s working comfortably and efficiently. Therefore these conditions need to be aligned to the human body nature. Unsuitable working co...

  19. Ab initio simulations for material properties inside Jupiter

    Science.gov (United States)

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Wicht, Johannes; Redmer, Ronald

    2013-07-01

    The behavior of warm dense matter is of paramount importance for interior and dynamo models for solar and extrasolar giant planets. For instance, nonmetal-to-metal transitions (e.g. metallization in hydrogen), demixing phenomena (in H-He or C-N-O-H mixtures), and new exotic phases (e.g. with proton conduction in water and ammonia) may occur at high pressures and elevated temperatures. These effects have to be taken into account consistently in corresponding planetary models. Therefore, we apply ab initio molecular dynamics simulations based on finite-temperature density functional theory to calculate thermophysical properties of warm dense matter. In particular we determine the equation of state (thermal and caloric), material (sound velocity, specific heat) and transport properties (electrical and thermal conductivity, viscosity, diffusion coefficient) along the adiabat of Jupiter, i.e. from ambient conditions up to the multi-megabar range [1,2]. This ab initio data set can be used as input in future interior (structure) and dynamo models (magnetic fields, flow dynamics) for this planet. Similar data sets can also be compiled for interior conditions of other solar giant planets so that important problems such as the size of planetary cores necessary for the accretion of gaseous (H/He) or icy (C-N-O hydrides) envelopes, the origin, location and stability of layer boundaries, or the source of an excess (e.g. Saturn) or deficit luminosity (e.g. Uranus) can be studied. The increasing sample of extrasolar planets poses new questions that can be addressed based on such ab initio data sets, e.g. to explain the wide range of radii for planets with similar mass. [1] N. Nettelmann, A. Becker, B. Holst, R. Redmer, Astrophys. J. 750, 52 (2012). [2] M. French, A. Becker, W. Lorenzen, N. Nettelmann, M. Bethkenhagen, J. Wicht, R. Redmer, Astrophys. J. Suppl. Ser. 202, 5 (2012).

  20. Thermal Properties of Consolidated Granular Salt as a Backfill Material

    Science.gov (United States)

    Paneru, Laxmi P.; Bauer, Stephen J.; Stormont, John C.

    2018-03-01

    Granular salt has been proposed as backfill material in drifts and shafts of a nuclear waste disposal facility where it will serve to conduct heat away from the waste to the host rock. Creep closure of excavations in rock salt will consolidate (reduce the porosity of) the granular salt. This study involved measuring the thermal conductivity and specific heat of granular salt as a function of porosity and temperature to aid in understanding how thermal properties will change during granular salt consolidation accomplished at pressures and temperatures consistent with a nuclear waste disposal facility. Thermal properties of samples from laboratory-consolidated granular salt and in situ consolidated granular salt were measured using a transient plane source method at temperatures ranging from 50 to 250 °C. Additional measurements were taken on a single crystal of halite and dilated polycrystalline rock salt. Thermal conductivity of granular salt decreased with increases in temperature and porosity. Specific heat of granular salt at lower temperatures decreased with increasing porosity. At higher temperatures, porosity dependence was not apparent. The thermal conductivity and specific heat data were fit to empirical models and compared with results presented in the literature. At comparable densities, the thermal conductivities of granular salt samples consolidated hydrostatically in this study were greater than those measured previously on samples formed by quasi-static pressing. Petrographic studies of the consolidated salt indicate that the consolidation method influenced the nature of the porosity; these observations are used to explain the variation of measured thermal conductivities between the two consolidation methods. Thermal conductivity of dilated polycrystalline salt was lower than consolidated salt at comparable porosities. The pervasive crack network along grain boundaries in dilated salt impedes heat flow and results in a lower thermal conductivity

  1. Hyperelastic Material Properties of Mouse Skin under Compression.

    Directory of Open Access Journals (Sweden)

    Yuxiang Wang

    Full Text Available The skin is a dynamic organ whose complex material properties are capable of withstanding continuous mechanical stress while accommodating insults and organism growth. Moreover, synchronized hair cycles, comprising waves of hair growth, regression and rest, are accompanied by dramatic fluctuations in skin thickness in mice. Whether such structural changes alter skin mechanics is unknown. Mouse models are extensively used to study skin biology and pathophysiology, including aging, UV-induced skin damage and somatosensory signaling. As the skin serves a pivotal role in the transfer function from sensory stimuli to neuronal signaling, we sought to define the mechanical properties of mouse skin over a range of normal physiological states. Skin thickness, stiffness and modulus were quantitatively surveyed in adult, female mice (Mus musculus. These measures were analyzed under uniaxial compression, which is relevant for touch reception and compression injuries, rather than tension, which is typically used to analyze skin mechanics. Compression tests were performed with 105 full-thickness, freshly isolated specimens from the hairy skin of the hind limb. Physiological variables included body weight, hair-cycle stage, maturity level, skin site and individual animal differences. Skin thickness and stiffness were dominated by hair-cycle stage at young (6-10 weeks and intermediate (13-19 weeks adult ages but by body weight in mature mice (26-34 weeks. Interestingly, stiffness varied inversely with thickness so that hyperelastic modulus was consistent across hair-cycle stages and body weights. By contrast, the mechanics of hairy skin differs markedly with anatomical location. In particular, skin containing fascial structures such as nerves and blood vessels showed significantly greater modulus than adjacent sites. Collectively, this systematic survey indicates that, although its structure changes dramatically throughout adult life, mouse skin at a given

  2. Synthesis, characterization, and properties of low-dimensional nanostructured materials

    Science.gov (United States)

    Hu, Xianluo

    2007-05-01

    Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely

  3. Bone material properties in premenopausal women with idiopathic osteoporosis

    Science.gov (United States)

    Misof, BM; Gamsjaeger, S; Cohen, A; Hofstetter, B; Roschger, P; Stein, E; Nickolas, TL; Rogers, HF; Dempster, D; Zhou, H; Recker, R; Lappe, J; McMahon, D; Paschalis, EP; Fratzl, P; Shane, E; Klaushofer, K

    2012-01-01

    Idiopathic osteoporosis (IOP) in premenopausal women is characterized by fragility fractures at low or normal bone mineral density (BMD) in otherwise healthy women with normal gonadal function. Histomorphometric analysis of transiliac bone biopsy samples has revealed microarchitectural deterioration of cancellous bone and thinner cortices. To examine bone material quality, we measured the bone mineralization density distribution (BMDD) in biopsy samples by quantitative backscattered electron imaging (qBEI), and mineral/matrix ratio, mineral crystallinity/maturity, relative proteoglycan content and collagen cross-link ratio at actively bone forming trabecular surfaces by Raman and Fourier Transform Infrared (FTIRM) microspectroscopic techniques. The study groups included: premenopausal women with idiopathic fractures (IOP, n=45), or idiopathic low BMD (Z-score ≤-2.0 at spine and/or hip) but no fractures (ILBMD, n=19), and healthy controls (CONTROL, n=38). BMDD of cancellous bone showed slightly lower mineral content in IOP (both Cn.CaMean and Cn.CaPeak are 1.4% lower) and in ILBMD (both are 1.6% lower, p<0.05) versus CONTROL, but no difference between IOP and ILBMD. Similar differences were found when affected groups were combined versus CONTROL. The differences remained significant after adjustment for mineralizing surface (MS/BS), suggesting that the reduced mineralization of bone matrix cannot be completely accounted for by differences in bone turnover. Raman and FTIRM analysis at forming bone surfaces showed no differences between combined IOP/ILBMD groups versus CONTROL, with the exceptions of increased proteoglycan content per mineral content and increased collagen cross-link ratio. When the two affected subgroups were considered individually, mineral/matrix ratio and collagen cross-link ratio were higher in IOP than ILBMD. In conclusion, our findings suggest that bone material properties differ between premenopausal women with IOP/ILBMD and normal controls

  4. Fe-based composite materials with improved mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Werniewicz, Katarzyna [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Kuehn, Uta; Mattern, Norbert; Eckert, Juergen; Schultz, Ludwig [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kulik, Tadeusz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland)

    2008-07-01

    Following a previous study by the authors two new compositions (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 91}C{sub 9} and (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} have been developed with the aim of improving the ductility of Fe{sub 65.5}Cr{sub 4}Mo{sub 4}Ga{sub 4}P{sub 12}C{sub 5}B{sub 5.5} bulk metallic glass (BMG). In contrast to the alloys in that study, the recently prepared Fe-based materials are Ga-free. It was expected that the variations in the composition will lead to the changes in the phase formation and, hence, in the mechanical response of the investigated alloys. It was recognized that in-situ formed Fe-based composites show superior plasticity ({epsilon}{sub pl}{approx}37%) for the alloy with lower C content and ({epsilon}{sub pl}{approx}4%) for the alloy with higher C content compared to monolithic glass ({epsilon}{sub pl}{approx}0.2%). Furthermore, on the basis of present as well as previous investigations it has been shown that the Ga addition is beneficial for the plasticity of these Fe-based alloys. It was observed that the (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} alloy exhibits a significantly smaller fracture strain ({epsilon}{sub f}{approx}5%) compared to its Ga-containing counterpart ({epsilon}{sub f}{approx}16%). Therefore, it can be concluded that appropriate alloying additions are crucial in enhancing the mechanical properties of the complex Fe-based materials developed here.

  5. Module 6--Aligned and Balanced Curriculum. School Improvement Specialist Training Materials: Performance Standards, Improving Schools, and Literature Review

    Science.gov (United States)

    Appalachia Educational Laboratory at Edvantia (NJ1), 2005

    2005-01-01

    The School Improvement Specialist Project prepared seven modules. School improvement specialists, as defined by the Appalachia Educational Laboratory at Edvantia, are change agents who work with schools to help them improve in the following areas so as to increase student achievement. These modules are intended to provide training materials for…

  6. Learning-Goals-Driven Design Model: Developing Curriculum Materials that Align with National Standards and Incorporate Project-Based Pedagogy

    Science.gov (United States)

    Krajcik, Joseph; McNeill, Katherine L.; Reiser, Brian J.

    2008-01-01

    Reform efforts in science education emphasize the importance of rigorous treatment of science standards and use of innovative pedagogical approaches to make science more meaningful and successful. In this paper, we present a learning-goals-driven design model for developing curriculum materials, which combines national standards and a…

  7. Structural properties of laminated Douglas fir/epoxy composite material

    Energy Technology Data Exchange (ETDEWEB)

    Spera, D.A. (National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center); Esgar, J.B. (Sverdrup Technology, Inc., Cleveland, OH (USA)); Gougeon, M.; Zuteck, M.D. (Gougeon Bros., Bay City, MI (USA))

    1990-05-01

    This publication contains a compilation of static and fatigue and strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 in. by 24 in. in cross section and approximately 30 ft long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications. 9 refs.

  8. Irradiation effect on electrical properties of polyimide insulating material

    International Nuclear Information System (INIS)

    Borisova, M.Eh.; Kojkov, S.N.; Skornyakov, Yu.A.; Stepanov, A.N.

    1987-01-01

    The effect of irradiation on electric strength, dielectric properties and conductivity of polyimide glass varnished cloth LSN-180, suggested as electric insulation for the T-15 thermonuclear facility winding, is investigated. The effect of Co 60 source γ-radiation with 1.4 MeV quanta on the processes of electric aging of glass varnished cloth LSN-180 has been studied for the first time. It is shown that the effect of ionizing radiation results in the decrease of the glass varnished cloth lifetime. Lifetimes of preliminarily irradiated samples are 7-8 times lower, and in the case of simultaneous effect of γ-radiation and alternating electric field are approximately 20 times lower than the lifetime of initial glass varnished cloth. No decrease in the lifetime of glass varnished cloth as a result of irradiation in direct electric field was detected. Evaluation of serviceability of electric insulation intended for the operation in radiation effect zone, should be made according to the results of material resource tests inder conditions of simultaneous effect ofelectric field and radiation. No correlation between the change in short-term electric strength and service life of glass varnished cloth as a result of irradiation is observed. The absence of partial discharges in the process of electric field levelling in a sample using semiconducting coatings testifies to the good quality of impregnation by polyimide varnishes of the initial glass varnished cloth

  9. Optimal reconstruction of material properties in complex multiphysics phenomena

    Science.gov (United States)

    Bukshtynov, Vladislav; Protas, Bartosz

    2013-06-01

    We develop an optimization-based approach to the problem of reconstructing temperature-dependent material properties in complex thermo-fluid systems described by the equations for the conservation of mass, momentum and energy. Our goal is to estimate the temperature dependence of the viscosity coefficient in the momentum equation based on some noisy temperature measurements, where the temperature is governed by a separate energy equation. We show that an elegant and computationally efficient solution of this inverse problem is obtained by formulating it as a PDE-constrained optimization problem which can be solved with a gradient-based descent method. A key element of the proposed approach, the cost functional gradients are characterized by mathematical structure quite different than in typical problems of PDE-constrained optimization and are expressed in terms of integrals defined over the level sets of the temperature field. Advanced techniques of integration on manifolds are required to evaluate numerically such gradients, and we systematically compare three different methods. As a model system we consider a two-dimensional unsteady flow in a lid-driven cavity with heat transfer, and present a number of computational tests to validate our approach and illustrate its performance.

  10. Study of materials properties by neutron beam applications

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Kim, H. J.; Kim, B. C.; Jun, B. C.; Lee, J. S.; Seong, B. S.; Shim, H. S.; Choi, B. H.; Ho, J. W.; Kang, S. K.; Kim, J. Y.; Park, D. K.; Kim, C. K.; Kim, C. J.; Cho, Y. S.

    1997-10-01

    Horizontal and vertical beam ports related works for neutron beam experimental facilities in HANARO has been done. And the preparation works of neutron spectrometers, design, manufacture and installation of the high resolution powder diffractometer, the four circle diffractometer, the polarized neutron spectrometer, the small angle neutron spectrometer and the position sensitive detector unit for residual stress measurement have been done. The status for each spectrometer are described. The development of neutron spectroscopy technique for the crystal structure analysis on YBa 2 Cu 3 O 7-x , U 3 Si, Pb(Yb,Nb)O 3 by neutron diffraction, the anisotropic properties of textured orthorhombic polycrystalline materials and the low temperature sample environment facility has been performed and neutron reflectometry has been reviewed. After the design and manufacture of neutron radiography facility, it has been installed at NR beam tube and its' performance evaluation has been done. The image processing technique for real time testing is under development. As for neutron transmutation doping, design of irradiation tube, estimation on neutron flux distribution and flux quality, and study of irradiation damage recovery under annealing have been tried. (author). 11 refs., 40 tabs., 86 figs.

  11. Three-dimensional magnetic properties of soft magnetic composite materials

    International Nuclear Information System (INIS)

    Lin, Z.W.; Zhu, J.G.

    2007-01-01

    A three-dimensional (3-D) magnetic property measurement system, which can control the three components of the magnetic flux density B vector and measure the magnetic field strength H vector in a cubic sample of soft magnetic material, has been developed and calibrated. This paper studies the relationship between the B and H loci in 3-D space, and the power losses features of a soft magnetic composite when the B loci are controlled to be circles with increasing magnitudes and ellipses evolving from a straight line to circle in three orthogonal planes. It is found that the B and H loci lie in the same magnetization plane, but the H loci and power losses strongly depend on the orientation, position, and process of magnetization. On the other hand, the H vector evolves into a unique locus, and the power loss approaches a unique value, respectively, when the B vector evolves into the round locus with the same magnitude from either a series of circles or ellipses

  12. Advanced aligner orthodontics

    OpenAIRE

    Ojima Kenji

    2017-01-01

    Invisalign initially had limitations which have now been overcome.Advances in the quality of aligner materials, attachments and the introduction of a new force system, have expanded the range of treatment possibilities from severe crowding to more difficult extraction cases, open bite cases, and lower molar distalization cases.

  13. Advanced aligner orthodontics

    Directory of Open Access Journals (Sweden)

    Ojima Kenji

    2017-01-01

    Full Text Available Invisalign initially had limitations which have now been overcome.Advances in the quality of aligner materials, attachments and the introduction of a new force system, have expanded the range of treatment possibilities from severe crowding to more difficult extraction cases, open bite cases, and lower molar distalization cases.

  14. New multifunctional lightweight materials based on cellular metals - manufacturing, properties and applications

    International Nuclear Information System (INIS)

    Stephani, Guenter; Quadbeck, Peter; Andersen, Olaf

    2009-01-01

    Cellular metallic materials are a new class of materials which have been the focus of numerous scientific studies over the past few years. The increasing interest in cellular metals is due to the fact that the introduction of pores into the materials significantly lowers the density. These highly porous materials also possess combinations of properties which are not possible to achieve with other materials. Besides the drastic weight and material savings that arise from the cell structure, there are also other application-specific benefits such as noise and energy absorption, heat insulation, mechanical damping, filtration effects and also catalytic properties. Cellular metallic materials are hence multi-functional lightweight materials.

  15. Layer-dependent electronic properties of phosphorene-like materials and phosphorene-based van der Waals heterostructures.

    Science.gov (United States)

    Huang, Y C; Chen, X; Wang, C; Peng, L; Qian, Q; Wang, S F

    2017-06-29

    Black phosphorus is a layered semiconducting allotrope of phosphorus with high carrier mobility. Its monolayer form, phosphorene, is an extremely fashionable two-dimensional material which has promising potential in transistors, optoelectronics and electronics. However, phosphorene-like analogues, especially phosphorene-based heterostructures and their layer-controlled electronic properties, are rarely systematically investigated. In this paper, the layer-dependent structural and electronic properties of phosphorene-like materials, i.e., mono- and few-layer MXs (M = Sn, Ge; X = S, Se), are first studied via first-principles calculations, and then the band edge position of these MXs as well as mono- and few-layer phosphorene are aligned. It is revealed that van der Waals heterostructures with a Moiré superstructure formed by mutual coupling among MXs and among MXs and few-layer phosphorene are able to show type-I or type-II characteristics and a I-II or II-I transition can be induced by adjusting the number of layers. Our work is expected to yield a new family of phosphorene-based semiconductor heterostructures with tunable electronic properties through altering the number of layers of the composite.

  16. Design Paradigm Utilizing Reversible Diels-Alder Reactions to Enhance the Mechanical Properties of 3D Printed Materials.

    Science.gov (United States)

    Davidson, Joshua R; Appuhamillage, Gayan A; Thompson, Christina M; Voit, Walter; Smaldone, Ronald A

    2016-07-06

    A design paradigm is demonstrated that enables new functional 3D printed materials made by fused filament fabrication (FFF) utilizing a thermally reversible dynamic covalent Diels-Alder reaction to dramatically improve both strength and toughness via self-healing mechanisms. To achieve this, we used as a mending agent a partially cross-linked terpolymer consisting of furan-maleimide Diels-Alder (fmDA) adducts that exhibit reversibility at temperatures typically used for FFF printing. When this mending agent is blended with commercially available polylactic acid (PLA) and printed, the resulting materials demonstrate an increase in the interfilament adhesion strength along the z-axis of up to 130%, with ultimate tensile strength increasing from 10 MPa in neat PLA to 24 MPa in fmDA-enhanced PLA. Toughness in the z-axis aligned prints increases by up to 460% from 0.05 MJ/m(3) for unmodified PLA to 0.28 MJ/m(3) for the remendable PLA. Importantly, it is demonstrated that a thermally reversible cross-linking paradigm based on the furan-maleimide Diels-Alder (fmDA) reaction can be more broadly applied to engineer property enhancements and remending abilities to a host of other 3D printable materials with superior mechanical properties.

  17. Pareto optimal pairwise sequence alignment.

    Science.gov (United States)

    DeRonne, Kevin W; Karypis, George

    2013-01-01

    Sequence alignment using evolutionary profiles is a commonly employed tool when investigating a protein. Many profile-profile scoring functions have been developed for use in such alignments, but there has not yet been a comprehensive study of Pareto optimal pairwise alignments for combining multiple such functions. We show that the problem of generating Pareto optimal pairwise alignments has an optimal substructure property, and develop an efficient algorithm for generating Pareto optimal frontiers of pairwise alignments. All possible sets of two, three, and four profile scoring functions are used from a pool of 11 functions and applied to 588 pairs of proteins in the ce_ref data set. The performance of the best objective combinations on ce_ref is also evaluated on an independent set of 913 protein pairs extracted from the BAliBASE RV11 data set. Our dynamic-programming-based heuristic approach produces approximated Pareto optimal frontiers of pairwise alignments that contain comparable alignments to those on the exact frontier, but on average in less than 1/58th the time in the case of four objectives. Our results show that the Pareto frontiers contain alignments whose quality is better than the alignments obtained by single objectives. However, the task of identifying a single high-quality alignment among those in the Pareto frontier remains challenging.

  18. Electronic Properties of Low-Dimensional Materials Under Periodic Potential

    Science.gov (United States)

    Jamei, Mehdi

    In the quest for the further miniaturization of electronic devices, numerous fabrication techniques have been developed. The semiconductor industry has been able to manifest miniaturization in highly complex and ultra low-power integrated circuits and devices, transforming almost every aspect of our lives. However, we may have come very close to the end of this trend. While advanced machines and techniques may be able to overcome technological barriers, theoretical and fundamental barriers are inherent to the top-down miniaturization approach and cannot be circumvented. As a result, the need for novel and natural alternatives to replace old materials is valued now more than ever. Fortunately, there exists a large group of materials that essentially has low-dimensional (quasi-one- or quasi-two-dimensional) structures. Graphene, a two-dimensional form of carbon, which has attracted a lot of attention in recent years, is a perfect example of a prime material from this group. Niobium tri-selenide (NbSe3), from a family of trichalcogenides, has a highly anisotropic structure and electrical conductivity. At sufficiently low temperatures, NbSe3 also exhibits two independent "sliding charge density waves"-- an exciting phenomenon, which could be altered by changing the overall size of the material. In NbSe3 (and Blue Bronze K0.3MoO3 which has a similar structure and electrical behavior), the effect of a periodic potential could be seen in creating a charge density wave (CDW) that is incommensurate to the underlying lattice. The required periodic potential is provided by the crystal ions when ordered in a particular way. The consequence is a peculiar non-linear conductivity behavior, as well as a unique narrow-band noise spectrum. Theoretical and experimental studies have concluded that the dynamic properties of resulting CDW are directly related to the crystal impurity density, and other pinning potentials. Therefore, reducing the overall size of the crystal could

  19. Field-Induced Texturing of Ceramic Materials for Unparalleled Properties

    Science.gov (United States)

    2017-03-01

    6.2 High -Temperature DSC Characterization under Applied Magnetic Field 43 6.3 Magnetic Field Texturing of Epoxy Samples 45 6.4 Magnetic Field...noncubic alumina (Al2O3) through magnetic alignment of particles during forming and heat treatment, microwave-enhanced densification, and high -energy field...measured at a heating rate of 10 °C/min Figure 38 shows the ORNL DSC data under the absence of magnetic field (0 T) and the presence of a high -magnetic

  20. Mechanical properties of the beetle elytron, a biological composite material

    Science.gov (United States)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  1. Material physical properties of 12 chromium ferritic steel

    International Nuclear Information System (INIS)

    Ando, Masanori; Wakai, Takashi; Aoto, Kazumi

    2003-09-01

    High chromium ferritic steel is an attractive candidate for structural material of the next Fast Breeder Reactor, since both of thermal properties and high temperature strength of the steel are superior to those of conventional austenitic stainless steels. In this study, physical properties of 12Cr steels are measured and compared to those obtained in the previous studies to discuss about stochastic dispersions. The effect of measurement technique on Young's modulus and the influence of the specimen size on coefficient of thermal expansion are also investigated. The following conclusions are obtained. (1) Young's modulus of 12Cr steels obtained in this study tends to larger than those obtained in the previous studies especially in high temperature. Such a discrepancy is resulted from the difference in measurement technique. It was clarified that Young's modulus obtained by free vibration method is more adequate those obtained by the cantilever characteristic vibration method. Therefore, the authors recommend using the values obtained by free vibration method as Young's modulus of 12Cr steels. (2) Both instant and mean coefficient of thermal expansion of 12Cr steels obtained in this study is in a good agreement with those obtained in the previous studies. However, the obviously different values are obtained from the measurement by large size specimens. Such a discrepancy is resulted from heterogeneous during heating process of the specimens. Therefore, the authors recommend using the values obtained by φ4 x 20 mm specimens as instant and mean coefficient of thermal expansion of 12Cr steels. (3) Specific heat of 12Cr steels obtained in this study agree with those obtained in the previous studies with a few exceptions. (4)Thermal conductivity of 12Cr steels obtained in this study agree with those obtained in the previous studies. (5) It was confirmed that instant and mean coefficient of thermal expansion, density, specific heat and thermal conductivity of 12Cr steels

  2. Beyond Alignment

    DEFF Research Database (Denmark)

    Beyond Alignment: Applying Systems Thinking to Architecting Enterprises is a comprehensive reader about how enterprises can apply systems thinking in their enterprise architecture practice, for business transformation and for strategic execution. The book's contributors find that systems thinking...... is a valuable way of thinking about the viable enterprise and how to architect it....

  3. Materials science in microelectronics II the effects of structure on properties in thin films

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    The subject matter of thin-films - which play a key role in microelectronics - divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: Electrical properties Magnetic properties Optical properties Mechanical properties Mass transport properties Interface and junction properties Defects and properties Captures the importance of thin films to microelectronic development Examines the cause / effect relationship of structure on thin film properties.

  4. Mechanical properties of structural materials for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Kim, D. W.; Park, J. Y.; Kim, W. G.; Yoon, J. H.

    2011-08-01

    Structural materials for high temperature gas cooled reactor should have good properties such as mechanical properties (tensile, creep, fatigue, creep-fatigue), microstructural stability, interaction between metal and gas, friction and wear, hydrogen and tritium permeation, irradiation behavior, corrosion by impurity in He. Mechanical properties of major structural materials, such as pressure vessel, heat exchanger, control rod, were investigated. Effect of He and irradiation on these structural materials were investigated

  5. Technical Progress Report for "Optical and Electrical Properties of III-Nitrides and Related Materials"

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongxing

    2008-10-31

    Investigations have been conducted focused on the fundamental material properties of AIN and high AI-content AIGaN alloys and further developed MOCVD growth technologies for obtaining these materials with improved crystalline quality and conductivities.

  6. Application for managing model-based material properties for simulation-based engineering

    Science.gov (United States)

    Hoffman, Edward L [Alameda, CA

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  7. Availability and properties of materials for the Fakse Landfill biocover

    DEFF Research Database (Denmark)

    Pedersen, Gitte Bukh; Scheutz, Charlotte; Kjeldsen, Peter

    2010-01-01

    in Denmark. Methane oxidation rates were determined in batch incubations. Based on material availability, characteristics, and the results of batch incubations, five of the seven materials were selected for further testing in column incubations. Three of the best performing materials showed comparable...

  8. Properties of structural materials in liquid metal environment

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1991-12-01

    The proceedings contain 16 contributions to the following topics: 1. Creep-Rupture Behaviour of Structural Materials in Liquid Metal Environment; 2. Behaviour of Materials in Liquid Metal Environment under Off-Normal Conditions; 3. Fatigue and Creep-Fatigue of Structural Materials in Liquid Metal Environment; and 4. Crack Propagation in Liquid Sodium. (MM)

  9. FMIT alignment cart

    International Nuclear Information System (INIS)

    Potter, R.C.; Dauelsberg, L.B.; Clark, D.C.; Grieggs, R.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility alignment cart must perform several functions. It must serve as a fixture to receive the drift-tube girder assembly when it is removed from the linac tank. It must transport the girder assembly from the linac vault to the area where alignment or disassembly is to take place. It must serve as a disassembly fixture to hold the girder while individual drift tubes are removed for repair. It must align the drift tube bores in a straight line parallel to the girder, using an optical system. These functions must be performed without violating any clearances found within the building. The bore tubes of the drift tubes will be irradiated, and shielding will be included in the system for easier maintenance

  10. Material properties of oxide dispersion strengthened (ODS) ferritic steels for core materials of FBR. Tensile properties of sodium exposed and nickel diffused materials

    International Nuclear Information System (INIS)

    Kato, Shoichi; Yoshida, Eiichi

    2002-12-01

    An oxide dispersion strengthened (ODS) ferritic steel is candidate for a long-life core materials of future FBR, because of good swelling resistance and high creep strength. In this study, tensile tests were carried out the long-term extrapolation of sodium environmental effects on the mechanical properties of ODS steels. The tested heats of materials are M93, M11 and F95. The specimens were pre-exposed to sodium for 1,000 and 3,000 hours under non-stress conditions. The pre-exposure to sodium was conducted using a sodium test loop constituted by austenitic steels. For the conditions of sodium exposure test, the sodium temperature was 650 and 700degC, the oxygen concentration in sodium was about 1 ppm and sodium flow rate on the surface of specimen was less than 1x10 -4 m/seconds (nearly static). Further the specimen with the nickel diffused was prepared, which is simulate to nickel diffusing through sodium from the surface of structural stainless steels. The main results obtained were as follows; (1) The tensile strength and the fracture elongation after sodium exposure (maximum 3,000 hours) were same as that of as-received materials. If was considered that the sodium environmental effect is negligible under the condition of this study. (2) Tensile properties of nickel diffused specimens were slightly lower than that of the as-received specimens, but it remains equal to that of thermal aging specimens. (3) The change in microstructure such as a degraded layer was observed on the surface of nickel diffused specimen. In the region of the degraded layer, phase transformations from the α-phase to the γ-phase were recognized. But, the microscopic oxide particles were observed same as that of α-phase base metal. (author)

  11. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility

    DEFF Research Database (Denmark)

    Zdarta, Jakub; Meyer, Anne S.; Jesionowski, Teofil

    2018-01-01

    on the properties of the produced catalytic system. A large variety of inorganic and organic as well as hybrid and composite materials may be used as stable and efficient supports for biocatalysts. This review provides a general overview of the characteristics and properties of the materials applied for enzyme...... immobilization. For the purposes of this literature study, support materials are divided into two main groups, called Classic and New materials. The review will be useful in selection of appropriate support materials with tailored properties for the production of highly effective biocatalytic systems for use...

  12. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach

    International Nuclear Information System (INIS)

    Uyar, Tansel; Çökeliler, Dilek; Doğan, Mustafa; Koçum, Ismail Cengiz; Karatay, Okan; Denkbaş, Emir Baki

    2016-01-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m 3 (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was found

  13. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach

    Energy Technology Data Exchange (ETDEWEB)

    Uyar, Tansel [Department of Biomedical Engineering, Başkent University Bağlıca Campus, 06530 Ankara (Turkey); Çökeliler, Dilek, E-mail: cokeliler@baskent.edu.tr [Department of Biomedical Engineering, Başkent University Bağlıca Campus, 06530 Ankara (Turkey); Doğan, Mustafa [Department of Electrical and Electronics Engineering, Başkent University, Ankara 06180 (Turkey); Koçum, Ismail Cengiz [Department of Biomedical Engineering, Başkent University Bağlıca Campus, 06530 Ankara (Turkey); Karatay, Okan [Department of Electrical and Electronics Engineering, Başkent University, Ankara 06180 (Turkey); Denkbaş, Emir Baki [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2016-05-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m{sup 3} (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was

  14. The competition between magnetocrystalline and shape anisotropy on the magnetic and magneto-transport properties of crystallographically aligned CuCr2Se4 thin films

    Science.gov (United States)

    Edelman, I.; Esters, M.; Johnson, D. C.; Yurkin, G.; Tarasov, A.; Rautsky, M.; Volochaev, M.; Lyashchenko, S.; Ivantsov, R.; Petrov, D.; Solovyov, L. A.

    2017-12-01

    Crystallographically aligned nanocrystalline films of the ferromagnetic spinel CuCr2Se4 were successfully synthesized and their structure and alignment were confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The average size of the crystallites is about 200-250 nm, and their (1 1 1) crystal planes are parallel to the film plane. A good match of the film's electronic structure to that of bulk CuCr2Se4 is confirmed by transverse Kerr effect measurements. Four easy 〈1 1 1〉 axes are present in the films. One of these axes is oriented perpendicular and three others are oriented at an angle of 19.5° relative to the film plane. The magnetic properties of the films are determined by a competition between the out-of-plane magnetocrystalline anisotropy and the in-plane shape anisotropy. Magnetic measurements show that the dominating type of anisotropy switches from shape to magnetocrystalline anisotropy near 160 K, which leads to a switch of the effective easy axis from inside the film plane at room temperature to perpendicular to the film plane as the temperature decreases. At last, a moderately large, negative value of the low-temperature magnetoresistance was observed for the first time in CuCr2Se4 films.

  15. Colour stabilities of three types of orthodontic clear aligners exposed to staining agents.

    Science.gov (United States)

    Liu, Chen-Lu; Sun, Wen-Tian; Liao, Wen; Lu, Wen-Xin; Li, Qi-Wen; Jeong, Yunho; Liu, Jun; Zhao, Zhi-He

    2016-12-16

    The aim of this study was to evaluate and compare the colour stabilities of three types of orthodontic clear aligners exposed to staining agents in vitro. Sixty clear orthodontic aligners produced by three manufacturers (Invisalign, Angelalign, and Smartee) were immersed in three staining solutions (coffee, black tea, and red wine) and one control solution (distilled water). After 12-h and 7-day immersions, the aligners were washed in an ultrasonic cleaner and measured with a colourimeter. The colour changes (ΔE*) were calculated on the basis of the Commission Internationale de I'Eclairage L*a*b* colour system (CIE L*a*b*), and the results were then converted into National Bureau of Standards (NBS) units. Fourier transformation infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were conducted to observe the molecular and morphologic alterations to the aligner surfaces, respectively. The three types of aligners exhibited slight colour changes after 12 h of staining, with the exception of the Invisalign aligners stained with coffee. The Invisalign aligners exhibited significantly higher ΔE* values (ranging from 0.30 to 27.81) than those of the Angelalign and Smartee aligners (ΔE* values ranging from 0.33 to 1.89 and 0.32 to 1.61, respectively, Paligners did not exhibit significant chemical differences before and after the immersions. The SEM results revealed different surface alterations to the three types of aligner materials after the 7-day staining. The three types of aesthetic orthodontic appliances exhibited colour stability after the 12-h immersion, with the exception of the Invisalign aligners stained by coffee. The Invisalign aligners were more prone than the Angelalign and Smartee aligners to pigmentation. Aligner materials may be improved by considering aesthetic colour stability properties.

  16. Magnetically aligned polycrystalline dysprosium as ultimate saturation ferromagnet for high magnetic field polepieces

    International Nuclear Information System (INIS)

    Stepankin, V.

    1995-01-01

    Magnetic properties of microcrystalline aligned Dysprosium are reported in order to discuss the perspectives for application of this ferromagnetic material in high magnetic field research apparatus. This technology, based on multistage thermal and mechanical treatment of polycrystalline Dysprosium under high-pressure conditions, provides the alignment of microcrystallites' axes along the [1 1 2 0] crystallographic direction, i.e., along the easiest magnetization axis. Such magnetically aligned material could be saturated completely at a relatively low external magnetic field of 5-7 T, and creates magnetization up to 3.5 T, which is close to the highest induction of saturation attainable for any known material in nature. To demonstrate applicability of the material for research apparatus design, experiments with the help of a 13.5 T standard superconducting solenoid were performed and additional fields up to 5.1 T were obtained by using magnetically aligned Dy polepieces. (orig.)

  17. The Characterization of the Magnetic Properties of Soft Magnetic Materials

    DEFF Research Database (Denmark)

    Larsen, Raino Michael

    1996-01-01

    The hysteresis curve and magnetic properties such as permeability, saturation induction, residual induction, coercive force and hysteresis losses are presented. The design and construction of equipment making it possible to measure true DC-values as well as AC-properties of toroid rings and cylin......The hysteresis curve and magnetic properties such as permeability, saturation induction, residual induction, coercive force and hysteresis losses are presented. The design and construction of equipment making it possible to measure true DC-values as well as AC-properties of toroid rings...

  18. Preparation and multi-properties determination of radium-containing rocklike material

    Science.gov (United States)

    Hong, Changshou; Li, Xiangyang; Zhao, Guoyan; Jiang, Fuliang; Li, Ming; Zhang, Shuai; Wang, Hong; Liu, Kaixuan

    2018-02-01

    The radium-containing rocklike material were fabricated using distilled water, ordinary Portland cement and additives mixed aggregates and admixtures according to certain proportion. The physico-mechanical properties as well as radioactive properties of the prepared rocklike material were measured. Moreover, the properties of typical granite sample were also investigated. It is found on one hand, similarities exist in physical and mechanical properties between the rocklike material and the granite sample, this confirms the validity of the proposed method; on the other hand, the rocklike material generally performs more remarkable radioactive properties compared with the granite sample, while radon diffusive properties in both materials are essentially matching. This study will provide a novel way to prepare reliable radium-containing samples for radon study of underground uranium mine.

  19. ALIGNING JIG

    Science.gov (United States)

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  20. Defending Alignment

    Directory of Open Access Journals (Sweden)

    Stephan Schwarz

    2016-05-01

    Full Text Available After the rise to power of the German National Socialist Party (January 30, 1933, German academia soon realized that a requirement for “muddling through” was to avoid the stigma of being regarded as “politically unreliable,” thus to appear aligned and loyal to the state policies. The focus is here on the physics community. A rhetoric of alignment developed with the objective to justify collaboration as a rational and morally justified strategy. In the early post-war years, the rhetoric was reoriented to deny any involvement (other than as resistance systematically using a conceptual framework foreshadowing the principles of Cognitive Dissonance Reduction (CDR and the related framework of Rhetorical (Informal Fallacies. This affinity is here studied with reference to statements from the period.

  1. Material Property Correlations: Comparisons between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G.; Geelhood, Kenneth J.

    2010-08-01

    The U.S. Nuclear Regulatory Commission (NRC) uses the computer codes FRAPCON-3 and FRAPTRAN to model steady state and transient fuel behavior, respectively, in regulatory analysis. In order to effectively model fuel behavior, material property correlations must be used for a wide range of operating conditions (e.g. temperature and burnup). In this sense, a 'material property' is a physical characteristic of the material whose quantitative value is necessary in the analysis process. Further, the property may be used to compare the benefits of one material versus another. Generally speaking, the material properties of interest in regulatory analysis of nuclear fuel behavior are mechanical or thermodynamic in nature. The issue of what is and is not a 'material property' will never be universally resolved. In this report, properties such as thermal conductivity are included. Other characteristics of the material (e.g. fission gas release) are considered 'models' rather than properties, and are discussed elsewhere. Still others (e.g., neutron absorption cross-section) are simply not required in this specific analysis. The material property correlations for the FRAPCON-3 and FRAPTRAN computer codes were documented in NUREG/CR-6534 and NUREG/CR-6739, respectively. Some of these have been modified or updated since the original code documentation was published. The primary purpose of this report is to consolidate the current material property correlations used in FRAPCON-3 and FRAPTRAN into a single document. Material property correlations for oxide fuels, including uranium dioxide (UO2) and mixed oxide (MOX) fuels, are described in Section 2. Throughout this document, the term MOX will be used to describe fuels that are blends of uranium and plutonium oxides, (U,Pu)O2. The properties for uranium dioxide with other additives (e.g., gadolinia) are also discussed. Material property correlations for cladding materials and gases are described in

  2. Simulation Study on Material Property of Cantilever Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Yan Zhen

    2014-06-01

    Full Text Available For increasing generating capacity of cantilever piezoelectric vibration generator with limited volume, relation between output voltage, inherent frequency and material parameter of unimorph, bimorph in series type and bimorph in parallel type piezoelectric vibration generator is analyzed respectively by mechanical model and finite element modeling. The results indicate PZT-4, PZT- 5A and PZT-5H piezoelectric materials and stainless steel, nickel alloy substrate material should be firstly chosen.

  3. Influence of zeolite nanofillers on properties of polymeric materials

    OpenAIRE

    Kopcová, M.; Ondrušová, D.; Krmela, J.; Průša, P.; Pajtášová, M.; Jankurová, Z.

    2012-01-01

    The present work deals with the preparation and study of modified polymeric materials with the replacement of carbon black by nanofillers on the basis of zeolite that is environmentally friendly. Natural zeolites from a group of aluminosilicate nanoporous materials have wide range of possibilities for applications that are environmentally friendly. Zeolites can be used in the role of fillers into the polymer materials too [1]. The given work deals with the preparation and study of modif...

  4. Unravelling the materials genome: Symmetry relationships in alloy properties

    Energy Technology Data Exchange (ETDEWEB)

    Toda-Caraballo, Isaac [Department of Materials Science and Metallurgy, University of Cambridge New Museums Site, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Galindo-Nava, Enrique I. [Department of Materials Science and Metallurgy, University of Cambridge New Museums Site, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Delft University of Technology, Mekelweg 2, Delft 2628 CD (Netherlands); Rivera-Díaz-del-Castillo, Pedro E.J., E-mail: pejr2@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge New Museums Site, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom)

    2013-07-25

    Highlights: ► Research strategy for Accelerated Metallurgy project is outlined. ► Surprising symmetry among atomic, nanoscale and mechanical properties. ► Generalisation of Ashby diagrams via principal component analysis. ► Atomic-related properties can be described with linear regression. ► Mechanical properties modelled via Kocks–Mecking-type physical method. -- Abstract: Metals and alloys have been indispensable for technological progress, but only a fraction of the possible ternary systems (combinations of three elements) is known. Statistical inference methods combined with physical models are presented to discover new systems of enhanced properties. It is demonstrated that properties originating from atomic-level interactions can be described employing a linear regression analysis, but properties incorporating microstructural and thermal history effects require a balance between physical and statistical modelling. In spite of this, there is a remarkable degree of symmetry among all properties, and by employing a principal components analysis it is shown that ten properties essential to engineering can be described well in a three dimensional space. This will aid in the discovery of novel alloying systems.

  5. Image alignment

    Science.gov (United States)

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  6. Bioinspired Nanocellulose Based Hybrid Materials With Novel Interfacial Properties

    Science.gov (United States)

    Keten, Sinan

    This talk will overview a simulation-based approach to enhancing the mechanical properties of nanocomposites by utilizing cellulose - the most abundant and renewable structural biopolymer found on our planet. Cellulose nanocrystals (CNCs) exhibit outstanding mechanical properties exceeding that of Kevlar, serving as reinforcing domains in nature's toughest hierarchical nanocomposites such as wood. Yet, weak interfaces at the surfaces of CNCs have so far made it impossible to scale these inherent properties to macroscopic systems. In this work, I will discuss how surface functionalization of CNCs influences their properties in their self-assembled films and nanocomposites with engineered polymer matrices . Specifically, the role of ion exchange based surface modifications and polymer conjugation will be discussed, where atomistic and coarse-grained simulations will reveal new insights into how superior mechanical properties can potentially be attained by hybrid constructs.

  7. Mechanical properties of wood-based composite materials

    Science.gov (United States)

    Zhiyong Cai; Robert J. Ross

    2010-01-01

    The term composite is used to describe any wood material bonded together with adhesives. The current product mix ranges from fiberboard to laminated beams and components. In this chapter, wood-based composite materials are classified into the following categories: panel products (plywood, oriented strandboard (OSB), particleboard, fiberboard, medium-density fiberboard...

  8. The influence of protective properties of packaging materials and ...

    African Journals Online (AJOL)

    Spown

    2012-08-15

    Aug 15, 2012 ... brown color intensity is regarded as an indicator of nonenzymatic darkening process. The goal of this research was to determine a quality packaging material that would optimally protect the product, by means of monitoring the packed dried apricots quality changes. MATERIALS AND METHODS. Chemicals.

  9. Heat physical properties examination of buffer material. 3

    International Nuclear Information System (INIS)

    Kikuchi, Hirohito; Tanai, Kenji

    2003-12-01

    In general, the specific heat of buffer material for the thermal analysis is calculated from the thermal conductivity and the thermal diffusivity measured by using a different measurement technique and different specimen. However, these points have caused wide distribution of data. It is necessary to measure thermal characteristics with various methods at the same time for the quality assurance of data and to standardize the relational equation. Therefore, the specific heat of bentonite and bentonite/sand mixtures material was calculated by the surface-source method which was able to measure the thermal conductivity and thermal diffusivity and the same time. Experimental results are as follows; The thermal conductivity and the specific heat of buffer material increase as the water content increase. The thermal conductivity and the specific heat of buffer material change as a function of the water content of buffer material. (author)

  10. Material variability and repetitive member factors for the allowable properties of engineered wood products

    Science.gov (United States)

    Steve Verrill; David E. Kretschmann

    2009-01-01

    It has been argued that repetitive member allowable property adjustments should be larger for high-variability materials than for low-variability materials. We report analytic calculations and simulations that suggest that the order of such adjustments should be reversed, that is, given the manner in which allowable properties are currently calculated, as the...

  11. Manufacturing and properties of inorganic porous materials. Mukishitsu tako zairyo no seizo to seishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Daimon, M.; Okada, K. (Tokyo Inst. of Technology, Tokyo (Japan). Faculty of Engineering)

    1992-09-01

    As for the manufacturing of the inorganic porous materials, synthesis of the materials like zeolyte which have pores with crystal structure, gel formation that have included the formation of gel by neutralizing inorganic aqueous solution and the hydrolysis of metallic alkoxide, formation of gel in cement concrete, porous glass from phase decomposition, sintered porous material, and the formation methods of honeycom and fibers, are described. In general their properties are divided into four types such as solid property, surface property, solid-gas composite property and the property of pore. Inorganic porous materials are used as filter material or composite materials having single component gas phase which have properties like thermal insulation, soundproof and control of electric resistance. They are also used in all important chemical processes like separation, purification and concentration. Chemical activity in the surface has been important, and the function of the catalyst is decided by the surface properties. The change in the properties of the material by increasing and fixing effective surface area of the supportive materials is explained. 27 refs., 11 figs.,1 tab.

  12. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Science.gov (United States)

    2010-07-01

    ... property construction. Sales of building materials to a contractor or speculative builder for the... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for commercial property construction. 779.336 Section 779.336 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION...

  13. Composition dependent interfacial thermal stability, band alignment and electrical properties of Hf1-xTixO2/Si gate stacks

    Science.gov (United States)

    Zhang, J. W.; He, G.; Liu, M.; Chen, H. S.; Liu, Y. M.; Sun, Z. Q.; Chen, X. S.

    2015-08-01

    The optical properties, interface chemistry and band alignment of Hf1-xTixO2 (x = 0.03, 0.08, 0.12 and 0.20) high-k gate dielectric thin films, deposited by RF sputtering on Si substrate, have been systematically investigated. The effect of TiO2 incorporation on the interfacial chemical structure and energy-band discontinuities has been investigated by using X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectroscopy (UV-vis). It has been found that the band gap and band offsets of the Hf1-xTixO2 thin film decrease with the increase of TiO2 concentration. Meanwhile, the obtained band offsets are all over 1 eV. Thin film capacitors fabricated with the MOS configuration of Al/Hf1-xTixO2/n-Si/Al exhibits excellent electrical properties with low interface state density, hysteresis voltage and low leakage current density. The suitable band gap, symmetrical band offsets relative to Si and prominent electrical properties render sputtering-derived Hf1-xTixO2 with 9% TiO2 films as promising candidates for high-k gate dielectrics.

  14. Shear induced alignment of short nanofibers in 3D printed polymer composites

    Science.gov (United States)

    Erdem Yunus, Doruk; Shi, Wentao; Sohrabi, Salman; Liu, Yaling

    2016-12-01

    3D printing of composite materials offers an opportunity to combine the desired properties of composite materials with the flexibility of additive manufacturing in geometric shape and complexity. In this paper, the shear-induced alignment of aluminum oxide nanowires during stereolithography printing was utilized to fabricate a nanowire reinforced polymer composite. To align the fibers, a lateral oscillation mechanism was implemented and combined with wall pattern printing technique to generate shear flow in both vertical and horizontal directions. A series of specimens were fabricated for testing the composite material’s tensile strength. The results showed that mechanical properties of the composite were improved by reinforcement of nanofibers through shear induced alignment. The improvement of tensile strength was approximately ∼28% by aligning the nanowires at 5 wt% (∼1.5% volume fraction) loading of aluminum oxide nanowires.

  15. Predicting the Coupling Properties of Axially-Textured Materials

    Directory of Open Access Journals (Sweden)

    María E. Fuentes-Montero

    2013-10-01

    Full Text Available A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones.

  16. Resonance meets homogenization - Construction of meta-materials with astonishing properties

    OpenAIRE

    Schweizer, Ben

    2016-01-01

    Meta-materials are assemblies of small components. Even though the single component consists of ordinary materials, the meta-material may behave effectively in a way that is not known from ordinary materials. In this text, we discuss some meta-materials that exhibit unusual properties in the propagation of sound or light. The phenomena are based on resonance effects in the small components. The small (sub-wavelength) components can be resonant to the wave-length of an extern...

  17. Database development of fundamental properties for the buffer material in Japan

    International Nuclear Information System (INIS)

    Kikuchi, Hirohito; Tanai, Kenji; Yui, Mikazu

    2005-01-01

    By the second progress report (H12 report) on research and development for the geological disposal of High-Level radioactive waste (HLW) in Japan, the Japan Nuclear Cycle Development Institute (JNC) extended the database of basic properties for compacted bentonite, which were mainly saturated with distilled water as test fluid. This paper presents the effect of salinity on the basic properties of the buffer material and the status of the database development of the buffer material. For the basic properties of the buffer material, the hydraulic, swelling and mechanical properties of Kunigel V1 bentonite decrease due to the effect of salinity. The correlation among effective clay density, intrinsic permeability, swelling pressure, and unconfined compressive strength was obtained. The prototype database of fundamental properties not only for the buffer material but also for the backfill material was developed for the design of the HLW repository, through these experimental results. (author)

  18. Basic requirements of mechanical properties for nuclear pressure vessel materials in ASME-BPV code

    International Nuclear Information System (INIS)

    Ning Dong; Yao Weida

    2011-01-01

    The four basic aspects of strengths, ductility, toughness and fatigue strengths can be summarized for overall mechanical properties requirements of materials for nuclear pressure-retaining vessels in ASME-BPV code. These mechanical property indexes involve in the factors of melting, manufacture, delivery conditions, check or recheck for mechanical properties and chemical compositions, etc. and relate to degradation and damage accumulation during the use of materials. This paper specifically accounts for the basic requirements and theoretic basis of mechanical properties for nuclear pressure vessel materials in ASME-BPV code and states the internal mutual relationships among the four aspects of mechanical properties. This paper focuses on putting forward at several problems on mechanical properties of materials that shall be concerned about during design and manufacture for nuclear pressure vessels according to ASME-BPV code. (author)

  19. The force-distance properties of attracting magnetic attachments for tooth movement in combination with clear sequential aligners.

    Science.gov (United States)

    Phelan, Angie; Petocz, Peter; Walsh, William; Darendeliler, M Ali

    2012-11-01

    The demand for clear sequential aligner therapy has increased dramatically in recent years. An improved system utilising small neodymium-iron-boron (NdFeB) magnetic attachments has been proposed to enhance appliance capabilities. The aim of the investigation was to analyse the force system diagrams produced by small attracting NdFeB magnets to determine, 1) whether the force levels were sufficient to induce tooth movement, 2) the effect of magnet morphology on force characteristics and, 3) the most appropriate magnet dimensions that could be utilised for this application. Twenty-nine NdFeB rectangular magnets of varying dimensions were tested. A Mach-1 universal testing machine (Biosyntech Inc, Quebec, Canada) was used to measure the attractive force of pairs of magnets. Measurements commenced with a magnetic pair in contact and subsequently vertically separated a distance of 10 mm at a speed of 12 mm/minute. For all magnetic configurations four repeat measurements were performed on five magnetic pairs of the same size. The force-distance diagrams for all magnet configurations demonstrated a dramatic decrease in force with increasing magnet separation. Rather than a suggested inverse square law, the experimental data followed an inverse fourth law when an offset determined by a regression analysis was applied to the distance. For the majority of magnets, insignificant forces were attained beyond 2 mm of separation. Magnets with large pole face areas and longer magnetic axes provided the greatest force. A select range of magnet configurations exhibited suitable and reliable attractive forces and therefore could be advocated for prescribed clinical application.

  20. Effects of crystallite structure and interface band alignment on the photocatalytic property of bismuth ferrite/ (N-doped) graphene composites

    International Nuclear Information System (INIS)

    Li, Pai; Chen, Qiang; Lin, Yinyin; Chang, Gang; He, Yunbin

    2016-01-01

    Bismuth ferrite/graphene (N-doped graphene) photocatalysts are successfully prepared by a facile and effective two-step hydrothermal method. Bismuth ferrite/graphene shows superior photocatalytic activity compared with bismuth ferrite/N-doped graphene and pure BiFeO 3 . X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy analyses indicate that Bi 25 FeO 40 crystalline phase is obtained with the addition of graphene, while BiFeO 3 is formed under the same hydrothermal conditions in the presence of N-doped graphene. Core-level and valence-band X-ray photoelectron spectroscopy analyses reveal a downward band bending of bismuth ferrite (∼0.5 eV) at the interface of the bismuth ferrite/(N-doped) graphene composites, which facilitates the electron transfer from bismuth ferrite to (N-doped) graphene and suppresses the recombination of photo-generated electron–hole pairs. This downward bending band alignment at the interface supposes to be the main mechanism underlying the enhanced photocatalytic activity of the bismuth ferrite/graphene composites that are currently of great interest in the photocatalysis field. - Highlights: • Bismuth ferrite/(N-doped) graphene composites were prepared by a hydrothermal method. • Bi 25 FeO 40 and BiFeO 3 were obtained with presence of graphene and N-graphene, respectively. • Bi 25 FeO 40 /graphene shows superior photocatalytic activity over BiFeO 3 and BiFeO 3 /N-graphene. • A downward band bending (∼0.5 eV) of bismuth ferrite exists at the composites interface. • The downward band bending supposes to be the mechanism for the enhanced photocatalytic activity.

  1. Alignment of helical membrane protein sequences using AlignMe.

    Directory of Open Access Journals (Sweden)

    Marcus Stamm

    Full Text Available Few sequence alignment methods have been designed specifically for integral membrane proteins, even though these important proteins have distinct evolutionary and structural properties that might affect their alignments. Existing approaches typically consider membrane-related information either by using membrane-specific substitution matrices or by assigning distinct penalties for gap creation in transmembrane and non-transmembrane regions. Here, we ask whether favoring matching of predicted transmembrane segments within a standard dynamic programming algorithm can improve the accuracy of pairwise membrane protein sequence alignments. We tested various strategies using a specifically designed program called AlignMe. An updated set of homologous membrane protein structures, called HOMEP2, was used as a reference for optimizing the gap penalties. The best of the membrane-protein optimized approaches were then tested on an independent reference set of membrane protein sequence alignments from the BAliBASE collection. When secondary structure (S matching was combined with evolutionary information (using a position-specific substitution matrix (P, in an approach we called AlignMePS, the resultant pairwise alignments were typically among the most accurate over a broad range of sequence similarities when compared to available methods. Matching transmembrane predictions (T, in addition to evolutionary information, and secondary-structure predictions, in an approach called AlignMePST, generally reduces the accuracy of the alignments of closely-related proteins in the BAliBASE set relative to AlignMePS, but may be useful in cases of extremely distantly related proteins for which sequence information is less informative. The open source AlignMe code is available at https://sourceforge.net/projects/alignme/, and at http://www.forrestlab.org, along with an online server and the HOMEP2 data set.

  2. Aligned flax fibre/polylactate composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Thygesen, Anders

    2008-01-01

    are well predicted by the model. The back-calculated effective stiffness and failure stress of the flax fibres are in the ranges 56-60 GPa and 515-730 MPa, respectively. Finally, the model is used for parametric analysis and overall guidelines for the comparisons between tensile performance of flax fibre......The potential of biocomposites in engineering applications is demonstrated by using aligned flax fibre/polylactate composites as a materials model system. The failure stress of flax fibres is measured by tensile testing of single fibres and fibre bundles. For both fibre configurations, it is found...... that failure stress is decreased by increasing the tested fibre volume. Based on two types of flax fibre preforms: carded sliver and unidirectional non-crimp fabric, aligned flax fibre/polylactate composites were fabricated with variable fibre content. The volumetric composition and tensile properties...

  3. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Realization of prediction of materials properties by ab initio ...

    Indian Academy of Sciences (India)

    Unknown

    IMR), Tohoku University, Sendai 980-8577, Japan. Abstract. Ab initio treatment is becoming realistic to predict physical, chemical, and even mechanical pro- perties of academically and industrially interesting materials. There is, however, some ...

  5. Thermal insulation materials for inside applications: Hygric and thermal properties

    Science.gov (United States)

    Jerman, Miloš; Černý, Robert

    2017-11-01

    Two thermal insulation materials suitable for the application on the interior side of historical building envelopes, namely calcium silicate and polyurethane-based foam are studied. Moisture diffusivity and thermal conductivity of both materials, as fundamental moisture and heat transport parameters, are measured in a dependence on moisture content. The measured data will be used as input parameters in computer simulation studies which will provide moisture and temperature fields necessary for an appropriate design of interior thermal insulation systems.

  6. Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and Their Enhanced Microwave Absorption Properties.

    Science.gov (United States)

    Liu, Panbo; Huang, Ying; Yan, Jing; Yang, Yiwen; Zhao, Yang

    2016-03-02

    Hybrid nanocomposites with enhanced microwave absorption properties have been designed by growing CuS nanoflakes on magnetically decorated graphene, and the effect of special nanostructures on microwave absorption properties has been investigated. The structure of the nanocomposites was characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), N2 adsorption-desorption, and vibrating sample magnetometer (VSM). The influence of cetyltrimethylammonium bromide (CTAB) on the morphology of CuS nanoflakes was also investigated. A possible formation process of the nanocomposites and the mechanism of microwave absorption were explained in detail. As an absorber, the nanocomposites with a filler loading of 20 wt % exhibited enhanced microwave absorption properties due to the special nanostructures, extra void space, and synergistic effect. The maximum reflection loss can reach -54.5 dB at 11.4 GHz, and the absorption bandwidths exceeding -10 dB are 4.5 GHz with a thickness of 2.5 mm, which can be adjusted by the thickness. The results indicate that the hybrid nanocomposites with enhanced microwave absorption properties and lightweight have a promising future in decreasing electromagnetic wave irradiation.

  7. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    Science.gov (United States)

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  8. Laser remote heating in vacuum environment to study temperature dependence of optical properties for bulk materials

    Science.gov (United States)

    Minissale, Marco; Bisson, Regis; Gallais, Laurent

    2016-12-01

    The knowledge of optical and thermal properties of materials at high temperatures is of crucial importance in the field of high power laser/material interactions. We report in this contribution on the development of a spectroscopic ellipsometry system dedicated to the measurement of optical properties of solid materials from the ambient to high temperatures (optic spectrometer to measure reflected light and optical pyrometers for temperature monitoring.

  9. Research on technology of evaluating thermal property data of nuclear power materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1997-01-01

    For the materials of first wall and diverter of nuclear fusion reactor, in order to withstand steady and unsteady high heat flux load, excellent thermal characteristics are required. It is strongly demanded to measure such thermal property values as heat conductivity, heat diffusivity, specific heat capacity, emissivity and so using small test pieces up to higher than 2000degC. As the materials of nuclear reactors are subjected to neutron irradiation, in order to secure the long term reliability of the materials, it is very important to establish the techniques for forecasting the change of the thermal property values due to irradiation effect. Also the establishment of the techniques for estimating the thermal property values of new materials like low radioactivation material is important. In National Research Laboratory of Metrology, the research on the advancement of the measuring technology for high temperature thermal properties has resulted in the considerably successful development of such technologies. In this research, the rapid measurement of thermal property values up to superhigh temperature with highest accuracy, the making of thermal property data set of high level, the analysis and evaluation of the correlation of material characters and thermal property values, and the development of the basic techniques for estimating the thermal property values of solid materials are aimed at and advanced. These are explained. (K.I.)

  10. Guidelines for Developing and Inserting Material Properties into the Code 65 Composite Material Database

    Science.gov (United States)

    2011-12-01

    Archimedes Principle to determine the density of the composite. This test method is suitable for unreinforced and reinforced plastics that are wet by...allowables). The test plans would be used for future NAVSEA composite material applications . These guidelines are based on current and previous...materials allowables for composite structures. However, these guidelines have generally focused on composite materials for aerospace applications , which

  11. Establishment of Low Energy Building materials and Equipment Database Based on Property Information

    Science.gov (United States)

    Kim, Yumin; Shin, Hyery; eon Lee, Seung

    2018-03-01

    The purpose of this study is to provide reliable service of materials information portal through the establishment of public big data by collecting and integrating scattered low energy building materials and equipment data. There were few cases of low energy building materials database in Korea have provided material properties as factors influencing material pricing. The framework of the database was defined referred with Korea On-line E-procurement system. More than 45,000 data were gathered by the specification of entities and with the gathered data, price prediction models for chillers were suggested. To improve the usability of the prediction model, detailed properties should be analysed for each item.

  12. Teaching Acoustic Properties of Materials in Secondary School: Testing Sound Insulators

    Science.gov (United States)

    Hernandez, M. I.; Couso, D.; Pinto, R.

    2011-01-01

    Teaching the acoustic properties of materials is a good way to teach physics concepts, extending them into the technological arena related to materials science. This article describes an innovative approach for teaching sound and acoustics in combination with sound insulating materials in secondary school (15-16-year-old students). Concerning the…

  13. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have...

  14. Using Finite Element Method to Estimate the Material Properties of a Bearing Cage

    Science.gov (United States)

    2018-02-01

    UNCLASSIFIED UNCLASSIFIED AD-E403 988 Technical Report ARMET-TR-17035 USING FINITE ELEMENT METHOD TO ESTIMATE THE MATERIAL ...TITLE AND SUBTITLE USING FINITE ELEMENT METHOD TO ESTIMATE THE MATERIAL PROPERTIES OF A BEARING CAGE 5a. CONTRACT NUMBER 5b. GRANT...public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This report summarizes the development of a material

  15. Mechanical properties and DIC analyses of CAD/CAM materials.

    Science.gov (United States)

    Porto, Thiago; Roperto, Renato; Akkus, Anna; Akkus, Ozan; Porto-Neto, Sizenando; Teich, Sorin; Lang, Lisa; Campos, Edson

    2016-12-01

    This study compared two well-known computer-aided-design/computer-aided-manufactured (CAD/CAM) blocks (Paradigm MZ100 [3M ESPE] and Vitablocs Mark II [Vita] in terms of fracture toughness (Kic), index of brittleness (BI) and stress/strain distributions. Three-point bending test was used to calculate the fracture toughness, and the relationship between the Kic and the Vickers hardness was used to calculate the index of brittleness. Additionally, digital image correlation (DIC) was used to analyze the stress/strain distribution on both materials. The values for fracture toughness obtained under three-point bending were 1.87Pa√m (±0.69) for Paradigm MZ100 and 1.18Pa√m (±0.17) for Vitablocs Mark II. For the index of brittleness, the values for Paradigm and Vitablocs were 73.13μm-1/2 (±30.72) and 550.22μm-1/2 (±82.46). One-way ANOVA was performed to find differences (α=0.05) and detected deviation between the stress/strain distributions on both materials. Both CAD/CAM materials tested presented similar fracture toughness, but, different strain/stress distributions. Both materials may perform similarly when used in CAD/CAM restorations. Key words: Ceramic, CAD/CAM, hybrid materials, composite resin, fracture toughness.

  16. Engineering the interface characteristics on the enhancement of field electron emission properties of vertically aligned hexagonal boron nitride nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, K.J.; Hoang, D.Q.; Drijkoningen, S.; Pobedinskas, P.; Haenen, K. [Institute for Materials Research (IMO), Hasselt University, Diepenbeek (Belgium); IMOMEC, IMEC vzw, Diepenbeek (Belgium); Srinivasu, K.; Leou, K.C. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu (China); Korneychuk, S.; Turner, S.; Verbeeck, J. [Electron Microscopy for Materials Science (EMAT), University of Antwerp (Belgium); Lin, I.N. [Department of Physics, Tamkang University, Tamsui (China)

    2016-10-15

    Utilization of Au and nanocrystalline diamond (NCD) as interlayers noticeably modifies the microstructure and field electron emission (FEE) properties of hexagonal boron nitride nanowalls (hBNNWs) grown on Si substrates. The FEE properties of hBNNWs on Au could be turned on at a low turn-on field of 14.3 V μm{sup -1}, attaining FEE current density of 2.58 mA cm{sup -2} and life-time stability of 105 min. Transmission electron microscopy reveals that the Au-interlayer nucleates the hBN directly, preventing the formation of amorphous boron nitride (aBN) in the interface, resulting in enhanced FEE properties. But Au forms as droplets on the Si substrate forming again aBN at the interface. Conversely, hBNNWs on NCD shows superior in life-time stability of 287 min although it possesses inferior FEE properties in terms of larger turn-on field and lower FEE current density as compared to that of hBNNWs-Au. The uniform and continuous NCD film on Si also circumvents the formation of aBN phases and allows hBN to grow directly on NCD. Incorporation of carbon in hBNNWs from the NCD-interlayer improves the conductivity of hBNNWs, which assists in transporting the electrons efficiently from NCD to hBNNWs that results in better field emission of electrons with high life-time stability. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    Directory of Open Access Journals (Sweden)

    Faris M. A.

    2016-01-01

    Full Text Available In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3 and sodium hydroxide (NaOH. Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF. All hardened alkali activated material samples were tested for density, workability, and compression after 28 days. Results show a slight increase of density with the addition of steel fibers. However, the workability was reduced with the addition of steel fibers content. Meanwhile, the addition of steel fibers shows the improvement of compressive strength which is about 19 % obtained at 3 % of steel fibers addition.

  18. Mechanical properties of materials with nanometer scale dimensions and microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Nix, William D. [Stanford Univ., CA (United States)

    2015-08-05

    The three-year grant for which this final report is required extends from 2011 to 2015, including a one-year, no-cost extension. But this is just the latest in a long series of grants from the Division of Materials Sciences of DOE and its predecessor offices and agencies. These include contracts or grants from: the Metallurgy Branch of the U.S. Atomic Energy Commission (from the late 1960s to the mid-1970s), the Materials Science Program of the U.S. Energy Research and Development Administration (from the mid- to late- 1970s), and the Division of Materials Science of the Office of Basic Energy Sciences of the U.S. Department of Energy (from the early 1980s to the present time). Taken all together, these offices have provided nearly continuous support for our research for nearly 50 years. As we have said on many occasions, this research support has been the best we have ever had, by far. As we look back on the nearly five decades of support from the Division of Materials Sciences and the predecessor offices, we find that the continuity of support that we have enjoyed has allowed us to be most productive and terms of papers published, doctoral students graduated and influence on the field of materials science. This report will, of course, cover the three-year period of the present grant, in summary form, but will also make reference to the output that resulted from support of previous grants from the Division of Materials Sciences and its predecessor offices.

  19. Material properties of oxide dispersion strengthened (ODS) ferritic steels for core materials of FBR. Mechanical strength properties of sodium exposed and Nickel diffused materials. Interim report

    International Nuclear Information System (INIS)

    Kato, Shoichi; Yoshida, Eiichi

    2004-02-01

    An oxide dispersion strengthened (ODS) ferritic steel have excellent resistance to swelling and superior creep strength, they are expected to be used as a long-life cladding material in future advanced fast reactor. In this study, sodium environmental effects on the ODS steel developed by JNC were clarified through tensile test after sodium exposure for maximum 10,000hrs and creep-rupture test in sodium at elevated temperature. The exposure to sodium was conducted using a sodium test loop constituted by austenitic steels. For the conditions of sodium exposure test, the sodium temperatures were 923 K and 973 K, the oxygen concentration in sodium was below 2ppm and sodium flow rate on the surface of specimen was less than 1x10 -4 m/s. Further the specimen with the nickel diffused was prepared, which is simulate to nickel diffusing through sodium from the surface of structural stainless steels. The main results obtained were as follows; (1) The results showed excellent sodium-resistance up to a high temperature of about 973 K in stagnant sodium conditions, and its considered that the effects of sodium environment of tensile properties were negligible. In case of stagnant sodium condition, creep-rupture strength in sodium was equal to the in argon gas, and no sodium environmental effect was observed. The same is true for the creep-rupture ductility. (2) The tensile properties of nickel diffused test specimens at high temperatures simulating microstructure change were equal to that of the thermal aging process specimens. These tensile tests suggest that sodium environmental effects can be ignored. However, the effect of nickel diffusion on creep strength are not clear at present and experimental investigation are being conducted. (3) The coefficient of nickel diffusion in the ODS steel can be estimated based on the results of nickel concentration measurement. This value is larger than that of the diffusion coefficient for typical α-Fe steel at temperature below 973 K

  20. Air purification by cementitious materials : Evaluation of air purifying properties

    NARCIS (Netherlands)

    Hüsken, G.; Brouwers, H.J.H.; Al-Mattarneh, H.; Mustapha, K.N.; Nuruddin, M.F.

    2008-01-01

    This paper addresses the evaluation of the photocatalytic properties of concrete containing titanium dioxide (TiO2). Here, the assessment of the air purifying abilities of the hardened concrete regarding the degradation of nitric oxide (NO) is of major interest. A setup for measuring the performance

  1. The stability of piezoceramic materials properties at external influences

    Directory of Open Access Journals (Sweden)

    Kuzenko D. V.

    2010-02-01

    Full Text Available The impact of exciting electric fields (static and resonance frequency alternating, mechanical uniaxial loading and temperature on the stability of working parameters of piezoelectric ceramic elements had been investigated. It is shown that after the removal of excitation the long relaxation of properties under the law close to logarithmic is observed.

  2. Insecticidal properties of materials used by resource- limited farmers ...

    African Journals Online (AJOL)

    Moyo S

    2013-04-03

    Apr 3, 2013 ... properties of Tagetes minuta, Calpurnia aurea, Clutia pulchella, used engine oil, paraffin, Jeyes fluid. (carbolic acid 13%) on ... respectively. Tagetes minuta was the most effective (P<0.05), demonstrating a repellency level of 75 at ...... Sarin RC (2004). Insecticidal activity of callus culture of Tagetes erecta,.

  3. Numerical determination of the material properties of porous dust cakes

    NARCIS (Netherlands)

    Paszun, D.; Dominik, C.

    2008-01-01

    The formation of planetesimals requires the growth of dust particles through collisions. Micron-sized particles must grow by many orders of magnitude in mass. To understand and model the processes during this growth, both the mechanical properties and the interaction cross sections of aggregates

  4. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Directory of Open Access Journals (Sweden)

    Marynowicz Andrzej

    2016-06-01

    Full Text Available The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples’ surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  5. Magneto optical properties of silver doped magnetic nanocomposite material

    Directory of Open Access Journals (Sweden)

    N. Abirami

    2017-11-01

    Full Text Available Magnetic composite materials challenge traditional materials in broad applications such as transformer, sensors and electrical motors. In this work by studying the permittivity and permeability spectra of silver doped magnetic nanocomposite system, the variation of the effective refractive index with frequency is investigated for different filling factor. It is found that the value of resonance frequency decrease with filling factor. The polariton dispersion of the system is also studied. This study of the nanocomposite system can be exploited in designing modern optical devices.PACS: 75.50-y, 71.36.+c, 78.67.Sc, 78.20.Ci. Keywords: Permittivity, Permeability, Nanocomposite system, Polariton

  6. BUILDING MATERIALS WITH INSULATING PROPERTIES BASED ON RICE HUSK)

    OpenAIRE

    Salas, J., Veras, J.

    2014-01-01

    [EN]This work within the research projeci "Material, Technologies and Low Cosí Housing Prototypes" has the purpose lo obiain a bu i Id i ng material based on cemení and treated rice husk, for iis use as ihermal insulator The performance of different dosages was analyzed and according to the results two dosages were choosen to make standard panels ofóO X 90 X 6cm which were testedfor bending, and the thermal conductiviiy valúes were determined, valué of\\ which fluciuaie...

  7. PROPERTIES OF FIBERBOARD OVERPACK MATERIAL IN THE 9975 SHIPPING PACKAGE FOLLOWING THERMAL AGING

    International Nuclear Information System (INIS)

    Daugherty, W

    2007-01-01

    Many radioactive material shipping packages incorporate cane fiberboard overpacks for thermal insulation and impact resistance. Mechanical, thermal and physical properties have been measured on cane fiberboard following thermal aging in several temperature/humidity environments. Several of the measured properties change significantly over time in the more severe environments, while other properties are relatively constant. These properties continue to be tracked, with the goal of developing a model for predicting a service life under long-term storage conditions

  8. Determination of material properties for short fibre reinforced C/C-SiC

    Directory of Open Access Journals (Sweden)

    Hausherr J.-M.

    2015-01-01

    Full Text Available Determining the mechanical properties of short fibre reinforced CMC using standard sized coupons has always been a challenge due to a high statistical scattering of the measured values. Although the random orientation of short fibres results in a quasi-isotropic material behavior of 2D-structures with a sufficiently large volume, the small volume typical for test coupons usually results in a non-isotropic fibre orientation in the tested volume. This paper describes a method for manufacturing unidirectional oriented short fibre reinforced CMC materials and presents material properties of UD-C/C-SiC. After verifying the fibre orientation of the CMC using micro-computed tomography, coupons were extracted to determine the orthotropic material properties. These orthotropic material properties were then used to predict the properties of C/C-SiC with randomly distributed short fibres. To validate the method, micro-computed tomography is used to quantitatively determine the fibre orientation within coupons extracted from randomly distributed short fibre C/C-SiC. After mechanical three-point-bending tests, the measured stiffness and bending strength is compared with the predicted properties. Finally, the data are used to devise a method suited for reducing the inherent large spread of material properties associated with the measurement of CMC materials with randomly distributed short fibres.

  9. engineering properties of scoria concrete as a construction material

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    2015-08-11

    Aug 11, 2015 ... The weight and cost of plain concrete are part of the setbacks in its use for construction purposes ... to be used as a construction material. KEYWORDS: Scoria concrete, Compressive strength, Modulus of rupture, Absorption capacity. INTRODUCTION ... reducing the dead weight in building structures.

  10. Adaptive mechanical properties of topologically interlocking material systems

    International Nuclear Information System (INIS)

    Khandelwal, S; Siegmund, T; Cipra, R J; Bolton, J S

    2015-01-01

    Topologically interlocked material systems are two-dimensional granular crystals created as ordered and adhesion-less assemblies of unit elements of the shape of platonic solids. The assembly resists transverse forces due to the interlocking geometric arrangement of the unit elements. Topologically interlocked material systems yet require an external constraint to provide resistance under the action of external load. Past work considered fixed and passive constraints only. The objective of the present study is to consider active and adaptive external constraints with the goal to achieve variable stiffness and energy absorption characteristics of the topologically interlocked material system through an active control of the in-plane constraint conditions. Experiments and corresponding model analysis are used to demonstrate control of system stiffness over a wide range, including negative stiffness, and energy absorption characteristics. The adaptive characteristics of the topologically interlocked material system are shown to solve conflicting requirements of simultaneously providing energy absorption while keeping loads controlled. Potential applications can be envisioned in smart structure enhanced response characteristics as desired in shock absorption, protective packaging and catching mechanisms. (paper)

  11. Realization of prediction of materials properties by ab initio ...

    Indian Academy of Sciences (India)

    Unknown

    Ab initio treatment is becoming realistic to predict physical, chemical, and even mechanical pro- perties of academically and ... materials under very high pressure in earth by direct method, and prediction of wavelength of emitted light from Na clusters with GW .... observed band gap value for semiconductors. This big. Quasi- ...

  12. Significance of tests and properties of concrete and concrete-making materials

    CERN Document Server

    Pielert, James H

    2006-01-01

    Reflects a decade of technological changes in concrete industry! The newest edition of this popular ASTM publication reflects the latest technology in concrete and concrete-making materials. Six sections cover: (1) General information on the nature of concrete, sampling, variability, and testing laboratories. A new chapter deals with modeling cement and concrete properties. (2) Properties of freshly mixed concrete. (3) Properties of hardened concrete. (4) Concrete aggregates—this section has been revised and the chapters are presented in the order that most concerns concrete users: grading, density, soundness, degradation resistance, petrographic examination, reactivity, and thermal properties. (5) Materials other than aggregates—the chapter on curing materials now reflects the current technology of materials applied to new concrete surfaces. The chapter on mineral admixtures has been separated into two chapters: supplementary cementitious materials and ground slag. (6) Specialized concretes—contains a ...

  13. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    Science.gov (United States)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  14. News from the Library: Looking for materials properties? Find the answer in CINDAS databases

    CERN Multimedia

    CERN Library

    2012-01-01

    Materials properties databases are a crucial source of information when doing research in Materials Science. The creation and regular updating of such databases requires identification and collection of relevant worldwide scientific and technical literature, followed by the compilation, critical evaluation, correlation and synthesis of both existing and new experimental data.   The Center for Information and Numerical Data Analysis and Synthesis (CINDAS) at Purdue University produces several databases on the properties and behaviour of materials. The databases include: - ASMD (Aerospace Structural Metals Database) which gives access to approximately 80,000 data curves on over 220 alloys used in the aerospace and other industries - the Microelectronics Packaging Materials Database (MPMD), providing data and information on the thermal, mechanical, electrical and physical properties of electronics packaging materials, and - the Thermophysical Properties of Matter Database (TPMD), covering the...

  15. Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties.

    Science.gov (United States)

    Zhang, P; Bousack, H; Dai, Y; Offenhäusser, A; Mayer, D

    2018-01-18

    Nanoparticle (NP) materials with the capability to adjust their electrical and electro-mechanical properties facilitate applications in strain sensing technology. Traditional NP materials based on single component NPs lack a systematic and effective means of tuning their electrical and electro-mechanical properties. Here, we report on a new type of shell-binary NP material fabricated by self-assembly with either homogeneous or heterogeneous arrangements of NPs. Variable electrical and electro-mechanical properties were obtained for both materials. We show that the electrical and electro-mechanical properties of these shell-binary NP materials are highly tunable and strongly affected by the NP species as well as their corresponding volume fraction ratio. The conductivity and the gauge factor of these shell-binary NP materials can be altered by about five and two orders of magnitude, respectively. These shell-binary NP materials with different arrangements of NPs also demonstrate different volume fraction dependent electro-mechanical properties. The shell-binary NP materials with a heterogeneous arrangement of NPs exhibit a peaking of the sensitivity at medium mixing ratios, which arises from the aggregation induced local strain enhancement. Studies on the electron transport regimes and micro-morphologies of these shell-binary NP materials revealed the different mechanisms accounting for the variable electrical and electro-mechanical properties. A model based on effective medium theory is used to describe the electrical and electro-mechanical properties of such shell-binary nanomaterials and shows an excellent match with experiment data. These shell-binary NP materials possess great potential applications in high-performance strain sensing technology due to their variable electrical and electro-mechanical properties.

  16. Alignment and Load Transfer in Carbon Nanotube and Dicyclopentadiene Composites

    Science.gov (United States)

    Severino, Joseph Vincent

    Individual carbon nanotubes (CNTs) are the strongest materials available but their macroscopic assemblies are weak. This work establishes a new thermosetting dicyclopentadiene (DCPD) and CNT composite that increases the strength of CNT assemblies. These high volume fraction and void free structures constitute advanced materials that could one day replace traditional composite systems. To further the understanding of physical interactions between polymer and CNTs, a novel "capstan" load transfer mechanism is also introduced. Self-supporting assemblies of interconnected carbon nanotubes were stretched, twisted and compressed to fashion composites by the infusion and polymerization of low viscosity DCPD based monomeric resins. The properties of the CNTs, polymer and composite were characterized with thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA) and Raman spectroscopy. The microstructure was analyzed by wide angle X-ray scattering (WAXS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Sheets were drawn at 15 m/min from a growth furnace to impart alignment then stretched to further modify alignment. The mechanical properties were determined in five orientations with respect to the growth direction. The strength was nearly three times higher along this growth direction than it was perpendicular, and modulus was nearly six times higher. Transverse stretching achieved 1.5 times the elongation but alignment was inferior due to CNT kinking that prevented alignment and consolidation. Composites yarns and sheets were investigated for the mechanical properties, microstructure and load transfer. The DCPD resin was found to wet the CNTs and lubricated deformation. This reduced loads during processing, and curing solidified the aligned and consolidated structure. The stretched and twisted composite yarns increased the failure stress 51%. In aligned composite sheet, the failure stress increased 200%. The increased stresses

  17. Thermophysical properties of novel zeolite materials for sorption cycles

    KAUST Repository

    Thu, Kyaw

    2013-08-01

    his article discusses the thermophysical properties of zeolite-based adsorbents. Three types of zeolite (Z-01, Z-02 and Z-05) with different chemical compositions developed by Mitsubishi Plastics, Inc. are analyzed for possible applications in adsorption chillers and desalination cycles driven by low-temperature waste heat sources. The experiments are performed using static volumetric method with N2 gas sorption at 77 K. Thermophysical properties such as pore surface area, micropore volume and pore size distribution are evaluated using standard multipoint Brunauer-Emmett-Teller (BET) and Non-Local Density Functional Theory (NLDFT) methods. It is observed that Aluminosilicate functionalized Z-02 exhibits the highest surface area with huge micropore volume. © (2013) Trans Tech Publications, Switzerland.

  18. Theory of the structural properties of A-15 type materials

    Energy Technology Data Exchange (ETDEWEB)

    Gor' kov, L.P.; Dorokhov, O.N.

    1976-01-01

    The theory of the structural properties of the A-15 compounds is developed starting with a picture of linear chains of atoms of the transition elements. The twofold-degenerate electronic term is shifted and split when interchain transfer is taken into account. A fine structure of the electronic spectrum and the density of states are examined. The latter has two singularities at the Fermi level corresponding to an estimated variation of the composition by several percent. Among the samples showing the martensitic transformation, one of these singularities is supposed to be responsible for the peculiar properties observed, and a theory of the transformation from the cubic to the tetragonal phase is suggested. The temperature dependence of the phonon spectrum has been studied in detail. The theory explains the softening of the phonon modes at large wave vectors in some directions, and predicts features of the phonon spectrum whose observation could be crucial to the theory. 26 references.

  19. Effect of disorder on the superconducting properties of materials

    International Nuclear Information System (INIS)

    Brouers, F.; Derenne, M.

    1982-01-01

    The effect of the variation of the density states at the Fermi level on the critical superconductivity temperature TC of transition metal compounds is studied. This paper suggests using the technique of calculating the 5-fold degenerate d-band density of states from a continued fraction extension of a tight-binding Green function to study the relative importance of one dimensionality chain coupling, three dimensional interactions and the effect of disorder on the electronic and superconducting properties of complex phase and in particular A15 phases. The first results obtained for A15 phases density of states indicate that an extension of the suggested method can be of great interest to analyze the effect of disorder on superconductivity properties of complex phases

  20. Boundary lubrication properties of materials with expansive freezing

    OpenAIRE

    Jagla, E. A.

    2001-01-01

    We have performed molecular dynamics simulations of solid-solid contacts lubricated by a model fluid displaying many of the properties of water, particularly its expansive freezing. Near the region where expansive freezing occurs, the lubricating film remains fluid, and the friction force decreases linearly as the shear velocity is reduced. No sign of stick-slip motion is observed even at the lowest velocities. We give a simple interpretation of these results, and suggest that in general good...

  1. Composite Material from By-products and Its Properties

    Science.gov (United States)

    Šeps, K.; Broukalová, I.; Vodička, J.

    2017-09-01

    The paper shows an example of utilization of specific textile admixture - fluffs of torn textiles from waste cars in production of composite with aggregate consisting entirely of unsorted recycled concrete. The admixture in the mixture of recycled concrete and cement binder fills the pores and voids in composite. The elaborated composite has working title STEREDconcrete. In the article, basic mechanical-physical properties of the composite are presented also the fire resistance of STEREDconcrete, which was determined in tests.

  2. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties.

    Science.gov (United States)

    Ramazani, Soghra; Karimi, Mohammad

    2015-11-01

    A number of studies have demonstrated that the mechanical properties of electrospun polymeric nanofibrous scaffolds are enhanced with the incorporation of graphene and its derivatives, thus developing their applications in hard tissue engineering. However, our understanding of the relationship between the microstructure and properties of these fibrous scaffolds and how they are influenced by graphene oxide (GO) and reduced graphene oxide (RGO) loading is much more limited. Thus, in this paper, poly(ε-caprolactone) (PCL)/GO and RGO nanocomposite nanofibers containing 0, 0.1, 0.5 and 1wt.% GO and RGO were prepared using an electrospinning technique. With the addition of 0.1wt.% of GO and RGO nanosheets in PCL, the tensile strength of PCL scaffolds increased over ~160 and 304% respectively and elastic modulus increased over 103 and 163% due to the good dispersion of the nanosheets and their interaction with the molecular chains of PCL. These were supported by the parallel increase in relaxation time and molecular orientation of PCL chains at the presence of nanosheets with a loading of 0.1wt.%. The enhancement effect of the nanosheets was weakened with an increase in GO and RGO loading up to 1wt.% in which it is connected to a partial exfoliation of the nanosheets. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. State-of-the-art review of materials properties of nuclear waste forms

    International Nuclear Information System (INIS)

    Mendel, J.E.; Nelson, R.D.; Turcotte, R.P.; Gray, W.J.; Merz, M.D.; Roberts, F.P.; Weber, W.J.; Westsik, J.H. Jr.; Clark, D.E.

    1981-04-01

    The Materials Characterization Center (MCC) was established at the Pacific Northwest Laboratory to assemble a standardized nuclear waste materials data base for use in research, systems and facility design, safety analyses, and waste management decisions. This centralized data base will be provided through the means of a Nuclear Waste Materials Handbook. The first issue of the Handbook will be published in the fall of 1981 in looseleaf format so that it can be updated as additional information becomes available. To ensure utmost reliability, all materials data appearing in the Handbook will be obtained by standard procedures defined in the Handbook and approved by an independent Materials Review Board (MRB) comprised of materials experts from Department of Energy laboratories and from universities and industry. In the interim before publication of the Handbook there is need for a report summarizing the existing materials data on nuclear waste forms. This review summarizes materials property data for the nuclear waste forms that are being developed for immobilization of high-level radioactive waste. It is intended to be a good representation of the knowledge concerning the properties of HLW forms as of March 1981. The table of contents lists the following topics: introduction which covers waste-form categories, and important waste-form materials properties; physical properties; mechanical properties; chemical durability; vaporization; radiation effects; and thermal phase stability

  4. Tensile properties of ADI material in water and gaseous environments

    Energy Technology Data Exchange (ETDEWEB)

    Rajnovic, Dragan, E-mail: draganr@uns.ac.rs [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Balos, Sebastian; Sidjanin, Leposava [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Eric Cekic, Olivera [Innovation Centre, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade (Serbia); Grbovic Novakovic, Jasmina [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia)

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water. It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.

  5. A whole range hygric material model: Modelling liquid and vapour transport properties in porous media

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2010-01-01

    This paper addresses the modelling of hygric material coefficients bridging the gap between measured material properties and the non-linear storage and transport coefficients in the transfer equation. The conductivity approach and a bundle of tubes model are the basis. By extending this model...... with a mechanistic treatment of serial and parallel structured transport, a semi-empirical material model is developed. Deriving the transport properties from the pore structure of the material, the model provides a physical basis whereas a high flexibility and adjustability is obtained by the coupling...... with the mechanistic model. The required minimum input data are basic standard material properties. The model is very suitable for sophisticated research as well as for a broad application to porous materials in general....

  6. STATISTICAL DISTRIBUTION PATTERNS IN MECHANICAL AND FATIGUE PROPERTIES OF METALLIC MATERIALS

    OpenAIRE

    Tatsuo, SAKAI; Masaki, NAKAJIMA; Keiro, TOKAJI; Norihiko, HASEGAWA; Department of Mechanical Engineering, Ritsumeikan University; Department of Mechanical Engineering, Toyota College of Technology; Department of Mechanical Engineering, Gifu University; Department of Mechanical Engineering, Gifu University

    1997-01-01

    Many papers on the statistical aspect of materials strength have been collected and reviewed by The Research Group for Statistical Aspects of Materials Strength.A book of "Statistical Aspects of Materials Strength" was written by this group, and published in 1992.Based on the experimental data compiled in this book, distribution patterns of mechanical properties are systematically surveyed paying an attention to metallic materials.Thus one can obtain the fundamental knowledge for a reliabilit...

  7. Adhesive and Stress-Strain Properties of the Polymeric Layered Materials Reinforced by the Knitted Net

    Directory of Open Access Journals (Sweden)

    Rakhimov Farhod Hushbakovich

    2012-10-01

    Full Text Available It is known that the textile materials (woven fabric and mesh used for reinforcing of various polymer films and coatings. This paper discusses reinforcement of thermoplastic polymers based on PE (Polyethylene and PVC (Polyvinyl Chloride with a knitted mesh weave loin. According by the research identified adhesion, strength and deformation properties of new polymer laminates. The production of such materials has been discussed in detail and performance of resultant composites material is analyzed and compared with other materials.

  8. Imparting the unique properties of DNA into complex material architectures and functions

    Science.gov (United States)

    Xu, Phyllis F.; Noh, Hyunwoo; Lee, Ju Hun; Domaille, Dylan W.; Nakatsuka, Matthew A.; Goodwin, Andrew P.; Cha, Jennifer N.

    2014-01-01

    While the remarkable chemical and biological properties of DNA have been known for decades, these properties have only been imparted into materials with unprecedented function much more recently. The inimitable ability of DNA to form programmable, complex assemblies through stable, specific, and reversible molecular recognition has allowed the creation of new materials through DNA’s ability to control a material’s architecture and properties. In this review we discuss recent progress in how DNA has brought unmatched function to materials, focusing specifically on new advances in delivery agents, devices, and sensors. PMID:25525408

  9. Manufacturing techniques and material properties of forged integral closure head for PWRRV

    International Nuclear Information System (INIS)

    Kataoka, Hideo; Kutomi, Yasuhiro; Iwamura, Toshihiko; Kawaguchi, Seiichi; Nagasako, Hiroyuki; Funakoshi, Yoshihiko; Tokuno, Katsuhiko.

    1997-01-01

    A prototype forged integral closure head for PWR Reactor Vessels was manufactured, and evaluation tests on material properties were carried out in order to verify that an integral closure head for nuclear use can be manufactured. As a result of this work, the key techniques and quality assurance activities on the manufacturing of an integral closure head were verified and the reliability of the material properties was confirmed. Based on these results, the integral closure head was applied to the Reactor Vessel head replacement of Takahama Unit No.2 Nuclear Power Plant. This paper describes the manufacturing techniques and material properties of the forged integral closure head for PWR Reactor Vessels. (author)

  10. Some aspects of experimental investigation of the RPV material properties

    International Nuclear Information System (INIS)

    Lipka, J.; Hascik, J.; Groene, R.; Slugen, V.; Vitazek, K.; Hinca, R.; Toth, I.; Kupca, L.

    1996-01-01

    Moessbauer spectra (MS) and Electron-Positron Annihilation (EPA) spectra at room temperature have been measured on the samples from Reactor Pressure Vessel (RPV). Both types of measurements showed that the changes associated with the effects of neutron irradiation, as well as thermal treatment, can be detected by Moessbauer and Electron-Positron Annihilation spectroscopy. On base of a positive results achieved in MS and EPA measurements the complementary surveillance specimen program for the Reactor Pressure Vessel Materials Study of the third and fourth units NPP Jaslovske Bohunice has been prepared. The complementary surveillance specimen program has started in May 1995. The samples with proper design from basic and welded RPV materials were measured by MS and EPA before placing into the reactor. After neutron irradiation the samples become radioactive because of 59 Co content. To eliminate the influence of 60 Co gamma radiation on the EPA angular correlation and time spectra a three detectors spectrometer has been introduced. (author)

  11. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    Directory of Open Access Journals (Sweden)

    Gerald Artner

    2017-01-01

    Full Text Available A carbon fiber reinforced polymer (CFRP laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.

  12. Estimation of local mechanical properties of highly porous ceramic materials

    Czech Academy of Sciences Publication Activity Database

    Marcián, P.; Majer, Z.; Dlouhý, Ivo; Florian, Z.

    2012-01-01

    Roč. 106, č. 3 (2012), S476-S477 ISSN 0009-2770 R&D Projects: GA ČR(CZ) GA101/09/1821 Institutional support: RVO:68081723 Keywords : cellular structures * tensile test * microCT * image processing * FEM Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.453, year: 2012 http://chemicke-listy.cz/docs/full/2012_s3_s405-s441.pdf

  13. Laboratory Determination of Thermal Protection System Materials Surface Catalytic Properties

    Science.gov (United States)

    2007-07-01

    Zalar, A., "Recombination of Neutral Hydrogen Atoms on AISI 304 Stainless Steel Surface," Applied Surface Science, Vol. 144-145, 1999, pp. 399-403. 57...and test environments. Typically, these fits contain only the temperature dependence of the loss probability, with no information on pressure or...generated in the MESOX test facility in the PROMES-CNRS laboratory on a variety of ceramic materials.47-50 The MESOX facility uses a flow tube

  14. Materials Properties at Internal Interfaces: Fundamental Atomic Issues

    Energy Technology Data Exchange (ETDEWEB)

    Browning, Nigel D. [Univ. of California, Davis, CA (United States)

    2014-09-12

    During the course of this research, the microscopy methods were applied to many different systems (see publication list). However, the work can be broadly classified into three main areas: the statistical distribution of grain boundary structures under different doping conditions, the identification of individual dopant atoms in oxide materials, and the evaluation of nucleation and growth processes in liquid and more recently. The main results from each of these efforts will be discussed in the final report.

  15. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.

    1987-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented

  16. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.

    1986-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)

  17. Nonlinear electroelasticity: material properties, continuum theory and applications.

    Science.gov (United States)

    Dorfmann, Luis; Ogden, Ray W

    2017-08-01

    In the last few years, it has been recognized that the large deformation capacity of elastomeric materials that are sensitive to electric fields can be harnessed for use in transducer devices such as actuators and sensors. This has led to the reassessment of the mathematical theory that is needed for the description of the electromechanical (in particular, electroelastic) interactions for purposes of material characterization and prediction. After a review of the key experiments concerned with determining the nature of the electromechanical interactions and a discussion of the range of applications to devices, we provide a short account of the history of developments in the nonlinear theory. This is followed by a succinct modern treatment of electroelastic theory, including the governing equations and constitutive laws needed for both material characterization and the analysis of general electroelastic coupling problems. For illustration, the theory is then applied to two simple representative boundary-value problems that are relevant to the geometries of activation devices; in particular, (a) a rectangular plate and (b) a circular cylindrical tube, in each case with compliant electrodes on the major surfaces and a potential difference between them. In (a), an electric field is generated normal to the major surfaces and in (b), a radial electric field is present. This is followed by a short section in which other problems addressed on the basis of the general theory are described briefly.

  18. Physicochemical Properties of Root Canal Filling Materials for Primary Teeth.

    Science.gov (United States)

    Segato, Raquel Assed Bezerra; Pucinelli, Carolina Maschietto; Ferreira, Danielly Cunha Araújo; Daldegan, Andiara De Rossi; Silva, Roberto S da; Nelson-Filho, Paulo; Silva, Léa A B da

    2016-01-01

    This study evaluated physiochemical proprieties of a calcium hydroxide-based paste (Calen®) combined with a zinc oxide cement at different ratios (1:0.5, 1:0.65, 1:0.8 and 1:1). Materials were compared regarding setting time, pH variation, radiopacity, solubility, dimensional changes, flow and release of chemical elements. Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). Longer setting time and higher dimensional changes and solubility values were exhibited by 1:0.65 and 1:0.5 ratios (ppH values at all time points. All materials exhibited high radiopacity values. Significant differences were found only between 1:0.5 and 1:1 ratios for calcium and zinc release (p0.05). Considering the evaluated proprieties, combinations of Calen® paste with ZO at 1:0.5 and 1:0.65 ratios had the best results as root canal filling materials for use in primary teeth.

  19. Electrical, optical, and magnetic properties of organic solid-state materials IV. Materials Research Society, symposium proceedings Volume 488

    International Nuclear Information System (INIS)

    Reynolds, J.R.; Jen, A.K.Y.; Rubner, M.F.; Chiang, L.Y.; Dalton, L.R.

    1998-01-01

    The symposium, Electrical, Optical, and Magnetic Properties of Organic Solid-State Materials IV, was sponsored by the Materials Research Society and held December 1--5, 1997, in Boston, Massachusetts. Early studies of charge transport in conducting polymers have evolved from the elucidation of fundamental structure/function relationships to applications as batteries, simple electrical devices such as diodes, chemical sensors, antistatic coatings, microwave and millimeter wave-absorbing materials, and photochromic devices. A particularly exciting evolution has been the discovery and development of organic light-emitting diodes (OLEDs) which appear to be nearing commercialization in an amazingly short period of time. This application is of particular interest because both electrical and optical properties must be considered, and these have been important parallel themes of the conference. Moreover, nanostructure control is important for OLEDs, and nanoscale architectural engineering has been an increasingly important theme of the conference. Indeed, not only has the study of conjugated (quasidelocalized) electrons in organic solid-state materials resulted in interesting physical properties and device applications, but the desire to exploit these properties has promoted the development of new synthesis and processing methodologies to achieve special nanoscale and microscale structures. One hundred five papers have been processed separately for inclusion on the data base

  20. Sensory properties of marinated herring (Clupea harengus) processed from raw material from commercial landings

    DEFF Research Database (Denmark)

    Nielsen, Durita; Hyldig, Grethe; Nielsen, Jette

    2005-01-01

    Sensory properties of marinated herring processed from raw material from Danish commercial catches were described and related to fishing season and biological, chemical and functional properties. Herring was caught on five cruises and stored on board in tanks or ice. The sensory profile of marina......Sensory properties of marinated herring processed from raw material from Danish commercial catches were described and related to fishing season and biological, chemical and functional properties. Herring was caught on five cruises and stored on board in tanks or ice. The sensory profile...

  1. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  2. Chitosan-nanosilica hybrid materials: Preparation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Podust, T.V., E-mail: tania_list@yahoo.com [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Kulik, T.V., E-mail: tanyakulyk@i.ua [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Palyanytsya, B.B.; Gun’ko, V.M. [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Tóth, A. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Mikhalovska, L. [School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Menyhárd, A. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Institute of Materials Science and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (Hungary); László, K. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)

    2014-11-30

    Highlights: • Hybrid chitosan-nanosilica materials were synthesized using an adsorption modification method. • The chitosan adsorption capacity is higher on the silica/titania and silica/alumina than on the fumed silica. • Nanosilicas undergo structural and textural alterations due to modification by chitosan. • The more severe chitosan thermodestruction occurs on the silica/titania and silica/alumina surfaces than on the plain silica surface. - Abstract: The research focuses on the synthesis of novel organic–inorganic hybrid materials based on polysaccharide chitosan and nanosilicas (SiO{sub 2}, TiO{sub 2}/SiO{sub 2} and Al{sub 2}O{sub 3}/SiO{sub 2}). The chitosan modified nanooxides were obtained by the equilibrium adsorption method. The chitosan adsorption capacities of silica/titania and silica/alumina are higher than of the plain silica due to the additional active sites present on the surfaces of the mixed oxides. The hybrid materials were characterized by low-temperature nitrogen adsorption/desorption, photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), thermogravimetry (TG/DTG) and temperature-programmed desorption with mass spectrometry control (TPD MS) methods. The chitosan treatment only modestly influences the surface area S{sub BET} of the nanooxides but the rearrangement of the secondary and tertiary structures (aggregates and agglomerates) results in an enhancement of the mesoporosity and affects the size of the aggregates. The more severe thermodestruction of the polysaccharide desorbing from the modified mixed silicas indicates a stronger interaction between the chitosan and the mixed oxides compared to the silanol groups of the plain silica surface.

  3. Report of the consultancy on review of thermophysical properties of materials for advanced water-cooled reactors. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    Since 1990 the IAEA's Nuclear Power Technology Development Section has carried out a coordinated research programme on thermophysical properties of materials for advanced water cooled reactors. The objective of this activity has been to collect and systematize a thermophysical properties data base for light and heavy water reactor materials under normal operating and transient conditions. This activity has been organized within the frame of IAEA's International Working Group on Advanced Technologies for Water-cooled Reactors. The important thermophysical properties include thermal conductivity, thermal diffusivity, specific heat capacity, enthalpy, thermal expansion and others. Several organizations involved in this CRP have suggested establishment of a new programme to extend the database to include properties in the liquid region applicable to severe accidents, to critically assess and peer review the property data and correlations, and to recommend the most appropriate data. The purpose of the consultancy was to examine the interest in further cooperation, and, if appropriate, to prepare the scope and approach for a potential new international collaborative programme to collect and review thermophysical properties data for advanced water cooled reactors and to recommend the most appropriate data. Figs

  4. Microstructural and Mechanical Properties of Alkali Activated Colombian Raw Materials

    Directory of Open Access Journals (Sweden)

    Maria Criado

    2016-03-01

    Full Text Available Microstructural and mechanical properties of alkali activated binders based on blends of Colombian granulated blast furnace slag (GBFS and fly ash (FA were investigated. The synthesis of alkali activated binders was conducted at 85 °C for 24 h with different slag/fly ash ratios (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100. Mineralogical and microstructural characterization was carried out by means of X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX and Nuclear magnetic resonance (NMR. Mechanical properties were evaluated through the compressive strength, modulus of elasticity and Poisson’s ratio. The results show that two different reaction products were detected in the slag/fly ash mixtures, a calcium silicate hydrate with Al in its structure (C-A-S-H gel and a sodium aluminosilicate hydrate (N-A-S-H gel with higher number of polymerized species and low content in Ca. It was found that with the increase of the amount of added slag, the amount of C-A-S-H gel increased and the amount of N-A-S-H gel decreased. The matrix was more dense and compact with almost absence of pores. The predominance of slag affected positively the compressive strength, Young’s modulus and Poisson’s ratio, with 80% slag and 20% fly ash concrete being the best mechanical performance blend.

  5. Recommended reference materials for realization of physicochemical properties density

    CERN Document Server

    Herington, E F G

    1976-01-01

    This book first presents the nomenclature and units used in the determination of densities of liquids and solids, followed by a general description of the apparatus and the methods used in the measurement of density, with particular reference to the pycnometric, hydrostatic weighing, magnetic float, and temperature flotation methods. The use of water as a density reference material is then explained, focusing on the isotopic composition of Standard Mean Ocean Water (SMOW) and the absolute density of SMOW as a function of temperature. Problems due to the effect of pressure and dissolved gases o

  6. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2012-01-01

    Full Text Available In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR of <2 [cm³(STP/(m²d bar] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.

  7. "Smart" Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications.

    Science.gov (United States)

    Qiu, Xiaoyun; Hu, Shuwen

    2013-02-28

    Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. "Smart" materials based on cellulose have great advantages-especially their intelligent behaviors in reaction to environmental stimuli-and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of "smart" materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of "smart" materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these "smart" materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review.

  8. Effect of fluoride addition on the properties of dental alginate impression materials.

    Science.gov (United States)

    Lee, Yong-Keun; Lim, Bum-Soon; Kim, Cheol-We

    2004-03-01

    Fluoride-containing dental alginate impression materials can exert a considerable reduction in enamel solubility. The objective was to evaluate the effects of fluoride addition in the alginate impression materials on the properties and subsequent release of fluoride. Four experimental alginate impression materials were studied. Materials were mixed with distilled water (control) or 100-ppm fluoride solution. One or two percent NaF, or 1% SnF2 was added to the materials, which were mixed with distilled water. Fluoride release, flexibility, recovery from deformation, setting time, compressive strength and elastic modulus were determined in accordance with the ISO 1563 and ANSI/ADA Spec. 18. Fluoride release increased after addition of fluoride, and the released amount was 0.762-14.761 ppm. Addition of NaF or SnF2 resulted in higher fluoride release than the control group (p alginate impression material may result in effective release of fluoride without deteriorating the properties of material itself.

  9. Influence of channel material properties on performance of nanowire transistors

    Science.gov (United States)

    Razavi, Pedram; Fagas, Giorgos; Ferain, Isabelle; Yu, Ran; Das, Samaresh; Colinge, Jean-Pierre

    2012-06-01

    The performance of germanium and silicon inversion-mode and junctionless nanowire field-effect transistors are investigated using three-dimensional quantum mechanical simulations in the ballistic transport regime and within the framework of effective-mass theory for different channel materials and orientations. Our study shows that junctionless nanowire transistors made using n-type Ge or Si nanowires as a channel material are more immune to short-channel effects than conventional inversion-mode nanowire field-effect transistors. As a result, these transistors present smaller subthreshold swing, less drain-induced barrier-lowering, lower source-to-drain tunneling, and higher Ion/Ioff ratio for the same technology node and low standby power technologies. We also show that the short-channel characteristics of Ge and Si junctionless nanowire transistors, unlike the inversion-mode nanowire transistors, are very similar. The results are explained through a detailed analysis on the effect of the channel crystallographic orientation, effective masses, and dielectric constant on electrical characteristics.

  10. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology.

    Science.gov (United States)

    Peng, Qing; Dearden, Albert K; Crean, Jared; Han, Liang; Liu, Sheng; Wen, Xiaodong; De, Suvranu

    2014-01-01

    Plenty of new two-dimensional materials including graphyne, graphdiyne, graphone, and graphane have been proposed and unveiled after the discovery of the "wonder material" graphene. Graphyne and graphdiyne are two-dimensional carbon allotropes of graphene with honeycomb structures. Graphone and graphane are hydrogenated derivatives of graphene. The advanced and unique properties of these new materials make them highly promising for applications in next generation nanoelectronics. Here, we briefly review their properties, including structural, mechanical, physical, and chemical properties, as well as their synthesis and applications in nanotechnology. Graphyne is better than graphene in directional electronic properties and charge carriers. With a band gap and magnetism, graphone and graphane show important applications in nanoelectronics and spintronics. Because these materials are close to graphene and will play important roles in carbon-based electronic devices, they deserve further, careful, and thorough studies for nanotechnology applications.

  11. Evaluation of properties of irreversible hydrocolloid impression materials mixed with disinfectant liquids

    Directory of Open Access Journals (Sweden)

    Arul Amalan

    2013-01-01

    Conclusion: Chlorhexidine solution can be used to mix irreversible hydrocolloid impression materials in regular dental practice as it did not significantly alter the properties. This may ensure effective disinfection of impressions.

  12. Geophysical methods for determining the geotechnical engineering properties of earth materials.

    Science.gov (United States)

    2010-03-01

    Surface and borehole geophysical methods exist to measure in-situ properties and structural : characteristics of earth materials. Application of such methods has demonstrated cost savings through : reduced design uncertainty and lower investigation c...

  13. Preparation and thermal properties of form stable paraffin phase change material encapsulation

    International Nuclear Information System (INIS)

    Liu Xing; Liu Hongyan; Wang Shujun; Zhang Lu; Cheng Hua

    2006-01-01

    Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area to be used in energy storage. Form stable paraffin phase change materials (PCM) in which paraffin serves as a latent heat storage material and polyolefins act as a supporting material, because of paraffin leakage, are required to be improved. The form stable paraffin PCM in the present paper was encapsulated in an inorganic silica gel polymer successfully by in situ polymerization. The differential scanning calorimeter (DSC) was used to measure its thermal properties. At the same time, the Washburn equation, which measures the wetting properties of powder materials, was used to test the hydrophilic-lipophilic properties of the PCMs. The result indicated that the enthalpy of the microencapsulated PCMs was reduced little, while their hydrophilic properties were enhanced largely

  14. Apparatus and test method for characterizing the temperature regulating properties of thermal functional porous polymeric materials.

    Science.gov (United States)

    Yao, Bao-Guo; Zhang, Shan; Zhang, De-Pin

    2017-05-01

    In order to evaluate the temperature regulating properties of thermal functional porous polymeric materials such as fabrics treated with phase change material microcapsules, a new apparatus was developed. The apparatus and the test method can measure the heat flux, temperature, and displacement signals during the dynamic contact and then quickly give an evaluation for the temperature regulating properties by simulating the dynamic heat transfer and temperature regulating process when the materials contact the body skin. A series of indices including the psychosensory intensity, regulating capability index, and relative regulating index were defined to characterize the temperature regulating properties. The measurement principle, the evaluation criteria and grading method, the experimental setup and the test results discussion, and the gage capability analysis of the apparatus are presented. The new apparatus provides a method for the objective measurement and evaluation of the temperature regulating properties of thermal functional porous polymeric materials.

  15. Finite Element Analysis of Multilayered and Functionally Gradient Tribological Coatings With Measured Material Properties (Preprint)

    National Research Council Canada - National Science Library

    Kang, Young S; Sharma, Shashi K; Sanders, Jeffrey H; Voevodin, Andrey A

    2006-01-01

    ...) gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were assumed as a series of perfectly bonded layers with unique material properties and layer thickness...

  16. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – A review

    International Nuclear Information System (INIS)

    Raam Dheep, G.; Sreekumar, A.

    2014-01-01

    Highlights: • Classification of phase change materials. • Studies on phase change properties of various phase change materials. • Influence of nanomaterials on properties of phase change materials. - Abstract: Thermal energy storage system plays a critical role in developing an efficient solar energy device. As far as solar thermal devices are concerned, there is always a mismatch between supply and demand due to intermittent and unpredictable nature of solar radiation. A well designed thermal energy storage system is capable to alleviate this demerit by providing a constant energy delivery to the load. Many research works is being carried out to determine the suitability of thermal energy storage system to integrate with solar thermal gadgets. This review paper summarizes the numerous investigations on latent heat thermal energy storage using phase change materials (PCM) and its classification, properties, selection criteria, potential research areas and studies involved to analyze the thermal–physical properties of PCM

  17. Optical limiting properties of fullerenes and related materials

    Science.gov (United States)

    Riggs, Jason Eric

    Optical limiting properties of fullerene C60 and different C60 derivatives (methano-, pyrrolidino-, and amino-) towards nanosecond laser pulses at 532 nm were studied. The results show that optical limiting responses of the C60 derivatives are similar to those of the parent C60 despite their different linear absorption and emission properties. For C60 and the derivatives in room-temperature solutions of varying concentrations and optical path length, the optical limiting responses are strongly concentration dependent. The concentration dependence is not due to any optical artifacts since the results obtained under the same experimental conditions for reference systems show no such dependence. Similarly, optical limiting results of fullerenes are strongly dependent on the medium viscosity, with responses in viscous media weaker than that in room-temperature solutions. The solution concentration and medium viscosity dependencies are not limited to fullerenes. In fact, the results from a systematic investigation of several classes of nonlinear absorptive organic dyes show that the optical limiting responses are also concentration and medium viscosity dependent. Interestingly, however, such dependencies are uniquely absent in the optical limiting responses of metallophthalocyanines. In classical photophysics, the strong solution concentration and medium viscosity dependencies are indicative of significant contributions from photoexcited-state bimolecular processes. Thus, the experimental results are discussed in terms of a significantly modified five-level reverse saturable absorption mechanism. Optical limiting properties of single-walled and multiple-walled carbon nanotubes toward nanosecond laser pulses at 532 nm were also investigated. When suspended in water, the single-walled and multiple-walled carbon nanotubes exhibit essentially the same optical limiting responses, and the results are also comparable with those of carbon black aqueous suspension. For

  18. The porosity effect on properties of sintered materials as their conductivity and Youngs modulus of elasticity

    International Nuclear Information System (INIS)

    Ondracek, G.; Thuemmler, F.

    1979-01-01

    A set of equations derived demonstrates quantitatively the influence of closed pores on the conductivity as well as on Youngsmodulus of elasticity of sintered materials. There are three microstructural parameters following from the theoretical derivation controlling the porosity effect on the properties, which are the total porosity, the form factor and the orientation factor of the pores. By quantitative microstructure analysis these factors become available providing together with the equations the tool - to calculate the conductivity and Youngs modulus of elasticity from microstructural quantities of sintered materials thus substituting direct property measurements by quantitative microstructure analysis if desired - to endeaver technologically optimum microstructures to obtain theoretically predicted special property values and to precalculate property alterations by microstructure variations ('taylor-made-materials') - to supplement the conventional microstructural quality control by calculated property data. (orig.) [de

  19. Refractive index as materials property. Der Brechungsindex als Stoffeigenschaft

    Energy Technology Data Exchange (ETDEWEB)

    Zilian, U. (Ciba-Geigy AG, Basel (Switzerland))

    1991-10-01

    The investigation of the relationship between refractive index (n) and molecular structure of a series of gases, liquids, and solids led to the conclusion that the refractive index of a substance is an independent molecular property. Light is refracted by two types of electron pairs. a) Bonding Electron Pairs (BEP) and b) Response Electron Pairs (REP). - Paraffins exhibit only BEPs which can easily be counted. REP is a new term we introduce to quantify the effects of several nonbonding electrons. The inert gases, for example, refract solely with REPs. They can be determined, and the most important ones are herein tabulated or delineated in the text. For compounds with known formular weight (M) and density (d), the refractive index can be simply calculated using the following formula. (orig.).

  20. Thermal properties of composite materials: a complex systems approximation

    Science.gov (United States)

    Carrillo, J. L.; Bonilla, Beatriz; Reyes, J. J.; Dossetti, Victor

    We propose an effective media approximation to describe the thermal diffusivity of composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy, the thermal diffusivity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal diffusivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a significant difference in the thermal properties of the anisotropic samples, compared to the isotropic randomly distributed. We correlate some measures of the complexity of the inclusion structure with the observed thermal response through a multifractal analysis. In this way, we are able to describe, and at some extent predict, the behavior of the thermal diffusivity in terms of the lacunarity and other measures of the complexity of these samples Partial Financial Support by CONACyT México and VIEP-BUAP.