WorldWideScience

Sample records for aligned fullerene micro

  1. Fullerenes

    Ehrenreich, Henry

    1994-01-01

    Fullerenes or"buckyballs,"a new carbon-based family of materials, have fascinated the scientific community for the past few years. These materials are likely to find applications ranging from lubricants to batteries to biological magic bullets, which will be of great importance in the science and technology of the next century. This carefully edited volume, the first to include Frans Spaepen as co-editor, summarizes our present understanding in a series of didacticarticles, which take the reader from the fundamentals to the present cutting-edge research. A general overview is followed by chapters devoted to synthesis and characterization of fullerenes and their derivatives, the novel structural properties of buckyballs, tubes, and buckyonions, a theoretical and experimental view of electrons and phonons, and finally to the fascinating superconducting properties of these materials.Key Features* Presents systematic overview of entire field* Discusses synthesis, characterization, structure, and superconducting p...

  2. Evaluation of microRNA alignment techniques

    Kaspi, Antony; El-Osta, Assam

    2016-01-01

    Genomic alignment of small RNA (smRNA) sequences such as microRNAs poses considerable challenges due to their short length (∼21 nucleotides [nt]) as well as the large size and complexity of plant and animal genomes. While several tools have been developed for high-throughput mapping of longer mRNA-seq reads (>30 nt), there are few that are specifically designed for mapping of smRNA reads including microRNAs. The accuracy of these mappers has not been systematically determined in the case of smRNA-seq. In addition, it is unknown whether these aligners accurately map smRNA reads containing sequence errors and polymorphisms. By using simulated read sets, we determine the alignment sensitivity and accuracy of 16 short-read mappers and quantify their robustness to mismatches, indels, and nontemplated nucleotide additions. These were explored in the context of a plant genome (Oryza sativa, ∼500 Mbp) and a mammalian genome (Homo sapiens, ∼3.1 Gbp). Analysis of simulated and real smRNA-seq data demonstrates that mapper selection impacts differential expression results and interpretation. These results will inform on best practice for smRNA mapping and enable more accurate smRNA detection and quantification of expression and RNA editing. PMID:27284164

  3. Energy level alignment and sub-bandgap charge generation in polymer:fullerene bulk heterojunction solar cells.

    Tsang, Sai-Wing; Chen, Song; So, Franky

    2013-05-07

    Using charge modulated electroabsorption spectroscopy (CMEAS), for the first time, the energy level alignment of a polymer:fullerene bulk heterojunction photovoltaic cell is directly measured. The charge-transfer excitons generated by the sub-bandgap optical pumping are coupled with the modulating electric field and introduce subtle changes in optical absorption in the sub-bandgap region. This minimum required energy for sub-bandgap charge genreation is defined as the effective bandgap. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Laser micro-machining of hydrophobic-hydrophilic patterns for fluid driven self-alignment in micro-assembly

    Römer, Gerardus Richardus, Bernardus, Engelina; Jorritsma, Mark; Arnaldo del Cerro, D.; Chang, Bo; Liimatainen, Ville; Zhou, Quan; Huis in 't Veld, Bert

    2011-01-01

    Fluid driven self-alignment is a low cost alternative to fast but relatively inaccurate robotic pickand-place assembly of micro-fabricated components. This fluidic self-alignment technique relies on a hydrophobic-hydrophilic pattern on the surface of the receiving substrate, which confines a fluid

  5. Robust precision alignment algorithm for micro tube laser forming

    Folkersma, Ger; Brouwer, Dannis Michel; Römer, Gerardus Richardus, Bernardus, Engelina; Herder, Justus Laurens

    2016-01-01

    Tube laser forming on a small diameter tube can be used as a high precision actuator to permanently align small (optical)components. Applications, such as the alignment of optical fibers to photonic integrated circuits, often require sub-micron alignment accuracy. Although the process causes

  6. Wettability transition of plasma-treated polystyrene micro/nano pillars-aligned patterns

    2010-12-01

    Full Text Available This paper reports the wettability transition of plasma-treated polystyrene (PS micro/nano pillars-aligned patterns. The micro/nano pillars were prepared using hot embossing on silicon microporous template and alumina nanoporous template, which were fabricated by ultraviolet (UV lithography and inductive coupled plasma (ICP etching, and two-step anodic oxidation, respectively. The results indicate that the combination of micro/nano patterning and plasma irradiation can easily regulate wettabilities of PS surfaces, i.e. from hydrophilicity to hydrophobicity, or from hydrophobicity to superhydrophilicity. During the wettability transition from hydrophobicity to hydrophilicity there is only mild hydrophilicity loss. After plasma irradiation, moreover, the wettability of PS micro/nano pillars-aligned patterns is more stable than that of flat PS surfaces. The observed wettability transition and wettability stability of PS micro/nano pillars-aligned patterns are new phenomena, which may have potential in creating programmable functional polymer surfaces.

  7. Fullerenes and disk-fullerenes

    Deza, M; Dutour Sikirić, M; Shtogrin, M I

    2013-01-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles

  8. Fullerenes and disk-fullerenes

    Deza, M.; Dutour Sikirić, M.; Shtogrin, M. I.

    2013-08-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles.

  9. Program Fullerene

    Wirz, Lukas; Peter, Schwerdtfeger,; Avery, James Emil

    2013-01-01

    Fullerene (Version 4.4), is a general purpose open-source program that can generate any fullerene isomer, perform topological and graph theoretical analysis, as well as calculate a number of physical and chemical properties. The program creates symmetric planar drawings of the fullerene graph, an......-Fowler, and Brinkmann-Fowler vertex insertions. The program is written in standard Fortran and C++, and can easily be installed on a Linux or UNIX environment....

  10. Micro-vision servo control of a multi-axis alignment system for optical fiber assembly

    Chen, Weihai; Yu, Fei; Qu, Jianliang; Chen, Wenjie; Zhang, Jianbin

    2017-01-01

    This paper describes a novel optical fiber assembly system featuring a multi-axis alignment function based on micro-vision feedback control. It consists of an active parallel alignment mechanism, a passive compensation mechanism, a micro-gripper and a micro-vision servo control system. The active parallel alignment part is a parallelogram-based design with remote-center-of-motion (RCM) function to achieve precise rotation without fatal lateral motion. The passive mechanism, with five degrees of freedom (5-DOF), is used to implement passive compensation for multi-axis errors. A specially designed 1-DOF micro-gripper mounted onto the active parallel alignment platform is adopted to grasp and rotate the optical fiber. A micro-vision system equipped with two charge-coupled device (CCD) cameras is introduced to observe the small field of view and obtain multi-axis errors for servo feedback control. The two CCD cameras are installed in an orthogonal arrangement—thus the errors can be easily measured via the captured images. Meanwhile, a series of tracking and measurement algorithms based on specific features of the target objects are developed. Details of the force and displacement sensor information acquisition in the assembly experiment are also provided. An experiment demonstrates the validity of the proposed visual algorithm by achieving the task of eliminating errors and inserting an optical fiber to the U-groove accurately. (paper)

  11. Alignment of dipole magnet in micro-beam line of HIRFL

    Wang Shaoming; Chen Wenjun; Yang Shengli; Cai Guozhu; Guo Yizhen; Zhou Guangming; Man Kaidi; Song Mingtao

    2010-01-01

    Microbeam irradiation facility is an experiment platform, which can reduce the beam-spot on the irradiated sample to micrometer level, and can accurately locate and count the radioactive particles. It is a powerful research tool for the irradiation material science, irradiation biology, irradiation biomedicine and micro mechanical machining. The microbeam irradiation facility requires the precise work for installation and alignment. These conditions make magnet's change for directions and positions because the location space of dipole magnets in micro-beam line of HIRFL (Heavy Ion Research Facility in Lanzhou) is very small. It is a challenge for the installation and alignment work of magnets. It was solved by transforming coordinates of benchmarks of magnets, which controlled the error of magnet setup within error tolerance range. (authors)

  12. Nanostructured pillars based on vertically aligned carbon nanotubes as the stationary phase in micro-CEC.

    Wu, Ren-Guei; Yang, Chung-Shi; Wang, Pen-Cheng; Tseng, Fan-Gang

    2009-06-01

    We present a micro-CEC chip carrying out a highly efficient separation of dsDNA fragments through vertically aligned multi-wall carbon nanotubes (MWCNTs) in a microchannel. The vertically aligned MWCNTs were grown directly in the microchannel to form straight nanopillar arrays as ordered and directional chromatographic supports. 1-Pyrenedodecanoic acid was employed for the surface modification of the MWCNTs' stationary phase to adsorb analytes by hydrophobic interactions. This device was used for separating dsDNA fragments of three different lengths (254, 360, and 572 bp), and fluorescence detection was employed to verify the electrokinetic transport in the MWCNT array. The micro-CEC separation of the three compounds was achieved in less than 300 s at a field strength of 66 V/cm due to superior laminar flow patterns and a lower flow resistance resulting from the vertically aligned MWCNTs being used as the stationary phase medium. In addition, a fivefold reduction of band broadening was obtained when the analyte was separated by the chromatographic MWCNT array channel instead of the CE channel. From all of the results, we suggest that an in situ grown and directional MWCNT array can potentially be useful for preparing more diversified forms of stationary phases for vertically efficient chip-based electrochromatography.

  13. Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers.

    Elvira, Iris; Muñoz-Martínez, Juan F; Barroso, Álvaro; Denz, Cornelia; Ramiro, José B; García-Cabañes, Angel; Agulló-López, Fernando; Carrascosa, Mercedes

    2018-01-01

    Optical tools for manipulation and trapping of micro- and nano-objects are a fundamental issue for many applications in nano- and biotechnology. This work reports on the use of one such method, known as photovoltaic optoelectronics tweezers, to orientate and organize cylindrical microcrystals, specifically elongated zeolite L, on the surface of Fe-doped LiNbO 3 crystal plates. Patterns of aligned zeolites have been achieved through the forces and torques generated by the bulk photovoltaic effect. The alignment patterns with zeolites parallel or perpendicular to the substrate surface are highly dependent on the features of light distribution and crystal configuration. Moreover, dielectrophoretic chains of zeolites with lengths up to 100 μm have often been observed. The experimental results of zeolite trapping and alignment have been discussed and compared together with theoretical simulations of the evanescent photovoltaic electric field and the dielectrophoretic potential. They demonstrate the remarkable capabilities of the optoelectronic photovoltaic method to orientate and pattern anisotropic microcrystals. The combined action of patterning and alignment offers a unique tool to prepare functional nanostructures with potential applications in a variety of fields such as nonlinear optics or plasmonics.

  14. Wafer-Level Patterned and Aligned Polymer Nanowire/Micro- and Nanotube Arrays on any Substrate

    Morber, Jenny Ruth

    2009-05-25

    A study was conducted to fabricate wafer-level patterned and aligned polymer nanowire (PNW), micro- and nanotube arrays (PNT), which were created by exposing the polymer material to plasma etching. The approach for producing wafer-level aligned PNWs involved a one-step inductively coupled plasma (ICP) reactive ion etching process. The polymer nanowire array was fabricated in an ICP reactive ion milling chamber with a pressure of 10mTorr. Argon (Ar), O 2, and CF4 gases were released into the chamber as etchants at flow rates of 15 sccm, 10 sccm, and 40 sccm. Inert gasses, such as Ar-form positive ions were incorporated to serve as a physical component to assist in the material degradation process. One power source (400 W) was used to generate dense plasma from the input gases, while another power source applied a voltage of approximately 600V to accelerate the plasma toward the substrate.

  15. Vertically Aligned Niobium Nanowire Arrays for Fast-Charging Micro-Supercapacitors.

    Mirvakili, Seyed M; Hunter, Ian W

    2017-07-01

    Planar micro-supercapacitors are attractive for system on chip technologies and surface mount devices due to their large areal capacitance and energy/power density compared to the traditional oxide-based capacitors. In the present work, a novel material, niobium nanowires, in form of vertically aligned electrodes for application in high performance planar micro-supercapacitors is introduced. Specific capacitance of up to 1 kF m -2 (100 mF cm -2 ) with peak energy and power density of 2 kJ m -2 (6.2 MJ m -3 or 1.7 mWh cm -3 ) and 150 kW m -2 (480 MW m -3 or 480 W cm -3 ), respectively, is achieved. This remarkable power density, originating from the extremely low equivalent series resistance value of 0.27 Ω (2.49 µΩ m 2 or 24.9 mΩ cm 2 ) and large specific capacitance, is among the highest for planar micro-supercapacitors electrodes made of nanomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Self-aligned mask renewal for anisotropically etched circular micro- and nanostructures

    Kaspar, Peter; Jäckel, Heinz; Holzapfel, Sebastian; Windhab, Erich J

    2011-01-01

    The top–down fabrication of high aspect ratio circular micro- and nanostructures in silicon nitride is presented. A new method is introduced to increase the aspect ratio of anisotropically etched holes by a factor of more than two with respect to the results obtained from an established dry-etching process. The method is based on the renewal of an etching mask after a first etching step has been completed. Mask renewal is done by line-of-sight deposition of a masking layer on the surface of the sample, which is mounted at an angle with respect to the deposition direction. No additional alignment step is required. The proof of principle is performed for silicon nitride etching through a mask of titanium, but the method has great potential to be applicable to a wide variety of substrate–mask combinations and to find entrance into various engineering fields. Two specific applications are highlighted. Firstly, a thick silicon nitride hardmask is used for the fabrication of deeply etched photonic crystal holes in indium phosphide (InP). For holes of 280 nm diameter, a record aspect ratio of 20 and an overall selectivity of 28.5 between a positive-tone resist layer and InP are reported. Secondly, the use of perforated silicon nitride membranes for droplet formation for applications in food engineering or pharmaceutics is addressed. Preliminary results show a potential for the self-aligned mask renewal method to exceed state-of-the-art membrane quality in terms of pore size, aspect ratio and membrane stability.

  17. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes.

    Hsia, Ben; Marschewski, Julian; Wang, Shuang; In, Jung Bin; Carraro, Carlo; Poulikakos, Dimos; Grigoropoulos, Costas P; Maboudian, Roya

    2014-02-07

    We report a highly flexible planar micro-supercapacitor with interdigitated finger electrodes of vertically aligned carbon nanotubes (VACNTs). The planar electrode structures are patterned on a thin polycarbonate substrate with a facile, maskless laser-assisted dry transfer method. Sputtered Ni is used to reduce the in-plane resistance of the VACNT electrodes. An ionogel, an ionic liquid in a semi-solid matrix, is used as an electrolyte to form a fully solid-state device. We measure a specific capacitance of 430 μF cm(-2) for a scan rate of 0.1 V s(-1) and achieve rectangular cyclic voltammograms at high scan rates of up to 100 V s(-1). Minimal change in capacitance is observed under bending. Mechanical fatigue tests with more than 1000 cycles confirm the high flexibility and durability of the novel material combination chosen for this device. Our results indicate that this scalable and facile fabrication technique shows promise for application in integrated energy storage for all solid-state flexible microdevices.

  18. Enhanced optical alignment of a digital micro mirror device through Bayesian adaptive exploration

    Kevin B. Wynne

    2017-12-01

    Full Text Available As the use of Digital Micro Mirror Devices (DMDs becomes more prevalent in optics research, the ability to precisely locate the Fourier “footprint” of an image beam at the Fourier plane becomes a pressing need. In this approach, Bayesian adaptive exploration techniques were employed to characterize the size and position of the beam on a DMD located at the Fourier plane. It couples a Bayesian inference engine with an inquiry engine to implement the search. The inquiry engine explores the DMD by engaging mirrors and recording light intensity values based on the maximization of the expected information gain. Using the data collected from this exploration, the Bayesian inference engine updates the posterior probability describing the beam’s characteristics. The process is iterated until the beam is located to within the desired precision. This methodology not only locates the center and radius of the beam with remarkable precision but accomplishes the task in far less time than a brute force search. The employed approach has applications to system alignment for both Fourier processing and coded aperture design.

  19. Enhanced optical alignment of a digital micro mirror device through Bayesian adaptive exploration

    Wynne, Kevin B.; Knuth, Kevin H.; Petruccelli, Jonathan

    2017-12-01

    As the use of Digital Micro Mirror Devices (DMDs) becomes more prevalent in optics research, the ability to precisely locate the Fourier "footprint" of an image beam at the Fourier plane becomes a pressing need. In this approach, Bayesian adaptive exploration techniques were employed to characterize the size and position of the beam on a DMD located at the Fourier plane. It couples a Bayesian inference engine with an inquiry engine to implement the search. The inquiry engine explores the DMD by engaging mirrors and recording light intensity values based on the maximization of the expected information gain. Using the data collected from this exploration, the Bayesian inference engine updates the posterior probability describing the beam's characteristics. The process is iterated until the beam is located to within the desired precision. This methodology not only locates the center and radius of the beam with remarkable precision but accomplishes the task in far less time than a brute force search. The employed approach has applications to system alignment for both Fourier processing and coded aperture design.

  20. Enhanced superconductivity of fullerenes

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  1. Laser controlled magnetism in hydrogenated fullerene films

    Makarova, Tatiana L.; Shelankov, Andrei L.; Kvyatkovskii, Oleg E.; Zakharova, Irina B.; Buga, Sergei G.; Volkov, Aleksandr P.

    2011-01-01

    Room temperature ferromagnetic-like behavior in fullerene photopolymerized films treated with monatomic hydrogen is reported. The hydrogen treatment controllably varies the paramagnetic spin concentration and laser induced polymerization transforms the paramagnetic phase to a ferromagnetic-like one. Excess laser irradiation destroys magnetic ordering, presumably due to structural changes, which was continuously monitored by Raman spectroscopy. We suggest an interpretation of the data based on first-principles density-functional spin-unrestricted calculations which show that the excess spin from mono-atomic hydrogen is delocalized within the host fullerene and the laser-induced polymerization promotes spin exchange interaction and spin alignment in the polymerized phase.

  2. The topology of fullerenes

    Schwerdtfeger, Peter; Wirz, Lukas; Avery, James Emil

    2014-01-01

    Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar g....... In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems....

  3. Thin concentrator photovoltaic module with micro-solar cells which are mounted by self-align method using surface tension of melted solder

    Hayashi, Nobuhiko; Terauchi, Masaharu; Aya, Youichirou; Kanayama, Shutetsu; Nishitani, Hikaru; Nakagawa, Tohru; Takase, Michihiko

    2017-09-01

    We are developing a thin and lightweight CPV module using small size lens system made from poly methyl methacrylate (PMMA) with a short focal length and micro-solar cells to decrease the transporting and the installing costs of CPV systems. In order to achieve high conversion efficiency in CPV modules using micro-solar cells, the micro-solar cells need to be mounted accurately to the irradiated region of the concentrated sunlight. In this study, we have successfully developed self-align method thanks to the surface tension of the melted solder even utilizing commercially available surface-mounting technology (SMT). Solar cells were self-aligned to the specified positions of the circuit board by this self-align method with accuracy within ±10 µm. We actually fabricated CPV modules using this self-align method and demonstrated high conversion efficiency of our CPV module.

  4. Heat transfer augmentation in rectangular micro channel covered with vertically aligned carbon nanotubes

    Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2016-01-01

    An experimental heat transfer investigation was carried out to examine the influence of carbon nanotubes (CNTs) layer deposits on the convective heat transfer performance inside rectangular microchannels. Successful synthesis of vertically aligned CNTs was achieved using a catalytic vapor deposition

  5. Fullerene and oxidative stress

    M. A. Orlova

    2012-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to their practical medical using. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance for further promoting of either cytoprotective or cytotoxic effects. One of the main effects of fullerenes on living systems is the reactive oxygen species (ROS formation induction. This lecture provides a modern concept analysis regarding fullerenes effects on ROS formation and modulation of proliferation and apoptosis in normal and tumor cells.

  6. microRNA regulatory mechanism by which PLLA aligned nanofibers influence PC12 cell differentiation

    Yu, Yadong; Lü, Xiaoying; Ding, Fei

    2015-08-01

    Objective. Aligned nanofibers (AFs) are regarded as promising biomaterials in nerve tissue engineering. However, a full understanding of the biocompatibility of AFs at the molecular level is still challenging. Therefore, the present study focused on identifying the microRNA (miRNA)-mediated regulatory mechanism by which poly-L-lactic acid (PLLA) AFs influence PC12 cell differentiation. Approach. Firstly, the effects of PLLA random nanofibers (RFs)/AFs and PLLA films (control) on the biological responses of PC12 cells that are associated with neuronal differentiation were examined. Then, SOLiD sequencing and cDNA microarray were employed to profile the expressions of miRNAs and mRNAs. The target genes of the misregulated miRNAs were predicted and compared with the mRNA profile data. Functions of the matched target genes (the intersection between the predicted target genes and the experimentally-determined, misregulated genes) were analyzed. Main results. The results revealed that neurites spread in various directions in control and RF groups. In the AF group, most neurites extended in parallel with each other. The glucose consumption and lactic acid production in the RF and AF groups were higher than those in the control group. Compared with the control group, 42 and 94 miRNAs were significantly dysregulated in the RF and AF groups, respectively. By comparing the predicted target genes with the mRNA profile data, five and 87 matched target genes were found in the RF and AF groups, respectively. Three of the matched target genes in the AF group were found to be associated with neuronal differentiation, whereas none had this association in the RF group. The PLLA AFs induced the dysregulation of miRNAs that regulate many biological functions, including axonal guidance, lipid metabolism and long-term potentiation. In particular, two miRNA-matched target gene-biological function modules associated with neuronal differentiation were identified as follows: (1) miR-23b, mi

  7. Terrestrial and extraterrestrial fullerenes

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science

    2003-07-01

    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  8. Fullerene and apoptosis

    M. A. Orlova

    2013-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  9. Electronic properties of fullerenes

    Kuzmany, H [ed.; Vienna Univ. (Austria). Inst. fuer Festkoerperphysik; Fink, J [ed.; Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Nukleare Festkoerperphysik; Mehring, M [ed.; Stuttgart Univ. (Germany). Physikalisches Teilinstitut 2; Roth, S [ed.; Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1993-01-01

    Since 1991, research in the field of organic carbon materials has developed at a rapid pace due to the advent of the fullerenes and related materials. These forms of carbon are considered as a missing link between the previously discussed electroactive polymers and the oxidic superconductors. It was therefore challenging to select this topic for an international winter school in Kirchberg. Although still in its infancy, research on the physics and chemistry of fullerenes and related compounds has already led to a wealth of results, which was reflected in the wide range of topics covered and the numerous discussions which emerged at the meeting. For C[sub 60] itself, preparation methods and crystal growth techniques continue to evolve, while the understanding of the electronic and structural properties of its solid state continues to pose challenges to experimental and theoretical physicists. The ever-expanding range of higher fullerens and related materials, such as nanotubes and onions, poses a daunting but exciting task for researchers. For synthetic chemists, fullerenes represent the basis of a whole new range of synthetic compounds. The prospect of a periodic table of endohedral fullerene complexes has been discussed, and exohedrally complexed metal-fullerenes have already attracted the attention of physicists. The first endohedral materials are now available. (orig.)

  10. Electronic properties of fullerenes

    Kuzmany, H.

    1993-01-01

    Since 1991, research in the field of organic carbon materials has developed at a rapid pace due to the advent of the fullerenes and related materials. These forms of carbon are considered as a missing link between the previously discussed electroactive polymers and the oxidic superconductors. It was therefore challenging to select this topic for an international winter school in Kirchberg. Although still in its infancy, research on the physics and chemistry of fullerenes and related compounds has already led to a wealth of results, which was reflected in the wide range of topics covered and the numerous discussions which emerged at the meeting. For C 60 itself, preparation methods and crystal growth techniques continue to evolve, while the understanding of the electronic and structural properties of its solid state continues to pose challenges to experimental and theoretical physicists. The ever-expanding range of higher fullerens and related materials, such as nanotubes and onions, poses a daunting but exciting task for researchers. For synthetic chemists, fullerenes represent the basis of a whole new range of synthetic compounds. The prospect of a periodic table of endohedral fullerene complexes has been discussed, and exohedrally complexed metal-fullerenes have already attracted the attention of physicists. The first endohedral materials are now available. (orig.)

  11. Polyethene with pendant fullerene moieties

    Zhang, XC; Sieval, AB; Hummelen, JC; Hessen, B; Zhang, Xiaochun

    2005-01-01

    Polyethene with fullerene moieties pendant on short-chain branches was prepared by the catalytic copolymerisation of ethene and a fullerene-containing vinylic comonomer, yielding polyethene copolymers containing up to 25 wt% of C-60.

  12. Transmutation of fullerenes.

    Cross, R James; Saunders, Martin

    2005-03-09

    Fullerenes were pyrolyzed by subliming them into a stream of flowing argon gas and then passing them through an oven heated to approximately 1000 degrees C. C(76), C(78), and C(84) all readily lost carbons to form smaller fullerenes. In the case of C(78), some isomerization was seen. Pyrolysis of (3)He@C(76) showed that all or most of the (3)He was lost during the decomposition. C(60) passes through the apparatus with no decomposition and no loss of helium.

  13. Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers

    Yongqing Duan

    2017-12-01

    Full Text Available Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 200%. The large-scale fractal poly(vinylidene fluoride (PVDF micro/nanofibers are fabricated by combination of helix electrohydrodynamic printing (HE-Printing and buckling-driven self-assembly. HE-Printing exploits “whipping/buckling” instability of electrospinning to deposit serpentine fibers with diverse geometries in a programmable, accurately positioned, and individually-controlled manner. Self-organized buckling utilizes the driven force from the prestrained elastomer to assemble serpentine fibers into ultra-stretchable fractal inspired architecture. The nanogenerator with embedded fractal PVDF fibers and liquid-metal microelectrodes demonstrates high stretchability (>200% and electricity (currents >200 nA, it can harvest energy from all directions by arbitrary mechanical motion, and the rectified output has been applied to charge the commercial capacitor and drive LEDs, which enables wearable electronics applications in sensing and energy harvesting.

  14. Geochemie fullerenů

    Frank, Otakar; Jehlička, J.; Vítek, P.; Juha, Libor; Hamplová, Věra; Pokorná, Zdeňka

    2010-01-01

    Roč. 104, č. 8 (2010), s. 762-769 ISSN 0009-2770 R&D Projects: GA ČR GA205/07/0772; GA MŠk LC510; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : geochemistry * fullerene s * geological materials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.620, year: 2010

  15. Fabrication of fullerene nano-strucutres in mixed films and devices utilizing fullerene nano-structures

    Zhong, Yufei; Amassian, Aram; Tajima, Keisuke

    2017-01-01

    Embodiments provide methods for controlling crystallization of fullerene compounds in mixed films comprising one or more polymers. Methods can include depositing fullerene mixed films comprising one or more polymers on crystalline fullerene

  16. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation

    Jana, Soumen; Leung, Matthew; Zhang, Miqin; Chang, Julia

    2014-01-01

    Skeletal muscle injury can lead to severe motor deficits that adversely affect movement and quality of life. Current surgical treatments for skeletal muscle are hindered by the poor formation of organized myotube bundles at the wound site. Tissue-engineered skeletal muscle constructs to date have been unable to generate high degrees of myotube density and alignment. Generating a suitable in vitro tissue-engineered skeletal muscle construct requires the design of a scaffold that recapitulates the structural combination of nanoscale collagen fibrils and aligned microscale basal lamina tracks present in the native extracellular matrix (ECM). We hypothesized that a 3D aligned tubular porous scaffold containing aligned nanofibers inside the pores can mimic the native muscle tissue environment. We constructed a laminar section of the hypothesized scaffold with aligned chitosan-PCL nanofibers arranged co-axially with the aligned microscale chitosan scaffold bands to mimic the required myogenic environment. A 6-day study of C2C12 mouse myoblast cells cultured on this hybrid scaffold indicated that the nanofibers and scaffold bands in the scaffold played a synergetic role in directing cell orientation, interaction, migration and organization. Our results showed that aligned nanofibers mediated cell alignment and the aligned scaffold bands induced the formation of a more compact assembly of myotube cells as compared to various control substrates including chitosan films, nanofibers, and chitosan bands. The expression levels of both early and late-stage myogenic differentiation genes associated with myogenin and myosin heavy chain, respectively, were higher on the hybrid substrate than on control substrates. Our study suggests that the combination of nano and microscale topological features in the ECM can direct myogenic differentiation, and the hybrid material has the potential to improve the outcome of skeletal tissue engineering. (papers)

  17. Evaluation of an image-based tracking workflow using a passive marker and resonant micro-coil fiducials for automatic image plane alignment in interventional MRI.

    Neumann, M; Breton, E; Cuvillon, L; Pan, L; Lorenz, C H; de Mathelin, M

    2012-01-01

    In this paper, an original workflow is presented for MR image plane alignment based on tracking in real-time MR images. A test device consisting of two resonant micro-coils and a passive marker is proposed for detection using image-based algorithms. Micro-coils allow for automated initialization of the object detection in dedicated low flip angle projection images; then the passive marker is tracked in clinical real-time MR images, with alternation between two oblique orthogonal image planes along the test device axis; in case the passive marker is lost in real-time images, the workflow is reinitialized. The proposed workflow was designed to minimize dedicated acquisition time to a single dedicated acquisition in the ideal case (no reinitialization required). First experiments have shown promising results for test-device tracking precision, with a mean position error of 0.79 mm and a mean orientation error of 0.24°.

  18. Fabrication of a Polymer Micro Needle Array by Mask-Dragging X-Ray Lithography and Alignment X-Ray Lithography

    Li, Yi-Gui; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu

    2011-03-01

    Polymer materials such as transparent thermoplastic poly(methyl methacrylate) (PMMA) have been of great interest in the research and development of integrated circuits and micro-electromechanical systems due to their relatively low cost and easy process. We fabricated PMMA-based polymer hollow microneedle arrays by mask-dragging and aligning x-ray lithography. Techniques for 3D micromachining by direct lithography using x-rays are developed. These techniques are based on using image projection in which the x-ray is used to illuminate an appropriate gold pattern on a polyimide film mask. The mask is imaged onto the PMMA sample. A pattern with an area of up to 100 × 100mm2 can be fabricated with sub-micron resolution and a highly accurate order of a few microns by using a dragging mask. The fabrication technology has several advantages, such as forming complex 3D micro structures, high throughput and low cost.

  19. Synthesis and radiation resistance of fullerenes and fullerene derivatives

    Shilin, V. A., E-mail: shilin@pnpi.spb.ru; Lebedev, V. T.; Sedov, V. P.; Szhogina, A. A. [St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-07-15

    The parameters of an electric-arc facility for the synthesis of fullerenes and endohedral metallofullerenes are optimized. The resistance of C{sub 60} and C{sub 70} fullerenes and C{sub 60}(OH){sub 30} and C{sub 70}(OH){sub 30} fullerenols against neutron irradiation is studied. It is established that the radiation resistance of the fullerenes is higher than that of the fullerenols, but the radiation resistance of the Gd@C{sub 2n} endometallofullerenes is lower than that of the corresponding Gd@C{sub 2n}(OH){sub 38} fullerenols. The radiation resistance of mixtures of Me@C{sub 2n}(OH){sub 38} (Me = Gd, Tb, Sc, Fe, and Pr) endometallofullerenes with C{sub 60}(OH){sub 30} is determined. The factors affecting the radiation resistance of the fullerenes and fullerenols are discussed.

  20. Superconducting Fullerene Nanowhiskers

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  1. Electronic charge transfer in cobalt doped fullerene thin films and effect of energetic ion impacts by x-ray absorption spectroscopy

    Thakur, P.; Kumar, Amit; Gautam, S.; Chae, K.H.

    2011-01-01

    We report on the electronic charge transfer in cobalt doped fullerene thin films by means of near-edge x-ray-absorption fine structure (NEXAFS) spectroscopy measurement. Co-doped fullerene films were prepared by co-deposition technique and subjected to energetic ion irradiation (120 MeV Au) for possibly alignment or interconnect of randomly distributed metal particles. Polarization dependent NEXAFS spectra revealed the alignment of Co and C atoms along the irradiated ionic path. The structural changes in Co-doped as-deposited and ion irradiated fullerene films were investigated by means of Raman spectroscopy measurements. Downshift of pentagonal pinch mode A g (2) in Raman spectroscopy indicated the electronic charge transfer from Co atom to fullerene molecules, which is further confirmed by NEXAFS at C K-edge for Co-doped fullerene films.

  2. Glycofullerenes: Sweet fullerenes vanquish viruses

    Vidal, Sébastien

    2016-01-01

    Fullerene-based dendritic structures coated with 120 sugars can be made in high yields in a relatively short sequence of reactions. The mannosylated compound is shown to inhibit Ebola infection in cells more efficiently than monofullerene-based glycoclusters.

  3. Flexible SiO2 cantilevers for torsional self-aligning micro scale four-point probes

    Kjær, Daniel; Gammelgaard, Lauge; Bøggild, Peter

    2007-01-01

    In order to successfully measure the conductivity of a sample with a four- point probe, good alignment of the electrodes to the sample is important to establish even contact pressure and contact areas of the electrodes. By incorporating a hinge in a microfabricated SiO2 mono- cantilever the ability...

  4. Free-standing, well-aligned ordered mesoporous carbon nanofibers on current collectors for high-power micro-supercapacitors.

    Kang, Eunae; Jeon, Gumhye; Kim, Jin Kon

    2013-07-21

    The mesoporous carbon nanofiber arrays that stand on carbon-gold double-layer current collectors are synthesized by self-assembly of a PS-b-PEO copolymer and resol in AAO templates for a high-power micro-supercapacitor at high current densities.

  5. Fullerenes doped with metal halides

    Martin, T.P.; Heinebrodt, M.; Naeher, U.; Goehlich, H.; Lange, T.; Schaber, H.

    1993-01-01

    The cage-like structure of fullerenes is a challenge to every experimental to put something inside - to dope the fullerenes. In fact, the research team that first identified C 60 as a football-like molecule quickly succeeded in trapping metal atoms inside and in shrinking the cage around this atom by photofragmentation. In this paper we report the results of ''shrink-wrapping'' the fullerenes around metal halide molecules. Of special interest is the critical size (the minimum number of carbon atoms) that can still enclose the dopant. A rough model for the space available inside a carbon cage gives good agreement with the measured shrinking limits. (author). 8 refs, 6 figs

  6. Superconductivity in doped fullerenes

    Hebard, A.F.

    1992-01-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C 60 , further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I h , its high symmetry alone invites special attention. The publication in September 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C 60 (and the higher fullerenes, such as C 70 and C 84 ) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. 23 refs., 6 figs

  7. Superconductivity in doped fullerenes

    Herbard, A.F.

    1996-01-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C sup 0, further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I sub h, its high symmetry alone invites special attention. The publication in september 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C sub 6 sub 0 (and the higher fullerenes, such as C sub 7 sub 0 and C sub 8 sub 4) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. (author). 23 refs., 6 figs

  8. Broadband electroluminescence in fullerene crystals

    Werner, A.T.; Anders, J.; Byrne, H.J.; Maser, W.K.; Kaiser, M.; Mittelbach, A.; Roth, S.

    1993-01-01

    The observation of electroluminescence from crystalline fullerenes is described. A broad band emission spectrum, extending from 400nm to 1100nm is observed. The spectrum has a primary maximum at 920nm and a weaker feature centered on 420nm. The spectral characteristics are independent of the applied field and the longer wavelength region is identical to that measured in the high excitation density photoluminescence spectrum. In addition, the electroluminescence intensity increases with the cube of the injection current, strengthening the association to the nonlinear phenomena observed in the highly excited state of fullerenes. (orig.)

  9. Fabrication of a Polymer Micro Needle Array by Mask-Dragging X-Ray Lithography and Alignment X-Ray Lithography

    Li Yi-Gui; Yang Chun-Sheng; Liu Jing-Quan; Sugiyama Susumu

    2011-01-01

    Polymer materials such as transparent thermoplastic poly(methyl methacrylate) (PMMA) have been of great interest in the research and development of integrated circuits and micro-electromechanical systems due to their relatively low cost and easy process. We fabricated PMMA-based polymer hollow microneedle arrays by mask-dragging and aligning x-ray lithography. Techniques for 3D micromachining by direct lithography using x-rays are developed. These techniques are based on using image projection in which the x-ray is used to illuminate an appropriate gold pattern on a polyimide film mask. The mask is imaged onto the PMMA sample. A pattern with an area of up to 100 × 100mm 2 can be fabricated with sub-micron resolution and a highly accurate order of a few microns by using a dragging mask. The fabrication technology has several advantages, such as forming complex 3D micro structures, high throughput and low cost. (cross-disciplinary physics and related areas of science and technology)

  10. Fullerene genesis by ion beams

    Gamaly, E.G.; Chadderton, L.T.; Commonwealth Scientific and Industrial Research Organization, Lindfield, NSW

    1995-01-01

    Clearly detectable quantities of molecular fullerene (C 60 ), the most recently discovered allotrope of carbon, have been observed in graphite following irradiation with heavy projectile ions at energies of about 1 GeV using high pressure chromatography. Similar experiments using lower ion energies gave no corresponding signal, indicating an absence of fullerene. This clear difference suggests that there exists an energy threshold for fullerene genesis. Beginning with a microscopic description of deposition and transfer of energy from the ion to the target, a theoretical model is developed for interpretation of these and similar experiments. An important consequence is a description of the formation of large carbon clusters in the hot dense 'primeval soup' of single carbon atoms by means of random 'sticky' collisions. The ion energy threshold is seen as arising, physically, from a balance in the competition between the rate of primary energy deposition and the rate of system cooling. Rate equations for the basic clustering process allow calculations of the time-dependent number densities for the different carbon clusters produced. An important consequence of the theory is that it is established that the region for the specific phase transition from graphite to fullerene lies in the same pressure regime on the phase diagram as does the corresponding transition for graphite to diamond. (author)

  11. Fabrication of fullerene nano-strucutres in mixed films and devices utilizing fullerene nano-structures

    Zhong, Yufei

    2017-04-06

    Embodiments provide methods for controlling crystallization of fullerene compounds in mixed films comprising one or more polymers. Methods can include depositing fullerene mixed films comprising one or more polymers on crystalline fullerene substrates and annealing the deposited mixed films. Methods can further include one or more of exposing the annealed mixed film to UV light, and washing the annealed mixed film with a solvent. Fullerene compounds can include one or more of PCBM, PCBNB, and PCBA.

  12. Characterizing the Polymer:Fullerene Intermolecular Interactions

    Sweetnam, Sean

    2016-02-02

    Polymer:fullerene solar cells depend heavily on the electronic coupling of the polymer and fullerene molecular species from which they are composed. The intermolecular interaction between the polymer and fullerene tends to be strong in efficient photovoltaic systems, as evidenced by efficient charge transfer processes and by large changes in the energetics of the polymer and fullerene when they are molecularly mixed. Despite the clear presence of these strong intermolecular interactions between the polymer and fullerene, there is not a consensus on the nature of these interactions. In this work, we use a combination of Raman spectroscopy, charge transfer state absorption, and density functional theory calculations to show that the intermolecular interactions do not appear to be caused by ground state charge transfer between the polymer and fullerene. We conclude that these intermolecular interactions are primarily van der Waals in nature. © 2016 American Chemical Society.

  13. Biochemical activity of fullerenes and related derivatives

    Huczko, A.; Lange, H.; Calko, E.

    1999-01-01

    An astonishing scientific interest, embodied in over 15000 research articles so far, has been encountered since 1985 when fullerenes were discovered. From new superconductors to a rich electrochemistry and reaction chemistry, fullerene nanostructures continue to excite the scientific world, and new findings continue at record pace. This review presents many examples of the biochemical activities of fullerenes and derivatives, e. g. cytotoxic activity, selective DNA cleavage and antiviral activity against HIV. We also present some results of our testing which show that, despite its chemical and biochemical activity, fullerene matter does not present any health hazard directly related to skin irritation and allergic risks. (author)

  14. Electron energy-loss spectroscopy on fullerenes and fullerene compounds

    Armbruster, J.

    1996-03-01

    A few years ago, a new form of pure carbon, the fullerenes, has been discovered, which shows many fascinating properties. Within this work the spatial and electronic structure of some selected fullerene compounds have been investigated by electron-energy-loss spectroscopy in transmission. Phase pure samples of alkali intercalated fullerides A x C 60 (A=Na, K, Cs) have been prepared using vacuum distillation. Measruements of K 3 C 60 show a dispersion of the charge carrier plasmon close to zero. This can be explained by calculations, which take into account both band structure and local-field (inhomogeneity) effects. The importance of the molecular structure can also be seen from the A 4 C 60 compounds, where the non-metallic properties are explained by a splitting of the t 1u and t 1g derived bands that is caused by electron-correlation and Jahn-Teller effects. First measurements of the electronic structure of Na x C 60 (x>6) are presented and reveal a complete transfer from the sodium atoms but an incomplete transfer onto the C 60 molecules. This behaviour can be explained by taking into account additional electronic states that are situated between the sodium atoms in the octahedral sites and are predicted by calculations using local density approximation. The crystal structure of the higher fullerenes C 76 and C 84 is found to be face-centered cubic

  15. A Novel microCT Method for Bone and Marrow Adipose Tissue Alignment Identifies Key Differences Between Mandible and Tibia in Rats.

    Coutel, Xavier; Olejnik, Cécile; Marchandise, Pierre; Delattre, Jérôme; Béhal, Hélène; Kerckhofs, Greet; Penel, Guillaume

    2018-01-30

    Bone homeostasis is influenced by the bone marrow adipose tissue (BMAT). BMAT distribution varies from one anatomical location in the skeleton to another. We developed an advanced microfocus computed tomography imaging and analysis protocol that allows accurate alignment of both the BMAT distribution and bone micro-architecture as well as calculation of the distance of the BMAT adipocytes from the bone surface. Using this protocol, we detected a different spatial BMAT distribution between the rat tibia and mandible: in the proximal metaphysis of the tibia a large amount of BMAT (~ 20% of the total BMAT) was located close to the bone surface (BMAT was located between 40 and 60 µm from the bone surface. In the alveolar ridge of rats, the trabecular bone volume was 48.3% higher compared to the proximal metaphysis of the tibia (p BMAT content with almost no contact with the bone surface. These findings are of great interest because of the importance of the fat-bone interaction and its potential relevance to several resorptive bone diseases.

  16. Vibrational Spectra of Tetrahedral Fullerenes.

    Cheng; Li; Tang

    1999-01-01

    From the topological structures of the following classes of tetrahedral fullerenes-(1) Cn(h, h; -i, i), Cn(h, 0; -i, 2i), Cn(2h + i, -h + i; i, i), Cn(h - i, h + 2i; -i, 2i), and Cn(h, i; 0, i) for Td symmetry; (2) Cn(h, k; k, h), Cn(h, k; -h - k, k), and Cn(h, k; -h, h + k) for Th symmetry; (3) Cn(h, k; i, j) for T symmetry-we have obtained theoretically the formulas for the numbers of their IR and Raman active modes for all of the tetrahedral fullerenes through the decomposition of their nuclear motions into irreducible representations by means of group theory. Copyright 1999 Academic Press.

  17. Photodiodes based on fullerene semiconductor

    Voz, C.; Puigdollers, J.; Cheylan, S.; Fonrodona, M.; Stella, M.; Andreu, J.; Alcubilla, R.

    2007-01-01

    Fullerene thin films have been deposited by thermal evaporation on glass substrates at room temperature. A comprehensive optical characterization was performed, including low-level optical absorption measured by photothermal deflection spectroscopy. The optical absorption spectrum reveals a direct bandgap of 2.3 eV and absorption bands at 2.8 and 3.6 eV, which are related to the creation of charge-transfer excitons. Various photodiodes on indium-tin-oxide coated glass substrates were also fabricated, using different metallic contacts in order to compare their respective electrical characteristics. The influence of a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layer between the indium-tin-oxide electrode and the fullerene semiconductor is also demonstrated. These results are discussed in terms of the workfunction for each electrode. Finally, the behaviour of the external quantum efficiency is analyzed for the whole wavelength spectrum

  18. Photophysics of fullerenes: Thermionic emission

    Compton, R.N.; Tuinman, A.A.; Huang, J.

    1996-01-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C 60 excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs + is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C 60 in the energy range from 8 to 12 eV results in C 60 anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements

  19. Photophysics of fullerenes: Thermionic emission

    Compton, R.N. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Univ. of Tennessee, Knoxville, TN (United States); Huang, J. [Ames Lab., IA (United States)

    1996-09-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C{sub 60} excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs{sup +} is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C{sub 60} in the energy range from 8 to 12 eV results in C{sub 60} anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements.

  20. The quest for inorganic fullerenes

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Park, Eun Ji; Kim, Young Dok, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Seo, Hyun Ook [Center for Free-Electron Laser Science/DESY, D-22607 Hamburg (Germany); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  1. Fullerenes as a new type of ligands for transition metals

    Sokolov, V.I.

    2007-01-01

    Fullerenes are considered as ligands in transition metal π-complexes. The following aspects are discussed: metals able to form π-complexes with fullerenes (Zr, V, Ta, Mo, W, Re, Ru, etc.); haptic numbers; homo- and hetero ligand complexes; ligand compatibility with fullerenes for different metals, including fullerenes with a disturbed structure of conjugation [ru

  2. Fullerene-Related Nanocarbons and Their Applications

    Geng, Junfeng; Miyazawa, Kun'ichi; Hu, Zheng

    2012-01-01

    . From the vast amount of research that has been conducted over the last two decades, it is now apparent that these nanomaterials, notably, carbon nanotubes, carbon-based nanoparticles, graphene, fullerene and fullerene derivatives promise very distinct applications and will add great value to industries...

  3. Fullerenic structures and such structures tethered to carbon materials

    Goel, Anish; Howard, Jack B.; Vander Sande, John B.

    2010-01-05

    The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.

  4. Physical properties of organic fullerene cocrystals

    Macovez, Roberto

    2017-12-01

    The basic facts and fundamental properties of binary fullerene cocrystals are reviewed, focusing especially on solvates and salts of Buckminsterfullerene (C60), and hydrates of hydrophilic C60 derivatives. The examined properties include the lattice structure and the presence of orientational disorder and/or rotational dynamics (of both fullerenes and cocrystallizing moieties), thermodynamic properties such as decomposition enthalpies, and charge transport properties. Both thermodynamic properties and molecular orientational disorder shed light on the extent of intermolecular interactions in these binary solid-state systems. Comparison is carried out also with pristine fullerite and with the solid phases of functionalized C60. Interesting experimental findings on binary fullerene cocrystals include the simultaneous occurrence of rotations of both constituent molecular species, crystal morphologies reminiscent of quasi-crystalline behaviour, the observation of proton conduction in hydrate solids of hydrophilic fullerene derivatives, and the production of super-hard carbon materials by application of high pressures on solvated fullerene crystals.

  5. A plasma arc reactor for fullerene research

    Anderson, T. T.; Dyer, P. L.; Dykes, J. W.; Klavins, P.; Anderson, P. E.; Liu, J. Z.; Shelton, R. N.

    1994-12-01

    A modified Krätschmer-Huffman reactor for the mass production of fullerenes is presented. Fullerene mass production is fundamental for the synthesis of higher and endohedral fullerenes. The reactor employs mechanisms for continuous graphite-rod feeding and in situ slag removal. Soot collects into a Soxhlet extraction thimble which serves as a fore-line vacuum pump filter, thereby easing fullerene separation from soot. Thermal gravimetric analysis (TGA) for yield determination is reported. This TGA method is faster and uses smaller samples than Soxhlet extraction methods which rely on aromatic solvents. Production of 10 g of soot per hour is readily achieved utilizing this reactor. Fullerene yields of 20% are attained routinely.

  6. The first stable lower fullerene: C36

    Piskoti, C.; Zettl, A.

    1998-01-01

    A new pure carbon material, presumably composed of thirty six carbon atom molecules, has been synthesized and isolated in milligram quantities. It appears as though these molecules have a closed cage structure making them the smallest member of a new class of molecules known as fullerenes, most notably of which is the soccer ball shaped C 60 . However, unlike other known fullerenes, any closed, fullerene-like C 36 cage will necessarily contain fused pentagon rings. Therefore, this molecule apparently violates the isolated pentagon rule, a criterion which requires isolated pentagons for stability in fullerene molecules. Striking parallels between this problem and the synthesis of other fused five member fused ring systems will be discussed. Also, it will be shown that certain biological structures known as clathrin behave in a manner which gives excellent predictions about fullerenes and nanotubes. These predictions help to explain the presence of abundant quantities of C 36 in arced graphite soot. copyright 1998 American Institute of Physics

  7. Fullerene-biomolecule conjugates and their biomedicinal applications.

    Yang, Xinlin; Ebrahimi, Ali; Li, Jie; Cui, Quanjun

    2014-01-01

    Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene-biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene-biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene-biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.

  8. Iron-fullerene mixture plasma

    Biri, S.; Fekete, E.

    2004-01-01

    Complete text of publication follows. In many laboratories new materials useful for nanotechnology and medical applications are searched and studied. In the ECR labo- ratory one of our future goals is to produce endohedral fullerene molecules (e.g Fe C 60 ) in large quantity. If this comes true, it will be possible to make building blocks for nanoparts, an ultra-contrast medium of MRI, and a magnetic nano-particle for treatment of cancer. For this experiment some modifications were carried out on the ATOMKI-ECRIS [1]. The waveguide of the 14.5 GHz microwave generator was divided in order to couple very low powers (1 watt or less) into the plasma. The C 60 component of the plasma was produced by using a simple oven. Among known methods (oven, sputtering, electron bombardment, compounds containing Fe), we have chosen the evaporation of ferrocene [Fe(C 5 H 5 ) 2 ] powder to introduce Fe atoms into the plasma. The ferrocene chamber was connected to one of the two gas feeding lines and the evaporation rate was controlled by needle valve. The extraction voltage had to be kept as low as 600V, because of the low mass-energy product of our bending magnet. First we developed independently the rough working conditions for single-charged dense iron and fullerene plasmas. Then a clean fullerene plasma was made. The temperature of the oven was about 450 deg C. The bending magnet was set to the C 60 peak (M=720) and about 50-100 nA intensity of single-charged fullerene peak was obtained. Then the magnet was set to the position of the searched Fe C 60 or FeC 60 peak (M=776) and the ferrocene valve was opened. A very difficult and long tuning followed. Finally we found a new large peak with higher mass than C 60 . In Figure 1 the centre of the new big peak on the right side is located at M=776 which corresponds to FeC 60 and/or Fe C 60 molecules. The peak is wide and shows some structure. We think it may contain impurities attached to the C 58 , C 59 , C 60 and FeC 60 molecules. We

  9. Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: An unexplored inorganic-organic nanohybrid with novel photovoltaic properties

    Rajbanshi, Biplab; Kar, Moumita; Sarkar, Pallavi; Sarkar, Pranab

    2017-10-01

    Using the self-consistent charge density-functional based tight-binding (SCC-DFTB) method, coupled with time-dependent density functional theory (TDDFT) calculations, for the first time we explore the possibility of use of phosphorene quantum dots in solar energy harvesting devices. The phosphorene quantum dots-fullerene (PQDs-PCBA) nanocomposites show type-II band alignment indicating spatial separation of charge carriers. The TDDFT calculations also show that the PQD-fullerene nanocomposites seem to be exciting material for future generation solar energy harvester, with extremely fast charge transfer and very poor recombination rate.

  10. Machine Phase Fullerene Nanotechnology: 1996

    Globus, Al; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional

  11. Fullerene C[sub 60

    Koruga, D; Hameroff, S; Sundareshan, M [Univ. of Arizona, Tucson, AZ (United States); Withers, J; Loutfy, R [MER Corp., Tucson, AZ (United States)

    1993-01-01

    This book, one of the first to be published in the exciting field of fullerenes, includes a short history of scientific discovery, as well as one possible answer to the question: for what purposes can C[sub 60] be utilized. The book opens with a review of the life of Buckminster Fuller. Modern history of fivefold symmetry and the icosahedron began between 1984 and 1985, when Shechtman and his research team opened a new branch in crystallography (fivefold symmetry) and when the Kroto/Smalley research team discovered the C[sub 60] molecule (truncated icosahedron). Production of solid C[sub 60] by the Huffman/Kraeschner research team in 1990 provided a new stimulus for research by producing C[sub 60] in macroscopic amounts for use by the scientific and technological community. This achievement led to developments such as Koruga's August 1992 creation of the dimer C[sub 116] using scanning tunneling engineering and Loutfy's hydrogenation of C[sub 60] and construction of the first Ni/C[sub 60] rechargeable batteries in December 1992. New inventions based on C[sub 60] will continue to be forthcoming, particularly in the areas of superconductivity, quantum devices, and molecular electronic devices. Discovery of the C[sub 60] molecule (Kroto/Smalley), production of solid C[sub 60] (Huffman/Kraeschmer) and technological inventions such as C[sub 116] (Koruga) have been chance discoveries. A short history of these discoveries is detailed in the book along with the results of the authors' Fullerene research efforts, including atomic resolution images of Fullerene C[sub 60], Ni/C[sub 60] batteries, nanotechnology of C[sub 60], comparison of C[sub 60] with biological systems, and others. As Fullerene C[sub 60] will require control engineering, an overview of control systems, in particular, general and optimal control of the Schroedinger equation, is contained. Some experimental and theoretical work of other researchers are also presented. 140 figs., 4 tabs., 342 refs.

  12. Boron Fullerenes: A First-Principles Study

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  13. Hydrogenated fullerenes in space: FT-IR spectra analysis

    El-Barbary, A. A.

    2016-01-01

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C 20 and C 60 fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H 2 molecule at peak around 4440 cm −1 . However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  14. Recent progresses in application of fullerenes in cosmetics.

    Lens, Marko

    2011-08-01

    Cosmetic industry is a fast growing industry with the continuous development of new active ingredients for skin care products. Fullerene C(60) and its derivates have been subject of intensive research in the last few years. Fullerenes display a wide range of different biological activities. Strong antioxidant capacities and effective quenching radical oxygen species (ROS) made fullerenes suitable active compounds in the formulation of skin care products. Published evidence on biological activities of fullerenes relevant for their application in cosmetics use and examples of published patents are presented. Recent trends in the use of fullerenes in topical formulations and patents are reviewed. Future investigations covering application of fullerenes in skin care are discussed.

  15. Diazo compounds in the chemistry of fullerenes

    Tuktarov, Airat R; Dzhemilev, Usein M

    2010-01-01

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  16. Diazo compounds in the chemistry of fullerenes

    Tuktarov, Airat R.; Dzhemilev, Usein M.

    2010-09-01

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  17. Diazo compounds in the chemistry of fullerenes

    Tuktarov, Airat R; Dzhemilev, Usein M [Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa (Russian Federation)

    2010-09-14

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  18. Characterizing the Polymer:Fullerene Intermolecular Interactions

    Sweetnam, Sean; Vandewal, Koen; Cho, Eunkyung; Risko, Chad; Coropceanu, Veaceslav; Salleo, Alberto; Bredas, Jean-Luc; McGehee, Michael D.

    2016-01-01

    the polymer and fullerene, there is not a consensus on the nature of these interactions. In this work, we use a combination of Raman spectroscopy, charge transfer state absorption, and density functional theory calculations to show that the intermolecular

  19. Packing and Disorder in Substituted Fullerenes

    Tummala, Naga Rajesh; Elroby, Shaaban Ali Kamel; Aziz, Saadullah G.; Risko, Chad; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2016-01-01

    Fullerenes are ubiquitous as electron-acceptor and electron-transport materials in organic solar cells. Recent synthetic strategies to improve the solubility and electronic characteristics of these molecules have translated into a tremendous

  20. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi

    2015-12-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.

  1. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun’ichi

    2015-01-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C 60 ) and fullerene nanowhiskers (FNWs). C 60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C 60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C 60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C 60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C 60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C 60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C 60 . The theoretical simulations showed the bonding distance between C 60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C 60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C 60 . In our study Try and Tyr were hardly adsorbed by C 60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides. (paper)

  2. Ability of Fullerene to Accumulate Hydrogen

    Bubenchikov Mikhail A

    2016-01-01

    Full Text Available In the present paper, using a modification of the LJ-potential and the continuum approach, we define С60-H2 (He potentials, as well as interaction energy of two fullerene particles. The proposed approach allows to calculate interactions between carbon structures of any character (wavy graphenes, nanotubes, etc.. The obtained results allowed to localize global sorption zones both inside the particle and on the outer surface of the fullerene.

  3. Enthalpies of sublimation of fullerenes by thermogravimetry

    Martínez-Herrera, Melchor; Campos, Myriam; Torres, Luis Alfonso; Rojas, Aarón, E-mail: arojas@cinvestav.mx

    2015-12-20

    Graphical abstract: - Highlights: • Enthalpies of sublimation of fullerenes were measured by thermogravimetry. • Results of enthalpies of sublimation are comparable with data reported in literature. • Not previously reported enthalpy of sublimation of C{sub 78} is supplied in this work. • Enthalpies of sublimation show a strong dependence with the number of carbon atoms in the cluster. • Enthalpies of sublimation are congruent with dispersion forces ruling cohesion of solid fullerene. - Abstract: The enthalpies of sublimation of fullerenes, as measured in the interval of 810–1170 K by thermogravimetry and applying the Langmuir equation, are reported. The detailed experimental procedure and its application to fullerenes C{sub 60}, C{sub 70}, C{sub 76}, C{sub 78} and C{sub 84} are supplied. The accuracy and uncertainty associated with the experimental results of the enthalpy of sublimation of these fullerenes show that the reliability of the measurements is comparable to that of other indirect high-temperature methods. The results also indicate that the enthalpy of sublimation increases proportionally to the number of carbon atoms in the cluster but there is also a strong correlation between the enthalpy of sublimation and the polarizability of each fullerene.

  4. Photoinduced energy and electron transfer in fullerene- oligothiophene-fullerene triads

    Hal, Paul A. van; Knol, Joop; Langeveld-Voss, Bea M.W.; Meskers, Stefan C.J.; Hummelen, J.C.; Janssen, René A.J.

    2000-01-01

    A series of fullerene-oligothiophene-fullerene (C60-nT-C60) triads with n = 3, 6, or 9 thiophene units has been synthesized, and their photophysical properties have been studied using photoinduced absorption and fluorescence spectroscopy in solution and in the solid state as thin films. The results

  5. Recent advances in fullerene superconductivity

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  6. Production of Endohedral Fullerenes by Ion Implantation

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  7. Fullerene surfactants and their use in polymer solar cells

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  8. Non-fullerene electron acceptors for organic photovoltaic devices

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  9. INFRARED STUDY OF FULLERENE PLANETARY NEBULAE

    García-Hernández, D. A.; Acosta-Pulido, J. A.; Manchado, A.; Villaver, E.; García-Lario, P.; Stanghellini, L.; Shaw, R. A.; Cataldo, F.

    2012-01-01

    We present a study of 16 planetary nebulae (PNe) where fullerenes have been detected in their Spitzer Space Telescope spectra. This large sample of objects offers a unique opportunity to test conditions of fullerene formation and survival under different metallicity environments because we are analyzing five sources in our own Galaxy, four in the Large Magellanic Cloud (LMC), and seven in the Small Magellanic Cloud (SMC). Among the 16 PNe studied, we present the first detection of C 60 (and possibly also C 70 ) fullerenes in the PN M 1–60 as well as of the unusual ∼6.6, 9.8, and 20 μm features (attributed to possible planar C 24 ) in the PN K 3–54. Although selection effects in the original samples of PNe observed with Spitzer may play a potentially significant role in the statistics, we find that the detection rate of fullerenes in C-rich PNe increases with decreasing metallicity (∼5% in the Galaxy, ∼20% in the LMC, and ∼44% in the SMC) and we interpret this as a possible consequence of the limited dust processing occurring in Magellanic Cloud (MC) PNe. CLOUDY photoionization modeling matches the observed IR fluxes with central stars that display a rather narrow range in effective temperature (∼30,000-45,000 K), suggesting a common evolutionary status of the objects and similar fullerene formation conditions. Furthermore, the data suggest that fullerene PNe likely evolve from low-mass progenitors and are usually of low excitation. We do not find a metallicity dependence on the estimated fullerene abundances. The observed C 60 intensity ratios in the Galactic sources confirm our previous finding in the MCs that the fullerene emission is not excited by the UV radiation from the central star. CLOUDY models also show that line- and wind-blanketed model atmospheres can explain many of the observed [Ne III]/[Ne II] ratios using photoionization, suggesting that possibly the UV radiation from the central star, and not shocks, is triggering the decomposition

  10. Micelle-encapsulated fullerenes in aqueous electrolytes

    Ala-Kleme, T., E-mail: timo.ala-kleme@utu.fi [Department of Chemistry, University of Turku, 20014 Turku (Finland); Maeki, A.; Maeki, R.; Kopperoinen, A.; Heikkinen, M.; Haapakka, K. [Department of Chemistry, University of Turku, 20014 Turku (Finland)

    2013-03-15

    Different micellar particles Mi(M{sup +}) (Mi=Triton X-100, Triton N-101 R, Triton CF-10, Brij-35, M{sup +}=Na{sup +}, K{sup +}, Cs{sup +}) have been prepared in different aqueous H{sub 3}BO{sub 3}/MOH background electrolytes. It has been observed that these particles can be used to disperse the highly hydrophobic spherical [60]fullerene (1) and ellipsoidal [70]fullerene (2). This dispersion is realised as either micelle-encapsulated monomers Mi(M{sup +})1{sub m} and Mi(M{sup +})2{sub m} or water-soluble micelle-bound aggregates Mi(M{sup +})1{sub agg} and Mi(M{sup +})2{sub agg}, where especially the hydration degree and polyoxyethylene (POE) thickness of the micellar particle seems to play a role of vital importance. Further, the encapsulation microenvironment of 1{sub m} was found to depend strongly on the selected monovalent electrolyte cation, i.e., the encapsulated 1{sub m} is accommodated in the more hydrophobic microenvironment the higher the cationic solvation number is. - Highlights: Black-Right-Pointing-Pointer Different micellar particles is used to disperse [60]fullerene and [70]fullerene. Black-Right-Pointing-Pointer Fullerene monomers or aggregates are dispersed encaging or bounding by micelles. Black-Right-Pointing-Pointer Effective facts are hydration degree and polyoxyethylene thickness of micelle.

  11. Graphene macro-assembly-fullerene composite for electrical energy storage

    Campbell, Patrick G.; Baumann, Theodore F.; Biener, Juergen; Merrill, Matthew; Montalvo, Elizabeth; Worsley, Marcus A.; Biener, Monika M.; Hernandez, Maira Raquel Ceron

    2018-01-16

    Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a GMA comprising a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and incorporating at least 20 wt. % of at least one fullerene compound into the GMA based on the initial weight of the GMA to obtain a GMA-fullerene composite. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode and optionally an organic or ionic liquid electrolyte in contact with the electrode.

  12. C{sub 60} fullerene decoration of carbon nanotubes

    Demin, V. A., E-mail: victordemin88@gmail.com [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation); Blank, V. D.; Karaeva, A. R.; Kulnitskiy, B. A.; Mordkovich, V. Z. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Parkhomenko, Yu. N. [National University of Science and Technology MISiS (Russian Federation); Perezhogin, I. A.; Popov, M. Yu. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Skryleva, E. A. [National University of Science and Technology MISiS (Russian Federation); Urvanov, S. A. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Chernozatonskii, L. A. [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation)

    2016-12-15

    A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C{sub 60} molecule to a defect on the nanotube surface.

  13. Fascinating serendipity some adventures in fullerene chemistry

    Braun, T.; Rauch, H.

    2001-01-01

    The lecture is divided to four chapters. Chapter one gives a short overview on the notion of serendipity and the serendipitous discovery of the fullerenes, the third allotropic form of carbon and will try to highlight why this discovery can be considered a revolution in chemistry. The second and third chapters present some results of the author's research group. Neutron irradiation of C 60 in a nuclear reactor has also made possible the serendipitous discovery of a new procedure for synthesis of endohedral C 60 compounds exemplified by the synthesis of many endohedral radio-fullerenes of * X at C 60 type. The fourth chapter of the lecture deals with 'Capture-captive chemistry' as a new typology for molecular containers including fullerenes. (author)

  14. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Bhusal, Shusil; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Jackson, Koblar [Physics Department and Science of Advanced Materials Ph.D. Program, Central Michigan University, Mt. Pleasant, Michigan 48859 (United States)

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  15. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Zope, Rajendra R.; Baruah, Tunna; Bhusal, Shusil; Basurto, Luis; Jackson, Koblar

    2015-01-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C 60 @C 240 and C 60 @C 180 onions shows that, compared to the polarizability of isolated C 60 fullerene, the encapsulation of the C 60 in C 240 and C 180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C 60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability

  16. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  17. Electronic stopping in ion-fullerene collisions

    Schlathölter, T.A.; Hadjar, O.; Hoekstra, R.A.; Morgenstern, R.W.H.

    The electronic friction experienced by a multiply charged ion interacting with the valence electrons of a single fullerene is an important aspect of the collision dynamics. It manifests itself in a considerable loss of projectile kinetic energy transferred to the target, resulting in excitation. The

  18. Polymer-fullerene bulk heterojunction solar cells

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of

  19. Fullerenes and nanostructured plastic solar cells

    Knol, Joop; Hummelen, Jan C.; Kuzmany, H; Fink, J; Mehring, M; Roth, S

    1998-01-01

    We report on the present on the present status of the plastic solar cell and on the design of fullerene derivatives and pi-conjugated donor molecules that can function as acceptor-donor pairs and (supra-) molecular building blocks in organized, nanostructured interpenetrating networks, forming a

  20. Study of the Si fullerene cage isomers

    Fthenakis, Z.G.; Havenith, R.W.A.; Menon, M.; Fowler, P.W.

    2005-01-01

    We present the results of a study on the structural and electronic properties of the Si38 fullerene isomers, which are constructed by making all possible permutations among their pentagons and hexagons. These structures were firstly fully optimized with a tight binding molecular dynamics method and

  1. Thiamakrocykly pro komplexaci fullerenů

    Holý, Petr; Buchta, Michal; Rybáček, Jiří; Závada, Jiří

    2009-01-01

    Roč. 5, č. 9 (2009), s. 186-187 ISSN 1336-7242. [Zjazd chemikov /61./. 07.09.2009-11.09.2009, Tatranské Matliare] R&D Projects: GA AV ČR IAA400550704 Institutional research plan: CEZ:AV0Z40550506 Keywords : makrocycles * alkylation * fullerene s Subject RIV: CC - Organic Chemistry

  2. Spectroscopy on Polymer-Fullerene Photovoltaic Cells

    Dyakonov, V.; Riedel, I.; Godovsky, D.; Parisi, J.; Ceuster, J. De; Goovaerts, E.; Hummelen, J.C.

    2000-01-01

    We investigate the electrical transport properties of ITO/conjugated polymer-fullerene/Al photovoltaic cells and the role of defect states with current-voltage studies, admittance spectroscopy, and electron spin resonance technique. In the temperature range 293-40K, the characteristic step in the

  3. Fullerenes and fulleranes in circumstellar envelopes

    Zhang, Yong; Kwok, Sun; Sadjadi, SeyedAbdolreza

    2016-01-01

    Three decades of search have recently led to convincing discoveries of cosmic fullerenes. The presence of C_6_0 and C"+ _6_0 in both circumstellar and interstellar environments suggests that these molecules and their derivatives can be efficiently formed in circumstellar envelopes and survive in harsh conditions. Detailed analysis of the infrared bands from fullerenes and their connections with the local properties can provide valuable information on the physical conditions and chemical processes that occurred in the late stages of stellar evolution. The identification of C"+ _6_0 as the carrier of four diffuse interstellar bands (DIBs) suggests that fullerene- related compounds are abundant in interstellar space and are essential for resolving the DIB mystery. Experiments have revealed a high hydrogenation rate when C_6_0 is exposed to atomic hydrogen, motivating the attempt to search for cosmic fulleranes. In this paper, we present a short review of current knowledge of cosmic fullerenes and fulleranes and briefly discuss the implications on circumstellar chemistry. (paper)

  4. Fullerene monolayer formation by spray coating

    Červenka, Jiří; Flipse, C.F.J.

    2010-01-01

    Roč. 21, č. 6 (2010), 065302/1-065302/7 ISSN 0957-4484 Institutional research plan: CEZ:AV0Z10100521 Keywords : monolayer * spray coating * fullerene * atomic force microscopy * scanning tunnelling microscopy * electronic structure * graphite * gold Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  5. Fullerenes, PAHs, Amino Acids and High Energy Astrophysics

    Susana Iglesias-Groth

    2014-12-01

    Full Text Available We present theoretical, observational and laboratory work on the spectral properties of fullerenes and hydrogenated fullerenes. Fullerenes in its various forms (individual, endohedral, hydrogenated, etc. can contribute to the UV bump in the extinction curves measured in many lines of sight of the Galaxy. They can also produce a large number of absorption features in the optical and near infrared which could be associated with diffuse interstellar bands. We summarise recent laboratory work on the spectral characterisation of fullerenes and hydrogenated fullerenes (for a range of temperatures. The recent detection of mid-IR bands of fullerenes in various astrophysical environments (planetary nebulae, reflection nebulae provide additional evidence for a link between fullerene families and diffuse interstellar bands. We describe recent observational work on near IR bands of C60+ in a protoplanetary nebula which support fullerene formation during the post-AGB phase. We also report on the survival of fullerenes to irradiation by high energy particles and gamma photons and laboratory work to explore the chemical  reactions that take place when fullerenes are exposed to this radiations in the presence of water, ammonia and other molecules as a potential path to form amino acids.

  6. Search for fullerenes in stone meteorites

    Oester, M. Y.; Kuechl, D.; Sipiera, P. P.; Welch, C. J.

    1994-07-01

    The possibility of identifying fullerenes in stony meteorites became apparent from a paper given by Radicati de Brozolo. In this paper it was reported that fullerenes were present in the debris resulting from a collision between a micrometeoroid and an orbiting satellite. This fact generated sufficient curiosity to initiate a search for the presence of fullerenes in various stone meteorites. In the present study seven ordinary chondrites (al-Ghanim L6 (find), Dimmitt H4 (find), Lazbuddie LL5 (find), New Concord H5 (fall), Silverton H4 (find), Springlake L6 (find), and Umbarger L3/6 (find)). Four carbonaceous chondrites (ALH 83100 C2 (find), ALH 83108 C30 (find), Allende CV3 (fall), and Murchison CM2 (fall), and one achondrite (Monticello How (find)) were analyzed for the presence of fullerenes. The analytical procedure employed was as follows: 100 mg of meteorite was ground up with a mortar and pestle; 10 mL of toluene was then added and the mixture was refluxed for 90 min; this mixture was then filtered through a short column of silica; a 50 microliter sample was then analyzed by high pressure liquid chromatography (HPLC) using a Buckyclutcher I column with a mobile phase consisting of equal volumes of toluene and hexane at a flow rate of 1.00 mg per minute, with detection at 330 and 600 nm. Three of the meteorites, Allende, Murchison, and al-Ghanim, gave HPLC traces containing peaks with similar retention times to the HPLC trace of an authentic fullerene C60. However, further analysis using an HPLC instrument equipped with a diode-array detector failed to confirm any of the substances detected in the three meteorites as C60. Additional analyses will be conducted to identify what the HPLC traces actually represent.

  7. Fullerene-reduced graphene oxide composites obtained by ultrashort laser ablation of fullerite in water

    De Bonis, A., E-mail: angela.debonis@unibas.it [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Curcio, M. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050, Tito Scalo (PZ) (Italy); Rau, J.V. [CNR-ISM, Via del Fosso del Cavaliere, 100-00133, Rome (Italy); Galasso, A.; Teghil, R. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy)

    2015-05-01

    Highlights: • Laser ablation of a fullerite target in water performed by an ultra-short laser source has been reported. • The formation of reduced graphene oxide has been described considering the laser ablation in liquid mechanism. • Fullerene-reduced graphene oxide composite, in the form of self assembled microtubes, has been described. - Abstract: The laser ablation in liquid of carbon-based solid targets is of particular interest thanks to the possibility of obtaining different carbon allotropes by varying the experimental parameters employed. The ablation of a fullerite target in water using a frequency-doubled Nd:glass laser source with a pulse duration of 250 fs and a frequency repetition rate of 10 Hz is presented. The obtained products have been characterized by transmission electron and atomic force microscopies and by X-ray photoelectron and micro-Raman spectroscopies. During the femtosecond laser ablation, the collapse of fullerene cages has been considered with the consequent formation of graphene oxide (GO) and its successive hydrogenation. The process of self-assembling in microtube structures of the formed reduced graphene oxide-fullerene composites has then been reported.

  8. From astrophysics to mesoscopic physics: a sightseeing tour in the world of clusters and fullerenes

    Rosen, Arne; Ostling, Daniel; Apell, P.; Tomanek, D.

    1996-12-01

    The discovery of the fullerenes in 1985 by Kroto, Heath, O'Brien, Curl and Smalley and the development of a method for production of macroscopic amounts in 1990 by Kraetschmer, Lamb, Fostiropoulos and Huffman opened a new area of carbon research with possible production of new materials with unique properties. The field has developed further later on with discoveries of nanotubes, metal filled nanotubes, carbon onions and more recently metal covered fullerenes. All these new discoveries show how cluster science opens approaches to the area of meososcopic physics. The general trend is here in the direction from small to large contrary to the general trend of modern meososcopic physics or micro-electronics where the movement is from large to small. It is especially fascinating how the whole area of fullerene research was initiated by problems in astrophysics. Originally Kraetschmer and Huffman had the intention to explain an observed strong extinction form interstellar dust and produced in experiments special carbon soot with a characteristics optical absorption known as 'the camel hump smoke'. This paper gives a short overview of some of our more recent theoretical work of the electronic properties of C60, metal covered C60 and nanotubes. In addition some results are also presented of optical properties of metal covered C60 as a function of metal coverage.

  9. Memory operation mechanism of fullerene-containing polymer memory

    Nakajima, Anri, E-mail: anakajima@hiroshima-u.ac.jp; Fujii, Daiki [Research Institute for Nanodevice and Bio Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8527 (Japan)

    2015-03-09

    The memory operation mechanism in fullerene-containing nanocomposite gate insulators was investigated while varying the kind of fullerene in a polymer gate insulator. It was cleared what kind of traps and which positions in the nanocomposite the injected electrons or holes are stored in. The reason for the difference in the easiness of programming was clarified taking the role of the charging energy of an injected electron into account. The dependence of the carrier dynamics on the kind of fullerene molecule was investigated. A nonuniform distribution of injected carriers occurred after application of a large magnitude programming voltage due to the width distribution of the polystyrene barrier between adjacent fullerene molecules. Through the investigations, we demonstrated a nanocomposite gate with fullerene molecules having excellent retention characteristics and a programming capability. This will lead to the realization of practical organic memories with fullerene-containing polymer nanocomposites.

  10. Generation, Characterization and Applications of Fullerenes

    Liu, Shengzhong

    A contact-arc sputtering configuration has been adopted and optimized in order to generate fullerene-containing soot. Several stages of design improvements have made our equipment more effective in terms of yield and production rate. Upon modification of Wudl's Soxhlet separation procedure, we have been able to significantly speed up C_ {60} separation and higher fullerene enrichment. At least ten more separable HPLC peaks after C_ {84} have been observed for the first time. Preliminary laser desorption time of flight mass spectra suggest that our enriched higher fullerene sample possibly contains, C_{86}, C_{88}, C_ {90}, C_{92} , C_{94} and C _{96} in addition to the previously isolated smaller fullerenes C_ {60}, C_{70} , C_{76}, C _{78}(D_2), C_{78}(C_ {rm 2v}) and C_{84 }. Among these, C_{86 }, C_{88}, C_{92} show up for the first time in separable amounts and the controversial species --C_{94} appears present too. HPLC has been successfully used for high fullerene separation, pure C_{76}, C_{84} samples so far having been obtained. Fullerene decomposition (especially of higher fullerenes) in the column has been clearly identified. We defined HPLC peaks indicate that the oxidation process may follow certain "well defined" routes. A yellow epoxide band containing various oxides of C_{60 } has been extracted and characterized using mass spectrometry. Characterizations of pure C _{60} and C_{70 } include HPLC, mass spectrometry, vibrational IR and Raman spectroscopy, STM, TEM etc. Our Raman measurements completed the full assignment of C_{60 } fundamental modes and supplied more structural information on C_{70}. STM imaging supplied clear pictures of both C_ {60} and C_{70} molecular topologies. Especially for C _{70}, both the long and the short axes of the molecule have been clearly resolved. TEM observations involving imaging, diffraction and electron energy loss spectroscopy of crystalline C_{60} and C_{70} were performed. The room temperature lattice

  11. Multiply-negatively charged aluminium clusters and fullerenes

    Walsh, Noelle

    2008-07-15

    Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)

  12. The role of fullerene shell upon stuffed atom polarization potential

    Amusia, M. Ya.; Chernysheva, L. V.

    2015-01-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering by endohedrals of Neon and Argon. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes pol...

  13. Supramolecular solubilization of fullerenes and radio-fullerenes in aqueous media

    Braun, T.

    1999-01-01

    In this paper we are dealing with the supramolecular complexation of fullerenes C 60 , C 70 , some functionalized fullerenes and of the dumbbell structured C 120 dimer, with two host molecules, namely γ-cyclo-dextrin (GCD), and sulfocalix[8]arene in order to make them soluble in water. Previous investigations by others have shown that the reactions of some mentioned fullerenes and cyclo-dextrins and calixarenes are very slow and tedious in liquid phase as a result of solvatation effects. That we have decided to pursue the supramolecular complexation as solid-solid reactions by using mechanochemical activation in a ball mill. A mechanochemical treatment was used to enhance chemical reactivity in solid-solid reactions in which GCD give a complex with the C 60 as 2:1 host-guest complex. The calix[8]arene complex with C 60 molecule has been prepared. The sulfonated form of the host is well soluble in water. Endohedral radio-fullerenes of the XandC60 type (where * X is a rare gas, e.g. Ar, Xe, Kr, radionuclide) were prepared by nuclear recoil after neutron irradiation, a method developed by the author The endohedrally labelled fullerenes were then mechanochemically complexed into a labelled supramolecular complex with cyclo-dextrin and calixarene hosts. (author)

  14. Szeged Matrix Property Indices as Descriptors to Characterize Fullerenes

    Jäntschi Lorentz

    2016-12-01

    Full Text Available Fullerenes are class of allotropes of carbon organized as closed cages or tubes of carbon atoms. The fullerenes with small number of atoms were not frequently investigated. This paper presents a detailed treatment of total strain energy as function of structural feature extracted from isomers of C40 fullerene using Szeged Matrix Property Indices (SMPI. The paper has a two-fold structure. First, the total strain energy of C40 fullerene isomers (40 structures was linked with SMPI descriptors under two scenarios, one which incorporate just the SMPI descriptors and the other one which contains also five calculated properties (dipole moment, scf-binding-energy, scf-core-energy, scf-electronic-energy, and heat of formation. Second, the performing models identified on C40 fullerene family or the descriptors of these models were used to predict the total strain energy on C42 fullerene isomers. The obtained results show that the inclusion of properties in the pool of descriptors led to the reduction of accurate linear models. One property, namely scf-binding-energy proved a significant contribution to total strain energy of C40 fullerene isomers. However, the top-three most performing models contain just SMPI descriptors. A model with four descriptors proved most accurate model and show fair abilities in prediction of the same property on C42 fullerene isomers when the approach considered the descriptors identified on C40 as the predicting descriptors for C42 fullerene isomers.

  15. Fullerene solubility-current density relationship in polymer solar cells

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  16. Hydrogenated fullerenes in space: FT-IR spectra analysis

    El-Barbary, A. A. [Physics Department, Faculty of Education, Ain-Shams University, Cairo, Egypt Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia)

    2016-06-10

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C{sub 20} and C{sub 60} fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H{sub 2} molecule at peak around 4440 cm{sup −1}. However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  17. Oscillations of spherical fullerenes interacting with graphene sheet

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir; Fazelzadeh, S. Ahmad

    2017-01-01

    In the present study, the oscillations of spherical fullerenes in the vicinity of a fully constrained graphene sheet are investigated. Using the continuous approximation and Lennard-Jones potential, the van der Waals (vdW) potential energy and interaction forces are obtained. The equation of motion is derived and directly solved based on the actual force distribution between the fullerene molecules and the graphene sheet. Numerical results are obtained and shown that the oscillation is sensitive to the size of the fullerene as well as the distance between the center of the fullerene and the graphene sheet.

  18. Photovoltaic heterojunctions of fullerenes with MoS2 and WS2 monolayers

    Gan, Liyong

    2014-04-17

    First-principles calculations are performed to explore the geometry, bonding, and electronic structures of six ultrathin photovoltaic heterostructures consisting of pristine and B- or N-doped fullerenes and MoS2 or WS2 monolayers. The fullerenes prefer to be attached with a hexagon parallel to the monolayer, where B and N favor proximity to the monolayer. The main electronic properties of the subsystems stay intact, suggesting weak interfacial interaction. Both the C60/MoS 2 and C60/WS2 systems show type-II band alignments. However, the built-in potential in the former case is too small to effectively drive electron-hole separation across the interface, whereas the latter system is predicted to show good photovoltaic performance. Unfortunately, B and N doping destroys the type-II band alignment on MoS2 and preserves it only in one spin channel on WS2, which is unsuitable for excitonic solar cells. Our results suggest that the C60/WS 2 system is highly promising for excitonic solar cells. © 2014 American Chemical Society.

  19. Beyond Alignment

    Beyond Alignment: Applying Systems Thinking to Architecting Enterprises is a comprehensive reader about how enterprises can apply systems thinking in their enterprise architecture practice, for business transformation and for strategic execution. The book's contributors find that systems thinking...

  20. Morphology control of polymer: Fullerene solar cells by nanoparticle self-assembly

    Zhang, Wenluan

    During the past two decades, research in the field of polymer based solar cells has attracted great effort due to their simple processing, mechanical flexibility and potential low cost. A standard polymer solar cell is based on the concept of a bulk-heterojunction composed of a conducting polymer as the electron donor and a fullerene derivative as the electron acceptor. Since the exciton lifetime is limited, this places extra emphasis on control of the morphology to obtain improved device performance. In this thesis, detailed characterization and novel morphological design of polymer solar cells was studied, in addition, preliminary efforts to transfer laboratory scale methods to industrialized device fabrication was made. Magnetic contrast neutron reflectivity was used to study the vertical concentration distribution of fullerene nanoparticles within poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- b]thiophene (pBTTT) thin film. Due to the wide space between the side chains of polymer, these fullerene nanoparticles intercalate between them creating a stable co-crystal structure. Therefore, a high volume fraction of fullerene was needed to obtain optimal device performance as phase separated conductive pathways are required and resulted in a homogeneous fullerene concentration profile through the film. Small angle neutron scattering was used to find there is amorphous fullerene even at lower concentration since it was previously believed that all fullerene formed a co-crystal. These fullerene molecules evolve into approximately 15 nm sized agglomerates at higher concentrations to improve electron transport. Unfortunately, thermal annealing gives these agglomerates mobility to form micrometer sized crystals and reduce the device performance. In standard poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCMBM) solar cells, a higher concentration of PCBM at the cathode interface is desired due to the band alignment structure. This was

  1. Electron transport in doped fullerene molecular junctions

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    The effect of doping on the electron transport of molecular junctions is analyzed in this paper. The doped fullerene molecules are stringed to two semi-infinite gold electrodes and analyzed at equilibrium and nonequilibrium conditions of these device configurations. The contemplation is done using nonequilibrium Green’s function (NEGF)-density functional theory (DFT) to evaluate its density of states (DOS), transmission coefficient, molecular orbitals, electron density, charge transfer, current, and conductance. We conclude from the elucidated results that Au-C16Li4-Au and Au-C16Ne4-Au devices behave as an ordinary p-n junction diode and a Zener diode, respectively. Moreover, these doped fullerene molecules do not lose their metallic nature when sandwiched between the pair of gold electrodes.

  2. Preparation of fullerene/glass composites

    Mattes, Benjamin R.; McBranch, Duncan W.; Robinson, Jeanne M.; Koskelo, Aaron C.; Love, Steven P.

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  3. Fullerenes, nanotubes, onions and related carbon structures

    Rao, C N.R.; Seshadri, Ram; Govindaraj, A; Sen, Rahul [Solid State and Structural Chemistry Unit, CSIR Centre of Excellence in Chemistry and Materials Research Centre, Indian Institute of Science, Bangalore (India)

    1995-12-01

    Fullerenes, containing five- and six-membered carbon rings, of which C{sub 6}0 and C{sub 7}0 are the prominent members, exhibit phase transitions associated with orientational ordering. When C{sub 6}0 is suitably doped with electrons, it shows novel superconducting and magnetic properties. We review these and other properties of fullerenes in bulk or in film form along with the preparative and structural aspects. Carbon nanotubes and onions (hyperfullerenes) are the other forms of carbon whose material properties have aroused considerable interest. Besides discussing these new forms of carbon, we briefly introduce other possible forms, such as those involving five-, six- and seven-membered rings and hybrids between diamond and graphite

  4. Lateral translation of covalently bound fullerenes

    Humphry, M J; Beton, P H; Keeling, D L; Fawcett, R H J; Moriarty, P; Butcher, M J; Birkett, P R; Walton, D R M; Taylor, R; Kroto, H W

    2006-01-01

    Lateral manipulation of fullerenes on clean silicon surfaces may be induced by either an attractive or repulsive interaction between adsorbed molecules and the tip of a scanning probe microscope, and can result in a complex response arising from molecular rolling. The model for rolling is supported by new results which show that manipulation is suppressed for adsorbed functionalized fullerenes due to the presence of phenyl sidegroups. The influence of varying the dwell time of the tip during manipulation is also reported. By reducing this time to a value which is less than the response time of the feedback control loop it is possible to induce manipulation in a quasi-constant height mode which is accompanied by large increases/decreases in current

  5. Boron hydride analogues of the fullerenes

    Quong, A.A.; Pederson, M.R.; Broughton, J.Q.

    1994-01-01

    The BH moiety is isoelectronic with C. We have studied the stability of the (BH) 60 analogue of the C 60 fullerene as well as the dual-structure (BH) 32 icosahedron, both of them being putative structures, by performing local-density-functional electronic calculations. To aid in our analysis, we have also studied other homologues of these systems. We find that the latter, i.e., the dual structure, is the more stable although the former is as stable as one of the latter's lower homologues. Boron hydrides, it seems, naturally form the dual structures used in algorithmic optimization of complex fullerene systems. Fully relaxed geometries are reported as well as electron affinities and effective Hubbard U parameters. These systems form very stable anions and we conclude that a search for BH analogues of the C 60 alkali-metal supeconductors might prove very fruitful

  6. Fullerene nanostructure design with cluster ion impacts

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.; Narumi, K.

    2009-01-01

    Roč. 483, - (2009), s. 479-483 ISSN 0925-8388 R&D Projects: GA AV ČR IAA200480702; GA AV ČR IAA400100701; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : fullerene films, clusters C60+ * cluster ion implantation * patterning Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.135, year: 2009

  7. PREFACE: Fullerene Nano Materials (Symposium of IUMRS-ICA2008)

    Miyazawa, Kun'ichi; Fujita, Daisuke; Wakahara, Takatsugu; Kizuka, Tokushi; Matsuishi, Kiyoto; Ochiai, Yuichi; Tachibana, Masaru; Ogata, Hironori; Mashino, Tadahiko; Kumashiro, Ryotaro; Oikawa, Hidetoshi

    2009-07-01

    This volume contains peer-reviewed invited and contributed papers that were presented in Symposium N 'Fullerene Nano Materials' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Over twenty years have passed since the discovery of C60 in 1985. The discovery of superconductivity of C60 in 1991 suggested infinite possibilities for fullerenes. On the other hand, a new field of nanocarbon has been developed recently, based on novel functions of the low-dimensional fullerene nanomaterials that include fullerene nanowhiskers, fullerene nanotubes, fullerene nanosheets, chemically modified fullerenes, endohedral fullerenes, thin films of fullerenes and so forth. Electrical, electrochemical, optical, thermal, mechanical and various other properties of fullerene nanomaterials have been investigated and their novel and anomalous nature has been reported. Biological properties of fullerene nanomaterials also have been investigated both in medical applications and toxicity aspects. The recent research developments of fullerene nanomaterials cover a variety of categories owing to their functional diversity. This symposium aimed to review the progress in the state-of-the-art technology based on fullerenes and to offer the forum for active interdisciplinary discussions. 24 oral papers containing 8 invited papers and 22 poster papers were presented at the two-day symposium. Topics on the social acceptance of nanomaterials including fullerene were presented on the first day of the symposium. Biological impacts of nanomaterials and the importance of standardization of nanomaterials characterization were also shown. On the second day, the synthesis, properties, functions and applications of various fullerene nanomaterials were shown in both the oral and poster presentations. We are grateful to all invited speakers and many participants for valuable contributions and active discussions

  8. Redox potentials and binding enhancement of fullerene and fullerene-cyclodextrin systems in water and dimethylsulfoxide

    Pospíšil, Lubomír; Hromadová, Magdaléna; Gál, Miroslav; Kocábová, Jana; Sokolová, Romana; Filippone, S.; Yang, J.; Guan, Z.; Rassat, A.; Zhang, Y.

    2010-01-01

    Roč. 48, č. 1 (2010), s. 153-162 ISSN 0008-6223 R&D Projects: GA ČR GA203/09/0705; GA ČR GA203/08/1157; GA ČR GP203/09/P502; GA MŠk LC510; GA MŠk ME09114; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * fullerene s * fullerene -cyclodextrin systems Subject RIV: CG - Electrochemistry Impact factor: 4.893, year: 2010

  9. In vivo biology and toxicology of fullerenes and their derivatives

    Nielsen, Gunnar Damgård; Roursgaard, Martin; Jensen, Keld Alstrup

    2008-01-01

    Fullerenes represent a group of nanoparticles discovered in 1985. They are spherical molecules consisting entirely of carbon atoms (C(x)) to which side chains can be added, furnishing compounds with widely different properties. Fullerenes interact with biological systems, for example, by enzyme i...

  10. Nuclear reactions and radionuclides in the study of fullerenes

    Nakahara, H.; Sueki, K.; Sato, W.; Akiyama, K.

    2000-01-01

    Radiochemical techniques have been applied in various ways to the study of fullerenes and metallofullerenes for the past several years, and they have provided invaluable information pertaining to the stability, structures, and formation of the novel carbon material. This paper reviews those experimental results that have fully shown the usefullness and uniqueness of radionuclides demonstrated in the field of fullerene science. (author)

  11. Rigid rod spaced fullerene as building block for nanoclusters

    By using phenylacetylene based rigid-rod linkers (PhA), we have successfully synthesized two fullerene derivatives, C60-PhA and C60-PhA-C60. The absorption spectral features of C60, as well as that of the phenylacetylene moiety are retained in the monomeric forms of these fullerene derivatives, ruling out the possibility ...

  12. Granular activated carbon adsorption of organic micro-pollutants in drinking water and treated wastewater--Aligning breakthrough curves and capacities.

    Zietzschmann, Frederik; Stützer, Christian; Jekel, Martin

    2016-04-01

    Small-scale granular activated carbon (GAC) tests for the adsorption of organic micro-pollutants (OMP) were conducted with drinking water and wastewater treatment plant (WWTP) effluent. In both waters, three influent OMP concentration levels were tested. As long as the influent OMP concentrations are below certain thresholds, the relative breakthrough behavior is not impacted in the respective water. Accordingly, the GAC capacity for OMP is directly proportional to the influent OMP concentration in the corresponding water. The differences between the OMP breakthrough curves in drinking water and WWTP effluent can be attributed to the concentrations of the low molecular weight acid and neutral (LMW) organics of the waters. Presenting the relative OMP concentrations (c/c0) over the specific throughput of the LMW organics (mg LMW organics/g GAC), the OMP breakthrough curves in drinking water and WWTP effluent superimpose each other. This superimposition can be further increased if the UV absorbance at 254 nm (UV254) of the LMW organics is considered. In contrast, using the specific throughput of the dissolved organic carbon (DOC) did not suffice to obtain superimposed breakthrough curves. Thus, the LMW organics are the major water constituent impacting OMP adsorption onto GAC. The results demonstrate that knowing the influent OMP and LMW organics concentrations (and UV254) of different waters, the OMP breakthroughs and GAC capacities corresponding to any water can be applied to all other waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Nanoencapsulation of Fullerenes in Organic Structures with Nonpolar Cavities

    Murthy, C. N.

    2005-01-01

    The formation of supramolecular structures, assemblies, and arrays held together by weak intermolecular interactions and non-covalent binding mimicking natural processes has been used in applications being anticipated in nanotechnology, biotechnology and the emerging field of nanomedicine. Encapsulation of C 60 fullerene by cyclic molecules like cyclodextrins and calixarenes has potential for a number of applications. Similarly, biomolecules like lysozyme also have been shown to encapsulate C 60 fullerene. This poster article reports the recent trends and the results obtained in the nanoencapsulation of fullerenes by biomolecules containing nonpolar cavities. Lysozyme was chosen as the model biomolecule and it was observed that there is no covalent bond formed between the bimolecule and the C 60 fullerene. This was confirmed from fluorescence energy transfer studies. UV-Vis studies further supported this observation that it is possible to selectively remove the C 60 fullerene from the nonpolar cavity. This behavior has potential in biomedical applications

  14. A zeta potential value determines the aggregate's size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells.

    Deryabin, Dmitry G; Efremova, Ludmila V; Vasilchenko, Alexey S; Saidakova, Evgeniya V; Sizova, Elena A; Troshin, Pavel A; Zhilenkov, Alexander V; Khakina, Ekaterina A; Khakina, Ekaterina E

    2015-08-08

    The cause-effect relationships between physicochemical properties of amphiphilic [60]fullerene derivatives and their toxicity against bacterial cells have not yet been clarified. In this study, we report how the differences in the chemical structure of organic addends in 10 originally synthesized penta-substituted [60]fullerene derivatives modulate their zeta potential and aggregate's size in salt-free and salt-added aqueous suspensions as well as how these physicochemical characteristics affect the bioenergetics of freshwater Escherichia coli and marine Photobacterium phosphoreum bacteria. Dynamic light scattering, laser Doppler micro-electrophoresis, agarose gel electrophoresis, atomic force microscopy, and bioluminescence inhibition assay were used to characterize the fullerene aggregation behavior in aqueous solution and their interaction with the bacterial cell surface, following zeta potential changes and toxic effects. Dynamic light scattering results indicated the formation of self-assembled [60]fullerene aggregates in aqueous suspensions. The measurement of the zeta potential of the particles revealed that they have different surface charges. The relationship between these physicochemical characteristics was presented as an exponential regression that correctly described the dependence of the aggregate's size of penta-substituted [60]fullerene derivatives in salt-free aqueous suspension from zeta potential value. The prevalence of DLVO-related effects was shown in salt-added aqueous suspension that decreased zeta potential values and affected the aggregation of [60]fullerene derivatives expressed differently for individual compounds. A bioluminescence inhibition assay demonstrated that the toxic effect of [60]fullerene derivatives against E. coli cells was strictly determined by their positive zeta potential charge value being weakened against P. phosphoreum cells in an aquatic system of high salinity. Atomic force microscopy data suggested that the

  15. Competitive photometric enzyme immunoassay for fullerene C60 and its derivatives using a fullerene conjugated to horseradish peroxidase

    Hendrickson, Olga D.; Smirnova, Natalya I.; Zherdev, Anatoly V.; Dzantiev, Boris B.; Sveshnikov, Peter G.

    2016-01-01

    The article describes a highly sensitive single-step microplate enzyme immunoassay of the ELISA type for fullerene C 60 and its derivatives. Monoclonal anti-fullerene antibodies and a conjugate between fullerene and horseradish peroxidase were used as specific reagents. A direct competitive ELISA was carried out that was based on antibodies immobilized in the well of a microtiter plate, a peroxidase-labeled antigen, and detection via the dye formed from 3,3′,5,5′-tetramethylbenzidine and hydrogen peroxide. Both pristine fullerene C 60 and its water-soluble forms can be determined. The detection limits are 1.5 ng∙mL −1 for fullerene C 60 , and between 0.1 and 1.3 ng∙mL −1 for its derivatives. This ELISA format allows for almost two-fold reduction of the time needed for the assay in comparison to indirect scheme with labeled antibodies. (author)

  16. Fullerenes vs fulleroids. Understanding their relative energies

    Warner, P.M. (Northeastern Univ., Boston, MA (United States))

    1994-11-30

    Both force-field (MMPI) and AMI (restricted and unrestricted HF) calculations are herein used to investigate the underlying reasons for the fullerene-fulleroid structural dichotomies observed in carbene, silylene, nitrene, and oxygen adducts of C[sub 60]. Via the investigation of a series of model systems, it is demonstrated that curvature actually favors the open, fulleroid structure; this effect of curvature on the norcaradiene-cycloheptatriene equilibrium is general. Strategies for the creation of 6,6-bridged fulleroids are suggested. 29 refs., 6 tabs.

  17. Production of anti-fullerene C{sub 60} polyclonal antibodies and study of their interaction with a conjugated form of fullerene

    Hendrickson, O. D., E-mail: odhendrick@gmail.com; Fedyunina, N. S. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation); Martianov, A. A. [Moscow State University (Russian Federation); Zherdev, A. V.; Dzantiev, B. B. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation)

    2011-09-15

    The aim of this study was to produce anti-fullerene C{sub 60} antibodies for the development of detection systems for fullerene C{sub 60} derivatives. To produce anti-fullerene C{sub 60} antibodies, conjugates of the fullerene C{sub 60} carboxylic derivative with thyroglobulin, soybean trypsin inhibitor, and bovine serum albumin were synthesized by carbodiimide activation and characterized. Immunization of rabbits by the conjugates led to the production of polyclonal anti-fullerene antibodies. The specificity of the immune response to fullerene was investigated. Indirect competitive immunoenzyme assay was developed for the determination of conjugated fullerene with detection limits of 0.04 ng/mL (calculated for coupled C{sub 60}) and 0.4 ng/mL (accordingly to total fullerene-protein concentration).

  18. Aligned carbon nanotubes patterned photolithographically by silver

    Huang, Shaoming; Mau, Albert H. W.

    2003-02-01

    Selective growth of aligned carbon nanotubes (CNTs) by pyrolysis of iron (II) phthalocyanine (FePc) on quartz substrate patterned photolithographically by metallic silver has been demonstrated. Micro/nanopattern of aligned CNTs can be achieved by using a photomask with features on a microscale. With convenient use of simple high-contract black and white films as a photomask, aligned nanotubes patterned with 20 μm resolution in large scale can be fabricated. This practical fabrication of aligned CNTs on patterned conducting substrate could be applied to various device applications of CNTs.

  19. Simple method for determining fullerene negative ion formation★

    Felfli, Zineb; Msezane, Alfred Z.

    2018-04-01

    A robust potential wherein is embedded the crucial core-polarization interaction is used in the Regge-pole methodology to calculate low-energy electron elastic scattering total cross section for the C60 fullerene in the electron impact energy range 0.02 ≤ E ≤ 10.0 eV. The energy position of the characteristic dramatically sharp resonance appearing at the second Ramsauer-Townsend minimum of the total cross section representing stable C60 - fullerene negative ion formation agrees excellently with the measured electron affinity of C60 [Huang et al., J. Chem. Phys. 140, 224315 (2014)]. The benchmarked potential and the Regge-pole methodology are then used to calculate electron elastic scattering total cross sections for selected fullerenes, from C54 through C240. The total cross sections are found to be characterized generally by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances representing long-lived states of fullerene negative ion formation. For the total cross sections of C70, C76, C78, and C84 the agreement between the energy positions of the very sharp resonances and the measured electron affinities is outstanding. Additionally, we compare our extracted energy positions of the resultant fullerene anions from our calculated total cross sections of the C86, C90 and C92 fullerenes with the estimated electron affinities ≥3.0 eV by the experiment [Boltalina et al., Rapid Commun. Mass Spectrom. 7, 1009 (1993)]. Resonance energy positions of other fullerenes, including C180 and C240 are also obtained. Most of the total cross sections presented in this paper are the first and only; our novel approach is general and should be applicable to other fullerenes as well and complex heavy atoms, such as the lanthanide atoms. We conclude with a remark on the catalytic properties of the fullerenes through their negative ions.

  20. Fullerenes: prospects of using in medicine, biology and ecology

    D. V. Schur

    2012-02-01

    Full Text Available Results of our own research and academic literature data on the properties of fullerenes and carbon nanotubes are analysed and summarized. Chemical stability of the structure and low toxicity of fullerenes determine their usage in medical chemistry, pharmacology and cosmetology. Due to its mechanical strength the nanotubes have become the basis of clean construction and barrier materials. It is shown that a matrix based on fullerit C60 can be obtained. It allows to store up to 7.7 wt. % hydrogen with formation of hydrofullerit C60H60. The usage of fullerenes for accumulation and storage of hydrogen enhances the prospects of clean hydrogen energy development.

  1. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Reshef Tenne

    2014-11-01

    Full Text Available Fullerene-like nanoparticles (inorganic fullerenes; IF and nanotubes of inorganic layered compounds (inorganic nanotubes; INT combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects the most current results obtained at the interface between fundamental research and engineering.[...

  2. Topological edge properties of C60+12n fullerenes

    A. Mottaghi

    2013-06-01

    Full Text Available A molecular graph M is a simple graph in which atoms and chemical bonds are the vertices and edges of M, respectively. The molecular graph M is called a fullerene graph, if M is the molecular graph of a fullerene molecule. It is well-known that such molecules exist for even integers n ≥ 24 or n = 20. The aim of this paper is to investigate the topological properties of a class of fullerene molecules containing 60 + 12n carbon atoms.

  3. Continuum simulations of water flow past fullerene molecules

    Popadic, A.; Praprotnik, M.; Koumoutsakos, P.

    2015-01-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow...

  4. Electron scattering on metal clusters and fullerenes

    Solov'yov, A.V.

    2001-01-01

    This paper gives a survey of physical phenomena manifesting themselves in electron scattering on atomic clusters. The main emphasis is made on electron scattering on fullerenes and metal clusters, however some results are applicable to other types of clusters as well. This work is addressed to theoretical aspects of electron-cluster scattering, however some experimental results are also discussed. It is demonstrated that the electron diffraction plays important role in the formation of both elastic and inelastic electron scattering cross sections. It is elucidated the essential role of the multipole surface and volume plasmon excitations in the formation of electron energy loss spectra on clusters (differential and total, above and below ionization potential) as well as the total inelastic scattering cross sections. Particular attention is paid to the elucidation of the role of the polarization interaction in low energy electron-cluster collisions. This problem is considered for electron attachment to metallic clusters and the plasmon enhanced photon emission. Finally, mechanisms of electron excitation widths formation and relaxation of electron excitations in metal clusters and fullerenes are discussed. (authors)

  5. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    Song, Xin

    2017-11-27

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  6. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    Song, Xin; Gasparini, Nicola; Baran, Derya

    2017-01-01

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  7. Thermodynamics of TMPC/PSd/Fullerene Nanocomposites: SANS Study

    Chua, Yang-Choo; Chan, Alice; Wong, Him-Cheng; Higgins, Julia S.; Cabral, João T.

    2010-01-01

    ) analysis demonstrate that 1-2 mass % of C60 fullerenes destabilizes a highly interacting mixture of poly(tetramethyl bisphenol A polycarbonate) and deuterated polystyrene (TMPC/PSd). We unequivocally corroborate these findings with time-resolved temperature

  8. Electronic structure of single- and multiple-shell carbon fullerenes

    Lin, Y.; Nori, F.

    1994-01-01

    We study the electronic states of giant single-shell and the recently discovered nested multiple-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the π-state energy spectra of large fullerene cages: C 240 , C 540 , C 960 , C 1500 , C 2160 , and C 2940 . Our iteration technique reduces the size of the problem by more than one order of magnitude (factors of ∼12 and 20), while the symmetry-based approach reduces it by a factor of 10. We also find formulas for the highest occupied and lowest unoccupied molecular orbital energies of C 60n 2 fullerenes as a function of n, demonstrating a tendency towards a metallic regime for increasing n. For multiple-shell fullerenes, we analytically obtain the eigenvalues of the intershell interaction

  9. Exohedral and skeletal rearrangements in the molecules of fullerene derivatives

    Ignat' eva, Daria V; Ioffe, I N; Troyanov, Sergey I; Sidorov, Lev N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2011-07-31

    The data on the migration of monoatomic addends, perfluoroalkyl and more complex organic groups in the molecules of fullerene derivatives published mainly in the last decade are analyzed. Skeletal rearrangements of the carbon cage occurring during chemical reactions are considered.

  10. Electronic structure of C and Si fullerenes and fullerides

    Saito, S.

    1996-01-01

    Fullerenes, i.e., cage-structure clusters are now studied intensively as a building unit for a new class of materials. The electronic structure of C 60 and Si 20 fullerenes and their fullerides obtained in the framework of the density-functional theory is discussed with emphasis on the electronic as well as the geometrical hierarchy in superconducting fullerides. In both C 60 and Si 20 fullerides, the charge transfer from alkali atoms to fullerenes and the hybridization between alkaline-earth states and fullerene states are observed. Also A 3 C 60 and (Ba 3 Si 3 Na rate at Si 20 ) 2 superconductors are found to have high Fermi-level density of states, although the mechanism giving it is different in two materials. Interesting materials to be produced in the future are also discussed. (orig.)

  11. Identification of fullerenes in iron-carbon alloys structure.

    KUZEEV Iskander Rustemovich

    2017-11-01

    Full Text Available Steels of various purposes are used in the construction industry, for example, as the reinforcement material in reinforced concrete structures. In the oil and gas industry, steel structures are used for storage and transportation of explosive toxic media. In this case the catastrophic damages might take place, that points at insufficiently deep knowledge about the processes running in structural materials when load is applied. Recent studies show that many properties of steel are set at the nanoscale level during crystallization from the molten metal and thermal treatment. To detect and identify fullerenes С60 and С70, which are independent nanoscale objects in steel structure, by various methods requires studying of how these objects influence on formation of steel properties. Iron atoms can serve as a catalyst and, interacting with large aromatic structures or fragments of the graphite planes, they form voluminous fullerene-type structures. The inverse phenomenon, i.e. influence of the formed nanoscale objects on structuring of the iron atoms, is also possible, as fullerene size is comparable with the size of the stable nucleus of the iron crystalline phase. The article discusses the issue of mechanisms of fullerenes formation in steels and cast irons. The most complicated issue in the study is the fullerenes identification by spectral methods as the quantity of released molecules is small. In order to increase the sensitivity of the fullerenes IR-spectrometry method, potassium bromide has been proposed to use. Dried and reduced sediment obtained as a result of dissolving iron matrix in steels is mixed with potassium bromide, the mixture becomes bright-orange. This fact points to presence of bromic fullerenes and to presence of fullerenes in the studied specimens. It is shown that the offered specimen preparation algorithm significantly increases sensitivity of the method.

  12. Fullerenes: prospects of using in medicine, biology and ecology

    D. V. Schur; Z. Z. Matysina; S. Y. Zaginaichenko; N. P. Botsva; О. V. Elina

    2012-01-01

    Results of our own research and academic literature data on the properties of fullerenes and carbon nanotubes are analysed and summarized. Chemical stability of the structure and low toxicity of fullerenes determine their usage in medical chemistry, pharmacology and cosmetology. Due to its mechanical strength the nanotubes have become the basis of clean construction and barrier materials. It is shown that a matrix based on fullerit C60 can be obtained. It allows to store up to 7.7 wt. % hydro...

  13. Experimental and computational studies of Si-doped fullerenes

    Billas, I.M.L.; Tast, F.; Branz, W.; Malinowski, N.; Heinebrodt, M.; Martin, T.P.; Boero, M.; Massobrio, C.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1999-12-01

    Silicon in-cage doped fullerenes result from laser-induced photofragmentation of mixed clusters of composition C{sub 60}Si{sub x}. These parent clusters are produced in a low pressure condensation cell, through the mixing of silicon vapor with a vapor containing the preformed C{sub 60} molecules. The geometric and the electronic structures of fullerenes substitutionally doped with one and two silicon atoms are studied by ab-initio calculations within density functional theory. (orig.)

  14. Electronic Structure of Single- and Multiple-shell Carbon Fullerenes

    Lin, Yeong-Lieh; Nori, Franco

    1993-01-01

    We study the electronic states of giant single-shell and the recently discovered nested multi-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the $\\pi$-state energy spectra of large fullerene cages: $C_{240}$, $C_{540}$, $C_{960}$, $C_{1500}$, $C_{2160}$ and $C_{2940}$. Our iteration technique reduces the dimensionality of the problem by more than one order of magnitude (factors of $\\...

  15. Optimizing Conditions for Ultrasound Extraction of Fullerenes from Coal Matrices

    Vítek, P.; Jehlička, J.; Frank, Otakar; Hamplová, Věra; Pokorná, Zdeňka; Juha, Libor; Boháček, J.

    2009-01-01

    Roč. 17, č. 2 (2009), s. 109-122 ISSN 1536-383X R&D Projects: GA ČR GA205/07/0772; GA ČR GA205/03/1468 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : fullerene C60 * Ultrasound -assisted extraction * Extraction yield * Fullerene decomposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.710, year: 2009

  16. Oscillation of nested fullerenes (carbon onions) in carbon nanotubes

    Thamwattana, Ngamta; Hill, James M.

    2008-01-01

    Nested spherical fullerenes, which are sometimes referred to as carbon onions, of I h symmetries which have N(n) carbon atoms in the nth shell given by N(n) = 60n 2 are studied in this paper. The continuum approximation together with the Lennard-Jones potential is utilized to determine the resultant potential energy. High frequency nanoscale oscillators or gigahertz oscillators created from fullerenes and both single- and multi-walled carbon nanotubes have attracted much attention for a number of proposed applications, such as ultra-fast optical filters and ultra-sensitive nano-antennae that might impact on the development of computing and signalling nano-devices. Further, it is only at the nanoscale where such gigahertz frequencies can be achieved. This paper focuses on the interaction of nested fullerenes and the mechanics of such molecules oscillating in carbon nanotubes. Here we investigate such issues as the acceptance condition for nested fullerenes into carbon nanotubes, the total force and energy of the nested fullerenes, and the velocity and gigahertz frequency of the oscillating molecule. In particular, optimum nanotube radii are determined for which nested fullerenes oscillate at maximum velocity and frequency, which will be of considerable benefit for the design of future nano-oscillating devices

  17. Fullerenes and endohedrals as “big atoms”

    Amusia, M.Ya., E-mail: amusia@vms.huji.ac.il

    2013-03-12

    Highlights: ► Response of multi-electron atoms to radiation is determined by correlation effects. ► The response of fullerenes and endohedrals is characterized by strong resonances. ► Most important are confinement and Giant endohedral resonances. ► Fullerene is described as a zero-thickness polarizable shell. ► Electron exchange can play a very important role in inner shell ionization. - Abstract: We present the main features of the electronic structure of the heavy atoms that is best of all seen in photoionization. We acknowledge how important was and still is investigation of the interaction between atoms and low- and high frequency lasers with big intensity. We discuss the fullerenes and endohedrals as big atoms concentrating upon their most prominent features revealed in photoionization. Namely, we discuss reflection of photoelectron wave by the static potential that mimics the fullerenes electron shell and modification of the incoming photon beam under the action of the polarizable fullerenes shell. Both effects are clearly reflected in the photoionization cross-section. We discuss the possible features of interaction between laser field of both low and high frequency and high intensity upon fullerenes and endohedrals. We envisage prominent effects of multi-electron ionization and photon emission, including high-energy photons. We emphasize the important role that can be played by electron exchange in these processes.

  18. Fullerenes and endohedrals as “big atoms”

    Amusia, M.Ya.

    2013-01-01

    Highlights: ► Response of multi-electron atoms to radiation is determined by correlation effects. ► The response of fullerenes and endohedrals is characterized by strong resonances. ► Most important are confinement and Giant endohedral resonances. ► Fullerene is described as a zero-thickness polarizable shell. ► Electron exchange can play a very important role in inner shell ionization. - Abstract: We present the main features of the electronic structure of the heavy atoms that is best of all seen in photoionization. We acknowledge how important was and still is investigation of the interaction between atoms and low- and high frequency lasers with big intensity. We discuss the fullerenes and endohedrals as big atoms concentrating upon their most prominent features revealed in photoionization. Namely, we discuss reflection of photoelectron wave by the static potential that mimics the fullerenes electron shell and modification of the incoming photon beam under the action of the polarizable fullerenes shell. Both effects are clearly reflected in the photoionization cross-section. We discuss the possible features of interaction between laser field of both low and high frequency and high intensity upon fullerenes and endohedrals. We envisage prominent effects of multi-electron ionization and photon emission, including high-energy photons. We emphasize the important role that can be played by electron exchange in these processes

  19. Synthetic Strategies towards Fullerene-Rich Dendrimer Assemblies

    Jean-François Nierengarten

    2012-02-01

    Full Text Available The sphere-shaped fullerene has attracted considerable interest not least due to the peculiar electronic properties of this carbon allotrope and the fascinating materials emanating from fullerene-derived structures. The rapid development and tremendous advances in organic chemistry allow nowadays the modification of C60 to a great extent by pure chemical means. It is therefore not surprising that the fullerene moiety has also been part of dendrimers. At the initial stage, fullerenes have been examined at the center of the dendritic structure mainly aimed at possible shielding effects as exerted by the dendritic environment and light-harvesting effects due to multiple chromophores located at the periphery of the dendrimer. In recent years, also many research efforts have been devoted towards fullerene-rich nanohybrids containing multiple C60 units in the branches and/or as surface functional groups. In this review, synthetic efforts towards the construction of dendritic fullerene-rich nanostructures have been compiled and will be summarized herein.

  20. Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems

    Liu, Kuan; Larsen-Olsen, Thue Trofod; Lin, Yuze

    2016-01-01

    Flexible organic solar cells (OSCs) based on a blend of low-bandgap polymer donor PTB7-TH and nonfullerene small molecule acceptor IEIC were fabricated via a roll-coating process under ambient atmosphere. Both an indium tin oxide (ITO)-free substrate and a flexible ITO substrate were employed...... in these inverted OSCs. OSCs with flexible ITO and ITO-free substrates exhibited power conversion efficiencies (PCEs) up to 2.26% and 1.79%, respectively, which were comparable to those of the reference devices based on fullerene acceptors under the same conditions. This is the first example for all roll......-coating fabrication procedures for flexible OSCs based on non-fullerene acceptors with the PCE exceeding 2%. The fullerene-free OSCs exhibited better dark storage stability than the fullerene-based control devices....

  1. Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electron-Selective Contact.

    Collavini, Silvia; Kosta, Ivet; Völker, Sebastian F; Cabanero, German; Grande, Hans J; Tena-Zaera, Ramón; Delgado, Juan Luis

    2016-06-08

    [70]Fullerene is presented as an efficient alternative electron-selective contact (ESC) for regular-architecture perovskite solar cells (PSCs). A smart and simple, well-described solution processing protocol for the preparation of [70]- and [60]fullerene-based solar cells, namely the fullerene saturation approach (FSA), allowed us to obtain similar power conversion efficiencies for both fullerene materials (i.e., 10.4 and 11.4 % for [70]- and [60]fullerene-based devices, respectively). Importantly, despite the low electron mobility and significant visible-light absorption of [70]fullerene, the presented protocol allows the employment of [70]fullerene as an efficient ESC. The [70]fullerene film thickness and its solubility in the perovskite processing solutions are crucial parameters, which can be controlled by the use of this simple solution processing protocol. The damage to the [70]fullerene film through dissolution during the perovskite deposition is avoided through the saturation of the perovskite processing solution with [70]fullerene. Additionally, this fullerene-saturation strategy improves the performance of the perovskite film significantly and enhances the power conversion efficiency of solar cells based on different ESCs (i.e., [60]fullerene, [70]fullerene, and TiO2 ). Therefore, this universal solution processing protocol widens the opportunities for the further development of PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Status seminar on the application potential of fullerenes. Status seminar and panel discussion; Statusseminar Anwendungspotential der Fullerene. Vortraege und Podiumsdiskussion

    Hoffschulz, H [comp.

    1997-12-31

    The application potential of fullerenes extends to the following areas: Owing to their similarity to active carbon the use of fullerenes as well as of the soot arising during their production in catalytic applications appears an interesting possibility. Structural modifications will permit influencing the catalytic properties of the employed substances. Addition of functional groups has led to a wide range of fullerne variants whose chemical properties and application potentials are still being studied. Polymers can be altered in their structure and properties by the integration of fullerenes. The possibility of increasing the photoconductivity of polymers in this way could be applied to photodetectors and solar cells, for example. Exposure to light causes fullerenes to polymerise and drastically reduces their solubility in commercial solvents. This may render them useful as a masking material in microstructuring. Diamond layers from fullerene vapour are very durable and can be manufactured in large sheets at comparatively low cost. In spite of their low density nanotubes are of incredible stiffness and as such an ideal component for composite materials. In monitors nanotubes can function as electron sources and replace the traditional cathode ray tube. A prerequisite for studying the properties of endohedral fullerenes is their availability in macroscopic amounts. In order to assess their potential it will first be necessary to develop suitable production methods. (orig./SR) [Deutsch] Folgende Anwendungspotentiale fuer Fullorene sind denkbar: - Die Verwandtschaft der Fullerene und des bei ihrer Erzeugung anfallenden Russes zur Aktivkohle sind fuer katalytische Anwendungen interessant, wobei die Katalyseeigenschaften durch Modifizierungen der Struktur veraendert werden koennen. - Mittlerweile stehen eine Vielzahl verschiedener Fulleren-Modifikationen durch Anbringen von funktionellen Gruppen zur Verfuegung, deren chemische Eigenschaften und Anwendungspotentiale

  3. Specific features of fullerene-bearing thin film growth using ion beam vacuum sputtering of fullerene mixtures with B, Fe, Se, Gd and Na

    Semenov, A.P.; Semenova, I.A.; Bulina, N.V.; Lopatin, V.A.; Karmanov, N.S.; Churilov, G.N.

    2005-01-01

    A new approach to the growth of films containing fullerenes and doping elements is described. It is suggested that a cluster mechanism of the target sputtering by accelerated ions makes possible the deposition of fullerenes on a substrate with a certain probability for dopant atoms being introduced into the cavities of fullerene molecules and a higher probability of the doping element introduction between fullerene molecules. The proposed method has been experimentally implemented by using an Ar ion beam to sputter C 60 /C 70 fullerene mixtures, synthesized in a plasmachemical reactor at a pressure of 10 5 Pa and containing a doping element, i.e. Fe, Na, B, Gd or Se. Micron-thick films containing C 60 and C 70 fullerenes and the corresponding dopant element, i.e. Fe, Na, B, Gd or Se, were grown from dopant-containing fullerene mixtures by ion beam sputtering in a vacuum of ∼10 -2 Pa [ru

  4. Packing and Disorder in Substituted Fullerenes

    Tummala, Naga Rajesh

    2016-07-15

    Fullerenes are ubiquitous as electron-acceptor and electron-transport materials in organic solar cells. Recent synthetic strategies to improve the solubility and electronic characteristics of these molecules have translated into a tremendous increase in the variety of derivatives employed in these applications. Here, we use molecular dynamics (MD) simulations to examine the impact of going from mono-adducts to bis- and tris-adducts on the structural, cohesive, and packing characteristics of [6,6]-phenyl-C60-butyric acid methyl ester (PCBM) and indene-C60. The packing configurations obtained at the MD level then serve as input for density functional theory calculations that examine the solid-state energetic disorder (distribution of site energies) as a function of chemical substitution. The variations in structural and site-energy disorders reflect the fundamental materials differences among the derivatives and impact the performance of these materials in thin-film electronic devices.

  5. Towards a fullerene-based quantum computer

    Benjamin, Simon C; Ardavan, Arzhang; Briggs, G Andrew D; Britz, David A; Gunlycke, Daniel; Jefferson, John; Jones, Mark A G; Leigh, David F; Lovett, Brendon W; Khlobystov, Andrei N; Lyon, S A; Morton, John J L; Porfyrakis, Kyriakos; Sambrook, Mark R; Tyryshkin, Alexei M

    2006-01-01

    Molecular structures appear to be natural candidates for a quantum technology: individual atoms can support quantum superpositions for long periods, and such atoms can in principle be embedded in a permanent molecular scaffolding to form an array. This would be true nanotechnology, with dimensions of order of a nanometre. However, the challenges of realizing such a vision are immense. One must identify a suitable elementary unit and demonstrate its merits for qubit storage and manipulation, including input/output. These units must then be formed into large arrays corresponding to an functional quantum architecture, including a mechanism for gate operations. Here we report our efforts, both experimental and theoretical, to create such a technology based on endohedral fullerenes or 'buckyballs'. We describe our successes with respect to these criteria, along with the obstacles we are currently facing and the questions that remain to be addressed

  6. Characterization of the Structural, Mechanical, and Electronic Properties of Fullerene Mixtures: A Molecular Simulations Description

    Tummala, Naga Rajesh; Aziz, Saadullah; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2017-01-01

    We investigate mixtures of fullerenes and fullerene derivatives, the most commonly used electron accepting materials in organic solar cells, by using a combination of molecular dynamics and density functional theory methods. Our goal is to describe

  7. Changes in Agglomeration of Fullerenes During Ingestion and Excretion in Thamnocephalus Platuyrus

    The crustacean Thamnocephalus platyurus was exposed to aqueous suspensions of fullerenes C60 and C70. Aqueous fullerene suspensions were formed by stirring C60 and C70 as received from a commercial vendor in deionized water (term...

  8. The study of dielectric properties of the endohedral fullerenes

    Bhusal, Shusil

    Dielectric response of the metal nitride fullerenes is studied using the density functional theory at the all-electron level using generalized gradient approximation. The dielectric response is studied by computing the static dipole polarizabilities using the finite field method, i.e. by numerically differentiating the dipole moments with respect to electric field. The endohedral fullerenes studied in this work are Sc3N C68(6140), Sc3N C68(6146), Sc3N C70(7854), Sc3N C70(7960), Sc3N C76(17490), Sc3N C78(22010), Sc3N C80(31923), Sc3N C80(31924), Sc3N C82(39663), Sc3N C90(43), Sc3N C90(44), Sc3N C92(85), Sc3N C94(121), Sc3N C96(186), Sc3N C98(166). Using the Voronoi and Hirschfield approaches as implemented in our NRLMOL code, we determine the atomic contributions to the total polarizability. The site-specific contributions to the polarizability of endohedral fullerenes allowed us to determine the polarizability of two subsystems: the fullerene shell and the encapsulated Sc3N unit. Our results showed that the contributions to the total polarizability from the encapsulated Sc3N units are vanishingly small. Thus, the total polarizability of the endohedral fullerene is almost entirely due to the outer fullerene shell. These fullerenes are excellent molecular models of a Faraday cage.

  9. Preparation and characterization of stable aqueous higher-order fullerenes

    Aich, Nirupam; Flora, Joseph R V; Saleh, Navid B

    2012-01-01

    Stable aqueous suspensions of nC 60 and individual higher fullerenes, i.e. C 70 , C 76 and C 84 , are prepared by a calorimetric modification of a commonly used liquid–liquid extraction technique. The energy requirement for synthesis of higher fullerenes has been guided by molecular-scale interaction energy calculations. Solubilized fullerenes show crystalline behavior by exhibiting lattice fringes in high resolution transmission electron microscopy images. The fullerene colloidal suspensions thus prepared are stable with a narrow distribution of cluster radii (42.7 ± 0.8 nm, 46.0 ± 14.0 nm, 60 ± 3.2 nm and 56.3 ± 1.1 nm for nC 60 , nC 70 , nC 76 and nC 84 , respectively) as measured by time-resolved dynamic light scattering. The ζ-potential values for all fullerene samples showed negative surface potentials with similar magnitude ( − 38.6 ± 5.8 mV, − 39.1 ± 4.2 mV, − 38.9 ± 5.8 mV and − 41.7 ± 5.1 mV for nC 60 , nC 70 , nC 76 and nC 84 , respectively), which provide electrostatic stability to the colloidal clusters. This energy-based modified solubilization technique to produce stable aqueous fullerenes will likely aid in future studies focusing on better applicability, determination of colloidal properties, and understanding of environmental fate, transport and toxicity of higher-order fullerenes. (paper)

  10. An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection

    Carboni, Andrea; Emke, Erik; Parsons, John R.; Kalbitz, Karsten; Voogt, Pim de

    2014-01-01

    Graphical abstract: -- Highlights: •A total of eight fullerenes can be analyzed in a single run with HPLC-UV. •The method allows the analysis of fullerenes in soil at relatively low concentrations. •The method developed is robust, highly reproducible and relatively efficient. •The method can be applied to the study of the environmental fate and toxicology of fullerenes. -- Abstract: Fullerenes are carbon-based nanomaterials expected to play a major role in emerging nanotechnology and produced at an increasing rate for industrial and household applications. In the last decade a number of novel compounds (i.e. fullerene derivatives) is being introduced into the market and specific analytical methods are needed for analytical purposes as well as environmental and safety issues. In the present work eight fullerenes (C60 and C70) and functionalized fullerenes (C60 and C70 exohedral-derivatives) were selected and a novel liquid chromatographic method was developed for their analysis with UV absorption as a method of detection. The resulting HPLC-UV method is the first one suitable for the analysis of all eight compounds. This method was applied for the analysis of fullerenes added to clayish, sandy and loess top-soils at concentrations of 20, 10 and 5 μg kg −1 and extracted with a combination of sonication and shaking extraction. The analytical method limits of detection (LoD) and limits of quantification (LoQ) were in the range of 6–10 μg L −1 and 15–24 μg L −1 respectively for the analytical solutions. The extraction from soil was highly reproducible with recoveries ranging from 47 ± 5 to 71 ± 4% whereas LoD and LoQ for all soils tested were of 3 μg kg −1 and 10 μg kg −1 respectively. No significant difference in the extraction performance was observed depending of the different soil matrices and between the different concentrations. The developed method can be applied for the study of the fate and toxicity of fullerenes in complex matrices

  11. Fullerene hydride - A potential hydrogen storage material

    Nai Xing Wang; Jun Ping Zhang; An Guang Yu; Yun Xu Yang; Wu Wei Wang; Rui long Sheng; Jia Zhao

    2005-01-01

    Hydrogen, as a clean, convenient, versatile fuel source, is considered to be an ideal energy carrier in the foreseeable future. Hydrogen storage must be solved in using of hydrogen energy. To date, much effort has been put into storage of hydrogen including physical storage via compression or liquefaction, chemical storage in hydrogen carriers, metal hydrides and gas-on-solid adsorption. But no one satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. C 60 H 36 , firstly synthesized by the method of the Birch reduction, was loaded with 4.8 wt% hydrogen indicating [60]fullerene might be as a potential hydrogen storage material. If a 100% conversion of C 60 H 36 is achieved, 18 moles of H 2 gas would be liberated from each mole of fullerene hydride. Pure C 60 H 36 is very stable below 500 C under nitrogen atmosphere and it releases hydrogen accompanying by other hydrocarbons under high temperature. But C 60 H 36 can be decomposed to generate H 2 under effective catalyst. We have reported that hydrogen can be produced catalytically from C 60 H 36 by Vasks's compound (IrCl(CO)(PPh 3 ) 2 ) under mild conditions. (RhCl(CO)(PPh 3 ) 2 ) having similar structure to (IrCl(CO)(PPh 3 ) 2 ), was also examined for thermal dehydrogenation of C 60 H 36 ; but it showed low catalytic activity. To search better catalyst, palladium carbon (Pd/C) and platinum carbon (Pt/C) catalysts, which were known for catalytic hydrogenation of aromatic compounds, were tried and good results were obtained. A very big peak of hydrogen appeared at δ=5.2 ppm in 1 H NMR spectrum based on Evans'work (fig 1) at 100 C over a Pd/C catalyst for 16 hours. It is shown that hydrogen can be produced from C 60 H 36 using a catalytic amount of Pd/C. Comparing with Pd/C, Pt/C catalyst showed lower activity. The high cost and limited availability of Vaska's compounds, Pd and Pt make it advantageous to develop less expensive catalysts for our process based on

  12. Table of periodic properties of fullerenes based on structural parameters.

    Torrens, Francisco

    2004-01-01

    The periodic table (PT) of the elements suggests that hydrogen could be the origin of everything else. The construction principle is an evolutionary process that is formally similar to those of Darwin and Oparin. The Kekulé structure count and permanence of the adjacency matrix of fullerenes are related to structural parameters involving the presence of contiguous pentagons p, q and r. Let p be the number of edges common to two pentagons, q the number of vertices common to three pentagons, and r the number of pairs of nonadjacent pentagon edges shared between two other pentagons. Principal component analysis (PCA) of the structural parameters and cluster analysis (CA) of the fullerenes permit classifying them and agree. A PT of the fullerenes is built based on the structural parameters, PCA and CA. The periodic law does not have the rank of the laws of physics. (1) The properties of the fullerenes are not repeated; only, and perhaps, their chemical character. (2) The order relationships are repeated, although with exceptions. The proposed statement is the following: The relationships that any fullerene p has with its neighbor p + 1 are approximately repeated for each period.

  13. Carboxylated Fullerene at the Oil/Water Interface.

    Li, Rongqiang; Chai, Yu; Jiang, Yufeng; Ashby, Paul D; Toor, Anju; Russell, Thomas P

    2017-10-04

    The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) with different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values of 4.84 and 7.8, robust, elastic films were formed at the interface, such that hollow tubules could be formed in situ when an aqueous solution of the functionalized fullerene was jetted into a toluene solution of PS-b-P2VP at a pH of 4.84. With variation of the pH, the mechanical properties of the fullerene/polymer assemblies can be varied by tuning the strength of the interactions between the functionalized fullerenes and the PS-b-P2VP.

  14. Fullerene nanostructures, monolayers and thin films

    Cotier, B.N.

    2000-10-01

    The interaction of submonolayer, monolayer and multilayer coverages of C 60 with the Ag/Si(111)-(√3x√3)R30 deg. (√3Ag/Si) and Si(111)-7x7 surfaces has been investigated using atomic force microscopy (AFM), photoelectron spectroscopy (PES) and ultra high vacuum scanning tunneling microscopy (UHV-STM). It is shown that it is possible to preserve the √3Ag/Si surface, normally corrupted by exposure to air, in ambient conditions when immersed beneath a few layers of C 60 molecules. Upon removal of the fullerene layers in the UHV-STM some corruption is observed which is linked to the morphology of the fullerene film (defined by the nature of the interaction of C 60 with √3Ag/Si). This technique opens up the possibility of performing experiments on the clean √3Ag/Si surface outside of UHV conditions. With the discovery of techniques whereby structures may be formed that are composed of only a few atoms/molecules, there is a need to perform electrical measurements in order to probe the fascinating properties of these 'nano-scale' devices. Using AFM, PES and STM evaporated metals and ion implantation have been investigated as materials for use in forming sub-micron scale contacts to nanostructures. It is found that ion implantation is a more promising approach after studying the response to annealing of treated surfaces. Electrical measurements between open/short circuited contacts and through Ag films clearly demonstrate the validity of the method, further confirmed by a PES study which probes the chemical nature of the near surface region of ion-implanted samples. Attempts have been made to form nanostructure templates between sub-micron scale contacts as a possible precursor to forming nanostructures. The bonding state of C 60 molecules on the Si(111)-7x7 surface has been in dispute for many years. To properly understand the system a comprehensive AFM, PES and STM study has been performed. PES results indicate covalent bond formation, with the number of bonds

  15. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    Asaji, T., E-mail: asaji@oshima-k.ac.jp; Ohba, T. [Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-oshima, Oshima, Yamaguchi 742-2193 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Racz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Tér 18/c (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  16. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    Cates, Nichole C.; Gysel, Roman; Beiley, Zach; Miller, Chad E.; Toney, Michael F.; Heeney, Martin; McCulloch, Iain; McGehee, Michael D.

    2009-01-01

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  17. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  18. Fullerene C60 and graphene photosensibiles for photodynamic virus inactivation

    Belousova, I.; Hvorostovsky, A.; Kiselev, V.; Zarubaev, V.; Kiselev, O.; Piotrovsky, L.; Anfimov, P.; Krisko, T.; Muraviova, T.; Rylkov, V.; Starodubzev, A.; Sirotkin, A.; Grishkanich, A.; Kudashev, I.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Afanasyev, M.; Lukyanov, N.; Redka, D.; Paklinov, N.

    2018-02-01

    A solid-phase photosensitizer based on aggregated C60 fullerene and graphene oxide for photodynamic inactivation of pathogens in biological fluids was studied. The most promising technologies of inactivation include the photodynamic effect, which consists in the inactivation of infectious agents by active oxygen forms (including singlet oxygen), formed when light is activated by the photosensitizer introduced into the plasma. Research shows features of solid-phase systems based on graphene and fullerene C60 oxide, which is a combination of an effective inactivating pathogens (for example, influenza viruses) reactive oxygen species formed upon irradiation of the photosensitizer in aqueous and biological fluids, a high photostability fullerene coatings and the possibility of full recovery photosensitizer from the biological environment after the photodynamic action.

  19. Porphyrin and fullerene-based artificial photosynthetic materials for photovoltaics

    Imahori, Hiroshi; Kashiwagi, Yukiyasu; Hasobe, Taku; Kimura, Makoto; Hanada, Takeshi; Nishimura, Yoshinobu; Yamazaki, Iwao; Araki, Yasuyuki; Ito, Osamu; Fukuzumi, Shunichi

    2004-01-01

    We have developed artificial photosynthetic systems in which porphyrins and fullerenes are self-assembled as building blocks into nanostructured molecular light-harvesting materials and photovoltaic devices. Multistep electron transfer strategy has been combined with our finding that porphyrin and fullerene systems have small reorganization energies, which are suitable for the construction of light energy conversion systems as well as artificial photosynthetic models. Highly efficient photosynthetic electron transfer reactions have been realized at ITO electrodes modified with self-assembled monolayers of porphyrin oligomers as well as porphyrin-fullerene linked systems. Porphyrin-modified gold nanoclusters have been found to have potential as artificial photosynthetic materials. These results provide basic information for the development of nanostructured artificial photosynthetic systems

  20. Polymer solar cells with novel fullerene-based acceptor

    Riedel, I.; Martin, N.; Giacalone, F.; Segura, J.L.; Chirvase, D.; Parisi, J.; Dyakonov, V.

    2004-01-01

    Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer-fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer-fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current-voltage measurements and external quantum yield spectroscopy. Further studies were carried out by profiling the solar cell parameters vs. temperature and white light intensity

  1. Simulating fullerene ball bearings of ultra-low friction

    Li Xiaoyan; Yang Wei

    2007-01-01

    We report the direct molecular dynamics simulations for molecular ball bearings composed of fullerene molecules (C 60 and C 20 ) and multi-walled carbon nanotubes. The comparison of friction levels indicates that fullerene ball bearings have extremely low friction (with minimal frictional forces of 5.283 x 10 -7 and 6.768 x 10 -7 nN/atom for C 60 and C 20 bearings) and energy dissipation (lowest dissipation per cycle of 0.013 and 0.016 meV/atom for C 60 and C 20 bearings). A single fullerene inside the ball bearings exhibits various motion statuses of mixed translation and rotation. The influences of the shaft's distortion on the long-ranged potential energy and normal force are discussed. The phonic dissipation mechanism leads to a non-monotonic function between the friction and the load rate for the molecular bearings

  2. Preparation of Polyaniline-Doped Fullerene Whiskers

    Bingzhe Wang

    2013-01-01

    Full Text Available Fullerene C60 whiskers (FWs doped with polyaniline emeraldine base (PANI-EB were synthesized by mixing PANI-EB/N-methyl pyrrolidone (NMP colloid and FWs suspension based on the nature of the electron acceptor of C60 and electron donor of PANI-EB. Scanning electron microscopy (SEM, Fourier transform infrared (FT-IR, and ultraviolet-visible (UV-Vis spectra characterized the morphology and molecular structure of the FWs doped with PANI-EB. SEM observation showed that the smooth surface of FWs was changed to worm-like surface morphology after being doped with PANI-EB. The UV-Vis spectra suggested that charge-transfer (CT complex of C60 and PANI-EB was formed as PANI-EBδ+-C60δ-. PANI-EB-doped FWs might be useful as a new type of antibacterial and self-cleaning agent as well as multifunctional material to improve the human health and living environment.

  3. Toxicity of polyhydroxylated fullerene to mitochondria

    Yang, Li-Yun [State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Gao, Jia-Ling [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023 (China); Gao, Tian; Dong, Ping; Ma, Long; Jiang, Feng-Lei [State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Liu, Yi, E-mail: yiliuchem@whu.edu.cn [State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2016-01-15

    Highlights: • Fullerenol-induced mitochondrial dysfunction was investigated at mitochondrial level. • Fullerenol disturbed mitochondrial inner membrane in polar protein regions. • Fullerenol affected the inner membrane and respiration chain of mitochondria. - Abstract: Mitochondrial dysfunction is considered as a crucial mechanism of nanomaterial toxicity. Herein, we investigated the effects of polyhydroxylated fullerene (C{sub 60}(OH){sub 44}, fullerenol), a model carbon-based nanomaterial with high water solubility, on isolated mitochondria. Our study demonstrated that fullerenol enhanced the permeabilization of mitochondrial inner membrane to H{sup +} and K{sup +} and induced mitochondrial permeability transition (MPT). The fullerenol-induced swelling was dose-dependent and could be effectively inhibited by MPT inhibitors such as cyclosporin A (CsA), adenosine diphosphate (ADP), ruthenium red (RR) and ethylenediaminetetraacetic acid (EDTA). After treating the mitochondria with fullerenol, the mitochondrial membrane potential (MMP) was found collapsed in a concentration-independent manner. The fluorescence anisotropy of hematoporphyrin (HP) changed significantly with the addition of fullerenol, while that of 1,6-diphenyl-hexatriene (DPH) changed slightly. Moreover, a decrease of respiration state 3 and increase of respiration state 4 were observed when mitochondria were energized with complex II substrate succinate. The results of transmission electron microscopy (TEM) provided direct evidence that fullerenol damaged the mitochondrial ultrastructure. The investigations can provide comprehensive information to elucidate the possible toxic mechanism of fullerenols at subcellular level.

  4. Intratracheal administration of fullerene nanoparticles activates splenic CD11b{sup +} cells

    Ding, Ning [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Kunugita, Naoki [Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako 351-0197 (Japan); Ichinose, Takamichi [Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Song, Yuan [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yokoyama, Mitsuru [Bio-information Research Center, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Arashidani, Keiichi [School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yoshida, Yasuhiro, E-mail: freude@med.uoeh-u.ac.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan)

    2011-10-30

    Highlights: {yields} Fullerene administration triggered splenic responses. {yields} Splenic responses occurred at different time-points than in the lung tissue. {yields} CD11b{sup +} cells were demonstrated to function as responder cells to fullerene. - Abstract: Fullerene nanoparticles ('Fullerenes'), which are now widely used materials in daily life, have been demonstrated to induce elevated pulmonary inflammation in several animal models; however, the effects of fullerenes on the immune system are not fully understood. In the present study, mice received fullerenes intratracheally and were sacrificed at days 1, 6 and 42. Mice that received fullerenes exhibited increased proliferation of splenocytes and increased splenic production of IL-2 and TNF-{alpha}. Changes in the spleen in response to fullerene treatment occurred at different time-points than in the lung tissue. Furthermore, fullerenes induced CDK2 expression and activated NF-{kappa}B and NFAT in splenocytes at 6 days post-administration. Finally, CD11b{sup +} cells were demonstrated to function as responder cells to fullerene administration in the splenic inflammatory process. Taken together, in addition to the effects on pulmonary responses, fullerenes also modulate the immune system.

  5. Intratracheal administration of fullerene nanoparticles activates splenic CD11b+ cells

    Ding, Ning; Kunugita, Naoki; Ichinose, Takamichi; Song, Yuan; Yokoyama, Mitsuru; Arashidani, Keiichi; Yoshida, Yasuhiro

    2011-01-01

    Highlights: → Fullerene administration triggered splenic responses. → Splenic responses occurred at different time-points than in the lung tissue. → CD11b + cells were demonstrated to function as responder cells to fullerene. - Abstract: Fullerene nanoparticles ('Fullerenes'), which are now widely used materials in daily life, have been demonstrated to induce elevated pulmonary inflammation in several animal models; however, the effects of fullerenes on the immune system are not fully understood. In the present study, mice received fullerenes intratracheally and were sacrificed at days 1, 6 and 42. Mice that received fullerenes exhibited increased proliferation of splenocytes and increased splenic production of IL-2 and TNF-α. Changes in the spleen in response to fullerene treatment occurred at different time-points than in the lung tissue. Furthermore, fullerenes induced CDK2 expression and activated NF-κB and NFAT in splenocytes at 6 days post-administration. Finally, CD11b + cells were demonstrated to function as responder cells to fullerene administration in the splenic inflammatory process. Taken together, in addition to the effects on pulmonary responses, fullerenes also modulate the immune system.

  6. Energy-level alignment at interfaces between manganese phthalocyanine and C60

    Daniel Waas

    2017-04-01

    Full Text Available We have used photoelectron spectroscopy to determine the energy-level alignment at organic heterojunctions made of manganese phthalocyanine (MnPc and the fullerene C60. We show that this energy-level alignment depends upon the preparation sequence, which is explained by different molecular orientations. Moreover, our results demonstrate that MnPc/C60 interfaces are hardly suited for application in organic photovoltaic devices, since the energy difference of the two lowest unoccupied molecular orbitals (LUMOs is rather small.

  7. Affine Fullerene C60 in a GS-Quasigroup

    Vladimir Volenec

    2014-01-01

    Full Text Available It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C(1/2(1+5.

  8. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  9. Stereodivergent-at-metal synthesis of [60]fullerene hybrids

    Marco-Martinez, Juan; Vidal, Sara; Fernandez, Israel; Filippone, Salvatore [Departamento de Quimica Organica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); Martin, Nazario [Departamento de Quimica Organica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); IMDEA-Nanociencia, C/Faraday, Universidad Autonoma de Madrid (Spain)

    2017-02-13

    Chiral fullerene-metal hybrids with complete control over the four stereogenic centers, including the absolute configuration of the metal atom, have been synthesized for the first time. The stereochemistry of the four chiral centers formed during [60]fullerene functionalization is the result of both the chiral catalysts employed and the diastereoselective addition of the metal complexes used (iridium, rhodium, or ruthenium). DFT calculations underpin the observed configurational stability at the metal center, which does not undergo an epimerization process. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Properties of Natural Rubber-Based Composites Containing Fullerene

    Omar A. Al-Hartomy

    2012-01-01

    Full Text Available In this study the influence of fullerenes in concentrations from 0.5 to 1.5 phr on both the vulcanization characteristics of the compounds and physicomechanical, dynamic, and dielectric properties and thermal aging resistance of nanocomposites on the basis of natural rubber has been investigated. The effect of the filler dispersion in the elastomeric matrix has been also investigated. Neat fullerene and the composites comprising it have been studied and characterized by scanning electron microscopy (SEM and transmission electron microscopy (TEM.

  11. Multiscale simulation of water flow past a C540 fullerene

    Walther, Jens Honore; Praprotnik, Matej; Kotsalis, Evangelos M.

    2012-01-01

    We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description for the Nav......We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description...

  12. Carboxylated fullerene at the oil/water interface

    Li, R; Chai, Y; Jiang, Y; Ashby, PD; Toor, A; Russell, TP

    2017-01-01

    © 2017 American Chemical Society. The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) with different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values of 4.84 and 7.8, robust,...

  13. Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors

    Bloking, Jason T.

    2014-04-23

    There is a need to find electron acceptors for organic photovoltaics that are not based on fullerene derivatives since fullerenes have a small band gap that limits the open-circuit voltage (VOC), do not absorb strongly and are expensive. Here, a phenylimide-based acceptor molecule, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), that can be used to make solar cells with VOC values up to 1.11 V and power conversion efficiencies up to 3.7% with two thiophene polymers is demonstrated. An internal quantum efficiency of 56%, compared to 75-90% for polymer-fullerene devices, results from less efficient separation of geminate charge pairs. While favorable energetic offsets in the polymer-fullerene devices due to the formation of a disordered mixed phase are thought to improve charge separation, the low miscibility (<5 wt%) of HPI-BT in polymers is hypothesized to prevent the mixed phase and energetic offsets from forming, thus reducing the driving force for charges to separate into the pure donor and acceptor phases where they can be collected. A small molecule electron acceptor, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), achieves efficiencies of 3.7% and open-circuit voltage values of 1.11 V in bulk heterojunction (BHJ) devices with polythiophene donor materials. The lower internal quantum efficiency (56%) in these non-fullerene acceptor devices is attributed to an absence of the favorable energetic offsets resulting from nanoscale mixing of donor and acceptor found in comparable fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Aligning the unalignable: bacteriophage whole genome alignments.

    Bérard, Sèverine; Chateau, Annie; Pompidor, Nicolas; Guertin, Paul; Bergeron, Anne; Swenson, Krister M

    2016-01-13

    In recent years, many studies focused on the description and comparison of large sets of related bacteriophage genomes. Due to the peculiar mosaic structure of these genomes, few informative approaches for comparing whole genomes exist: dot plots diagrams give a mostly qualitative assessment of the similarity/dissimilarity between two or more genomes, and clustering techniques are used to classify genomes. Multiple alignments are conspicuously absent from this scene. Indeed, whole genome aligners interpret lack of similarity between sequences as an indication of rearrangements, insertions, or losses. This behavior makes them ill-prepared to align bacteriophage genomes, where even closely related strains can accomplish the same biological function with highly dissimilar sequences. In this paper, we propose a multiple alignment strategy that exploits functional collinearity shared by related strains of bacteriophages, and uses partial orders to capture mosaicism of sets of genomes. As classical alignments do, the computed alignments can be used to predict that genes have the same biological function, even in the absence of detectable similarity. The Alpha aligner implements these ideas in visual interactive displays, and is used to compute several examples of alignments of Staphylococcus aureus and Mycobacterium bacteriophages, involving up to 29 genomes. Using these datasets, we prove that Alpha alignments are at least as good as those computed by standard aligners. Comparison with the progressive Mauve aligner - which implements a partial order strategy, but whose alignments are linearized - shows a greatly improved interactive graphic display, while avoiding misalignments. Multiple alignments of whole bacteriophage genomes work, and will become an important conceptual and visual tool in comparative genomics of sets of related strains. A python implementation of Alpha, along with installation instructions for Ubuntu and OSX, is available on bitbucket (https://bitbucket.org/thekswenson/alpha).

  15. Fullerene-Based Symmetry in Hibiscus rosa-sinensis Pollen

    Andrade, Kleber; Guerra, Sara; Debut, Alexis

    2014-01-01

    The fullerene molecule belongs to the so-called super materials. The compound is interesting due to its spherical configuration where atoms occupy positions forming a mechanically stable structure. We first demonstrate that pollen of Hibiscus rosa-sinensis has a strong symmetry regarding the distribution of its spines over the spherical grain. These spines form spherical hexagons and pentagons. The distance between atoms in fullerene is explained applying principles of flat, spherical, and spatial geometry, based on Euclid’s “Elements” book, as well as logic algorithms. Measurements of the pollen grain take into account that the true spine lengths, and consequently the real distances between them, are measured to the periphery of each grain. Algorithms are developed to recover the spatial effects lost in 2D photos. There is a clear correspondence between the position of atoms in the fullerene molecule and the position of spines in the pollen grain. In the fullerene the separation gives the idea of equal length bonds which implies perfectly distributed electron clouds while in the pollen grain we suggest that the spines being equally spaced carry an electrical charge originating in forces involved in the pollination process. PMID:25003375

  16. Ultimate performance of polymer: Fullerene bulk heterojunction tandem solar cells

    Kotlarski, J.D.; Blom, P.W.M.

    2011-01-01

    We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum

  17. Fullerene derivatives as components for 'plastic' photovoltaic cells

    Hummelen, J.C.; Knol, J.; Kadish, KM; Ruoff, RS

    1998-01-01

    Derivatives of [60]fullerene, mixed with conducting polymers to yield donor-acceptor bulk-heterojunction (beta-junction) materials, are useful in 'plastic' photovoltaic devices. In order to enhance the charge carrier mobilities in the two individual interpenetrating networks, one important goal of

  18. Fullerene Derivatives as Components for ‘Plastic’ Photovoltaic Cells

    Knol, Joop; Hummelen, Jan C.

    1998-01-01

    Derivatives of [60]fullerene, mixed with conducting polymers to yield donor-acceptor bulk-heterojunction (β-junction) materials, are useful in ‘plastic’ photovoltaic devices. In order to enhance the charge carrier mobilities in the two individual interpenetrating networks, one important goal of our

  19. Bipolar polaron pair recombination in polymer/fullerene solar cells

    Kupijai, Alexander J.; Behringer, Konstantin M.; Schaeble, Florian G.

    2015-01-01

    We present a study of the rate-limiting spin-dependent charge-transfer processes in different polymer/fullerene bulk-heterojunction solar cells at 10 K. Observing central spin-locking signals in pulsed electrically detected magnetic resonance and an inversion of Rabi oscillations in multifrequency...

  20. Fullerene-based Anchoring Groups for Molecular Electronics

    Martin, Christian A.; Ding, Dapeng; Sørensen, Jakob Kryger

    2008-01-01

    We present results on a new fullerene-based anchoring group for molecular electronics. Using lithographic mechanically controllable break junctions in vacuum we have determined the conductance and stability of single-molecule junctions of 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene. The compound can...

  1. Local magnetism in rare-earth metals encapsulated in fullerenes

    De Nadai, C; Mirone, A; Dhesi, SS; Bencok, P; Brookes, NB; Marenne, [No Value; Rudolf, P; Tagmatarchis, N; Shinohara, H; Dennis, TJS; Marenne, I.; Nadaï, C. De

    Local magnetic properties of rare-earth (RE) atoms encapsulated in fullerenes have been characterized using x-ray magnetic circular dichroism and x-ray absorption spectroscopy (XAS). The orbital and spin contributions of the magnetic moment have been determined through sum rules and theoretical

  2. APPLICATION FULLERENE FOR IDENTIFICATION OF MEAT PRODUCTS CONTAINING KLENBUTEROL

    G. V. Popov

    2014-01-01

    Full Text Available Summary. In modern conditions the majority of developing livestock complexes, various chemical additives, apply to cattle feeding. One of such preparations is clenbuterol. Clenbuterol is β-2-adrenostimulyator belonging to group β-agonist who stimulate growth of muscular weight and regulate a ratio of fatty and muscular tissue at cultivation of agricultural animals and birds. In Russia results of researches in which it is recommended to apply clenbuterol as a growth factor at cattle cultivation are published. Thus the risk of influences of the residual maintenance of a preparation in animal husbandry production on health of consumers wasn't estimated. We conducted researches in the field of studying of properties fullerene and clenbuterol and their opportunities interaction among themselves. For identification clenbuterol in meat raw materials the synthesis of Prato based on a functionalization fullerene by C60 and C70 consisting in its transformation in fullerene on reactions of a 1,3-dipolar cycloaddition of azomethine ylide on multiple communications of C=C of a fulleren kernel was moved. Reaction took place with allocation of a deposit of the dark color which analysis proved that is a product of interaction of substances investigated by us. This experiment gives the chance to identify clenbuterolfullerene.

  3. Fullerene nanoparticles in soil: Analysis, occurrence and fate

    Carboni, A.

    2016-01-01

    Fullerenes are carbon-based nanomaterials that can occur in the environment due to both natural events and human production. Recently, the increasing use in novel nanotechnologies raised concern for the possible adverse effects on humans and the environment. However, the assessment is complicated by

  4. Raman spectroelectrochemistry of ordered C-60 fullerene layers

    Krause, M.; Deutsch, D.; Dunsch, L.; Janda, Pavel; Kavan, Ladislav

    2005-01-01

    Roč. 13, - (2005), s. 159-166 ISSN 1536-383X R&D Projects: GA AV ČR IAA4040306 Institutional research plan: CEZ:AV0Z40400503 Keywords : fullerenes * thin films * nanostructuring * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 0.776, year: 2005

  5. Thermodynamics of association of water soluble fullerene derivatives

    SONANKI KESHRI

    2017-08-31

    Aug 31, 2017 ... Entropic and enthalpic contributions to the association of solute molecules are calculated ... authors.7,46–70 The association of fullerene in aque- ous media is ..... The main mechanism accounting for the stabiliza- tion of the ...

  6. Photoconducting properties of fullerene derivatized with a biphenil moiety

    Corvis, Y.; Trzcinska, K.; Rink, R.; Bílková, Petra; Gorecka, E.; Bilewicz, R.; Rogalska, E.

    2006-01-01

    Roč. 80, č. 3 (2006), s. 1899-1907 ISSN 0137- 5083 Grant - others:Research Training Network(XE) HPRN-CT-2002-00171 Institutional research plan: CEZ:AV0Z10100520 Keywords : fullerene * photoconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.491, year: 2006

  7. In-Silico Study Of Water Soluble C60-Fullerene Derivatives And Different Drug Targets

    Mohammad Teimouri

    2015-08-01

    Full Text Available Fullerene C60 is a unique carbon molecule that adopts a sphere shape. It has been proved that fullerene and some of its derivatives several disease targets. Fullerene itself is insoluble in water. So fullerene application is hindered in medical field. In this study a literature search was performed and all derivatives were collected. The fullerene binding protein previously reported in literature were also retrieved from protein databank. The docking study were performed with fullerene derivatives and its binding proteins. The selected proteins include Voltage-Gated Potassium Channel estrogenic 17beta-hydroxysteroid dehydrogenase and monoclonal anti-progesterone antibody. The binding affinity and binding free energy were computed for these proteins and fullerene derivatives complexes. The binding affinity and binding free energy calculation of the co-crystal ligands were also carried out. The results show the good fitting of fullerene derivatives in the active site of different proteins. The binding affinities and binding free energies of fullerene derivatives are better. The present study gives a detail information about the binding mode of C60 derivatives. The finding will be helpful in fullerene-based drug discovery and facilitate the efforts of fighting many diseases.

  8. Micro Engineering

    Alting, Leo; Kimura, F.; Hansen, Hans Nørgaard

    2003-01-01

    The paper addresses the questions of how micro products are designed and how they are manufactured. Definitions of micro products and micro engineering are discussed and the presentation is aimed at describing typical issues, possibilities and tools regarding design of micro products. The implica......The paper addresses the questions of how micro products are designed and how they are manufactured. Definitions of micro products and micro engineering are discussed and the presentation is aimed at describing typical issues, possibilities and tools regarding design of micro products...

  9. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  10. MUON DETECTORS: ALIGNMENT

    G.Gomez.

    Since June of 2009, the muon alignment group has focused on providing new alignment constants and on finalizing the hardware alignment reconstruction. Alignment constants for DTs and CSCs were provided for CRAFT09 data reprocessing. For DT chambers, the track-based alignment was repeated using CRAFT09 cosmic ray muons and validated using segment extrapolation and split cosmic tools. One difference with respect to the previous alignment is that only five degrees of freedom were aligned, leaving the rotation around the local x-axis to be better determined by the hardware system. Similarly, DT chambers poorly aligned by tracks (due to limited statistics) were aligned by a combination of photogrammetry and hardware-based alignment. For the CSC chambers, the hardware system provided alignment in global z and rotations about local x. Entire muon endcap rings were further corrected in the transverse plane (global x and y) by the track-based alignment. Single chamber track-based alignment suffers from poor statistic...

  11. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  12. Conjugation-promoted reaction of open-cage fullerene: a density functional theory study.

    Guo, Yong; Yan, Jingjing; Khashab, Niveen M

    2012-02-01

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated. The obtained results show that the reaction of a carbonyl group on a fullerene orifice with triethyl phosphite most likely proceeds along the classical Abramov reaction; however, the classical product is not stable and is converted into the experimental product. An attack on a fullerene carbonyl carbon will trigger a rearrangement of the phosphate group to the carbonyl oxygen as the conversion transition state is stabilized by fullerene conjugation. This work provides a new insight on the reactivity of open-cage fullerenes, which may prove helpful in designing new switchable fullerene systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Elemental and Microscopic Analysis of Naturally Occurring C-O-Si Hetero-Fullerene-Like Structures.

    Hullavarad, Nilima V; Hullavarad, Shiva S; Fochesatto, Javier

    2015-03-01

    Carbon exhibits an ability to form a wide range of structures in nature. Under favorable conditions, carbon condenses to form hollow, spheroid fullerenes in an inert atmosphere. Using high resolution FESEM, we have concealed the existence of giant hetero-fullerene like structures in the natural form. Clear, distinct features of connected hexagons and pentagons were observed. Energy dispersive X-ray analysis depth-profile of natural fullerene structures indicates that Russian-doll-like configurations composed of C, 0, and Si rings exist in nature. The analysis is based on an outstanding molecular feature found in the size fraction of aerosols having diameters 150 nm to 1.0 µm. The fullerene like structures, which are ~ 150 nm in diameter, are observed in large numbers. To the best of our knowledge, this is the first direct detailed observation of natural fullerene-like structures. This article reports inadvertent observation of naturally occurring hetero-fullerene-like structures in the Arctic.

  14. MUON DETECTORS: ALIGNMENT

    G. Gomez and J. Pivarski

    2011-01-01

    Alignment efforts in the first few months of 2011 have shifted away from providing alignment constants (now a well established procedure) and focussed on some critical remaining issues. The single most important task left was to understand the systematic differences observed between the track-based (TB) and hardware-based (HW) barrel alignments: a systematic difference in r-φ and in z, which grew as a function of z, and which amounted to ~4-5 mm differences going from one end of the barrel to the other. This difference is now understood to be caused by the tracker alignment. The systematic differences disappear when the track-based barrel alignment is performed using the new “twist-free” tracker alignment. This removes the largest remaining source of systematic uncertainty. Since the barrel alignment is based on hardware, it does not suffer from the tracker twist. However, untwisting the tracker causes endcap disks (which are aligned ...

  15. Plasmon-plasmon coupling in nested fullerenes: photoexcitation of interlayer plasmonic cross modes

    McCune, Mathew A; De, Ruma; Chakraborty, Himadri S; Madjet, Mohamed E; Manson, Steven T

    2011-01-01

    Considering the photoionization of a two-layer fullerene-onion system, C 60 -C 240 , strong plasmonic couplings between the nested fullerenes are demonstrated. The resulting hybridization produces four cross-over plasmons generated from the bonding and antibonding mixing of excited charge clouds of individual fullerenes. This suggests the possibility of designing buckyonions exhibiting plasmon resonances with specified properties and may motivate future research to modify the resonances with encaged atoms, molecules or clusters. (fast track communication)

  16. Organic–Inorganic Nanostructure Architecture via Directly Capping Fullerenes onto Quantum Dots

    Kim Jonggi

    2011-01-01

    Full Text Available Abstract A new form of fullerene-capped CdSe nanoparticles (PCBA-capped CdSe NPs, using carboxylate ligands with [60]fullerene capping groups that provides an effective synthetic methodology to attach fullerenes noncovalently to CdSe, is presented for usage in nanotechnology and photoelectric fields. Interestingly, either the internal charge transfer or the energy transfer in the hybrid material contributes to photoluminescence (PL quenching of the CdSe moieties.

  17. On the Evaporation Kinetics of [60] Fullerene in Aromatic Organic Solvents

    Amer, Maher S.; Wang, Wenhu; Kollins, Kaitlin N; Altalebi, Hasanain; Schwingenschlö gl, Udo

    2018-01-01

    We investigate the effect of C60 fullerene nanospheres on the evaporation kinetics of a number of aromatic solvents with different levels of molecular association, namely, benzene, toluene, and chlorobenzene. The dependence of the evaporation rate on the fullerene concentration is not monotonic but rather exhibits maxima and minima. The results strongly support the notion of molecular structuring within the liquid solvent controlled by the nature of fullerene/solvent interaction and the level of molecular association within the solvent itself.

  18. Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes

    Katona Gyula Y.

    2014-11-01

    Full Text Available The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.

  19. Organic-Inorganic Nanostructure Architecture via Directly Capping Fullerenes onto Quantum Dots.

    Lee, Jae Kwan; Kim, Jonggi; Yang, Changduk

    2011-12-01

    A new form of fullerene-capped CdSe nanoparticles (PCBA-capped CdSe NPs), using carboxylate ligands with [60]fullerene capping groups that provides an effective synthetic methodology to attach fullerenes noncovalently to CdSe, is presented for usage in nanotechnology and photoelectric fields. Interestingly, either the internal charge transfer or the energy transfer in the hybrid material contributes to photoluminescence (PL) quenching of the CdSe moieties.

  20. On the Evaporation Kinetics of [60] Fullerene in Aromatic Organic Solvents

    Amer, Maher S.

    2018-04-03

    We investigate the effect of C60 fullerene nanospheres on the evaporation kinetics of a number of aromatic solvents with different levels of molecular association, namely, benzene, toluene, and chlorobenzene. The dependence of the evaporation rate on the fullerene concentration is not monotonic but rather exhibits maxima and minima. The results strongly support the notion of molecular structuring within the liquid solvent controlled by the nature of fullerene/solvent interaction and the level of molecular association within the solvent itself.

  1. Adverse effects of fullerenes (nC{sub 60}) spiked to sediments on Lumbriculus variegatus (Oligochaeta)

    Pakarinen, K., E-mail: kukka.tervonen@uef.fi [Department of Biology, University of Eastern Finland, 80101 Joensuu (Finland); Petersen, E.J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD (United States); Leppaenen, M.T.; Akkanen, J.; Kukkonen, J.V.K. [Department of Biology, University of Eastern Finland, 80101 Joensuu (Finland)

    2011-12-15

    Effects of fullerene-spiked sediment on a benthic organism, Lumbriculus variegatus (Oligochaeta), were investigated. Survival, growth, reproduction, and feeding rates were measured to assess possible adverse effects of fullerene agglomerates produced by water stirring and then spiked to a natural sediment. L. variegatus were exposed to 10 and 50 mg fullerenes/kg sediment dry mass for 28 d. These concentrations did not impact worm survival or reproduction compared to the control. Feeding activities were slightly decreased for both concentrations indicating fullerenes' disruptive effect on feeding. Depuration efficiency decreased in the high concentration only. Electron and light microscopy and extraction of the worm fecal pellets revealed fullerene agglomerates in the gut tract but not absorption into gut epithelial cells. Micrographs also indicated that 16% of the epidermal cuticle fibers of the worms were not present in the 50 mg/kg exposures, which may make worms susceptible to other contaminants. - Highlights: > Effects of fullerene-spiked sediment on black worms were investigated. > Survival, growth, reproduction, and feeding rates were measured. > Exposure did not impact worm survival or reproduction. > Feeding rates and depuration efficiency were decreased. > Worms transferred fullerenes from the sediment to the sediment surface. - Exposure to fullerene-spiked sediment decreased black worms' feeding and depuration efficiency, but fullerenes did not appear to be absorbed into the microvilli.

  2. Polythiophenes and fullerene derivatives based donor-acceptor system: topography by atomic force microscopy

    Marcakova, M. L.; Repovsky, D.; Cik, G.; Velic, D.

    2017-01-01

    The goal of this work is to examine the surface of a polythiophene/fullerene film in order to understand the structure. In this work polythiophene is used as electron donor and fullerene-derivative is used as electron acceptor. Atomic force microscopy (AFM), is an ideal method to study surfaces and nanostructures. Surfaces of fullerene C60 , fullerene-derivates PCBM, polythiophene P12 and a mixture of P12 and PCBM are characterized. In all samples, the average roughness, the arithmetical value of divergence from the high of the surface, is determined concluding that P12 and PCBM mix together well and form a film with specific topography. (authors)

  3. Electronic transport properties aspects and structure of polymer-fullerene based organic semiconductors for photovoltaic devices

    Adamopoulos, G.; Heiser, T.; Giovanella, U.; Ould-Saad, S.; Wetering, K.I. van de; Brochon, C.; Zorba, T.; Paraskevopoulos, K.M.; Hadziioannou, G.

    2006-01-01

    A series of polystyrene (PS) and fullerene (C 60 ) based thin films containing from 23 to 60 wt.% in fullerene were investigated. Initially, the films were characterised by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy where the characteristic absorption bands of both the fullerene and the polystyrene were revealed. The additional characteristic absorption bands due the grafted fullerene to polystyrene were revealed as well. The relative peak intensities provided with qualitative information of the films stoichiometry in terms of the fullerene's amount that was grafted to polystyrene. The optical properties of the films were investigated by spectroscopic ellipsometry (SE). It was found that the increase of the fullerene's amount that was grafted to polystyrene results in an increase of the absorption coefficient α, refractive index n, extinction coefficient k as well as in the dielectric constant ε ∝ within the range between 2.4 and 2.8 for the lower and higher fullerene content, respectively. The films' J-V characteristics, of the space charge limited current (SCLC) behaviour, showed increased currents with increasing the fullerene's content. The electron mobility was extracted and found to increase with increasing the fullerene amount, from 4 x 10 -9 cm 2 /V s to 2 x 10 -7 cm 2 /V s

  4. Detection of fullerenes (C60 and C70) in commercial cosmetics

    Benn, Troy M.; Westerhoff, Paul; Herckes, Pierre

    2011-01-01

    Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C 60 and C 70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C 60 . Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27-42%. C 60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C 70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C 60 , demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems. - Highlights: → Fullerenes were detected in cosmetics up to 1.1 μg/g. → Liquid-liquid extraction efficiently recovers fullerenes in cosmetic matrices. → Solid-phase extraction reduces LC-MS detection interferences for C60. → Cosmetics can increase human and environmental fullerene exposures. - Fullerenes were detected in cosmetics with liquid chromatography-mass spectrometry up to 1.1 μg/g, demonstrating a source for human/environmental exposure.

  5. Structural and phase changes in copper-fullerene films by ion implantation and annealing

    Shpilevsky, E.M.; Baran, L.V.; Okatova, G.P.; Jakimovich, A.V.

    2001-01-01

    The structural and phase changes and the electrical properties of copper - fullerene (Cu-C 60 ) films by the ion implantation(B + , E=80 keV, D 5·10 21 m -2 ) and the thermal annealing are described. We found the copper-fullerene solid supersaturated solution formed in process of the two-component films obtaining. The result of the thermal annealing is the phase segregation of fullerene. It has been established the ion implantation adduces to the partial fragmentation of fullerene, to the destruction of the C 60 molecules and to the formation of the CuB 24 , B 25 C and B 4 C phases

  6. Electronic transport properties aspects and structure of polymer-fullerene based organic semiconductors for photovoltaic devices

    Adamopoulos, G. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France)]. E-mail: geo_adamo@yahoo.fr; Heiser, T. [Institut d' Electronique du Solide et des Systemes (IN.E.S.S.), CNRS/ULP, 23 Rue du Loess, BP 20, 67037 Strasbourg Cedex 02 (France); Giovanella, U. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Ould-Saad, S. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Wetering, K.I. van de [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Brochon, C. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Zorba, T. [Physics Department, Solid State Physics Section, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M. [Physics Department, Solid State Physics Section, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Hadziioannou, G. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France)

    2006-07-26

    A series of polystyrene (PS) and fullerene (C{sub 60}) based thin films containing from 23 to 60 wt.% in fullerene were investigated. Initially, the films were characterised by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy where the characteristic absorption bands of both the fullerene and the polystyrene were revealed. The additional characteristic absorption bands due the grafted fullerene to polystyrene were revealed as well. The relative peak intensities provided with qualitative information of the films stoichiometry in terms of the fullerene's amount that was grafted to polystyrene. The optical properties of the films were investigated by spectroscopic ellipsometry (SE). It was found that the increase of the fullerene's amount that was grafted to polystyrene results in an increase of the absorption coefficient {alpha}, refractive index n, extinction coefficient k as well as in the dielectric constant {epsilon} {sub {proportional_to}} within the range between 2.4 and 2.8 for the lower and higher fullerene content, respectively. The films' J-V characteristics, of the space charge limited current (SCLC) behaviour, showed increased currents with increasing the fullerene's content. The electron mobility was extracted and found to increase with increasing the fullerene amount, from 4 x 10{sup -9} cm{sup 2}/V s to 2 x 10{sup -7} cm{sup 2}/V s.

  7. MUON DETECTORS: ALIGNMENT

    G.Gomez

    2010-01-01

    The main developments in muon alignment since March 2010 have been the production, approval and deployment of alignment constants for the ICHEP data reprocessing. In the barrel, a new geometry, combining information from both hardware and track-based alignment systems, has been developed for the first time. The hardware alignment provides an initial DT geometry, which is then anchored as a rigid solid, using the link alignment system, to a reference frame common to the tracker. The “GlobalPositionRecords” for both the Tracker and Muon systems are being used for the first time, and the initial tracker-muon relative positioning, based on the link alignment, yields good results within the photogrammetry uncertainties of the Tracker and alignment ring positions. For the first time, the optical and track-based alignments show good agreement between them; the optical alignment being refined by the track-based alignment. The resulting geometry is the most complete to date, aligning all 250 DTs, ...

  8. Fast global sequence alignment technique

    Bonny, Mohamed Talal; Salama, Khaled N.

    2011-01-01

    fast alignment algorithm, called 'Alignment By Scanning' (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the wellknown sequence alignment algorithms, the 'GAP' (which is heuristic) and the 'Needleman

  9. MUON DETECTORS: ALIGNMENT

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  10. Interface engineering for efficient fullerene-free organic solar cells

    Shivanna, Ravichandran; Narayan, K. S., E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Rajaram, Sridhar, E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2015-03-23

    We demonstrate the role of zinc oxide (ZnO) morphology and addition of an acceptor interlayer to achieve high efficiency fullerene-free bulk heterojunction inverted organic solar cells. Nanopatterning of the ZnO buffer layer enhances the effective light absorption in the active layer, and the insertion of a twisted perylene acceptor layer planarizes and decreases the electron extraction barrier. Along with an increase in current homogeneity, the reduced work function difference and selective transport of electrons prevent the accumulation of charges and decrease the electron-hole recombination at the interface. These factors enable an overall increase of efficiency to 4.6%, which is significant for a fullerene-free solution-processed organic solar cell.

  11. New insights in low-energy electron-fullerene interactions

    Msezane, Alfred Z.; Felfli, Zineb

    2018-03-01

    The robust Regge-pole methodology has been used to probe for long-lived metastable anionic formation in Cn (n = 20, 24, 26, 28, 44, 70, 92 and 112) through the calculated electron elastic scattering total cross sections (TCSs). All the TCSs are found to be characterized by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances manifesting metastable anionic formation during the collisions. The energy positions of the anionic ground states resonances are found to match the measured electron affinities (EAs). We also investigated the size-effect through the correlation and polarization induced metastable resonances as the fullerene size varied from C20 through C112. The C20 TCSs exhibit atomic behavior while the C112 TCSs demonstrate strong departure from atomic behavior attributed to the size effect. Surprisingly C24 is found to have the largest EA among the investigated fullerenes making it suitable for use in organic solar cells and nanocatalysis.

  12. Interaction energy for a fullerene encapsulated in a carbon nanotorus

    Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.

    2018-06-01

    The interaction energy of a fullerene symmetrically situated inside a carbon nanotorus is studied. For these non-bonded molecules, the main interaction originates from the van der Waals energy which is modelled by the 6-12 Lennard-Jones potential. Upon utilising the continuum approximation which assumes that there are infinitely many atoms that are uniformly distributed over the surfaces of the molecules, the total interaction energy between the two structures is obtained as a surface integral over the spherical and the toroidal surfaces. This analytical energy is employed to determine the most stable configuration of the torus encapsulating the fullerene. The results show that a torus with major radius around 20-22 Å and minor radius greater than 6.31 Å gives rise to the most stable arrangement. This study will pave the way for future developments in biomolecules design and drug delivery system.

  13. Thermodynamics of TMPC/PSd/Fullerene Nanocomposites: SANS Study

    Chua, Yang-Choo

    2010-11-23

    Wereport a small angle neutron scattering study of the thermodynamics of a polymer mixture in the presence of nanoparticles, both in equilibrium and during phase separation. Neutron cloud point measurements and random phase approximation (RPA) analysis demonstrate that 1-2 mass % of C60 fullerenes destabilizes a highly interacting mixture of poly(tetramethyl bisphenol A polycarbonate) and deuterated polystyrene (TMPC/PSd). We unequivocally corroborate these findings with time-resolved temperature jump experiments that, in identical conditions, result in phase separation for the nanocomposite and stability for the neat polymer mixture. At lower C 60 loadings (viz. 0.2-0.5 mass %), stabilization of the mixture is observed. The nonmonotonic variation of the spinodal temperature with fullerene addition suggests a competitive interplay of asymmetric component interactions and nanoparticle dispersion. The stability line shift depends critically on particle dispersion and vanishes upon nanoparticle agglomeration. © 2010 American Chemical Society.

  14. Investigation of fullerene ions in crossed-beams experiments

    Hathiramani, D.; Scheier, P.; Braeuning, H.; Trassl, R.; Salzborn, E.; Presnyakov, L.P.; Narits, A.A.; Uskov, D.B.

    2003-01-01

    Employing the crossed-beams technique, we have studied the interaction of fullerene ions both with electrons and He 2+ -ions. Electron-impact ionization cross sections for C 60 q+ (q=1,2,3) have been measured at electron energies up to 1000 eV. Unusual features in shape and charge state dependence have been found, which are not observed for atomic ions. The evaporative loss of neutral C 2 fragments in collisions with electrons indicates the presence of two different mechanisms. In a first-ever ion-ion crossed-beams experiment involving fullerene ions a cross section of (1.05 ± 0.06) x 10 -15 cm 2 for charge transfer in the collision C 60 + + He 2+ at 117.2 keV center-of-mass energy has been obtained

  15. Classical molecular dynamics simulations of fusion and fragmentation in fullerene-fullerene collisions

    Verkhovtsev, A.; Korol, A.V.; Solovyov, A.V.

    2017-01-01

    We present the results of classical molecular dynamics simulations of collision-induced fusion and fragmentation of C 60 fullerenes, performed by means of the MBN Explorer software package. The simulations provide information on structural differences of the fused compound depending on kinematics of the collision process. The analysis of fragmentation dynamics at different initial conditions shows that the size distributions of produced molecular fragments are peaked for dimers, which is in agreement with a well-established mechanism of C 60 fragmentation via preferential C 2 emission. Atomic trajectories of the colliding particles are analyzed and different fragmentation patterns are observed and discussed. On the basis of the performed simulations, characteristic time of C 2 emission is estimated as a function of collision energy. The results are compared with experimental time-of-flight distributions of molecular fragments and with earlier theoretical studies. Considering the widely explored case study of C 60 -C 60 collisions, we demonstrate broad capabilities of the MBN Explorer software, which can be utilized for studying collisions of a broad variety of nano-scale and bio-molecular systems by means of classical molecular dynamics. (authors)

  16. Growth of Fullerene Fragments Using the Diels-Alder Cycloaddition Reaction: First Step towards a C60 Synthesis by Dimerization

    Julio A. Alonso

    2013-02-01

    Full Text Available Density Functional Theory has been used to model the Diels-Alder reactions of the fullerene fragments triindenetriphenilene and pentacyclopentacorannulene with ethylene and 1,3-butadiene. The purpose is to prove the feasibility of using Diels-Alder cycloaddition reactions to grow fullerene fragments step by step, and to dimerize fullerene fragments, as a way to obtain C60. The dienophile character of the fullerene fragments is dominant, and the reaction of butadiene with pentacyclopentacorannulene is favored.

  17. Single or functionalized fullerenes interacting with heme group

    Costa, Wallison Chaves; Diniz, Eduardo Moraes, E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, Avenida dos Portugueses, 1966, CEP 65080-805, São Luís - MA (Brazil)

    2014-09-15

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groups (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.

  18. Thermal Effect on Structure Organizations in Cobalt-Fullerene Nanocomposition

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.; Sakai, S.

    2010-01-01

    Roč. 10, č. 4 (2010), s. 2624-2629 ISSN 1533-4880 R&D Projects: GA AV ČR(CZ) KAN400480701; GA AV ČR IAA200480702; GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : cobalt * fullerene * simultaneous deposition Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.351, year: 2010

  19. Effect of magnetic fullerene on magnetization reversal created at the Fe/C60 interface.

    Mallik, Srijani; Mattauch, Stefan; Dalai, Manas Kumar; Brückel, Thomas; Bedanta, Subhankar

    2018-04-03

    Probing the hybridized magnetic interface between organic semiconductor (OSC) and ferromagnetic (FM) layers has drawn significant attention in recent years because of their potential in spintronic applications. Recent studies demonstrate various aspects of organic spintronics such as magnetoresistance, induced interface moment etc. However, not much work has been performed to investigate the implications of such OSC/FM interfaces on the magnetization reversal and domain structure which are the utmost requirements for any applications. Here, we show that non-magnetic Fullerene can obtain non-negligible magnetic moment at the interface of Fe(15 nm)/C 60 (40 nm) bilayer. This leads to substantial effect on both the magnetic domain structure as well as the magnetization reversal when compared to a single layer of Fe(15 nm). This is corroborated by the polarized neutron reflectivity (PNR) data which indicates presence of hybridization at the interface by the reduction of magnetic moment in Fe. Afterwards, upto 1.9 nm of C 60 near the interface exhibits magnetic moment. From the PNR measurements it was found that the magnetic C 60 layer prefers to be aligned anti-parallel with the Fe layer at the remanant state. The later observation has been confirmed by domain imaging via magneto-optic Kerr microscopy.

  20. Is the Use of Fullerene in Photodynamic Therapy Effective for Atherosclerosis?

    Nitta, Norihisa; Seko, Ayumi; Sonoda, Akinaga; Ohta, Shinichi; Tanaka, Toyohiko; Takahashi, Masashi; Murata, Kiyoshi; Takemura, Shizuki; Sakamoto, Tsutomu; Tabata, Yasuhiko

    2008-01-01

    The purpose of this study was to evaluate Fullerene as a therapeutic photosensitizer in the treatment of atherosclerosis. An atherosclerotic experimental rabbit model was prepared by causing intimal injury to bilateral external iliac arteries using balloon expansion. In four atherosclerotic rabbits and one normal rabbit, polyethylene glycol-modified Fullerene (Fullerene-PEG) was infused into the left external iliac artery and illuminated by light emitting diode (LED), while the right external iliac artery was only illuminated by LED. Two weeks later, the histological findings for each iliac artery were evaluated quantitatively and comparisons were made among atherosclerotic Fullerene+LED artery (n = 4), atherosclerotic light artery (n = 4), normal Fullerene+LED artery (n = 1), and normal light artery (n = 1). An additional two atherosclerotic rabbits were studied by fluorescence microscopy, after Fullerene-PEG-Cy5 complex infusion into the left external iliac artery, for evaluation of Fullerene-PEG incorporated within the atherosclerotic lesions. The degree of atherosclerosis in the atherosclerotic Fullerene+LED artery was significantly (p < 0.05) more severe than that in the atherosclerotic LED artery. No pathological change was observed in normal Fullerene+LED and LED arteries. In addition, strong accumulation of Fullerene-PEG-Cy5 complex within the plaque of the left iliac artery of the two rabbits was demonstrated, in contrast to no accumulation in the right iliac artery. We conclude that infusion of a high concentration of Fullerene-PEG followed by photo-illumination resulted not in a suppression of atherosclerosis but in a progression of atherosclerosis in experimental rabbit models. However, this intervention showed no adverse effects on the normal iliac artery

  1. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  2. Characterizing Cavities in Model Inclusion Fullerenes: A Comparative Study

    Francisco Torrens

    2001-06-01

    Full Text Available Abstract: The fullerene-82 cavity is selected as a model system in order to test several methods for characterizing inclusion molecules. The methods are based on different technical foundations such as a square and triangular tessellation of the molecular surface, spherical tessellation of the molecular surface, numerical integration of the atomic volumes and surfaces, triangular tessellation of the molecular surface, and cubic lattice approach to the molecular volume. Accurate measures of the molecular volume and surface area have been performed with the pseudorandom Monte Carlo (MCVS and uniform Monte Carlo (UMCVS methods. These calculations serve as a reference for the rest of the methods. The SURMO2 method does not recognize the cavity and may not be convenient for intercalation compounds. The programs that detect the cavities never exceed 1% deviation relative to the reference value for molecular volume and 5% for surface area. The GEPOL algorithm, alone or combined with TOPO, shows results in good agreement with those of the UMCVS reference. The uniform random number generator provides the fastest convergence for UMCVS and a correct estimate of the standard deviations. The effect of the internal cavity on the solvent-accessible surfaces has been calculated. Fullerene-82 is compared with fullerene-60 and -70.

  3. Photophysical properties of fullerenes prepared in an atmosphere of pyrrole

    Glenis, S.; Cooke, S.; Chen, X.; Labes, M.M. (Temple Univ., Philadelphia, PA (United States))

    1994-10-01

    Samples of C[sub 60] and C[sub 70] containing a variety of nitrogen-doped species were prepared by arc vaporization of graphite in the presence of pyrrole. Cage-doped fractions were isolated by column chromatography and characterized by mass spectroscopy, optical absorption, and fluorescence measurements. Mass spectra were consistent with the substitution of an even number of carbon atoms of the C[sub 60] and C[sub 70] cages by nitrogen atoms. Carbonaceous clusters including fragmented fullerenes containing hydrogen atoms were also formed. UV-visible spectral analysis indicated that there is an influence of the molecular weight on the fundamental [pi]-[pi]* electronic transition. Fluorescence spectra showed a broad band containing vibrational fine structure that is attributed to photoseparated charges in the fragmented fullerenes and a shoulder on the low-energy side that is related to intrinsic excitation in the nitrogen-doped species. Fluorescence results imply a bandgap of 2.36 eV for the N doped fullerenes and the existence of intermediate excitonic transitions below the optical bandgap. Although it has not yet been possible to isolate a pure cage-doped material, the photophysical studies add credence to their existence and the importance of further attempts at their isolation. 17 refs., 4 figs., 1 tab.

  4. THERMOOXIDATIVE STABILITY OF JET FUEL WITH FULLERENES AS AN ADDITIVE

    С.В. Іванов

    2012-10-01

    Full Text Available  Heating of fuels in presence of oxygen reduces their thermal-oxidative stability, leads to a solid phase in the form of sludge and tar, which, sedimented at the details of the fuel system, change its characteristics and cause contamination of fuel filters and injectors, spool control sticking, reduce efficiency of heat exchangers. Nanomaterials, performance of which is considerably superior to the natural materials, are the basis for the movement of humanity's progress. Therefore, with a develpoment of technologies it has become necessary to carry out a research of modified additives – fullerens, to improve an oxidative stability of fuels. We have carried out an investigation of thermal-oxidative stability of fuel RT as a function of additive C60 concentration. The results has shown that even 0,043 g/l fullerene addition as an antioxidant, reduces the amount of sediment in the fuel almost by half. Usage of fullerenes for improvement of petroleum products performance properties is a promising area of research.

  5. Melting of Pb clusters encapsulated in large fullerenes

    Delogu, Francesco

    2011-01-01

    Graphical abstract: Encapsulation significantly increases the melting point of nanometer-sized Pb particles with respect to the corresponding unsupported ones. Highlights: → Nanometer-sized Pb particles are encapsulated in fullerene cages. → Their thermal behavior is studied by molecular dynamics simulations. → Encapsulated particles undergo a pressure rise as temperature increases. → Encapsulated particles melt at temperatures higher than unsupported ones. - Abstract: Molecular dynamics simulations have been employed to explore the melting behavior of nanometer-sized Pb particles encapsulated in spherical and polyhedral fullerene cages of suitable size. The encapsulated particles, as well as the corresponding unsupported ones for comparison, were submitted to a gradual temperature rise. Encapsulation is shown to severely affect the thermodynamic behavior of Pb particles due to the different thermal expansion coefficients of particles and cages. This determines a volume constraint that induces a rise of pressure inside the fullerene cages, which operate for particles as rigid confinement systems. The result is that surface pre-melting and melting processes occur in encapsulated particles at temperatures higher than in unsupported ones.

  6. Non-fullerene acceptors for organic solar cells

    Yan, Cenqi; Barlow, Stephen; Wang, Zhaohui; Yan, He; Jen, Alex K.-Y.; Marder, Seth R.; Zhan, Xiaowei

    2018-03-01

    Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure-property relationships, donor-acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field.

  7. Features of interaction of fullerenes with microwave radiation

    Venger, E.F.; Konakova, R.V.; Kolyadina, E.Yu.; Matveeva, L.A.; Nelyuba, P.L.; Shinkarenko, V.V.

    2015-01-01

    Hetero systems with C 6 0 fullerenes were obtained by thermal sublimation method of microcrystalline C 6 0 powder from effusion tantalum cell in vacuum at a pressure of 10 -4 Pa onto non-heated silicon substrates. Composition, structural perfection and electronic properties, internal mechanical stresses in the films and the substrate at the interface, the influence on them of electromagnetic radiation (frequency of 2.45 GHz, power of 1.5 W/cm 2 ) were studied. Investigations were carried out by atomic force microscopy, Raman spectroscopy, electro reflectance modulation spectroscopy and hetero systems profilography to determine the sign and magnitude of mechanical stresses. There was the possibility of obtaining heterostructures with fullerenes without mechanical stress and the decomposition of the C 6 0 molecules in the film. Improvement of electronic properties of the films and the substrate was determined by the shift and value of transition energy Eg. This decreases the phenomenological broadening parameter Γ, increases the energy relaxation time of charge carriers τ and their mobility μ. For the first time determined the change of the fullerenes band gap depending on availability of internal mechanical stresses in the film: - 2.8×10 -10 eV/Pa and - 4.2×10 -10 eV/Pa for E0 and E0' transitions, respectively. (authors)

  8. Synthesis and Photophysical Properties of Novel Fullerene Derivatives as Model Compounds for Bulk-Heterojunction PV Cells

    Hal, P.A. van; Langeveld-Voss, B.M.W.; Peeters, E.; Janssen, R.A.J.; Knol, J.; Hummelen, J.C.

    2000-01-01

    Covalent and well-defined oligomer-fullerene donor-acceptor molecular structures can serve as important model systems for plastic PV cells, based on interpenetrating networks of conjugated polymers and fullerene derivatives. Two series of [60]fullerene-oligomer dyads and triads were prepared and

  9. Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study

    Astefanei, A.; Núñez, O.; Galceran, M.T.; Kok, W.Th.; Schoenmakers, P.J.

    2015-01-01

    In this work, the electrophoretic behavior of hydrophobic fullerenes [buckminsterfullerene (C-60), C-70, and N-methyl-fulleropyrrolidine (C-60-pyrr)] and water-soluble fullerenes [fullerol (C-60(OH)(24)); polyhydroxy small gap fullerene, hydrated (C-120(OH)(30)); C-60 pyrrolidine tris acid

  10. Control rod housing alignment

    Dixon, R.C.; Deaver, G.A.; Punches, J.R.; Singleton, G.E.; Erbes, J.G.; Offer, H.P.

    1990-01-01

    This patent describes a process for measuring the vertical alignment between a hole in a core plate and the top of a corresponding control rod drive housing within a boiling water reactor. It comprises: providing an alignment apparatus. The alignment apparatus including a lower end for fitting to the top of the control rod drive housing; an upper end for fitting to the aperture in the core plate, and a leveling means attached to the alignment apparatus to read out the difference in angularity with respect to gravity, and alignment pin registering means for registering to the alignment pin on the core plate; lowering the alignment device on a depending support through a lattice position in the top guide through the hole in the core plate down into registered contact with the top of the control rod drive housing; registering the upper end to the sides of the hole in the core plate; registering the alignment pin registering means to an alignment pin on the core plate to impart to the alignment device the required angularity; and reading out the angle of the control rod drive housing with respect to the hole in the core plate through the leveling devices whereby the angularity of the top of the control rod drive housing with respect to the hole in the core plate can be determined

  11. Fullerene alloy formation and the benefits for efficient printing of ternary blend organic solar cells

    Angmo, Dechan; Bjerring, Morten; Nielsen, Niels Chr.

    2015-01-01

    behaving as pseudo-binary mixtures due to alloying of the fullerene components. This finding has vast implications for the understanding of polymer–fullerene mixtures and quite certainly also their application in organic solar cells where performance hinges critically on the blend behaviour which is also...

  12. First prediction of the direct effect of a confined atom on photoionization of the confining fullerene

    McCune, Matthew A; De, Ruma; Chakraborty, Himadri S; Madjet, Mohamed E

    2010-01-01

    We predict that the confined atom can qualitatively modify the energetic photoionization of some cage levels, even though these levels are of very dominant fullerene character. The effect imposes strong new oscillations in the cross sections which are forbidden to the ionization of empty fullerenes. Results are presented for the AratC 60 endofullerene compound. (fast track communication)

  13. First prediction of the direct effect of a confined atom on photoionization of the confining fullerene

    McCune, Matthew A; De, Ruma; Chakraborty, Himadri S [Center for Innovation and Entrepreneurship, Department of Chemistry and Physics, Northwest Missouri State University, Maryville, MO 64468 (United States); Madjet, Mohamed E, E-mail: himadri@nwmissouri.ed [Institute of Chemistry and Biochemistry, Free University, Fabeckstrasse 36a, D-14195 Berlin (Germany)

    2010-09-28

    We predict that the confined atom can qualitatively modify the energetic photoionization of some cage levels, even though these levels are of very dominant fullerene character. The effect imposes strong new oscillations in the cross sections which are forbidden to the ionization of empty fullerenes. Results are presented for the AratC{sub 60} endofullerene compound. (fast track communication)

  14. Conjugation-promoted reaction of open-cage fullerene: A density functional theory study

    Guo, Yong

    2012-01-20

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated. The obtained results show that the reaction of a carbonyl group on a fullerene orifice with triethyl phosphite most likely proceeds along the classical Abramov reaction; however, the classical product is not stable and is converted into the experimental product. An attack on a fullerene carbonyl carbon will trigger a rearrangement of the phosphate group to the carbonyl oxygen as the conversion transition state is stabilized by fullerene conjugation. This work provides a new insight on the reactivity of open-cage fullerenes, which may prove helpful in designing new switchable fullerene systems. Not that classical: The reaction of a carbonyl group on the fullerene orifice with triethyl phosphite most likely proceeds following the Abramov reaction to firstly form a classical product. However, this product is not stable and turns into an experimental product as the conversion transition state is stabilized by fullerene conjugation (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evidence for the existence of sulfur-doped fullerenes from elucidation of their photophysical properties

    Glenis, S.; Cooke, S.; Chen, X.; Labes, M.M. [Temple Univ., Philadelphia, PA (United States)

    1996-01-01

    Cage carbon atoms of fullerenes were substituted by sulfur in sulfur-doped fullerenes synthesized by the authors. The synthesis method was based on the arc evaporation of graphite in the presence of thiophene or 3-methylthiophene. Structural characterization was accomplished through mass spectrometry and fluorescence spectroscopy and crude purification regimens using column chromatography were established. 24 refs., 4 figs., 1 tab.

  16. On the possibility of considering the fullerene shell C{sub 60} as a conducting sphere

    Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Baltenkov, A.S. [Arifov Institute of Electronics, Tashkent 700125 (Uzbekistan)]. E-mail: arkbalt@mail.ru

    2006-12-25

    The dynamical and static dipole polarizabilities of the C{sub 60} molecule have been calculated on the basis of the experimental data on the cross section of the fullerene photoabsorption. It has been shown that the fullerene shell in the static electric field behaves most likely as a set of separate carbon atoms rather than as a conducting sphere.

  17. Changes in Agglomeration of Fullerenes During Ingestion and Excretion in Thamnocephalus Platyurus

    The crustacean Thamnocephalus platyurus was exposed to aqueous suspensions of fullerenes C60 and C70. Aqueous fullerene suspensions were formed by stirring C60 and C70 as received from a commercial vendor in deionized water (termed aqu/C60 and aqu/C70) for approximately 100 d. Th...

  18. Molecular understanding of the open-circuit voltage of polymer: Fullerene solar cells

    Yamamoto, Shunsuke; Orimo, Akiko; Benten, Hiroaki; Ito, Shinzaburo [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan); Ohkita, Hideo [Japan Science and Technology Agency (JST), PRESTO, Saitama (Japan); Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan)

    2012-02-15

    The origin of open-circuit voltage (V{sub OC}) was studied for polymer solar cells based on a blend of poly(3-hexylthiophene) (P3HT) and seven fullerene derivatives with different LUMO energy levels and side chains. The temperature dependence of J-V characteristics was analyzed by an equivalent circuit model. As a result, V{sub OC} increased with the decrease in the saturation current density J{sub 0} of the device. Furthermore, J{sub 0} was dependent on the activation energy E{sub A} for J{sub 0}, which is related to the HOMO-LUMO energy gap between P3HT and fullerene. Interestingly, the pre-exponential term J{sub 00} for J{sub 0} was larger for pristine fullerenes than for substituted fullerene derivatives, suggesting that the electronic coupling between molecules also has substantial impact on V{sub OC}. This is probably because the recombination is non-diffusion-limited reaction depending on electron transfer at the P3HT/fullerene interface. In summary, the origin of V{sub OC} is ascribed not only to the relative HOMO-LUMO energy gap but also to the electronic couplings between fullerene/fullerene and polymer/fullerene. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Ultra-low friction and excellent elastic recovery of fullerene-like ...

    Multilayer fullerene-like hydrogenated carbon (FL-C:H) films were synthesized by using the chemical vapourdeposition technique with a different flow rate of methane. The typical fullerene-like structure of as-prepared films wasinvestigated by using transmission electron microscopy and Raman spectra. The prepared ...

  20. Micro Vision

    Ohba, Kohtaro; Ohara, Kenichi

    2007-01-01

    In the field of the micro vision, there are few researches compared with macro environment. However, applying to the study result for macro computer vision technique, you can measure and observe the micro environment. Moreover, based on the effects of micro environment, it is possible to discovery the new theories and new techniques.

  1. MUON DETECTORS: ALIGNMENT

    G.Gomez

    2010-01-01

    Most of the work in muon alignment since December 2009 has focused on the geometry reconstruction from the optical systems and improvements in the internal alignment of the DT chambers. The barrel optical alignment system has progressively evolved from reconstruction of single active planes to super-planes (December 09) to a new, full barrel reconstruction. Initial validation studies comparing this full barrel alignment at 0T with photogrammetry provide promising results. In addition, the method has been applied to CRAFT09 data, and the resulting alignment at 3.8T yields residuals from tracks (extrapolated from the tracker) which look smooth, suggesting a good internal barrel alignment with a small overall offset with respect to the tracker. This is a significant improvement, which should allow the optical system to provide a start-up alignment for 2010. The end-cap optical alignment has made considerable progress in the analysis of transfer line data. The next set of alignment constants for CSCs will there...

  2. Tidal alignment of galaxies

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  3. Interaction between fullerene halves C{sub n} (n ≤ 40) and single wall carbon nanotube

    Sharma, Amrish, E-mail: amrish99@gmail.com; Kaur, Sandeep, E-mail: sipusukhn@gmail.com [Department of Physics, Punjabi University, Patiala (India); Mudahar, Isha, E-mail: isha@pbi.ac.in [Department of Basic and Applied Sciences, Punjabi University, Patiala (India)

    2016-05-06

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C{sub n} (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  4. A Sensitive Gold Nanoplasmonic SERS Quantitative Analysis Method for Sulfate in Serum Using Fullerene as Catalyst

    Chongning Li

    2018-04-01

    Full Text Available Fullerene exhibited strong catalysis of the redox reaction between HAuCl4 and trisodium citrate to form gold nanoplasmon with a strong surface-enhanced Raman scattering (SERS effect at 1615 cm−1 in the presence of Vitoria blue B molecule probes. When fullerene increased, the SERS peak enhanced linearly due to formation of more AuNPs as substrate. Upon addition of Ba2+, Ba2+ ions adsorb on the fullerene surface to inhibit the catalysis of fullerene that caused the SERS peak decreasing. Analyte SO42− combined with Ba2+ to form stable BaSO4 precipitate to release free fullerene that the catalysis recovered, and the SERS intensity increased linearly. Thus, a new SERS quantitative analysis method was established for the detection of sulfate in serum samples, with a linear range of 0.03–3.4 μM.

  5. The interactions of high-energy, highly-charged ions with fullerenes

    Ali, R.; Berry, H.G.; Cheng, S.

    1996-01-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C 60 , which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics

  6. Interaction between fullerene halves C_n (n ≤ 40) and single wall carbon nanotube

    Sharma, Amrish; Kaur, Sandeep; Mudahar, Isha

    2016-01-01

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C_n (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  7. The impact of electrostatic interactions on ultrafast charge transfer at Ag 29 nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces

    Ahmed, Ghada H.; Parida, Manas R.; Tosato, Alberto; AbdulHalim, Lina G.; Usman, Anwar; Alsulami, Qana; Banavoth, Murali; Alarousu, Erkki; Bakr, Osman; Mohammed, Omar F.

    2015-01-01

    investigate the electrostatic interactions between the positively charged fullerene derivative C60-(N,N dimethylpyrrolidinium iodide) (CF) employed as an efficient molecular acceptor and two different donor molecules: Ag29 nanoclusters (NCs) and CdTe quantum

  8. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    Graham, Kenneth; Cabanetos, Clement; Jahnke, Justin P.; Idso, Matthew N.; El Labban, Abdulrahman; Ngongang Ndjawa, Guy Olivier; Heumueller, Thomas; Vandewal, Koen; Salleo, Alberto; Chmelka, Bradley F.; Amassian, Aram; Beaujuge, Pierre; McGehee, Michael D.

    2014-01-01

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  9. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    Graham, Kenneth

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  10. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-05-14

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  11. Hole-Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer: ITIC Photovoltaic Materials.

    Eastham, Nicholas D; Logsdon, Jenna L; Manley, Eric F; Aldrich, Thomas J; Leonardi, Matthew J; Wang, Gang; Powers-Riggs, Natalia E; Young, Ryan M; Chen, Lin X; Wasielewski, Michael R; Melkonyan, Ferdinand S; Chang, Robert P H; Marks, Tobin J

    2018-01-01

    Bulk-heterojunction organic photovoltaic materials containing nonfullerene acceptors (NFAs) have seen remarkable advances in the past year, finally surpassing fullerenes in performance. Indeed, acceptors based on indacenodithiophene (IDT) have become synonymous with high power conversion efficiencies (PCEs). Nevertheless, NFAs have yet to achieve fill factors (FFs) comparable to those of the highest-performing fullerene-based materials. To address this seeming anomaly, this study examines a high efficiency IDT-based acceptor, ITIC, paired with three donor polymers known to achieve high FFs with fullerenes, PTPD3T, PBTI3T, and PBTSA3T. Excellent PCEs up to 8.43% are achieved from PTPD3T:ITIC blends, reflecting good charge transport, optimal morphology, and efficient ITIC to PTPD3T hole-transfer, as observed by femtosecond transient absorption spectroscopy. Hole-transfer is observed from ITIC to PBTI3T and PBTSA3T, but less efficiently, reflecting measurably inferior morphology and nonoptimal energy level alignment, resulting in PCEs of 5.34% and 4.65%, respectively. This work demonstrates the importance of proper morphology and kinetics of ITIC → donor polymer hole-transfer in boosting the performance of polymer:ITIC photovoltaic bulk heterojunction blends. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Combinatorial microRNA target predictions

    Krek, Azra; Grün, Dominic; Poy, Matthew N.

    2005-01-01

    MicroRNAs are small noncoding RNAs that recognize and bind to partially complementary sites in the 3' untranslated regions of target genes in animals and, by unknown mechanisms, regulate protein production of the target transcript1, 2, 3. Different combinations of microRNAs are expressed...... in different cell types and may coordinately regulate cell-specific target genes. Here, we present PicTar, a computational method for identifying common targets of microRNAs. Statistical tests using genome-wide alignments of eight vertebrate genomes, PicTar's ability to specifically recover published micro......RNA targets, and experimental validation of seven predicted targets suggest that PicTar has an excellent success rate in predicting targets for single microRNAs and for combinations of microRNAs. We find that vertebrate microRNAs target, on average, roughly 200 transcripts each. Furthermore, our results...

  13. Capillary Self-Alignment of Microchips on Soft Substrates

    Bo Chang

    2016-03-01

    Full Text Available Soft micro devices and stretchable electronics have attracted great interest for their potential applications in sensory skins and wearable bio-integrated devices. One of the most important steps in building printed circuits is the alignment of assembled micro objects. Previously, the capillary self-alignment of microchips driven by surface tension effects has been shown to be able to achieve high-throughput and high-precision in the integration of micro parts on rigid hydrophilic/superhydrophobic patterned surfaces. In this paper, the self-alignment of microchips on a patterned soft and stretchable substrate, which consists of hydrophilic pads surrounded by a superhydrophobic polydimethylsiloxane (PDMS background, is demonstrated for the first time. A simple process has been developed for making superhydrophobic soft surface by replicating nanostructures of black silicon onto a PDMS surface. Different kinds of PDMS have been investigated, and the parameters for fabricating superhydrophobic PDMS have been optimized. A self-alignment strategy has been proposed that can result in reliable self-alignment on a soft PDMS substrate. Our results show that capillary self-alignment has great potential for building soft printed circuits.

  14. Comparative computational study of interaction of C60-fullerene and tris-malonyl-C60-fullerene isomers with lipid bilayer: relation to their antioxidant effect.

    Marine E Bozdaganyan

    Full Text Available Oxidative stress induced by excessive production of reactive oxygen species (ROS has been implicated in the etiology of many human diseases. It has been reported that fullerenes and some of their derivatives-carboxyfullerenes-exhibits a strong free radical scavenging capacity. The permeation of C60-fullerene and its amphiphilic derivatives-C3-tris-malonic-C60-fullerene (C3 and D3-tris-malonyl-C60-fullerene (D3-through a lipid bilayer mimicking the eukaryotic cell membrane was studied using molecular dynamics (MD simulations. The free energy profiles along the normal to the bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC for C60, C3 and D3 were calculated. We found that C60 molecules alone or in clusters spontaneously translocate to the hydrophobic core of the membrane and stay inside the bilayer during the whole period of simulation time. The incorporation of cluster of fullerenes inside the bilayer changes properties of the bilayer and leads to its deformation. In simulations of the tris-malonic fullerenes we discovered that both isomers, C3 and D3, adsorb at the surface of the bilayer but only C3 tends to be buried in the area of the lipid headgroups forming hydrophobic contacts with the lipid tails. We hypothesize that such position has implications for ROS scavenging mechanism in the specific cell compartments.

  15. MUON DETECTORS: ALIGNMENT

    G. Gomez

    Since December, the muon alignment community has focused on analyzing the data recorded so far in order to produce new DT and CSC Alignment Records for the second reprocessing of CRAFT data. Two independent algorithms were developed which align the DT chambers using global tracks, thus providing, for the first time, a relative alignment of the barrel with respect to the tracker. These results are an important ingredient for the second CRAFT reprocessing and allow, for example, a more detailed study of any possible mis-modelling of the magnetic field in the muon spectrometer. Both algorithms are constructed in such a way that the resulting alignment constants are not affected, to first order, by any such mis-modelling. The CSC chambers have not yet been included in this global track-based alignment due to a lack of statistics, since only a few cosmics go through the tracker and the CSCs. A strategy exists to align the CSCs using the barrel as a reference until collision tracks become available. Aligning the ...

  16. MUON DETECTORS: ALIGNMENT

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  17. MUON DETECTORS: ALIGNMENT

    Gervasio Gomez

    The main progress of the muon alignment group since March has been in the refinement of both the track-based alignment for the DTs and the hardware-based alignment for the CSCs. For DT track-based alignment, there has been significant improvement in the internal alignment of the superlayers inside the DTs. In particular, the distance between superlayers is now corrected, eliminating the residual dependence on track impact angles, and good agreement is found between survey and track-based corrections. The new internal geometry has been approved to be included in the forthcoming reprocessing of CRAFT samples. The alignment of DTs with respect to the tracker using global tracks has also improved significantly, since the algorithms use the latest B-field mapping, better run selection criteria, optimized momentum cuts, and an alignment is now obtained for all six degrees of freedom (three spatial coordinates and three rotations) of the aligned DTs. This work is ongoing and at a stage where we are trying to unders...

  18. MUON DETECTORS: ALIGNMENT

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  19. Contrasting bonding behavior of thiol molecules on carbon fullerene structures

    Mixteco-Sanchez, J.C.; Guirado-Lopez, R.A.

    2003-01-01

    We have performed semiempirical as well as ab initio density-functional theory (DFT) calculations at T=0 to analyze the equilibrium configurations and electronic properties of spheroidal C 60 as well as of cylindrical armchair (5,5) and (8,8) fullerenes passivated with SCH 3 and S(CH 2 ) 2 CH 3 thiols. Our structural results reveal that the lowest-energy configurations of the adsorbates strongly depend on their chain length and on the structure of the underlying substrate. In the low-coverage regime, both SCH 3 and S(CH 2 ) 2 CH 3 molecules prefer to organize into a molecular cluster on one side of the C 60 surface, providing thus a less protective organic coating for the carbon structure. However, with increasing the number of adsorbed thiols, a transition to a more uniform distribution is obtained, which actually takes place for six and eight adsorbed molecules when using S(CH 2 ) 2 CH 3 and SCH 3 chains, respectively. In contrast, for the tubelike arrangements at the low-coverage regime, a quasi-one-dimensional zigzag organization of the adsorbates along the tubes is always preferred. The sulfur-fullerene bond is considerably strong and is at the origin of outward and lateral displacements of the carbon atoms, leading to the stabilization of three-membered rings on the surface (spheroidal structures) as well as to sizable nonuniform radial deformations (cylindrical configurations). The electronic spectrum of our thiol-passivated fullerenes shows strong variations in the energy difference between the highest occupied and lowest unoccupied molecular orbitals as a function of the number and distribution of adsorbed thiols, opening thus the possibility to manipulate the transport properties of these compounds by means of selective adsorption mechanisms

  20. Electronic structure of multi-walled carbon fullerenes

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V; Kidd, Tim E; Stollenwerk, Andrew J

    2017-01-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures. (paper)

  1. Peculiarities of fullerenes condensation from molecular beam in vacuum

    Neluba P. L.

    2011-12-01

    Full Text Available There was investigated С60 fullerenes condensation in vacuum on unheated Si, GaAs, isinglass stone substrates. There were used atomic-force microscopy, Raman scattering and measurement of mechanical stresses in films. It is established that the С60 molecule can decay on the substrates with the formation of other carbon structures in the condensate without supplementary physical effects on the sublimated beam in «evaporator — substrate» space. The possibility was found to increase the grain size and reduce the mechanical stresses in the condensate.

  2. Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells

    Burkhard, George F.

    2009-12-09

    We investigate the internal quantum efficiencies (IQEs) of high efficiency poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells and find them to be lower at wavelengths where the PCBM absorbs. Because the exciton diffusion length in PCBM is too small, excitons generated in PCBM decay before reaching the donor-acceptor interface. This result has implications for most state of the art organic solar cells, since all of the most efficient devices use fullerenes as electron acceptors. © 2009 American Chemical Society.

  3. Synthesis of endohedral iron-fullerenes by ion implantation

    Minezaki, H.; Ishihara, S.; Uchida, T.; Muramatsu, M.; Kitagawa, A.; Rácz, R.; Biri, S.; Asaji, T.; Kato, Y.; Yoshida, Y.

    2014-01-01

    In this paper, we discuss the results of our study of the synthesis of endohedral iron-fullerenes. A low energy Fe + ion beam was irradiated to C 60 thin film by using a deceleration system. Fe + -irradiated C 60 thin film was analyzed by high performance liquid chromatography and laser desorption/ ionization time-of-flight mass spectrometry. We investigated the performance of the deceleration system for using a Fe + beam with low energy. In addition, we attempted to isolate the synthesized material from a Fe + -irradiated C 60 thin film by high performance liquid chromatography

  4. Synthesis of endohedral iron-fullerenes by ion implantation

    Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Rácz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), Bem tér 18/C, H-4026 Debrecen (Hungary); Asaji, T. [Oshima National College of Maritime Technology, 1091-1, Komatsu Suou Oshima-city Oshima, Yamaguchi 742-2193 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Yoshida, Y. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2014-02-15

    In this paper, we discuss the results of our study of the synthesis of endohedral iron-fullerenes. A low energy Fe{sup +} ion beam was irradiated to C{sub 60} thin film by using a deceleration system. Fe{sup +}-irradiated C{sub 60} thin film was analyzed by high performance liquid chromatography and laser desorption/ ionization time-of-flight mass spectrometry. We investigated the performance of the deceleration system for using a Fe{sup +} beam with low energy. In addition, we attempted to isolate the synthesized material from a Fe{sup +}-irradiated C{sub 60} thin film by high performance liquid chromatography.

  5. Adsorption characteristics of heat-treated fullerene nano-whiskers

    Wang, Z-M [Energy Storage Materials Group, Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Kato, R; Hotta, K; Miyazawa, K [Fullerene Engineering Group, Advanced Nano Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)], E-mail: zm-wang@aist.go.jp

    2009-04-01

    Fullerene nanowhiskers (FNWs) were synthesized by the liquid-liquid interfacial precipitation method and the adsorption properties of their heat-treated samples were characterized. It was found that vacuum-annealed FNWs at a high temperature are of microporous materials and, especially, ultramicropores are highly developed in these materials. Porosities even remain in samples after heat treatment at a temperature higher than 2273 K. The presence of ultramicroporosity is indicative of the molecular sieving properties of the vacuum-annealed FNW materials, suggesting the possibilities of their application as new materials for gas separation and gas storage.

  6. On the Stability of Fullerene C60 in Aqueous Medium

    Gál, Miroslav; Kolivoška, Viliam; Kavan, Ladislav; Kocábová, Jana; Pospíšil, Lubomír; Hromadová, Magdaléna; Zukalová, Markéta; Sokolová, Romana; Kielar, F.

    2012-01-01

    Roč. 20, č. 8 (2012), s. 737-742 ISSN 1536-383X R&D Projects: GA ČR GP203/09/P502; GA ČR GA203/09/1607; GA ČR GA203/08/1157; GA ČR GA203/09/0705; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional support: RVO:61388955 Keywords : fullerene s * AFM * dispersion Subject RIV: CG - Electrochemistry Impact factor: 0.764, year: 2012

  7. Disorder effect on carrier mobility in Fullerene organic semiconductor

    Mendil, N; Daoudi, M; Berkai, Z; Belghachi, A

    2015-01-01

    The critical factor that limits the efficiencies of organic electronic devices is the low charge carrier mobility which is attributed to disorder in organic films. In this context, we have studied the effects of disorder on carrier mobility in organic Schottky diode of electrons for the fullerene (C 60 ). Our results show that the mobility is sensitive probes of structural phase transitions and order-disorder underlying C 60 . Where it is one reason behind the low mobility which it take as value 1.4x10 -2 cm 2 /V.s above critical temperature Tc =289K. (paper)

  8. Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells

    Burkhard, George F.; Hoke, Eric T.; Scully, Shawn R.; McGehee, Michael D.

    2009-01-01

    We investigate the internal quantum efficiencies (IQEs) of high efficiency poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells and find them to be lower at wavelengths where the PCBM absorbs. Because the exciton diffusion length in PCBM is too small, excitons generated in PCBM decay before reaching the donor-acceptor interface. This result has implications for most state of the art organic solar cells, since all of the most efficient devices use fullerenes as electron acceptors. © 2009 American Chemical Society.

  9. All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries.

    Friedl, Jochen; Lebedeva, Maria A; Porfyrakis, Kyriakos; Stimming, Ulrich; Chamberlain, Thomas W

    2018-01-10

    Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.

  10. Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems

    Cominetti, Alessandra; Pellegrino, Andrea; Longo, Luca [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Po, Riccardo, E-mail: riccardo.po@eni.com [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Tacca, Alessandra; Carbonera, Chiara; Salvalaggio, Mario [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Baldrighi, Michele; Meille, Stefano Valdo [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, IT-20131 Milano (Italy)

    2015-06-01

    The replacement of widely used fullerene derivatives, e.g. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), with unfunctionalized C60 and C70 is an effective approach to reduce the costs of organic photovoltaics. However, solubility issues of these compounds have always represented an obstacle to their use. In this study, bulk-heterojunction solar cells made of poly(3-hexylthiophene) donor polymer, C60 or C70 acceptors and a pyrene derivative (1-pyrenebutiric acid butyl ester) are reported. Butyl 1-pyrenebutirate limits the aggregation of fullerenes and improves the active layer morphology, plausibly due to the formation of pyrene-fullerene complexes which, in the case of pyrene-C70, were also obtained in a crystalline form. Maximum power conversion efficiencies of 1.54% and 2.50% have been obtained using, respectively, C60 or C70 as acceptor. Quantum mechanical modeling provides additional insight into the formation of plausible supermolecular structures via π-π interactions and on the redox behaviour of pyrene-fullerene systems. - Highlights: • Pyrene derivatives favour the dispersion of unfunctionalized fullerenes. • Polymer solar cells with pyrene: C60 adduct as acceptor have efficiencies of 1.54%. • When C60 is substituted with C70 the efficiency is increased to 2.50%. • DFT calculations support the plausibility of the formation of pyrene: fullerene adducts. • The use of unfunctionalized fullerenes may decrease the costs of polymer solar cells.

  11. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-01-01

    Graphical abstract: - Highlights: • TiO 2 nanowire decorated with C 60 and C 70 derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO 2 has great biocompatibility. - Abstract: In this study, we have synthesized C 60 and C 70 -modified TiO 2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C 60 and C 70 derivatives) can act as sinks for photogenerated electrons in TiO 2 , while the fullerene/TiO 2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO 2 NWs, the modified TiO 2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO 2 which expand the utilization of solar light from UV to visible light. The results reveal that the C 70 /TiO 2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO 2 , the electron only devices and photoelectrochemical cells based on fullerenes/TiO 2 are also fabricated and evaluated.

  12. Mechanism of plasma-arc formation of fullerenes from coal and related materials

    Pang, L S.K.; Wilson, M A; Quezada, R A [CSIRO Petroleum, North Ryde (Australia); and others

    1996-12-31

    When an arc is struck across graphite or coal electrodes in a helium atmosphere several products are formed including soot containing fullerenes. The mechanism by which fullerenes and nanotubes are formed is not understood. At arc temperatures exceeding 3000{degrees}C, highly ordered fullerenes might be expected to be less stable than graphite, and hence fullerene production is believed to proceed in cooler regions at the edge of the arc. There is irrefutable evidence that [C{sub 60}]-fullerene grows in a plasma from atomic carbon vapour or equivalent. When {sup 13}C-labelled carbon powder is packed into the anode, the fullerenes as produced contain a statistical distribution of {sup 13}C atoms. This implies that graphite has split into small units, predominantly C{sub 1} or C{sub 2} in the plasma and these units are involved in fullerene formation. When coal or other organic materials are used in the anode, weaker bonds are present, which may break preferentially. As a result, larger fragments, other than C{sub 1} and C{sub 2} units can exist in the plasma. This paper demonstrates the existence of such larger fragments when various coals are used and this implies that fullerenes can be formed from larger units than C{sub 1} and C{sub 2}. The distribution of polycyclic hydrocarbons formed depends very much on the structure of the coal used for the arcing experiments. The distribution of the natural abundance of {sup 13}C/{sup 12}C ratios in the fullerene products further supports this evidence.

  13. Belt Aligning Revisited

    Yurchenko Vadim

    2017-01-01

    parts of the conveyor, the sides of the belt wear intensively. This results in reducing the life of the belt. The reasons for this phenomenon are well investigated, but the difficulty lies in the fact that they all act simultaneously. The belt misalignment prevention can be carried out in two ways: by minimizing the effect of causes and by aligning the belt. The construction of aligning devices and errors encountered in practice are considered in this paper. Self-aligning roller supports rotational in plan view are recommended as a means of combating the belt misalignment.

  14. Hybrid vehicle motor alignment

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  15. Precision alignment device

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  16. Alignment for CSR

    Wang Shoujin; Man Kaidi; Guo Yizhen; Cai Guozhu; Guo Yuhui

    2002-01-01

    Cooled Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR) belongs to China great scientific project in China. The alignment for it is very difficult because of very large area and very high accuracy. For the special case in HIRFL-CSR, some new methods and new instruments are used, including the construction of survey control network, the usage of laser tracker, and CSR alignment database system with applications developed to store and analyze data. The author describes the whole procedure of CSR alignment

  17. Methods in ALFA Alignment

    Melendez, Jordan

    2014-01-01

    This note presents two model-independent methods for use in the alignment of the ALFA forward detectors. Using a Monte Carlo simulated LHC run at \\beta = 90m and \\sqrt{s} = 7 TeV, the Kinematic Peak alignment method is utilized to reconstruct the Mandelstam momentum transfer variable t for single-diractive protons. The Hot Spot method uses fluctuations in the hitmap density to pinpoint particular regions in the detector that could signal a misalignment. Another method uses an error function fit to find the detector edge. With this information, the vertical alignment can be determined.

  18. Continuum Navier-Stokes modelling of water ow past fullerene molecules

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently...

  19. C(60 fullerene prevents genotoxic effects of doxorubicin in human lymphocytes in vitro

    K. S. Afanasieva

    2015-02-01

    Full Text Available The self-ordering of C60 fullerene, doxorubicin and their mixture precipitated from aqueous solutions was investigated using atomic-force microscopy. The results suggest the complexation between the two compounds. The genotoxicity of doxorubicin in complex with C60 fullerene (С60+Dox was evaluated in vitro with comet assay using human lymphocytes. The obtained results show that the C60 fullerene prevents the toxic effect of Dox in normal cells and, thus, С60+Dox complex might be proposed for biomedical application.

  20. Continuum Navier-Stokes modelling of water flow past fullerene molecules

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently...

  1. Effect of fullerene C(60 on ATPase activity and superprecipitation of skeletal muscle actomyosin

    K. S. Andreichenko

    2013-04-01

    Full Text Available Creation of new biocompatible nanomaterials, which can exhibit the specific biological effects, is an important complex problem that requires the use of last accomplishments of biotechnology. The effect of pristine water-soluble fullerene C60 on ATPase activity and superprecipitation reaction of rabbit skeletal muscle natural actomyosin has been revealed, namely an increase of actomyosin superprecipitation and Мg2+, Са2+– and K+-ATPase activity by fullerene was investigated. We conclude that this finding offers a real possibility for the regulation of contraction-relaxation of skeletal muscle with fullerene C60.

  2. Fullerene-doped conducting polymers: effects of enhanced photoconductivity and quenched photoluminescence

    Yoshino, K.; Yin, X.H.; Muro, K.; Kiyomatsu, S.; Morita, S.; Zakhidov, A.A.; Noguchi, T.; Ohnishi, T.

    1993-01-01

    It is found that fullerenes (C 60 , C 70 ), due to their strong electron accepting abilities can be hole generators in conducting polymers sensitizing photoinduced charge transfer. Here we report that photoconductivity of poly(2,5-dialkoxy-p-phenylene-vinylene) OO-PPV is found to be remarkably enhanced by several orders of magnitude upon introduction of several mol % of C 60 . Positive polarons (P + ) photogenerated with increased efficiency due to autoionization of excitons and/or photopumping from fullerene are considered to be responsible for enhanced photoconductivity. Photoluminescence of polymer is strongly quenched upon C 60 doping due to dissociation of excitons accompanied by electron transfer to fullerene. (orig.)

  3. Procedure of identification of fullerenes isolated from iron-carbon alloys

    Zakirnichnaya, M.M.

    2001-01-01

    A method of fullerenes isolation from the structure of iron-carbon alloys and their identification using physical methods which provide determination of the different parameters of nanoobjects is developed. Qualitative (mass-spectrometry of positive and negative ions, small angle X-ray scattering) and quantitative (IR-spectrometry, liquid chromatography) evaluation of fullerenes in the samples obtained from iron-carbon alloys and their visual observation using scanning tunnel microscopy are performed. It is found that the method provides isolation and identification of fullerenes present in the structure of steels and irons [ru

  4. MUON DETECTORS: ALIGNMENT

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  5. Alignment of CEBAF cryomodules

    Schneider, W.J.; Bisognano, J.J.; Fischer, J.

    1993-06-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, when completed, will house a 4 GeV recirculating accelerator. Each of the accelerator's two linacs contains 160 superconducting radio frequency (SRF) 1497 MHz niobium cavities in 20 cryomodules. Alignments of the cavities within the cryomodule with respect to beam axis is critical to achieving the optimum accelerator performance. This paper discusses the rationale for the current specification on cavity mechanical alignment: 2 mrad (rms) applied to the 0.5 m active length cavities. We describe the tooling that was developed to achieve the tolerance at the time of cavity pair assembly, to preserve and integrate alignment during cryomodule assembly, and to translate alignment to appropriate installation in the beam line

  6. Biaxial magnetic grain alignment

    Staines, M.; Genoud, J.-Y.; Mawdsley, A.; Manojlovic, V.

    2000-01-01

    Full text: We describe a dynamic magnetic grain alignment technique which can be used to produce YBCO thick films with a high degree of biaxial texture. The technique is, however, generally applicable to preparing ceramics or composite materials from granular materials with orthorhombic or lower crystal symmetry and is therefore not restricted to superconducting applications. Because magnetic alignment is a bulk effect, textured substrates are not required, unlike epitaxial coated tape processes such as RABiTS. We have used the technique to produce thick films of Y-247 on untextured silver substrates. After processing to Y-123 the films show a clear enhancement of critical current density relative to identically prepared untextured or uniaxially textured samples. We describe procedures for preparing materials using magnetic biaxial grain alignment with the emphasis on alignment in epoxy, which can give extremely high texture. X-ray rocking curves with FWHM of as little as 1-2 degrees have been measured

  7. An endohedral fullerene-based nuclear spin quantum computer

    Ju Chenyong; Suter, Dieter; Du Jiangfeng

    2011-01-01

    We propose a new scalable quantum computer architecture based on endohedral fullerene molecules. Qubits are encoded in the nuclear spins of the endohedral atoms, which posses even longer coherence times than the electron spins which are used as the qubits in previous proposals. To address the individual qubits, we use the hyperfine interaction, which distinguishes two modes (active and passive) of the nuclear spin. Two-qubit quantum gates are effectively implemented by employing the electronic dipolar interaction between adjacent molecules. The electron spins also assist in the qubit initialization and readout. Our architecture should be significantly easier to implement than earlier proposals for spin-based quantum computers, such as the concept of Kane [B.E. Kane, Nature 393 (1998) 133]. - Research highlights: → We propose an endohedral fullerene-based scalable quantum computer architecture. → Qubits are encoded on nuclear spins, while electron spins serve as auxiliaries. → Nuclear spins are individually addressed using the hyperfine interaction. → Two-qubit gates are implemented through the medium of electron spins.

  8. Prediction of the electron redundant SinNn fullerenes

    Yang, Huihui; Song, Yan; Zhang, Yan; Chen, Hongshan

    2018-05-01

    The stabilities and electronic structures of SimAln-mNn and SinNn (n = 16, 20, m = 12 and n = 24, m = 16) fullerene-like cages have been investigated using density functional method B3LYP and the second-order perturbation theory MP2. The results show that the SimAln-mNn and SinNn fullerenes are more stable than the AlN counterparts. Comparing with the corresponding AlnNn cages, one silicon atom in each Si2N2 square protrudes and the excess electrons reside as lone pair electrons at the outside of the protrudent Si atoms. Analyses on the electronic structures suggest that the Sisbnd N bonds are covalent bonding with strong polarity. The ELF (electron localization function) shows large electron pair probability between Si and N atoms. The orbital interactions between Si and N are stronger than that between Al and N atoms; the overlap integral is 0.40 per Sisbnd N bond in SinNn and 0.34 per Alsbnd N bond in AlnNn. The AIM (atoms in molecule) charges on the Al atoms in AlnNn and SimAln-mNn are 2.37 and 2.40. The charges on the in-plane and protrudent Si atoms are about 2.88 and 1.50 respectively. Considering the large local dipole moments around the protrudent Si atoms, the electrostatic interactions are also favorable to the SiN cages.

  9. Negative differential resistance observation in complex convoluted fullerene junctions

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    2018-04-01

    In this work, we simulated the smallest fullerene molecule, C20 in a two-probe device model with gold electrodes. The gold electrodes comprised of (011) miller planes were carved to construct the novel geometry based four unique shapes, which were strung to fullerene molecules through mechanically controlled break junction techniques. The organized devices were later scrutinized using non-equilibrium Green's function based on the density functional theory to calculate their molecular orbitals, energy levels, charge transfers, and electrical parameters. After intense scrutiny, we concluded that five-edged and six-edged devices have the lowest and highest current-conductance values, which result from their electrode-dominating and electrode-subsidiary effects, respectively. However, an interesting observation was that the three-edged and four-edged electrodes functioned as semi-metallic in nature, allowing the C20 molecule to demonstrate its performance with the complementary effect of these electrodes in the electron conduction process of a two-probe device.

  10. Making and exploiting fullerenes, graphene, and carbon nanotubes

    Marcaccio, Massimo; Paolucci, Francesco (eds.) [Bologna Univ. (Italy). Dept. of Chemistry G. Ciamician

    2014-11-01

    This volume contains nine chapters which are presenting critical reviews of the present and future trends in modern chemistry research. The chapter ''Solubilization of Fullerenes, Carbon Nanotubes and Graphene'' by Alain Penicaud describes the various ingenious approaches to solve the solubility issue and describes in particular how graphite, and modern nanocarbons, can be made soluble by reductive dissolution. A large part of the present volume concerns the merging of nanocarbons with nanotechnology and their impact on technical development in many areas. Fullerenes, carbon nanotubes, nanodiamond and graphene find, for instance, various applications in the development of solar cells, including dye sensitized solar cells. The chapter ''Incorporation of Balls, Tubes and Bowls in Nanotechnology'' by James Mack describes the recent development of the area of fullerene fragments, and corannulene in particular, and their direct applications to organic light emitting diode (OLED) technology, while, in the chapter ''Exploiting Nanocarbons in Dye-Sensitized Solar Cells'' by Ladislav Kavan, the exploitation of nanocarbons in the development of novel dye sensitized solar cells with improved efficiency, durability and costs is thoroughly reviewed. The functionalization of CNSs has the invaluable advantage of combining their unique properties with those of other classes of materials. Supramolecular chemistry represents an elegant alternative approach for the construction of functional systems by means of noncovalent bonding interactions. In the chapter ''Supramolecular Chemistry of Carbon Nanotubes'' by Gildas Gavrel et al., the incredibly varied world of supramolecular, non-covalent functionalization of carbon nanotubes and their applications is examined and reviewed, and the synthetic strategies devised for fabricating mechanically-linked molecular architectures are described in the chapter ''Fullerene

  11. Making and exploiting fullerenes, graphene, and carbon nanotubes

    Marcaccio, Massimo; Paolucci, Francesco

    2014-01-01

    This volume contains nine chapters which are presenting critical reviews of the present and future trends in modern chemistry research. The chapter ''Solubilization of Fullerenes, Carbon Nanotubes and Graphene'' by Alain Penicaud describes the various ingenious approaches to solve the solubility issue and describes in particular how graphite, and modern nanocarbons, can be made soluble by reductive dissolution. A large part of the present volume concerns the merging of nanocarbons with nanotechnology and their impact on technical development in many areas. Fullerenes, carbon nanotubes, nanodiamond and graphene find, for instance, various applications in the development of solar cells, including dye sensitized solar cells. The chapter ''Incorporation of Balls, Tubes and Bowls in Nanotechnology'' by James Mack describes the recent development of the area of fullerene fragments, and corannulene in particular, and their direct applications to organic light emitting diode (OLED) technology, while, in the chapter ''Exploiting Nanocarbons in Dye-Sensitized Solar Cells'' by Ladislav Kavan, the exploitation of nanocarbons in the development of novel dye sensitized solar cells with improved efficiency, durability and costs is thoroughly reviewed. The functionalization of CNSs has the invaluable advantage of combining their unique properties with those of other classes of materials. Supramolecular chemistry represents an elegant alternative approach for the construction of functional systems by means of noncovalent bonding interactions. In the chapter ''Supramolecular Chemistry of Carbon Nanotubes'' by Gildas Gavrel et al., the incredibly varied world of supramolecular, non-covalent functionalization of carbon nanotubes and their applications is examined and reviewed, and the synthetic strategies devised for fabricating mechanically-linked molecular architectures are described in the chapter ''Fullerene-Stoppered Bistable Rotaxanes'' by Aurelio Mateo-Alonso, which presents an

  12. Pairwise Sequence Alignment Library

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.

  13. MUON DETECTORS: ALIGNMENT

    S. Szillasi

    2013-01-01

    The CMS detector has been gradually opened and whenever a wheel became exposed the first operation was the removal of the MABs, the sensor structures of the Hardware Barrel Alignment System. By the last days of June all 36 MABs have arrived at the Alignment Lab at the ISR where, as part of the Alignment Upgrade Project, they are refurbished with new Survey target holders. Their electronic checkout is on the way and finally they will be recalibrated. During LS1 the alignment system will be upgraded in order to allow more precise reconstruction of the MB4 chambers in Sector 10 and Sector 4. This requires new sensor components, so called MiniMABs (pictured below), that have already been assembled and calibrated. Image 6: Calibrated MiniMABs are ready for installation For the track-based alignment, the systematic uncertainties of the algorithm are under scrutiny: this study will enable the production of an improved Monte Carlo misalignment scenario and to update alignment position errors eventually, crucial...

  14. MUON DETECTORS: ALIGNMENT

    G. Gomez

    2012-01-01

      A new muon alignment has been produced for 2012 A+B data reconstruction. It uses the latest Tracker alignment and single-muon data samples to align both DTs and CSCs. Physics validation has been performed and shows a modest improvement in stand-alone muon momentum resolution in the barrel, where the alignment is essentially unchanged from the previous version. The reference-target track-based algorithm using only collision muons is employed for the first time to align the CSCs, and a substantial improvement in resolution is observed in the endcap and overlap regions for stand-alone muons. This new alignment is undergoing the approval process and is expected to be deployed as part of a new global tag in the beginning of December. The pT dependence of the φ-bias in curvature observed in Monte Carlo was traced to a relative vertical misalignment between the Tracker and barrel muon systems. Moving the barrel as a whole to match the Tracker cures this pT dependence, leaving only the &phi...

  15. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    Lehto, M.; Karilainen, T.; Rog, T.

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  16. Soluble fullerene derivatives : The effect of electronic structure on transistor performance and air stability

    Ball, James M.; Bouwer, Ricardo K.M.; Kooistra, Floris B.; Frost, Jarvist M.; Qi, Yabing; Buchaca Domingo, Ester; Smith, Jeremy; de Leeuw, Dago M.; Hummelen, Jan C.; Nelson, Jenny; Kahn, Antoine; Stingelin, Natalie; Bradley, Donal D.C.; Anthopoulos, Thomas D.

    2011-01-01

    The family of soluble fullerene derivatives comprises a widely studied group of electron transporting molecules for use in organic electronic and optoelectronic devices. For electronic applications, electron transporting (n-channel) materials are required for implementation into organic

  17. Conjugation-promoted reaction of open-cage fullerene: A density functional theory study

    Guo, Yong; Yan, Jingjing; Khashab, Niveen M.

    2012-01-01

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated

  18. Current Analysis and Modeling of Fullerene Single-Electron Transistor at Room Temperature

    Khadem Hosseini, Vahideh; Ahmadi, Mohammad Taghi; Afrang, Saeid; Ismail, Razali

    2017-07-01

    Single-electron transistors (SETs) are interesting electronic devices that have become key elements in modern nanoelectronic systems. SETs operate quickly because they use individual electrons, with the number transferred playing a key role in their switching behavior. However, rapid transmission of electrons can cause their accumulation at the island, affecting the I- V characteristic. Selection of fullerene as a nanoscale zero-dimensional material with high stability, and controllable size in the fabrication process, can overcome this charge accumulation issue and improve the reliability of SETs. Herein, the current in a fullerene SET is modeled and compared with experimental data for a silicon SET. Furthermore, a weaker Coulomb staircase and improved reliability are reported. Moreover, the applied gate voltage and fullerene diameter are found to be directly associated with the I- V curve, enabling the desired current to be achieved by controlling the fullerene diameter.

  19. Understanding triplet formation pathways in bulk heterojunction polymer : fullerene photovoltaic devices

    Tedla, B.; Zhu, F.; Cox, M.; Drijkoningen, J.; Manca, J.V.; Koopmans, B.; Goovaerts, E.

    2015-01-01

    Triplet exciton (TE) formation pathways are systematically investigated in prototype bulk heterojunction (BHJ) "super yellow" poly(p-phenylene vinylene) (SY-PPV) solar cell devices with varying fullerene compositions using complementary optoelectrical and electrically detected magnetic resonance

  20. Effect of Peierls transition in armchair carbon nanotube on dynamical behaviour of encapsulated fullerene

    Hieu Nguyen

    2011-01-01

    Full Text Available Abstract The changes of dynamical behaviour of a single fullerene molecule inside an armchair carbon nanotube caused by the structural Peierls transition in the nanotube are considered. The structures of the smallest C20 and Fe@C20 fullerenes are computed using the spin-polarized density functional theory. Significant changes of the barriers for motion along the nanotube axis and rotation of these fullerenes inside the (8,8 nanotube are found at the Peierls transition. It is shown that the coefficients of translational and rotational diffusions of these fullerenes inside the nanotube change by several orders of magnitude. The possibility of inverse orientational melting, i.e. with a decrease of temperature, for the systems under consideration is predicted.

  1. Synthesis of Polythiophene–Fullerene Hybrid Additives as Potential Compatibilizers of BHJ Active Layers

    Sofia Kakogianni

    2016-12-01

    Full Text Available Perfluorophenyl functionalities have been introduced as side chain substituents onto regioregular poly(3-hexyl thiophene (rr-P3HT, under various percentages. These functional groups were then converted to azides which were used to create polymeric hybrid materials with fullerene species, either C60 or C70. The P3HT–fullerene hybrids thus formed were thereafter evaluated as potential compatibilizers of BHJ active layers comprising P3HT and fullerene based acceptors. Therefore, a systematic investigation of the optical and morphological properties of the purified polymer–fullerene hybrid materials was performed, via different complementary techniques. Additionally, P3HT:PC70BM blends containing various percentages of the herein synthesized hybrid material comprising rr-P3HT and C70 were investigated via Transmission Electron Microscopy (TEM in an effort to understand the effect of the hybrids as additives on the morphology and nanophase separation of this typically used active layer blend for OPVs.

  2. A bench arc-furnace facility for fullerene and single-wall nanotubes synthesis

    Huber John G

    2001-01-01

    Full Text Available A metallic-sample arc-furnace was modified to synthesize fullerenes and nanotubes. The (reversible changes and the process for producing single-wall nanotubes (SWNTs are described.

  3. Realization of large area flexible fullerene - conjugated polymer photocells: a route to plastic solar cells

    Brabec, C.J.; Padinger, F.; Hummelen, J.C.; Janssen, R.A.J.; Sariciftci, N.S.

    1999-01-01

    Bulk donor — acceptor heterojunctions between conjugated polymers and fullerenes have been utilized for photovoltaic devices with quantum efficiencies of around 1%. These devices are based on the photoinduced, ultrafast electron transfer between non degenerate ground state conjugated polymers and

  4. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    Nielsen, Christian B.; Holliday, Sarah; Chen, Hung-Yang; Cryer, Samuel J.; McCulloch, Iain

    2015-01-01

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted

  5. Substrate dependence of energy level alignment at the donor-acceptor interface in organic photovoltaic devices

    Zhou, Y.C.; Liu, Z.T.; Tang, J.X.; Lee, C.S.; Lee, S.T.

    2009-01-01

    The interface energy level alignment between copper phthalocyanine (CuPC) and fullerene (C60), the widely studied donor-acceptor pair in organic photovoltaics (OPVs), on indium-tin oxide (ITO) and Mg substrate was investigated. The CuPC/C60 interface formed on ITO shows a nearly common vacuum level, but a dipole and band bending exist, resulting in a 0.8 eV band offset at the same interface on Mg. This observation indicates that the energy difference between the highest occupied molecular orbital of CuPC and the lowest unoccupied molecular orbital of C60, which dictates the open circuit voltage of the CuPC/C60 OPV, can be tuned by the work function of the substrate. Furthermore, the substrate effect on the energy alignment at the donor/acceptor interface can satisfactorily explain that a device with an anode of a smaller work function can provide a higher open circuit voltage.

  6. Production of metal fullerene surface layer from various media in the process of steel carbonization

    KUZEEV Iskander Rustemovich

    2018-04-01

    Full Text Available Studies devoted to production of metal fullerene layer in steels when introducing carbon from organic and inorganic media were performed. Barium carbonate was used as an inorganic medium and petroleum pitch was used as an organic medium. In order to generate the required amount of fullerenes in the process of steel samples carbonization, optimal temperature mode was found. The higher temperature, absorption and cohesive effects become less important and polymeric carbon structures destruction processes become more important. On the bottom the temperature is limited by petroleum pitch softening temperature and its transition to low-viscous state in order to enhance molecular mobility and improve the possibility of their diffusion to metal surface. Identification of fullerenes in the surface modified layer was carried out following the methods of IR-Fourier spectrometry and high-performance liquid chromatography. It was found out that nanocarbon structures, formed during carbonization in barium carbonate and petroleum pitch mediums, possess different morphology. In the process of metal carbonization from carbonates medium, the main role in fullerenes synthesis is belonged to catalytic effect of surface with generation of endohedral derivatives in the surface layer; but in the process of carbonization from pitch medium fullerenes are formed during crystallization of the latter and crystallization centers are of fullerene type. Based on theoretical data and dataof spectral and chromatographic analysis, optimal conditions of metal fullerene layer formation in barium carbonate and petroleum pitch mediums were determined. Low cohesion of layer, modified in barium carbonate medium, with metal basis was discovered. That was caused by limited carbon diffusion in the volume of α-Fe. According to the detected mechanism of fullerenes formation on steel surface in gaseous medium, fullerenes are formed on catalytic centers – ferrum atoms, forming thin metal

  7. Preparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy

    Yang, Yannan; Yu, Meihua; Song, Hao; Wang, Yue; Yu, Chengzhong

    2015-07-01

    Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy.Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02769a

  8. Inflammogenic effect of well-characterized fullerenes in inhalation and intratracheal instillation studies

    Yamamoto Kazuhiro

    2010-03-01

    Full Text Available Abstract Background We used fullerenes, whose dispersion at the nano-level was stabilized by grinding in nitrogen gas in an agitation mill, to conduct an intratracheal instillation study and an inhalation exposure study. Fullerenes were individually dispersed in distilled water including 0.1% Tween 80, and the diameter of the fullerenes was 33 nm. These suspensions were directly injected as a solution in the intratracheal instillation study. The reference material was nickel oxide in distilled water. Wistar male rats intratracheally received a dose of 0.1 mg, 0.2 mg, or 1 mg of fullerenes and were sacrificed after 3 days, 1 week, 1 month, 3 months, and 6 months. In the inhalation study, Wistar rats were exposed to fullerene agglomerates (diameter: 96 ± 5 nm; 0.12 ± 0.03 mg/m3; 6 hours/days for 5 days/week for 4 weeks and were sacrificed at 3 days, 1 month, and 3 months after the end of exposure. The inflammatory responses and gene expression of cytokine-induced neutrophil chemoattractants (CINCs were examined in rat lungs in both studies. Results In the intratracheal instillation study, both the 0.1 mg and 0.2 mg fullerene groups did not show a significant increase of the total cell and neutrophil count in BALF or in the expression of CINC-1,-2αβ and-3 in the lung, while the high-dose, 1 mg group only showed a transient significant increase of neutrophils and expression of CINC-1,-2αβ and -3. In the inhalation study, there were no increases of total cell and neutrophil count in BALF, CINC-1,-2αβ and-3 in the fullerene group. Conclusion These data in intratracheal instillation and inhalation studies suggested that well-dispersed fullerenes do not have strong potential of neutrophil inflammation.

  9. Effect of С(60 fullerene on metabolic and proliferative activity of PKE cell line

    I. V. Belochkina

    2014-04-01

    Full Text Available The effect of С60 fullerene aqueous colloid solution (C60FAS on activity of redox and proliferative processes in PKE (transplantable cell line of pig kidney embryo cells has been studied. In particular, it was established that the presence of С60 fullerene (127 μМ in culturing medium of PKE cells during 48 h did not change their ability to reduce non-toxic АlamarBlue redox indicator and proliferative acti­vity.

  10. On the continuous spectrum electromagnetic radiation in electron-fullerene collision

    Amusia, M.Y.

    1995-01-01

    It is demonstrated that the electromagnetic radiation spectrum in electron-fullerene collisions is dominated by a huge maximum of multielectron nature, similar to that already predicted and observed in photoabsorption. Due to coherence, the intensity of this radiation is much stronger than the sum of the intensities of isolated atoms. Experimental detection of such radiation would be of great importance for understanding the mechanism of its formation and for investigating fullerene structures. A paper describing these results was published

  11. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  12. Ultrafast spectroscopic investigation of a fullerene poly(3-hexylthiophene) dyad

    Banerji, Natalie; Seifter, Jason; Wang, Mingfeng; Vauthey, Eric; Wudl, Fred; Heeger, Alan J.

    2011-08-01

    We present the femtosecond spectroscopic investigation of a covalently linked dyad, PCB-P3HT, formed by a segment of the conjugated polymer P3HT (regioregular poly(3-hexylthiophene)) that is end capped with the fullerene derivative PCB ([6,6]-phenyl-C61-butyric acid ester), adapted from PCBM. The fluorescence of the P3HT segment in tetrahydrofuran (THF) solution is reduced by 64% in the dyad compared to a control compound without attached fullerene (P3HT-OH). Fluorescence upconversion measurements reveal that the partial fluorescence quenching of PCB-P3HT in THF is multiphasic and occurs on an average time scale of 100 ps, in parallel to excited-state relaxation processes. Judging from ultrafast transient absorption experiments, the origin of the quenching is excitation energy transfer from the P3HT donor to the PCB acceptor. Due to the much higher solubility of P3HT compared to PCB in THF, the PCB-P3HT dyad molecules self-assemble into micelles. When pure C60 is added to the solution, it is incorporated into the fullerene-rich center of the micelles. This dramatically increases the solubility of C60 but does not lead to significant additional quenching of the P3HT fluorescence by the C60 contained in the micelles. In PCB-P3HT thin films drop-cast from THF, the micelle structure is conserved. In contrast to solution, quantitative and ultrafast (microscopy images. Ultrafast charge separation occurs also for the fibrous morphology, but the transient absorption experiments show fast loss of part of the charge carriers due to intensity-induced recombination and annihilation processes and monomolecular interfacial trap-mediated or geminate recombination. The yield of the long-lived charge carriers in the highly organized fibers is however comparable to that obtained with annealed P3HT:PCBM blends. PCB-P3HT can therefore be considered as an active material in organic photovoltaic devices.

  13. Optical limiting properties of fullerenes and related materials

    Riggs, Jason Eric

    Optical limiting properties of fullerene C60 and different C60 derivatives (methano-, pyrrolidino-, and amino-) towards nanosecond laser pulses at 532 nm were studied. The results show that optical limiting responses of the C60 derivatives are similar to those of the parent C60 despite their different linear absorption and emission properties. For C60 and the derivatives in room-temperature solutions of varying concentrations and optical path length, the optical limiting responses are strongly concentration dependent. The concentration dependence is not due to any optical artifacts since the results obtained under the same experimental conditions for reference systems show no such dependence. Similarly, optical limiting results of fullerenes are strongly dependent on the medium viscosity, with responses in viscous media weaker than that in room-temperature solutions. The solution concentration and medium viscosity dependencies are not limited to fullerenes. In fact, the results from a systematic investigation of several classes of nonlinear absorptive organic dyes show that the optical limiting responses are also concentration and medium viscosity dependent. Interestingly, however, such dependencies are uniquely absent in the optical limiting responses of metallophthalocyanines. In classical photophysics, the strong solution concentration and medium viscosity dependencies are indicative of significant contributions from photoexcited-state bimolecular processes. Thus, the experimental results are discussed in terms of a significantly modified five-level reverse saturable absorption mechanism. Optical limiting properties of single-walled and multiple-walled carbon nanotubes toward nanosecond laser pulses at 532 nm were also investigated. When suspended in water, the single-walled and multiple-walled carbon nanotubes exhibit essentially the same optical limiting responses, and the results are also comparable with those of carbon black aqueous suspension. For

  14. MUON DETECTORS: ALIGNMENT

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  15. MUON DETECTORS: ALIGNMENT

    G. Gomez

    2010-01-01

    For the last three months, the Muon Alignment group has focussed on providing a new, improved set of alignment constants for the end-of-year data reprocessing. These constants were delivered on time and approved by the CMS physics validation team on November 17. The new alignment incorporates several improvements over the previous one from March for nearly all sub-systems. Motivated by the loss of information from a hardware failure in May (an entire MAB was lost), the optical barrel alignment has moved from a modular, super-plane reconstruction, to a full, single loop calculation of the entire geometry for all DTs in stations 1, 2 and 3. This makes better use of the system redundancy, mitigating the effect of the information loss. Station 4 is factorised and added afterwards to make the system smaller (and therefore faster to run), and also because the MAB calibration at the MB4 zone is less precise. This new alignment procedure was tested at 0 T against photogrammetry resulting in precisions of the order...

  16. MUON DETECTORS: ALIGNMENT

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  17. Probabilistic biological network alignment.

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-01-01

    Interactions between molecules are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance, or proximity of the interacting molecules. In this paper, we consider the problem of aligning two biological networks. Unlike existing methods, we allow one of the two networks to contain probabilistic interactions. Allowing interaction probabilities makes the alignment more biologically relevant at the expense of explosive growth in the number of alternative topologies that may arise from different subsets of interactions that take place. We develop a novel method that efficiently and precisely characterizes this massive search space. We represent the topological similarity between pairs of aligned molecules (i.e., proteins) with the help of random variables and compute their expected values. We validate our method showing that, without sacrificing the running time performance, it can produce novel alignments. Our results also demonstrate that our method identifies biologically meaningful mappings under a comprehensive set of criteria used in the literature as well as the statistical coherence measure that we developed to analyze the statistical significance of the similarity of the functions of the aligned protein pairs.

  18. Stable Au–C bonds to the substrate for fullerene-based nanostructures

    Taras Chutora

    2017-05-01

    Full Text Available We report on the formation of fullerene-derived nanostructures on Au(111 at room temperature and under UHV conditions. After low-energy ion sputtering of fullerene films deposited on Au(111, bright spots appear at the herringbone corner sites when measured using a scanning tunneling microscope. These features are stable at room temperature against diffusion on the surface. We carry out DFT calculations of fullerene molecules having one missing carbon atom to simulate the vacancies in the molecules resulting from the sputtering process. These modified fullerenes have an adsorption energy on the Au(111 surface that is 1.6 eV higher than that of C60 molecules. This increased binding energy arises from the saturation by the Au surface of the bonds around the molecular vacancy defect. We therefore interpret the observed features as adsorbed fullerene-derived molecules with C vacancies. This provides a pathway for the formation of fullerene-based nanostructures on Au at room temperature.

  19. Self-organization processes in polysiloxane block copolymers, initiated by modifying fullerene additives

    Voznyakovskii, A. P.; Kudoyarova, V. Kh.; Kudoyarov, M. F.; Patrova, M. Ya.

    2017-08-01

    Thin films of a polyblock polysiloxane copolymer and their composites with a modifying fullerene C60 additive are studied by atomic force microscopy, Rutherford backscattering, and neutron scattering. The data of atomic force microscopy show that with the addition of fullerene to the bulk of the polymer matrix, the initial relief of the film surface is leveled more, the larger the additive. This trend is associated with the processes of self-organization of rigid block sequences, which are initiated by the field effect of the surface of fullerene aggregates and lead to an increase in the number of their domains in the bulk of the polymer matrix. The data of Rutherford backscattering and neutron scattering indicate the formation of additional structures with a radius of 60 nm only in films containing fullerene, and their fraction increases with increasing fullerene concentration. A comparative analysis of the data of these methods has shown that such structures are, namely, the domains of a rigid block and are not formed by individual fullerene aggregates. The interrelation of the structure and mechanical properties of polymer films is considered.

  20. Automatic production of fullerenes by a JxB arc jet discharge

    Mieno, Tetsu

    1995-01-01

    Effective production of many kinds of fullerenes including higher fullerenes and endohedral metallo-fullerenes are necessary to advance fullerene science and technology. Currently, the DC arc discharge method is the most effective method to produce fullerenes. However, carbon atoms evaporated from the anode tend to deposit on the cathode, which grow towards the anode, and obstruct the control of the arc discharge. Furthermore, deposited carbon should be removed to maintain continuous fullerene production. Here, to reduce the deposition of carbon on the cathode, a new discharge method is introduced and the experiment performed. When steady magnetic field is applied perpendicular to the DC current of the arc, ions and electrons are accelerated by JxB force as a plasma jet in the vertical direction. This plasma flow also accelerates helium convection due to the viscosity effect. Therefore, the carbon atoms and carbon neutrals are both blown up by the arc jet before arriving at the cathode. The arc flame in the experiment is actually observed to extend upwards, which dearly indicates the effect of the JxB force

  1. Reduction of conspicuous facial pores by topical fullerene: possible role in the suppression of PGE2 production in the skin

    Inui, Shigeki; Mori, Ayako; Ito, Masayuki; Hyodo, Sayuri; Itami, Satoshi

    2014-01-01

    Background Conspicuous facial pores are therapeutic targets for cosmeceuticals. Here we examine the effect of topical fullerene on conspicuous facial pores using a new image analyser called the VISIA® system. Ten healthy Japanese females participated in this study, and they received applications of 1% fullerene lotion to the face twice a day for 8 weeks. Findings Fullerene lotion significantly decreased conspicuous pores by 17.6% (p 

  2. Fullerene films and fullerene-dodecylamine adduct monolayers at air-water interfaces studied by neutron and x-ray reflection

    Wang, J.Y.; Vaknin, D.; Uphaus, R.A.

    1994-01-01

    Neutron and X-ray reflection measurements and surface pressure isotherms of spread films of the fullerene-dodecylamine adduct C60-[NH2(CH2)11CH3]x all indicate that this material may form monomolecular layers on water surfaces. The reflection data sets (neutron on both H2O and D2O) can be accounted...... for by a single model structure defined in terms of the dimensions of an average cell and its chemical composition. This model ascribes a total thickness of about 29 angstrom to the molecular interface layer with the following internal structure. The fullerenes (with several alkyl chains attached) form a central...... stratum and the remainder alkyl tails are located close to both the air and the water interfaces. The alkyl moieties close to the aqueous substrate are hydrated. The reflection experiments and the isotherms suggest that on average 8 +/- 3 dodecylamine molecules are present per fullerene, consistent within...

  3. Aligning Responsible Business Practices

    Weller, Angeli E.

    2017-01-01

    This article offers an in-depth case study of a global high tech manufacturer that aligned its ethics and compliance, corporate social responsibility, and sustainability practices. Few large companies organize their responsible business practices this way, despite conceptual relevance and calls t...... and managers interested in understanding how responsible business practices may be collectively organized.......This article offers an in-depth case study of a global high tech manufacturer that aligned its ethics and compliance, corporate social responsibility, and sustainability practices. Few large companies organize their responsible business practices this way, despite conceptual relevance and calls...... to manage them comprehensively. A communities of practice theoretical lens suggests that intentional effort would be needed to bridge meaning between the relevant managers and practices in order to achieve alignment. The findings call attention to the important role played by employees who broker...

  4. FMIT alignment cart

    Potter, R.C.; Dauelsberg, L.B.; Clark, D.C.; Grieggs, R.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility alignment cart must perform several functions. It must serve as a fixture to receive the drift-tube girder assembly when it is removed from the linac tank. It must transport the girder assembly from the linac vault to the area where alignment or disassembly is to take place. It must serve as a disassembly fixture to hold the girder while individual drift tubes are removed for repair. It must align the drift tube bores in a straight line parallel to the girder, using an optical system. These functions must be performed without violating any clearances found within the building. The bore tubes of the drift tubes will be irradiated, and shielding will be included in the system for easier maintenance

  5. Alignment of whole genomes.

    Delcher, A L; Kasif, S; Fleischmann, R D; Peterson, J; White, O; Salzberg, S L

    1999-01-01

    A new system for aligning whole genome sequences is described. Using an efficient data structure called a suffix tree, the system is able to rapidly align sequences containing millions of nucleotides. Its use is demonstrated on two strains of Mycoplasma tuberculosis, on two less similar species of Mycoplasma bacteria and on two syntenic sequences from human chromosome 12 and mouse chromosome 6. In each case it found an alignment of the input sequences, using between 30 s and 2 min of computation time. From the system output, information on single nucleotide changes, translocations and homologous genes can easily be extracted. Use of the algorithm should facilitate analysis of syntenic chromosomal regions, strain-to-strain comparisons, evolutionary comparisons and genomic duplications. PMID:10325427

  6. GTC/CanariCam Mid-IR Imaging of the Fullerene-rich Planetary Nebula IC 418: Searching for the Spatial Distribution of Fullerene-like Molecules

    Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Villaver, E.; García-Segura, G.

    2018-03-01

    We present seeing-limited narrow-band mid-IR GTC/CanariCam images of the spatially extended fullerene-containing planetary nebula (PN) IC 418. The narrow-band images cover the C60 fullerene band at 17.4 μm, the polycyclic aromatic hydrocarbon like (PAH-like) feature at 11.3 μm, the broad 9–13 μm feature, and their adjacent continua at 9.8 and 20.5 μm. We study the relative spatial distribution of these complex species, all detected in the Spitzer and Infrared Space Observatory spectra of IC 418, with the aim of getting observational constraints to the formation process of fullerenes in H-rich circumstellar environments. A similar ring-like extended structure is seen in all narrow-band filters, except in the dust continuum emission at 9.8 μm, which peaks closer to the central star. The continuum-subtracted images display a clear ring-like extended structure for the carrier of the broad 9–13 μm emission, while the spatial distribution of the (PAH-like) 11.3 μm emission is not so well defined. Interestingly, a residual C60 17.4 μm emission (at about 4σ from the sky background) is seen when subtracting the dust continuum emission at 20.5 μm. This residual C60 emission, if real, might have several interpretations, the most exciting being perhaps that other fullerene-based species like hydrogenated fullerenes with very low H-content may contribute to the observed 17.4 μm emission. We conclude that higher sensitivity mid-IR images and spatially resolved spectroscopic observations (especially in the Q-band) are necessary to get some clues about fullerene formation in PNe.

  7. Molecular design of novel fullerene-based acceptors for enhancing the open circuit voltage in polymer solar cells

    Tajbakhsh, Mahmood; Kariminasab, Mohaddeseh; Ganji, Masoud Darvish; Alinezhad, Heshmatollah

    2017-12-01

    Organic solar cells, especially bulk hetero-junction polymer solar cells (PSCs), are the most successful structures for applications in renewable energy. The dramatic improvement in the performance of PSCs has increased demand for new conjugated polymer donors and fullerene derivative acceptors. In the present study, quantum chemical calculations were performed for several representative fullerene derivatives in order to determine their frontier orbital energy levels and electronic structures, thereby helping to enhance their performance in PSC devices. We found correlations between the theoretical lowest unoccupied molecular orbital levels and electrophilicity index of various fullerenes with the experimental open circuit voltage of photovoltaic devices according to the poly(3-hexylthiophene) (P3HT):fullerene blend. The correlations between the structure and descriptors may facilitate screening of the best fullerene acceptor for the P3HT donor. Thus, we considered fullerenes with new functional groups and we predicted the output factors for the corresponding P3HT:fullerene blend devices. The results showed that fullerene derivatives based on thieno-o-quinodimethane-C60 with a methoxy group will have enhanced photovoltaic properties. Our results may facilitate the design of new fullerenes and the development of favorable acceptors for use in photovoltaic applications.

  8. Fulereno[C60]: química e aplicações Fullerene C60: chemistry and applications

    Leandro José dos Santos

    2010-01-01

    Full Text Available Fullerene chemistry has become a very active research field in the two last decades, largely because of the exceptional properties of the C60 molecule and the variety of fullerene derivatives that appear to be possible. In this review, a general analysis of fullerene C60 reactivity is performed. The principal methods for the covalent modification of this fascinating carbon cage are presented. The prospects of using fullerene derivatives as medicinal drugs and photoactive materials in light converting devices are demonstrated.

  9. Young's Modulus of Single-Crystal Fullerene C Nanotubes

    Tokushi Kizuka

    2012-01-01

    Full Text Available We performed bending tests on single-crystal nanotubes composed of fullerene C70 molecules by in situ transmission electron microscopy with measurements of loading forces by an optical deflection method. The nanotubes with the outer diameters of 270–470 nm were bent using simple-beam and cantilever-beam loading by the piezomanipulation of silicon nanotips. Young's modulus of the nanotubes increased from 61 GPa to 110 GPa as the outer diameter decreased from 470 nm to 270 nm. Young's modulus was estimated to be 66% of that of single-crystal C60 nanotubes of the same outer diameter.

  10. Molecular Polarizability of Sc and C (Fullerene and Graphite Clusters

    Francisco Torrens

    2001-05-01

    Full Text Available A method (POLAR for the calculation of the molecular polarizability is presented. It uses the interacting induced dipoles polarization model. As an example, the method is applied to Scn and Cn (fullerene and one-shell graphite model clusters. On varying the number of atoms, the clusters show numbers indicative of particularly polarizable structures. The are compared with reference calculations (PAPID. In general, the Scn calculated (POLAR and Cn computed (POLAR and PAPID are less polarizable than what is inferred from the bulk. However, the Scn calculated (PAPID are more polarizable than what is inferred. Moreover, previous theoretical work yielded the same trend for Sin, Gen and GanAsm small clusters. The high polarizability of the Scn clusters (PAPID is attributed to arise from dangling bonds at the surface of the cluster.

  11. Polychiral semiconducting carbon nanotube-fullerene solar cells.

    Gong, Maogang; Shastry, Tejas A; Xie, Yu; Bernardi, Marco; Jasion, Daniel; Luck, Kyle A; Marks, Tobin J; Grossman, Jeffrey C; Ren, Shenqiang; Hersam, Mark C

    2014-09-10

    Single-walled carbon nanotubes (SWCNTs) have highly desirable attributes for solution-processable thin-film photovoltaics (TFPVs), such as broadband absorption, high carrier mobility, and environmental stability. However, previous TFPVs incorporating photoactive SWCNTs have utilized architectures that have limited current, voltage, and ultimately power conversion efficiency (PCE). Here, we report a solar cell geometry that maximizes photocurrent using polychiral SWCNTs while retaining high photovoltage, leading to record-high efficiency SWCNT-fullerene solar cells with average NREL certified and champion PCEs of 2.5% and 3.1%, respectively. Moreover, these cells show significant absorption in the near-infrared portion of the solar spectrum that is currently inaccessible by many leading TFPV technologies.

  12. Fullerene faraday cage keeps magnetic properties of inner cluster pristine.

    Avdoshenko, Stanislav M

    2018-04-21

    Any single molecular magnets (SMMs) perspective for application is as good as its magnetization stability in ambient conditions. Endohedral metallofullerenes (EMFs) provide a solid basis for promising SMMs. In this study, we investigated the behavior of functionalized EMFs on a gold surface (EMF-L-Au). Having followed the systems molecular dynamics paths, we observed that the chemically locked inner cluster inside fullerene cage will remain locked even at room temperature due to the ligand-effect. We have located multiple possible minima with different charge arrangements between EMF-L-Au fragments. Remarkably, the charge state of the EMF inner cluster remained virtually constant and so magnetic properties are expected to be untouched. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  13. Simulation of beamline alignment operations

    Annese, C; Miller, M G.

    1999-01-01

    The CORBA-based Simulator was a Laboratory Directed Research and Development (LDRD) project that applied simulation techniques to explore critical questions about distributed control systems. The simulator project used a three-prong approach that studied object-oriented distribution tools, computer network modeling, and simulation of key control system scenarios. The National Ignition Facility's (NIF) optical alignment system was modeled to study control system operations. The alignment of NIF's 192 beamlines is a large complex operation involving more than 100 computer systems and 8000 mechanized devices. The alignment process is defined by a detailed set of procedures; however, many of the steps are deterministic. The alignment steps for a poorly aligned component are similar to that of a nearly aligned component; however, additional operations/iterations are required to complete the process. Thus, the same alignment operations will require variable amounts of time to perform depending on the current alignment condition as well as other factors. Simulation of the alignment process is necessary to understand beamline alignment time requirements and how shared resources such as the Output Sensor and Target Alignment Sensor effect alignment efficiency. The simulation has provided alignment time estimates and other results based on documented alignment procedures and alignment experience gained in the laboratory. Computer communication time, mechanical hardware actuation times, image processing algorithm execution times, etc. have been experimentally determined and incorporated into the model. Previous analysis of alignment operations utilized average implementation times for all alignment operations. Resource sharing becomes rather simple to model when only average values are used. The time required to actually implement the many individual alignment operations will be quite dynamic. The simulation model estimates the time to complete an operation using

  14. Experimental image alignment system

    Moyer, A. L.; Kowel, S. T.; Kornreich, P. G.

    1980-01-01

    A microcomputer-based instrument for image alignment with respect to a reference image is described which uses the DEFT sensor (Direct Electronic Fourier Transform) for image sensing and preprocessing. The instrument alignment algorithm which uses the two-dimensional Fourier transform as input is also described. It generates signals used to steer the stage carrying the test image into the correct orientation. This algorithm has computational advantages over algorithms which use image intensity data as input and is suitable for a microcomputer-based instrument since the two-dimensional Fourier transform is provided by the DEFT sensor.

  15. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-01-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 (micro)m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  16. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  17. The Micro-Category Account of Analogy

    Green, Adam E.; Fugelsang, Jonathan A.; Kraemer, David J. M.; Dunbar, Kevin N.

    2008-01-01

    Here, we investigate how activation of mental representations of categories during analogical reasoning influences subsequent cognitive processing. Specifically, we present and test the central predictions of the "Micro-Category" account of analogy. This account emphasizes the role of categories in aligning terms for analogical mapping. In a…

  18. AlignMe—a membrane protein sequence alignment web server

    Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.

    2014-01-01

    We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425

  19. Aligning Mental Representations

    Kano Glückstad, Fumiko

    2013-01-01

    This work introduces a framework that implements asymmetric communication theory proposed by Sperber and Wilson [1]. The framework applies a generalization model known as the Bayesian model of generalization (BMG) [2] for aligning knowledge possessed by two communicating parties. The work focuses...

  20. MUON DETECTORS: ALIGNMENT

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  1. Community Alignment ANADP

    Halbert, Martin; Bicarregui, Juan; Anglada, Lluis; Duranti, Luciana

    2014-01-01

    Aligning National Approaches to Digital Preservation: An Action Assembly Biblioteca de Catalunya (National Library of Catalonia) November 18-20, 2013, Barcelona, Spain Auburn University Council on Library and Information Resources (CLIR) Digital Curation Centre (DCC) Digital Preservation Network (DPN) Joint Information Systems Committee (JISC) University of North Texas Virginia Tech Interuniversity Consortium for Political and Social Research (ICPSR) Innovative Inte...

  2. Discriminative Shape Alignment

    Loog, M.; de Bruijne, M.

    2009-01-01

    , not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two...

  3. Resource Alignment ANADP

    Grindley, Neil; Cramer, Tom; Schrimpf, Sabine; Wilson, Tom

    2014-01-01

    Aligning National Approaches to Digital Preservation: An Action Assembly Biblioteca de Catalunya (National Library of Catalonia) November 18-20, 2013, Barcelona, Spain Auburn University Council on Library and Information Resources (CLIR) Digital Curation Centre (DCC) Digital Preservation Network (DPN) Joint Information Systems Committee (JISC) University of North Texas Virginia Tech Interuniversity Consortium for Political and Social Research (ICPSR) Innovative Inte...

  4. Capacity Alignment ANADP

    Davidson, Joy; Whitehead, Martha; Molloy, Laura; Molinaro, Mary

    2014-01-01

    Aligning National Approaches to Digital Preservation: An Action Assembly Biblioteca de Catalunya (National Library of Catalonia) November 18-20, 2013, Barcelona, Spain Auburn University Council on Library and Information Resources (CLIR) Digital Curation Centre (DCC) Digital Preservation Network (DPN) Joint Information Systems Committee (JISC) University of North Texas Virginia Tech Interuniversity Consortium for Political and Social Research (ICPSR) Innovative Inte...

  5. ABS: Sequence alignment by scanning

    Bonny, Mohamed Talal

    2011-08-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  6. ABS: Sequence alignment by scanning

    Bonny, Mohamed Talal; Salama, Khaled N.

    2011-01-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the 'Needleman-Wunsch' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  7. Fast global sequence alignment technique

    Bonny, Mohamed Talal

    2011-11-01

    Bioinformatics database is growing exponentially in size. Processing these large amount of data may take hours of time even if super computers are used. One of the most important processing tool in Bioinformatics is sequence alignment. We introduce fast alignment algorithm, called \\'Alignment By Scanning\\' (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the wellknown sequence alignment algorithms, the \\'GAP\\' (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 51% enhancement in alignment score when it is compared with the GAP Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  8. Th(IV Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene

    Wangsuo Wu

    2013-09-01

    Full Text Available The adsorption of Th(IV onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs in the absence and presence of hydroxylated fullerene (C60(OHn and carboxylated fullerene (C60(C(COOH2n has been investigated. C60(OHn, C60(C(COOH2n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV on the same oMWCNTs free of C60(OHn or C60(C(COOH2n, the study of a ternary system showed the inhibition effect of C60(OHn at high concentration on the adsorption of Th(IV in a pH range from neutral to slightly alkaline; whereas the promotion effect of C60(C(COOH2n, even at its low concentration, on Th(IV adsorption was observed in acid medium.

  9. Th(IV) Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene.

    Wang, Jing; Liu, Peng; Li, Zhan; Qi, Wei; Lu, Yan; Wu, Wangsuo

    2013-09-17

    The adsorption of Th(IV) onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs) in the absence and presence of hydroxylated fullerene (C 60 (OH) n ) and carboxylated fullerene (C 60 (C(COOH)₂) n ) has been investigated. C 60 (OH) n , C 60 (C(COOH)₂) n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV) was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV) adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV) adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV) on the same oMWCNTs free of C 60 (OH) n or C 60 (C(COOH)₂) n , the study of a ternary system showed the inhibition effect of C 60 (OH) n at high concentration on the adsorption of Th(IV) in a pH range from neutral to slightly alkaline; whereas the promotion effect of C 60 (C(COOH)₂) n , even at its low concentration, on Th(IV) adsorption was observed in acid medium.

  10. Iridium catalyzed growth of vertically aligned CNTs by APCVD

    Sahoo, R.K.; Jacob, C.

    2014-01-01

    Highlights: • Growth of uniform-diameter vertically-aligned multi-walled CNTs by APCVD. • Use of high melting point low carbon solubility iridium nanoparticles as catalyst. • Optimization of growth time for uniform sized, uniformly aligned CNTs. • Growth model for the various features in the vertically aligned CNTs is proposed. - Abstract: Vertically aligned carbon nanotubes (VA-CNTs) have been synthesized using high temperature catalyst nanoparticles of iridium. The catalyst layer was prepared by DC sputtering. Particle density, circularity and average particle size of the catalyst were analyzed using field emission scanning electron microscopy. The alignment, morphology and the length of the as-grown CNTs were analyzed using field-emission scanning electron microscopy. High resolution transmission electron microscopy was carried out to observe the layers of graphitic stacking which form the carbon nanotubes. Micro Raman measurement was used for the analysis of the graphitic crystallinity of the as-grown carbon nano structures. Effects of growth time variation on growth morphology and alignment have been studied. The alignment has been explained on the basis of the crowding effect of the neighboring nanoparticles

  11. Iridium catalyzed growth of vertically aligned CNTs by APCVD

    Sahoo, R.K.; Jacob, C., E-mail: cxj14_holiday@yahoo.com

    2014-07-01

    Highlights: • Growth of uniform-diameter vertically-aligned multi-walled CNTs by APCVD. • Use of high melting point low carbon solubility iridium nanoparticles as catalyst. • Optimization of growth time for uniform sized, uniformly aligned CNTs. • Growth model for the various features in the vertically aligned CNTs is proposed. - Abstract: Vertically aligned carbon nanotubes (VA-CNTs) have been synthesized using high temperature catalyst nanoparticles of iridium. The catalyst layer was prepared by DC sputtering. Particle density, circularity and average particle size of the catalyst were analyzed using field emission scanning electron microscopy. The alignment, morphology and the length of the as-grown CNTs were analyzed using field-emission scanning electron microscopy. High resolution transmission electron microscopy was carried out to observe the layers of graphitic stacking which form the carbon nanotubes. Micro Raman measurement was used for the analysis of the graphitic crystallinity of the as-grown carbon nano structures. Effects of growth time variation on growth morphology and alignment have been studied. The alignment has been explained on the basis of the crowding effect of the neighboring nanoparticles.

  12. Identifying the source of a strong fullerene envelope arising from laser desorption mass spectrometric analysis of meteoritic insoluble organic matter

    Hammond, Matthew R.; Zare, Richard N.

    2008-11-01

    Insoluble organic matter (IOM) has been obtained from two carbonaceous chondrite meteorites and subjected to analysis by laser desorption mass spectrometry (LDMS) using standard operating conditions that were optimized for fullerene detection (3-6 μJ pulses at 337 nm focused to a spot size of approximately 100 μm in diameter). The preparation process yields no free C 60 in the IOM, and other experiments suggest that this material does not contain appreciable amounts of fullerenes. Nevertheless, a pronounced high-mass envelope is observed in LDMS, extending from 720 amu to about 4000 amu, with peaks spaced apart every 24 amu (corresponding to the gain or loss of C 2 units). We attribute this high-mass envelope to the existence of various fullerene molecules. The present work demonstrates that these fullerene molecules are created by the laser desorption laser ionization process under typical laser conditions used for studying free fullerenes in organic solvent extracts of natural samples (toluene and 1,2,4-trichlorobenzene). The implications of this false positive detection of fullerene molecules on the reports of fullerenes in other meteoritic samples have been investigated by introducing IOM into typical fullerene extraction procedures and examining the LDMS results. We found that IOM is capable of producing false positive signals in these experiments. The effect of ambient laboratory contamination producing fullerene signals is also described. It is found that extensive centrifugation of the meteoritic extracts is able to reduce the observed fullerene envelope, which points to an association of this envelope with IOM particulates that have passed through the filtering steps. We suggest the exercise of extreme caution in interpreting fullerene data from LDMS experiments.

  13. 2D-QSAR study of fullerene nanostructure derivatives as potent HIV-1 protease inhibitors

    Barzegar, Abolfazl; Jafari Mousavi, Somaye; Hamidi, Hossein; Sadeghi, Mehdi

    2017-09-01

    The protease of human immunodeficiency virus1 (HIV-PR) is an essential enzyme for antiviral treatments. Carbon nanostructures of fullerene derivatives, have nanoscale dimension with a diameter comparable to the diameter of the active site of HIV-PR which would in turn inhibit HIV. In this research, two dimensional quantitative structure-activity relationships (2D-QSAR) of fullerene derivatives against HIV-PR activity were employed as a powerful tool for elucidation the relationships between structure and experimental observations. QSAR study of 49 fullerene derivatives was performed by employing stepwise-MLR, GAPLS-MLR, and PCA-MLR models for variable (descriptor) selection and model construction. QSAR models were obtained with higher ability to predict the activity of the fullerene derivatives against HIV-PR by a correlation coefficient (R2training) of 0.942, 0.89, and 0.87 as well as R2test values of 0.791, 0.67and 0.674 for stepwise-MLR, GAPLS-MLR, and PCA -MLR models, respectively. Leave-one-out cross-validated correlation coefficient (R2CV) and Y-randomization methods confirmed the models robustness. The descriptors indicated that the HIV-PR inhibition depends on the van der Waals volumes, polarizability, bond order between two atoms and electronegativities of fullerenes derivatives. 2D-QSAR simulation without needing receptor's active site geometry, resulted in useful descriptors mainly denoting ;C60 backbone-functional groups; and ;C60 functional groups; properties. Both properties in fullerene refer to the ligand fitness and improvement van der Waals interactions with HIV-PR active site. Therefore, the QSAR models can be used in the search for novel HIV-PR inhibitors based on fullerene derivatives.

  14. Formatt: Correcting protein multiple structural alignments by incorporating sequence alignment

    Daniels Noah M

    2012-10-01

    Full Text Available Abstract Background The quality of multiple protein structure alignments are usually computed and assessed based on geometric functions of the coordinates of the backbone atoms from the protein chains. These purely geometric methods do not utilize directly protein sequence similarity, and in fact, determining the proper way to incorporate sequence similarity measures into the construction and assessment of protein multiple structure alignments has proved surprisingly difficult. Results We present Formatt, a multiple structure alignment based on the Matt purely geometric multiple structure alignment program, that also takes into account sequence similarity when constructing alignments. We show that Formatt outperforms Matt and other popular structure alignment programs on the popular HOMSTRAD benchmark. For the SABMark twilight zone benchmark set that captures more remote homology, Formatt and Matt outperform other programs; depending on choice of embedded sequence aligner, Formatt produces either better sequence and structural alignments with a smaller core size than Matt, or similarly sized alignments with better sequence similarity, for a small cost in average RMSD. Conclusions Considering sequence information as well as purely geometric information seems to improve quality of multiple structure alignments, though defining what constitutes the best alignment when sequence and structural measures would suggest different alignments remains a difficult open question.

  15. Micro Manufacturing

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  16. Camber Angle Inspection for Vehicle Wheel Alignments.

    Young, Jieh-Shian; Hsu, Hong-Yi; Chuang, Chih-Yuan

    2017-02-03

    This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU)-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x -axis or z -axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ± 0.015 ∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.

  17. Camber Angle Inspection for Vehicle Wheel Alignments

    Jieh-Shian Young

    2017-02-01

    Full Text Available This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ± 0.015 ∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.

  18. Chironomus riparius exposure to fullerene-contaminated sediment results in oxidative stress and may impact life cycle parameters

    Waissi, G.C.; Bold, S.; Pakarinen, K.; Akkanen, J.; Leppänen, M.T.; Petersen, E.J.; Kukkonen, J.V.K.

    2017-01-01

    Highlights: • FullerenesC_6_0 were tested to C. riparius with acute and chronic exposures. • The rapid uptake of fullerenes by C. riparius observed after an acute experiment. • Oxidative stress was localized in tissues under microvilli layer. - Abstract: A key component of understanding the potential environmental risks of fullerenes (C_6_0) is their potential effects on benthic invertebrates. Using the sediment dwelling invertebrate Chironomus riparius we explored the effects of acute (12 h and 24 h) and chronic (10 d, 15 d, and 28 d) exposures of sediment associated fullerenes. The aims of this study were to assess the impact of exposure to C_6_0 in the sediment top layer ((0.025, 0.18 and 0.48) C_6_0 mg/cm"2) on larval growth, oxidative stress and emergence rates and to quantify larval body burdens in similarly exposed organisms. Oxidative stress localization was observed in the tissues next to the microvilli and exoskeleton through a method for identifying oxidative stress reactions generated by reactive oxygen species. Rapid intake of fullerenes was shown in acute experiments, whereas body residues decreased after chronic exposure. Transmission electron microscopy analysis revealed oxidative damage and structural changes in cells located between the lipid droplets and next to the microvilli layer in fullerene exposed samples. Fullerene associated sediments also caused changes in the emergence rate of males and females, suggesting that the cellular interactions described above or other effects from the fullerenes may influence reproduction rates.

  19. Chironomus riparius exposure to fullerene-contaminated sediment results in oxidative stress and may impact life cycle parameters

    Waissi, G.C., E-mail: greta.waissi@uef.fi [Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu (Finland); Bold, S. [GEOMAR Helmholtz Centre of Ocean for Research Kiel (Germany); Pakarinen, K.; Akkanen, J. [Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu (Finland); Leppänen, M.T. [Finnish Environment Institute, Jyväskylä (Finland); Petersen, E.J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD (United States); Kukkonen, J.V.K. [University of Jyväskylä, Department of Biological and Environmental Science, Jyväskylä (Finland)

    2017-01-15

    Highlights: • FullerenesC{sub 60} were tested to C. riparius with acute and chronic exposures. • The rapid uptake of fullerenes by C. riparius observed after an acute experiment. • Oxidative stress was localized in tissues under microvilli layer. - Abstract: A key component of understanding the potential environmental risks of fullerenes (C{sub 60}) is their potential effects on benthic invertebrates. Using the sediment dwelling invertebrate Chironomus riparius we explored the effects of acute (12 h and 24 h) and chronic (10 d, 15 d, and 28 d) exposures of sediment associated fullerenes. The aims of this study were to assess the impact of exposure to C{sub 60} in the sediment top layer ((0.025, 0.18 and 0.48) C{sub 60} mg/cm{sup 2}) on larval growth, oxidative stress and emergence rates and to quantify larval body burdens in similarly exposed organisms. Oxidative stress localization was observed in the tissues next to the microvilli and exoskeleton through a method for identifying oxidative stress reactions generated by reactive oxygen species. Rapid intake of fullerenes was shown in acute experiments, whereas body residues decreased after chronic exposure. Transmission electron microscopy analysis revealed oxidative damage and structural changes in cells located between the lipid droplets and next to the microvilli layer in fullerene exposed samples. Fullerene associated sediments also caused changes in the emergence rate of males and females, suggesting that the cellular interactions described above or other effects from the fullerenes may influence reproduction rates.

  20. Growth and Potential Damage of Human Bone-Derived Cells on Fresh and Aged Fullerene C60 Films

    Jiri Vacik

    2013-04-01

    Full Text Available Fullerenes are nanoparticles composed of carbon atoms arranged in a spherical hollow cage-like structure. Numerous studies have evaluated the therapeutic potential of fullerene derivates against oxidative stress-associated conditions, including the prevention or treatment of arthritis. On the other hand, fullerenes are not only able to quench, but also to generate harmful reactive oxygen species. The reactivity of fullerenes may change in time due to the oxidation and polymerization of fullerenes in an air atmosphere. In this study, we therefore tested the dependence between the age of fullerene films (from one week to one year and the proliferation, viability and metabolic activity of human osteosarcoma cells (lines MG-63 and U-2 OS. We also monitored potential membrane and DNA damage and morphological changes of the cells. After seven days of cultivation, we did not observe any cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation. Furthermore, there was no increased level of DNA damage. The increasing age of the fullerene films did not cause enhancement of cytotoxicity. On the contrary, it resulted in an improvement in the properties of these materials, which are more suitable for cell cultivation. Therefore, fullerene films could be considered as a promising material with potential use as a bioactive coating of cell carriers for bone tissue engineering.

  1. Growth and potential damage of human bone-derived cells on fresh and aged fullerene c60 films.

    Kopova, Ivana; Bacakova, Lucie; Lavrentiev, Vasily; Vacik, Jiri

    2013-04-26

    Fullerenes are nanoparticles composed of carbon atoms arranged in a spherical hollow cage-like structure. Numerous studies have evaluated the therapeutic potential of fullerene derivates against oxidative stress-associated conditions, including the prevention or treatment of arthritis. On the other hand, fullerenes are not only able to quench, but also to generate harmful reactive oxygen species. The reactivity of fullerenes may change in time due to the oxidation and polymerization of fullerenes in an air atmosphere. In this study, we therefore tested the dependence between the age of fullerene films (from one week to one year) and the proliferation, viability and metabolic activity of human osteosarcoma cells (lines MG-63 and U-2 OS). We also monitored potential membrane and DNA damage and morphological changes of the cells. After seven days of cultivation, we did not observe any cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation. Furthermore, there was no increased level of DNA damage. The increasing age of the fullerene films did not cause enhancement of cytotoxicity. On the contrary, it resulted in an improvement in the properties of these materials, which are more suitable for cell cultivation. Therefore, fullerene films could be considered as a promising material with potential use as a bioactive coating of cell carriers for bone tissue engineering.

  2. Alignment of concerns

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn

    E-health promises to enable and support active patient participation in chronic care. However, these fairly recent innovations are complicated matters and emphasize significant challenges, such as patients’ and clinicians’ different ways of conceptualizing disease and illness. Informed by insight...... from medical phenomenology and our own empirical work in telemonitoring and medical care of heart patients, we propose a design rationale for e-health systems conceptualized as the ‘alignment of concerns’....

  3. Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate.

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-12-06

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  4. Effect of linear alcohol molecular size on the self-assembly of fullerene whiskers

    Amer, Maher S.; Todd, T. Kyle; Busbee, John D.

    2011-01-01

    Highlights: → The longer the alcohol molecule, the shorter the length of the assembled whisker. → Interaction between alcohol and fullerene solvent is the key factor. → The stronger the alcohol/solvent interaction, the longer the whisker. - Abstract: The recent development of self-assembled fullerene whiskers and wires has created an enormous potential and resolved a serious challenge for utilizing such unique class of carbon material in advanced nano-scale, molecular-based electronic, optical, and thermal devices. In this paper we investigate, the self-assembly of C 60 molecules into one-dimensional whiskers using a series of linear alcohols H(CH 2 ) n OH, with n changing from 1 (methanol) to 3 (isopropyl alcohol), to elucidate the effect of alcohol molecular size on the size distribution of the self-assemble fullerene whiskers. Our results show that the length of the produced fullerene whiskers is affected by the molecular size of the alcohol used in the process. The crucial role played by solvent/alcohol interaction in the assembly process is discussed. In addition, Raman spectroscopy measurements support the notion that the self-assembled whiskers are primarily held by depletion forces and no evidence of fullerene polymerization was observed.

  5. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.

    Maili Lehto

    Full Text Available In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.

  6. Transformation of methano[60]fullerenes in dihydrofullerofuranes induced by electron transfer

    Yanilkin, V.V.; Toropchina, A.V.; Morozov, V.I.; Nastapova, N.V.; Gubskaya, V.P.; Sibgatullina, F.G.; Azancheev, N.M.; Efremov, Yu.Ya.; Nuretdinov, I.A.

    2004-01-01

    The electrochemical reduction of methano[60]fullerenes (61-acetyl-61-(diethoxyphosphoryl)methano-60-fullerene 1, 61-acetyl-61-(diisopropoxyphosphoryl)methano-60-fullerene 2, 61-(2,2-diethoxyacetyl)-61-(diethoxy-phosphoryl)methano-60-fullerene 3, 61-phenyl-61-(1,2-dioxo-3,3-dimethyl-buthyl)methano-60-fullerene 4) in o-dichlorobenzene-DMF (3:1 v/v)/0.1 M Bu 4 NBF 4 on a glass-carbon electrode proceeds in a few steps. The reversible transfer of the first electron results in the formation of radical anions registered by ESR method. The subsequent reduction proceeds differently because of the various stability of anionic intermediates. The radical anions of the methanofullerenes 3 and 4 are less stable than the radical anions of compounds 1 and 2 and less stable than the radical anions of methanofullerenes, which contain an ester and/or a phosphonate group. The opening of a cyclopropane ring occurs during the stage of the formation of radical trianions of methanofullerenes 1, 2. The same process for compounds 3, 4 proceeds slowly in radical anions and fast in dianions. The opening of cyclopropane ring for all compounds is not accompanied by the elimination of methanogroup and results in the formation of dihydrofullerenofurane derivatives. The transformation of methanofullerene 3 induced by single electron transfer proceeds via a chain reaction mechanism

  7. Alignment at the ESRF

    Martin, D.; Levet, N.; Gatta, G.

    1999-01-01

    The ESRF Survey and Alignment group is responsible for the installation, control and periodic realignment of the accelerators and experiments which produce high quality x-rays used by scientists from Europe and around the world. Alignment tolerances are typically less than one millimetre and often in the order of several micrometers. The group is composed of one engineer, five highly trained survey technicians, one electronic and one computer technician. This team is fortified during peak periods by technicians from an external survey company. First an overview and comparative study of the main large-scale survey instrumentation and methods used by the group is made. Secondly a discussion of long term deformation on the ESRF site is presented. This is followed by presentation of the methods used in the realignment of the various machines. Two important aspects of our work, beamline and front-end alignment, and the so-called machine exotic devices are briefly discussed. Finally, the ESRF calibration bench is presented. (authors)

  8. Seeking the perfect alignment

    2002-01-01

    The first full-scale tests of the ATLAS Muon Spectrometer are about to begin in Prévessin. The set-up includes several layers of Monitored Drift Tubes Chambers (MDTs) and will allow tests of the performance of the detectors and of their highly accurate alignment system.   Monitored Drift Chambers in Building 887 in Prévessin, where they are just about to be tested. Muon chambers are keeping the ATLAS Muon Spectrometer team quite busy this summer. Now that most people go on holiday, the beam and alignment tests for these chambers are just starting. These chambers will measure with high accuracy the momentum of high-energy muons, and this implies very demanding requirements for their alignment. The MDT chambers consist of drift tubes, which are gas-filled metal tubes, 3 cm in diameter, with wires running down their axes. With high voltage between the wire and the tube wall, the ionisation due to traversing muons is detected as electrical pulses. With careful timing of the pulses, the position of the muon t...

  9. The Role of Electron Affinity in Determining Whether Fullerenes Catalyze or Inhibit Photooxidation of Polymers for Solar Cells

    Hoke, Eric T.

    2012-05-21

    Understanding the stability and degradation mechanisms of organic solar materials is critically important to achieving long device lifetimes. Here, an investigation of the photodegradation of polymer:fullerene blend fi lms exposed to ambient conditions for a variety of polymer and fullerene derivative combinations is presented. Despite the wide range in polymer stabilities to photodegradation, the rate of irreversible polymer photobleaching in blend fi lms is found to consistently and dramatically increase with decreasing electron affi nity of the fullerene derivative. Furthermore, blends containing fullerenes with the smallest electron affi nities photobleached at a faster rate than fi lms of the pure polymer. These observations can be explained by a mechanism where both the polymer and fullerene donate photogenerated electrons to diatomic oxygen to form the superoxide radical anion which degrades the polymer. © 2012 WILEY-VCH Verlag GmbH & Co.

  10. The CMS Muon System Alignment

    Martinez Ruiz-Del-Arbol, P

    2009-01-01

    The alignment of the muon system of CMS is performed using different techniques: photogrammetry measurements, optical alignment and alignment with tracks. For track-based alignment, several methods are employed, ranging from a hit and impact point (HIP) algorithm and a procedure exploiting chamber overlaps to a global fit method based on the Millepede approach. For start-up alignment as long as available integrated luminosity is still significantly limiting the size of the muon sample from collisions, cosmic muon and beam halo signatures play a very strong role. During the last commissioning runs in 2008 the first aligned geometries have been produced and validated with data. The CMS offline computing infrastructure has been used in order to perform improved reconstructions. We present the computational aspects related to the calculation of alignment constants at the CERN Analysis Facility (CAF), the production and population of databases and the validation and performance in the official reconstruction. Also...

  11. Clear aligners in orthodontic treatment.

    Weir, T

    2017-03-01

    Since the introduction of the Tooth Positioner (TP Orthodontics) in 1944, removable appliances analogous to clear aligners have been employed for mild to moderate orthodontic tooth movements. Clear aligner therapy has been a part of orthodontic practice for decades, but has, particularly since the introduction of Invisalign appliances (Align Technology) in 1998, become an increasingly common addition to the orthodontic armamentarium. An internet search reveals at least 27 different clear aligner products currently on offer for orthodontic treatment. The present paper will highlight the increasing popularity of clear aligner appliances, as well as the clinical scope and the limitations of aligner therapy in general. Further, the paper will outline the differences between the various types of clear aligner products currently available. © 2017 Australian Dental Association.

  12. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms.

    Pilehvar, Sanaz; De Wael, Karolien

    2015-11-23

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

  13. Electrochemical oxidation of sulfites by DWCNTs, MWCNTs, higher fullerenes and manganese

    Uzun, Dzhamal; Pchelarov, George; Dimitrov, Ognian; Vassilev, Sasho; Obretenov, Willi; Petrov, Konstantin

    2018-03-01

    Different electrocatalysts were tested for oxidation of sulfites to sulfates, namely, manganese thin films deposited on fullerenes and carbon nanotubes. The results presented clearly show that electrodes containing HFs (higher fullerenes), DWCNTs (double-wall carbon nanotubes) and manganese acetate are effective catalysts in S/O2 fuel cells. HFs and DWCNTs have high catalytic activity and can be employed as standalone catalysts. Manganese was deposited on DWCNTs, HFs and fullerenes C60/C70 by a thermal process. The electrocatalysts were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical testing was carried out by plotting the E/V polarization curve. The polarization curves of the electrodes composed of pristine DWCNTs showed the lowest overpotentials.

  14. Spectra of elementary excitations of fullerenes C60 and electron irradiation effect

    Gordeev, Yu.S.; Mikushkin, V.M.; Shnitov, V.V.

    2000-01-01

    The electron-stimulated changes in the spectra of the fullerenes C 60 elementary excitations are determined. They are manifested in decreasing the π-plasmon energy, the forbidden zone width, the HOMO-LUMO transition energy and also in smoothing the corresponding peculiarities of the spectra. The observed red shifts are connected with collectivization of the part of the π-electrons, formation of chemically-bound neighbouring molecules (polymerization) and with the corresponding increase in the part of the sp 3 -hybridized electrons. The spectra of the characteristic energy losses of the fullerene electrons, unperturbed by the polymerization process, are measured. The multipole structure of the (σ + π) plasmon and the exciton peculiarity, which manifests high sensitivity to the electron impact and may be used for the fullerene initial structure characterization, is identified [ru

  15. Naming polyhedra by general face-spirals - theory and applications to fullerenes and other polyhedral molecules

    Wirz, Lukas; Schwerdtfeger, Peter; Avery, James Emil

    2018-01-01

    We present a general face-spiral algorithm for cubic polyhedral graphs (including fullerenes and fulleroids), and extend it to the full class of all polyhedral graphs by way of the leapfrog transform. This yields compact canonical representations of polyhedra with a simple and intuitive geometrical...... polyhedral molecules, and an especially compact form for the special class of fullerenes. A unique numbering of vertices is obtained as a byproduct of the spiral algorithm. This is required to denote modifications of the parent cage in IUPAC naming schemes. Similarly, the symmetry group of the molecule can...... be found together with the canonical general spiral at negligible cost. The algorithm is fully compatible with the classical spiral algorithm developed by Manolopoulos for fullerenes, i. e., classical spirals are accepted as input, and spiralable graphs lead to identical output. We prove that the algorithm...

  16. Single-size thermometric measurements on a size distribution of neutral fullerenes.

    Cauchy, C; Bakker, J M; Huismans, Y; Rouzée, A; Redlich, B; van der Meer, A F G; Bordas, C; Vrakking, M J J; Lépine, F

    2013-05-10

    We present measurements of the velocity distribution of electrons emitted from mass-selected neutral fullerenes, performed at the intracavity free electron laser FELICE. We make use of mass-specific vibrational resonances in the infrared domain to selectively heat up one out of a distribution of several fullerene species. Efficient energy redistribution leads to decay via thermionic emission. Time-resolved electron kinetic energy distributions measured give information on the decay rate of the selected fullerene. This method is generally applicable to all neutral species that exhibit thermionic emission and provides a unique tool to study the stability of mass-selected neutral clusters and molecules that are only available as part of a size distribution.

  17. A Molecular-Scale Understanding of Cohesion and Fracture in P3HT:Fullerene Blends

    Tummala, Naga Rajesh

    2015-04-21

    Quantifying cohesion and understanding fracture phenomena in thin-film electronic devices are necessary for improved materials design and processing criteria. For organic photovoltaics (OPVs), the cohesion of the photoactive layer portends its mechanical flexibility, reliability, and lifetime. Here, the molecular mechanism for the initiation of cohesive failure in bulk heterojunction (BHJ) OPV active layers derived from the semiconducting polymer poly-(3-hexylthiophene) [P3HT] and two mono-substituted fullerenes is examined experimentally and through molecular-dynamics simulations. The results detail how, under identical conditions, cohesion significantly changes due to minor variations in the fullerene adduct functionality, an important materials consideration that needs to be taken into account across fields where soluble fullerene derivatives are used.

  18. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    Alam, Shahidul

    2018-04-13

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  19. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Chen, J.Q.; Meeker, D.L. [The Physics Program, University of Texas at Dallas, Richardson, Texas 75083 (United States); Barashkov, N.N. [Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C{sub 60} in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C{sub 60} induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation. {copyright} {ital 1997 American Institute of Physics.}

  20. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Chen, J. Q.; Meeker, D. L.; Barashkov, N. N.

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C60 in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C60 induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation.

  1. Analysis of Co-Tunneling Current in Fullerene Single-Electron Transistor

    KhademHosseini, Vahideh; Dideban, Daryoosh; Ahmadi, MohammadTaghi; Ismail, Razali

    2018-05-01

    Single-electron transistors (SETs) are nano devices which can be used in low-power electronic systems. They operate based on coulomb blockade effect. This phenomenon controls single-electron tunneling and it switches the current in SET. On the other hand, co-tunneling process increases leakage current, so it reduces main current and reliability of SET. Due to co-tunneling phenomenon, main characteristics of fullerene SET with multiple islands are modelled in this research. Its performance is compared with silicon SET and consequently, research result reports that fullerene SET has lower leakage current and higher reliability than silicon counterpart. Based on the presented model, lower co-tunneling current is achieved by selection of fullerene as SET island material which leads to smaller value of the leakage current. Moreover, island length and the number of islands can affect on co-tunneling and then they tune the current flow in SET.

  2. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    Alam, Shahidul; Meitzner, Rico; Nwadiaru, Ogechi V.; Friebe, Christian; Cann, Jonathan; Ahner, Johannes; Ulbricht, Christoph; Kan, Zhipeng; Hö ppener, Stephanie; Hager, Martin D.; Egbe, Daniel A. M.; Welch, Gregory C.; Laquai, Fré dé ric; Schubert, Ulrich S.; Hoppe, Harald

    2018-01-01

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  3. Liquid phase deposition of silica: Thin films, colloids and fullerenes

    Whitsitt, Elizabeth A.

    Little research has been done to explore liquid phase deposition (LPD) of silica on non-planar substrates. This thesis proves that the seeded growth of silica colloids from fullerene and surfactant micelles is possible via LPD, as is the coating of individual single walled carbon nanotubes (SWNTs) and carbon fibers. Working on the premise that a molecular growth mechanism (versus colloidal/gel deposition) is valid for LPD, nanostructured substrates and specific chemical functional groups should act as "seeds," or templates, for silica growth. Seeded growth is confirmed by reactions of the growth solution with a range of surfactants and with materials with distinctive surface moieties. LPD promises lower production costs and environmental impact as compared to present methods of coating technology, because it is an inherently simple process, using low temperatures and inexpensive air-stable reactants. Silica is ubiquitous in materials science. Its applications range from thixotropic additives for paint to gate dielectrics in the semiconductor industry. Nano-structured coatings and thin films are integral in today's electronics industry and will become more vital as the size of electronics shrinks. With the incorporation of nanoparticles in future devices, the ability to deposit quality coatings with finely tuned properties becomes paramount. The methods developed herein have applications in fabricating insulators for use in the future molecular scale electronics industry. Additionally, these silica nanoparticles have applications as templates for use in photonics and fuel cell membrane production and lend strength and durability to composites.

  4. Polaron pair mediated triplet generation in polymer/fullerene blends

    Dimitrov, Stoichko D.; Wheeler, Scot; Niedzialek, Dorota; Schroeder, Bob C.; Utzat, Hendrik; Frost, Jarvist M.; Yao, Jizhong; Gillett, Alexander; Tuladhar, Pabitra S.; McCulloch, Iain; Nelson, Jenny; Durrant, James R.

    2015-01-01

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  5. Fullerenes, carbon nanotubes, and graphene for molecular electronics.

    Pinzón, Julio R; Villalta-Cerdas, Adrián; Echegoyen, Luis

    2012-01-01

    With the constant growing complexity of electronic devices, the top-down approach used with silicon based technology is facing both technological and physical challenges. Carbon based nanomaterials are good candidates to be used in the construction of electronic circuitry using a bottom-up approach, because they have semiconductor properties and dimensions within the required physical limit to establish electrical connections. The unique electronic properties of fullerenes for example, have allowed the construction of molecular rectifiers and transistors that can operate with more than two logical states. Carbon nanotubes have shown their potential to be used in the construction of molecular wires and FET transistors that can operate in the THz frequency range. On the other hand, graphene is not only the most promising material for replacing ITO in the construction of transparent electrodes but it has also shown quantum Hall effect and conductance properties that depend on the edges or chemical doping. The purpose of this review is to present recent developments on the utilization carbon nanomaterials in molecular electronics.

  6. Functionalization of [60] fullerene with butadienes: A DFT study

    Beheshtian, Javad; Peyghan, Ali Ahmadi; Bagheri, Zargham

    2012-01-01

    Highlights: ► Reaction of C 60 with 2,3-dimethylbutadiene (DMB) is theoretically investigated. ► The HOMO of DMB interacts with the LUMO of C 60 via a Diels Alder reaction. ► Work function of C 60 is decreased by increasing the number of DMB molecules. ► The reaction may facilitate the field electron emission from C 60 surface. - Abstract: We have performed a density functional study on the reaction of C 60 fullerene with one to six 2,3-dimethylbutadiene (DMB) molecule(s) which has previously been investigated by experimental researchers. Based on the obtained results, it has been found that (1) the reaction is regioselective, so that the DMB molecule prefers to be adsorbed atop a C-C bond which is shared between two hexagonal rings of C 60 (in good agreement with the experimental results) with reaction energy of −0.98 eV; (2) the HOMO of DMB interacts with the LUMO of C 60 via a Diels Alder reaction; (3) the energy of reaction and work function of C 60 are decreased by increasing the number of adsorbed DMB molecules; (4) the HOMO–LUMO energy gap of C 60 is slightly changed upon the reaction; (5) the reaction reduces the potential barrier of the field electron emission of C 60 surface.

  7. Degradation of interface between boron subphthalocyanine chloride and fullerene

    Lo, Ming-Fai; Guan, Zhi-Qiang [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Chan, Chiu-Yee [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Ng, Tsz-Wai, E-mail: tszwaing@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); City University of Hong Kong Shenzhen Research Institute, Shenzhen (China); Lee, Chun-Sing, E-mail: apcslee@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); City University of Hong Kong Shenzhen Research Institute, Shenzhen (China)

    2015-10-01

    Highlights: • SubPc/C{sub 60} device shows a fast Voc decade upon operation. • The HOMO-LUMO offset at a SubPc/C60 heterojunction decreases from 1.66 to 1.45 eV upon aging in UHV. • It is caused by internal deterioration of the donor/acceptor interface. - Abstract: Apart from external environmental factors, we herein show with ultra-violet photoemission spectroscopy (UPS) studies that degradation in organic photovoltaic (OPV) devices can also be caused by internal deterioration of the donor/acceptor interface. Albeit with impressive initial open circuit voltage (Voc), boron subphthalocyanine chloride (SubPc)/fullerene (C{sub 60}) device shows a fast Voc decade upon operation. UPS results show that the energy offset between the highest occupied molecular orbit (HOMO) of SubPc and the lowest unoccupied molecular orbit (LUMO) of C{sub 60} is reduced from 1.66 to 1.45 eV after aging in ultra-high vacuum (UHV) condition. This result is consistent with the change in built-in voltage of the corresponding device upon operation. The related charge interaction and degradation mechanism in the SubPc/C{sub 60} device are discussed.

  8. Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals

    Nikolic, Nadezda; Vranjes-Duric, Sanja; Jankovic, Drina; Dokic, Divna; Mirkovic, Marija; Bibic, Natasa; Trajkovic, Vladimir

    2009-01-01

    The present study describes for the first time a procedure for the radiolabeling of fullerene (C 60 ) nanocrystals (nanoC 60 ) with Na 125 I, as well as the biodistribution of radiolabeled nanoC 60 ( 125 I-nanoC 60 ). The solvent exchange method with tetrahydrofuran was used to make colloidal water suspensions of radiolabeled nanoC 60 particles. The radiolabeling procedure with the addition of Na 125 I to tetrahydrofuran during dissolution of C 60 gave a higher radiochemical yield of radiolabeled nanoC 60 particles in comparison to the second option, in which Na 125 I was added after C 60 was dissolved. Using photon correlation spectroscopy and transmission electron microscopy, 125 I-nanoC 60 particles were found to have a crystalline structure and a mean diameter of 200-250 nm. The 125 I-nanoC 60 had a particularly high affinity for human serum albumin, displaying 95% binding efficiency after 1 h. Biodistribution studies of 125 I-nanoC 60 in rats indicated significant differences in tissue accumulation of 125 I-nanoC 60 and the radioactive tracer Na 125 I. The higher accumulation of radiolabeled nanoC 60 was observed in liver and spleen, while accumulation in thyroid, stomach, lungs and intestines was significantly lower in comparison to Na 125 I. In addition to being useful for testing the biological distribution of nanoC 60 , the described radiolabeling procedure might have possible applications in cancer radiotherapy.

  9. Degradation of interface between boron subphthalocyanine chloride and fullerene

    Lo, Ming-Fai; Guan, Zhi-Qiang; Chan, Chiu-Yee; Ng, Tsz-Wai; Lee, Chun-Sing

    2015-01-01

    Highlights: • SubPc/C 60 device shows a fast Voc decade upon operation. • The HOMO-LUMO offset at a SubPc/C60 heterojunction decreases from 1.66 to 1.45 eV upon aging in UHV. • It is caused by internal deterioration of the donor/acceptor interface. - Abstract: Apart from external environmental factors, we herein show with ultra-violet photoemission spectroscopy (UPS) studies that degradation in organic photovoltaic (OPV) devices can also be caused by internal deterioration of the donor/acceptor interface. Albeit with impressive initial open circuit voltage (Voc), boron subphthalocyanine chloride (SubPc)/fullerene (C 60 ) device shows a fast Voc decade upon operation. UPS results show that the energy offset between the highest occupied molecular orbit (HOMO) of SubPc and the lowest unoccupied molecular orbit (LUMO) of C 60 is reduced from 1.66 to 1.45 eV after aging in ultra-high vacuum (UHV) condition. This result is consistent with the change in built-in voltage of the corresponding device upon operation. The related charge interaction and degradation mechanism in the SubPc/C 60 device are discussed.

  10. Analysis of TOF-SIMS spectra from fullerene compounds

    Kato, N. [Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1, Kichijoji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)], E-mail: kato-nobuhiko@st.seikei.ac.jp; Yamashita, Y. [Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1, Kichijoji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan); Iida, S.; Sanada, N. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Kudo, M. [Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1, Kichijoji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)

    2008-12-15

    We analyzed TOF-SIMS spectra obtained from three different size of fullerenes (C{sub 60}, C{sub 70} and C{sub 84}) by using Ga{sup +}, Au{sup +} and Au{sub 3}{sup +} primary ion beams and investigated the fragmentation patterns, the enhancement of secondary ion yields and the restraint of fragmentation by using cluster primary ion beams compared with monoatomic primary ion beams. In the TOS-SIMS spectra from C{sub 70} and C{sub 84}, it was found that a fragment ion, identified as C{sub 60}{sup +} (m/z = 720), showed a relatively high intensity compared with that of other fragment ions related to C{sub 2} depletion. It was also found that the Au{sub 3}{sup +} bombardment caused intensity enhancement of intact molecules (C{sub 60}{sup +}, C{sub 70}{sup +} and C{sub 84}{sup +}) and restrained the fragmentation due to C{sub 2} depletion.

  11. Polaron pair mediated triplet generation in polymer/fullerene blends

    Dimitrov, Stoichko D.

    2015-03-04

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  12. Dynamically fluctuating electric dipole moments in fullerene-based magnets.

    Kambe, Takashi; Oshima, Kokichi

    2014-09-19

    We report here the direct evidence of the existence of a permanent electric dipole moment in both crystal phases of a fullerene-based magnet--the ferromagnetic α-phase and the antiferromagnetic α'-phase of tetra-kis-(dimethylamino)-ethylene-C60 (TDAE-C60)--as determined by dielectric measurements. We propose that the permanent electric dipole originates from the pairing of a TDAE molecule with surrounding C60 molecules. The two polymorphs exhibit clear differences in their dielectric responses at room temperature and during the freezing process with dynamically fluctuating electric dipole moments, although no difference in their room-temperature structures has been previously observed. This result implies that two polymorphs have different local environment around the molecules. In particular, the ferromagnetism of the α-phase is founded on the homogeneous molecule displacement and orientational ordering. The formation of the different phases with respect to the different rotational states in the Jahn-Teller distorted C60s is also discussed.

  13. Atomic nitrogen encapsulated in fullerenes: realization of a chemical Faraday cage

    Lips, K.

    2000-01-01

    Fullerenes, C 60 and C 70 , are ideal containers for atomic nitrogen. We will show by electron paramagnetic resonance (EPR) experiments that nitrogen in C 60 keeps its atomic ground state configuration and resides in the center of the cage. This is the first time that atomic nitrogen is stabilized at ambient conditions. The inert shell of the fullerene protects the highly reactive nitrogen from undergoing chemical reactions with the surroundings. The fullerene cage is the chemical analogue of the Faraday cage in case of electrical fields, i.e. it shields off the chemical reactivity. As for the free nitrogen atom, the spins of the three p-electrons of nitrogen in C 60 are parallel (S = 3/2) and the atom has spherical symmetry. Due to the center position of nitrogen in C 60 , extremely sharp EPR lines are observed. This reflects the absence of a strong host-guest interaction and shows that the individuality of nitrogen in the fullerenes is preserved. Further evidence for the almost interaction-free suspension of nitrogen in the fullerene cages is provided by g-factor measurements. These investigations show that magnetic shielding of the host molecules can account for the observed differences between N rate at C 60 and N rate at C 70 . The fullerene cage can be chemically modified without destroying the endohedral complex. The chemical modifications change the symmetry of the molecule which is observed through an additional fine structure in the EPR spectrum. Influences of the modifications on the stability of N rate at C 60 will be discussed. (orig.)

  14. Micro Programming

    Spanjersberg , Herman

    2012-01-01

    International audience; In the 1970s a need arose to perform special arithmetic operations on minicomputers much more quickly than had been possible in the past. This paper tells the story of why micro programming was needed for special arithmetic operations on mini computers in the 1970s and how it was implemented. The paper tells how the laboratory in which the first experiment took place had a PDP-9 minicomputer from Digital Equipment Corporation and how the author, with several colleagues...

  15. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma

    Watanabe, Tadashi [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Nakamura, Shigeo [Department of Chemistry, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023 (Japan); Ono, Toshiya; Ui, Sadaharu [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu 400-8511 (Japan); Yagi, Syota; Kagawa, Hiroki [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Watanabe, Hisami [Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213 (Japan); Ohe, Tomoyuki; Mashino, Tadahiko [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2014-08-15

    Highlights: • Seven fullerenes were evaluated in terms of their cytotoxic effects on B-lymphomas. • Pyrrolidinium fullerene induced apoptosis of KSHV-infected B-lymphoma PEL cells. • The activation of Akt is essential for PEL cell survival. • Pyrrolidinium fullerene activated caspase-9 by inactivating Akt in PEL cells. • Pyrrolidinium fullerene have potential as novel drugs for the treatment of PEL. - Abstract: Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin’s B-cell lymphoma and is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. In general, PEL cells are derived from post-germinal center B-cells and are infected with KSHV. To evaluate potential novel anti-tumor compounds against KSHV-associated PEL, seven water-soluble fullerene derivatives were evaluated as potential drug candidates for the treatment of PEL. Herein, we discovered a pyrrolidinium fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide, which induced apoptosis of PEL cells via a novel mechanism, the caspase-9 activation by suppressing the caspase-9 phosphorylation, causing caspase-9 inactivation. Pyrrolidinium fullerene treatment reduced significantly the viability of PEL cells compared with KSHV-uninfected lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9 via procaspase-9 cleavage. Pyrrolidinium fullerene additionally reduced the Ser473 phosphorylation of Akt and Ser196 of procaspase-9. Ser473-phosphorylated Akt (i.e., activated Akt) phosphorylates Ser196 in procaspase-9, causing inactivation of procaspase-9. We also demonstrated that Akt inhibitors suppressed the proliferation of PEL cells compared with KSHV-uninfected cells. Our data therefore suggest that Akt activation is essential for cell survival in PEL and a pyrrolidinium fullerene derivative induced apoptosis by activating caspase-9 via suppression of Akt in PEL cells. In addition, we evaluated

  16. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma

    Watanabe, Tadashi; Nakamura, Shigeo; Ono, Toshiya; Ui, Sadaharu; Yagi, Syota; Kagawa, Hiroki; Watanabe, Hisami; Ohe, Tomoyuki; Mashino, Tadahiko; Fujimuro, Masahiro

    2014-01-01

    Highlights: • Seven fullerenes were evaluated in terms of their cytotoxic effects on B-lymphomas. • Pyrrolidinium fullerene induced apoptosis of KSHV-infected B-lymphoma PEL cells. • The activation of Akt is essential for PEL cell survival. • Pyrrolidinium fullerene activated caspase-9 by inactivating Akt in PEL cells. • Pyrrolidinium fullerene have potential as novel drugs for the treatment of PEL. - Abstract: Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin’s B-cell lymphoma and is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. In general, PEL cells are derived from post-germinal center B-cells and are infected with KSHV. To evaluate potential novel anti-tumor compounds against KSHV-associated PEL, seven water-soluble fullerene derivatives were evaluated as potential drug candidates for the treatment of PEL. Herein, we discovered a pyrrolidinium fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide, which induced apoptosis of PEL cells via a novel mechanism, the caspase-9 activation by suppressing the caspase-9 phosphorylation, causing caspase-9 inactivation. Pyrrolidinium fullerene treatment reduced significantly the viability of PEL cells compared with KSHV-uninfected lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9 via procaspase-9 cleavage. Pyrrolidinium fullerene additionally reduced the Ser473 phosphorylation of Akt and Ser196 of procaspase-9. Ser473-phosphorylated Akt (i.e., activated Akt) phosphorylates Ser196 in procaspase-9, causing inactivation of procaspase-9. We also demonstrated that Akt inhibitors suppressed the proliferation of PEL cells compared with KSHV-uninfected cells. Our data therefore suggest that Akt activation is essential for cell survival in PEL and a pyrrolidinium fullerene derivative induced apoptosis by activating caspase-9 via suppression of Akt in PEL cells. In addition, we evaluated

  17. The effect of molecular geometry on the photovoltaic property of diketopyrrolopyrrole based non-fullerene acceptors

    Zhang, Fei; Brandt, Rasmus Guldbæk; Gu, Zhuowei

    2015-01-01

    The non-fullerene acceptors with different geometric structures have great impact on light absorption, exciton dissociation, and charge transportation in the active layer of organic solar cells (OSCs). In this paper, we designed and synthesized two diketopyrrolopyrrole based non-fullerene acceptors......) while compared to Ph(DPP)2. Therefore, the resulting P3HT:PhDMe(DPP)2 based OSCs shows a better power conversion efficiency (PCE) of 0.65%, higher than that from P3HT:Ph(DPP)2 based OSCs (0.48%), which can be ascribed to more efficient exciton dissociation and electron transportation in the active layer...

  18. Preparation and tribology properties of water-soluble fullerene derivative nanoball

    Guichang Jiang

    2017-02-01

    Full Text Available Water-soluble fullerene derivatives were synthesized via radical polymerization. They are completely soluble in water, yielding a clear brown solution. The products were characterized by FTIR, UV–Vis, 1H-NMR, 13CNMR, GPC, TGA, and SEM. Four-ball tests show that the addition of a certain concentration of the fullerene derivatives to base stock (2 wt.% triethanolamine aqueous solution can effectively increase both the load-carrying capacity (PB value, and the resistance to wear. SEM observations confirm the additive results in a reduced diameter of the wear scar and decreased wear.

  19. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Polymerized phase and amorphous diamond synthesized from C60 fullerene by shock compression

    Niwase, K.; Homae, T.; Nakamura, K.G.; Kondo, K.

    2006-01-01

    C 60 fullerene films were shock compressed to 23 and 52GPa. Both the recovered samples exhibit fracture into platelets and broad photoluminescence, and intensity of these increases with increasing pressure. At 23GPa, a characteristic single broad band appears at 1560-1570cm -1 , which is similar to the one found for three-dimensional (3D) polymerized C 60 fullerene under high-pressure-high-temperature treatment. At 52GPa, on the other hand, the single broad band has disappeared and a diamond peak sometimes appears, depending on platelets

  1. Characterization of the Structural, Mechanical, and Electronic Properties of Fullerene Mixtures: A Molecular Simulations Description

    Tummala, Naga Rajesh

    2017-10-06

    We investigate mixtures of fullerenes and fullerene derivatives, the most commonly used electron accepting materials in organic solar cells, by using a combination of molecular dynamics and density functional theory methods. Our goal is to describe how mixing affects the molecular packing, mechanical properties, and electronic parameters (site energy disorder, electronic couplings) of interest for solar-cell applications. Specifically, we consider mixtures of: (i) C60 and C70; (ii) C60, C70, and C84, and (iii) PC61BM and PC71BM.

  2. Fullerene-containing polymeric stars in bulk and solution by neutron spin-echo

    Lebedev, V T; Toeroek, G; Cser, L; Bershtein, V A; Zgonnik, V N; Melenevskaya, E Y; Vinogradova, L V

    2002-01-01

    Stars with C sub 6 sub 0 fullerene core and poly (styrene) (PS) arms have been studied in benzene and in the bulk by neutron spin echo (NSE). Behaviours of stars (six arms, each with a mass M=5.10 sup 3) at momentum transfer q=0.2-0.6 nm sup - sup 1 in the time range t=0.01-20 ns at temperatures T=20-60 C were compared with dynamics of free PS chains. Displaying depressed molecular mobility, the stars did not obey the usual dynamic Zimm or Rouse model. The fullerene polymer interaction at a specific molecular architecture results in oscillating dynamics. (orig.)

  3. Structure of fullerene aggregates in pyridine/water solutions by small-angle neutron scattering

    Aksenov, V.L.; Belushkin, A.V.; Avdeev, M.V.; Rosta, L.; Mihailovic, D.; Mrzel, A.; Serdyuk, I.N.; Timchenko, A.A.

    2001-01-01

    Results of small-angle neutron scattering experiments on fullerenes (C 60 ) in pyridine/water solutions are reported. They confirm conclusions of the previous studies, in particular, dynamic light scattering experiments. Aggregates with characteristic radius of about 20 nm are formed in the solutions. The contrast variation using different combinations of protonated/deuterated components (water and pyridine) of the solutions points to the small pyridine content inside the aggregates. This fact testifies that the aggregates consist of a massive fullerene core covered by a thin pyridine shell

  4. Theory of normal and superconducting properties of fullerene-based solids

    Cohen, M.L.

    1992-10-01

    Recent experiments on the normal-state and superconducting properties of fullerene-based solids are used to constrain the proposal theories of the electronic nature of these materials. In general, models of superconductivity based on electron pairing induced by phonons are consistent with electronic band theory. The latter experiments also yield estimates of the parameters characterizing these type H superconductors. It is argued that, at this point, a ''standard model'' of phonons interacting with itinerant electrons may be a good first approximation for explaining the properties of the metallic fullerenes

  5. Pareto optimal pairwise sequence alignment.

    DeRonne, Kevin W; Karypis, George

    2013-01-01

    Sequence alignment using evolutionary profiles is a commonly employed tool when investigating a protein. Many profile-profile scoring functions have been developed for use in such alignments, but there has not yet been a comprehensive study of Pareto optimal pairwise alignments for combining multiple such functions. We show that the problem of generating Pareto optimal pairwise alignments has an optimal substructure property, and develop an efficient algorithm for generating Pareto optimal frontiers of pairwise alignments. All possible sets of two, three, and four profile scoring functions are used from a pool of 11 functions and applied to 588 pairs of proteins in the ce_ref data set. The performance of the best objective combinations on ce_ref is also evaluated on an independent set of 913 protein pairs extracted from the BAliBASE RV11 data set. Our dynamic-programming-based heuristic approach produces approximated Pareto optimal frontiers of pairwise alignments that contain comparable alignments to those on the exact frontier, but on average in less than 1/58th the time in the case of four objectives. Our results show that the Pareto frontiers contain alignments whose quality is better than the alignments obtained by single objectives. However, the task of identifying a single high-quality alignment among those in the Pareto frontier remains challenging.

  6. Micro benchtop optics by bulk silicon micromachining

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  7. Study on Dynamic Alignment Technology of COIL Resonator

    Xiong, M D; Zou, X J; Guo, J H; Jia, S N; Zhang, Z B

    2006-01-01

    The performance of great power chemical oxygen-iodine laser (COIL) beam is decided mostly by resonator mirror maladjustment and environment vibration. To improve the performance of light beam, an auto-alignment device is used in COIL resonator, the device can keep COIL resonator collimating by adjusting the optical components of resonator. So the coupling model of COIL resonator is present. The multivariable self study fuzzy uncoupling arithmetic and six-dimensional micro drive technology are used to design a six-input-three-output uncoupling controller, resulting in the realization of the high precision dynamic alignment. The experiments indicate that the collimating range of this system is 8 mrad, precision is 5 urad and frequency response is 20Hz, which meet the demand of resonator alignment system

  8. A novel mechanism important for the alignment of microtubules.

    Wightman, Raymond; Turner, Simon R

    2008-04-01

    Using a live-cell imaging approach to study individual micro-tubules, we have compared microtubule behavior between net-like and aligned cortical arrays. In contrast to previous studies, a steep angled collision between the growing end of a microtubule and a preexisting microtubule was found to favor crossover. Frequencies of microtubule crossovers, bundling and catastrophes are similar regardless of whether the cell exhibited a net-like or aligned microtubule array. In the predominantly aligned array of petiole cells, severing occurs at the sites of microtubule crossovers and serves to remove unaligned microtubules and to increase microtubule density. Severing was observed to be rare in net-like arrays. Microtubule severing is carried out by the katanin enzyme. In this addendum, we present new insights into the possible mechanism of crossing over and preliminary data looking at organization of the array in a katanin mutant.

  9. Fiducialisation and initial alignment of CLIC component with micrometric accuracy

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalan Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan Petrov; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon William; Modena, Michele; Novotny, Peter; Sanz, Claude; Severino, Giordana; Russenschuck, Stephan; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia; CERN. Geneva. ATS Department

    2016-01-01

    We propose a new solution to fiducialise the three major components of the CLIC collider: quadrupoles, beam-position monitors (BPM), and accelerating structures (AS). This solution is based on the use of a copper-beryllium (CuBe) wire to locate the reference position, i.e. the symmetry axes of the components (their magnetic, respectively electromagnetic centre axis), and to determine their position in the common support assembly defining a local coordinate system, with respect to the fiducials. These alignment targets will be used later to align the support assembly in the tunnel. With such a method, several accelerator components of different types, supported by a dedicated adjustment system, can be simultaneously fiducialised and pre-aligned using the same wire, enabling a micrometric accuracy with help of a 3D coordinate measurement machine (CMM). Alternative solutions based on frequency scanning interferometry (FSI) and micro-triangulation are also under development, to perform such fiducialisation and in...

  10. All about alignment

    2006-01-01

    The ALICE absorbers, iron wall and superstructure have been installed with great precision. The ALICE front absorber, positioned in the centre of the detector, has been installed and aligned. Weighing more than 400 tonnes, the ALICE absorbers and the surrounding support structures have been installed and aligned with a precision of 1-2 mm, hardly an easy task but a very important one. The ALICE absorbers are made of three parts: the front absorber, a 35-tonne cone-shaped structure, and two small-angle absorbers, long straight cylinder sections weighing 18 and 40 tonnes. The three pieces lined up have a total length of about 17 m. In addition to these, ALICE technicians have installed a 300-tonne iron filter wall made of blocks that fit together like large Lego pieces and a surrounding metal support structure to hold the tracking and trigger chambers. The absorbers house the vacuum chamber and are also the reference surface for the positioning of the tracking and trigger chambers. For this reason, the ab...

  11. Electron Beam Alignment Strategy in the LCLS Undulators

    Nuhn, H

    2007-01-01

    The x-ray FEL process puts very tight tolerances on the straightness of the electron beam trajectory (2 (micro)m rms) through the LCLS undulator system. Tight but less stringent tolerances of 80 (micro)m rms vertical and 140 (micro)m rms horizontally are to be met for the placement of the individual undulator segments with respect to the beam axis. The tolerances for electron beam straightness can only be met through beam-based alignment (BBA) based on electron energy variations. Conventional alignment will set the start conditions for BBA. Precision-fiducialization of components mounted on remotely adjustable girders and the use of beam-finder wires (BFW) will satisfy placement tolerances. Girder movement due to ground motion and temperature changes will be monitored continuously by an alignment monitoring system (ADS) and remotely corrected. This stabilization of components as well as the monitoring and correction of the electron beam trajectory based on BPMs and correctors will increase the time between BBA applications. Undulator segments will be periodically removed from the undulator Hall and measured to monitor radiation damage and other effects that might degrade undulator tuning

  12. Nova laser alignment control system

    Van Arsdall, P.J.; Holloway, F.W.; McGuigan, D.L.; Shelton, R.T.

    1984-01-01

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system

  13. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    Hoke, Eric T.

    2012-09-14

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc \\'s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  14. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    Hoke, Eric T.; Vandewal, Koen; Bartelt, Jonathan A.; Mateker, William R.; Douglas, Jessica D.; Noriega, Rodrigo; Graham, Kenneth; Frechet, Jean; Salleo, Alberto; McGehee, Michael D.

    2012-01-01

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc 's above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  15. GraphAlignment: Bayesian pairwise alignment of biological networks

    Kolář Michal

    2012-11-01

    Full Text Available Abstract Background With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks. Results We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks. The alignment incorporates information both from network vertices and network edges and is based on an explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0. On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows approximately as O(N2.6. On empirical bacterial protein-protein interaction networks (PIN and gene co-expression networks, GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment. Conclusions The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice for global alignment of networks.

  16. C60 fullerenes from combustion of common fuels

    Tiwari, Andrea J., E-mail: ajtiwari@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States); Ashraf-Khorassani, Mehdi, E-mail: mashraf@vt.edu [Department of Chemistry, Virginia Tech, 480 Davidson Hall, 900 West Campus Drive, Virginia Tech, Blacksburg, VA 24061 (United States); Marr, Linsey C., E-mail: lmarr@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States)

    2016-03-15

    Releases of C{sub 60} fullerenes to the environment will increase with the growth of nanotechnology. Assessing the potential risks of manufactured C{sub 60} requires an understanding of how its prevalence in the environment compares to that of natural and incidental C{sub 60}. This work describes the characterization of incidental C{sub 60} present in aerosols generated by combustion of five common fuels: coal, firewood, diesel, gasoline, and propane. C{sub 60} was found in exhaust generated by all five fuels; the highest concentrations in terms of mass of C{sub 60} per mass of particulate matter were associated with diesel and coal. Individual aerosols from these combustion processes were examined by transmission electron microscopy. No relationship was found between C{sub 60} content and either the separation of graphitic layers (lamellae) within the particles, nor the curvature of those lamellae. Estimated global emissions of incidental C{sub 60} to the atmosphere from coal and diesel combustion range from 1.6 to 6.3 t yr{sup −1}, depending upon combustion conditions. These emissions may be similar in magnitude to the total amount of manufactured C{sub 60} produced on an annual basis. Consequent loading of incidental C{sub 60} to the environment may be several orders of magnitude higher than has previously been modeled for manufactured C{sub 60}. - Highlights: • Exhaust of common fuels (coal, diesel, etc.) analyzed via chromatography for C{sub 60.} • All five fuels tested produced C{sub 60} in aerosols in mass fractions up to several ppm. • Emissions of incidental C{sub 60} may be comparable to the total amount manufactured.

  17. Functionalization of [60] fullerene with butadienes: A DFT study

    Beheshtian, Javad [Department of Chemistry, Shahid Rajaee Teacher Training University, P.O. Box: 16875-163, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi, E-mail: ahmadi.iau@gmail.com [Young Researchers Club, Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of); Bagheri, Zargham [Physics group, Science department, Islamic Azad University, Islamshahr Branch, P.O. Box: 33135-369, Islamshahr, Tehran (Iran, Islamic Republic of)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Reaction of C{sub 60} with 2,3-dimethylbutadiene (DMB) is theoretically investigated. Black-Right-Pointing-Pointer The HOMO of DMB interacts with the LUMO of C{sub 60} via a Diels Alder reaction. Black-Right-Pointing-Pointer Work function of C{sub 60} is decreased by increasing the number of DMB molecules. Black-Right-Pointing-Pointer The reaction may facilitate the field electron emission from C{sub 60} surface. - Abstract: We have performed a density functional study on the reaction of C{sub 60} fullerene with one to six 2,3-dimethylbutadiene (DMB) molecule(s) which has previously been investigated by experimental researchers. Based on the obtained results, it has been found that (1) the reaction is regioselective, so that the DMB molecule prefers to be adsorbed atop a C-C bond which is shared between two hexagonal rings of C{sub 60} (in good agreement with the experimental results) with reaction energy of -0.98 eV; (2) the HOMO of DMB interacts with the LUMO of C{sub 60} via a Diels Alder reaction; (3) the energy of reaction and work function of C{sub 60} are decreased by increasing the number of adsorbed DMB molecules; (4) the HOMO-LUMO energy gap of C{sub 60} is slightly changed upon the reaction; (5) the reaction reduces the potential barrier of the field electron emission of C{sub 60} surface.

  18. Thermal effect on structure organizations in cobalt-fullerene nanocomposition.

    Lavrentiev, Vasily; Vacik, Jiri; Naramoto, Hiroshi; Sakai, Seiji

    2010-04-01

    Effect of deposition temperature (Ts) on structure of Co-C60 nanocomposite (NC) prepared by simultaneous deposition of cobalt and fullerene on sapphire is presented. The NC structure variations with Ts increasing from room temperature (RT) to 400 degrees C have been analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy. AFM and SEM show granule-like structure of the Co-C60 film. The mixture film deposited at RT includes the hills on the surface suggesting accumulation of internal stress during phase separation. Raman spectra show 25 cm(-1) downshift of Ag(2) C60 peak suggesting -Co-C60- polymerization in C60-based matrix of the NC film. Analysis of Raman spectra has revealed existence of amorphous carbon (a-C) in the NC matrix that argues C60 decomposition. The Ts increase to 200 degrees C causes the surface hills smoothing. In parallel, downshift of the Ag(2) peak decreases to 16 cm(-1) that implies more pronounced phase separation and lower -Co-C60- polymerization efficiency. Also, amount of a-C content slightly increases. Further Ts increasing to 400 degrees C changes the NC structure dramatically. AFM shows evident enlargement of the granules. According to Raman spectra the high Ts deposition yields pronounced C60 decomposition increasing the a-C content. Features of a-C Raman peak imply nucleation of graphitic islands at the NC interfaces. Abundant decomposition of C60 in the mixture film deposited at 400 degrees C is referred to cobalt catalytic effect.

  19. Interaction of polyhydroxy fullerenes with ferrihydrite: adsorption and aggregation.

    Liu, Jing; Zhu, Runliang; Xu, Tianyuan; Laipan, Mingwang; Zhu, Yanping; Zhou, Qing; Zhu, Jianxi; He, Hongping

    2018-02-01

    The rapid development of nanoscience and nanotechnology, with thousands types of nanomaterials being produced, will lead to various environmental impacts. Thus, understanding the behaviors and fate of these nanomaterials is essential. This study focused on the interaction between polyhydroxy fullerenes (PHF) and ferrihydrite (Fh), a widespread iron (oxyhydr)oxide nanomineral and geosorbent. Our results showed that PHF were effectively adsorbed by Fh. The adsorption isotherm fitted the D-R model well, with an adsorption capacity of 67.1mg/g. The adsorption mean free energy of 10.72kJ/mol suggested that PHF were chemisorbed on Fh. An increase in the solution pH and a decrease of the Fh surface zeta potential were observed after the adsorption of PHF on Fh; moreover, increasing initial solution pH led to a reduction of adsorption. The Fourier transform infrared spectra detected a red shift of C-O stretching from 1075 to 1062cm -1 and a decrease of Fe-O bending, implying the interaction between PHF oxygenic functional groups and Fh surface hydroxyls. On the other hand, PHF affected the aggregation and reactivity of Fh by changing its surface physicochemical properties. Aggregation of PHF and Fh with individual particle sizes increasing from 2nm to larger than 5nm was measured by atomic force microscopy. The uniform distribution of C and Fe suggested that the aggregates of Fh were possibly bridged by PHF. Our results indicated that the interaction between PHF and Fh could evidently influence the migration of PHF, as well as the aggregation and reactivity of Fh. Copyright © 2017. Published by Elsevier B.V.

  20. Mask alignment system for semiconductor processing

    Webb, Aaron P.; Carlson, Charles T.; Weaver, William T.; Grant, Christopher N.

    2017-02-14

    A mask alignment system for providing precise and repeatable alignment between ion implantation masks and workpieces. The system includes a mask frame having a plurality of ion implantation masks loosely connected thereto. The mask frame is provided with a plurality of frame alignment cavities, and each mask is provided with a plurality of mask alignment cavities. The system further includes a platen for holding workpieces. The platen may be provided with a plurality of mask alignment pins and frame alignment pins configured to engage the mask alignment cavities and frame alignment cavities, respectively. The mask frame can be lowered onto the platen, with the frame alignment cavities moving into registration with the frame alignment pins to provide rough alignment between the masks and workpieces. The mask alignment cavities are then moved into registration with the mask alignment pins, thereby shifting each individual mask into precise alignment with a respective workpiece.

  1. MaxAlign: maximizing usable data in an alignment

    Oliveira, Rodrigo Gouveia; Sackett, Peter Wad; Pedersen, Anders Gorm

    2007-01-01

    Align. In this paper we also introduce a new simple measure of tree similarity, Normalized Symmetric Similarity (NSS) that we consider useful for comparing tree topologies. CONCLUSION: We demonstrate how MaxAlign is helpful in detecting misaligned or defective sequences without requiring manual inspection. We also...

  2. Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal-air battery applications.

    Noh, Seung Hyo; Kwon, Choah; Hwang, Jeemin; Ohsaka, Takeo; Kim, Beom-Jun; Kim, Tae-Young; Yoon, Young-Gi; Chen, Zhongwei; Seo, Min Ho; Han, Byungchan

    2017-06-08

    In this study, we report self-assembled nitrogen-doped fullerenes (N-fullerene) as non-precious catalysts, which are active for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and thus applicable for energy conversion and storage devices such as fuel cells and metal-air battery systems. We screen the best N-fullerene catalyst at the nitrogen doping level of 10 at%, not at the previously known doping level of 5 or 20 at% for graphene. We identify that the compressive surface strain induced by doped nitrogen plays a key role in the fine-tuning of catalytic activity.

  3. Reduction of conspicuous facial pores by topical fullerene: possible role in the suppression of PGE2 production in the skin.

    Inui, Shigeki; Mori, Ayako; Ito, Masayuki; Hyodo, Sayuri; Itami, Satoshi

    2014-02-22

    Conspicuous facial pores are therapeutic targets for cosmeceuticals. Here we examine the effect of topical fullerene on conspicuous facial pores using a new image analyser called the VISIA® system. Ten healthy Japanese females participated in this study, and they received applications of 1% fullerene lotion to the face twice a day for 8 weeks. Fullerene lotion significantly decreased conspicuous pores by 17.6% (p facial pores after an 8-week treatment possibly through the suppression of PGE2 production in the epidermis.

  4. Study of the nickel-fullerene nano-structured thin films

    Vacík, Jiří; Naramoto, H.; Narumi, K.; Yamamoto, S.; Abe, H.

    2004-01-01

    Roč. 219, č. 20 (2004), s. 862-866 ISSN 0168-583X Institutional research plan: CEZ:AV0Z1048901 Keywords : nickel * fullerene * magnesium oxide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.997, year: 2004

  5. RBS and SEM analysis of the nickel-fullerene hybrid systems

    Vacík, Jiří; Naramoto, J.; Narumi, K.; Yamanoto, S.; Abe, J.

    2003-01-01

    Roč. 206, - (2003), s. 395-398 ISSN 0168-583X Institutional research plan: CEZ:AV0Z1048901 Keywords : nicke-fullerene hybrid Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.041, year: 2003

  6. Supramolecular Control of Oligothienylenevinylene-Fullerene Interactions: Evidence for a Ground-State EDA Complex

    McClenaghan, N.D.; Grote, Z.; Darriet, K.; Zimine, M.Y.; Williams, R.M.; De Cola, L.; Bassani, D.M.

    2005-01-01

    Complementary hydrogen-bonding interactions between a barbituric acid-substituted fullerene derivative (1) and corresponding receptor (2) bearing thienylenevinylene units are used to assemble a 1:1 supramolecular complex ( K ) 5500 M-1). Due to the close proximity of the redox-active moieties within

  7. Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room temperature

    Montanari, Ivan; Nogueira, Ana F.; Nelson, Jenny; Durrant, James R.; Winder, Christoph; Loi, Maria Antonietta; Sariciftci, Niyazi Serdar; Brabec, Christoph

    2002-01-01

    The recombination kinetics of photogenerated charge carriers in a composite of poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1-4-phenylene vinylene], (MDMO–PPV) and the functionalised fullerene 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 are investigated at room temperature by transient absorption

  8. Functionalization of multilayer fullerenes (carbon nano-onions) using diazonium compounds and "click" chemistry.

    Flavin, Kevin; Chaur, Manuel N; Echegoyen, Luis; Giordani, Silvia

    2010-02-19

    A novel versatile approach for the functionalization of multilayer fullerenes (carbon nano-onions) has been developed, which involves the facile introduction of a variety of simple functionalities onto their surface by treatment with in situ generated diazonium compounds. This approach is complemented by use of "click" chemistry which was used for the covalent introduction of more complex porphyrin molecules.

  9. Improved spectrophotometric analysis of fullerenes C60 and C70 in high-solubility organic solvents.

    Törpe, Alexander; Belton, Daniel J

    2015-01-01

    Fullerenes are among a number of recently discovered carbon allotropes that exhibit unique and versatile properties. The analysis of these materials is of great importance and interest. We present previously unreported spectroscopic data for C60 and C70 fullerenes in high-solubility solvents, including error bounds, so as to allow reliable colorimetric analysis of these materials. The Beer-Lambert-Bouguer law is found to be valid at all wavelengths. The measured data were highly reproducible, and yielded high-precision molar absorbance coefficients for C60 and C70 in o-xylene and o-dichlorobenzene, which both exhibit a high solubility for these fullerenes, and offer the prospect of improved extraction efficiency. A photometric method for a C60/C70 mixture analysis was validated with standard mixtures, and subsequently improved for real samples by correcting for light scattering, using a power-law fit. The method was successfully applied to the analysis of C60/C70 mixtures extracted from fullerene soot.

  10. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    Varanasi, S. R., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de; John, A. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Guskova, O. A., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Sommer, J.-U. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Institut für Theoretische Physik, Technische Universität Dresden, Zellescher Weg 17, Dresden D-01069 (Germany)

    2015-06-14

    Fullerene C{sub 60} sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C{sub 60} fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C{sub 60} are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique.

  11. Structure and pervaporation properties of poly(phenylene-iso-phthalamide) membranes modified by Fullerene C-60

    Penkova, A. V.; Polotskaya, G. A.; Toikka, A. M.; Trchová, Miroslava; Šlouf, Miroslav; Urbanová, Martina; Brus, Jiří; Brožová, Libuše; Pientka, Zbyněk

    2009-01-01

    Roč. 294, 6-7 (2009), s. 432-440 ISSN 1438-7492 Institutional research plan: CEZ:AV0Z40500505 Keywords : fullerene * methanol/cyclohexane mixture * modification Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.742, year: 2009

  12. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons.

    Correa, Julián David; Orellana, Pedro Alejandro; Pacheco, Mónica

    2017-03-20

    The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon-fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  13. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons

    Julián David Correa

    2017-03-01

    Full Text Available The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  14. Charge-associated effects of fullerene derivatives on microbialstructural integrity and central metabolism

    Tang, Yinjie J.; Ashcroft, Jared M.; Chen, Ding; Min, Guangwei; Kim, Chul; Murkhejee, Bipasha; Larabell, Carolyn; Keasling, Jay D.; Chen,Fanqing Frank

    2007-01-23

    The effects of four types of fullerene compounds (C60,C60-OH, C60-COOH, C60-NH2) were examined on two model microorganisms(Escherichia coli W3110 and Shewanella oneidensis MR-1). Positivelycharged C60-NH2 at concentrations as low as 10 mg/L inhibited growth andreduced substrate uptake for both microorganisms. Scanning ElectronMicroscopy (SEM) revealed damage to cellular structures.Neutrally-charged C60 and C60-OH had mild negative effects on S.oneidensis MR-1, whereas the negatively-charged C60-COOH did not affecteither microorganism s growth. The effect of fullerene compounds onglobal metabolism was further investigated using [3-13C]L-lactateisotopic labeling, which tracks perturbations to metabolic reaction ratesin bacteria by examining the change in the isotopic labeling pattern inthe resulting metabolites (often amino acids).1-3 The 13C isotopomeranalysis from all fullerene-exposed cultures revealed no significantdifferences in isotopomer distributions from unstressed cells. Thisresult indicates that microbial central metabolism is robust toenvironmental stress inflicted by fullerene nanoparticles. In addition,although C60-NH2 compounds caused mechanical stress on the cell wall ormembrane, both S. oneidensis MR-1 and E. coli W3110 can efficientlyalleviate such stress by cell aggregation and precipitation of the toxicnanoparticles. The results presented here favor the hypothesis thatfullerenes cause more membrane stress4, 5, 6 than perturbation to energymetabolism7

  15. Fullerene C70 as a p-type donor in organic photovoltaic cells

    Zhuang, Taojun; Wang, Xiao-Feng; Sano, Takeshi; Kido, Junji; Hong, Ziruo; Li, Gang; Yang, Yang

    2014-01-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C 70 , known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C 70 layer even up to 100 nm thick in PHJ cells, suggesting the superior potential of fullerene C 70 as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm 2 , an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  16. Determination of several fullerenes in sewage water by LC hr-MS using atmospheric pressure photoionisation

    Emke, E.; Sanchis, J.; Farré, M.; Bäuerlein, P.S.; de Voogt, P.

    2015-01-01

    The main challenge in the mass spectrometric analysis of fullerenes in complex matrices is to prove unambiguously their presence or absence. Usually, this can be done by fragmentation, but due to the atmospheric interface and solvents commonly used, complex adduct formation will hinder

  17. Derivatization and diffusive motion of molecular fullerenes: Ab initio and atomistic simulations

    Berdiyorov, G., E-mail: gberdiyorov@qf.org.qa; Tabet, N. [Qatar Environment and Energy Research Institute (QEERI), Hamad Ben Khalifa University (HBKU), Qatar Foundation, P.O. Box 5825, Doha (Qatar); Harrabi, K. [Department of Physics, King Fahd University of Petroleum and Minerals, 31261 Dhahran (Saudi Arabia); Mehmood, U.; Hussein, I. A. [Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31261 Dharan (Saudi Arabia); Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Zhang, J. [Department of Materials and London Centre for Nanotechnology, Imperial College London, SW7 2AZ London (United Kingdom); McLachlan, M. A. [Department of Materials and Centre for Plastic Electronics, Imperial College London, SW7 2AZ London (United Kingdom)

    2015-07-14

    Using first principles density functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of derivatization on the electronic and transport properties of C{sub 60} fullerene. As a typical example, we consider [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM), which forms one of the most efficient organic photovoltaic materials in combination with electron donating polymers. Extra peaks are observed in the density of states (DOS) due to the formation of new electronic states localized at/near the attached molecule. Despite such peculiar behavior in the DOS of an isolated molecule, derivatization does not have a pronounced effect on the electronic transport properties of the fullerene molecular junctions. Both C{sub 60} and PCBM show the same response to finite voltage biasing with new features in the transmission spectrum due to voltage induced delocalization of some electronic states. We also study the diffusive motion of molecular fullerenes in ethanol solvent and inside poly(3-hexylthiophene) lamella using reactive molecular dynamics simulations. We found that the mobility of the fullerene reduces considerably due to derivatization; the diffusion coefficient of C{sub 60} is an order of magnitude larger than the one for PCBM.

  18. Charge Carrier Generation, Recombination, and Extraction in Polymer–Fullerene Bulk Heterojunction Organic Solar Cells

    Laquai, Fré dé ric; Andrienko, Denis; Deibel, Carsten; Neher, Dieter

    2016-01-01

    In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer–fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency.

  19. Physicochemical Characterization and Thermodynamic Studies of Nanoemulsion-Based Transdermal Delivery System for Fullerene

    Cheng Loong Ngan

    2014-01-01

    Full Text Available Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w and beeswax (1–3%, w/w in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions.

  20. Conformational, IR spectroscopic and electronic properties of conium alkaloids and their adducts with C60 fullerene

    Zabolotnyi, M. A.; Prylutskyy, Yu I.; Poluyan, N. A.; Evstigneev, M. P.; Dovbeshko, G. I.

    2016-08-01

    Conformational, IR spectroscopic and electronic properties of the components of Conium alkaloids (Conium maculatum) in aqueous environment were determined by model calculations and experiment. With the help of FT-IR spectroscopy the possibility of formation of an adduct between γ-coniceine alkaloid and C60 fullerene was demonstrated, which is important for further application of conium analogues in biomedical purposes.

  1. Organic light-emitting devices with fullerene/aluminum composite anode

    Song, Q.L.; Li, C.M.; Wang, M.L.; Sun, X.Y.

    2008-01-01

    Our previous work demonstrates that fullerene/Aluminum (C 60 /Al) can be used as a composite anode in organic solar cells. In this work, we report that an organic light emitting devices (OLEDs) can be made with the C 60 /Al composite anode as well. The OLEDs show comparable current density and brightness to the traditional devices with the indium tin oxide anode

  2. The third, molecular, form of carbon: fullerenes, carbon nanotubes and onions. Some physical properties of fullerites

    Zubov, V.I.

    2004-01-01

    A brief review is presented of the pre-history and discovery of fullerenes (and then carbon nanotubes) that make the third molecular form of carbon, and of various, predominantly physical, properties of fullerites, i.e. of crystals composed of fullerene molecules. Particular attention is being given to the intermolecular forces, especially at orientationally disordered phases. The Girifalco potential is presented for eight fullerenes from C 28 to C 96 and its generalization is made for the interactions between the different fullerene molecules, C m and C n . The thermodynamics properties of the high-temperature modifications of a family of the fullerites, from C 36 up to C 96 , calculated in equilibrium with their saturated vapors on the basis of the correlative method of the unsymmetrized self-consistent field that enables one to take into account the strong anharmonicity of the lattice vibrations, are discussed. The calculations were accomplished up to the temperature of loss of stability (spinodal point) T s . We compare our results with available experimental data. The behaviour of some characteristics is considered in their dependence on the number of atoms in the molecule. Using the Lindermann's melting criterion we estimate a possible melting curve for the C 60 fullerite. (orig.)

  3. Synthesis of MoS 2 Inorganic Fullerene-like Nanoparticles by a ...

    MoS2 nanoparticles with fullerene-like structure (IF-MoS2) were successfully obtained at heating temperature higher than 840 °C by a chemical vapour deposition method usingMoO3 and sulfur powders as raw materials. The synthesized samples were characterized by XRD, SEM, TEM, EDX and Raman spectrometry, ...

  4. Synthetic strategies for modifying dielectric properties and the electron mobility of fullerene derivatives

    Jahani Bahnamiri, Fatemeh

    2016-01-01

    The goal of this PhD research project was to develop fullerene derivatives with enhanced dielectric properties for photovoltaic applications. Organic solar cells suffer from relatively low power conversion efficiency mainly due to charge recombination, which stems from the low dielectric constant of

  5. Doping of C-70 fullerene peapods with lithium vapor: Raman spectroscopic and Raman spectroelectrochemical studies

    Kalbáč, Martin; Valeš, Václav; Kavan, Ladislav; Dunsch, L.

    2014-01-01

    Roč. 25, č. 48 (2014), 485706 ISSN 0957-4484 R&D Projects: GA ČR GAP204/10/1677 Institutional support: RVO:61388955 Keywords : fullerene peapods * Raman spectroelectrochemistry * Li doping Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.821, year: 2014

  6. Stability issues of conjugated polymer / fullerene solar cells from a chemical viewpoint

    Hummelen, J.C.; Knol, J.; Sánchez, L.

    2001-01-01

    The efficiency of energy conversion and the stability or lifetime of ‘plastic’ photovoltaic cells, based on conjugated polymer/ fullerene blends, are the two main issues to be improved for this type of devices. The stability of these PV cells depends potentially on a large number of factors. A brief

  7. Nonlinear absorption of fullerene- and nanotubes-doped liquid crystal systems

    Kamanina, N.; Reshak, Ali H; Vasiliev, P.Y.; Vangonen, A. I.; Studeonov, V. I.; Usanov, Y. E.; Ebothe, J.; Gondek, E.; Wojcik, W.; Danel, A.

    2009-01-01

    Roč. 41, č. 3 (2009), s. 391-394 ISSN 1386-9477 Institutional research plan: CEZ:AV0Z60870520 Keywords : nonlinear absorption properties * organic electrooptical systems * liquid crystal * fullerene s * nanotubes * PVK-derivatives Subject RIV: BO - Biophysics Impact factor: 1.177, year: 2009

  8. A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control

    Scarongella, Mariateresa

    2015-03-04

    © 2015 American Chemical Society. We reveal some of the key mechanisms during charge generation in polymer:fullerene blends exploiting our well-defined understanding of the microstructures obtained in pBTTT:PCBM systems via processing with fatty acid methyl ester additives. Based on ultrafast transient absorption, electro-absorption, and fluorescence up-conversion spectroscopy, we find that exciton diffusion through relatively phase-pure polymer or fullerene domains limits the rate of electron and hole transfer, while prompt charge separation occurs in regions where the polymer and fullerene are molecularly intermixed (such as the co-crystal phase where fullerenes intercalate between polymer chains in pBTTT:PCBM). We moreover confirm the importance of neat domains, which are essential to prevent geminate recombination of bound electron-hole pairs. Most interestingly, using an electro-absorption (Stark effect) signature, we directly visualize the migration of holes from intermixed to neat regions, which occurs on the subpicosecond time scale. This ultrafast transport is likely sustained by high local mobility (possibly along chains extending from the co-crystal phase to neat regions) and by an energy cascade driving the holes toward the neat domains.

  9. Dispersion of fullerenes in phospholipid bilayers and the subsequent phase changes in the host bilayers

    Jeng, U-S. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)]. E-mail: usjeng@nsrrc.org.tw; Hsu, C.-H. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China); Lin, T.-L. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, C.-M. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, H.-L. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Tai, L.-A. [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hwang, K.-C. [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2005-02-28

    We have studied the structure and phase transition characteristics of the fullerenes (C{sub 60})-embedded lipid bilayers. With small-angle neutron scattering (SANS), we have observed a degradation of bilayer ordering and a suppression effect on the phase transitions of the host vesicle bilayers of dipalmitoylphosphatidylcholine (DPPC), due to the embedment of fullerenes. The fullerene-embedded lipid system with substrate-oriented bilayers is also investigated using X-ray reflectivity and grazing incident small-angle X-ray scattering (GISAXS). In the depth direction, the multilamellar peaks observed in the X-ray reflectivity profile for the oriented DPPC/C{sub 60} bilayers reveal a larger head-to-head distance D{sub HH} of 50.6 A and a bilayer spacing D of 59.8 A, compared to the D{sub HH}=47.7 A and D=59.5 A for a pure DPPC membrane measured at the same conditions. Furthermore, the lipid head layers and water layers in the extracted electron density profile for the complex system are highly smeared, implying a fluctuating or corrugated structure in this zone. Correspondingly, GISAXS for the oriented DPPC/C{sub 60} membrane reveals stronger diffuse scatterings along the membrane plane than that for the pure DPPC system, indicating a higher in-plane correlation associated with the embedded fullerenes.

  10. Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells

    Neugebauer, H.; Brabec, C.; Hummelen, J.C.; Sariciftci, N.S.

    2000-01-01

    Degradation studies of poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene) (MDMO-PPV), fullerenes ((6,6)-phenyl C-61-butyric acid methyl ester (PCBM) and C-60), and mixtures, which are the photoactive components in plastic solar cells, are shown. The degradation processes of the

  11. Single-Size Thermometric Measurements on a Size Distribution of Neutral Fullerenes

    Cauchy, C.; Bakker, J. M.; Huismans, Y.; Rouzee, A.; Redlich, B.; van der Meer, A. F. G.; Bordas, C.; Vrakking, M. J. J.; Lepine, F.

    2013-01-01

    We present measurements of the velocity distribution of electrons emitted from mass-selected neutral fullerenes, performed at the intracavity free electron laser FELICE. We make use of mass-specific vibrational resonances in the infrared domain to selectively heat up one out of a distribution of

  12. Photodynamics of a constrained parachute-shaped fullerene-porphyrin dyad

    Schuster, D.I.; Cheng, P.; Wilson, S.R.; Prokhorenko, V.; Katterle, M.; Holzwarth, A.R.; Braslavsky, S.E.; Klihm, G.; Williams, R.M.

    1999-01-01

    The pronounced ability of fullerene C60 to act as an electron and energy acceptor has led to the synthesis of a large number of compounds in which C60 is covalently linked to photoactivatable groups which can serve as potential donors. Such compounds are of interest as model systems for

  13. Quantitative depth profiling of K-doped fullerene films using XPS and SIMS

    Oswald, S.; Janda, Pavel; Dunsch, L.

    2003-01-01

    Roč. 141, 1-2 (2003), s. 79-85 E-ISSN 1436-5073 Institutional research plan: CEZ:AV0Z4040901 Keywords : XPS * SIMS * depth profiling * fullerenes * doping Subject RIV: CG - Electrochemistry Impact factor: 0.784, year: 2003

  14. Direct Observation of Sub-100 fs Mobile Charge Generation in a Polymer-Fullerene Film

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    The formation of mobile charges in a roll-to-roll processed poly-3-hexylthiophene-fullerene bulk heterojunction film is observed directly by using transient terahertz spectroscopy with sub-100 fs temporal resolution. The transient terahertz ac conductivity reveals that 20% of the incident pump...

  15. A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control

    Scarongella, Mariateresa; De Jonghe-Risse, Jelissa; Buchaca-Domingo, Ester; Causa’ , Martina; Fei, Zhuping; Heeney, Martin; Moser, Jacques-E.; Stingelin, Natalie; Banerji, Natalie

    2015-01-01

    © 2015 American Chemical Society. We reveal some of the key mechanisms during charge generation in polymer:fullerene blends exploiting our well-defined understanding of the microstructures obtained in pBTTT:PCBM systems via processing with fatty acid methyl ester additives. Based on ultrafast transient absorption, electro-absorption, and fluorescence up-conversion spectroscopy, we find that exciton diffusion through relatively phase-pure polymer or fullerene domains limits the rate of electron and hole transfer, while prompt charge separation occurs in regions where the polymer and fullerene are molecularly intermixed (such as the co-crystal phase where fullerenes intercalate between polymer chains in pBTTT:PCBM). We moreover confirm the importance of neat domains, which are essential to prevent geminate recombination of bound electron-hole pairs. Most interestingly, using an electro-absorption (Stark effect) signature, we directly visualize the migration of holes from intermixed to neat regions, which occurs on the subpicosecond time scale. This ultrafast transport is likely sustained by high local mobility (possibly along chains extending from the co-crystal phase to neat regions) and by an energy cascade driving the holes toward the neat domains.

  16. Fullerene recognition by 5-nitro-11,17,23,29-tetramethylcalix[5]arene

    Flídrová, K.; Liška, Alan; Ludvík, Jiří; Eigner, V.; Lhoták, P.

    2015-01-01

    Roč. 56, č. 12 (2015), s. 1535-1538 ISSN 0040-4039 R&D Projects: GA ČR GA13-21704S Institutional support: RVO:61388955 Keywords : calixarene * fullerene * complexation Subject RIV: CG - Electrochemistry Impact factor: 2.347, year: 2015

  17. Correlation between the morphology and photo-physical properties of P3HT: fullerene blends

    Motaung, DE

    2010-01-01

    Full Text Available -induced charge transfer, well-known for blends of P3HT with fullerenes, was evidenced in blends of P3HT:C60 (1:1 wt ratio) by a strong partially quenching of the P3HT luminescence. The ESR measurements allowed one to quantify the charge transfer between P3HT...

  18. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels

    2009-01-01

    Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab init...

  19. Exciplex-exciplex energy transfer and annihilation in solid films of porphyrin-fullerene dyads

    Lehtivuori, Heli; Lemmetyinen, Helge; Tkachenko, Nikolai V.

    2006-01-01

    Exciplex-exciplex annihilation was observed for the first time in porphyrin-fullerene molecular films. The films were prepared using Langmuir-Blodgett and drop casting methods. The exciplex-exciplex interactions were studied using femtosecond pump-probe method. The exciplex-exciplex annihilation can

  20. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    Varanasi, S. R.; John, A.; Guskova, O. A.; Sommer, J.-U.

    2015-01-01

    Fullerene C 60 sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C 60 fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C 60 are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique

  1. Charge Separation and Recombination in Small Band Gap Oligomer-Fullerene Triads

    Karsten, Bram P.; Bouwer, Ricardo K. M.; Hummelen, Jan C.; Williams, Rene M.; Janssen, Rene A. J.

    2010-01-01

    Synthesis and photophysics of a series of thiophene-thienopyrazine small band gap oligomers end-capped at both ends with C(60) are presented In these triads a photoinduced electron transfer reaction occurs between the oligomer as a donor and the fullerene as an acceptor Femtosecond photoinduced

  2. Functionalized Fullerene Targeting Human Voltage-Gated Sodium Channel, hNav1.7.

    Hilder, Tamsyn A; Robinson, Anna; Chung, Shin-Ho

    2017-08-16

    Mutations of hNa v 1.7 that cause its activities to be enhanced contribute to severe neuropathic pain. Only a small number of hNa v 1.7 specific inhibitors have been identified, most of which interact with the voltage-sensing domain of the voltage-activated sodium ion channel. In our previous computational study, we demonstrated that a [Lys 6 ]-C 84 fullerene binds tightly (affinity of 46 nM) to Na v Ab, the voltage-gated sodium channel from the bacterium Arcobacter butzleri. Here, we extend this work and, using molecular dynamics simulations, demonstrate that the same [Lys 6 ]-C 84 fullerene binds strongly (2.7 nM) to the pore of a modeled human sodium ion channel hNa v 1.7. In contrast, the fullerene binds only weakly to a mutated model of hNa v 1.7 (I1399D) (14.5 mM) and a model of the skeletal muscle hNa v 1.4 (3.7 mM). Comparison of one representative sequence from each of the nine human sodium channel isoforms shows that only hNa v 1.7 possesses residues that are critical for binding the fullerene derivative and blocking the channel pore.

  3. Photoinduced electron transfer and photocurrent in multicomponent organic molecular films containing oriented porphyrin-fullerene dyad

    Kaunisto, Kimmo; Vuorinen, Tommi; Vahasalo, Heidi; Chukharev, Vladimir; Tkachenko, Nikolai V.; Efimov, Alexander; Tolkki, Antti; Lehtivuori, Heli; Lemmetyinen, Helge

    2008-01-01

    Layers of poly(3-hexylthiophene), PHT, phenyl vinyl thiophene, PVT3, poly(p-phenylene-2,3′-bis(3,2′-diphenyl)-quinoxaline-7-7′- diyl), PPQ, and covalently linked porphyrin-fullerene donor-acceptor dyad, P-F, were deposited as various multilayer films, which then were used to study photoinduced

  4. Charge Carrier Generation, Recombination, and Extraction in Polymer–Fullerene Bulk Heterojunction Organic Solar Cells

    Laquai, Frederic

    2016-12-20

    In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer–fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency.

  5. Fullerenes as alternative acceptors by transfer doping of diamond surfaces; Fullerene als alternative Akzeptoren bei der Transferdotierung von Diamantoberflaechen

    Strobel, Paul

    2008-06-06

    The topic of this thesis is the fullerene induced surface conductivity on hydrogen terminated diamond. A systematic investigation of C{sub 60}, C{sub 60}F{sub 18}, C{sub 60}F{sub 36} and C{sub 60}F{sub 48} as transfer dopants on hydrogenated diamond has been performed. For C{sub 60}, the doping mechanism is more accurately described as a charge exchange in an extreme type II heterojunction. On the other hand a molecular surface acceptor model that takes the degeneracy of holes and the electric field caused by charge separation into account has been performed for the case of C{sub 60}F{sub 48} in excellent agreement with experimental results. Using in situ Hall Effect measurements of air, C{sub 60}, and C{sub 60}F{sub 48} induced conductivity the sign of the charge carriers that dominate the transport properties was determined. At ambient temperature the hole mobility {mu} as a function of the induced charge carrier density p between p=5.10{sup 10} cm{sup -2} and p=3.10{sup 13} cm{sup -2} was measured. A maximum of the mobility of 130-150 cm{sup 2}V{sup -1}s{sup -1} occurs for p=2.10{sup 1} cm{sup -2}. Temperature dependent Hall measurements between 77 and 350 K show a non-activated, constant charge carrier density on all examinated samples, independently of the kind of adsorbates. On the other hand, both the conductivity and the mobility exhibit temperature dependence, varying with the charge carrier concentration. An essential part of this thesis addressed the investigation and the improvement of the thermal stability of the fullerene layers. In order to achieve the covalent attachment of C{sub 60}F{sub 48} to a hydrogen terminated diamond surface a process for controlled partially hydrolisation was developed. Functionalization with hydroxyl groups could be achieved by using a remote water vapour plasma at room temperature for a few seconds as demonstrated by photoelectron spectroscopy. Prolonged water plasma exposure, however, as well as annealing at temperatures

  6. RNA structure alignment by a unit-vector approach.

    Capriotti, Emidio; Marti-Renom, Marc A

    2008-08-15

    The recent discovery of tiny RNA molecules such as microRNAs and small interfering RNA are transforming the view of RNA as a simple information transfer molecule. Similar to proteins, the native three-dimensional structure of RNA determines its biological activity. Therefore, classifying the current structural space is paramount for functionally annotating RNA molecules. The increasing numbers of RNA structures deposited in the PDB requires more accurate, automatic and benchmarked methods for RNA structure comparison. In this article, we introduce a new algorithm for RNA structure alignment based on a unit-vector approach. The algorithm has been implemented in the SARA program, which results in RNA structure pairwise alignments and their statistical significance. The SARA program has been implemented to be of general applicability even when no secondary structure can be calculated from the RNA structures. A benchmark against the ARTS program using a set of 1275 non-redundant pairwise structure alignments results in inverted approximately 6% extra alignments with at least 50% structurally superposed nucleotides and base pairs. A first attempt to perform RNA automatic functional annotation based on structure alignments indicates that SARA can correctly assign the deepest SCOR classification to >60% of the query structures. The SARA program is freely available through a World Wide Web server http://sgu.bioinfo.cipf.es/services/SARA/. Supplementary data are available at Bioinformatics online.

  7. A generalized global alignment algorithm.

    Huang, Xiaoqiu; Chao, Kun-Mao

    2003-01-22

    Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.

  8. Vacuum Alignment with more Flavors

    Ryttov, Thomas

    2014-01-01

    We study the alignment of the vacuum in gauge theories with $N_f$ Dirac fermions transforming according to a complex representation of the gauge group. The alignment of the vacuum is produced by adding a small mass perturbation to the theory. We study in detail the $N_f=2,3$ and $4$ case. For $N_...

  9. Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate

    Kasra Saeedfar

    2013-12-01

    Full Text Available A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate (PnBA membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10−3 M to 8.28 × 10−5 M. The biosensor’s sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor’s response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  10. Thermally Stable Bulk Heterojunction Prepared by Sequential Deposition of Nanostructured Polymer and Fullerene

    Heewon Hwang

    2017-09-01

    Full Text Available A morphologically-stable polymer/fullerene heterojunction has been prepared by minimizing the intermixing between polymer and fullerene via sequential deposition (SqD of a polymer and a fullerene solution. A low crystalline conjugated polymer of PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl-4H-cyclopenta [2,1-b;3,4-b′]dithiophene-alt-4,7(2,1,3-benzothiadiazole] has been utilized for the polymer layer and PC71BM (phenyl-C71-butyric-acid-methyl ester for the fullerene layer, respectively. Firstly, a nanostructured PCPDTBT bottom layer was developed by utilizing various additives to increase the surface area of the polymer film. The PC71BM solution was prepared by dissolving it in the 1,2-dichloroethane (DCE, exhibiting a lower vapor pressure and slower diffusion into the polymer layer. The deposition of the PC71BM solution on the nanostructured PCPDTBT layer forms an inter-digitated bulk heterojunction (ID-BHJ with minimized intermixing. The organic photovoltaic (OPV device utilizing the ID-BHJ photoactive layer exhibits a highly reproducible solar cell performance. In spite of restricted intermixing between the PC71BM and the PCPDTBT, the efficiency of ID-BHJ OPVs (3.36% is comparable to that of OPVs (3.87% prepared by the conventional method (deposition of a blended solution of polymer:fullerene. The thermal stability of the ID-BHJ is superior to the bulk heterojunction (BHJ prepared by the conventional method. The ID-BHJ OPV maintains 70% of its initial efficiency after thermal stress application for twelve days at 80 °C, whereas the conventional BHJ OPV maintains only 40% of its initial efficiency.

  11. The CMS Silicon Tracker Alignment

    Castello, R

    2008-01-01

    The alignment of the Strip and Pixel Tracker of the Compact Muon Solenoid experiment, with its large number of independent silicon sensors and its excellent spatial resolution, is a complex and challenging task. Besides high precision mounting, survey measurements and the Laser Alignment System, track-based alignment is needed to reach the envisaged precision.\\\\ Three different algorithms for track-based alignment were successfully tested on a sample of cosmic-ray data collected at the Tracker Integration Facility, where 15\\% of the Tracker was tested. These results, together with those coming from the CMS global run, will provide the basis for the full-scale alignment of the Tracker, which will be carried out with the first \\emph{p-p} collisions.

  12. Alignment-Annotator web server: rendering and annotating sequence alignments.

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-07-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells.

    Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan

    2012-04-24

    Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.

  14. Nature of the Binding Interactions between Conjugated Polymer Chains and Fullerenes in Bulk Heterojunction Organic Solar Cells

    Ravva, Mahesh Kumar; Wang, Tonghui; Bredas, Jean-Luc

    2016-01-01

    Blends of π-conjugated polymers and fullerene derivatives are ubiquitous as the active layers of organic solar cells. However, a detailed understanding of the weak noncovalent interactions at the molecular level between the polymer chains

  15. Static and Dynamic Energetic Disorders in the C 60 , PC 61 BM, C 70 , and PC 71 BM Fullerenes

    Tummala, Naga Rajesh; Zheng, Zilong; Aziz, Saadullah G.; Coropceanu, Veaceslav; Bré das, Jean Luc

    2015-01-01

    We use a combination of molecular dynamics simulations and density functional theory calculations to investigate the energetic disorder in fullerene systems. We show that the energetic disorder evaluated from an ensemble average contains

  16. Electric field dependent photocurrent generation in a thin-film organic photovoltaic device with a [70]fullerene-benzodifuranone dyad.

    Ulmann, Pirmin A; Tanaka, Hideyuki; Matsuo, Yutaka; Xiao, Zuo; Soga, Iwao; Nakamura, Eiichi

    2011-12-21

    A [70]fullerene-benzodifuranone acceptor dyad synthesized by a Ag⁺-mediated coupling reaction was used to construct a thin-film organic solar cell. The fullerene and the benzodifuranone dye in the dyad have close-lying LUMO levels in the range of 3.7-3.9 eV, so that energy transfer from the dye to the fullerene can take place. A p-n heterojunction photovoltaic device consisting of a tetrabenzoporphyrin and a [70]fullerene-benzodifuranone dyad showed a weak but discernible contribution from light absorption of the dyad to the photocurrent under both a positive and a negative effective bias. These results indicate that the benzodifuranone moiety attached to the acceptor contributes to light-harvesting by energy transfer.

  17. Plasma-chemical synthesis of carbon nanotubes and fullerenes to create frost-resistant composite building materials

    Semenov, A P; Smirnyagina, N N; Tsyrenov, B O; Dasheev, D E; Khaltarov, Z M

    2017-01-01

    This paper considers a method of synthesis fullerenes and carbon nanotubes at atmospheric pressure. Carbon evaporates into the plasma arc. The paper discusses the method of synthesis of helium at a pressure of 10 5 Pa. We show the dependence yield of fullerenes and carbon nanotubes from the buffer gas pressure. It has been found that the fullerene yield increased with increasing pressure. The obtained fullerenes and nanotubes find their application in the modification of construction materials. The use of carbon nanomodifiers in the modification of the construction is promising since their introduction significantly improves the physico-mechanical properties using a small quantity of additives. With the introduction of the carbon nanomodifier decrease the porosity of cement stone, which leads to high strength and frost-resistant indicators of the modified cement. (paper)

  18. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells

    Wadsworth, Andrew; Moser, Maximilian; Marks, Adam; Little, Mark S.; Gasparini, Nicola; Brabec, Christoph J.; Baran, Derya; McCulloch, Iain

    2018-01-01

    Fullerenes have formed an integral part of high performance organic solar cells over the last 20 years, however their inherent limitations in terms of synthetic flexibility, cost and stability have acted as a motivation to develop replacements; the so-called non-fullerene electron acceptors. A rapid evolution of such materials has taken place over the last few years, yielding a number of promising candidates that can exceed the device performance of fullerenes and provide opportunities to improve upon the stability and processability of organic solar cells. In this review we explore the structure-property relationships of a library of non-fullerene acceptors, highlighting the important chemical modifications that have led to progress in the field and provide an outlook for future innovations in electron acceptors for use in organic photovoltaics.

  19. Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells

    Miller, Nichole Cates; Cho, Eunkyung; Gysel, Roman; Risko, Chad; Coropceanu, Veaceslav; Miller, Chad E.; Sweetnam, Sean; Sellinger, Alan; Heeney, Martin; McCulloch, Iain; Bré das, Jean-Luc; Toney, Michael F.; McGehee, Michael D.

    2012-01-01

    bimolecular crystals did not form in the other studied polymer:nonfullerene blends, including those with both conjugated and non-conjugated small molecules. DSC and molecular simulations demonstrate that strong polymer-fullerene interactions can exist

  20. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells

    Wadsworth, Andrew

    2018-04-26

    Fullerenes have formed an integral part of high performance organic solar cells over the last 20 years, however their inherent limitations in terms of synthetic flexibility, cost and stability have acted as a motivation to develop replacements; the so-called non-fullerene electron acceptors. A rapid evolution of such materials has taken place over the last few years, yielding a number of promising candidates that can exceed the device performance of fullerenes and provide opportunities to improve upon the stability and processability of organic solar cells. In this review we explore the structure-property relationships of a library of non-fullerene acceptors, highlighting the important chemical modifications that have led to progress in the field and provide an outlook for future innovations in electron acceptors for use in organic photovoltaics.