An assembly sequence planning method based on composite algorithm
Enfu LIU; Bo LIU; Xiaoyang LIU; Yi LI
2016-01-01
To solve the combination explosion problem and the blind searching problem in assembly sequence planning of complex products, an assembly sequence planning method based on composite algorithm is proposed. In the composite algorithm, a sufficient number of feasible assembly sequences are generated using formalization reasoning algorithm as the initial population of genetic algorithm. Then fuzzy knowledge of assembly is integrated into the planning process of genetic algorithm and ant algorithm...
A Tomographic method based on genetic algorithms
International Nuclear Information System (INIS)
Turcanu, C.; Alecu, L.; Craciunescu, T.; Niculae, C.
1997-01-01
Computerized tomography being a non-destructive and non-evasive technique is frequently used in medical application to generate three dimensional images of objects. Genetic algorithms are efficient, domain independent for a large variety of problems. The proposed method produces good quality reconstructions even in case of very small number of projection angles. It requests no a priori knowledge about the solution and takes into account the statistical uncertainties. The main drawback of the method is the amount of computer memory and time needed. (author)
An assembly sequence planning method based on composite algorithm
Directory of Open Access Journals (Sweden)
Enfu LIU
2016-02-01
Full Text Available To solve the combination explosion problem and the blind searching problem in assembly sequence planning of complex products, an assembly sequence planning method based on composite algorithm is proposed. In the composite algorithm, a sufficient number of feasible assembly sequences are generated using formalization reasoning algorithm as the initial population of genetic algorithm. Then fuzzy knowledge of assembly is integrated into the planning process of genetic algorithm and ant algorithm to get the accurate solution. At last, an example is conducted to verify the feasibility of composite algorithm.
Influence of crossover methods used by genetic algorithm-based ...
Indian Academy of Sciences (India)
Home; Journals; Sadhana; Volume 40; Issue 8. Influence of crossover methods used by genetic algorithm-based heuristic to solve the selective harmonic ... Genetic Algorithms (GA) has always done justice to the art of optimization. One such endeavor has been made in employing the roots of GA in a most proficient way to ...
Algorithm for Concrete Mix Design Based on British Method | Ezeh ...
African Journals Online (AJOL)
The results obtained from the algorithm were compared with those obtained based on the British method and the differences between them were found to be less than 10% in each example. Hence, the algorithm developed in this paper is working with minimum error. It is recommended for use in obtaining good results for ...
A joint tracking method for NSCC based on WLS algorithm
Luo, Ruidan; Xu, Ying; Yuan, Hong
2017-12-01
Navigation signal based on compound carrier (NSCC), has the flexible multi-carrier scheme and various scheme parameters configuration, which enables it to possess significant efficiency of navigation augmentation in terms of spectral efficiency, tracking accuracy, multipath mitigation capability and anti-jamming reduction compared with legacy navigation signals. Meanwhile, the typical scheme characteristics can provide auxiliary information for signal synchronism algorithm design. This paper, based on the characteristics of NSCC, proposed a kind of joint tracking method utilizing Weighted Least Square (WLS) algorithm. In this method, the LS algorithm is employed to jointly estimate each sub-carrier frequency shift with the frequency-Doppler linear relationship, by utilizing the known sub-carrier frequency. Besides, the weighting matrix is set adaptively according to the sub-carrier power to ensure the estimation accuracy. Both the theory analysis and simulation results illustrate that the tracking accuracy and sensitivity of this method outperforms the single-carrier algorithm with lower SNR.
a SAR Image Registration Method Based on Sift Algorithm
Lu, W.; Yue, X.; Zhao, Y.; Han, C.
2017-09-01
In order to improve the stability and rapidity of synthetic aperture radar (SAR) images matching, an effective method was presented. Firstly, the adaptive smoothing filtering was employed for image denoising in image processing based on Wallis filtering to avoid the follow-up noise is amplified. Secondly, feature points were extracted by a simplified SIFT algorithm. Finally, the exact matching of the images was achieved with these points. Compared with the existing methods, it not only maintains the richness of features, but a-lso reduces the noise of the image. The simulation results show that the proposed algorithm can achieve better matching effect.
Influence of crossover methods used by genetic algorithm-based ...
Indian Academy of Sciences (India)
Influence of crossover methods used by genetic algorithm-based heuristic to solve the selective harmonic equations (SHE) in multi-level voltage source inverter. SANGEETHA S1,∗ and S JEEVANANTHAN2. 1Department of Electrical and Electronics Engineering, Jawaharlal Nehru. Technological University, Hyderabad 500 ...
A Novel Assembly Line Balancing Method Based on PSO Algorithm
Directory of Open Access Journals (Sweden)
Xiaomei Hu
2014-01-01
Full Text Available Assembly line is widely used in manufacturing system. Assembly line balancing problem is a crucial question during design and management of assembly lines since it directly affects the productivity of the whole manufacturing system. The model of assembly line balancing problem is put forward and a general optimization method is proposed. The key data on assembly line balancing problem is confirmed, and the precedence relations diagram is described. A double objective optimization model based on takt time and smoothness index is built, and balance optimization scheme based on PSO algorithm is proposed. Through the simulation experiments of examples, the feasibility and validity of the assembly line balancing method based on PSO algorithm is proved.
Research on Palmprint Identification Method Based on Quantum Algorithms
Directory of Open Access Journals (Sweden)
Hui Li
2014-01-01
Full Text Available Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%.
Robot Path Planning Method Based on Improved Genetic Algorithm
Mingyang Jiang; Xiaojing Fan; Zhili Pei; Jingqing Jiang; Yulan Hu; Qinghu Wang
2014-01-01
This paper presents an improved genetic algorithm for mobile robot path planning. The algorithm uses artificial potential method to establish the initial population, and increases value weights in the fitness function, which increases the controllability of robot path length and path smoothness. In the new algorithm, a flip mutation operator is added, which ensures the individual population collision path. Simulation results show that the proposed algorithm can get a smooth, collision-free pa...
Robot Path Planning Method Based on Improved Genetic Algorithm
Directory of Open Access Journals (Sweden)
Mingyang Jiang
2014-03-01
Full Text Available This paper presents an improved genetic algorithm for mobile robot path planning. The algorithm uses artificial potential method to establish the initial population, and increases value weights in the fitness function, which increases the controllability of robot path length and path smoothness. In the new algorithm, a flip mutation operator is added, which ensures the individual population collision path. Simulation results show that the proposed algorithm can get a smooth, collision-free path to the global optimum, the path planning algorithm which is used to solve the problem is effective and feasible.
An Emotion-Based Method to Perform Algorithmic Composition
Huang, Chih-Fang; Lin, En-Ju
2013-01-01
The generative music using algorithmic composition techniques has been developed in many years. However it usually lacks of emotion-based mechanism to generate music with specific affective features. In this article the automated music algorithm will be performed based on Prof. Phil Winosr’s “MusicSculptor” software with proper emotion parameter mapping to drive the music content with specific context using various music pa-rameters distribution with different probability control, in order to...
A genetic algorithm based method for neutron spectrum unfolding
International Nuclear Information System (INIS)
Suman, Vitisha; Sarkar, P.K.
2013-03-01
An approach to neutron spectrum unfolding based on a stochastic evolutionary search mechanism - Genetic Algorithm (GA) is presented. It is tested to unfold a set of simulated spectra, the unfolded spectra is compared to the output of a standard code FERDOR. The method was then applied to a set of measured pulse height spectrum of neutrons from the AmBe source as well as of emitted neutrons from Li(p,n) and Ag(C,n) nuclear reactions carried out in the accelerator environment. The unfolded spectra compared to the output of FERDOR show good agreement in the case of AmBe spectra and Li(p,n) spectra. In the case of Ag(C,n) spectra GA method results in some fluctuations. Necessity of carrying out smoothening of the obtained solution is also studied, which leads to approximation of the solution yielding an appropriate solution finally. Few smoothing techniques like second difference smoothing, Monte Carlo averaging, combination of both and gaussian based smoothing methods are also studied. Unfolded results obtained after inclusion of the smoothening criteria are in close agreement with the output obtained from the FERDOR code. The present method is also tested on a set of underdetermined problems, the outputs of which is compared to the unfolded spectra obtained from the FERDOR applied to a completely determined problem, shows a good match. The distribution of the unfolded spectra is also studied. Uncertainty propagation in the unfolded spectra due to the errors present in the measurement as well as the response function is also carried out. The method appears to be promising for unfolding the completely determined as well as underdetermined problems. It also has provisions to carry out the uncertainty analysis. (author)
Visual tracking method based on cuckoo search algorithm
Gao, Ming-Liang; Yin, Li-Ju; Zou, Guo-Feng; Li, Hai-Tao; Liu, Wei
2015-07-01
Cuckoo search (CS) is a new meta-heuristic optimization algorithm that is based on the obligate brood parasitic behavior of some cuckoo species in combination with the Lévy flight behavior of some birds and fruit flies. It has been found to be efficient in solving global optimization problems. An application of CS is presented to solve the visual tracking problem. The relationship between optimization and visual tracking is comparatively studied and the parameters' sensitivity and adjustment of CS in the tracking system are experimentally studied. To demonstrate the tracking ability of a CS-based tracker, a comparative study of tracking accuracy and speed of the CS-based tracker with six "state-of-art" trackers, namely, particle filter, meanshift, PSO, ensemble tracker, fragments tracker, and compressive tracker are presented. Comparative results show that the CS-based tracker outperforms the other trackers.
Ning Yao
2014-01-01
In order to analyze the DC magnetic bias effect of neutral grounding AC transformer around convertor station grounding electrode, it proposes a new calculation method —field circuit iterative algorithm in this article. The method includes partial iterative algorithm and concentrated iterative algorithm. On the research base of direct injection current calculation methods, field circuit coupling method and resistor network method. Not only the effect of direct convertor station grounding elect...
Joint Interference Detection Method for DSSS Communications Based on the OMP Algorithm and CA-CFAR
Directory of Open Access Journals (Sweden)
Zhang Yongshun
2016-01-01
Full Text Available The existing direct sequence spread spectrum (DSSS communications interference detection algorithms are confined to the high sampling rate. In order to solve this problem, algorithm for DSSS communications interference detection was designed based on compressive sensing (CS. First of all, the orthogonal matching pursuit (OMP algorithm was applied to the interference detection in DSSS communications, the advantages and weaknesses of the algorithm were analyzed; Secondly, according to the weaknesses of the OMP algorithm, a joint interference detection method based on the OMP algorithm and cell average constant false alarm rate (CA-CFAR was proposed. The theoretical analyze and computer simulation all proved the effectiveness of the new algorithm. The simulation results show that the new method not only could achieve the interference detection, but also could estimate the interference quantity effectively.
Luo, Yaqi; Zeng, Bi
2017-08-01
This paper researches the drainage routing problem in drainage pipe network, and propose an intelligent scheduling method. The method relates to the design of improved particle swarm optimization algorithm, the establishment of the corresponding model from the pipe network, and the process by using the algorithm based on improved particle swarm optimization to find the optimum drainage route in the current environment.
A New DG Multiobjective Optimization Method Based on an Improved Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Wanxing Sheng
2013-01-01
Full Text Available A distribution generation (DG multiobjective optimization method based on an improved Pareto evolutionary algorithm is investigated in this paper. The improved Pareto evolutionary algorithm, which introduces a penalty factor in the objective function constraints, uses an adaptive crossover and a mutation operator in the evolutionary process and combines a simulated annealing iterative process. The proposed algorithm is utilized to the optimize DG injection models to maximize DG utilization while minimizing system loss and environmental pollution. A revised IEEE 33-bus system with multiple DG units was used to test the multiobjective optimization algorithm in a distribution power system. The proposed algorithm was implemented and compared with the strength Pareto evolutionary algorithm 2 (SPEA2, a particle swarm optimization (PSO algorithm, and nondominated sorting genetic algorithm II (NGSA-II. The comparison of the results demonstrates the validity and practicality of utilizing DG units in terms of economic dispatch and optimal operation in a distribution power system.
Directory of Open Access Journals (Sweden)
Ning Yao
2014-08-01
Full Text Available In order to analyze the DC magnetic bias effect of neutral grounding AC transformer around convertor station grounding electrode, it proposes a new calculation method —field circuit iterative algorithm in this article. The method includes partial iterative algorithm and concentrated iterative algorithm. On the research base of direct injection current calculation methods, field circuit coupling method and resistor network method. Not only the effect of direct convertor station grounding electrode current on substation grounding grid potential, but also the effect of the current of each substation grounding grid on the grounding grid potential of other substation is considered in the field circuit iterative algorithm. Through the analyzing comparison of calculation model, it is proved that field circuit iterative algorithm is more accuracy and adaptative than field-circuit coupling method and resistor network method in the AC power system set by using the equivalent resistance circuit DC path to calculate DC current component of the transformer.
A novel method to design S-box based on chaotic map and genetic algorithm
International Nuclear Information System (INIS)
Wang, Yong; Wong, Kwok-Wo; Li, Changbing; Li, Yang
2012-01-01
The substitution box (S-box) is an important component in block encryption algorithms. In this Letter, the problem of constructing S-box is transformed to a Traveling Salesman Problem and a method for designing S-box based on chaos and genetic algorithm is proposed. Since the proposed method makes full use of the traits of chaotic map and evolution process, stronger S-box is obtained. The results of performance test show that the presented S-box has good cryptographic properties, which justify that the proposed algorithm is effective in generating strong S-boxes. -- Highlights: ► The problem of constructing S-box is transformed to a Traveling Salesman Problem. ► We present a new method for designing S-box based on chaos and genetic algorithm. ► The proposed algorithm is effective in generating strong S-boxes.
A novel method to design S-box based on chaotic map and genetic algorithm
Energy Technology Data Exchange (ETDEWEB)
Wang, Yong, E-mail: wangyong_cqupt@163.com [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China); Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Wong, Kwok-Wo [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong (Hong Kong); Li, Changbing [Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Li, Yang [Department of Automatic Control and Systems Engineering, The University of Sheffield, Mapping Street, S1 3DJ (United Kingdom)
2012-01-30
The substitution box (S-box) is an important component in block encryption algorithms. In this Letter, the problem of constructing S-box is transformed to a Traveling Salesman Problem and a method for designing S-box based on chaos and genetic algorithm is proposed. Since the proposed method makes full use of the traits of chaotic map and evolution process, stronger S-box is obtained. The results of performance test show that the presented S-box has good cryptographic properties, which justify that the proposed algorithm is effective in generating strong S-boxes. -- Highlights: ► The problem of constructing S-box is transformed to a Traveling Salesman Problem. ► We present a new method for designing S-box based on chaos and genetic algorithm. ► The proposed algorithm is effective in generating strong S-boxes.
Influence of crossover methods used by genetic algorithm-based ...
Indian Academy of Sciences (India)
This paper deals with solving of the selective harmonic equations (SHE) using binary coded GA specific to knowledge based neighbourhood multipoint crossover technique. This is directly related to the switching moments of the multilevel inverter under consideration. Although the previous root-finding techniques such as ...
A Method Based on Dial's Algorithm for Multi-time Dynamic Traffic Assignment
Directory of Open Access Journals (Sweden)
Rongjie Kuang
2014-03-01
Full Text Available Due to static traffic assignment has poor performance in reflecting actual case and dynamic traffic assignment may incurs excessive compute cost, method of multi-time dynamic traffic assignment combining static and dynamic traffic assignment balances factors of precision and cost effectively. A method based on Dial's logit algorithm is proposed in the article to solve the dynamic stochastic user equilibrium problem in dynamic traffic assignment. Before that, a fitting function that can proximately reflect overloaded traffic condition of link is proposed and used to give corresponding model. Numerical example is given to illustrate heuristic procedure of method and to compare results with one of same example solved by other literature's algorithm. Results show that method based on Dial's algorithm is preferable to algorithm from others.
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
The Global Optimal Algorithm of Reliable Path Finding Problem Based on Backtracking Method
Directory of Open Access Journals (Sweden)
Liang Shen
2017-01-01
Full Text Available There is a growing interest in finding a global optimal path in transportation networks particularly when the network suffers from unexpected disturbance. This paper studies the problem of finding a global optimal path to guarantee a given probability of arriving on time in a network with uncertainty, in which the travel time is stochastic instead of deterministic. Traditional path finding methods based on least expected travel time cannot capture the network user’s risk-taking behaviors in path finding. To overcome such limitation, the reliable path finding algorithms have been proposed but the convergence of global optimum is seldom addressed in the literature. This paper integrates the K-shortest path algorithm into Backtracking method to propose a new path finding algorithm under uncertainty. The global optimum of the proposed method can be guaranteed. Numerical examples are conducted to demonstrate the correctness and efficiency of the proposed algorithm.
Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy.
Tian, Yuling; Zhang, Hongxian
2016-01-01
For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic-there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions.
Beacon- and Schema-Based Method for Recognizing Algorithms from Students' Source Code
Taherkhani, Ahmad; Malmi, Lauri
2013-01-01
In this paper, we present a method for recognizing algorithms from students programming submissions coded in Java. The method is based on the concept of "programming schemas" and "beacons". Schemas are high-level programming knowledge with detailed knowledge abstracted out, and beacons are statements that imply specific…
Directory of Open Access Journals (Sweden)
Qiuhong Sun
2014-04-01
Full Text Available Based on the data mining research, the data mining based on genetic algorithm method, the genetic algorithm is briefly introduced, while the genetic algorithm based on two important theories and theoretical templates principle implicit parallelism is also discussed. Focuses on the application of genetic algorithms for association rule mining method based on association rule mining, this paper proposes a genetic algorithm fitness function structure, data encoding, such as the title of the improvement program, in particular through the early issues study, proposed the improved adaptive Pc, Pm algorithm is applied to the genetic algorithm, thereby improving efficiency of the algorithm. Finally, a genetic algorithm based association rule mining algorithm, and be applied in sea water samples database in data mining and prove its effective.
Research of beam hardening correction method for CL system based on SART algorithm
International Nuclear Information System (INIS)
Cao Daquan; Wang Yaxiao; Que Jiemin; Sun Cuili; Wei Cunfeng; Wei Long
2014-01-01
Computed laminography (CL) is a non-destructive testing technique for large objects, especially for planar objects. Beam hardening artifacts were wildly observed in the CL system and significantly reduce the image quality. This study proposed a novel simultaneous algebraic reconstruction technique (SART) based beam hardening correction (BHC) method for the CL system, namely the SART-BHC algorithm in short. The SART-BHC algorithm took the polychromatic attenuation process in account to formulate the iterative reconstruction update. A novel projection matrix calculation method which was different from the conventional cone-beam or fan-beam geometry was also studied for the CL system. The proposed method was evaluated with simulation data and experimental data, which was generated using the Monte Carlo simulation toolkit Geant4 and a bench-top CL system, respectively. All projection data were reconstructed with SART-BHC algorithm and the standard filtered back projection (FBP) algorithm. The reconstructed images show that beam hardening artifacts are greatly reduced with the SART-BHC algorithm compared to the FBP algorithm. The SART-BHC algorithm doesn't need any prior know-ledge about the object or the X-ray spectrum and it can also mitigate the interlayer aliasing. (authors)
Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying
2018-03-01
In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.
Xie, Z. W.; Zang, J. L.; Zhang, Y.
2013-06-01
An accelerated algorithm for three-dimensional computer generated holograms (CGHs) based on the ray-tracing method is proposed. The complex amplitude distribution from the center point of an object is calculated in advance and the field distributions of rest points on the hologram plane can be given by doing a small translation and an aberration to the pre-calculated field. A static two-dimensional car, a three-dimensional teapot, and a dynamic three-dimensional rotating teapot are reconstructed from CGHs calculated with the accelerated algorithm to prove its validity. The simulation results demonstrate that the accelerated algorithm is eight times faster than the conventional ray-tracing algorithm.
CSIR Research Space (South Africa)
Abu-Mahfouz, Adnan M
2013-05-01
Full Text Available International Journal of Sensor Networks May 2013/ Vol. 13 No.2 An efficient distributed localisation algorithm for wireless sensor networks: based on smart reference-selection method Adnan M. Abu-Mahfouz1,* and Gerhard P. Hancke2 1 Advanced Sensor...
An Initialization Method Based on Hybrid Distance for k-Means Algorithm.
Yang, Jie; Ma, Yan; Zhang, Xiangfen; Li, Shunbao; Zhang, Yuping
2017-11-01
The traditional [Formula: see text]-means algorithm has been widely used as a simple and efficient clustering method. However, the performance of this algorithm is highly dependent on the selection of initial cluster centers. Therefore, the method adopted for choosing initial cluster centers is extremely important. In this letter, we redefine the density of points according to the number of its neighbors, as well as the distance between points and their neighbors. In addition, we define a new distance measure that considers both Euclidean distance and density. Based on that, we propose an algorithm for selecting initial cluster centers that can dynamically adjust the weighting parameter. Furthermore, we propose a new internal clustering validation measure, the clustering validation index based on the neighbors (CVN), which can be exploited to select the optimal result among multiple clustering results. Experimental results show that the proposed algorithm outperforms existing initialization methods on real-world data sets and demonstrates the adaptability of the proposed algorithm to data sets with various characteristics.
Luo, Shouhua; Wu, Huazhen; Sun, Yi; Li, Jing; Li, Guang; Gu, Ning
2017-03-01
The beam hardening effect can induce strong artifacts in CT images, which result in severely deteriorated image quality with incorrect intensities (CT numbers). This paper develops an effective and efficient beam hardening correction algorithm incorporated in a filtered back-projection based maximum a posteriori (BHC-FMAP). In the proposed algorithm, the beam hardening effect is modeled and incorporated into the forward-projection of the MAP to suppress beam hardening induced artifacts, and the image update process is performed by Feldkamp-Davis-Kress method based back-projection to speed up the convergence. The proposed BHC-FMAP approach does not require information about the beam spectrum or the material properties, or any additional segmentation operation. The proposed method was qualitatively and quantitatively evaluated using both phantom and animal projection data. The experimental results demonstrate that the BHC-FMAP method can efficiently provide a good correction of beam hardening induced artefacts.
A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms.
Caldas, Rafael; Mundt, Marion; Potthast, Wolfgang; Buarque de Lima Neto, Fernando; Markert, Bernd
2017-09-01
The conventional methods to assess human gait are either expensive or complex to be applied regularly in clinical practice. To reduce the cost and simplify the evaluation, inertial sensors and adaptive algorithms have been utilized, respectively. This paper aims to summarize studies that applied adaptive also called artificial intelligence (AI) algorithms to gait analysis based on inertial sensor data, verifying if they can support the clinical evaluation. Articles were identified through searches of the main databases, which were encompassed from 1968 to October 2016. We have identified 22 studies that met the inclusion criteria. The included papers were analyzed due to their data acquisition and processing methods with specific questionnaires. Concerning the data acquisition, the mean score is 6.1±1.62, what implies that 13 of 22 papers failed to report relevant outcomes. The quality assessment of AI algorithms presents an above-average rating (8.2±1.84). Therefore, AI algorithms seem to be able to support gait analysis based on inertial sensor data. Further research, however, is necessary to enhance and standardize the application in patients, since most of the studies used distinct methods to evaluate healthy subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
An effective trust-based recommendation method using a novel graph clustering algorithm
Moradi, Parham; Ahmadian, Sajad; Akhlaghian, Fardin
2015-10-01
Recommender systems are programs that aim to provide personalized recommendations to users for specific items (e.g. music, books) in online sharing communities or on e-commerce sites. Collaborative filtering methods are important and widely accepted types of recommender systems that generate recommendations based on the ratings of like-minded users. On the other hand, these systems confront several inherent issues such as data sparsity and cold start problems, caused by fewer ratings against the unknowns that need to be predicted. Incorporating trust information into the collaborative filtering systems is an attractive approach to resolve these problems. In this paper, we present a model-based collaborative filtering method by applying a novel graph clustering algorithm and also considering trust statements. In the proposed method first of all, the problem space is represented as a graph and then a sparsest subgraph finding algorithm is applied on the graph to find the initial cluster centers. Then, the proposed graph clustering algorithm is performed to obtain the appropriate users/items clusters. Finally, the identified clusters are used as a set of neighbors to recommend unseen items to the current active user. Experimental results based on three real-world datasets demonstrate that the proposed method outperforms several state-of-the-art recommender system methods.
Susyanto, N.; Veldhuis, Raymond N.J.; Spreeuwers, Lieuwe Jan; Klaassen, C.A.J.
2016-01-01
We propose a new method for combining multi-algorithm score-based face recognition systems, which we call the two-step calibration method. Typically, algorithms for face recognition systems produce dependent scores. The two-step method is based on parametric copulas to handle this dependence. Its
Genetic algorithm-based design method for multilevel anisotropic diffraction gratings
Okamoto, Hiroyuki; Noda, Kohei; Sakamoto, Moritsugu; Sasaki, Tomoyuki; Wada, Yasuhiro; Kawatsuki, Nobuhiro; Ono, Hiroshi
2017-08-01
We developed a method for the design of multilevel anisotropic diffraction gratings based on a genetic algorithm. The method is used to design the multilevel anisotropic diffraction gratings based on input data that represent the output from the required grating. The validity of the proposed method was evaluated by designing a multilevel anisotropic diffraction grating using the outputs from an orthogonal circular polarization grating. The design results corresponded to the orthogonal circular polarization grating structures that were used to provide outputs to act as the input data for the process. Comparison with existing design methods shows that the proposed method can reduce the number of human processes that are required to design multilevel anisotropic diffraction gratings. Additionally, the method will be able to design complex structures without any requirement for subsequent examination by a human designer. The method can contribute to the development of optical elements by designing multilevel anisotropic diffraction gratings.
Lu, Chunhong; Zhu, Zhaomin; Gu, Xiaofeng
2014-09-01
In this paper, we develop a novel feature selection algorithm based on the genetic algorithm (GA) using a specifically devised trace-based separability criterion. According to the scores of class separability and variable separability, this criterion measures the significance of feature subset, independent of any specific classification. In addition, a mutual information matrix between variables is used as features for classification, and no prior knowledge about the cardinality of feature subset is required. Experiments are performed by using a standard lung cancer dataset. The obtained solutions are verified with three different classifiers, including the support vector machine (SVM), the back-propagation neural network (BPNN), and the K-nearest neighbor (KNN), and compared with those obtained by the whole feature set, the F-score and the correlation-based feature selection methods. The comparison results show that the proposed intelligent system has a good diagnosis performance and can be used as a promising tool for lung cancer diagnosis.
A scalable method for parallelizing sampling-based motion planning algorithms
Jacobs, Sam Ade
2012-05-01
This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.
Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network
International Nuclear Information System (INIS)
Wang Xiaojia; Mao Qirong; Zhan Yongzhao
2008-01-01
There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions. The experiments show that this method can improve the recognition rate and the time of feature extraction
Joint Interference Detection Method for DSSS Communications Based on the OMP Algorithm and CA-CFAR
Zhang Yongshun; Jia Xin; Song Ge
2016-01-01
The existing direct sequence spread spectrum (DSSS) communications interference detection algorithms are confined to the high sampling rate. In order to solve this problem, algorithm for DSSS communications interference detection was designed based on compressive sensing (CS). First of all, the orthogonal matching pursuit (OMP) algorithm was applied to the interference detection in DSSS communications, the advantages and weaknesses of the algorithm were analyzed; Secondly, according to the we...
Method of transient identification based on a possibilistic approach, optimized by genetic algorithm
International Nuclear Information System (INIS)
Almeida, Jose Carlos Soares de
2001-02-01
This work develops a method for transient identification based on a possible approach, optimized by Genetic Algorithm to optimize the number of the centroids of the classes that represent the transients. The basic idea of the proposed method is to optimize the partition of the search space, generating subsets in the classes within a partition, defined as subclasses, whose centroids are able to distinguish the classes with the maximum correct classifications. The interpretation of the subclasses as fuzzy sets and the possible approach provided a heuristic to establish influence zones of the centroids, allowing to achieve the 'don't know' answer for unknown transients, that is, outside the training set. (author)
Multi-objective genetic algorithm based innovative wind farm layout optimization method
International Nuclear Information System (INIS)
Chen, Ying; Li, Hua; He, Bang; Wang, Pengcheng; Jin, Kai
2015-01-01
Highlights: • Innovative optimization procedures for both regular and irregular shape wind farm. • Using real wind condition and commercial wind turbine parameters. • Using multiple-objective genetic algorithm optimization method. • Optimize the selection of different wind turbine types and their hub heights. - Abstract: Layout optimization has become one of the critical approaches to increase power output and decrease total cost of a wind farm. Previous researches have applied intelligent algorithms to optimizing the wind farm layout. However, those wind conditions used in most of previous research are simplified and not accurate enough to match the real world wind conditions. In this paper, the authors propose an innovative optimization method based on multi-objective genetic algorithm, and test it with real wind condition and commercial wind turbine parameters. Four case studies are conducted to investigate the number of wind turbines needed in the given wind farm. Different cost models are also considered in the case studies. The results clearly demonstrate that the new method is able to optimize the layout of a given wind farm with real commercial data and wind conditions in both regular and irregular shapes, and achieve a better result by selecting different type and hub height wind turbines.
A genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs.
Li, Dingfang; Luo, Longqiang; Zhang, Wen; Liu, Feng; Luo, Fei
2016-08-31
Predicting piwi-interacting RNA (piRNA) is an important topic in the small non-coding RNAs, which provides clues for understanding the generation mechanism of gamete. To the best of our knowledge, several machine learning approaches have been proposed for the piRNA prediction, but there is still room for improvements. In this paper, we develop a genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs. We construct datasets for three species: Human, Mouse and Drosophila. For each species, we compile the balanced dataset and imbalanced dataset, and thus obtain six datasets to build and evaluate prediction models. In the computational experiments, the genetic algorithm-based weighted ensemble method achieves 10-fold cross validation AUC of 0.932, 0.937 and 0.995 on the balanced Human dataset, Mouse dataset and Drosophila dataset, respectively, and achieves AUC of 0.935, 0.939 and 0.996 on the imbalanced datasets of three species. Further, we use the prediction models trained on the Mouse dataset to identify piRNAs of other species, and the models demonstrate the good performances in the cross-species prediction. Compared with other state-of-the-art methods, our method can lead to better performances. In conclusion, the proposed method is promising for the transposon-derived piRNA prediction. The source codes and datasets are available in https://github.com/zw9977129/piRNAPredictor .
Guang, Chen; Qibo, Feng; Keqin, Ding; Zhan, Gao
2017-10-01
A subpixel displacement measurement method based on the combination of particle swarm optimization (PSO) and gradient algorithm (GA) was proposed for accuracy and speed optimization in GA, which is a subpixel displacement measurement method better applied in engineering practice. An initial integer-pixel value was obtained according to the global searching ability of PSO, and then gradient operators were adopted for a subpixel displacement search. A comparison was made between this method and GA by simulated speckle images and rigid-body displacement in metal specimens. The results showed that the computational accuracy of the combination of PSO and GA method reached 0.1 pixel in the simulated speckle images, or even 0.01 pixels in the metal specimen. Also, computational efficiency and the antinoise performance of the improved method were markedly enhanced.
Zheng, Ming; Zhang, Shugong; Zhou, You; Liu, Guixia
2018-03-01
Inferring gene regulatory networks (GRNs) is a challenging computational task in system biology. Many inference algorithms have been proposed along with related modifications to various problems. Every algorithm has its own advantages and drawbacks. In particular, the efficiency of each algorithm is not as good as people expect. A novel inference algorithm is proposed in this paper that can be divided into two parts. In the first part, the pre-computational part, two tasks must be accomplished: singular value decomposition for solution space determination and the threshold restriction method for redundant edge deletion. The second part of the algorithm is a hybrid parallel genetic algorithm. In this part, a parallel genetic algorithm is used for a first quick search, after which hill climbing is used for an exact search. The proposed algorithm is validated on both melanoma and type II diabetes GRNs and is compared with other algorithms. The efficiency of our algorithm was tested with different numbers of echoes and nodes. The cross-validation results confirmed the effectiveness of our algorithm, which significantly outperforms other algorithms.
Directory of Open Access Journals (Sweden)
JingRui Zhang
2015-03-01
Full Text Available In this article, we focus on safe and effective completion of a rendezvous and docking task by looking at planning approaches and control with fuel-optimal rendezvous for a target spacecraft running on a near-circular reference orbit. A variety of existent practical path constraints are considered, including the constraints of field of view, impulses, and passive safety. A rendezvous approach is calculated by using a hybrid genetic algorithm with those constraints. Furthermore, a control method of trajectory tracking is adopted to overcome the external disturbances. Based on Clohessy–Wiltshire equations, we first construct the mathematical model of optimal planning approaches of multiple impulses with path constraints. Second, we introduce the principle of hybrid genetic algorithm with both stronger global searching ability and local searching ability. We additionally explain the application of this algorithm in the problem of trajectory planning. Then, we give three-impulse simulation examples to acquire an optimal rendezvous trajectory with the path constraints presented in this article. The effectiveness and applicability of the tracking control method are verified with the optimal trajectory above as control objective through the numerical simulation.
2014-01-01
Background Motif mining has always been a hot research topic in bioinformatics. Most of current research on biological networks focuses on exact motif mining. However, due to the inevitable experimental error and noisy data, biological network data represented as the probability model could better reflect the authenticity and biological significance, therefore, it is more biological meaningful to discover probability motif in uncertain biological networks. One of the key steps in probability motif mining is frequent pattern discovery which is usually based on the possible world model having a relatively high computational complexity. Methods In this paper, we present a novel method for detecting frequent probability patterns based on circuit simulation in the uncertain biological networks. First, the partition based efficient search is applied to the non-tree like subgraph mining where the probability of occurrence in random networks is small. Then, an algorithm of probability isomorphic based on circuit simulation is proposed. The probability isomorphic combines the analysis of circuit topology structure with related physical properties of voltage in order to evaluate the probability isomorphism between probability subgraphs. The circuit simulation based probability isomorphic can avoid using traditional possible world model. Finally, based on the algorithm of probability subgraph isomorphism, two-step hierarchical clustering method is used to cluster subgraphs, and discover frequent probability patterns from the clusters. Results The experiment results on data sets of the Protein-Protein Interaction (PPI) networks and the transcriptional regulatory networks of E. coli and S. cerevisiae show that the proposed method can efficiently discover the frequent probability subgraphs. The discovered subgraphs in our study contain all probability motifs reported in the experiments published in other related papers. Conclusions The algorithm of probability graph isomorphism
Abbiati, Giuseppe; La Salandra, Vincenzo; Bursi, Oreste S.; Caracoglia, Luca
2018-02-01
Successful online hybrid (numerical/physical) dynamic substructuring simulations have shown their potential in enabling realistic dynamic analysis of almost any type of non-linear structural system (e.g., an as-built/isolated viaduct, a petrochemical piping system subjected to non-stationary seismic loading, etc.). Moreover, owing to faster and more accurate testing equipment, a number of different offline experimental substructuring methods, operating both in time (e.g. the impulse-based substructuring) and frequency domains (i.e. the Lagrange multiplier frequency-based substructuring), have been employed in mechanical engineering to examine dynamic substructure coupling. Numerous studies have dealt with the above-mentioned methods and with consequent uncertainty propagation issues, either associated with experimental errors or modelling assumptions. Nonetheless, a limited number of publications have systematically cross-examined the performance of the various Experimental Dynamic Substructuring (EDS) methods and the possibility of their exploitation in a complementary way to expedite a hybrid experiment/numerical simulation. From this perspective, this paper performs a comparative uncertainty propagation analysis of three EDS algorithms for coupling physical and numerical subdomains with a dual assembly approach based on localized Lagrange multipliers. The main results and comparisons are based on a series of Monte Carlo simulations carried out on a five-DoF linear/non-linear chain-like systems that include typical aleatoric uncertainties emerging from measurement errors and excitation loads. In addition, we propose a new Composite-EDS (C-EDS) method to fuse both online and offline algorithms into a unique simulator. Capitalizing from the results of a more complex case study composed of a coupled isolated tank-piping system, we provide a feasible way to employ the C-EDS method when nonlinearities and multi-point constraints are present in the emulated system.
A brain-region-based meta-analysis method utilizing the Apriori algorithm.
Niu, Zhendong; Nie, Yaoxin; Zhou, Qian; Zhu, Linlin; Wei, Jieyao
2016-05-18
Brain network connectivity modeling is a crucial method for studying the brain's cognitive functions. Meta-analyses can unearth reliable results from individual studies. Meta-analytic connectivity modeling is a connectivity analysis method based on regions of interest (ROIs) which showed that meta-analyses could be used to discover brain network connectivity. In this paper, we propose a new meta-analysis method that can be used to find network connectivity models based on the Apriori algorithm, which has the potential to derive brain network connectivity models from activation information in the literature, without requiring ROIs. This method first extracts activation information from experimental studies that use cognitive tasks of the same category, and then maps the activation information to corresponding brain areas by using the automatic anatomical label atlas, after which the activation rate of these brain areas is calculated. Finally, using these brain areas, a potential brain network connectivity model is calculated based on the Apriori algorithm. The present study used this method to conduct a mining analysis on the citations in a language review article by Price (Neuroimage 62(2):816-847, 2012). The results showed that the obtained network connectivity model was consistent with that reported by Price. The proposed method is helpful to find brain network connectivity by mining the co-activation relationships among brain regions. Furthermore, results of the co-activation relationship analysis can be used as a priori knowledge for the corresponding dynamic causal modeling analysis, possibly achieving a significant dimension-reducing effect, thus increasing the efficiency of the dynamic causal modeling analysis.
A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm
de Brito, Daniel M.; Maracaja-Coutinho, Vinicius; de Farias, Savio T.; Batista, Leonardo V.; do Rêgo, Thaís G.
2016-01-01
Genomic Islands (GIs) are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP—Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me. PMID:26731657
A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm.
Directory of Open Access Journals (Sweden)
Daniel M de Brito
Full Text Available Genomic Islands (GIs are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP--Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me.
Adaptive Initialization Method Based on Spatial Local Information for k-Means Algorithm
Directory of Open Access Journals (Sweden)
Honghong Liao
2014-01-01
Full Text Available k-means algorithm is a widely used clustering algorithm in data mining and machine learning community. However, the initial guess of cluster centers affects the clustering result seriously, which means that improper initialization cannot lead to a desirous clustering result. How to choose suitable initial centers is an important research issue for k-means algorithm. In this paper, we propose an adaptive initialization framework based on spatial local information (AIF-SLI, which takes advantage of local density of data distribution. As it is difficult to estimate density correctly, we develop two approximate estimations: density by t-nearest neighborhoods (t-NN and density by ϵ-neighborhoods (ϵ-Ball, leading to two implements of the proposed framework. Our empirical study on more than 20 datasets shows promising performance of the proposed framework and denotes that it has several advantages: (1 can find the reasonable candidates of initial centers effectively; (2 it can reduce the iterations of k-means’ methods significantly; (3 it is robust to outliers; and (4 it is easy to implement.
New Classification Method Based on Support-Significant Association Rules Algorithm
Li, Guoxin; Shi, Wen
One of the most well-studied problems in data mining is mining for association rules. There was also research that introduced association rule mining methods to conduct classification tasks. These classification methods, based on association rule mining, could be applied for customer segmentation. Currently, most of the association rule mining methods are based on a support-confidence structure, where rules satisfied both minimum support and minimum confidence were returned as strong association rules back to the analyzer. But, this types of association rule mining methods lack of rigorous statistic guarantee, sometimes even caused misleading. A new classification model for customer segmentation, based on association rule mining algorithm, was proposed in this paper. This new model was based on the support-significant association rule mining method, where the measurement of confidence for association rule was substituted by the significant of association rule that was a better evaluation standard for association rules. Data experiment for customer segmentation from UCI indicated the effective of this new model.
A method for classification of network traffic based on C5.0 Machine Learning Algorithm
DEFF Research Database (Denmark)
Bujlow, Tomasz; Riaz, M. Tahir; Pedersen, Jens Myrup
2012-01-01
current network traffic. To overcome the drawbacks of existing methods for traffic classification, usage of C5.0 Machine Learning Algorithm (MLA) was proposed. On the basis of statistical traffic information received from volunteers and C5.0 algorithm we constructed a boosted classifier, which was shown...
Directory of Open Access Journals (Sweden)
Jing Xu
2016-07-01
Full Text Available As the sound signal of a machine contains abundant information and is easy to measure, acoustic-based monitoring or diagnosis systems exhibit obvious superiority, especially in some extreme conditions. However, the sound directly collected from industrial field is always polluted. In order to eliminate noise components from machinery sound, a wavelet threshold denoising method optimized by an improved fruit fly optimization algorithm (WTD-IFOA is proposed in this paper. The sound is firstly decomposed by wavelet transform (WT to obtain coefficients of each level. As the wavelet threshold functions proposed by Donoho were discontinuous, many modified functions with continuous first and second order derivative were presented to realize adaptively denoising. However, the function-based denoising process is time-consuming and it is difficult to find optimal thresholds. To overcome these problems, fruit fly optimization algorithm (FOA was introduced to the process. Moreover, to avoid falling into local extremes, an improved fly distance range obeying normal distribution was proposed on the basis of original FOA. Then, sound signal of a motor was recorded in a soundproof laboratory, and Gauss white noise was added into the signal. The simulation results illustrated the effectiveness and superiority of the proposed approach by a comprehensive comparison among five typical methods. Finally, an industrial application on a shearer in coal mining working face was performed to demonstrate the practical effect.
Learning Algorithm of Boltzmann Machine Based on Spatial Monte Carlo Integration Method
Directory of Open Access Journals (Sweden)
Muneki Yasuda
2018-04-01
Full Text Available The machine learning techniques for Markov random fields are fundamental in various fields involving pattern recognition, image processing, sparse modeling, and earth science, and a Boltzmann machine is one of the most important models in Markov random fields. However, the inference and learning problems in the Boltzmann machine are NP-hard. The investigation of an effective learning algorithm for the Boltzmann machine is one of the most important challenges in the field of statistical machine learning. In this paper, we study Boltzmann machine learning based on the (first-order spatial Monte Carlo integration method, referred to as the 1-SMCI learning method, which was proposed in the author’s previous paper. In the first part of this paper, we compare the method with the maximum pseudo-likelihood estimation (MPLE method using a theoretical and a numerical approaches, and show the 1-SMCI learning method is more effective than the MPLE. In the latter part, we compare the 1-SMCI learning method with other effective methods, ratio matching and minimum probability flow, using a numerical experiment, and show the 1-SMCI learning method outperforms them.
Directory of Open Access Journals (Sweden)
Li Honglin
2009-03-01
Full Text Available Abstract Background Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. Results The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105–112. Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 Å to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 ± 0.18 seconds per molecule renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. Conclusion On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms
Optimizing Properties of Aluminum-Based Nanocomposites by Genetic Algorithm Method
Directory of Open Access Journals (Sweden)
M.R. Dashtbayazi
2015-07-01
Full Text Available Based on molecular dynamics simulation results, a model was developed for determining elastic properties of aluminum nanocomposites reinforced with silicon carbide particles. Also, two models for prediction of density and price of nanocomposites were suggested. Then, optimal volume fraction of reinforcement was obtained by genetic algorithm method for the least density and price, and the highest elastic properties. Based on optimization results, the optimum volume fraction of reinforcement was obtained equal to 0.44. For this optimum volume fraction, optimum Young’s modulus, shear modulus, the price and the density of the nanocomposite were obtained 165.89 GPa, 111.37 GPa, 8.75 $/lb and 2.92 gr/cm3, respectively.
Rajan, C. Christober Asir
2010-10-01
The objective of this paper is to find the generation scheduling such that the total operating cost can be minimized, when subjected to a variety of constraints. This also means that it is desirable to find the optimal generating unit commitment in the power system for the next H hours. Genetic Algorithms (GA's) are general-purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as neural section, genetic recombination and survival of the fittest. In this, the unit commitment schedule is coded as a string of symbols. An initial population of parent solutions is generated at random. Here, each schedule is formed by committing all the units according to their initial status ("flat start"). Here the parents are obtained from a pre-defined set of solution's i.e. each and every solution is adjusted to meet the requirements. Then, a random recommitment is carried out with respect to the unit's minimum down times. And SA improves the status. A 66-bus utility power system with twelve generating units in India demonstrates the effectiveness of the proposed approach. Numerical results are shown comparing the cost solutions and computation time obtained by using the Genetic Algorithm method and other conventional methods.
Biazzo, Indaco; Braunstein, Alfredo; Zecchina, Riccardo
2012-08-01
We study the behavior of an algorithm derived from the cavity method for the prize-collecting steiner tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks, networks, and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the dhea solver, a branch and cut integer linear programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two postprocessing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases.
Directory of Open Access Journals (Sweden)
Yongwei Zhang
2017-01-01
Full Text Available In order to solve the problem of difficulty in determining the threshold in spectrum sensing technologies based on the random matrix theory, a spectrum sensing method based on clustering algorithm and signal feature is proposed for Cognitive Wireless Multimedia Sensor Networks. Firstly, the wireless communication signal features are obtained according to the sampling signal covariance matrix. Then, the clustering algorithm is used to classify and test the signal features. Different signal features and clustering algorithms are compared in this paper. The experimental results show that the proposed method has better sensing performance.
Directory of Open Access Journals (Sweden)
Yuri S Fantin
Full Text Available Sanger sequencing is a common method of reading DNA sequences. It is less expensive than high-throughput methods, and it is appropriate for numerous applications including molecular diagnostics. However, sequencing mixtures of similar DNA of pathogens with this method is challenging. This is important because most clinical samples contain such mixtures, rather than pure single strains. The traditional solution is to sequence selected clones of PCR products, a complicated, time-consuming, and expensive procedure. Here, we propose the base-calling with vocabulary (BCV method that computationally deciphers Sanger chromatograms obtained from mixed DNA samples. The inputs to the BCV algorithm are a chromatogram and a dictionary of sequences that are similar to those we expect to obtain. We apply the base-calling function on a test dataset of chromatograms without ambiguous positions, as well as one with 3-14% sequence degeneracy. Furthermore, we use BCV to assemble a consensus sequence for an HIV genome fragment in a sample containing a mixture of viral DNA variants and to determine the positions of the indels. Finally, we detect drug-resistant Mycobacterium tuberculosis strains carrying frameshift mutations mixed with wild-type bacteria in the pncA gene, and roughly characterize bacterial communities in clinical samples by direct 16S rRNA sequencing.
Fantin, Yuri S; Neverov, Alexey D; Favorov, Alexander V; Alvarez-Figueroa, Maria V; Braslavskaya, Svetlana I; Gordukova, Maria A; Karandashova, Inga V; Kuleshov, Konstantin V; Myznikova, Anna I; Polishchuk, Maya S; Reshetov, Denis A; Voiciehovskaya, Yana A; Mironov, Andrei A; Chulanov, Vladimir P
2013-01-01
Sanger sequencing is a common method of reading DNA sequences. It is less expensive than high-throughput methods, and it is appropriate for numerous applications including molecular diagnostics. However, sequencing mixtures of similar DNA of pathogens with this method is challenging. This is important because most clinical samples contain such mixtures, rather than pure single strains. The traditional solution is to sequence selected clones of PCR products, a complicated, time-consuming, and expensive procedure. Here, we propose the base-calling with vocabulary (BCV) method that computationally deciphers Sanger chromatograms obtained from mixed DNA samples. The inputs to the BCV algorithm are a chromatogram and a dictionary of sequences that are similar to those we expect to obtain. We apply the base-calling function on a test dataset of chromatograms without ambiguous positions, as well as one with 3-14% sequence degeneracy. Furthermore, we use BCV to assemble a consensus sequence for an HIV genome fragment in a sample containing a mixture of viral DNA variants and to determine the positions of the indels. Finally, we detect drug-resistant Mycobacterium tuberculosis strains carrying frameshift mutations mixed with wild-type bacteria in the pncA gene, and roughly characterize bacterial communities in clinical samples by direct 16S rRNA sequencing.
Zhou, Q.; Tong, X.; Liu, S.; Lu, X.; Liu, S.; Chen, P.; Jin, Y.; Xie, H.
2017-07-01
Visual Odometry (VO) is a critical component for planetary robot navigation and safety. It estimates the ego-motion using stereo images frame by frame. Feature points extraction and matching is one of the key steps for robotic motion estimation which largely influences the precision and robustness. In this work, we choose the Oriented FAST and Rotated BRIEF (ORB) features by considering both accuracy and speed issues. For more robustness in challenging environment e.g., rough terrain or planetary surface, this paper presents a robust outliers elimination method based on Euclidean Distance Constraint (EDC) and Random Sample Consensus (RANSAC) algorithm. In the matching process, a set of ORB feature points are extracted from the current left and right synchronous images and the Brute Force (BF) matcher is used to find the correspondences between the two images for the Space Intersection. Then the EDC and RANSAC algorithms are carried out to eliminate mismatches whose distances are beyond a predefined threshold. Similarly, when the left image of the next time matches the feature points with the current left images, the EDC and RANSAC are iteratively performed. After the above mentioned, there are exceptional remaining mismatched points in some cases, for which the third time RANSAC is applied to eliminate the effects of those outliers in the estimation of the ego-motion parameters (Interior Orientation and Exterior Orientation). The proposed approach has been tested on a real-world vehicle dataset and the result benefits from its high robustness.
Directory of Open Access Journals (Sweden)
Q. Zhou
2017-07-01
Full Text Available Visual Odometry (VO is a critical component for planetary robot navigation and safety. It estimates the ego-motion using stereo images frame by frame. Feature points extraction and matching is one of the key steps for robotic motion estimation which largely influences the precision and robustness. In this work, we choose the Oriented FAST and Rotated BRIEF (ORB features by considering both accuracy and speed issues. For more robustness in challenging environment e.g., rough terrain or planetary surface, this paper presents a robust outliers elimination method based on Euclidean Distance Constraint (EDC and Random Sample Consensus (RANSAC algorithm. In the matching process, a set of ORB feature points are extracted from the current left and right synchronous images and the Brute Force (BF matcher is used to find the correspondences between the two images for the Space Intersection. Then the EDC and RANSAC algorithms are carried out to eliminate mismatches whose distances are beyond a predefined threshold. Similarly, when the left image of the next time matches the feature points with the current left images, the EDC and RANSAC are iteratively performed. After the above mentioned, there are exceptional remaining mismatched points in some cases, for which the third time RANSAC is applied to eliminate the effects of those outliers in the estimation of the ego-motion parameters (Interior Orientation and Exterior Orientation. The proposed approach has been tested on a real-world vehicle dataset and the result benefits from its high robustness.
Directory of Open Access Journals (Sweden)
Wang Pidong
2016-01-01
Full Text Available Blind source separation is a hot topic in signal processing. Most existing works focus on dealing with linear combined signals, while in practice we always encounter with nonlinear mixed signals. To address the problem of nonlinear source separation, in this paper we propose a novel algorithm using radial basis function neutral network, optimized by multi-universe parallel quantum genetic algorithm. Experiments show the efficiency of the proposed method.
Log-linear model based behavior selection method for artificial fish swarm algorithm.
Huang, Zhehuang; Chen, Yidong
2015-01-01
Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.
A New Low-elevation Estimation Method Based on a General MUSIC Algorithm
Directory of Open Access Journals (Sweden)
Jiang Bai-feng
2013-12-01
Full Text Available Radar low-elevation estimation performance in the VHF band is severely influenced in the presence of multipath. To deal with this problem, this study first analyzes general MUSIC (MUltiple SIgnal Classification and other algorithms, pointing out that the essential effectiveness of these algorithms is a weighting of the basic spectrum searching formula, which inhibits large spectrum values produced by a small angle. On this basis, this paper subsequently presents an elevation-estimating model via a general MUSIC algorithm and a new lowelevation angle estimation method, which utilizes a proper weight. Compared with existing methods, the new method has a higher probability of success and better performance. Simulation results verify the validity and correctness of this method and model.
Energy Technology Data Exchange (ETDEWEB)
Son, Jae Kyung; Jang, Wan Shik; Hong, Sung Mun [Gwangju (Korea, Republic of)
2013-04-15
Many problems need to be solved before vision systems can actually be applied in industry, such as the precision of the kinematics model of the robot control algorithm based on visual information, active compensation of the camera's focal length and orientation during the movement of the robot, and understanding the mapping of the physical 3-D space into 2-D camera coordinates. An algorithm is proposed to enable robot to move actively even if the relative positions between the camera and the robot is unknown. To solve the correction problem, this study proposes vision system model with six camera parameters. To develop the robot vision control algorithm, the N-R and EKG methods are applied to the vision system model. Finally, the position accuracy and processing time of the two algorithms developed based based on the EKG and the N-R methods are compared experimentally by making the robot perform slender bar placement task.
International Nuclear Information System (INIS)
Khoshahval, Farrokh; Zolfaghari, Ahmad; Minuchehr, Hamid
2014-01-01
Highlights: • BBO algorithm is capable of finding suitably optimized loading pattern. • It seems BBO reaches to better final parameter value in comparison with the PSO. • PSO exhibits faster convergence characteristics in comparison with BBO. • Even with same initial random patterns the BBO is found to outperform PSO. - Abstract: In this investigation, we developed a new optimization method, i.e., biogeography based optimization (BBO), for loading pattern optimization problem of pressurized water reactors. BBO is a novel stochastic force based on the science of biogeography. Biogeography is the schoolwork of geographical allotment of biological organisms. BBO make use of migration operator to share information between the problem solutions. The problem solutions are called as habitats and sharing of features is called migration. For the evaluation of the proposed method, we applied a multi-objective fitness function i.e., the maximization of reactivity at BOC and the flattening of power distribution are achieved efficiently and simultaneously. The neutronic calculation is done by CITATION and WIMS codes
Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors
Directory of Open Access Journals (Sweden)
Jonghoon Seo
2016-03-01
Full Text Available Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel’s type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms.
International Nuclear Information System (INIS)
Densmore, J.D.; Park, H.; Wollaber, A.B.; Rauenzahn, R.M.; Knoll, D.A.
2015-01-01
We present a moment-based acceleration algorithm applied to Monte Carlo simulation of thermal radiative-transfer problems. Our acceleration algorithm employs a continuum system of moments to accelerate convergence of stiff absorption–emission physics. The combination of energy-conserving tallies and the use of an asymptotic approximation in optically thick regions remedy the difficulties of local energy conservation and mitigation of statistical noise in such regions. We demonstrate the efficiency and accuracy of the developed method. We also compare directly to the standard linearization-based method of Fleck and Cummings [1]. A factor of 40 reduction in total computational time is achieved with the new algorithm for an equivalent (or more accurate) solution as compared with the Fleck–Cummings algorithm
Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method
Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen
2008-01-01
In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…
An algorithm to improve sampling efficiency for uncertainty propagation using sampling based method
International Nuclear Information System (INIS)
Campolina, Daniel; Lima, Paulo Rubens I.; Pereira, Claubia; Veloso, Maria Auxiliadora F.
2015-01-01
Sample size and computational uncertainty were varied in order to investigate sample efficiency and convergence of the sampling based method for uncertainty propagation. Transport code MCNPX was used to simulate a LWR model and allow the mapping, from uncertain inputs of the benchmark experiment, to uncertain outputs. Random sampling efficiency was improved through the use of an algorithm for selecting distributions. Mean range, standard deviation range and skewness were verified in order to obtain a better representation of uncertainty figures. Standard deviation of 5 pcm in the propagated uncertainties for 10 n-samples replicates was adopted as convergence criterion to the method. Estimation of 75 pcm uncertainty on reactor k eff was accomplished by using sample of size 93 and computational uncertainty of 28 pcm to propagate 1σ uncertainty of burnable poison radius. For a fixed computational time, in order to reduce the variance of the uncertainty propagated, it was found, for the example under investigation, it is preferable double the sample size than double the amount of particles followed by Monte Carlo process in MCNPX code. (author)
An algorithm to improve sampling efficiency for uncertainty propagation using sampling based method
Energy Technology Data Exchange (ETDEWEB)
Campolina, Daniel; Lima, Paulo Rubens I., E-mail: campolina@cdtn.br, E-mail: pauloinacio@cpejr.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores; Pereira, Claubia; Veloso, Maria Auxiliadora F., E-mail: claubia@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear
2015-07-01
Sample size and computational uncertainty were varied in order to investigate sample efficiency and convergence of the sampling based method for uncertainty propagation. Transport code MCNPX was used to simulate a LWR model and allow the mapping, from uncertain inputs of the benchmark experiment, to uncertain outputs. Random sampling efficiency was improved through the use of an algorithm for selecting distributions. Mean range, standard deviation range and skewness were verified in order to obtain a better representation of uncertainty figures. Standard deviation of 5 pcm in the propagated uncertainties for 10 n-samples replicates was adopted as convergence criterion to the method. Estimation of 75 pcm uncertainty on reactor k{sub eff} was accomplished by using sample of size 93 and computational uncertainty of 28 pcm to propagate 1σ uncertainty of burnable poison radius. For a fixed computational time, in order to reduce the variance of the uncertainty propagated, it was found, for the example under investigation, it is preferable double the sample size than double the amount of particles followed by Monte Carlo process in MCNPX code. (author)
Directory of Open Access Journals (Sweden)
Luman Zhao
2015-01-01
Full Text Available A thrust allocation method was proposed based on a hybrid optimization algorithm to efficiently and dynamically position a semisubmersible drilling rig. That is, the thrust allocation was optimized to produce the generalized forces and moment required while at the same time minimizing the total power consumption under the premise that forbidden zones should be taken into account. An optimization problem was mathematically formulated to provide the optimal thrust allocation by introducing the corresponding design variables, objective function, and constraints. A hybrid optimization algorithm consisting of a genetic algorithm and a sequential quadratic programming (SQP algorithm was selected and used to solve this problem. The proposed method was evaluated by applying it to a thrust allocation problem for a semisubmersible drilling rig. The results indicate that the proposed method can be used as part of a cost-effective strategy for thrust allocation of the rig.
Zhao, Y J; Liu, Y; Sun, Y C; Wang, Y
2017-08-18
To explore a three-dimensional (3D) data fusion and integration method of optical scanning tooth crowns and cone beam CT (CBCT) reconstructing tooth roots for their natural transition in the 3D profile. One mild dental crowding case was chosen from orthodontics clinics with full denture. The CBCT data were acquired to reconstruct the dental model with tooth roots by Mimics 17.0 medical imaging software, and the optical impression was taken to obtain the dentition model with high precision physiological contour of crowns by Smart Optics dental scanner. The two models were doing 3D registration based on their common part of the crowns' shape in Geomagic Studio 2012 reverse engineering software. The model coordinate system was established by defining the occlusal plane. crown-gingiva boundary was extracted from optical scanning model manually, then crown-root boundary was generated by offsetting and projecting crown-gingiva boundary to the root model. After trimming the crown and root models, the 3D fusion model with physiological contour crown and nature root was formed by curvature continuity filling algorithm finally. In the study, 10 patients with dentition mild crowded from the oral clinics were followed up with this method to obtain 3D crown and root fusion models, and 10 high qualification doctors were invited to do subjective evaluation of these fusion models. This study based on commercial software platform, preliminarily realized the 3D data fusion and integration method of optical scanning tooth crowns and CBCT tooth roots with a curvature continuous shape transition. The 10 patients' 3D crown and root fusion models were constructed successfully by the method, and the average score of the doctors' subjective evaluation for these 10 models was 8.6 points (0-10 points). which meant that all the fusion models could basically meet the need of the oral clinics, and also showed the method in our study was feasible and efficient in orthodontics study and clinics
A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.
Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe
2018-01-01
Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.
Shen, Yan; Ge, Jin-ming; Zhang, Guo-qing; Yu, Wen-bin; Liu, Rui-tong; Fan, Wei; Yang, Ying-xuan
2018-01-01
This paper explores the problem of signal processing in optical current transformers (OCTs). Based on the noise characteristics of OCTs, such as overlapping signals, noise frequency bands, low signal-to-noise ratios, and difficulties in acquiring statistical features of noise power, an improved standard Kalman filtering algorithm was proposed for direct current (DC) signal processing. The state-space model of the OCT DC measurement system is first established, and then mixed noise can be processed by adding mixed noise into measurement and state parameters. According to the minimum mean squared error criterion, state predictions and update equations of the improved Kalman algorithm could be deduced based on the established model. An improved central difference Kalman filter was proposed for alternating current (AC) signal processing, which improved the sampling strategy and noise processing of colored noise. Real-time estimation and correction of noise were achieved by designing AC and DC noise recursive filters. Experimental results show that the improved signal processing algorithms had a good filtering effect on the AC and DC signals with mixed noise of OCT. Furthermore, the proposed algorithm was able to achieve real-time correction of noise during the OCT filtering process.
Directory of Open Access Journals (Sweden)
Zhining Gu
2018-02-01
Full Text Available Pedestrian dead reckoning (PDR positioning algorithms can be used to obtain a target’s location only for movement with step features and not for driving, for which the trilateral Bluetooth indoor positioning method can be used. In this study, to obtain the precise locations of different states (pedestrian/car using the corresponding positioning algorithms, we propose an adaptive method for switching between the PDR and car indoor positioning algorithms based on multilayer time sequences (MTSs. MTSs, which consider the behavior context, comprise two main aspects: filtering of noisy data in small-scale time sequences and using a state chain to reduce the time delay of algorithm switching in large-scale time sequences. The proposed method can be expected to realize the recognition of stationary, walking, driving, or other states; switch to the correct indoor positioning algorithm; and improve the accuracy of localization compared to using a single positioning algorithm. Our experiments show that the recognition of static, walking, driving, and other states improves by 5.5%, 45.47%, 26.23%, and 21% on average, respectively, compared with convolutional neural network (CNN method. The time delay decreases by approximately 0.5–8.5 s for the transition between states and by approximately 24 s for the entire process.
Gu, Zhining; Guo, Wei; Li, Chaoyang; Zhu, Xinyan; Guo, Tao
2018-02-27
Pedestrian dead reckoning (PDR) positioning algorithms can be used to obtain a target's location only for movement with step features and not for driving, for which the trilateral Bluetooth indoor positioning method can be used. In this study, to obtain the precise locations of different states (pedestrian/car) using the corresponding positioning algorithms, we propose an adaptive method for switching between the PDR and car indoor positioning algorithms based on multilayer time sequences (MTSs). MTSs, which consider the behavior context, comprise two main aspects: filtering of noisy data in small-scale time sequences and using a state chain to reduce the time delay of algorithm switching in large-scale time sequences. The proposed method can be expected to realize the recognition of stationary, walking, driving, or other states; switch to the correct indoor positioning algorithm; and improve the accuracy of localization compared to using a single positioning algorithm. Our experiments show that the recognition of static, walking, driving, and other states improves by 5.5%, 45.47%, 26.23%, and 21% on average, respectively, compared with convolutional neural network (CNN) method. The time delay decreases by approximately 0.5-8.5 s for the transition between states and by approximately 24 s for the entire process.
Directory of Open Access Journals (Sweden)
Joko Siswantoro
2014-11-01
Full Text Available Volume is one of important issues in the production and processing of food product. Traditionally, volume measurement can be performed using water displacement method based on Archimedes’ principle. Water displacement method is inaccurate and considered as destructive method. Computer vision offers an accurate and nondestructive method in measuring volume of food product. This paper proposes algorithm for volume measurement of irregular shape food product using computer vision based on Monte Carlo method. Five images of object were acquired from five different views and then processed to obtain the silhouettes of object. From the silhouettes of object, Monte Carlo method was performed to approximate the volume of object. The simulation result shows that the algorithm produced high accuracy and precision for volume measurement.
Directory of Open Access Journals (Sweden)
A New Algorithm Based on the Homotopy Perturbation Method For a Class of Singularly Perturbed Boundary Value Problems
2013-12-01
Full Text Available . In this paper, a new algorithm is presented to approximate the solution of a singularly perturbed boundary value problem with leftlayer based on the homotopy perturbation technique and applying the Laplace transformation. The convergence theorem and the error bound of the proposed method are proved. The method is examined by solving two examples. The results demonstrate the reliability and efficiency of the proposed method.
Directory of Open Access Journals (Sweden)
Ying Zhang
2016-02-01
Full Text Available Due to their special environment, Underwater Wireless Sensor Networks (UWSNs are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object’s mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.
Zhang, Ying; Liang, Jixing; Jiang, Shengming; Chen, Wei
2016-02-06
Due to their special environment, Underwater Wireless Sensor Networks (UWSNs) are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO) is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object's mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.
International Nuclear Information System (INIS)
Wang Hua; Liu Feng; Crozier, Stuart; Xia Ling
2008-01-01
This paper presents a stabilized Bi-conjugate gradient algorithm (BiCGstab) that can significantly improve the performance of the impedance method, which has been widely applied to model low-frequency field induction phenomena in voxel phantoms. The improved impedance method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional, successive over-relaxation (SOR)-based algorithm. The scheme has been validated against other numerical/analytical solutions on a lossy, multilayered sphere phantom excited by an ideal coil loop. To demonstrate the computational performance and application capability of the developed algorithm, the induced fields inside a human phantom due to a low-frequency hyperthermia device is evaluated. The simulation results show the numerical accuracy and superior performance of the method.
DEFF Research Database (Denmark)
Nadernejad, Ehsan; Sharifzadeh, Sara
2013-01-01
In this paper, a new pixon-based method is presented for image segmentation. In the proposed algorithm, bilateral filtering is used as a kernel function to form a pixonal image. Using this filter reduces the noise and smoothes the image slightly. By using this pixon-based method, the image over...... segmentation could be avoided. Indeed, the bilateral filtering, as a preprocessing step, eliminates the unnecessary details of the image and results in a few numbers of pixons, faster performance and more robustness against unwanted environmental noises. Then, the obtained pixonal image is segmented using...... the hierarchical clustering method (Fuzzy C-means algorithm). The experimental results show that the proposed pixon-based approach has a reduced computational load and a better accuracy compared to the other existing pixon-based image segmentation techniques....
A novel SAR image precise-matching method based on SIFT algorithm
Yan, Wenwen; Li, Bin; Yang, Dekun; Tian, Jinwen; Yu, Qiong
2013-10-01
As for SAR image, it has a relatively great geometric distortion, and contains a lot of speckle noise. So a lot of research has been done to find a good method for SAR image matching. SIFT (Scale Invariant Feature Transform) has been proved to a good algorithm for the SAR image matching. This operator can dispose of matching problem such as rotation, affine distortion and noise. In this passage, firstly, in the preprocessing process, we use BM3D to denoise the image which can perform well comparing to other denoise method. Then, regardless of traditional SIFT-RANSAC method, SIFT-TC is used to complete image matching. By using this method, the image matching is proved to have better predominance in the matching efficiency, speed and robustness.
Zhang, Xin; Miao, Qiang; Liu, Zhiwen; He, Zhengjia
2017-11-01
Stochastic resonance (SR) is widely used as an enhanced signal detection method in machinery fault diagnosis. However, the system parameters have significant effects on the output results, which makes it difficult for SR method to achieve satisfactory analysis results. To solve this problem and improve the performance of SR method, this paper proposes an adaptive SR method based on grey wolf optimizer (GWO) algorithm for machinery fault diagnosis. Firstly, the SR system parameters are optimized by the GWO algorithm using a redefined signal-to-noise ratio (SNR) as optimization objective function. Then, the optimal SR output matching the input signal can be adaptively obtained using the optimized parameters. The proposed method is validated on a simulated signal detection and a rolling element bearing test bench, and then applied to the gear fault diagnosis of electric locomotive. Compared with the conventional fixed-parameter SR method, the adaptive SR method based on genetic algorithm (GA-SR) as well as the well-known fast kurtogram method, the proposed method can achieve a greater accuracy. The results indicated that the proposed method has great practical values in engineering. Copyright © 2017. Published by Elsevier Ltd.
A fast auto-focusing method of microscopic imaging based on an improved MCS algorithm
Directory of Open Access Journals (Sweden)
Guangkai Fu
2015-09-01
Full Text Available An improved "three steps" mountain-climb searching (MCS algorithm is proposed which is applied to auto-focusing for microscopic imaging accurately and efficiently. By analyzing the performance of several evaluation functions, the variance function and the Brenner function are synthesized as a new evaluation function. In the first step, a self-adaptive step length which is much dependent on the reciprocal of the evaluation function value at the beginning position of climbing is used for approaching the halfway up the mountain roughly. Secondly, a fixed moderate step length is applied for approaching the mountaintop of the variance function as closer as possible. Finally, a fine step is employed for reaching the exact mountaintop of the Brenner function. The microscope auto-focusing experiments based on the proposed algorithm for blood smear detection have been carried out comprehensively. The results show that the improved algorithm can not only guarantee the precision to get clear focal images, but also improve the auto-focusing efficiency.
Directory of Open Access Journals (Sweden)
Yukai Yao
2015-01-01
Full Text Available We propose an optimized Support Vector Machine classifier, named PMSVM, in which System Normalization, PCA, and Multilevel Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.
Trobec, Roman
2015-01-01
This book is concentrated on the synergy between computer science and numerical analysis. It is written to provide a firm understanding of the described approaches to computer scientists, engineers or other experts who have to solve real problems. The meshless solution approach is described in more detail, with a description of the required algorithms and the methods that are needed for the design of an efficient computer program. Most of the details are demonstrated on solutions of practical problems, from basic to more complicated ones. This book will be a useful tool for any reader interes
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E, Weinan; Yu, Bing
2017-01-01
We propose a deep learning based method, the Deep Ritz Method, for numerically solving variational problems, particularly the ones that arise from partial differential equations. The Deep Ritz method is naturally nonlinear, naturally adaptive and has the potential to work in rather high dimensions. The framework is quite simple and fits well with the stochastic gradient descent method used in deep learning. We illustrate the method on several problems including some eigenvalue problems.
Directory of Open Access Journals (Sweden)
Erik Cuevas
2015-01-01
Full Text Available In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC algorithm and the evolutionary method harmony search (HS. With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness.
Target detection in diagnostic ultrasound: Evaluation of a method based on the CLEAN algorithm.
Masoom, Hassan; Adve, Raviraj S; Cobbold, Richard S C
2013-02-01
A technique is proposed for the detection of abnormalities (targets) in ultrasound images using little or no a priori information and requiring little operator intervention. The scheme is a combination of the CLEAN algorithm, originally proposed for radio astronomy, and constant false alarm rate (CFAR) processing, as developed for use in radar systems. The CLEAN algorithm identifies areas in the ultrasound image that stand out above a threshold in relation to the background; CFAR techniques allow for an adaptive, semi-automated, selection of the threshold. Neither appears to have been previously used for target detection in ultrasound images and never together in any context. As a first step towards assessing the potential of this method we used a widely used method of simulating B-mode images (Field II). We assumed the use of a 256 element linear array operating at 3.0MHz into a water-like medium containing a density of point scatterers sufficient to simulate a background of fully developed speckle. Spherical targets with diameters ranging from 0.25 to 6.0mm and contrasts ranging from 0 to 12dB relative to the background were used as test objects. Using a contrast-detail analysis, the probability of detection curves indicate these targets can be consistently detected within a speckle background. Our results indicate that the method has considerable promise for the semi-automated detection of abnormalities with diameters greater than a few millimeters, depending on the contrast. Copyright © 2012 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Ebrahim BARATI
2013-03-01
Full Text Available In this paper the optimization of kinematics, which has great influence in performance of flapping foil propulsion, is investigated. The purpose of optimization is to design a flapping-wing micro aircraft with appropriate kinematics and aerodynamics features, making the micro aircraft suitable for transportation over large distance with minimum energy consumption. On the point of optimal design, the pitch amplitude, wing reduced frequency and phase difference between plunging and pitching are considered as given parameters and consumed energy, generated thrust by wings and lost power are computed using the 2D quasi-steady aerodynamic model and multi-objective genetic algorithm. Based on the thrust optimization, the increase in pitch amplitude reduces the power consumption. In this case the lost power increases and the maximum thrust coefficient is computed of 2.43. Based on the power optimization, the results show that the increase in pitch amplitude leads to power consumption increase. Additionally, the minimum lost power obtained in this case is 23% at pitch amplitude of 25°, wing reduced frequency of 0.42 and phase angle difference between plunging and pitching of 77°. Furthermore, the wing reduced frequency can be estimated using regression with respect to pitch amplitude, because reduced frequency variations with pitch amplitude is approximately a linear function.
Directory of Open Access Journals (Sweden)
Slimane Hadji
2018-02-01
Full Text Available Maximum Power Point Tracking (MPPT methods are used in photovoltaic (PV systems to continually maximize the PV array output power, which strongly depends on both solar radiation and cell temperature. The PV power oscillations around the maximum power point (MPP resulting from the conventional methods and complexity of the non-conventional ones are convincing reasons to look for novel MPPT methods. This paper deals with simple Genetic Algorithms (GAs based MPPT method in order to improve the convergence, rapidity, and accuracy of the PV system. The proposed method can also efficiently track the global MPP, which is very useful for partial shading. At first, a review of the algorithm is given, followed with many test examples; then, a comparison by means Matlab/Simulink© (R2009b is conducted between the proposed MPPT and, the popular Perturb and Observe (PO and Incremental Conductance (IC techniques. The results show clearly the superiority of the proposed controller. Indeed, with the proposed algorithm, oscillations around the MPP are dramatically minimized, a better stability is observed and increase in the output power efficiency is obtained. All these results are experimentally validated by a test bench developed at LIAS laboratory (Poitiers University, Poitiers, France using real PV panels and a PV emulator which allows one to define a profile insolation model. In addition, the proposed method permits one to perform the test of linearity between the optimal current I mp (current at maximum power and the short-circuit current I sc , and between the optimal voltage V mp and open-circuit voltage V oc , so the current and voltage factors can be easily obtained with our algorithm.
Directory of Open Access Journals (Sweden)
Kun Wei
2018-02-01
Full Text Available In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human–Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT, is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator’s obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots’ path planning.
Wei, Kun; Ren, Bingyin
2018-02-13
In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.
Wei, Kun; Ren, Bingyin
2018-01-01
In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human–Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator’s obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots’ path planning. PMID:29438320
Zhou, Xiuze; Lin, Fan; Yang, Lvqing; Nie, Jing; Tan, Qian; Zeng, Wenhua; Zhang, Nian
2016-01-01
With the continuous expansion of the cloud computing platform scale and rapid growth of users and applications, how to efficiently use system resources to improve the overall performance of cloud computing has become a crucial issue. To address this issue, this paper proposes a method that uses an analytic hierarchy process group decision (AHPGD) to evaluate the load state of server nodes. Training was carried out by using a hybrid hierarchical genetic algorithm (HHGA) for optimizing a radial basis function neural network (RBFNN). The AHPGD makes the aggregative indicator of virtual machines in cloud, and become input parameters of predicted RBFNN. Also, this paper proposes a new dynamic load balancing scheduling algorithm combined with a weighted round-robin algorithm, which uses the predictive periodical load value of nodes based on AHPPGD and RBFNN optimized by HHGA, then calculates the corresponding weight values of nodes and makes constant updates. Meanwhile, it keeps the advantages and avoids the shortcomings of static weighted round-robin algorithm.
Directory of Open Access Journals (Sweden)
Haiwei Song
2016-03-01
Full Text Available The algebraic multigrid (AMG method is used to solve linear systems of equations on a series of progressively coarser grids and has recently attracted significant attention for image segmentation due to its high efficiency and robustness. In this paper, a novel spectral-spatial classification method for hyperspectral images based on the AMG method and hierarchical segmentation (HSEG algorithm is proposed. Our method consists of the following steps. First, the AMG method is applied to hyperspectral imagery to construct a multigrid structure of fine-to-coarse grids based on the anisotropic diffusion partial differential equation (PDE. The vertices in the multigrid structure are then considered as the initial seeds (markers for growing regions and are clustered to obtain a sequence of segmentation results. In the next step, a maximum vote decision rule is employed to combine the pixel-wise classification map and the segmentation maps. Finally, a final classification map is produced by choosing the optimal grid level to extract representative spectra. Experiments based on three different types of real hyperspectral datasets with different resolutions and contexts demonstrate that our method can obtain 3.84%–13.81% higher overall accuracies than the SVM classifier. The performance of our method was further compared to several marker-based spectral-spatial classification methods using objective quantitative measures and a visual qualitative evaluation.
Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing
2017-12-01
We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.
Holmes, Tim; Zanker, Johannes M.
2013-01-01
Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was ...
Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng
2015-01-01
The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.
Masoudi, Rasoul; Kabiri, Peyman
2014-01-01
Pansharpening aims to fuse a low-resolution multispectral image with a high-resolution panchromatic image to create a multispectral image with high spatial and spectral resolution. The intensity-hue-saturation (IHS) fusion method transforms an image from RGB space to IHS space. This paper reports a method to improve the spectral resolution of a final multispectral image. The proposed method implies two modifications on the basic IHS method to improve the sharpness of the final image. First, the paper proposes a method based on a genetic algorithm to find the weight of each band of multispectral image in the fusion process. Later on, a texture-based technique is proposed to save the spectral information of the final image with respect to the texture boundaries. Spectral quality metrics in terms of SAM, SID, Q-average, RASE, RMSE, CC, ERGAS and UIQI are used in our experiments. Experimental results on IKONOS and QuickBird data show that the proposed method is more efficient than the original IHS-based fusion approach and some of its extensions, such as IKONOS IHS, edge-adaptive IHS and explicit band coefficient IHS, in preserving spectral information of multispectral images.
Artameeyanant, Patcharin; Sultornsanee, Sivarit; Chamnongthai, Kosin
2016-01-01
Electromyography (EMG) signals recorded from healthy, myopathic, and amyotrophic lateral sclerosis (ALS) subjects are nonlinear, non-stationary, and similar in the time domain and the frequency domain. Therefore, it is difficult to classify these various statuses. This study proposes an EMG-based feature extraction method based on a normalized weight vertical visibility algorithm (NWVVA) for myopathy and ALS detection. In this method, sampling points or nodes based on sampling theory are extracted, and features are derived based on relations among the vertical visibility nodes with their amplitude differences as weights. The features are calculated via selective statistical mechanics and measurements, and the obtained features are assembled into a feature matrix as classifier input. Finally, powerful classifiers, such as k -nearest neighbor, multilayer perceptron neural network, and support vector machine classifiers, are utilized to differentiate signals of healthy, myopathy, and ALS cases. Performance evaluation experiments are carried out, and the results revealed 98.36% accuracy, which corresponds to approximately a 2% improvement compared with conventional methods. An EMG-based feature extraction method using a NWVVA is proposed and implemented to detect healthy, ALS, and myopathy statuses.
Fast Computation Technique of Genetic Algorithm Based on Finite Element Method
Kitagawa, Wataru; Ishihara, Yoshiyuki; Todaka, Toshiyuki; Hirata, Katsuhiro
This paper presents the useful technique to save the computation time in the optimization process of the genetic algorithm (GA). In this technique, genes are encoded for elements as their material information to avoid re-meshing caused by the movement of nodes. Furthermore, the process of the GA is divided into two steps because it requires much computation time to apply the GA for the whole region to be analyzed at once. The usefulness and the flexibility of this technique are verified through the comparison with the usual one when it is applied to an electromagnetic clutch and a solenoid to obtain the maximum attractive force.
Directory of Open Access Journals (Sweden)
Qu Li
2014-01-01
Full Text Available Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy.
Karthick, P A; Ghosh, Diptasree Maitra; Ramakrishnan, S
2018-02-01
Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to
Directory of Open Access Journals (Sweden)
Heng Wang
2017-01-01
Full Text Available The occurrence of series of events is always associated with the news report, social network, and Internet media. In this paper, a detecting system for public security events is designed, which carries out clustering operation to cluster relevant text data, in order to benefit relevant departments by evaluation and handling. Firstly, texts are mapped into three-dimensional space using the vector space model. Then, to overcome the shortcoming of the traditional clustering algorithm, an improved fuzzy c-means (FCM algorithm based on adaptive genetic algorithm and semisupervised learning is proposed. In the proposed algorithm, adaptive genetic algorithm is employed to select optimal initial clustering centers. Meanwhile, motivated by semisupervised learning, guiding effect of prior knowledge is used to accelerate iterative process. Finally, simulation experiments are conducted from two aspects of qualitative analysis and quantitative analysis, which demonstrate that the proposed algorithm performs excellently in improving clustering centers, clustering results, and consuming time.
Directory of Open Access Journals (Sweden)
Qing Guo
2015-04-01
Full Text Available A gait identification method for a lower extremity exoskeleton is presented in order to identify the gait sub-phases in human-machine coordinated motion. First, a sensor layout for the exoskeleton is introduced. Taking the difference between human lower limb motion and human-machine coordinated motion into account, the walking gait is divided into five sub-phases, which are ‘double standing’, ‘right leg swing and left leg stance’, ‘double stance with right leg front and left leg back’, ‘right leg stance and left leg swing’, and ‘double stance with left leg front and right leg back’. The sensors include shoe pressure sensors, knee encoders, and thigh and calf gyroscopes, and are used to measure the contact force of the foot, and the knee joint angle and its angular velocity. Then, five sub-phases of walking gait are identified by a C4.5 decision tree algorithm according to the data fusion of the sensors' information. Based on the simulation results for the gait division, identification accuracy can be guaranteed by the proposed algorithm. Through the exoskeleton control experiment, a division of five sub-phases for the human-machine coordinated walk is proposed. The experimental results verify this gait division and identification method. They can make hydraulic cylinders retract ahead of time and improve the maximal walking velocity when the exoskeleton follows the person's motion.
A new method by steering kernel-based Richardson–Lucy algorithm for neutron imaging restoration
International Nuclear Information System (INIS)
Qiao, Shuang; Wang, Qiao; Sun, Jia-ning; Huang, Ji-peng
2014-01-01
Motivated by industrial applications, neutron radiography has become a powerful tool for non-destructive investigation techniques. However, resulted from a combined effect of neutron flux, collimated beam, limited spatial resolution of detector and scattering, etc., the images made with neutrons are degraded severely by blur and noise. For dealing with it, by integrating steering kernel regression into Richardson–Lucy approach, we present a novel restoration method in this paper, which is capable of suppressing noise while restoring details of the blurred imaging result efficiently. Experimental results show that compared with the other methods, the proposed method can improve the restoration quality both visually and quantitatively
A new method by steering kernel-based Richardson-Lucy algorithm for neutron imaging restoration
Qiao, Shuang; Wang, Qiao; Sun, Jia-ning; Huang, Ji-peng
2014-01-01
Motivated by industrial applications, neutron radiography has become a powerful tool for non-destructive investigation techniques. However, resulted from a combined effect of neutron flux, collimated beam, limited spatial resolution of detector and scattering, etc., the images made with neutrons are degraded severely by blur and noise. For dealing with it, by integrating steering kernel regression into Richardson-Lucy approach, we present a novel restoration method in this paper, which is capable of suppressing noise while restoring details of the blurred imaging result efficiently. Experimental results show that compared with the other methods, the proposed method can improve the restoration quality both visually and quantitatively.
Holmes, Tim; Zanker, Johannes M
2013-01-01
Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was used to investigate the preferred combination of color and shape which have been promoted in the Bauhaus arts school. We used the same three shapes (square, circle, triangle) used by Kandinsky (1923), with the three color palette from the original experiment (A), an extended seven color palette (B), and eight different shape orientation (C). Participants were instructed to look for their preferred circle, triangle or square in displays with eight stimuli of different shapes, colors and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested six participants extensively on the different conditions and found consistent preferences for color-shape combinations for individuals, but little evidence at the group level for clear color/shape preference consistent with Kandinsky's claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of color and shapes, but also that these associations are robust within a single individual. These individual differences go some way toward challenging the claims of the universal preference for color/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the
Directory of Open Access Journals (Sweden)
Tim eHolmes
2013-12-01
Full Text Available Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioural measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA, which has been used as a tool to identify aesthetic preferences (Holmes & Zanker, 2012. In the present study, the GDEA was used to investigate the preferred combination of colour and shape which have been promoted in the Bauhaus arts school. We used the same 3 shapes (square, circle, triangle used by Kandinsky (1923, with the 3 colour palette from the original experiment (A, an extended 7 colour palette (B, and 8 different shape orientation (C. Participants were instructed to look for their preferred circle, triangle or square in displays with 8 stimuli of different shapes, colours and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested 6 participants extensively on the different conditions and found consistent preferences for individuals, but little evidence at the group level for preference consistent with Kandinsky’s claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of colour and shapes, but also that these associations are robust within a single individual. These individual differences go some way towards challenging the claims of the universal preference for colour/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the vast potential of the GDEA in experimental aesthetics
Different motor models based on parameter variation using method of genetic algorithms
Sarac, Vasilija; Cvetkovski, Goga
2010-01-01
Three new motor models of Single Phase Shade Pole Motor were developed using the method of genetic agoithms for optimisation purposes of motor design. In each of newly developed motor models number of varied parameters was gradually increased which results in gradual increase of electroamgnetic torque as target function for optimisation. Increase of electromagnetic torque was followed by the increase of efficiency factor. Finite Element Method Analysis was performed in order to be obtained ma...
Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems
Ramdan B. A. Koad; Ahmed. F. Zobaa
2014-01-01
Since the output characteristics of photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum power point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a maximum power point tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Increm...
A sport scene images segmentation method based on edge detection algorithm
Chen, Biqing
2011-12-01
This paper proposes a simple, fast sports scene image segmentation method; a lot of work so far has been looking for a way to reduce the different shades of emotions in smooth area. A novel method of pretreatment, proposed the elimination of different shades feelings. Internal filling mechanism is used to change the pixels enclosed by the interest as interest pixels. For some test has achieved harvest sports scene images has been confirmed.
Jin, Tao; Chen, Yiyang; Flesch, Rodolfo C. C.
2017-11-01
Harmonics pose a great threat to safe and economical operation of power grids. Therefore, it is critical to detect harmonic parameters accurately to design harmonic compensation equipment. The fast Fourier transform (FFT) is widely used for electrical popular power harmonics analysis. However, the barrier effect produced by the algorithm itself and spectrum leakage caused by asynchronous sampling often affects the harmonic analysis accuracy. This paper examines a new approach for harmonic analysis based on deducing the modifier formulas of frequency, phase angle, and amplitude, utilizing the Nuttall-Kaiser window double spectrum line interpolation method, which overcomes the shortcomings in traditional FFT harmonic calculations. The proposed approach is verified numerically and experimentally to be accurate and reliable.
Shih, Pi-Kuei; Hsiao, Hui-Hsin; Chang, Hung-Chun
2017-11-27
A full-vectorial finite element method is developed to analyze the surface waves propagating at the interface between two media which could be dissipative particularly. The dissipative wave possessing a complex-valued propagation constant can be determined precisely for any given propagation direction and thus the property of losses could be thoroughly analyzed. Besides, by applying a special characteristic of the implicit circular block matrix, we reduce the computational consumptions in the analysis. By utilizing this method, the Dyakonov surface wave (DSW) at the interface between a dielectric and a metal-dielectric multilayered (MDM) structure which serves as a hyperbolic medium is discussed. Its propagation loss is smaller for larger period of the MDM structure but its field becomes less confined to the interface.
Genetic algorithms as global random search methods
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Ma, Xiaoke; Wang, Bingbo; Yu, Liang
2018-01-01
Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.
Wen, Tingxi; Zhang, Zhongnan
2017-05-01
In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.
Directory of Open Access Journals (Sweden)
Kihong Son
Full Text Available To reduce the radiation dose given to patients, a tube current modulation (TCM method has been widely used in diagnostic CT systems. However, the TCM method has not yet been applied to a kV-CBCT system on a LINAC machine. The purpose of this study is to investigate if a TCM method would be desirable in a kV-CBCT system for image-guided radiation therapy (IGRT or not. We have developed an attenuation-based TCM method using prior knowledge from planning CT images of patients. The TCM method can provide optimized dose reductions without degrading image quality for kV-CBCT imaging. Here, we investigate whether or not our suggested TCM method is desirable to use in kV-CBCT systems to confirm and revise the exact position of a patient for IGRT. Patients go through diagnostic CT scans for RT planning; therefore, using information from prior CT images can enable estimations of the total X-ray attenuation through a patient's body in a CBCT setting for radiation treatment. Having this planning CT image allows to use the proposed TCM method in RT. The proposed TCM method provides a minimal amount of current for each projection, as well as total current, required to reconstruct the current modulated CBCT image with an image quality similar to that of CBCT. After applying a calculated TCM current for each projection, projection images were acquired and the current modulated CBCT image was reconstructed using a FDK algorithm. To validate the proposed approach, we used a numerical XCAT phantom and a real ATOM phantom and evaluated the performance of the proposed method via visual and quantitative image quality metrics. The organ dose due to imaging radiation was calculated in both cases and compared using the GATE simulation toolkit. As shown in the quantitative evaluation, normalized noise and SSIM values of the TCM were similar to those of conventional CBCT images. In addition, the proposed TCM method yielded comparable image quality to that of conventional
Directory of Open Access Journals (Sweden)
Mahidur R. Sarker
2016-09-01
Full Text Available This paper presents a new method for a vibration-based piezoelectric energy harvesting system using a backtracking search algorithm (BSA-based proportional-integral (PI voltage controller. This technique eliminates the exhaustive conventional trial-and-error procedure for obtaining optimized parameter values of proportional gain (Kp, and integral gain (Ki for PI voltage controllers. The generated estimate values of Kp and Ki are executed in the PI voltage controller that is developed through the BSA optimization technique. In this study, mean absolute error (MAE is used as an objective function to minimize output error for a piezoelectric energy harvesting system (PEHS. The model for the PEHS is designed and analyzed using the BSA optimization technique. The BSA-based PI voltage controller of the PEHS produces a significant improvement in minimizing the output error of the converter and a robust, regulated pulse-width modulation (PWM signal to convert a MOSFET switch, with the best response in terms of rise time and settling time under various load conditions.
Zhang, Li; Wu, Kexin; Liu, Yang
2017-12-01
A multi-objective performance optimization method is proposed, and the problem that single structural parameters of small fan balance the optimization between the static characteristics and the aerodynamic noise is solved. In this method, three structural parameters are selected as the optimization variables. Besides, the static pressure efficiency and the aerodynamic noise of the fan are regarded as the multi-objective performance. Furthermore, the response surface method and the entropy method are used to establish the optimization function between the optimization variables and the multi-objective performances. Finally, the optimized model is found when the optimization function reaches its maximum value. Experimental data shows that the optimized model not only enhances the static characteristics of the fan but also obviously reduces the noise. The results of the study will provide some reference for the optimization of multi-objective performance of other types of rotating machinery.
Directory of Open Access Journals (Sweden)
Milan Eric
2016-08-01
Full Text Available The difference between the production cost and selling price of the products may be viewed as a criterion that determines an organization’s competitiveness and market success. In such circumstances, it is necessary to impact these criteria in order to maximize this difference. The selling products’ price, in modern market conditions, is a category which may not be significantly affected. So organizations have one option, which is the production cost reduction. This is the motive for business organizations and the imperative of each organization. The key parameters that influence the costs of production and therefore influence the competitiveness of organizations are the parameters of production machines and processes used to create products. To define optimal parameter values for production machines and processes that will reduce production costs and increase competitiveness of production organizations, the authors have developed a new mathematical model. The model is based on application of the ABC classification method to classify production line processes based on their costs and an application of a genetic algorithm to find the optimal values of production machine parameters used in these processes. It has been applied in three different modern production line processes; the costs obtained by the model application have been compared with the real production costs.
Yang, Guo Sheng; Wang, Xiao Yang; Li, Xue Dong
2018-03-01
With the establishment of the integrated model of relay protection and the scale of the power system expanding, the global setting and optimization of relay protection is an extremely difficult task. This paper presents a kind of application in relay protection of global optimization improved particle swarm optimization algorithm and the inverse time current protection as an example, selecting reliability of the relay protection, selectivity, quick action and flexibility as the four requires to establish the optimization targets, and optimizing protection setting values of the whole system. Finally, in the case of actual power system, the optimized setting value results of the proposed method in this paper are compared with the particle swarm algorithm. The results show that the improved quantum particle swarm optimization algorithm has strong search ability, good robustness, and it is suitable for optimizing setting value in the relay protection of the whole power system.
Directory of Open Access Journals (Sweden)
Vassal Aurélien
2008-01-01
Full Text Available Abstract Background The huge amount of data generated by DNA chips is a powerful basis to classify various pathologies. However, constant evolution of microarray technology makes it difficult to mix data from different chip types for class prediction of limited sample populations. Affymetrix® technology provides both a quantitative fluorescence signal and a decision (detection call: absent or present based on signed-rank algorithms applied to several hybridization repeats of each gene, with a per-chip normalization. We developed a new prediction method for class belonging based on the detection call only from recent Affymetrix chip type. Biological data were obtained by hybridization on U133A, U133B and U133Plus 2.0 microarrays of purified normal B cells and cells from three independent groups of multiple myeloma (MM patients. Results After a call-based data reduction step to filter out non class-discriminative probe sets, the gene list obtained was reduced to a predictor with correction for multiple testing by iterative deletion of probe sets that sequentially improve inter-class comparisons and their significance. The error rate of the method was determined using leave-one-out and 5-fold cross-validation. It was successfully applied to (i determine a sex predictor with the normal donor group classifying gender with no error in all patient groups except for male MM samples with a Y chromosome deletion, (ii predict the immunoglobulin light and heavy chains expressed by the malignant myeloma clones of the validation group and (iii predict sex, light and heavy chain nature for every new patient. Finally, this method was shown powerful when compared to the popular classification method Prediction Analysis of Microarray (PAM. Conclusion This normalization-free method is routinely used for quality control and correction of collection errors in patient reports to clinicians. It can be easily extended to multiple class prediction suitable with
Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.
Eigenvalue Decomposition-Based Modified Newton Algorithm
Directory of Open Access Journals (Sweden)
Wen-jun Wang
2013-01-01
Full Text Available When the Hessian matrix is not positive, the Newton direction may not be the descending direction. A new method named eigenvalue decomposition-based modified Newton algorithm is presented, which first takes the eigenvalue decomposition of the Hessian matrix, then replaces the negative eigenvalues with their absolute values, and finally reconstructs the Hessian matrix and modifies the searching direction. The new searching direction is always the descending direction. The convergence of the algorithm is proven and the conclusion on convergence rate is presented qualitatively. Finally, a numerical experiment is given for comparing the convergence domains of the modified algorithm and the classical algorithm.
International Nuclear Information System (INIS)
Mutihac, R.; Mutihac, R.C.; Cicuttin, A.
2001-09-01
Parameter-search methods are problem-sensitive. All methods depend on some meta-parameters of their own, which must be determined experimentally in advance. A better choice of these intrinsic parameters for a certain parameter-search method may improve its performance. Moreover, there are various implementations of the same method, which may also affect its performance. The choice of the matching (error) function has a great impact on the search process in terms of finding the optimal parameter set and minimizing the computational cost. An initial assessment of the matching function ability to distinguish between good and bad models is recommended, before launching exhaustive computations. However, different runs of a parameter search method may result in the same optimal parameter set or in different parameter sets (the model is insufficiently constrained to accurately characterize the real system). Robustness of the parameter set is expressed by the extent to which small perturbations in the parameter values are not affecting the best solution. A parameter set that is not robust is unlikely to be physiologically relevant. Robustness can also be defined as the stability of the optimal parameter set to small variations of the inputs. When trying to estimate things like the minimum, or the least-squares optimal parameters of a nonlinear system, the existence of multiple local minima can cause problems with the determination of the global optimum. Techniques such as Newton's method, the Simplex method and Least-squares Linear Taylor Differential correction technique can be useful provided that one is lucky enough to start sufficiently close to the global minimum. All these methods suffer from the inability to distinguish a local minimum from a global one because they follow the local gradients towards the minimum, even if some methods are resetting the search direction when it is likely to get stuck in presumably a local minimum. Deterministic methods based on
The linogram algorithm and direct fourier method with linograms
International Nuclear Information System (INIS)
Edholm, P.R.
1990-01-01
This text is an attempt to describe the linogram algorithm based on a somewhat simplified mathematical description of the algorithm which is also more similar to the actual digital implementation. Another algorithm with linograms, which may be called a direct fourier method is also presented. (K.A.E.)
An Experimental Method for the Active Learning of Greedy Algorithms
Velazquez-Iturbide, J. Angel
2013-01-01
Greedy algorithms constitute an apparently simple algorithm design technique, but its learning goals are not simple to achieve.We present a didacticmethod aimed at promoting active learning of greedy algorithms. The method is focused on the concept of selection function, and is based on explicit learning goals. It mainly consists of an…
Swarm-based algorithm for phase unwrapping.
da Silva Maciel, Lucas; Albertazzi, Armando G
2014-08-20
A novel algorithm for phase unwrapping based on swarm intelligence is proposed. The algorithm was designed based on three main goals: maximum coverage of reliable information, focused effort for better efficiency, and reliable unwrapping. Experiments were performed, and a new agent was designed to follow a simple set of five rules in order to collectively achieve these goals. These rules consist of random walking for unwrapping and searching, ambiguity evaluation by comparing unwrapped regions, and a replication behavior responsible for the good distribution of agents throughout the image. The results were comparable with the results from established methods. The swarm-based algorithm was able to suppress ambiguities better than the flood-fill algorithm without relying on lengthy processing times. In addition, future developments such as parallel processing and better-quality evaluation present great potential for the proposed method.
Energy Technology Data Exchange (ETDEWEB)
Cao, Ye [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Tang, Xiao-Bin, E-mail: tangxiaobin@nuaa.edu.cn [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Peng; Meng, Jia; Huang, Xi; Wen, Liang-Sheng [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Chen, Da [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)
2015-10-11
The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr{sub 3}) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr{sub 3} detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R{sup 2}=0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible. - Highlights: • An airborne radioactivity monitoring equipment NH-UAV was developed to measure radionuclide after a nuclear accident. • A spectrum correction algorithm was proposed to obtain precise information on the detected radioactivity within a small area. • The spectrum correction method was verified as feasible. • The corresponding spectrum correction coefficients increase first and then stay constant.
Seizure detection algorithms based on EMG signals
DEFF Research Database (Denmark)
Conradsen, Isa
Background: the currently used non-invasive seizure detection methods are not reliable. Muscle fibers are directly connected to the nerves, whereby electric signals are generated during activity. Therefore, an alarm system on electromyography (EMG) signals is a theoretical possibility. Objective......: to show whether medical signal processing of EMG data is feasible for detection of epileptic seizures. Methods: EMG signals during generalised seizures were recorded from 3 patients (with 20 seizures in total). Two possible medical signal processing algorithms were tested. The first algorithm was based...... the frequency-based algorithm was efficient for detecting the seizures in the third patient. Conclusion: Our results suggest that EMG signals could be used to develop an automatic seizuredetection system. However, different patients might require different types of algorithms /approaches....
Karimi, Davood; Ward, Rabab K
2016-10-01
Image models are central to all image processing tasks. The great advancements in digital image processing would not have been made possible without powerful models which, themselves, have evolved over time. In the past decade, "patch-based" models have emerged as one of the most effective models for natural images. Patch-based methods have outperformed other competing methods in many image processing tasks. These developments have come at a time when greater availability of powerful computational resources and growing concerns over the health risks of the ionizing radiation encourage research on image processing algorithms for computed tomography (CT). The goal of this paper is to explain the principles of patch-based methods and to review some of their recent applications in CT. We first review the central concepts in patch-based image processing and explain some of the state-of-the-art algorithms, with a focus on aspects that are more relevant to CT. Then, we review some of the recent application of patch-based methods in CT. Patch-based methods have already transformed the field of image processing, leading to state-of-the-art results in many applications. More recently, several studies have proposed patch-based algorithms for various image processing tasks in CT, from denoising and restoration to iterative reconstruction. Although these studies have reported good results, the true potential of patch-based methods for CT has not been yet appreciated. Patch-based methods can play a central role in image reconstruction and processing for CT. They have the potential to lead to substantial improvements in the current state of the art.
Directory of Open Access Journals (Sweden)
Mustafa Serter Uzer
2013-01-01
Full Text Available This paper offers a hybrid approach that uses the artificial bee colony (ABC algorithm for feature selection and support vector machines for classification. The purpose of this paper is to test the effect of elimination of the unimportant and obsolete features of the datasets on the success of the classification, using the SVM classifier. The developed approach conventionally used in liver diseases and diabetes diagnostics, which are commonly observed and reduce the quality of life, is developed. For the diagnosis of these diseases, hepatitis, liver disorders and diabetes datasets from the UCI database were used, and the proposed system reached a classification accuracies of 94.92%, 74.81%, and 79.29%, respectively. For these datasets, the classification accuracies were obtained by the help of the 10-fold cross-validation method. The results show that the performance of the method is highly successful compared to other results attained and seems very promising for pattern recognition applications.
Wang, Hui-feng; Jiang, Xu-qian
2012-01-01
The key and challenge problem of in-situ monitoring poisonous elements of gases is how to separate the various gases absorption signal from mixed gases absorption spectroscopy and compute it's accuracy concentration? Here we present a new algorithms in return recursion iteration based on Lambert-Beer principle. In the algorithms, recurred by the character of absorption peak of various gases in the band of 190-290 nm UV rays continuous spectroscopy and the character of twin element fold for absorbance are used. Firstly, the authors suppose that there is no absorption for others gases in the character absorption band for a certain gas, the authors can inference the initial concentration of the gas. Then the authors switch to another character spectroscopy, and put the photons that gases absorption out of the total number of absorbed photons that are measured. So we could get the initial concentration of another gas. By analogy the authros can get the initial concentration of all kinds of other poisonous elements. Then come back to the character spectroscopy of the first gas, the authors can get a new concentration of the first gas from the difference between the total number of absorbed photons and the photons that other gases absorption. By analogy the authors can get the iterative concentration of other gases, by irterating this process repeatly for some times until the measurement error of the adjacent gas concentration is smaller than a certain numerical value. Finally the authors can get the real and accurate concentration of all kinds of gases. Experiment shows that the authors can get the accurate concentration of all kinds of gases with the algorithm. The accuracy can be within 2%, and at the same time, it is easy enough to satisfy the necessity of real-time requirement. In addition it could be used to measure the concentration of many kinds of gas at a time. It is robust and suitable to be taken into practice.
Image segmentation algorithm based on improved PCNN
Chen, Hong; Wu, Chengdong; Yu, Xiaosheng; Wu, Jiahui
2017-11-01
A modified simplified Pulse Coupled Neural Network (PCNN) model is proposed in this article based on simplified PCNN. Some work have done to enrich this model, such as imposing restrictions items of the inputs, improving linking inputs and internal activity of PCNN. A self-adaptive parameter setting method of linking coefficient and threshold value decay time constant is proposed here, too. At last, we realized image segmentation algorithm for five pictures based on this proposed simplified PCNN model and PSO. Experimental results demonstrate that this image segmentation algorithm is much better than method of SPCNN and OTSU.
International Nuclear Information System (INIS)
Zare Hosseinzadeh, Ali; Ghodrati Amiri, Gholamreza; Bagheri, Abdollah; Koo, Ki-Young
2014-01-01
In this paper, a novel and effective damage diagnosis algorithm is proposed to localize and quantify structural damage using incomplete modal data, considering the existence of some limitations in the number of attached sensors on structures. The damage detection problem is formulated as an optimization problem by computing static displacements in the reduced model of a structure subjected to a unique static load. The static responses are computed through the flexibility matrix of the damaged structure obtained based on the incomplete modal data of the structure. In the algorithm, an iterated improved reduction system method is applied to prepare an accurate reduced model of a structure. The optimization problem is solved via a new evolutionary optimization algorithm called the cuckoo optimization algorithm. The efficiency and robustness of the presented method are demonstrated through three numerical examples. Moreover, the efficiency of the method is verified by an experimental study of a five-story shear building structure on a shaking table considering only two sensors. The obtained damage identification results for the numerical and experimental studies show the suitable and stable performance of the proposed damage identification method for structures with limited sensors. (paper)
Directory of Open Access Journals (Sweden)
Lüdtke Rainer
2008-08-01
Full Text Available Abstract Background Regression to the mean (RTM occurs in situations of repeated measurements when extreme values are followed by measurements in the same subjects that are closer to the mean of the basic population. In uncontrolled studies such changes are likely to be interpreted as a real treatment effect. Methods Several statistical approaches have been developed to analyse such situations, including the algorithm of Mee and Chua which assumes a known population mean μ. We extend this approach to a situation where μ is unknown and suggest to vary it systematically over a range of reasonable values. Using differential calculus we provide formulas to estimate the range of μ where treatment effects are likely to occur when RTM is present. Results We successfully applied our method to three real world examples denoting situations when (a no treatment effect can be confirmed regardless which μ is true, (b when a treatment effect must be assumed independent from the true μ and (c in the appraisal of results of uncontrolled studies. Conclusion Our method can be used to separate the wheat from the chaff in situations, when one has to interpret the results of uncontrolled studies. In meta-analysis, health-technology reports or systematic reviews this approach may be helpful to clarify the evidence given from uncontrolled observational studies.
Directory of Open Access Journals (Sweden)
Ying-Chih Lai
2016-05-01
Full Text Available The demand for pedestrian navigation has increased along with the rapid progress in mobile and wearable devices. This study develops an accurate and usable Step Length Estimation (SLE method for a Pedestrian Dead Reckoning (PDR system with features including a wide range of step lengths, a self-contained system, and real-time computing, based on the multi-sensor fusion and Fuzzy Logic (FL algorithms. The wide-range SLE developed in this study was achieved by using a knowledge-based method to model the walking patterns of the user. The input variables of the FL are step strength and frequency, and the output is the estimated step length. Moreover, a waist-mounted sensor module has been developed using low-cost inertial sensors. Since low-cost sensors suffer from various errors, a calibration procedure has been utilized to improve accuracy. The proposed PDR scheme in this study demonstrates its ability to be implemented on waist-mounted devices in real time and is suitable for the indoor and outdoor environments considered in this study without the need for map information or any pre-installed infrastructure. The experiment results show that the maximum distance error was within 1.2% of 116.51 m in an indoor environment and was 1.78% of 385.2 m in an outdoor environment.
A scheduling algorithm based on Clara clustering
Kuang, Ling; Zhang, Lichen
2017-08-01
Task scheduling is a key issue in cloud computing. A new algorithm for queuing task scheduling based on Clara clustering and SJF cloud computing is proposed to introduce the Clara clustering for the shortcomings of SJF algorithm load imbalance. The Clara clustering method prepares the task clustering based on the task execution time and the waiting time of the task, and then divides the task into three groups according to the reference point obtained by the clustering. Based on the number of tasks per group in the proportion of the total number of tasks assigned to the implementation of the quota. Each queue team will perform task scheduling based on these quotas and SJF. The simulation results show that the algorithm has good load balancing and system performance.
Directory of Open Access Journals (Sweden)
Ouafa Herbadji
2016-03-01
Full Text Available This paper proposes a new hybrid metaheuristique algorithm based on the hybridization of Biogeography-based optimization with the Differential Evolution for solving the optimal power flow problem with emission control. The biogeography-based optimization (BBO algorithm is strongly influenced by equilibrium theory of island biogeography, mainly through two steps: Migration and Mutation. Differential Evolution (DE is one of the best Evolutionary Algorithms for global optimization. The hybridization of these two methods is used to overcome traps of local optimal solutions and problems of time consumption. The objective of this paper is to minimize the total fuel cost of generation, total emission, total real power loss and also maintain an acceptable system performance in terms of limits on generator real power, bus voltages and power flow of transmission lines. In the present work, BBO/DE has been applied to solve the optimal power flow problems on IEEE 30-bus test system and the Algerian electrical network 114 bus. The results obtained from this method show better performances compared with DE, BBO and other well known metaheuristique and evolutionary optimization methods.
Directory of Open Access Journals (Sweden)
Huang Tian
2014-10-01
Full Text Available Moving object detection and tracking is the computer vision and image processing is a hot research direction, based on the analysis of the moving target detection and tracking algorithm in common use, focus on the sports video target tracking non rigid body. In sports video, non rigid athletes often have physical deformation in the process of movement, and may be associated with the occurrence of moving target under cover. Media data is surging to fast search and query causes more difficulties in data. However, the majority of users want to be able to quickly from the multimedia data to extract the interested content and implicit knowledge (concepts, rules, rules, models and correlation, retrieval and query quickly to take advantage of them, but also can provide the decision support problem solving hierarchy. Based on the motion in sport video object as the object of study, conducts the system research from the theoretical level and technical framework and so on, from the layer by layer mining between low level motion features to high-level semantic motion video, not only provides support for users to find information quickly, but also can provide decision support for the user to solve the problem.
Ma, Li; Li, Yang; Fan, Suohai; Fan, Runzhu
2015-01-01
Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA). The proposed algorithm combines artificial fish swarm algorithm (AFSA) with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI) are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM).
Directory of Open Access Journals (Sweden)
Bisheng He
2014-01-01
Full Text Available A time-space network based optimization method is designed for high-speed rail train timetabling problem to improve the service level of the high-speed rail. The general time-space path cost is presented which considers both the train travel time and the high-speed rail operation requirements: (1 service frequency requirement; (2 stopping plan adjustment; and (3 priority of train types. Train timetabling problem based on time-space path aims to minimize the total general time-space path cost of all trains. An improved branch-and-price algorithm is applied to solve the large scale integer programming problem. When dealing with the algorithm, a rapid branching and node selection for branch-and-price tree and a heuristic train time-space path generation for column generation are adopted to speed up the algorithm computation time. The computational results of a set of experiments on China’s high-speed rail system are presented with the discussions about the model validation, the effectiveness of the general time-space path cost, and the improved branch-and-price algorithm.
Cheng, Xuemin; Hao, Qun; Xie, Mengdi
2016-04-07
Video stabilization is an important technology for removing undesired motion in videos. This paper presents a comprehensive motion estimation method for electronic image stabilization techniques, integrating the speeded up robust features (SURF) algorithm, modified random sample consensus (RANSAC), and the Kalman filter, and also taking camera scaling and conventional camera translation and rotation into full consideration. Using SURF in sub-pixel space, feature points were located and then matched. The false matched points were removed by modified RANSAC. Global motion was estimated by using the feature points and modified cascading parameters, which reduced the accumulated errors in a series of frames and improved the peak signal to noise ratio (PSNR) by 8.2 dB. A specific Kalman filter model was established by considering the movement and scaling of scenes. Finally, video stabilization was achieved with filtered motion parameters using the modified adjacent frame compensation. The experimental results proved that the target images were stabilized even when the vibrating amplitudes of the video become increasingly large.
DIFFERENTIAL SEARCH ALGORITHM BASED EDGE DETECTION
Directory of Open Access Journals (Sweden)
M. A. Gunen
2016-06-01
Full Text Available In this paper, a new method has been presented for the extraction of edge information by using Differential Search Optimization Algorithm. The proposed method is based on using a new heuristic image thresholding method for edge detection. The success of the proposed method has been examined on fusion of two remote sensed images. The applicability of the proposed method on edge detection and image fusion problems have been analysed in detail and the empirical results exposed that the proposed method is useful for solving the mentioned problems.
Schwarz-Based Algorithms for Compressible Flows
Tidriri, M. D.
1996-01-01
We investigate in this paper the application of Schwarz-based algorithms to compressible flows. First we study the combination of these methods with defect-correction procedures. We then study the effect on the Schwarz-based methods of replacing the explicit treatment of the boundary conditions by an implicit one. In the last part of this paper we study the combination of these methods with Newton-Krylov matrix-free methods. Numerical experiments that show the performance of our approaches are then presented.
Structure-Based Algorithms for Microvessel Classification
Smith, Amy F.
2015-02-01
© 2014 The Authors. Microcirculation published by John Wiley & Sons Ltd. Objective: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. Methods: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. Results: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. Conclusions: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.
Wisesty, Untari N.; Warastri, Riris S.; Puspitasari, Shinta Y.
2018-03-01
Cancer is one of the major causes of mordibility and mortality problems in the worldwide. Therefore, the need of a system that can analyze and identify a person suffering from a cancer by using microarray data derived from the patient’s Deoxyribonucleic Acid (DNA). But on microarray data has thousands of attributes, thus making the challenges in data processing. This is often referred to as the curse of dimensionality. Therefore, in this study built a system capable of detecting a patient whether contracted cancer or not. The algorithm used is Genetic Algorithm as feature selection and Momentum Backpropagation Neural Network as a classification method, with data used from the Kent Ridge Bio-medical Dataset. Based on system testing that has been done, the system can detect Leukemia and Colon Tumor with best accuracy equal to 98.33% for colon tumor data and 100% for leukimia data. Genetic Algorithm as feature selection algorithm can improve system accuracy, which is from 64.52% to 98.33% for colon tumor data and 65.28% to 100% for leukemia data, and the use of momentum parameters can accelerate the convergence of the system in the training process of Neural Network.
Kesner, Adam Leon; Kuntner, Claudia
2010-10-01
Respiratory gating in PET is an approach used to minimize the negative effects of respiratory motion on spatial resolution. It is based on an initial determination of a patient's respiratory movements during a scan, typically using hardware based systems. In recent years, several fully automated databased algorithms have been presented for extracting a respiratory signal directly from PET data, providing a very practical strategy for implementing gating in the clinic. In this work, a new method is presented for extracting a respiratory signal from raw PET sinogram data and compared to previously presented automated techniques. The acquisition of respiratory signal from PET data in the newly proposed method is based on rebinning the sinogram data into smaller data structures and then analyzing the time activity behavior in the elements of these structures. From this analysis, a 1D respiratory trace is produced, analogous to a hardware derived respiratory trace. To assess the accuracy of this fully automated method, respiratory signal was extracted from a collection of 22 clinical FDG-PET scans using this method, and compared to signal derived from several other software based methods as well as a signal derived from a hardware system. The method presented required approximately 9 min of processing time for each 10 min scan (using a single 2.67 GHz processor), which in theory can be accomplished while the scan is being acquired and therefore allowing a real-time respiratory signal acquisition. Using the mean correlation between the software based and hardware based respiratory traces, the optimal parameters were determined for the presented algorithm. The mean/median/range of correlations for the set of scans when using the optimal parameters was found to be 0.58/0.68/0.07-0.86. The speed of this method was within the range of real-time while the accuracy surpassed the most accurate of the previously presented algorithms. PET data inherently contains information
Generalized phase retrieval algorithm based on information measures
Shioya, Hiroyuki; Gohara, Kazutoshi
2006-01-01
An iterative phase retrieval algorithm based on the maximum entropy method (MEM) is presented. Introducing a new generalized information measure, we derive a novel class of algorithms which includes the conventionally used error reduction algorithm and a MEM-type iterative algorithm which is presented for the first time. These different phase retrieval methods are unified on the basis of the framework of information measures used in information theory.
Directory of Open Access Journals (Sweden)
Li Ma
2015-01-01
Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA. The proposed algorithm combines artificial fish swarm algorithm (AFSA with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM.
Kostrzewa, Daniel; Josiński, Henryk
2016-06-01
The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version inspired by dynamic growth of weeds colony. The authors of the present paper have modified the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals' selection. The goal of the project was to evaluate the modified exIWO by testing its usefulness for multidimensional numerical functions optimization. The optimized functions: Griewank, Rastrigin, and Rosenbrock are frequently used as benchmarks because of their characteristics.
Immune Algorithm Complex Method for Transducer Calibration
Directory of Open Access Journals (Sweden)
YU Jiangming
2014-08-01
Full Text Available As a key link in engineering test tasks, the transducer calibration has significant influence on accuracy and reliability of test results. Because of unknown and complex nonlinear characteristics, conventional method can’t achieve satisfactory accuracy. An Immune algorithm complex modeling approach is proposed, and the simulated studies on the calibration of third multiple output transducers is made respectively by use of the developed complex modeling. The simulated and experimental results show that the Immune algorithm complex modeling approach can improve significantly calibration precision comparison with traditional calibration methods.
Parmaksızoğlu, Selami; Alçı, Mustafa
2011-01-01
Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods.
Parmaksızoğlu, Selami; Alçı, Mustafa
2011-01-01
Cellular Neural Networks (CNNs) have been widely used recently in applications such as edge detection, noise reduction and object detection, which are among the main computer imaging processes. They can also be realized as hardware based imaging sensors. The fact that hardware CNN models produce robust and effective results has attracted the attention of researchers using these structures within image sensors. Realization of desired CNN behavior such as edge detection can be achieved by correctly setting a cloning template without changing the structure of the CNN. To achieve different behaviors effectively, designing a cloning template is one of the most important research topics in this field. In this study, the edge detecting process that is used as a preliminary process for segmentation, identification and coding applications is conducted by using CNN structures. In order to design the cloning template of goal-oriented CNN architecture, an Artificial Bee Colony (ABC) algorithm which is inspired from the foraging behavior of honeybees is used and the performance analysis of ABC for this application is examined with multiple runs. The CNN template generated by the ABC algorithm is tested by using artificial and real test images. The results are subjectively and quantitatively compared with well-known classical edge detection methods, and other CNN based edge detector cloning templates available in the imaging literature. The results show that the proposed method is more successful than other methods. PMID:22163903
A method for evaluating discoverability and navigability of recommendation algorithms.
Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis
2017-01-01
Recommendations are increasingly used to support and enable discovery, browsing, and exploration of items. This is especially true for entertainment platforms such as Netflix or YouTube, where frequently, no clear categorization of items exists. Yet, the suitability of a recommendation algorithm to support these use cases cannot be comprehensively evaluated by any recommendation evaluation measures proposed so far. In this paper, we propose a method to expand the repertoire of existing recommendation evaluation techniques with a method to evaluate the discoverability and navigability of recommendation algorithms. The proposed method tackles this by means of first evaluating the discoverability of recommendation algorithms by investigating structural properties of the resulting recommender systems in terms of bow tie structure, and path lengths. Second, the method evaluates navigability by simulating three different models of information seeking scenarios and measuring the success rates. We show the feasibility of our method by applying it to four non-personalized recommendation algorithms on three data sets and also illustrate its applicability to personalized algorithms. Our work expands the arsenal of evaluation techniques for recommendation algorithms, extends from a one-click-based evaluation towards multi-click analysis, and presents a general, comprehensive method to evaluating navigability of arbitrary recommendation algorithms.
Hybrid employment recommendation algorithm based on Spark
Li, Zuoquan; Lin, Yubei; Zhang, Xingming
2017-08-01
Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.
Opposition-Based Adaptive Fireworks Algorithm
Directory of Open Access Journals (Sweden)
Chibing Gong
2016-07-01
Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.
Honey Bees Inspired Optimization Method: The Bees Algorithm
Directory of Open Access Journals (Sweden)
Ernesto Mastrocinque
2013-11-01
Full Text Available Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.
Opposition-Based Adaptive Fireworks Algorithm
Chibing Gong
2016-01-01
A fireworks algorithm (FWA) is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA) proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA). The purpose of this paper is to add opposition-based learning (OBL) to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based a...
Directory of Open Access Journals (Sweden)
Xuefei Yu
2018-01-01
Full Text Available The mean amplitude of glycemic excursions (MAGE is an essential index for glycemic variability assessment, which is treated as a key reference for blood glucose controlling at clinic. However, the traditional “ruler and pencil” manual method for the calculation of MAGE is time-consuming and prone to error due to the huge data size, making the development of robust computer-aided program an urgent requirement. Although several software products are available instead of manual calculation, poor agreement among them is reported. Therefore, more studies are required in this field. In this paper, we developed a mathematical algorithm based on integer nonlinear programming. Following the proposed mathematical method, an open-code computer program named MAGECAA v1.0 was developed and validated. The results of the statistical analysis indicated that the developed program was robust compared to the manual method. The agreement among the developed program and currently available popular software is satisfied, indicating that the worry about the disagreement among different software products is not necessary. The open-code programmable algorithm is an extra resource for those peers who are interested in the related study on methodology in the future.
Star identification methods, techniques and algorithms
Zhang, Guangjun
2017-01-01
This book summarizes the research advances in star identification that the author’s team has made over the past 10 years, systematically introducing the principles of star identification, general methods, key techniques and practicable algorithms. It also offers examples of hardware implementation and performance evaluation for the star identification algorithms. Star identification is the key step for celestial navigation and greatly improves the performance of star sensors, and as such the book include the fundamentals of star sensors and celestial navigation, the processing of the star catalog and star images, star identification using modified triangle algorithms, star identification using star patterns and using neural networks, rapid star tracking using star matching between adjacent frames, as well as implementation hardware and using performance tests for star identification. It is not only valuable as a reference book for star sensor designers and researchers working in pattern recognition and othe...
Algorithms for monitoring warfarin use: Results from Delphi Method.
Kano, Eunice Kazue; Borges, Jessica Bassani; Scomparini, Erika Burim; Curi, Ana Paula; Ribeiro, Eliane
2017-10-01
Warfarin stands as the most prescribed oral anticoagulant. New oral anticoagulants have been approved recently; however, their use is limited and the reversibility techniques of the anticoagulation effect are little known. Thus, our study's purpose was to develop algorithms for therapeutic monitoring of patients taking warfarin based on the opinion of physicians who prescribe this medicine in their clinical practice. The development of the algorithm was performed in two stages, namely: (i) literature review and (ii) algorithm evaluation by physicians using a Delphi Method. Based on the articles analyzed, two algorithms were developed: "Recommendations for the use of warfarin in anticoagulation therapy" and "Recommendations for the use of warfarin in anticoagulation therapy: dose adjustment and bleeding control." Later, these algorithms were analyzed by 19 medical doctors that responded to the invitation and agreed to participate in the study. Of these, 16 responded to the first round, 11 to the second and eight to the third round. A 70% consensus or higher was reached for most issues and at least 50% for six questions. We were able to develop algorithms to monitor the use of warfarin by physicians using a Delphi Method. The proposed method is inexpensive and involves the participation of specialists, and it has proved adequate for the intended purpose. Further studies are needed to validate these algorithms, enabling them to be used in clinical practice.
Zhang, Yanjun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong
2016-02-01
Given that the traditional signal processing methods can not effectively distinguish the different vibration intrusion signal, a feature extraction and recognition method of the vibration information is proposed based on EMD-AWPP and HOSA-SVM, using for high precision signal recognition of distributed fiber optic intrusion detection system. When dealing with different types of vibration, the method firstly utilizes the adaptive wavelet processing algorithm based on empirical mode decomposition effect to reduce the abnormal value influence of sensing signal and improve the accuracy of signal feature extraction. Not only the low frequency part of the signal is decomposed, but also the high frequency part the details of the signal disposed better by time-frequency localization process. Secondly, it uses the bispectrum and bicoherence spectrum to accurately extract the feature vector which contains different types of intrusion vibration. Finally, based on the BPNN reference model, the recognition parameters of SVM after the implementation of the particle swarm optimization can distinguish signals of different intrusion vibration, which endows the identification model stronger adaptive and self-learning ability. It overcomes the shortcomings, such as easy to fall into local optimum. The simulation experiment results showed that this new method can effectively extract the feature vector of sensing information, eliminate the influence of random noise and reduce the effects of outliers for different types of invasion source. The predicted category identifies with the output category and the accurate rate of vibration identification can reach above 95%. So it is better than BPNN recognition algorithm and improves the accuracy of the information analysis effectively.
A graph spectrum based geometric biclustering algorithm.
Wang, Doris Z; Yan, Hong
2013-01-21
Biclustering is capable of performing simultaneous clustering on two dimensions of a data matrix and has many applications in pattern classification. For example, in microarray experiments, a subset of genes is co-expressed in a subset of conditions, and biclustering algorithms can be used to detect the coherent patterns in the data for further analysis of function. In this paper, we present a graph spectrum based geometric biclustering (GSGBC) algorithm. In the geometrical view, biclusters can be seen as different linear geometrical patterns in high dimensional spaces. Based on this, the modified Hough transform is used to find the Hough vector (HV) corresponding to sub-bicluster patterns in 2D spaces. A graph can be built regarding each HV as a node. The graph spectrum is utilized to identify the eigengroups in which the sub-biclusters are grouped naturally to produce larger biclusters. Through a comparative study, we find that the GSGBC achieves as good a result as GBC and outperforms other kinds of biclustering algorithms. Also, compared with the original geometrical biclustering algorithm, it reduces the computing time complexity significantly. We also show that biologically meaningful biclusters can be identified by our method from real microarray gene expression data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Jie-Sheng Wang
2015-02-01
Full Text Available In order to realize the fault diagnosis of the polyvinyl chloride (PVC polymerization kettle reactor, a rough set (RS–probabilistic neural networks (PNN fault diagnosis strategy is proposed. Firstly, through analysing the technique of the PVC polymerization reactor, the mapping between the polymerization process data and the fault modes is established. Then, the rough set theory is used to tackle the input vector of PNN so as to reduce the network dimensionality and improve the training speed of PNN. Shuffled frog leaping algorithm (SFLA is adopted to optimize the smoothing factor of PNN. The fault pattern classification of polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the fault diagnosis simulation experiments are conducted by combining with the industrial on-site historical datum of polymerization kettle, and the results show that the RS–PNN fault diagnosis strategy is effective.
Directory of Open Access Journals (Sweden)
Liangliang Wei
2018-02-01
Full Text Available To effectively de-noise the Gaussian white noise and periodic narrow-band interference in the background noise of partial discharge ultra-high frequency (PD UHF signals in field tests, a novel de-noising method, based on a single-channel blind source separation algorithm, is proposed. Compared with traditional methods, the proposed method can effectively de-noise the noise interference, and the distortion of the de-noising PD signal is smaller. Firstly, the PD UHF signal is time-frequency analyzed by S-transform to obtain the number of source signals. Then, the single-channel detected PD signal is converted into multi-channel signals by singular value decomposition (SVD, and background noise is separated from multi-channel PD UHF signals by the joint approximate diagonalization of eigen-matrix method. At last, the source PD signal is estimated and recovered by the l1-norm minimization method. The proposed de-noising method was applied on the simulation test and field test detected signals, and the de-noising performance of the different methods was compared. The simulation and field test results demonstrate the effectiveness and correctness of the proposed method.
MVDR Algorithm Based on Estimated Diagonal Loading for Beamforming
Directory of Open Access Journals (Sweden)
Yuteng Xiao
2017-01-01
Full Text Available Beamforming algorithm is widely used in many signal processing fields. At present, the typical beamforming algorithm is MVDR (Minimum Variance Distortionless Response. However, the performance of MVDR algorithm relies on the accurate covariance matrix. The MVDR algorithm declines dramatically with the inaccurate covariance matrix. To solve the problem, studying the beamforming array signal model and beamforming MVDR algorithm, we improve MVDR algorithm based on estimated diagonal loading for beamforming. MVDR optimization model based on diagonal loading compensation is established and the interval of the diagonal loading compensation value is deduced on the basis of the matrix theory. The optimal diagonal loading value in the interval is also determined through the experimental method. The experimental results show that the algorithm compared with existing algorithms is practical and effective.
Fast image mosaic algorithm based on the improved Harris-SIFT algorithm
Jiang, Zetao; Liu, Min
2015-08-01
This paper proposes a fast image mosaic algorithm based on the improved Harris-SIFT algorithm, according to such problems as more memory consumption, greater redundancy quantity of feature points, slower operation speed, and so on, resulting from using the SIFT algorithm in the image matching stage of the image mosaic process. Firstly in the matching stage of the algorithm, the corner point is extracted by using the multi-scale Harris, feature descriptor is constructed by the 88-dimensional vector based on the SIFT feature, the coarse matching is carried out by the nearest neighbor matching method, and then the precise matching point pair and image transformation matrix are obtained by the RANSAC method. The seamless mosaic can be achieved by using the weighted average image fusion. The experimental results show that this algorithm can not only achieve precise seamless mosaic but also improve operation efficiency, compared with the traditional algorithm.
Energy Technology Data Exchange (ETDEWEB)
Almeida, Jose Carlos Soares de
2001-02-01
This work develops a method for transient identification based on a possible approach, optimized by Genetic Algorithm to optimize the number of the centroids of the classes that represent the transients. The basic idea of the proposed method is to optimize the partition of the search space, generating subsets in the classes within a partition, defined as subclasses, whose centroids are able to distinguish the classes with the maximum correct classifications. The interpretation of the subclasses as fuzzy sets and the possible approach provided a heuristic to establish influence zones of the centroids, allowing to achieve the 'don't know' answer for unknown transients, that is, outside the training set. (author)
Optimization algorithm based on densification and dynamic canonical descent
Bousson, K.; Correia, S. D.
2006-07-01
Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.
Accuracy verification methods theory and algorithms
Mali, Olli; Repin, Sergey
2014-01-01
The importance of accuracy verification methods was understood at the very beginning of the development of numerical analysis. Recent decades have seen a rapid growth of results related to adaptive numerical methods and a posteriori estimates. However, in this important area there often exists a noticeable gap between mathematicians creating the theory and researchers developing applied algorithms that could be used in engineering and scientific computations for guaranteed and efficient error control. The goals of the book are to (1) give a transparent explanation of the underlying mathematical theory in a style accessible not only to advanced numerical analysts but also to engineers and students; (2) present detailed step-by-step algorithms that follow from a theory; (3) discuss their advantages and drawbacks, areas of applicability, give recommendations and examples.
Normalization based K means Clustering Algorithm
Virmani, Deepali; Taneja, Shweta; Malhotra, Geetika
2015-01-01
K-means is an effective clustering technique used to separate similar data into groups based on initial centroids of clusters. In this paper, Normalization based K-means clustering algorithm(N-K means) is proposed. Proposed N-K means clustering algorithm applies normalization prior to clustering on the available data as well as the proposed approach calculates initial centroids based on weights. Experimental results prove the betterment of proposed N-K means clustering algorithm over existing...
DEFF Research Database (Denmark)
Chen, Yangyang; Yang, Ming; Long, Jiang
2017-01-01
For motor control applications, the speed loop performance is largely depended on the accuracy of speed feedback signal. M/T method, due to its high theoretical accuracy, is the most widely used in incremental encoder adopted speed measurement. However, the inherent encoder optical grating error...... and A/D conversion error make it hard to achieve theoretical speed measurement accuracy. In this paper, hardware caused speed measurement errors are analyzed and modeled in detail; a Single-Phase Self-adaptive M/T method is proposed to ideally suppress speed measurement error. In the end, simulation...
Efficient sampling algorithms for Monte Carlo based treatment planning
International Nuclear Information System (INIS)
DeMarco, J.J.; Solberg, T.D.; Chetty, I.; Smathers, J.B.
1998-01-01
Efficient sampling algorithms are necessary for producing a fast Monte Carlo based treatment planning code. This study evaluates several aspects of a photon-based tracking scheme and the effect of optimal sampling algorithms on the efficiency of the code. Four areas were tested: pseudo-random number generation, generalized sampling of a discrete distribution, sampling from the exponential distribution, and delta scattering as applied to photon transport through a heterogeneous simulation geometry. Generalized sampling of a discrete distribution using the cutpoint method can produce speedup gains of one order of magnitude versus conventional sequential sampling. Photon transport modifications based upon the delta scattering method were implemented and compared with a conventional boundary and collision checking algorithm. The delta scattering algorithm is faster by a factor of six versus the conventional algorithm for a boundary size of 5 mm within a heterogeneous geometry. A comparison of portable pseudo-random number algorithms and exponential sampling techniques is also discussed
A solution quality assessment method for swarm intelligence optimization algorithms.
Zhang, Zhaojun; Wang, Gai-Ge; Zou, Kuansheng; Zhang, Jianhua
2014-01-01
Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of "value performance," the "ordinal performance" is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and "good enough" set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO), particle swarm optimization (PSO), and artificial fish swarm algorithm (AFS) were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method.
A Solution Quality Assessment Method for Swarm Intelligence Optimization Algorithms
Directory of Open Access Journals (Sweden)
Zhaojun Zhang
2014-01-01
Full Text Available Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of “value performance,” the “ordinal performance” is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and “good enough” set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO, particle swarm optimization (PSO, and artificial fish swarm algorithm (AFS were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method.
A hash-based image encryption algorithm
Cheddad, Abbas; Condell, Joan; Curran, Kevin; McKevitt, Paul
2010-03-01
There exist several algorithms that deal with text encryption. However, there has been little research carried out to date on encrypting digital images or video files. This paper describes a novel way of encrypting digital images with password protection using 1D SHA-2 algorithm coupled with a compound forward transform. A spatial mask is generated from the frequency domain by taking advantage of the conjugate symmetry of the complex imagery part of the Fourier Transform. This mask is then XORed with the bit stream of the original image. Exclusive OR (XOR), a logical symmetric operation, that yields 0 if both binary pixels are zeros or if both are ones and 1 otherwise. This can be verified simply by modulus (pixel1, pixel2, 2). Finally, confusion is applied based on the displacement of the cipher's pixels in accordance with a reference mask. Both security and performance aspects of the proposed method are analyzed, which prove that the method is efficient and secure from a cryptographic point of view. One of the merits of such an algorithm is to force a continuous tone payload, a steganographic term, to map onto a balanced bits distribution sequence. This bit balance is needed in certain applications, such as steganography and watermarking, since it is likely to have a balanced perceptibility effect on the cover image when embedding.
Smell Detection Agent Based Optimization Algorithm
Vinod Chandra, S. S.
2016-09-01
In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.
Human resource recommendation algorithm based on ensemble learning and Spark
Cong, Zihan; Zhang, Xingming; Wang, Haoxiang; Xu, Hongjie
2017-08-01
Aiming at the problem of “information overload” in the human resources industry, this paper proposes a human resource recommendation algorithm based on Ensemble Learning. The algorithm considers the characteristics and behaviours of both job seeker and job features in the real business circumstance. Firstly, the algorithm uses two ensemble learning methods-Bagging and Boosting. The outputs from both learning methods are then merged to form user interest model. Based on user interest model, job recommendation can be extracted for users. The algorithm is implemented as a parallelized recommendation system on Spark. A set of experiments have been done and analysed. The proposed algorithm achieves significant improvement in accuracy, recall rate and coverage, compared with recommendation algorithms such as UserCF and ItemCF.
Mixed-Integer Constrained Optimization Based on Memetic Algorithm
Directory of Open Access Journals (Sweden)
Y.C. Lin
2013-04-01
Full Text Available Evolutionary algorithms (EAs are population-based global search methods. They have been successfully applied to many complex optimization problems. However, EAs are frequently incapable of finding a convergence solution in default of local search mechanisms. Memetic Algorithms (MAs are hybrid EAs that combine genetic operators with local search methods. With global exploration and local exploitation in search space, MAs are capable of obtaining more high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE, as an EA-based search algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, a memetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most of real-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order to effectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solve the mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on two benchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithm can find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposed memetic algorithm is a good approach to mixed-integer optimization problems.
Morshed, Mohammad Sarwar; Kamal, Mostafa Mashnoon; Khan, Somaiya Islam
2016-07-01
Inventory has been a major concern in supply chain and numerous researches have been done lately on inventory control which brought forth a number of methods that efficiently manage inventory and related overheads by reducing cost of replenishment. This research is aimed towards providing a better replenishment policy in case of multi-product, single supplier situations for chemical raw materials of textile industries in Bangladesh. It is assumed that industries currently pursue individual replenishment system. The purpose is to find out the optimum ideal cycle time and individual replenishment cycle time of each product for replenishment that will cause lowest annual holding and ordering cost, and also find the optimum ordering quantity. In this paper indirect grouping strategy has been used. It is suggested that indirect grouping Strategy outperforms direct grouping strategy when major cost is high. An algorithm by Kaspi and Rosenblatt (1991) called RAND is exercised for its simplicity and ease of application. RAND provides an ideal cycle time (T) for replenishment and integer multiplier (ki) for individual items. Thus the replenishment cycle time for each product is found as T×ki. Firstly, based on data, a comparison between currently prevailing (individual) process and RAND is provided that uses the actual demands which presents 49% improvement in total cost of replenishment. Secondly, discrepancies in demand is corrected by using Holt's method. However, demands can only be forecasted one or two months into the future because of the demand pattern of the industry under consideration. Evidently, application of RAND with corrected demand display even greater improvement. The results of this study demonstrates that cost of replenishment can be significantly reduced by applying RAND algorithm and exponential smoothing models.
Survey of gene splicing algorithms based on reads.
Si, Xiuhua; Wang, Qian; Zhang, Lei; Wu, Ruo; Ma, Jiquan
2017-11-02
Gene splicing is the process of assembling a large number of unordered short sequence fragments to the original genome sequence as accurately as possible. Several popular splicing algorithms based on reads are reviewed in this article, including reference genome algorithms and de novo splicing algorithms (Greedy-extension, Overlap-Layout-Consensus graph, De Bruijn graph). We also discuss a new splicing method based on the MapReduce strategy and Hadoop. By comparing these algorithms, some conclusions are drawn and some suggestions on gene splicing research are made.
Finite-sample based learning algorithms for feedforward networks
Energy Technology Data Exchange (ETDEWEB)
Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M. [Oak Ridge National Lab., TN (United States); Iyengar, S.S. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Computer Science
1995-04-01
We discuss two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by FeedForward Networks (FFN). The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can also be directly applied to concept learning problems. A main distinguishing feature of the this work is that the sample sizes are based on explicit algorithms rather than information-based methods.
Study on Privacy Protection Algorithm Based on K-Anonymity
FeiFei, Zhao; LiFeng, Dong; Kun, Wang; Yang, Li
Basing on the study of K-Anonymity algorithm in privacy protection issue, this paper proposed a "Degree Priority" method of visiting Lattice nodes on the generalization tree to improve the performance of K-Anonymity algorithm. This paper also proposed a "Two Times K-anonymity" methods to reduce the information loss in the process of K-Anonymity. Finally, we used experimental results to demonstrate the effectiveness of these methods.
Daylighting simulation: methods, algorithms, and resources
Energy Technology Data Exchange (ETDEWEB)
Carroll, William L.
1999-12-01
This document presents work conducted as part of Subtask C, ''Daylighting Design Tools'', Subgroup C2, ''New Daylight Algorithms'', of the IEA SHC Task 21 and the ECBCS Program Annex 29 ''Daylight in Buildings''. The search for and collection of daylighting analysis methods and algorithms led to two important observations. First, there is a wide range of needs for different types of methods to produce a complete analysis tool. These include: Geometry; Light modeling; Characterization of the natural illumination resource; Materials and components properties, representations; and Usability issues (interfaces, interoperability, representation of analysis results, etc). Second, very advantageously, there have been rapid advances in many basic methods in these areas, due to other forces. They are in part driven by: The commercial computer graphics community (commerce, entertainment); The lighting industry; Architectural rendering and visualization for projects; and Academia: Course materials, research. This has led to a very rich set of information resources that have direct applicability to the small daylighting analysis community. Furthermore, much of this information is in fact available online. Because much of the information about methods and algorithms is now online, an innovative reporting strategy was used: the core formats are electronic, and used to produce a printed form only secondarily. The electronic forms include both online WWW pages and a downloadable .PDF file with the same appearance and content. Both electronic forms include live primary and indirect links to actual information sources on the WWW. In most cases, little additional commentary is provided regarding the information links or citations that are provided. This in turn allows the report to be very concise. The links are expected speak for themselves. The report consists of only about 10+ pages, with about 100+ primary links, but
International Nuclear Information System (INIS)
Kalashnikov, A.G.; Elovskaya, L.F.; Glebov, A.P.; Kuznetsova, L.I.
1981-01-01
The technique for approximate calculation of the water cooled and moderated reactor cell based on using the DSn-method and the TESI-2S program for the BESM-6 computer in which the proposed technique is realized are described. The calculational technique is based on division of the reactor complex cell into simple one-dimensional cylindrical cells. Series of cells obtained that way is calculated beginning from the first one. After each cell calculation the macrocross sections are averaged over the cell vomome using the neutron spatial and energy distribution. The possibility of approximate account for neutron transport between the cells of the same rank by equating neutron fluxes on the cell boundary is supposed. The spatially and energy neutron flux distribution over cells is performed using the conditions of isotropic neutron reflection on the cell boundary. The results of the proposed technique approbation on the example of the ABV-1.5 reactor fuel assembly high accuracy and reliability of the employed algorithm [ru
Flexible Triangle Search Algorithm for Block-Based Motion Estimation
Directory of Open Access Journals (Sweden)
Andreas Antoniou
2007-01-01
Full Text Available A new fast algorithm for block-based motion estimation, the flexible triangle search (FTS algorithm, is presented. The algorithm is based on the simplex method of optimization adapted to an integer grid. The proposed algorithm is highly flexible due to its ability to quickly change its search direction and to move towards the target of the search criterion. It is also capable of increasing or decreasing its search step size to allow coarser or finer search. Unlike other fast search algorithms, the FTS can escape from inferior local minima and thus converge to better solutions. The FTS was implemented as part of the H.264 encoder and was compared with several other block matching algorithms. The results obtained show that the FTS can reduce the number of block matching comparisons by around 30–60% with negligible effect on the image quality and compression ratio.
Development of GPT-based optimization algorithm
International Nuclear Information System (INIS)
White, J.R.; Chapman, D.M.; Biswas, D.
1985-01-01
The University of Lowell and Westinghouse Electric Corporation are involved in a joint effort to evaluate the potential benefits of generalized/depletion perturbation theory (GPT/DTP) methods for a variety of light water reactor (LWR) physics applications. One part of that work has focused on the development of a GPT-based optimization algorithm for the overall design, analysis, and optimization of LWR reload cores. The use of GPT sensitivity data in formulating the fuel management optimization problem is conceptually straightforward; it is the actual execution of the concept that is challenging. Thus, the purpose of this paper is to address some of the major difficulties, to outline our approach to these problems, and to present some illustrative examples of an efficient GTP-based optimization scheme
Agent-based Algorithm for Spatial Distribution of Objects
Collier, Nathan
2012-06-02
In this paper we present an agent-based algorithm for the spatial distribution of objects. The algorithm is a generalization of the bubble mesh algorithm, initially created for the point insertion stage of the meshing process of the finite element method. The bubble mesh algorithm treats objects in space as bubbles, which repel and attract each other. The dynamics of each bubble are approximated by solving a series of ordinary differential equations. We present numerical results for a meshing application as well as a graph visualization application.
A novel line segment detection algorithm based on graph search
Zhao, Hong-dan; Liu, Guo-ying; Song, Xu
2018-02-01
To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).
Directory of Open Access Journals (Sweden)
Chuanfa Chen
2015-03-01
Full Text Available Remote-sensing-derived elevation data sets often suffer from noise and outliers due to various reasons, such as the physical limitations of sensors, multiple reflectance, occlusions and low contrast of texture. Outliers generally have a seriously negative effect on DEM construction. Some interpolation methods like ordinary kriging (OK are capable of smoothing noise inherent in sample points, but are sensitive to outliers. In this paper, a robust algorithm of multiquadric method (MQ based on an Improved Huber loss function (MQ-IH has been developed to decrease the impact of outliers on DEM construction. Theoretically, the improved Huber loss function is null for outliers, quadratic for small errors, and linear for others. Simulated data sets drawn from a mathematical surface with different error distributions were employed to analyze the robustness of MQ-IH. Results indicate that MQ-IH obtains a good balance between efficiency and robustness. Namely, the performance of MQ-IH is comparative to those of the classical MQ and MQ based on the Classical Huber loss function (MQ-CH when sample points follow a normal distribution, and the former outperforms the latter two when sample points are subject to outliers. For example, for the Cauchy error distribution with the location parameter of 0 and scale parameter of 1, the root mean square errors (RMSEs of MQ-CH and the classical MQ are 0.3916 and 1.4591, respectively, whereas that of MQ-IH is 0.3698. The performance of MQ-IH is further evaluated by qualitative and quantitative analysis through a real-world example of DEM construction with the stereo-images-derived elevation points. Results demonstrate that compared with the classical interpolation methods, including natural neighbor (NN, OK and ANUDEM (a program that calculates regular grid digital elevation models (DEMs with sensible shape and drainage structure from arbitrarily large topographic data sets, and two versions of MQ, including the
Mixed-Integer Constrained Optimization Based on Memetic Algorithm
Directory of Open Access Journals (Sweden)
Y. C. Lin
2013-03-01
Full Text Available Evolutionary algorithms (EAs are population-based global search methods. They have been successfully applied tomany complex optimization problems. However, EAs are frequently incapable of finding a convergence solution indefault of local search mechanisms. Memetic Algorithms (MAs are hybrid EAs that combine genetic operators withlocal search methods. With global exploration and local exploitation in search space, MAs are capable of obtainingmore high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE, as an EA-basedsearch algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, amemetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most ofreal-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order toeffectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solvethe mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on twobenchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithmcan find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposedmemetic algorithm is a good approach to mixed-integer optimization problems.
QPSO-Based Adaptive DNA Computing Algorithm
Directory of Open Access Journals (Sweden)
Mehmet Karakose
2013-01-01
Full Text Available DNA (deoxyribonucleic acid computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO. Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1 parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2 adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3 numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm.
Directory of Open Access Journals (Sweden)
Bao Zhenming
2012-01-01
Full Text Available Structural damage identification is to determine the structure health status and analyze the test results. The three key problems to be solved are as follows: the existence of damage in structure, to detect the damage location, and to confirm the damage degree or damage form. Damage generally changes the structure physical properties (i.e., stiffness, mass, and damping corresponding with the modal characteristics of the structure (i.e., natural frequencies, modal shapes, and modal damping. The research results show that strain mode can be more sensitive and effective for local damage. The direct index method of damage location detection is based on difference theory, without the modal parameter of the original structure. FEM numerical simulation to partial crack with different degree is done. The criteria of damage location detection can be obtained by strain mode difference curve through cubic spline interpolation. Also the genetic algorithm box in Matlab is used. It has been possible to identify the damage to a reasonable level of accuracy.
General advancing front packing algorithm for the discrete element method
Morfa, Carlos A. Recarey; Pérez Morales, Irvin Pablo; de Farias, Márcio Muniz; de Navarra, Eugenio Oñate Ibañez; Valera, Roberto Roselló; Casañas, Harold Díaz-Guzmán
2018-01-01
A generic formulation of a new method for packing particles is presented. It is based on a constructive advancing front method, and uses Monte Carlo techniques for the generation of particle dimensions. The method can be used to obtain virtual dense packings of particles with several geometrical shapes. It employs continuous, discrete, and empirical statistical distributions in order to generate the dimensions of particles. The packing algorithm is very flexible and allows alternatives for: 1—the direction of the advancing front (inwards or outwards), 2—the selection of the local advancing front, 3—the method for placing a mobile particle in contact with others, and 4—the overlap checks. The algorithm also allows obtaining highly porous media when it is slightly modified. The use of the algorithm to generate real particle packings from grain size distribution curves, in order to carry out engineering applications, is illustrated. Finally, basic applications of the algorithm, which prove its effectiveness in the generation of a large number of particles, are carried out.
Analog Circuit Design Optimization Based on Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Mansour Barari
2014-01-01
Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.
Research on AHP decision algorithms based on BP algorithm
Ma, Ning; Guan, Jianhe
2017-10-01
Decision making is the thinking activity that people choose or judge, and scientific decision-making has always been a hot issue in the field of research. Analytic Hierarchy Process (AHP) is a simple and practical multi-criteria and multi-objective decision-making method that combines quantitative and qualitative and can show and calculate the subjective judgment in digital form. In the process of decision analysis using AHP method, the rationality of the two-dimensional judgment matrix has a great influence on the decision result. However, in dealing with the real problem, the judgment matrix produced by the two-dimensional comparison is often inconsistent, that is, it does not meet the consistency requirements. BP neural network algorithm is an adaptive nonlinear dynamic system. It has powerful collective computing ability and learning ability. It can perfect the data by constantly modifying the weights and thresholds of the network to achieve the goal of minimizing the mean square error. In this paper, the BP algorithm is used to deal with the consistency of the two-dimensional judgment matrix of the AHP.
Fisher, Jason C.
2013-01-01
Long-term groundwater monitoring networks can provide essential information for the planning and management of water resources. Budget constraints in water resource management agencies often mean a reduction in the number of observation wells included in a monitoring network. A network design tool, distributed as an R package, was developed to determine which wells to exclude from a monitoring network because they add little or no beneficial information. A kriging-based genetic algorithm method was used to optimize the monitoring network. The algorithm was used to find the set of wells whose removal leads to the smallest increase in the weighted sum of the (1) mean standard error at all nodes in the kriging grid where the water table is estimated, (2) root-mean-squared-error between the measured and estimated water-level elevation at the removed sites, (3) mean standard deviation of measurements across time at the removed sites, and (4) mean measurement error of wells in the reduced network. The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The network design tool was applied to optimize two observation well networks monitoring the water table of the eastern Snake River Plain aquifer, Idaho; these networks include the 2008 Federal-State Cooperative water-level monitoring network (Co-op network) with 166 observation wells, and the 2008 U.S. Geological Survey-Idaho National Laboratory water-level monitoring network (USGS-INL network) with 171 wells. Each water-level monitoring network was optimized five times: by removing (1) 10, (2) 20, (3) 40, (4) 60, and (5) 80 observation wells from the original network. An examination of the trade-offs associated with changes in the number of wells to remove indicates that 20 wells can be removed from the Co-op network with a relatively small degradation of the estimated water table map, and 40 wells
An ICP algorithm based on block path closest point search
Wang, Kuisheng; Li, Xing; Lei, Hongwei; Zhang, Xiaorui
2017-08-01
At present, the traditional ICP algorithm has the problems of low efficiency and low precision. To solve these two problems, an ICP algorithm based on block path closest point search is proposed in this paper. The idea of the algorithm is as follows: firstly, the point cloud data is divided into blocks, and the nearest point block corresponding to the target point cloud is searched by the path method. Secondly, according to the global method, the nearest point can be determined only by finding the nearest point block, and complete all the closest match. The experimental results show that the improved ICP algorithm has faster speed and higher precision than the traditional ICP algorithm, for a large number of point cloud data advantage is more obvious.
Haplotyping a single triploid individual based on genetic algorithm.
Wu, Jingli; Chen, Xixi; Li, Xianchen
2014-01-01
The minimum error correction model is an important combinatorial model for haplotyping a single individual. In this article, triploid individual haplotype reconstruction problem is studied by using the model. A genetic algorithm based method GTIHR is presented for reconstructing the triploid individual haplotype. A novel coding method and an effectual hill-climbing operator are introduced for the GTIHR algorithm. This relatively short chromosome code can lead to a smaller solution space, which plays a positive role in speeding up the convergence process. The hill-climbing operator ensures algorithm GTIHR converge at a good solution quickly, and prevents premature convergence simultaneously. The experimental results prove that algorithm GTIHR can be implemented efficiently, and can get higher reconstruction rate than previous algorithms.
Survey of Methods and Algorithms of Robot Swarm Aggregation
E Shlyakhov, N.; Vatamaniuk, I. V.; Ronzhin, A. L.
2017-01-01
The paper considers the problem of swarm aggregation of autonomous robots with the use of three methods based on the analogy of the behavior of biological objects. The algorithms substantiating the requirements for hardware realization of sensor, computer and network resources and propulsion devices are presented. Techniques for efficiency estimation of swarm aggregation via space-time characteristics are described. The developed model of the robot swarm reconfiguration into a predetermined three-dimensional shape is presented.
Fingerprint Image Segmentation Algorithm Based on Contourlet Transform Technology
Directory of Open Access Journals (Sweden)
Guanghua Zhang
2016-09-01
Full Text Available This paper briefly introduces two classic algorithms for fingerprint image processing, which include the soft threshold denoise algorithm of wavelet domain based on wavelet domain and the fingerprint image enhancement algorithm based on Gabor function. Contourlet transform has good texture sensitivity and can be used for the segmentation enforcement of the fingerprint image. The method proposed in this paper has attained the final fingerprint segmentation image through utilizing a modified denoising for a high-frequency coefficient after Contourlet decomposition, highlighting the fingerprint ridge line through modulus maxima detection and finally connecting the broken fingerprint line using a value filter in direction. It can attain richer direction information than the method based on wavelet transform and Gabor function and can make the positioning of detailed features more accurate. However, its ridge should be more coherent. Experiments have shown that this algorithm is obviously superior in fingerprint features detection.
A novel bit-quad-based Euler number computing algorithm.
Yao, Bin; He, Lifeng; Kang, Shiying; Chao, Yuyan; Zhao, Xiao
2015-01-01
The Euler number of a binary image is an important topological property in computer vision and pattern recognition. This paper proposes a novel bit-quad-based Euler number computing algorithm. Based on graph theory and analysis on bit-quad patterns, our algorithm only needs to count two bit-quad patterns. Moreover, by use of the information obtained during processing the previous bit-quad, the average number of pixels to be checked for processing a bit-quad is only 1.75. Experimental results demonstrated that our method outperforms significantly conventional Euler number computing algorithms.
International Nuclear Information System (INIS)
Klokov, D.; Suppiah, R.
2015-01-01
Proper evaluation of the health risks of low-dose ionizing radiation exposure heavily relies on the ability to accurately measure very low levels of DNA damage in cells. One of the most sensitive methods for measuring DNA damage levels is the quantification of DNA repair foci that consist of macromolecular aggregates of DNA repair proteins, such as γH2AX and 53BP1, forming around individual DNA double-strand breaks. They can be quantified using immunofluorescence microscopy and are widely used as markers of DNA double-strand breaks. However this quantification, if performed manually, may be very tedious and prone to inter-individual bias. Low-dose radiation studies are especially sensitive to this potential bias due to a very low magnitude of the effects anticipated. Therefore, we designed and validated an algorithm for the semi-automated processing of microscopic images and quantification of DNA repair foci. The algorithm uses ImageJ, a freely available image analysis software that is customizable to individual cellular properties or experimental conditions. We validated the algorithm using immunolabeled 53BP1 and γH2AX in normal human fibroblast AG01522 cells under both normal and irradiated conditions. This method is easy to learn, can be used by nontrained personnel, and can help avoiding discrepancies in inter-laboratory comparison studies examining the effects of low-dose radiation. (author)
Classical Methods and Calculation Algorithms for Determining Lime Requirements
Directory of Open Access Journals (Sweden)
André Guarçoni
Full Text Available ABSTRACT The methods developed for determination of lime requirements (LR are based on widely accepted principles. However, the formulas used for calculation have evolved little over recent decades, and in some cases there are indications of their inadequacy. The aim of this study was to compare the lime requirements calculated by three classic formulas and three algorithms, defining those most appropriate for supplying Ca and Mg to coffee plants and the smaller possibility of causing overliming. The database used contained 600 soil samples, which were collected in coffee plantings. The LR was estimated by the methods of base saturation, neutralization of Al3+, and elevation of Ca2+ and Mg2+ contents (two formulas and by the three calculation algorithms. Averages of the lime requirements were compared, determining the frequency distribution of the 600 lime requirements (LR estimated through each calculation method. In soils with low cation exchange capacity at pH 7, the base saturation method may fail to adequately supply the plants with Ca and Mg in many situations, while the method of Al3+ neutralization and elevation of Ca2+ and Mg2+ contents can result in the calculation of application rates that will increase the pH above the suitable range. Among the methods studied for calculating lime requirements, the algorithm that predicts reaching a defined base saturation, with adequate Ca and Mg supply and the maximum application rate limited to the H+Al value, proved to be the most efficient calculation method, and it can be recommended for use in numerous crops conditions.
Multilevel Algorithms for Generic Coarse Grids for Multigrid Methods
2001-05-09
Multilevel Algorithms For Generic Coarse Grids For Multigrid Methods Technical Report Department of Computer Science and Engineering University of... Methods Irene Moulitsas and George Karypis May 09, 2001 MULTILEVEL ALGORITHMS FOR GENERATING COARSEGRIDS FOR MULTIGRID METHODS Irene Moulitsas and...the Minnesota Supercomputing Institute.1 Serial Multilevel Coarse Grid Construction1 IntroductionGeometric Multigrid methods have gained widespread
Scalable force directed graph layout algorithms using fast multipole methods
Yunis, Enas Abdulrahman
2012-06-01
We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach to graph layout that treats the vertices V as repelling charged particles with the edges E connecting them acting as springs. Traditionally, the amount of work required in applying the Force-Directed Graph Layout algorithm is O(|V|2 + |E|) using direct calculations and O(|V| log |V| + |E|) using truncation, filtering, and/or multi-level techniques. Correct application of the Fast Multipole Method allows us to maintain a lower complexity of O(|V| + |E|) while regaining most of the precision lost in other techniques. Solving layout problems for truly large graphs with millions of vertices still requires a scalable algorithm and implementation. We have been able to leverage the scalability and architectural adaptability of the ExaFMM library to create a Force-Directed Graph Layout implementation that runs efficiently on distributed multicore and multi-GPU architectures. © 2012 IEEE.
Directory of Open Access Journals (Sweden)
Xiangwei Guo
2016-02-01
Full Text Available An estimation of the power battery state of charge (SOC is related to the energy management, the battery cycle life and the use cost of electric vehicles. When a lithium-ion power battery is used in an electric vehicle, the SOC displays a very strong time-dependent nonlinearity under the influence of random factors, such as the working conditions and the environment. Hence, research on estimating the SOC of a power battery for an electric vehicle is of great theoretical significance and application value. In this paper, according to the dynamic response of the power battery terminal voltage during a discharging process, the second-order RC circuit is first used as the equivalent model of the power battery. Subsequently, on the basis of this model, the least squares method (LS with a forgetting factor and the adaptive unscented Kalman filter (AUKF algorithm are used jointly in the estimation of the power battery SOC. Simulation experiments show that the joint estimation algorithm proposed in this paper has higher precision and convergence of the initial value error than a single AUKF algorithm.
Cryptanalysis of an image encryption algorithm based on DNA encoding
Akhavan, A.; Samsudin, A.; Akhshani, A.
2017-10-01
Recently an image encryption algorithm based on DNA encoding and the Elliptic Curve Cryptography (ECC) is proposed. This paper aims to investigate the security the DNA-based image encryption algorithm and its resistance against chosen plaintext attack. The results of the analysis demonstrate that security of the algorithm mainly relies on one static shuffling step, with a simple confusion operation. In this study, a practical plain image recovery method is proposed, and it is shown that the images encrypted with the same key could easily be recovered using the suggested cryptanalysis method with as low as two chosen plain images. Also, a strategy to improve the security of the algorithm is presented in this paper.
A Novel Heuristic Algorithm Based on Clark and Wright Algorithm for Green Vehicle Routing Problem
Directory of Open Access Journals (Sweden)
Mehdi Alinaghian
2015-08-01
Full Text Available A significant portion of Gross Domestic Production (GDP in any country belongs to the transportation system. Transportation equipment, in the other hand, is supposed to be great consumer of oil products. Many attempts have been assigned to the vehicles to cut down Greenhouse Gas (GHG. In this paper a novel heuristic algorithm based on Clark and Wright Algorithm called Green Clark and Wright (GCW for Vehicle Routing Problem regarding to fuel consumption is presented. The objective function is fuel consumption, drivers, and the usage of vehicles. Being compared to exact methods solutions for small-sized problems and to Differential Evolution (DE algorithm solutions for large-scaled problems, the results show efficient performance of the proposed GCW algorithm.
Duality based optical flow algorithms with applications
DEFF Research Database (Denmark)
Rakêt, Lars Lau
We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X...... the motion estimation from the surrounding frames directly to the unknown frame by parametrizing the optical flow objective function such that the interpolation assumption is directly modeled. This reparametrization is a powerful trick that results in a number of appealing properties, in particular...
A Novel Image Encryption Algorithm Based on DNA Subsequence Operation
Directory of Open Access Journals (Sweden)
Qiang Zhang
2012-01-01
Full Text Available We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc. combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.
Acoustic Environments: Applying Evolutionary Algorithms for Sound based Morphogenesis
DEFF Research Database (Denmark)
Foged, Isak Worre; Pasold, Anke; Jensen, Mads Brath
2012-01-01
. Additional algorithms are created and used to organise the entire set of 200 refl ector components and manufacturing constraints based upon the GA studies. An architectural pavilion is created based upon the studies illustrating the applicability of both developed methods and techniques....
Methods in Logic Based Control
DEFF Research Database (Denmark)
Christensen, Georg Kronborg
1999-01-01
Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...
Model based development of engine control algorithms
Dekker, H.J.; Sturm, W.L.
1996-01-01
Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed
Dynamic reconstruction algorithm of temperature field based on Kalman filter
Li, Yanqiu; Liu, Shi; Han, Ren
2017-05-01
Development of temperature reconstruction algorithm plays an important role in the application of temperature field measurement by acoustic tomography. A dynamic model of temperature field reconstruction by acoustic tomography is established. A dynamic reconstruction algorithm based on Kalman Filter (KF) is proposed considering both acoustic measurement and the dynamic evolution information. An objective function fusing space constrain with dynamic evolution information is designed. Simulation results of three temperature field distribution models show that the reconstruction quality of dynamic reconstruction method based on KF is better than those of static reconstruction methods.
Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms
Directory of Open Access Journals (Sweden)
Cheng-Yuan Shih
2010-01-01
Full Text Available This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA and quadratic discriminant analysis (QDA. It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.
A Developed Artificial Bee Colony Algorithm Based on Cloud Model
Directory of Open Access Journals (Sweden)
Ye Jin
2018-04-01
Full Text Available The Artificial Bee Colony (ABC algorithm is a bionic intelligent optimization method. The cloud model is a kind of uncertainty conversion model between a qualitative concept T ˜ that is presented by nature language and its quantitative expression, which integrates probability theory and the fuzzy mathematics. A developed ABC algorithm based on cloud model is proposed to enhance accuracy of the basic ABC algorithm and avoid getting trapped into local optima by introducing a new select mechanism, replacing the onlooker bees’ search formula and changing the scout bees’ updating formula. Experiments on CEC15 show that the new algorithm has a faster convergence speed and higher accuracy than the basic ABC and some cloud model based ABC variants.
An Optimal Seed Based Compression Algorithm for DNA Sequences
Directory of Open Access Journals (Sweden)
Pamela Vinitha Eric
2016-01-01
Full Text Available This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms.
An Optimal Seed Based Compression Algorithm for DNA Sequences.
Eric, Pamela Vinitha; Gopalakrishnan, Gopakumar; Karunakaran, Muralikrishnan
2016-01-01
This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms.
Algorithms for Quantum Branching Programs Based on Fingerprinting
Directory of Open Access Journals (Sweden)
Farid Ablayev
2009-11-01
Full Text Available In the paper we develop a method for constructing quantum algorithms for computing Boolean functions by quantum ordered read-once branching programs (quantum OBDDs. Our method is based on fingerprinting technique and representation of Boolean functions by their characteristic polynomials. We use circuit notation for branching programs for desired algorithms presentation. For several known functions our approach provides optimal QOBDDs. Namely we consider such functions as Equality, Palindrome, and Permutation Matrix Test. We also propose a generalization of our method and apply it to the Boolean variant of the Hidden Subgroup Problem.
Directory of Open Access Journals (Sweden)
Gh. Assadipour
2012-01-01
Full Text Available
ENGLISH ABSTRACT:The trade-off between time, cost, and quality is one of the important problems of project management. This problem assumes that all project activities can be executed in different modes of cost, time, and quality. Thus a manager should select each activity’s mode such that the project can meet the deadline with the minimum possible cost and the maximum achievable quality. As the problem is NP-hard and the objectives are in conflict with each other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic algorithm, is implemented as the optimisation method. The proposed algorithm provides project managers with a set of non-dominated or Pareto-optimal solutions, and enables them to choose the best one according to their preferences. A set of problems of different sizes is generated and solved using the proposed algorithm. Three metrics are employed for evaluating the performance of the algorithm, appraising the diversity and convergence of the achieved Pareto fronts. Finally a comparison is made between CellDE and another meta-heuristic available in the literature. The results show the superiority of CellDE.
AFRIKAANSE OPSOMMING: ‘n Balans tussen tyd, koste en gehalte is een van die belangrike probleme van projekbestuur. Die vraagstuk maak gewoonlik die aanname dat alle projekaktiwiteite uitgevoer kan word op uiteenlopende wyses wat verband hou met koste, tyd en gehalte. ‘n Projekbestuurder selekteer gewoonlik die uitvoeringsmetodes sodanig per aktiwiteit dat gehoor gegegee word aan minimum koste en maksimum gehalte teen die voorwaarde van voltooiingsdatum wat bereik moet word.
Aangesien die beskrewe problem NP-hard is, word dit behandel ten opsigte van konflikterende doelwitte met ‘n multidoelwit metaheuristiese metode (CellDE. Die metode is ‘n hibride-sellulêre genetiese algoritme. Die algoritme lewer aan die besluitvormer ‘n versameling van ongedomineerde of Pareto
Zhou, Shiqi
2017-11-01
A new scheme is put forward to determine the wetting temperature (Tw) by utilizing the adaptation of arc-length continuation algorithm to classical density functional theory (DFT) used originally by Frink and Salinger, and its advantages are summarized into four points: (i) the new scheme is applicable whether the wetting occurs near a planar or a non-planar surface, whereas a zero contact angle method is considered only applicable to a perfectly flat solid surface, as demonstrated previously and in this work, and essentially not fit for non-planar surface. (ii) The new scheme is devoid of an uncertainty, which plagues a pre-wetting extrapolation method and originates from an unattainability of the infinitely thick film in the theoretical calculation. (iii) The new scheme can be similarly and easily applied to extreme instances characterized by lower temperatures and/or higher surface attraction force field, which, however, can not be dealt with by the pre-wetting extrapolation method because of the pre-wetting transition being mixed with many layering transitions and the difficulty in differentiating varieties of the surface phase transitions. (iv) The new scheme still works in instance wherein the wetting transition occurs close to the bulk critical temperature; however, this case completely can not be managed by the pre-wetting extrapolation method because near the bulk critical temperature the pre-wetting region is extremely narrow, and no enough pre-wetting data are available for use of the extrapolation procedure.
Frequency-Dependent FDTD Algorithm Using Newmark’s Method
Directory of Open Access Journals (Sweden)
Bing Wei
2014-01-01
Full Text Available According to the characteristics of the polarizability in frequency domain of three common models of dispersive media, the relation between the polarization vector and electric field intensity is converted into a time domain differential equation of second order with the polarization vector by using the conversion from frequency to time domain. Newmark βγ difference method is employed to solve this equation. The electric field intensity to polarizability recursion is derived, and the electric flux to electric field intensity recursion is obtained by constitutive relation. Then FDTD iterative computation in time domain of electric and magnetic field components in dispersive medium is completed. By analyzing the solution stability of the above differential equation using central difference method, it is proved that this method has more advantages in the selection of time step. Theoretical analyses and numerical results demonstrate that this method is a general algorithm and it has advantages of higher accuracy and stability over the algorithms based on central difference method.
Application of genetic algorithm to hexagon-based motion estimation.
Kung, Chih-Ming; Cheng, Wan-Shu; Jeng, Jyh-Horng
2014-01-01
With the improvement of science and technology, the development of the network, and the exploitation of the HDTV, the demands of audio and video become more and more important. Depending on the video coding technology would be the solution for achieving these requirements. Motion estimation, which removes the redundancy in video frames, plays an important role in the video coding. Therefore, many experts devote themselves to the issues. The existing fast algorithms rely on the assumption that the matching error decreases monotonically as the searched point moves closer to the global optimum. However, genetic algorithm is not fundamentally limited to this restriction. The character would help the proposed scheme to search the mean square error closer to the algorithm of full search than those fast algorithms. The aim of this paper is to propose a new technique which focuses on combing the hexagon-based search algorithm, which is faster than diamond search, and genetic algorithm. Experiments are performed to demonstrate the encoding speed and accuracy of hexagon-based search pattern method and proposed method.
Directory of Open Access Journals (Sweden)
Yiwen Liu
2017-11-01
Full Text Available To eliminate the noise of infrared thermal image without reference and noise model, an improved dual-tree complex wavelet transform (DTCWT, optimized by an improved fruit-fly optimization algorithm (IFOA and bilateral filter (BF, is proposed in this paper. Firstly, the noisy image is transformed by DTCWT, and the noise variance threshold is optimized by the IFOA, which is enhanced through a fly step range with inertia weight. Then, the denoised image will be re-processed using bilateral filter to improve the denoising performance and enhance the edge information. In the experiment, the proposed method is applied to eliminate both addictive noise and multiplicative noise, and the denoising results are compared with other representative methods, such as DTCWT, block-matching and 3D filtering (BM3D, median filter, wiener filter, wavelet decomposition filter (WDF and bilateral filter. Moreover, the proposed method is applied as pre-processing utilization for infrared thermal images in a coal mining working face.
Physics-based signal processing algorithms for micromachined cantilever arrays
Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W
2013-11-19
A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.
An improved pattern synthesis algorithm based on metric modes
Tan, Yongqian; Zeng, Fanju; Zhang, Song; Yang, Yongliang
2017-08-01
Based on the principle of texture image synthesis of block splicing, the application of texture synthesis algorithm in pattern synthesis is studied. Through the study of the characteristics of texture image and texture pattern, it is found that texture is a special image with both localization and stability, and the pattern is a kind of whole structure with stronger structure. Texture synthesis algorithm in the more texture image synthesis, can achieve a more satisfactory results, but the synthesis of the pattern cannot achieve better synthesis results. In this paper, through the study of the characteristics of the pattern, on the basis of the texture synthesis algorithm, by improving the measurement method, when judging the similarity of two matching blocks, while the color and gradient of the image block as the two matching blocks are similar between the important parameters. Experiments show that the improved algorithm can achieve better synthesis effect when synthesizing most of the patterns.
LSB Based Quantum Image Steganography Algorithm
Jiang, Nan; Zhao, Na; Wang, Luo
2016-01-01
Quantum steganography is the technique which hides a secret message into quantum covers such as quantum images. In this paper, two blind LSB steganography algorithms in the form of quantum circuits are proposed based on the novel enhanced quantum representation (NEQR) for quantum images. One algorithm is plain LSB which uses the message bits to substitute for the pixels' LSB directly. The other is block LSB which embeds a message bit into a number of pixels that belong to one image block. The extracting circuits can regain the secret message only according to the stego cover. Analysis and simulation-based experimental results demonstrate that the invisibility is good, and the balance between the capacity and the robustness can be adjusted according to the needs of applications.
Network-based recommendation algorithms: A review
Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš
2016-06-01
Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.
Core Business Selection Based on Ant Colony Clustering Algorithm
Directory of Open Access Journals (Sweden)
Yu Lan
2014-01-01
Full Text Available Core business is the most important business to the enterprise in diversified business. In this paper, we first introduce the definition and characteristics of the core business and then descript the ant colony clustering algorithm. In order to test the effectiveness of the proposed method, Tianjin Port Logistics Development Co., Ltd. is selected as the research object. Based on the current situation of the development of the company, the core business of the company can be acquired by ant colony clustering algorithm. Thus, the results indicate that the proposed method is an effective way to determine the core business for company.
Agent-Based Automated Algorithm Generator
2010-01-12
data snapshot from maintenance stations 2. Test conditions 3. Original performance expectations SQR Algorithm Training/ Upd ating (refinement...Fischer, and other Army researchers for valuable comments on this project. References: [1]. X . Zhang, Gruber, M. Salman, and K. Shin, “Automotive...release [3]. X . Zhang. Gruber, M. Salman, K. Shin, “Automotive Battery State-of-Health Monitoring: a Battery Cranking Voltage based Approach,” Proc
Web page sorting algorithm based on query keyword distance relation
Yang, Han; Cui, Hong Gang; Tang, Hao
2017-08-01
In order to optimize the problem of page sorting, according to the search keywords in the web page in the relationship between the characteristics of the proposed query keywords clustering ideas. And it is converted into the degree of aggregation of the search keywords in the web page. Based on the PageRank algorithm, the clustering degree factor of the query keyword is added to make it possible to participate in the quantitative calculation. This paper proposes an improved algorithm for PageRank based on the distance relation between search keywords. The experimental results show the feasibility and effectiveness of the method.
Optimized Audio Classification and Segmentation Algorithm by Using Ensemble Methods
Directory of Open Access Journals (Sweden)
Saadia Zahid
2015-01-01
Full Text Available Audio segmentation is a basis for multimedia content analysis which is the most important and widely used application nowadays. An optimized audio classification and segmentation algorithm is presented in this paper that segments a superimposed audio stream on the basis of its content into four main audio types: pure-speech, music, environment sound, and silence. An algorithm is proposed that preserves important audio content and reduces the misclassification rate without using large amount of training data, which handles noise and is suitable for use for real-time applications. Noise in an audio stream is segmented out as environment sound. A hybrid classification approach is used, bagged support vector machines (SVMs with artificial neural networks (ANNs. Audio stream is classified, firstly, into speech and nonspeech segment by using bagged support vector machines; nonspeech segment is further classified into music and environment sound by using artificial neural networks and lastly, speech segment is classified into silence and pure-speech segments on the basis of rule-based classifier. Minimum data is used for training classifier; ensemble methods are used for minimizing misclassification rate and approximately 98% accurate segments are obtained. A fast and efficient algorithm is designed that can be used with real-time multimedia applications.
Gradient Evolution-based Support Vector Machine Algorithm for Classification
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
Wavelets based algorithm for the evaluation of enhanced liver areas
Alvarez, Matheus; Rodrigues de Pina, Diana; Giacomini, Guilherme; Gomes Romeiro, Fernando; Barbosa Duarte, Sérgio; Yamashita, Seizo; de Arruda Miranda, José Ricardo
2014-03-01
Hepatocellular carcinoma (HCC) is a primary tumor of the liver. After local therapies, the tumor evaluation is based on the mRECIST criteria, which involves the measurement of the maximum diameter of the viable lesion. This paper describes a computed methodology to measure through the contrasted area of the lesions the maximum diameter of the tumor by a computational algorithm. 63 computed tomography (CT) slices from 23 patients were assessed. Noncontrasted liver and HCC typical nodules were evaluated, and a virtual phantom was developed for this purpose. Optimization of the algorithm detection and quantification was made using the virtual phantom. After that, we compared the algorithm findings of maximum diameter of the target lesions against radiologist measures. Computed results of the maximum diameter are in good agreement with the results obtained by radiologist evaluation, indicating that the algorithm was able to detect properly the tumor limits. A comparison of the estimated maximum diameter by radiologist versus the algorithm revealed differences on the order of 0.25 cm for large-sized tumors (diameter > 5 cm), whereas agreement lesser than 1.0cm was found for small-sized tumors. Differences between algorithm and radiologist measures were accurate for small-sized tumors with a trend to a small increase for tumors greater than 5 cm. Therefore, traditional methods for measuring lesion diameter should be complemented with non-subjective measurement methods, which would allow a more correct evaluation of the contrast-enhanced areas of HCC according to the mRECIST criteria.
Adaptation of evidence-based surgical wound care algorithm.
Han, Jung Yeon; Choi-Kwon, Smi
2011-12-01
This study was designed to adapt a surgical wound care algorithm that is used to provide evidence-based surgical wound care in a critical care unit. This study used, the 'ADAPTE process', an international clinical practice guideline development method. The 'Bonnie Sue wound care algorithm' was used as a draft for the new algorithm. A content validity index (CVI) targeting 135 critical care nurses was conducted. A 5-point Likert scale was applied to the CVI test using a statistical criterion of .75. A surgical wound care algorithm comprised 9 components: wound assessment, infection control, necrotic tissue management, wound classification by exudates and depths, dressing selection, consideration of systemic factors, wound expected outcome, reevaluate non-healing wounds, and special treatment for non-healing wounds. All of the CVI tests were ≥.75. Compared to existing wound care guidelines, the new wound care algorithm provides precise wound assessment, reliabilities of wound care, expands applicability of wound care to critically ill patients, and provides evidence and strength of recommendations. The new surgical wound care algorithm will contribute to the advancement of evidence-based nursing care, and its use is expected as a nursing intervention in critical care.
Inverse halftoning algorithm using edge-based lookup table approach.
Chung, Kuo-Liang; Wu, Shih-Tung
2005-10-01
The inverse halftoning algorithm is used to reconstruct a gray image from an input halftone image. Based on the recently published lookup table (LUT) technique, this paper presents a novel edge-based LUT method for inverse halftoning which improves the quality of the reconstructed gray image. The proposed method first uses the LUT-based inverse halftoning method as a preprocessing step to transform the given halftone image to a base gray image, and then the edges are extracted and classified from the base gray image. According to these classified edges, a novel edge-based LUT is built up to reconstruct the gray image. Based on a set of 30 real training images with both low-and high-frequency contents, experimental results demonstrated that the proposed method achieves a better image quality when compared to the currently published two methods, by Chang et al. and Meşe and Vaidyanathan.
Selection method of terrain matching area for TERCOM algorithm
Zhang, Qieqie; Zhao, Long
2017-10-01
The performance of terrain aided navigation is closely related to the selection of terrain matching area. The different matching algorithms have different adaptability to terrain. This paper mainly studies the adaptability to terrain of TERCOM algorithm, analyze the relation between terrain feature and terrain characteristic parameters by qualitative and quantitative methods, and then research the relation between matching probability and terrain characteristic parameters by the Monte Carlo method. After that, we propose a selection method of terrain matching area for TERCOM algorithm, and verify the method correctness with real terrain data by simulation experiment. Experimental results show that the matching area obtained by the method in this paper has the good navigation performance and the matching probability of TERCOM algorithm is great than 90%
A novel fitness evaluation method for evolutionary algorithms
Wang, Ji-feng; Tang, Ke-zong
2013-03-01
Fitness evaluation is a crucial task in evolutionary algorithms because it can affect the convergence speed and also the quality of the final solution. But these algorithms may require huge computation power for solving nonlinear programming problems. This paper proposes a novel fitness evaluation approach which employs similarity-base learning embedded in a classical differential evolution (SDE) to evaluate all new individuals. Each individual consists of three elements: parameter vector (v), a fitness value (f), and a reliability value(r). The f is calculated using NFEA, and only when the r is below a threshold is the f calculated using true fitness function. Moreover, applying error compensation system to the proposed algorithm further enhances the performance of the algorithm to make r much closer to true fitness value for each new child. Simulation results over a comprehensive set of benchmark functions show that the convergence rate of the proposed algorithm is much faster than much that of the compared algorithms.
Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng
2018-01-01
Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133
Image segmentation algorithm based on T-junctions cues
Qian, Yanyu; Cao, Fengyun; Wang, Lu; Yang, Xuejie
2016-03-01
To improve the over-segmentation and over-merge phenomenon of single image segmentation algorithm,a novel approach of combing Graph-Based algorithm and T-junctions cues is proposed in this paper. First, a method by L0 gradient minimization is applied to the smoothing of the target image eliminate artifacts caused by noise and texture detail; Then, the initial over-segmentation result of the smoothing image using the graph-based algorithm; Finally, the final results via a region fusion strategy by t-junction cues. Experimental results on a variety of images verify the new approach's efficiency in eliminating artifacts caused by noise,segmentation accuracy and time complexity has been significantly improved.
Node-Dependence-Based Dynamic Incentive Algorithm in Opportunistic Networks
Directory of Open Access Journals (Sweden)
Ruiyun Yu
2014-01-01
Full Text Available Opportunistic networks lack end-to-end paths between source nodes and destination nodes, so the communications are mainly carried out by the “store-carry-forward” strategy. Selfish behaviors of rejecting packet relay requests will severely worsen the network performance. Incentive is an efficient way to reduce selfish behaviors and hence improves the reliability and robustness of the networks. In this paper, we propose the node-dependence-based dynamic gaming incentive (NDI algorithm, which exploits the dynamic repeated gaming to motivate nodes relaying packets for other nodes. The NDI algorithm presents a mechanism of tolerating selfish behaviors of nodes. Reward and punishment methods are also designed based on the node dependence degree. Simulation results show that the NDI algorithm is effective in increasing the delivery ratio and decreasing average latency when there are a lot of selfish nodes in the opportunistic networks.
Algorithm for Wireless Sensor Networks Based on Grid Management
Directory of Open Access Journals (Sweden)
Geng Zhang
2014-05-01
Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.
A Graph Based Backtracking Algorithm for Solving General CSPs
Pang, Wanlin; Goodwin, Scott D.
2003-01-01
Many AI tasks can be formalized as constraint satisfaction problems (CSPs), which involve finding values for variables subject to constraints. While solving a CSP is an NP-complete task in general, tractable classes of CSPs have been identified based on the structure of the underlying constraint graphs. Much effort has been spent on exploiting structural properties of the constraint graph to improve the efficiency of finding a solution. These efforts contributed to development of a class of CSP solving algorithms called decomposition algorithms. The strength of CSP decomposition is that its worst-case complexity depends on the structural properties of the constraint graph and is usually better than the worst-case complexity of search methods. Its practical application is limited, however, since it cannot be applied if the CSP is not decomposable. In this paper, we propose a graph based backtracking algorithm called omega-CDBT, which shares merits and overcomes the weaknesses of both decomposition and search approaches.
Quantitative Methods in Supply Chain Management Models and Algorithms
Christou, Ioannis T
2012-01-01
Quantitative Methods in Supply Chain Management presents some of the most important methods and tools available for modeling and solving problems arising in the context of supply chain management. In the context of this book, “solving problems” usually means designing efficient algorithms for obtaining high-quality solutions. The first chapter is an extensive optimization review covering continuous unconstrained and constrained linear and nonlinear optimization algorithms, as well as dynamic programming and discrete optimization exact methods and heuristics. The second chapter presents time-series forecasting methods together with prediction market techniques for demand forecasting of new products and services. The third chapter details models and algorithms for planning and scheduling with an emphasis on production planning and personnel scheduling. The fourth chapter presents deterministic and stochastic models for inventory control with a detailed analysis on periodic review systems and algorithmic dev...
A Method for Improving the Progressive Image Coding Algorithms
Directory of Open Access Journals (Sweden)
Ovidiu COSMA
2014-12-01
Full Text Available This article presents a method for increasing the performance of the progressive coding algorithms for the subbands of images, by representing the coefficients with a code that reduces the truncation error.
Navigation Algorithm Using Fuzzy Control Method in Mobile Robotics
Directory of Open Access Journals (Sweden)
Cviklovič Vladimír
2016-03-01
Full Text Available The issue of navigation methods is being continuously developed globally. The aim of this article is to test the fuzzy control algorithm for track finding in mobile robotics. The concept of an autonomous mobile robot EN20 has been designed to test its behaviour. The odometry navigation method was used. The benefits of fuzzy control are in the evidence of mobile robot’s behaviour. These benefits are obtained when more physical variables on the base of more input variables are controlled at the same time. In our case, there are two input variables - heading angle and distance, and two output variables - the angular velocity of the left and right wheel. The autonomous mobile robot is moving with human logic.
A transport-based condensed history algorithm
International Nuclear Information System (INIS)
Tolar, D. R. Jr.
1999-01-01
Condensed history algorithms are approximate electron transport Monte Carlo methods in which the cumulative effects of multiple collisions are modeled in a single step of (user-specified) path length s 0 . This path length is the distance each Monte Carlo electron travels between collisions. Current condensed history techniques utilize a splitting routine over the range 0 le s le s 0 . For example, the PEnELOPE method splits each step into two substeps; one with length ξs 0 and one with length (1 minusξ)s 0 , where ξ is a random number from 0 0 is fixed (not sampled from an exponential distribution), conventional condensed history schemes are not transport processes. Here the authors describe a new condensed history algorithm that is a transport process. The method simulates a transport equation that approximates the exact Boltzmann equation. The new transport equation has a larger mean free path than, and preserves two angular moments of, the Boltzmann equation. Thus, the new process is solved more efficiently by Monte Carlo, and it conserves both particles and scattering power
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Directory of Open Access Journals (Sweden)
Zhiming Song
2015-01-01
Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.
Algorithm Research of Individualized Travelling Route Recommendation Based on Similarity
Directory of Open Access Journals (Sweden)
Xue Shan
2015-01-01
Full Text Available Although commercial recommendation system has made certain achievement in travelling route development, the recommendation system is facing a series of challenges because of people’s increasing interest in travelling. It is obvious that the core content of the recommendation system is recommendation algorithm. The advantages of recommendation algorithm can bring great effect to the recommendation system. Based on this, this paper applies traditional collaborative filtering algorithm for analysis. Besides, illustrating the deficiencies of the algorithm, such as the rating unicity and rating matrix sparsity, this paper proposes an improved algorithm combing the multi-similarity algorithm based on user and the element similarity algorithm based on user, so as to compensate for the deficiencies that traditional algorithm has within a controllable range. Experimental results have shown that the improved algorithm has obvious advantages in comparison with the traditional one. The improved algorithm has obvious effect on remedying the rating matrix sparsity and rating unicity.
Multi-objective community detection based on memetic algorithm.
Directory of Open Access Journals (Sweden)
Peng Wu
Full Text Available Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels.
An improved algorithm to determine the density of resonance states using the stabilization method
Energy Technology Data Exchange (ETDEWEB)
Fernandez, F.M.; Guardiola, R. [Departamento de Fisica Atomica y Nuclear, Universidad de Valencia, Burjassot, Valencia (Spain)
1997-05-07
By using properties of the Sturm sequences related to tridiagonal matrices we describe a very efficient algorithm to determine the density of resonance states based on the stabilization method. (author)
Parameter Selection for Ant Colony Algorithm Based on Bacterial Foraging Algorithm
Directory of Open Access Journals (Sweden)
Peng Li
2016-01-01
Full Text Available The optimal performance of the ant colony algorithm (ACA mainly depends on suitable parameters; therefore, parameter selection for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA, considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those using a genetic algorithm (GA and a particle swarm optimization (PSO, and simulations were conducted using different grid maps for robot path planning. The results indicated that parameter selection for ACA based on BFA was the superior method, able to determine the best parameter combination rapidly, accurately, and effectively.
Method and algorithm for image processing
He, George G.; Moon, Brain D.
2003-12-16
The present invention is a modified Radon transform. It is similar to the traditional Radon transform for the extraction of line parameters and similar to traditional slant stack for the intensity summation of pixels away from a given pixel, for example ray paths that spans 360 degree at a given grid in the time and offset domain. However, the present invention differs from these methods in that the intensity and direction of a composite intensity for each pixel are maintained separately instead of combined after the transformation. An advantage of this approach is elimination of the work required to extract the line parameters in the transformed domain. The advantage of the modified Radon Transform method is amplified when many lines are present in the imagery or when the lines are just short segments which both occur in actual imagery.
Learning-based meta-algorithm for MRI brain extraction.
Shi, Feng; Wang, Li; Gilmore, John H; Lin, Weili; Shen, Dinggang
2011-01-01
Multiple-segmentation-and-fusion method has been widely used for brain extraction, tissue segmentation, and region of interest (ROI) localization. However, such studies are hindered in practice by their computational complexity, mainly coming from the steps of template selection and template-to-subject nonlinear registration. In this study, we address these two issues and propose a novel learning-based meta-algorithm for MRI brain extraction. Specifically, we first use exemplars to represent the entire template library, and assign the most similar exemplar to the test subject. Second, a meta-algorithm combining two existing brain extraction algorithms (BET and BSE) is proposed to conduct multiple extractions directly on test subject. Effective parameter settings for the meta-algorithm are learned from the training data and propagated to subject through exemplars. We further develop a level-set based fusion method to combine multiple candidate extractions together with a closed smooth surface, for obtaining the final result. Experimental results show that, with only a small portion of subjects for training, the proposed method is able to produce more accurate and robust brain extraction results, at Jaccard Index of 0.956 +/- 0.010 on total 340 subjects under 6-fold cross validation, compared to those by the BET and BSE even using their best parameter combinations.
A New Method of Histogram Computation for Efficient Implementation of the HOG Algorithm
Directory of Open Access Journals (Sweden)
Mariana-Eugenia Ilas
2018-03-01
Full Text Available In this paper we introduce a new histogram computation method to be used within the histogram of oriented gradients (HOG algorithm. The new method replaces the arctangent with the slope computation and the classical magnitude allocation based on interpolation with a simpler algorithm. The new method allows a more efficient implementation of HOG in general, and particularly in field-programmable gate arrays (FPGAs, by considerably reducing the area (thus increasing the level of parallelism, while maintaining very close classification accuracy compared to the original algorithm. Thus, the new method is attractive for many applications, including car detection and classification.
van der Lee, J H; Svrcek, W Y; Young, B R
2008-01-01
Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.
Model-based Bayesian signal extraction algorithm for peripheral nerves
Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.
2017-10-01
Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10–20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of
Directory of Open Access Journals (Sweden)
D. A. Viattchenin
2009-01-01
Full Text Available A method for constructing a subset of labeled objects which is used in a heuristic algorithm of possible clusterization with partial training is proposed in the paper. The method is based on data preprocessing by the heuristic algorithm of possible clusterization using a transitive closure of a fuzzy tolerance. Method efficiency is demonstrated by way of an illustrative example.
A Multi-Scale Settlement Matching Algorithm Based on ARG
Directory of Open Access Journals (Sweden)
H. Yue
2016-06-01
Full Text Available Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.
APPECT: An Approximate Backbone-Based Clustering Algorithm for Tags
DEFF Research Database (Denmark)
Zong, Yu; Xu, Guandong; Jin, Pin
2011-01-01
resulting from the severe difficulty of ambiguity, redundancy and less semantic nature of tags. Clustering method is a useful tool to address the aforementioned difficulties. Most of the researches on tag clustering are directly using traditional clustering algorithms such as K-means or Hierarchical...... algorithm for Tags (APPECT). The main steps of APPECT are: (1) we execute the K-means algorithm on a tag similarity matrix for M times and collect a set of tag clustering results Z={C1,C2,…,Cm}; (2) we form the approximate backbone of Z by executing a greedy search; (3) we fix the approximate backbone...... Agglomerative Clustering on tagging data, which possess the inherent drawbacks, such as the sensitivity of initialization. In this paper, we instead make use of the approximate backbone of tag clustering results to find out better tag clusters. In particular, we propose an APProximate backbonE-based Clustering...
Cognitive radio resource allocation based on coupled chaotic genetic algorithm
International Nuclear Information System (INIS)
Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang
2010-01-01
A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed
Information theoretic methods for image processing algorithm optimization
Prokushkin, Sergey F.; Galil, Erez
2015-01-01
Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).
Assessing semantic similarity of texts - Methods and algorithms
Rozeva, Anna; Zerkova, Silvia
2017-12-01
Assessing the semantic similarity of texts is an important part of different text-related applications like educational systems, information retrieval, text summarization, etc. This task is performed by sophisticated analysis, which implements text-mining techniques. Text mining involves several pre-processing steps, which provide for obtaining structured representative model of the documents in a corpus by means of extracting and selecting the features, characterizing their content. Generally the model is vector-based and enables further analysis with knowledge discovery approaches. Algorithms and measures are used for assessing texts at syntactical and semantic level. An important text-mining method and similarity measure is latent semantic analysis (LSA). It provides for reducing the dimensionality of the document vector space and better capturing the text semantics. The mathematical background of LSA for deriving the meaning of the words in a given text by exploring their co-occurrence is examined. The algorithm for obtaining the vector representation of words and their corresponding latent concepts in a reduced multidimensional space as well as similarity calculation are presented.
Liu, Dong-sheng; Fan, Shu-jiang
2014-01-01
In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity.
Multifeature Fusion Vehicle Detection Algorithm Based on Choquet Integral
Directory of Open Access Journals (Sweden)
Wenhui Li
2014-01-01
Full Text Available Vision-based multivehicle detection plays an important role in Forward Collision Warning Systems (FCWS and Blind Spot Detection Systems (BSDS. The performance of these systems depends on the real-time capability, accuracy, and robustness of vehicle detection methods. To improve the accuracy of vehicle detection algorithm, we propose a multifeature fusion vehicle detection algorithm based on Choquet integral. This algorithm divides the vehicle detection problem into two phases: feature similarity measure and multifeature fusion. In the feature similarity measure phase, we first propose a taillight-based vehicle detection method, and then vehicle taillight feature similarity measure is defined. Second, combining with the definition of Choquet integral, the vehicle symmetry similarity measure and the HOG + AdaBoost feature similarity measure are defined. Finally, these three features are fused together by Choquet integral. Being evaluated on public test collections and our own test images, the experimental results show that our method has achieved effective and robust multivehicle detection in complicated environments. Our method can not only improve the detection rate but also reduce the false alarm rate, which meets the engineering requirements of Advanced Driving Assistance Systems (ADAS.
CUDT: A CUDA Based Decision Tree Algorithm
Directory of Open Access Journals (Sweden)
Win-Tsung Lo
2014-01-01
Full Text Available Decision tree is one of the famous classification methods in data mining. Many researches have been proposed, which were focusing on improving the performance of decision tree. However, those algorithms are developed and run on traditional distributed systems. Obviously the latency could not be improved while processing huge data generated by ubiquitous sensing node in the era without new technology help. In order to improve data processing latency in huge data mining, in this paper, we design and implement a new parallelized decision tree algorithm on a CUDA (compute unified device architecture, which is a GPGPU solution provided by NVIDIA. In the proposed system, CPU is responsible for flow control while the GPU is responsible for computation. We have conducted many experiments to evaluate system performance of CUDT and made a comparison with traditional CPU version. The results show that CUDT is 5∼55 times faster than Weka-j48 and is 18 times speedup than SPRINT for large data set.
Directory of Open Access Journals (Sweden)
Wen-Jong Chen
2016-04-01
Full Text Available This article combined Taguchi method and analysis of variance with the culture-based quantum-behaved particle swarm optimization to determine the optimal models of gating system for aluminium (Al A356 sand casting part. First, the Taguchi method and analysis of variance were, respectively, applied to establish an L27(38 orthogonal array and determine significant process parameters, including riser diameter, pouring temperature, pouring speed, riser position and gating diameter. Subsequently, a response surface methodology was used to construct a second-order regression model, including filling time, solidification time and oxide ratio. Finally, the culture-based quantum-behaved particle swarm optimization was used to determine the multi-objective Pareto optimal solutions and identify corresponding process conditions. The results showed that the proposed method, compared with initial casting model, enabled reducing the filling time, solidification time and oxide ratio by 68.14%, 50.56% and 20.20%, respectively. A confirmation experiment was verified to be able to effectively reduce the defect of casting and improve the casting quality.
Testing of Heuristic Methods: A Case Study of Greedy Algorithm
Barus, A.,; Chen, T.,; Grant, D.; Kuo, F.,; Lau, M.,
2008-01-01
Part 8: Quality; International audience; Algorithms which seek global optima are computationally expensive. Alternatively, heuristic methods have been proposed to find approximate solutions. Because heuristic algorithms do not always deliver exact solutions it is difficult to verify the computed solutions. Such a problem is known as the oracle problem. In this paper, we propose to apply Metamorphic Testing (MT) in such situations because MT is designed to alleviate the oracle problem and can ...
Li, Zhifei; Qin, Dongliang; Yang, Feng
2014-01-01
In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation.
Smoothing and enhancement algorithms for underwater images based on partial differential equations
Nnolim, Uche A.
2017-03-01
The formulation and application of an algorithm based on partial differential equations for processing underwater images are presented. The proposed algorithm performs simultaneous smoothing and enhancement operations on the image and yields better contrast enhancement, color correction, and rendition compared to conventional algorithms. Further modification of the proposed algorithm and its combination with the powerful contrast-limited adaptive histogram equalization (CLAHE) method using an adaptive computation of the clip limit enhances the local enhancement results while mitigating the color distortion and intrinsic noise enhancement observed in the CLAHE algorithm. Ultimately, an optimized version of the algorithm based on image information metric is developed for best possible results for all images. The method is compared with existing algorithms from the literature using subjective and objective measures, and results indicate considerable improvement over several well-known algorithms.
A dual-adaptive support-based stereo matching algorithm
Zhang, Yin; Zhang, Yun
2017-07-01
Many stereo matching algorithms use fixed color thresholds and a rigid cross skeleton to segment supports (viz., Cross method), which, however, does not work well for different images. To address this issue, this paper proposes a novel dual adaptive support (viz., DAS)-based stereo matching method, which uses both appearance and shape information of a local region to segment supports automatically, and, then, integrates the DAS-based cost aggregation with the absolute difference plus census transform cost, scanline optimization and disparity refinement to develop a stereo matching system. The performance of the DAS method is also evaluated in the Middlebury benchmark and by comparing with the Cross method. The results show that the average error for the DAS method 25.06% lower than that for the Cross method, indicating that the proposed method is more accurate, with fewer parameters and suitable for parallel computing.
Directory of Open Access Journals (Sweden)
Dongxiao Niu
2018-03-01
Full Text Available The electricity market of China is currently in the process of a new institutional reform. Diversified electricity retail entities are gradually being established with the opening of the marketing electricity side. In the face of a complex market environment and fierce competition, the operating efficiency can directly reflect the current market position and development of electricity retail companies. TOPSIS method can make full use of the information of original data, calculate the distance between evaluated objects and the ideal solutions and get the relative proximity, which is generally used in the overall department and comprehensive evaluation of the benefits. Least squares support vector machine (LSSVM, with high convergence precision, helps save the training time of algorithm by solving linear equations and is used to predict the comprehensive evaluation value. Considering the ultimate goal of sustainable development, a comprehensive evaluation model on operating efficiency of electricity retail companies based on the improved TOPSIS method and LSSVM optimized by modified ant colony algorithm is proposed in this paper. Firstly, from the view of sustainable development, an operating efficiency evaluation indicator system is constructed. Secondly, the entropy weight method is applied to empower the indicators objectively. After that, based on the improved TOPSIS method, the reverse problem in the evaluation process is eliminated. According to the relative proximity between the evaluated objects and the absolute ideal solutions, the scores of comprehensive evaluation for operating efficiency can then be ranked. Finally, the LSSVM optimized by modified ant colony algorithm is introduced to realize the simplified expert scoring process and fast calculation in the comprehensive evaluation process, and its improved learning and generalization ability can be used in the comprehensive evaluation of similar projects. The example analysis proves
Single-Pass Clustering Algorithm Based on Storm
Fang, LI; Longlong, DAI; Zhiying, JIANG; Shunzi, LI
2017-02-01
The dramatically increasing volume of data makes the computational complexity of traditional clustering algorithm rise rapidly accordingly, which leads to the longer time. So as to improve the efficiency of the stream data clustering, a distributed real-time clustering algorithm (S-Single-Pass) based on the classic Single-Pass [1] algorithm and Storm [2] computation framework was designed in this paper. By employing this kind of method in the Topic Detection and Tracking (TDT) [3], the real-time performance of topic detection arises effectively. The proposed method splits the clustering process into two parts: one part is to form clusters for the multi-thread parallel clustering, the other part is to merge the generated clusters in the previous process and update the global clusters. Through the experimental results, the conclusion can be drawn that the proposed method have the nearly same clustering accuracy as the traditional Single-Pass algorithm and the clustering accuracy remains steady, computing rate increases linearly when increasing the number of cluster machines and nodes (processing threads).
Evolving Stochastic Learning Algorithm based on Tsallis entropic index
Anastasiadis, A. D.; Magoulas, G. D.
2006-03-01
In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the nonextensive entropic index q, regulated by a weight decay term. The behavior of the learning algorithm can be made more stochastic or deterministic depending on the trade off between the temperature T and the q values. This is achieved by introducing a formula that defines a time-dependent relationship between these two important learning parameters. Our experimental study verifies that there are indeed improvements in the convergence speed of this new evolving stochastic learning algorithm, which makes learning faster than using the original Hybrid Learning Scheme (HLS). In addition, experiments are conducted to explore the influence of the entropic index q and temperature T on the convergence speed and stability of the proposed method.
Adaptive algorithm for mobile user positioning based on environment estimation
Directory of Open Access Journals (Sweden)
Grujović Darko
2014-01-01
Full Text Available This paper analyzes the challenges to realize an infrastructure independent and a low-cost positioning method in cellular networks based on RSS (Received Signal Strength parameter, auxiliary timing parameter and environment estimation. The proposed algorithm has been evaluated using field measurements collected from GSM (Global System for Mobile Communications network, but it is technology independent and can be applied in UMTS (Universal Mobile Telecommunication Systems and LTE (Long-Term Evolution networks, also.
Faster algorithms for RNA-folding using the Four-Russians method.
Venkatachalam, Balaji; Gusfield, Dan; Frid, Yelena
2014-03-06
The secondary structure that maximizes the number of non-crossing matchings between complimentary bases of an RNA sequence of length n can be computed in O(n3) time using Nussinov's dynamic programming algorithm. The Four-Russians method is a technique that reduces the running time for certain dynamic programming algorithms by a multiplicative factor after a preprocessing step where solutions to all smaller subproblems of a fixed size are exhaustively enumerated and solved. Frid and Gusfield designed an O(n3logn) algorithm for RNA folding using the Four-Russians technique. In their algorithm the preprocessing is interleaved with the algorithm computation. We simplify the algorithm and the analysis by doing the preprocessing once prior to the algorithm computation. We call this the two-vector method. We also show variants where instead of exhaustive preprocessing, we only solve the subproblems encountered in the main algorithm once and memoize the results. We give a simple proof of correctness and explore the practical advantages over the earlier method.The Nussinov algorithm admits an O(n2) time parallel algorithm. We show a parallel algorithm using the two-vector idea that improves the time bound to O(n2logn). We have implemented the parallel algorithm on graphics processing units using the CUDA platform. We discuss the organization of the data structures to exploit coalesced memory access for fast running times. The ideas to organize the data structures also help in improving the running time of the serial algorithms. For sequences of length up to 6000 bases the parallel algorithm takes only about 2.5 seconds and the two-vector serial method takes about 57 seconds on a desktop and 15 seconds on a server. Among the serial algorithms, the two-vector and memoized versions are faster than the Frid-Gusfield algorithm by a factor of 3, and are faster than Nussinov by up to a factor of 20. The source-code for the algorithms is available at http://github.com/ijalabv/FourRussiansRNAFolding.
Computing homography with RANSAC algorithm: a novel method of registration
Li, Xiaowei; Liu, Yue; Wang, Yongtian; Yan, Dayuan
2005-02-01
An AR (Augmented Reality) system can integrate computer-generated objects with the image sequences of real world scenes in either an off-line or a real-time way. Registration, or camera pose estimation, is one of the key techniques to determine its performance. The registration methods can be classified as model-based and move-matching. The former approach can accomplish relatively accurate registration results, but it requires the precise model of the scene, which is hard to be obtained. The latter approach carries out registration by computing the ego-motion of the camera. Because it does not require the prior-knowledge of the scene, its registration results sometimes turn out to be less accurate. When the model defined is as simple as a plane, a mixed method is introduced to take advantages of the virtues of the two methods mentioned above. Although unexpected objects often occlude this plane in an AR system, one can still try to detect corresponding points with a contract-expand method, while this will import erroneous correspondences. Computing homography with RANSAC algorithm is used to overcome such shortcomings. Using the robustly estimated homography resulted from RANSAC, the camera projective matrix can be recovered and thus registration is accomplished even when the markers are lost in the scene.
Feature extraction algorithm for space targets based on fractal theory
Tian, Balin; Yuan, Jianping; Yue, Xiaokui; Ning, Xin
2007-11-01
In order to offer a potential for extending the life of satellites and reducing the launch and operating costs, satellite servicing including conducting repairs, upgrading and refueling spacecraft on-orbit become much more frequently. Future space operations can be more economically and reliably executed using machine vision systems, which can meet real time and tracking reliability requirements for image tracking of space surveillance system. Machine vision was applied to the research of relative pose for spacecrafts, the feature extraction algorithm was the basis of relative pose. In this paper fractal geometry based edge extraction algorithm which can be used in determining and tracking the relative pose of an observed satellite during proximity operations in machine vision system was presented. The method gets the gray-level image distributed by fractal dimension used the Differential Box-Counting (DBC) approach of the fractal theory to restrain the noise. After this, we detect the consecutive edge using Mathematical Morphology. The validity of the proposed method is examined by processing and analyzing images of space targets. The edge extraction method not only extracts the outline of the target, but also keeps the inner details. Meanwhile, edge extraction is only processed in moving area to reduce computation greatly. Simulation results compared edge detection using the method which presented by us with other detection methods. The results indicate that the presented algorithm is a valid method to solve the problems of relative pose for spacecrafts.
New calibration algorithms for dielectric-based microwave moisture sensors
New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...
An Incremental Support Vector Machine based Speech Activity Detection Algorithm.
Xianbo, Xiao; Guangshu, Hu
2005-01-01
Traditional voice activity detection algorithms are mostly threshold-based or statistical model-based. All those methods are absent of the ability to react quickly to variations of environments. This paper describes an incremental SVM (Support Vector Machine) method for speech activity detection. The proposed incremental procedure makes it adaptive to variation of environments and the special construction of incremental training data set decreases computing consumption effectively. Experiments results demonstrated its higher end point detection accuracy. Further work will be focused on decreasing computing consumption and importing multi-class SVM classifiers.
Spacecraft Angular Velocity Estimation Algorithm Based on Orientation Quaternion Measurements
Directory of Open Access Journals (Sweden)
M. V. Li
2016-01-01
Full Text Available The spacecraft (SC mission involves providing the appropriate orientation and stabilization of the associated axes in space. One of the main sources of information for the attitude control system is the angular rate sensor blocks. One way to improve a reliability of the system is to provide a back up of the control algorithms in case of failure of these blocks. To solve the problem of estimation of SP angular velocity vector in the inertial system of coordinates with a lack of information from the angular rate sensors is supposed the use of orientation data from the star sensors; in this case at each clock of the onboard digital computer. The equations in quaternions are used to describe the kinematics of rotary motion. Their approximate solution is used to estimate the angular velocity vector. Methods of modal control and multi-dimensional decomposition of a control object are used to solve the problem of observation and identification of the angular rates. These methods enabled us to synthesize the SP angular velocity vector estimation algorithm and obtain the equations, which relate the error quaternion with the calculated estimate of the angular velocity. Mathematical modeling was carried out to test the algorithm. Cases of different initial conditions were simulated. Time between orientation quaternion measurements and angular velocity of the model was varied. The algorithm was compared with a more accurate algorithm, built on more complete equations. Graphs of difference in angular velocity estimation depending on the number of iterations are presented. The difference in angular velocity estimation is calculated from results of the synthesized algorithm and the algorithm for more accurate equations. Graphs of error distribution for angular velocity estimation with initial conditions being changed are also presented, and standard deviations of estimation errors are calculated. The synthesized algorithm is inferior in accuracy assessment to
A Trust-region-based Sequential Quadratic Programming Algorithm
DEFF Research Database (Denmark)
Henriksen, Lars Christian; Poulsen, Niels Kjølstad
This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints.......This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints....
Vergallo, P.; Lay-Ekuakille, A.
2013-08-01
Brain activity can be recorded by means of EEG (Electroencephalogram) electrodes placed on the scalp of the patient. The EEG reflects the activity of groups of neurons located in the head, and the fundamental problem in neurophysiology is the identification of the sources responsible of brain activity, especially if a seizure occurs and in this case it is important to identify it. The studies conducted in order to formalize the relationship between the electromagnetic activity in the head and the recording of the generated external field allow to know pattern of brain activity. The inverse problem, that is given the sampling field at different electrodes the underlying asset must be determined, is more difficult because the problem may not have a unique solution, or the search for the solution is made difficult by a low spatial resolution which may not allow to distinguish between activities involving sources close to each other. Thus, sources of interest may be obscured or not detected and known method in source localization problem as MUSIC (MUltiple SIgnal Classification) could fail. Many advanced source localization techniques achieve a best resolution by exploiting sparsity: if the number of sources is small as a result, the neural power vs. location is sparse. In this work a solution based on the spatial sparsity of the field signal is presented and analyzed to improve MUSIC method. For this purpose, it is necessary to set a priori information of the sparsity in the signal. The problem is formulated and solved using a regularization method as Tikhonov, which calculates a solution that is the better compromise between two cost functions to minimize, one related to the fitting of the data, and another concerning the maintenance of the sparsity of the signal. At the first, the method is tested on simulated EEG signals obtained by the solution of the forward problem. Relatively to the model considered for the head and brain sources, the result obtained allows to
Algorithmic and experimental methods in algebra, geometry, and number theory
Decker, Wolfram; Malle, Gunter
2017-01-01
This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 “Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory”, which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved. The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It off...
Hao, Zi-long; Liu, Yong; Chen, Ruo-wang
2016-11-01
In view of the histogram equalizing algorithm to enhance image in digital image processing, an Infrared Image Gray adaptive adjusting Enhancement Algorithm Based on Gray Redundancy Histogram-dealing Technique is proposed. The algorithm is based on the determination of the entire image gray value, enhanced or lowered the image's overall gray value by increasing appropriate gray points, and then use gray-level redundancy HE method to compress the gray-scale of the image. The algorithm can enhance image detail information. Through MATLAB simulation, this paper compares the algorithm with the histogram equalization method and the algorithm based on gray redundancy histogram-dealing technique , and verifies the effectiveness of the algorithm.
Novel density-based and hierarchical density-based clustering algorithms for uncertain data.
Zhang, Xianchao; Liu, Han; Zhang, Xiaotong
2017-09-01
Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing
Warehouse stocking optimization based on dynamic ant colony genetic algorithm
Xiao, Xiaoxu
2018-04-01
In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.
Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization
Directory of Open Access Journals (Sweden)
Chung-Cheng Chiu
2016-06-01
Full Text Available Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA, which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods.
Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization.
Chiu, Chung-Cheng; Ting, Chih-Chung
2016-06-22
Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods.
A Location-Based Business Information Recommendation Algorithm
Directory of Open Access Journals (Sweden)
Shudong Liu
2015-01-01
Full Text Available Recently, many researches on information (e.g., POI, ADs recommendation based on location have been done in both research and industry. In this paper, we firstly construct a region-based location graph (RLG, in which region node respectively connects with user node and business information node, and then we propose a location-based recommendation algorithm based on RLG, which can combine with user short-ranged mobility formed by daily activity and long-distance mobility formed by social network ties and sequentially can recommend local business information and long-distance business information to users. Moreover, it can combine user-based collaborative filtering with item-based collaborative filtering, and it can alleviate cold start problem which traditional recommender systems often suffer from. Empirical studies from large-scale real-world data from Yelp demonstrate that our method outperforms other methods on the aspect of recommendation accuracy.
Shrimankar, D. D.; Sathe, S. R.
2016-01-01
Sequence alignment is an important tool for describing the relationships between DNA sequences. Many sequence alignment algorithms exist, differing in efficiency, in their models of the sequences, and in the relationship between sequences. The focus of this study is to obtain an optimal alignment between two sequences of biological data, particularly DNA sequences. The algorithm is discussed with particular emphasis on time, speedup, and efficiency optimizations. Parallel programming presents a number of critical challenges to application developers. Today’s supercomputer often consists of clusters of SMP nodes. Programming paradigms such as OpenMP and MPI are used to write parallel codes for such architectures. However, the OpenMP programs cannot be scaled for more than a single SMP node. However, programs written in MPI can have more than single SMP nodes. But such a programming paradigm has an overhead of internode communication. In this work, we explore the tradeoffs between using OpenMP and MPI. We demonstrate that the communication overhead incurs significantly even in OpenMP loop execution and increases with the number of cores participating. We also demonstrate a communication model to approximate the overhead from communication in OpenMP loops. Our results are astonishing and interesting to a large variety of input data files. We have developed our own load balancing and cache optimization technique for message passing model. Our experimental results show that our own developed techniques give optimum performance of our parallel algorithm for various sizes of input parameter, such as sequence size and tile size, on a wide variety of multicore architectures. PMID:27932868
Shrimankar, D D; Sathe, S R
2016-01-01
Sequence alignment is an important tool for describing the relationships between DNA sequences. Many sequence alignment algorithms exist, differing in efficiency, in their models of the sequences, and in the relationship between sequences. The focus of this study is to obtain an optimal alignment between two sequences of biological data, particularly DNA sequences. The algorithm is discussed with particular emphasis on time, speedup, and efficiency optimizations. Parallel programming presents a number of critical challenges to application developers. Today's supercomputer often consists of clusters of SMP nodes. Programming paradigms such as OpenMP and MPI are used to write parallel codes for such architectures. However, the OpenMP programs cannot be scaled for more than a single SMP node. However, programs written in MPI can have more than single SMP nodes. But such a programming paradigm has an overhead of internode communication. In this work, we explore the tradeoffs between using OpenMP and MPI. We demonstrate that the communication overhead incurs significantly even in OpenMP loop execution and increases with the number of cores participating. We also demonstrate a communication model to approximate the overhead from communication in OpenMP loops. Our results are astonishing and interesting to a large variety of input data files. We have developed our own load balancing and cache optimization technique for message passing model. Our experimental results show that our own developed techniques give optimum performance of our parallel algorithm for various sizes of input parameter, such as sequence size and tile size, on a wide variety of multicore architectures.
A New Aloha Anti-Collision Algorithm Based on CDMA
Bai, Enjian; Feng, Zhu
The tags' collision is a common problem in RFID (radio frequency identification) system. The problem has affected the integrity of the data transmission during the process of communication in the RFID system. Based on analysis of the existing anti-collision algorithm, a novel anti-collision algorithm is presented. The new algorithm combines the group dynamic frame slotted Aloha algorithm with code division multiple access technology. The algorithm can effectively reduce the collision probability between tags. Under the same number of tags, the algorithm is effective in reducing the reader recognition time and improve overall system throughput rate.
A Radio-Map Automatic Construction Algorithm Based on Crowdsourcing
Yu, Ning; Xiao, Chenxian; Wu, Yinfeng; Feng, Renjian
2016-01-01
Traditional radio-map-based localization methods need to sample a large number of location fingerprints offline, which requires huge amount of human and material resources. To solve the high sampling cost problem, an automatic radio-map construction algorithm based on crowdsourcing is proposed. The algorithm employs the crowd-sourced information provided by a large number of users when they are walking in the buildings as the source of location fingerprint data. Through the variation characteristics of users’ smartphone sensors, the indoor anchors (doors) are identified and their locations are regarded as reference positions of the whole radio-map. The AP-Cluster method is used to cluster the crowdsourced fingerprints to acquire the representative fingerprints. According to the reference positions and the similarity between fingerprints, the representative fingerprints are linked to their corresponding physical locations and the radio-map is generated. Experimental results demonstrate that the proposed algorithm reduces the cost of fingerprint sampling and radio-map construction and guarantees the localization accuracy. The proposed method does not require users’ explicit participation, which effectively solves the resource-consumption problem when a location fingerprint database is established. PMID:27070623
Method and Excel VBA Algorithm for Modeling Master Recession Curve Using Trigonometry Approach.
Posavec, Kristijan; Giacopetti, Marco; Materazzi, Marco; Birk, Steffen
2017-11-01
A new method was developed and implemented into an Excel Visual Basic for Applications (VBAs) algorithm utilizing trigonometry laws in an innovative way to overlap recession segments of time series and create master recession curves (MRCs). Based on a trigonometry approach, the algorithm horizontally translates succeeding recession segments of time series, placing their vertex, that is, the highest recorded value of each recession segment, directly onto the appropriate connection line defined by measurement points of a preceding recession segment. The new method and algorithm continues the development of methods and algorithms for the generation of MRC, where the first published method was based on a multiple linear/nonlinear regression model approach (Posavec et al. 2006). The newly developed trigonometry-based method was tested on real case study examples and compared with the previously published multiple linear/nonlinear regression model-based method. The results show that in some cases, that is, for some time series, the trigonometry-based method creates narrower overlaps of the recession segments, resulting in higher coefficients of determination R 2 , while in other cases the multiple linear/nonlinear regression model-based method remains superior. The Excel VBA algorithm for modeling MRC using the trigonometry approach is implemented into a spreadsheet tool (MRCTools v3.0 written by and available from Kristijan Posavec, Zagreb, Croatia) containing the previously published VBA algorithms for MRC generation and separation. All algorithms within the MRCTools v3.0 are open access and available free of charge, supporting the idea of running science on available, open, and free of charge software. © 2017, National Ground Water Association.
An Efficient Sleepy Algorithm for Particle-Based Fluids
Directory of Open Access Journals (Sweden)
Xiao Nie
2014-01-01
Full Text Available We present a novel Smoothed Particle Hydrodynamics (SPH based algorithm for efficiently simulating compressible and weakly compressible particle fluids. Prior particle-based methods simulate all fluid particles; however, in many cases some particles appearing to be at rest can be safely ignored without notably affecting the fluid flow behavior. To identify these particles, a novel sleepy strategy is introduced. By utilizing this strategy, only a portion of the fluid particles requires computational resources; thus an obvious performance gain can be achieved. In addition, in order to resolve unphysical clumping issue due to tensile instability in SPH based methods, a new artificial repulsive force is provided. We demonstrate that our approach can be easily integrated with existing SPH based methods to improve the efficiency without sacrificing visual quality.
Genetic based optimization for multicast routing algorithm for MANET
Indian Academy of Sciences (India)
In this paper, a Hybrid Genetic Based Optimization for Multicast Routing algorithm is proposed. The proposed algorithm uses the best features of Genetic Algorithm (GA) and particle swarm optimization (PSO) to improve the solution. Simulations were conducted by varying number of mobile nodes and results compared with ...
Research on compressive sensing reconstruction algorithm based on total variation model
Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin
2017-12-01
Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately recovers target image.
Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm
Abbas, Ahmed
2013-01-07
A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into p-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013
Directory of Open Access Journals (Sweden)
Santosh Kumar Singh
2017-06-01
Full Text Available This paper presents a new hybrid method based on Gravity Search Algorithm (GSA and Recursive Least Square (RLS, known as GSA-RLS, to solve the harmonic estimation problems in the case of time varying power signals in presence of different noises. GSA is based on the Newton’s law of gravity and mass interactions. In the proposed method, the searcher agents are a collection of masses that interact with each other using Newton’s laws of gravity and motion. The basic GSA algorithm strategy is combined with RLS algorithm sequentially in an adaptive way to update the unknown parameters (weights of the harmonic signal. Simulation and practical validation are made with the experimentation of the proposed algorithm with real time data obtained from a heavy paper industry. A comparative performance of the proposed algorithm is evaluated with other recently reported algorithms like, Differential Evolution (DE, Particle Swarm Optimization (PSO, Bacteria Foraging Optimization (BFO, Fuzzy-BFO (F-BFO hybridized with Least Square (LS and BFO hybridized with RLS algorithm, which reveals that the proposed GSA-RLS algorithm is the best in terms of accuracy, convergence and computational time.
Experimental Methods for the Analysis of Optimization Algorithms
DEFF Research Database (Denmark)
of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists...
Adaptive Central Force Optimization Algorithm Based on the Stability Analysis
Directory of Open Access Journals (Sweden)
Weiyi Qian
2015-01-01
Full Text Available In order to enhance the convergence capability of the central force optimization (CFO algorithm, an adaptive central force optimization (ACFO algorithm is presented by introducing an adaptive weight and defining an adaptive gravitational constant. The adaptive weight and gravitational constant are selected based on the stability theory of discrete time-varying dynamic systems. The convergence capability of ACFO algorithm is compared with the other improved CFO algorithm and evolutionary-based algorithm using 23 unimodal and multimodal benchmark functions. Experiments results show that ACFO substantially enhances the performance of CFO in terms of global optimality and solution accuracy.
Algorithm of Particle Data Association for SLAM Based on Improved Ant Algorithm
Directory of Open Access Journals (Sweden)
KeKe Gen
2015-01-01
Full Text Available The article considers a problem of data association algorithm for simultaneous localization and mapping guidelines in determining the route of unmanned aerial vehicles (UAVs. Currently, these equipments are already widely used, but mainly controlled from the remote operator. An urgent task is to develop a control system that allows for autonomous flight. Algorithm SLAM (simultaneous localization and mapping, which allows to predict the location, speed, the ratio of flight parameters and the coordinates of landmarks and obstacles in an unknown environment, is one of the key technologies to achieve real autonomous UAV flight. The aim of this work is to study the possibility of solving this problem by using an improved ant algorithm.The data association for SLAM algorithm is meant to establish a matching set of observed landmarks and landmarks in the state vector. Ant algorithm is one of the widely used optimization algorithms with positive feedback and the ability to search in parallel, so the algorithm is suitable for solving the problem of data association for SLAM. But the traditional ant algorithm in the process of finding routes easily falls into local optimum. Adding random perturbations in the process of updating the global pheromone to avoid local optima. Setting limits pheromone on the route can increase the search space with a reasonable amount of calculations for finding the optimal route.The paper proposes an algorithm of the local data association for SLAM algorithm based on an improved ant algorithm. To increase the speed of calculation, local data association is used instead of the global data association. The first stage of the algorithm defines targets in the matching space and the observed landmarks with the possibility of association by the criterion of individual compatibility (IC. The second stage defines the matched landmarks and their coordinates using improved ant algorithm. Simulation results confirm the efficiency and
Research of Video Steganalysis Algorithm Based on H265 Protocol
Directory of Open Access Journals (Sweden)
Wu Kaicheng
2015-01-01
This paper researches LSB matching VSA based on H265 protocol with the research background of 26 original Video sequences, it firstly extracts classification features out from training samples as input of SVM, and trains in SVM to obtain high-quality category classification model, and then tests whether there is suspicious information in the video sample. The experimental results show that VSA algorithm based on LSB matching can be more practical to obtain all frame embedded secret information and carrier and video of local frame embedded. In addition, VSA adopts the method of frame by frame with a strong robustness in resisting attack in the corresponding time domain.
Saliency detection algorithm based on LSC-RC
Wu, Wei; Tian, Weiye; Wang, Ding; Luo, Xin; Wu, Yingfei; Zhang, Yu
2018-02-01
Image prominence is the most important region in an image, which can cause the visual attention and response of human beings. Preferentially allocating the computer resources for the image analysis and synthesis by the significant region is of great significance to improve the image area detecting. As a preprocessing of other disciplines in image processing field, the image prominence has widely applications in image retrieval and image segmentation. Among these applications, the super-pixel segmentation significance detection algorithm based on linear spectral clustering (LSC) has achieved good results. The significance detection algorithm proposed in this paper is better than the regional contrast ratio by replacing the method of regional formation in the latter with the linear spectral clustering image is super-pixel block. After combining with the latest depth learning method, the accuracy of the significant region detecting has a great promotion. At last, the superiority and feasibility of the super-pixel segmentation detection algorithm based on linear spectral clustering are proved by the comparative test.
Matched field localization based on CS-MUSIC algorithm
Guo, Shuangle; Tang, Ruichun; Peng, Linhui; Ji, Xiaopeng
2016-04-01
The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.
Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter
2017-01-01
A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove robustness of the algorithm against experimental artifacts and noise. These tests show that the i...
A Lagrange multiplier based divide and conquer finite element algorithm
Farhat, C.
1991-01-01
A novel domain decomposition method based on a hybrid variational principle is presented. Prior to any computation, a given finite element mesh is torn into a set of totally disconnected submeshes. First, an incomplete solution is computed in each subdomain. Next, the compatibility of the displacement field at the interface nodes is enforced via discrete, polynomial and/or piecewise polynomial Lagrange multipliers. In the static case, each floating subdomain induces a local singularity that is resolved very efficiently. The interface problem associated with this domain decomposition method is, in general, indefinite and of variable size. A dedicated conjugate projected gradient algorithm is developed for solving the latter problem when it is not feasible to explicitly assemble the interface operator. When implemented on local memory multiprocessors, the proposed methodology requires less interprocessor communication than the classical method of substructuring. It is also suitable for parallel/vector computers with shared memory and compares favorably with factorization based parallel direct methods.
A community detection algorithm based on structural similarity
Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu
2017-09-01
In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.
Directory of Open Access Journals (Sweden)
E. E. Miandoab
2016-06-01
Full Text Available The inherent uncertainty to factors such as technology and creativity in evolving software development is a major challenge for the management of software projects. To address these challenges the project manager, in addition to examining the project progress, may cope with problems such as increased operating costs, lack of resources, and lack of implementation of key activities to better plan the project. Software Cost Estimation (SCE models do not fully cover new approaches. And this lack of coverage is causing problems in the consumer and producer ends. In order to avoid these problems, many methods have already been proposed. Model-based methods are the most familiar solving technique. But it should be noted that model-based methods use a single formula and constant values, and these methods are not responsive to the increasing developments in the field of software engineering. Accordingly, researchers have tried to solve the problem of SCE using machine learning algorithms, data mining algorithms, and artificial neural networks. In this paper, a hybrid algorithm that combines COA-Cuckoo optimization and K-Nearest Neighbors (KNN algorithms is used. The so-called composition algorithm runs on six different data sets and is evaluated based on eight evaluation criteria. The results show an improved accuracy of estimated cost.
A test sheet generating algorithm based on intelligent genetic algorithm and hierarchical planning
Gu, Peipei; Niu, Zhendong; Chen, Xuting; Chen, Wei
2013-03-01
In recent years, computer-based testing has become an effective method to evaluate students' overall learning progress so that appropriate guiding strategies can be recommended. Research has been done to develop intelligent test assembling systems which can automatically generate test sheets based on given parameters of test items. A good multisubject test sheet depends on not only the quality of the test items but also the construction of the sheet. Effective and efficient construction of test sheets according to multiple subjects and criteria is a challenging problem. In this paper, a multi-subject test sheet generation problem is formulated and a test sheet generating approach based on intelligent genetic algorithm and hierarchical planning (GAHP) is proposed to tackle this problem. The proposed approach utilizes hierarchical planning to simplify the multi-subject testing problem and adopts genetic algorithm to process the layered criteria, enabling the construction of good test sheets according to multiple test item requirements. Experiments are conducted and the results show that the proposed approach is capable of effectively generating multi-subject test sheets that meet specified requirements and achieve good performance.
Image Retrieval Algorithm Based on Discrete Fractional Transforms
Jindal, Neeru; Singh, Kulbir
2013-06-01
The discrete fractional transforms is a signal processing tool which suggests computational algorithms and solutions to various sophisticated applications. In this paper, a new technique to retrieve the encrypted and scrambled image based on discrete fractional transforms has been proposed. Two-dimensional image was encrypted using discrete fractional transforms with three fractional orders and two random phase masks placed in the two intermediate planes. The significant feature of discrete fractional transforms benefits from its extra degree of freedom that is provided by its fractional orders. Security strength was enhanced (1024!)4 times by scrambling the encrypted image. In decryption process, image retrieval is sensitive for both correct fractional order keys and scrambling algorithm. The proposed approach make the brute force attack infeasible. Mean square error and relative error are the recital parameters to verify validity of proposed method.
International Nuclear Information System (INIS)
Niknam, Taher; Azadfarsani, Ehsan; Jabbari, Masoud
2012-01-01
Highlights: ► Network reconfiguration is a very important way to save the electrical energy. ► This paper proposes a new algorithm to solve the DFR. ► The algorithm combines NFAPSO with NM. ► The proposed algorithm is tested on two distribution test feeders. - Abstract: Network reconfiguration for loss reduction in distribution system is a very important way to save the electrical energy. This paper proposes a new hybrid evolutionary algorithm to solve the Distribution Feeder Reconfiguration problem (DFR). The algorithm is based on combination of a New Fuzzy Adaptive Particle Swarm Optimization (NFAPSO) and Nelder–Mead simplex search method (NM) called NFAPSO–NM. In the proposed algorithm, a new fuzzy adaptive particle swarm optimization includes two parts. The first part is Fuzzy Adaptive Binary Particle Swarm Optimization (FABPSO) that determines the status of tie switches (open or close) and second part is Fuzzy Adaptive Discrete Particle Swarm Optimization (FADPSO) that determines the sectionalizing switch number. In other side, due to the results of binary PSO(BPSO) and discrete PSO(DPSO) algorithms highly depends on the values of their parameters such as the inertia weight and learning factors, a fuzzy system is employed to adaptively adjust the parameters during the search process. Moreover, the Nelder–Mead simplex search method is combined with the NFAPSO algorithm to improve its performance. Finally, the proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization.
A family of solution algorithms for nonlinear structural analysis based on relaxation equations
Park, K. C.
1981-01-01
A family of hierarchical algorithms for nonlinear structural equations are presented. The algorithms are based on the Davidenko-Branin type homotopy and shown to yield consistent hierarchical perturbation equations. The algorithms appear to be particularly suitable to problems involving bifurcation and limit point calculations. An important by-product of the algorithms is that it provides a systematic and economical means for computing the stepsize at each iteration stage when a Newton-like method is employed to solve the systems of equations. Some sample problems are provided to illustrate the characteristics of the algorithms.
Automated Inspection Algorithm for Thick Plate Using Dual Light Switching Lighting Method
Yong-JuJeon; Doo-chul Choi; Jong Pil Yun; Changhyun Park; Homoon Bae; Sang Woo Kim
2012-01-01
This paper presents an automated inspection algorithm for a thick plate. Thick plates typically have various types of surface defects, such as scabs, scratches, and roller marks. These defects have individual characteristics including brightness and shape. Therefore, it is not simple to detect all the defects. In order to solve these problems and to detect defects more effectively, we propose a dual light switching lighting method and a defect detection algorithm based on ...
[A digital subtraction angiography system based on LUT algorithms].
Chen, Xiangan; Li, Kaiyang; Zhou, Li; Chen, Jiansheng
2006-04-01
Look-up table (LUT) algorithms have been widely used in digital signal processing, but the article on the application of LUT algorithms in digital subtraction angiography was rarely reported. In this article, the effect of different LUT algorithms on digital subtraction angiography images is introduced. The result reveals that different LUT algorithms can bring about different effects of image. Based on analysis and comparison, we deem it possible to acquire improved images of DSA by use of some LUT algorithms with image processing.
Star point centroid algorithm based on background forecast
Wang, Jin; Zhao, Rujin; Zhu, Nan
2014-09-01
The calculation of star point centroid is a key step of improving star tracker measuring error. A star map photoed by APS detector includes several noises which have a great impact on veracity of calculation of star point centroid. Through analysis of characteristic of star map noise, an algorithm of calculation of star point centroid based on background forecast is presented in this paper. The experiment proves the validity of the algorithm. Comparing with classic algorithm, this algorithm not only improves veracity of calculation of star point centroid, but also does not need calibration data memory. This algorithm is applied successfully in a certain star tracker.
2013-01-01
Background The high burden and rising incidence of cardiovascular disease (CVD) in resource constrained countries necessitates implementation of robust and pragmatic primary and secondary prevention strategies. Many current CVD management guidelines recommend absolute cardiovascular (CV) risk assessment as a clinically sound guide to preventive and treatment strategies. Development of non-laboratory based cardiovascular risk assessment algorithms enable absolute risk assessment in resource constrained countries. The objective of this review is to evaluate the performance of existing non-laboratory based CV risk assessment algorithms using the benchmarks for clinically useful CV risk assessment algorithms outlined by Cooney and colleagues. Methods A literature search to identify non-laboratory based risk prediction algorithms was performed in MEDLINE, CINAHL, Ovid Premier Nursing Journals Plus, and PubMed databases. The identified algorithms were evaluated using the benchmarks for clinically useful cardiovascular risk assessment algorithms outlined by Cooney and colleagues. Results Five non-laboratory based CV risk assessment algorithms were identified. The Gaziano and Framingham algorithms met the criteria for appropriateness of statistical methods used to derive the algorithms and endpoints. The Swedish Consultation, Framingham and Gaziano algorithms demonstrated good discrimination in derivation datasets. Only the Gaziano algorithm was externally validated where it had optimal discrimination. The Gaziano and WHO algorithms had chart formats which made them simple and user friendly for clinical application. Conclusion Both the Gaziano and Framingham non-laboratory based algorithms met most of the criteria outlined by Cooney and colleagues. External validation of the algorithms in diverse samples is needed to ascertain their performance and applicability to different populations and to enhance clinicians’ confidence in them. PMID:24373202
Parallel image encryption algorithm based on discretized chaotic map
International Nuclear Information System (INIS)
Zhou Qing; Wong Kwokwo; Liao Xiaofeng; Xiang Tao; Hu Yue
2008-01-01
Recently, a variety of chaos-based algorithms were proposed for image encryption. Nevertheless, none of them works efficiently in parallel computing environment. In this paper, we propose a framework for parallel image encryption. Based on this framework, a new algorithm is designed using the discretized Kolmogorov flow map. It fulfills all the requirements for a parallel image encryption algorithm. Moreover, it is secure and fast. These properties make it a good choice for image encryption on parallel computing platforms
GA-Based Membrane Evolutionary Algorithm for Ensemble Clustering
Wang, Yanhua; Liu, Xiyu; Xiang, Laisheng
2017-01-01
Ensemble clustering can improve the generalization ability of a single clustering algorithm and generate a more robust clustering result by integrating multiple base clusterings, so it becomes the focus of current clustering research. Ensemble clustering aims at finding a consensus partition which agrees as much as possible with base clusterings. Genetic algorithm is a highly parallel, stochastic, and adaptive search algorithm developed from the natural selection and evolutionary mechanism of...
Naef, Rudolf; Acree, William E
2017-12-21
The application of a commonly used computer algorithm based on the group-additivity method for the calculation of the liquid viscosity coefficient at 293.15 K and the activity coefficient at infinite dilution in water at 298.15 K of organic molecules is presented. The method is based on the complete breakdown of the molecules into their constituting atoms, further subdividing them by their immediate neighborhood. A fast Gauss-Seidel fitting method using experimental data from literature is applied for the calculation of the atom groups' contributions. Plausibility tests have been carried out on each of the calculations using a ten-fold cross-validation procedure which confirms the excellent predictive quality of the method. The goodness of fit (Q²) and the standard deviation (σ) of the cross-validation calculations for the viscosity coefficient, expressed as log(η), was 0.9728 and 0.11, respectively, for 413 test molecules, and for the activity coefficient log(γ) ∞ the corresponding values were 0.9736 and 0.31, respectively, for 621 test compounds. The present approach has proven its versatility in that it enabled the simultaneous evaluation of the liquid viscosity of normal organic compounds as well as of ionic liquids.
An interactive segmentation method based on superpixel
DEFF Research Database (Denmark)
Yang, Shu; Zhu, Yaping; Wu, Xiaoyu
2015-01-01
This paper proposes an interactive image-segmentation method which is based on superpixel. To achieve fast segmentation, the method is used to establish a Graphcut model using superpixels as nodes, and a new energy function is proposed. Experimental results demonstrate that the authors' method has...... excellent performance in terms of segmentation accuracy and computation efficiency compared with other segmentation algorithm based on pixels....
An Improved Dynamic Joint Resource Allocation Algorithm Based on SFR
Directory of Open Access Journals (Sweden)
Yibing Li
2016-04-01
Full Text Available Inter-cell interference (ICI is the main factor affecting system capacity and spectral efficiency. Effective spectrum resource management is an important and challenging issue for the design of wireless communication systems. The soft frequency reuse (SFR is regarded as an interesting approach to significantly eliminate ICI. However, the allocation of resource is fixed prior to system deployment in static SFR. To overcome this drawback, this paper adopts a distributed method and proposes an improved dynamic joint resource allocation algorithm (DJRA. The improved scheme adaptively adjusts resource allocation based on the real-time user distribution. DJRA first detects the edge-user distribution vector to determine the optimal scheme, which guarantees that all the users have available resources and the number of iterations is reduced. Then, the DJRA maximizes the throughput for each cell via optimizing resource and power allocation. Due to further eliminate interference, the sector partition method is used in the center region and in view of fairness among users, the novel approach adds the proportional fair algorithm at the end of DJRA. Simulation results show that the proposed algorithm outperforms previous approaches for improving the system capacity and cell edge user performance.
Ship Block Transportation Scheduling Problem Based on Greedy Algorithm
Directory of Open Access Journals (Sweden)
Chong Wang
2016-05-01
Full Text Available Ship block transportation problems are crucial issues to address in reducing the construction cost and improving the productivity of shipyards. Shipyards aim to maximize the workload balance of transporters with time constraint such that all blocks should be transported during the planning horizon. This process leads to three types of penalty time: empty transporter travel time, delay time, and tardy time. This study aims to minimize the sum of the penalty time. First, this study presents the problem of ship block transportation with the generalization of the block transportation restriction on the multi-type transporter. Second, the problem is transformed into the classical traveling salesman problem and assignment problem through a reasonable model simplification and by adding a virtual node to the proposed directed graph. Then, a heuristic algorithm based on greedy algorithm is proposed to assign blocks to available transporters and sequencing blocks for each transporter simultaneously. Finally, the numerical experiment method is used to validate the model, and its result shows that the proposed algorithm is effective in realizing the efficient use of the transporters in shipyards. Numerical simulation results demonstrate the promising application of the proposed method to efficiently improve the utilization of transporters and to reduce the cost of ship block logistics for shipyards.
Fuzzy Rules for Ant Based Clustering Algorithm
Directory of Open Access Journals (Sweden)
Amira Hamdi
2016-01-01
Full Text Available This paper provides a new intelligent technique for semisupervised data clustering problem that combines the Ant System (AS algorithm with the fuzzy c-means (FCM clustering algorithm. Our proposed approach, called F-ASClass algorithm, is a distributed algorithm inspired by foraging behavior observed in ant colonyT. The ability of ants to find the shortest path forms the basis of our proposed approach. In the first step, several colonies of cooperating entities, called artificial ants, are used to find shortest paths in a complete graph that we called graph-data. The number of colonies used in F-ASClass is equal to the number of clusters in dataset. Hence, the partition matrix of dataset founded by artificial ants is given in the second step, to the fuzzy c-means technique in order to assign unclassified objects generated in the first step. The proposed approach is tested on artificial and real datasets, and its performance is compared with those of K-means, K-medoid, and FCM algorithms. Experimental section shows that F-ASClass performs better according to the error rate classification, accuracy, and separation index.
A Numerical Algorithm and a Graphical Method to Size a Heat Exchanger
DEFF Research Database (Denmark)
Berning, Torsten
2011-01-01
This paper describes the development of a numerical algorithm and a graphical method that can be employed in order to determine the overall heat transfer coefficient inside heat exchangers. The method is based on an energy balance and utilizes the spreadsheet application software Microsoft ExcelTM...
In Situ Parameter Estimation of Synchronous Machines Using Genetic Algorithm Method
Directory of Open Access Journals (Sweden)
Gopalakrishnan Kalarikovilagam Srinivasan
2016-01-01
Full Text Available The paper presents an in situ parameter estimation method to determine the equivalent circuit parameters of the Synchronous Machines. The parameters of synchronous generator, both cylindrical rotor and salient pole rotor, are estimated based on the circuit model. Genetic algorithm based parameter estimation technique is adopted where only one set of in-situ measured load test data is used. Conventional methods viz., EMF, MMF, Potier triangle method uses rated voltage and rated current obtained from more than one operating condition to determine the parameters. However, Genetic Algorithm (GA based method uses the working voltage and load current of a single operating point obtained from in-situ measured load test data to estimate the parameters. The test results of the GA based parameter estimation method are found to be closer to direct load test results and better than conventional methods.
Calculation of electromagnetic parameter based on interpolation algorithm
International Nuclear Information System (INIS)
Zhang, Wenqiang; Yuan, Liming; Zhang, Deyuan
2015-01-01
Wave-absorbing material is an important functional material of electromagnetic protection. The wave-absorbing characteristics depend on the electromagnetic parameter of mixed media. In order to accurately predict the electromagnetic parameter of mixed media and facilitate the design of wave-absorbing material, based on the electromagnetic parameters of spherical and flaky carbonyl iron mixture of paraffin base, this paper studied two different interpolation methods: Lagrange interpolation and Hermite interpolation of electromagnetic parameters. The results showed that Hermite interpolation is more accurate than the Lagrange interpolation, and the reflectance calculated with the electromagnetic parameter obtained by interpolation is consistent with that obtained through experiment on the whole. - Highlights: • We use interpolation algorithm on calculation of EM-parameter with limited samples. • Interpolation method can predict EM-parameter well with different particles added. • Hermite interpolation is more accurate than Lagrange interpolation. • Calculating RL based on interpolation is consistent with calculating RL from experiment
Hybrid fuzzy charged system search algorithm based state estimation in distribution networks
Directory of Open Access Journals (Sweden)
Sachidananda Prasad
2017-06-01
Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.
An Enhanced Differential Evolution Algorithm Based on Multiple Mutation Strategies
Directory of Open Access Journals (Sweden)
Wan-li Xiang
2015-01-01
Full Text Available Differential evolution algorithm is a simple yet efficient metaheuristic for global optimization over continuous spaces. However, there is a shortcoming of premature convergence in standard DE, especially in DE/best/1/bin. In order to take advantage of direction guidance information of the best individual of DE/best/1/bin and avoid getting into local trap, based on multiple mutation strategies, an enhanced differential evolution algorithm, named EDE, is proposed in this paper. In the EDE algorithm, an initialization technique, opposition-based learning initialization for improving the initial solution quality, and a new combined mutation strategy composed of DE/current/1/bin together with DE/pbest/bin/1 for the sake of accelerating standard DE and preventing DE from clustering around the global best individual, as well as a perturbation scheme for further avoiding premature convergence, are integrated. In addition, we also introduce two linear time-varying functions, which are used to decide which solution search equation is chosen at the phases of mutation and perturbation, respectively. Experimental results tested on twenty-five benchmark functions show that EDE is far better than the standard DE. In further comparisons, EDE is compared with other five state-of-the-art approaches and related results show that EDE is still superior to or at least equal to these methods on most of benchmark functions.
Creating Very True Quantum Algorithms for Quantum Energy Based Computing
Nagata, Koji; Nakamura, Tadao; Geurdes, Han; Batle, Josep; Abdalla, Soliman; Farouk, Ahmed; Diep, Do Ngoc
2018-04-01
An interpretation of quantum mechanics is discussed. It is assumed that quantum is energy. An algorithm by means of the energy interpretation is discussed. An algorithm, based on the energy interpretation, for fast determining a homogeneous linear function f( x) := s. x = s 1 x 1 + s 2 x 2 + ⋯ + s N x N is proposed. Here x = ( x 1, … , x N ), x j ∈ R and the coefficients s = ( s 1, … , s N ), s j ∈ N. Given the interpolation values (f(1), f(2),...,f(N))=ěc {y}, the unknown coefficients s = (s1(ěc {y}),\\dots , sN(ěc {y})) of the linear function shall be determined, simultaneously. The speed of determining the values is shown to outperform the classical case by a factor of N. Our method is based on the generalized Bernstein-Vazirani algorithm to qudit systems. Next, by using M parallel quantum systems, M homogeneous linear functions are determined, simultaneously. The speed of obtaining the set of M homogeneous linear functions is shown to outperform the classical case by a factor of N × M.
A class of kernel based real-time elastography algorithms.
Kibria, Md Golam; Hasan, Md Kamrul
2015-08-01
In this paper, a novel real-time kernel-based and gradient-based Phase Root Seeking (PRS) algorithm for ultrasound elastography is proposed. The signal-to-noise ratio of the strain image resulting from this method is improved by minimizing the cross-correlation discrepancy between the pre- and post-compression radio frequency signals with an adaptive temporal stretching method and employing built-in smoothing through an exponentially weighted neighborhood kernel in the displacement calculation. Unlike conventional PRS algorithms, displacement due to tissue compression is estimated from the root of the weighted average of the zero-lag cross-correlation phases of the pair of corresponding analytic pre- and post-compression windows in the neighborhood kernel. In addition to the proposed one, the other time- and frequency-domain elastography algorithms (Ara et al., 2013; Hussain et al., 2012; Hasan et al., 2012) proposed by our group are also implemented in real-time using Java where the computations are serially executed or parallely executed in multiple processors with efficient memory management. Simulation results using finite element modeling simulation phantom show that the proposed method significantly improves the strain image quality in terms of elastographic signal-to-noise ratio (SNRe), elastographic contrast-to-noise ratio (CNRe) and mean structural similarity (MSSIM) for strains as high as 4% as compared to other reported techniques in the literature. Strain images obtained for the experimental phantom as well as in vivo breast data of malignant or benign masses also show the efficacy of our proposed method over the other reported techniques in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.
An Association Rule Mining Algorithm Based on a Boolean Matrix
Directory of Open Access Journals (Sweden)
Hanbing Liu
2007-09-01
Full Text Available Association rule mining is a very important research topic in the field of data mining. Discovering frequent itemsets is the key process in association rule mining. Traditional association rule algorithms adopt an iterative method to discovery, which requires very large calculations and a complicated transaction process. Because of this, a new association rule algorithm called ABBM is proposed in this paper. This new algorithm adopts a Boolean vector "relational calculus" method to discovering frequent itemsets. Experimental results show that this algorithm can quickly discover frequent itemsets and effectively mine potential association rules.
DDoS Attack Detection Algorithms Based on Entropy Computing
Li, Liying; Zhou, Jianying; Xiao, Ning
Distributed Denial of Service (DDoS) attack poses a severe threat to the Internet. It is difficult to find the exact signature of attacking. Moreover, it is hard to distinguish the difference of an unusual high volume of traffic which is caused by the attack or occurs when a huge number of users occasionally access the target machine at the same time. The entropy detection method is an effective method to detect the DDoS attack. It is mainly used to calculate the distribution randomness of some attributes in the network packets' headers. In this paper, we focus on the detection technology of DDoS attack. We improve the previous entropy detection algorithm, and propose two enhanced detection methods based on cumulative entropy and time, respectively. Experiment results show that these methods could lead to more accurate and effective DDoS detection.
Experimental Methods for the Analysis of Optimization Algorithms
DEFF Research Database (Denmark)
of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists......In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However......, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different...
Underwater Sensor Network Redeployment Algorithm Based on Wolf Search.
Jiang, Peng; Feng, Yang; Wu, Feng
2016-10-21
This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance.
Directory of Open Access Journals (Sweden)
Yuyang Gao
2016-09-01
Full Text Available With increasing importance being attached to big data mining, analysis, and forecasting in the field of wind energy, how to select an optimization model to improve the forecasting accuracy of the wind speed time series is not only an extremely challenging problem, but also a problem of concern for economic forecasting. The artificial intelligence model is widely used in forecasting and data processing, but the individual back-propagation artificial neural network cannot always satisfy the time series forecasting needs. Thus, a hybrid forecasting approach has been proposed in this study, which consists of data preprocessing, parameter optimization and a neural network for advancing the accuracy of short-term wind speed forecasting. According to the case study, in which the data are collected from Peng Lai, a city located in China, the simulation results indicate that the hybrid forecasting method yields better predictions compared to the individual BP, which indicates that the hybrid method exhibits stronger forecasting ability.
Experimental methods for the analysis of optimization algorithms
Bartz-Beielstein, Thomas; Paquete, Luis; Preuss, Mike
2010-01-01
In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on diffe
Energy Technology Data Exchange (ETDEWEB)
Van Uytven, Eric, E-mail: eric.vanuytven@cancercare.mb.ca; Van Beek, Timothy [Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); McCowan, Peter M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Chytyk-Praznik, Krista [Medical Physics Department, Nova Scotia Cancer Centre, 5820 University Avenue, Halifax, Nova Scotia B3H 1V7 (Canada); Greer, Peter B. [School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW 2308 (Australia); Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, NSW 2298 (Australia); McCurdy, Boyd M. C. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Radiology, University of Manitoba, 820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9 (Canada)
2015-12-15
Purpose: Radiation treatments are trending toward delivering higher doses per fraction under stereotactic radiosurgery and hypofractionated treatment regimens. There is a need for accurate 3D in vivo patient dose verification using electronic portal imaging device (EPID) measurements. This work presents a model-based technique to compute full three-dimensional patient dose reconstructed from on-treatment EPID portal images (i.e., transmission images). Methods: EPID dose is converted to incident fluence entering the patient using a series of steps which include converting measured EPID dose to fluence at the detector plane and then back-projecting the primary source component of the EPID fluence upstream of the patient. Incident fluence is then recombined with predicted extra-focal fluence and used to calculate 3D patient dose via a collapsed-cone convolution method. This method is implemented in an iterative manner, although in practice it provides accurate results in a single iteration. The robustness of the dose reconstruction technique is demonstrated with several simple slab phantom and nine anthropomorphic phantom cases. Prostate, head and neck, and lung treatments are all included as well as a range of delivery techniques including VMAT and dynamic intensity modulated radiation therapy (IMRT). Results: Results indicate that the patient dose reconstruction algorithm compares well with treatment planning system computed doses for controlled test situations. For simple phantom and square field tests, agreement was excellent with a 2%/2 mm 3D chi pass rate ≥98.9%. On anthropomorphic phantoms, the 2%/2 mm 3D chi pass rates ranged from 79.9% to 99.9% in the planning target volume (PTV) region and 96.5% to 100% in the low dose region (>20% of prescription, excluding PTV and skin build-up region). Conclusions: An algorithm to reconstruct delivered patient 3D doses from EPID exit dosimetry measurements was presented. The method was applied to phantom and patient
An Accurate liver segmentation method using parallel computing algorithm
International Nuclear Information System (INIS)
Elbasher, Eiman Mohammed Khalied
2014-12-01
Computed Tomography (CT or CAT scan) is a noninvasive diagnostic imaging procedure that uses a combination of X-rays and computer technology to produce horizontal, or axial, images (often called slices) of the body. A CT scan shows detailed images of any part of the body, including the bones muscles, fat and organs CT scans are more detailed than standard x-rays. CT scans may be done with or without c ontrast Contrast refers to a substance taken by mouth and/ or injected into an intravenous (IV) line that causes the particular organ or tissue under study to be seen more clearly. CT scan of the liver and biliary tract are used in the diagnosis of many diseases in the abdomen structures, particularly when another type of examination, such as X-rays, physical examination, and ultra sound is not conclusive. Unfortunately, the presence of noise and artifact in the edges and fine details in the CT images limit the contrast resolution and make diagnostic procedure more difficult. This experimental study was conducted at the College of Medical Radiological Science, Sudan University of Science and Technology and Fidel Specialist Hospital. The sample of study was included 50 patients. The main objective of this research was to study an accurate liver segmentation method using a parallel computing algorithm, and to segment liver and adjacent organs using image processing technique. The main technique of segmentation used in this study was watershed transform. The scope of image processing and analysis applied to medical application is to improve the quality of the acquired image and extract quantitative information from medical image data in an efficient and accurate way. The results of this technique agreed wit the results of Jarritt et al, (2010), Kratchwil et al, (2010), Jover et al, (2011), Yomamoto et al, (1996), Cai et al (1999), Saudha and Jayashree (2010) who used different segmentation filtering based on the methods of enhancing the computed tomography images. Anther
Function-Based Algorithms for Biological Sequences
Mohanty, Pragyan Sheela P.
2015-01-01
Two problems at two different abstraction levels of computational biology are studied. At the molecular level, efficient pattern matching algorithms in DNA sequences are presented. For gene order data, an efficient data structure is presented capable of storing all gene re-orderings in a systematic manner. A common characteristic of presented…
Research of image matching algorithm based on local features
Sun, Wei
2015-07-01
For the problem of low efficiency in SIFT algorithm while using exhaustive method to search the nearest neighbor and next nearest neighbor of feature points, this paper introduces K-D tree algorithm, to index the feature points extracted in database images according to the tree structure, at the same time, using the concept of a weighted priority, further improves the algorithm, to further enhance the efficiency of feature matching.
Optimal Sensor Placement in Bridge Structure Based on Immune Genetic Algorithm
Directory of Open Access Journals (Sweden)
Zhen-Rui PENG
2014-10-01
Full Text Available For the problem of optimal sensor placement (OSP, this paper introduces immune genetic algorithm (IGA, which combines the advantages of genetic algorithm (GA and immune algorithm (IA, to minimize sensors placed in the structure and to obtain more information of structural characteristics. The OSP mode is formulated and integer coding method is proposed to code an antibody to reduce the computational complexity of affinity. Additionally, taking an arch bridge as an example, the results indicate that the problem can be achieved based on IGA method, and IGA has the ability to guarantee the higher calculation accuracy, compared with genetic algorithm (GA.
A Two Dimensional Overlapped Subaperture Polar Format Algorithm Based on Stepped-chirp Signal.
Mao, Xinhua; Zhu, Daiyin; Nie, Xin; Zhu, Zhaoda
2008-05-26
In this work, a 2-D subaperture polar format algorithm (PFA) based on steppedchirp signal is proposed. Instead of traditional pulse synthesis preprocessing, the presented method integrates the pulse synthesis process into the range subaperture processing. Meanwhile, due to the multi-resolution property of subaperture processing, this algorithm is able to compensate the space-variant phase error caused by the radar motion during the period of a pulse cluster. Point target simulation has validated the presented algorithm.
A Two Dimensional Overlapped Subaperture Polar Format Algorithm Based on Stepped-chirp Signal
Directory of Open Access Journals (Sweden)
Zhaoda Zhu
2008-05-01
Full Text Available In this work, a 2-D subaperture polar format algorithm (PFA based on steppedchirp signal is proposed. Instead of traditional pulse synthesis preprocessing, the presented method integrates the pulse synthesis process into the range subaperture processing. Meanwhile, due to the multi-resolution property of subaperture processing, this algorithm is able to compensate the space-variant phase error caused by the radar motion during the period of a pulse cluster. Point target simulation has validated the presented algorithm.
Directory of Open Access Journals (Sweden)
Mingjian Sun
2015-01-01
Full Text Available Photoacoustic imaging is an innovative imaging technique to image biomedical tissues. The time reversal reconstruction algorithm in which a numerical model of the acoustic forward problem is run backwards in time is widely used. In the paper, a time reversal reconstruction algorithm based on particle swarm optimization (PSO optimized support vector machine (SVM interpolation method is proposed for photoacoustics imaging. Numerical results show that the reconstructed images of the proposed algorithm are more accurate than those of the nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation based time reversal algorithm, which can provide higher imaging quality by using significantly fewer measurement positions or scanning times.
A novel orthoimage mosaic method using the weighted A* algorithm for UAV imagery
Zheng, Maoteng; Zhou, Shunping; Xiong, Xiaodong; Zhu, Junfeng
2017-12-01
A weighted A* algorithm is proposed to select optimal seam-lines in orthoimage mosaic for UAV (Unmanned Aircraft Vehicle) imagery. The whole workflow includes four steps: the initial seam-line network is firstly generated by standard Voronoi Diagram algorithm; an edge diagram is then detected based on DSM (Digital Surface Model) data; the vertices (conjunction nodes) of initial network are relocated since some of them are on the high objects (buildings, trees and other artificial structures); and, the initial seam-lines are finally refined using the weighted A* algorithm based on the edge diagram and the relocated vertices. The method was tested with two real UAV datasets. Preliminary results show that the proposed method produces acceptable mosaic images in both the urban and mountainous areas, and is better than the result of the state-of-the-art methods on the datasets.
Comparing Random-based and k-Anonymity-Based Algorithms for Graph Anonymization
Casas Roma, Jordi; Torra, Vicenç; Herrera Joancomartí, Jordi
2012-01-01
Recently, several anonymization algorithms have appeared for privacy preservation on graphs. Some of them are based on random- ization techniques and on k-anonymity concepts. We can use both of them to obtain an anonymized graph with a given k-anonymity value. In this paper we compare algorithms based on both techniques in order to obtain an anonymized graph with a desired k-anonymity value. We want to analyze the complexity of these methods to generate anonymized graphs and the quality...
GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE
Directory of Open Access Journals (Sweden)
Ashish Jain
2012-07-01
Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.
An Improved PDR Indoor Locaion Algorithm Based on Probabilistic Constraints
You, Y.; Zhang, T.; Liu, Y.; Lu, Y.; Chu, X.; Feng, C.; Liu, S.
2017-09-01
In this paper, we proposed an indoor pedestrian positioning method which is probabilistic constrained by "multi-target encounter" when the initial position is known. The method is based on the Pedestrian Dead Reckoning (PDR) method. According to the PDR method of positioning error size and indoor road network structure, the buffer distance is determined reasonably and the buffer centering on the PDR location is generated. At the same time, key nodes are selected based on indoor network. In the premise of knowing the distance between multiple key nodes, the forward distance of pedestrians which entered from different nodes can be calculated and then we sum their distances and compared with the known distance between the key nodes, which determines whether pedestrians meet. When pedestrians meet, each two are seen as a cluster. The algorithm determines whether the range of the intersection of the buffer meet the conditions. When the condition is satisfied, the centre of the intersection area is taken as the pedestrian position. At the same time, based on the angle mutation of pedestrian which caused by the special structure of the indoor staircase, the pedestrian's location is matched to the real location of the key landmark (staircase). Then the cumulative error of the PDR method is eliminated. The method can locate more than one person at the same time, as long as you know the true location of a person, you can also know everyone's real location in the same cluster and efficiently achieve indoor pedestrian positioning.
AN IMPROVED PDR INDOOR LOCAION ALGORITHM BASED ON PROBABILISTIC CONSTRAINTS
Directory of Open Access Journals (Sweden)
Y. You
2017-09-01
Full Text Available In this paper, we proposed an indoor pedestrian positioning method which is probabilistic constrained by "multi-target encounter" when the initial position is known. The method is based on the Pedestrian Dead Reckoning (PDR method. According to the PDR method of positioning error size and indoor road network structure, the buffer distance is determined reasonably and the buffer centering on the PDR location is generated. At the same time, key nodes are selected based on indoor network. In the premise of knowing the distance between multiple key nodes, the forward distance of pedestrians which entered from different nodes can be calculated and then we sum their distances and compared with the known distance between the key nodes, which determines whether pedestrians meet. When pedestrians meet, each two are seen as a cluster. The algorithm determines whether the range of the intersection of the buffer meet the conditions. When the condition is satisfied, the centre of the intersection area is taken as the pedestrian position. At the same time, based on the angle mutation of pedestrian which caused by the special structure of the indoor staircase, the pedestrian's location is matched to the real location of the key landmark (staircase. Then the cumulative error of the PDR method is eliminated. The method can locate more than one person at the same time, as long as you know the true location of a person, you can also know everyone’s real location in the same cluster and efficiently achieve indoor pedestrian positioning.
Compressive sensing based algorithms for electronic defence
Mishra, Amit Kumar
2017-01-01
This book details some of the major developments in the implementation of compressive sensing in radio applications for electronic defense and warfare communication use. It provides a comprehensive background to the subject and at the same time describes some novel algorithms. It also investigates application value and performance-related parameters of compressive sensing in scenarios such as direction finding, spectrum monitoring, detection, and classification.
Directory of Open Access Journals (Sweden)
Juan Carlos Figueroa García
2011-12-01
The presented approach uses an iterative algorithm which finds stable solutions to problems with fuzzy parameter sinboth sides of an FLP problem. The algorithm is based on the soft constraints method proposed by Zimmermann combined with an iterative procedure which gets a single optimal solution.
AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL
Directory of Open Access Journals (Sweden)
Tao Zhang
2015-12-01
Full Text Available This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL/magnetic compass pilot (MCP, a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV.
AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL
Zhang, Tao; Chen, Liping; Li, Yao
2015-01-01
This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV. PMID:26729120
AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL.
Zhang, Tao; Chen, Liping; Li, Yao
2015-12-30
This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV.
Quantum Algorithm for K-Nearest Neighbors Classification Based on the Metric of Hamming Distance
Ruan, Yue; Xue, Xiling; Liu, Heng; Tan, Jianing; Li, Xi
2017-11-01
K-nearest neighbors (KNN) algorithm is a common algorithm used for classification, and also a sub-routine in various complicated machine learning tasks. In this paper, we presented a quantum algorithm (QKNN) for implementing this algorithm based on the metric of Hamming distance. We put forward a quantum circuit for computing Hamming distance between testing sample and each feature vector in the training set. Taking advantage of this method, we realized a good analog for classical KNN algorithm by setting a distance threshold value t to select k - n e a r e s t neighbors. As a result, QKNN achieves O( n 3) performance which is only relevant to the dimension of feature vectors and high classification accuracy, outperforms Llyod's algorithm (Lloyd et al. 2013) and Wiebe's algorithm (Wiebe et al. 2014).
Directory of Open Access Journals (Sweden)
Weihua Jin
2013-01-01
Full Text Available This paper proposes a genetic-algorithms-based approach as an all-purpose problem-solving method for operation programming problems under uncertainty. The proposed method was applied for management of a municipal solid waste treatment system. Compared to the traditional interactive binary analysis, this approach has fewer limitations and is able to reduce the complexity in solving the inexact linear programming problems and inexact quadratic programming problems. The implementation of this approach was performed using the Genetic Algorithm Solver of MATLAB (trademark of MathWorks. The paper explains the genetic-algorithms-based method and presents details on the computation procedures for each type of inexact operation programming problems. A comparison of the results generated by the proposed method based on genetic algorithms with those produced by the traditional interactive binary analysis method is also presented.
Neighborhood Hypergraph Based Classification Algorithm for Incomplete Information System
Directory of Open Access Journals (Sweden)
Feng Hu
2015-01-01
Full Text Available The problem of classification in incomplete information system is a hot issue in intelligent information processing. Hypergraph is a new intelligent method for machine learning. However, it is hard to process the incomplete information system by the traditional hypergraph, which is due to two reasons: (1 the hyperedges are generated randomly in traditional hypergraph model; (2 the existing methods are unsuitable to deal with incomplete information system, for the sake of missing values in incomplete information system. In this paper, we propose a novel classification algorithm for incomplete information system based on hypergraph model and rough set theory. Firstly, we initialize the hypergraph. Second, we classify the training set by neighborhood hypergraph. Third, under the guidance of rough set, we replace the poor hyperedges. After that, we can obtain a good classifier. The proposed approach is tested on 15 data sets from UCI machine learning repository. Furthermore, it is compared with some existing methods, such as C4.5, SVM, NavieBayes, and KNN. The experimental results show that the proposed algorithm has better performance via Precision, Recall, AUC, and F-measure.
New algorithm for iris recognition based on video sequences
Bourennane, Salah; Fossati, Caroline; Ketchantang, William
2010-07-01
Among existing biometrics, iris recognition systems are among the most accurate personal biometric identification systems. However, the acquisition of a workable iris image requires strict cooperation of the user; otherwise, the image will be rejected by a verification module because of its poor quality, inducing a high false reject rate (FRR). The FRR may also increase when iris localization fails or when the pupil is too dilated. To improve the existing methods, we propose to use video sequences acquired in real time by a camera. In order to keep the same computational load to identify the iris, we propose a new method to estimate the iris characteristics. First, we propose a new iris texture characterization based on Fourier-Mellin transform, which is less sensitive to pupil dilatations than previous methods. Then, we develop a new iris localization algorithm that is robust to variations of quality (partial occlusions due to eyelids and eyelashes, light reflects, etc.), and finally, we introduce a fast and new criterion of suitable image selection from an iris video sequence for an accurate recognition. The accuracy of each step of the algorithm in the whole proposed recognition process is tested and evaluated using our own iris video database and several public image databases, such as CASIA, UBIRIS, and BATH.
Fast perceptual image hash based on cascade algorithm
Ruchay, Alexey; Kober, Vitaly; Yavtushenko, Evgeniya
2017-09-01
In this paper, we propose a perceptual image hash algorithm based on cascade algorithm, which can be applied in image authentication, retrieval, and indexing. Image perceptual hash uses for image retrieval in sense of human perception against distortions caused by compression, noise, common signal processing and geometrical modifications. The main disadvantage of perceptual hash is high time expenses. In the proposed cascade algorithm of image retrieval initializes with short hashes, and then a full hash is applied to the processed results. Computer simulation results show that the proposed hash algorithm yields a good performance in terms of robustness, discriminability, and time expenses.
A Vehicle Detection Algorithm Based on Deep Belief Network
Directory of Open Access Journals (Sweden)
Hai Wang
2014-01-01
Full Text Available Vision based vehicle detection is a critical technology that plays an important role in not only vehicle active safety but also road video surveillance application. Traditional shallow model based vehicle detection algorithm still cannot meet the requirement of accurate vehicle detection in these applications. In this work, a novel deep learning based vehicle detection algorithm with 2D deep belief network (2D-DBN is proposed. In the algorithm, the proposed 2D-DBN architecture uses second-order planes instead of first-order vector as input and uses bilinear projection for retaining discriminative information so as to determine the size of the deep architecture which enhances the success rate of vehicle detection. On-road experimental results demonstrate that the algorithm performs better than state-of-the-art vehicle detection algorithm in testing data sets.
Algorithms for Hardware-Based Pattern Recognition
Directory of Open Access Journals (Sweden)
Müller Dietmar
2004-01-01
Full Text Available Nonlinear spatial transforms and fuzzy pattern classification with unimodal potential functions are established in signal processing. They have proved to be excellent tools in feature extraction and classification. In this paper, we will present a hardware-accelerated image processing and classification system which is implemented on one field-programmable gate array (FPGA. Nonlinear discrete circular transforms generate a feature vector. The features are analyzed by a fuzzy classifier. This principle can be used for feature extraction, pattern recognition, and classification tasks. Implementation in radix-2 structures is possible, allowing fast calculations with a computational complexity of up to . Furthermore, the pattern separability properties of these transforms are better than those achieved with the well-known method based on the power spectrum of the Fourier Transform, or on several other transforms. Using different signal flow structures, the transforms can be adapted to different image and signal processing applications.
Local Community Detection Algorithm Based on Minimal Cluster
Directory of Open Access Journals (Sweden)
Yong Zhou
2016-01-01
Full Text Available In order to discover the structure of local community more effectively, this paper puts forward a new local community detection algorithm based on minimal cluster. Most of the local community detection algorithms begin from one node. The agglomeration ability of a single node must be less than multiple nodes, so the beginning of the community extension of the algorithm in this paper is no longer from the initial node only but from a node cluster containing this initial node and nodes in the cluster are relatively densely connected with each other. The algorithm mainly includes two phases. First it detects the minimal cluster and then finds the local community extended from the minimal cluster. Experimental results show that the quality of the local community detected by our algorithm is much better than other algorithms no matter in real networks or in simulated networks.
Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis
Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song
2018-01-01
To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.
Teaching learning based optimization algorithm and its engineering applications
Rao, R Venkata
2016-01-01
Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.
New MPPT algorithm based on hybrid dynamical theory
Elmetennani, Shahrazed
2014-11-01
This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.
Indian Academy of Sciences (India)
have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming language Is called a program. From activities 1-3, we can observe that: • Each activity is a command.
A novel optimization method, Gravitational Search Algorithm (GSA), for PWR core optimization
International Nuclear Information System (INIS)
Mahmoudi, S.M.; Aghaie, M.; Bahonar, M.; Poursalehi, N.
2016-01-01
Highlights: • The Gravitational Search Algorithm (GSA) is introduced. • The advantage of GSA is verified in Shekel’s Foxholes. • Reload optimizing in WWER-1000 and WWER-440 cases are performed. • Maximizing K eff , minimizing PPFs and flattening power density is considered. - Abstract: In-core fuel management optimization (ICFMO) is one of the most challenging concepts of nuclear engineering. In recent decades several meta-heuristic algorithms or computational intelligence methods have been expanded to optimize reactor core loading pattern. This paper presents a new method of using Gravitational Search Algorithm (GSA) for in-core fuel management optimization. The GSA is constructed based on the law of gravity and the notion of mass interactions. It uses the theory of Newtonian physics and searcher agents are the collection of masses. In this work, at the first step, GSA method is compared with other meta-heuristic algorithms on Shekel’s Foxholes problem. In the second step for finding the best core, the GSA algorithm has been performed for three PWR test cases including WWER-1000 and WWER-440 reactors. In these cases, Multi objective optimizations with the following goals are considered, increment of multiplication factor (K eff ), decrement of power peaking factor (PPF) and power density flattening. It is notable that for neutronic calculation, PARCS (Purdue Advanced Reactor Core Simulator) code is used. The results demonstrate that GSA algorithm have promising performance and could be proposed for other optimization problems of nuclear engineering field.
Human emotion detector based on genetic algorithm using lip features
Brown, Terrence; Fetanat, Gholamreza; Homaifar, Abdollah; Tsou, Brian; Mendoza-Schrock, Olga
2010-04-01
We predicted human emotion using a Genetic Algorithm (GA) based lip feature extractor from facial images to classify all seven universal emotions of fear, happiness, dislike, surprise, anger, sadness and neutrality. First, we isolated the mouth from the input images using special methods, such as Region of Interest (ROI) acquisition, grayscaling, histogram equalization, filtering, and edge detection. Next, the GA determined the optimal or near optimal ellipse parameters that circumvent and separate the mouth into upper and lower lips. The two ellipses then went through fitness calculation and were followed by training using a database of Japanese women's faces expressing all seven emotions. Finally, our proposed algorithm was tested using a published database consisting of emotions from several persons. The final results were then presented in confusion matrices. Our results showed an accuracy that varies from 20% to 60% for each of the seven emotions. The errors were mainly due to inaccuracies in the classification, and also due to the different expressions in the given emotion database. Detailed analysis of these errors pointed to the limitation of detecting emotion based on the lip features alone. Similar work [1] has been done in the literature for emotion detection in only one person, we have successfully extended our GA based solution to include several subjects.
Hardware Implementation of a Modified Delay-Coordinate Mapping-Based QRS Complex Detection Algorithm
Directory of Open Access Journals (Sweden)
Andrej Zemva
2007-01-01
Full Text Available We present a modified delay-coordinate mapping-based QRS complex detection algorithm, suitable for hardware implementation. In the original algorithm, the phase-space portrait of an electrocardiogram signal is reconstructed in a two-dimensional plane using the method of delays. Geometrical properties of the obtained phase-space portrait are exploited for QRS complex detection. In our solution, a bandpass filter is used for ECG signal prefiltering and an improved method for detection threshold-level calculation is utilized. We developed the algorithm on the MIT-BIH Arrhythmia Database (sensitivity of 99.82% and positive predictivity of 99.82% and tested it on the long-term ST database (sensitivity of 99.72% and positive predictivity of 99.37%. Our algorithm outperforms several well-known QRS complex detection algorithms, including the original algorithm.
Multilevel Image Segmentation Based on an Improved Firefly Algorithm
Directory of Open Access Journals (Sweden)
Kai Chen
2016-01-01
Full Text Available Multilevel image segmentation is time-consuming and involves large computation. The firefly algorithm has been applied to enhancing the efficiency of multilevel image segmentation. However, in some cases, firefly algorithm is easily trapped into local optima. In this paper, an improved firefly algorithm (IFA is proposed to search multilevel thresholds. In IFA, in order to help fireflies escape from local optima and accelerate the convergence, two strategies (i.e., diversity enhancing strategy with Cauchy mutation and neighborhood strategy are proposed and adaptively chosen according to different stagnation stations. The proposed IFA is compared with three benchmark optimal algorithms, that is, Darwinian particle swarm optimization, hybrid differential evolution optimization, and firefly algorithm. The experimental results show that the proposed method can efficiently segment multilevel images and obtain better performance than the other three methods.
Blind Source Separation Based on Covariance Ratio and Artificial Bee Colony Algorithm
Directory of Open Access Journals (Sweden)
Lei Chen
2014-01-01
Full Text Available The computation amount in blind source separation based on bioinspired intelligence optimization is high. In order to solve this problem, we propose an effective blind source separation algorithm based on the artificial bee colony algorithm. In the proposed algorithm, the covariance ratio of the signals is utilized as the objective function and the artificial bee colony algorithm is used to solve it. The source signal component which is separated out, is then wiped off from mixtures using the deflation method. All the source signals can be recovered successfully by repeating the separation process. Simulation experiments demonstrate that significant improvement of the computation amount and the quality of signal separation is achieved by the proposed algorithm when compared to previous algorithms.
Low-dose multiple-information retrieval algorithm for X-ray grating-based imaging
International Nuclear Information System (INIS)
Wang Zhentian; Huang Zhifeng; Chen Zhiqiang; Zhang Li; Jiang Xiaolei; Kang Kejun; Yin Hongxia; Wang Zhenchang; Stampanoni, Marco
2011-01-01
The present work proposes a low dose information retrieval algorithm for X-ray grating-based multiple-information imaging (GB-MII) method, which can retrieve the attenuation, refraction and scattering information of samples by only three images. This algorithm aims at reducing the exposure time and the doses delivered to the sample. The multiple-information retrieval problem in GB-MII is solved by transforming a nonlinear equations set to a linear equations and adopting the nature of the trigonometric functions. The proposed algorithm is validated by experiments both on conventional X-ray source and synchrotron X-ray source, and compared with the traditional multiple-image-based retrieval algorithm. The experimental results show that our algorithm is comparable with the traditional retrieval algorithm and especially suitable for high Signal-to-Noise system.
Low-dose multiple-information retrieval algorithm for X-ray grating-based imaging
Energy Technology Data Exchange (ETDEWEB)
Wang Zhentian, E-mail: wang.zhentian@gmail.co [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Huang Zhifeng, E-mail: huangzhifeng@mail.tsinghua.edu.c [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Chen Zhiqiang; Zhang Li; Jiang Xiaolei; Kang Kejun [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Yin Hongxia; Wang Zhenchang [Medical Imaging Center, Beijing TongRen Hospital, Beijing 100084 (China); Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich (Switzerland)
2011-04-11
The present work proposes a low dose information retrieval algorithm for X-ray grating-based multiple-information imaging (GB-MII) method, which can retrieve the attenuation, refraction and scattering information of samples by only three images. This algorithm aims at reducing the exposure time and the doses delivered to the sample. The multiple-information retrieval problem in GB-MII is solved by transforming a nonlinear equations set to a linear equations and adopting the nature of the trigonometric functions. The proposed algorithm is validated by experiments both on conventional X-ray source and synchrotron X-ray source, and compared with the traditional multiple-image-based retrieval algorithm. The experimental results show that our algorithm is comparable with the traditional retrieval algorithm and especially suitable for high Signal-to-Noise system.
GA-Based Membrane Evolutionary Algorithm for Ensemble Clustering
Directory of Open Access Journals (Sweden)
Yanhua Wang
2017-01-01
Full Text Available Ensemble clustering can improve the generalization ability of a single clustering algorithm and generate a more robust clustering result by integrating multiple base clusterings, so it becomes the focus of current clustering research. Ensemble clustering aims at finding a consensus partition which agrees as much as possible with base clusterings. Genetic algorithm is a highly parallel, stochastic, and adaptive search algorithm developed from the natural selection and evolutionary mechanism of biology. In this paper, an improved genetic algorithm is designed by improving the coding of chromosome. A new membrane evolutionary algorithm is constructed by using genetic mechanisms as evolution rules and combines with the communication mechanism of cell-like P system. The proposed algorithm is used to optimize the base clusterings and find the optimal chromosome as the final ensemble clustering result. The global optimization ability of the genetic algorithm and the rapid convergence of the membrane system make membrane evolutionary algorithm perform better than several state-of-the-art techniques on six real-world UCI data sets.
GA-Based Membrane Evolutionary Algorithm for Ensemble Clustering.
Wang, Yanhua; Liu, Xiyu; Xiang, Laisheng
2017-01-01
Ensemble clustering can improve the generalization ability of a single clustering algorithm and generate a more robust clustering result by integrating multiple base clusterings, so it becomes the focus of current clustering research. Ensemble clustering aims at finding a consensus partition which agrees as much as possible with base clusterings. Genetic algorithm is a highly parallel, stochastic, and adaptive search algorithm developed from the natural selection and evolutionary mechanism of biology. In this paper, an improved genetic algorithm is designed by improving the coding of chromosome. A new membrane evolutionary algorithm is constructed by using genetic mechanisms as evolution rules and combines with the communication mechanism of cell-like P system. The proposed algorithm is used to optimize the base clusterings and find the optimal chromosome as the final ensemble clustering result. The global optimization ability of the genetic algorithm and the rapid convergence of the membrane system make membrane evolutionary algorithm perform better than several state-of-the-art techniques on six real-world UCI data sets.
Chaotic Image Scrambling Algorithm Based on S-DES
International Nuclear Information System (INIS)
Yu, X Y; Zhang, J; Ren, H E; Xu, G S; Luo, X Y
2006-01-01
With the security requirement improvement of the image on the network, some typical image encryption methods can't meet the demands of encryption, such as Arnold cat map and Hilbert transformation. S-DES system can encrypt the input binary flow of image, but the fixed system structure and few keys will still bring some risks. However, the sensitivity of initial value that Logistic chaotic map can be well applied to the system of S-DES, which makes S-DES have larger random and key quantities. A dual image encryption algorithm based on S-DES and Logistic map is proposed. Through Matlab simulation experiments, the key quantities will attain 10 17 and the encryption speed of one image doesn't exceed one second. Compared to traditional methods, it has some merits such as easy to understand, rapid encryption speed, large keys and sensitivity to initial value
Fuzzy Genetic Algorithm Based on Principal Operation and Inequity Degree
Li, Fachao; Jin, Chenxia
In this paper, starting from the structure of fuzzy information, by distinguishing principal indexes and assistant indexes, give comparison of fuzzy information on synthesizing effect and operation of fuzzy optimization on principal indexes transformation, further, propose axiom system of fuzzy inequity degree from essence of constraint, and give an instructive metric method; Then, combining genetic algorithm, give fuzzy optimization methods based on principal operation and inequity degree (denoted by BPO&ID-FGA, for short); Finally, consider its convergence using Markov chain theory and analyze its performance through an example. All these indicate, BPO&ID-FGA can not only effectively merge decision consciousness into the optimization process, but possess better global convergence, so it can be applied to many fuzzy optimization problems.
Spacial gyroscope calibration algorithm base on fusion filter
Xu, Fan; You, Taihua; Guo, Kang
2017-10-01
When space homing aerocraft long term flighting on orbit, the accuracy and rapidity of its attitude and orientation are the key factors for its combat effectiveness and survivability. Fiber optic gyro is suitable for the navigation requirements of space vehicles, but in the long run, it is necessary to calibrate the fog. Aiming at the problem, A self calibration method based on fusion filter is presented. According to the observation of the star sensor, the gyro drift and the four part number vector of the attitude are used as the state estimation by UKF. The gyro axis misalignment error and scale factor error are used as the model error to be estimated by the prediction filter. This method can guarantee the precision, decrease the computation and improve the algorithm speed.
Head pose estimation algorithm based on deep learning
Cao, Yuanming; Liu, Yijun
2017-05-01
Head pose estimation has been widely used in the field of artificial intelligence, pattern recognition and intelligent human-computer interaction and so on. Good head pose estimation algorithm should deal with light, noise, identity, shelter and other factors robustly, but so far how to improve the accuracy and robustness of attitude estimation remains a major challenge in the field of computer vision. A method based on deep learning for pose estimation is presented. Deep learning with a strong learning ability, it can extract high-level image features of the input image by through a series of non-linear operation, then classifying the input image using the extracted feature. Such characteristics have greater differences in pose, while they are robust of light, identity, occlusion and other factors. The proposed head pose estimation is evaluated on the CAS-PEAL data set. Experimental results show that this method is effective to improve the accuracy of pose estimation.
Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs
Choi, Woo-Yong; Chatterjee, Mainak
2015-03-01
With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.
Parallel algorithm of trigonometric collocation method in nonlinear dynamics of rotors
Directory of Open Access Journals (Sweden)
Musil T.
2007-11-01
Full Text Available A parallel algorithm of a numeric procedure based on a method of trigonometric collocation is presented for investigating an unbalance response of a rotor supported by journal bearings. After a condensation process the trigonometric collocation method results in a set of nonlinear algebraic equations which is solved by the Newton-Raphson method. The order of the set is proportional to the number of nonlinear bearing coordinates and terms of the finite Fourier series. The algorithm, realized in the MATLAB parallel computing environment (DCT/DCE, uses message passing technique for interacting among processes on nodes of a parallel computer. This technique enables portability of the source code both on parallel computers with distributed and shared memory. Tests, made on a Beowulf cluster and a symmetric multiprocessor, have revealed very good speed-up and scalability of this algorithm.
Feature Selection for Natural Language Call Routing Based on Self-Adaptive Genetic Algorithm
Koromyslova, A.; Semenkina, M.; Sergienko, R.
2017-02-01
The text classification problem for natural language call routing was considered in the paper. Seven different term weighting methods were applied. As dimensionality reduction methods, the feature selection based on self-adaptive GA is considered. k-NN, linear SVM and ANN were used as classification algorithms. The tasks of the research are the following: perform research of text classification for natural language call routing with different term weighting methods and classification algorithms and investigate the feature selection method based on self-adaptive GA. The numerical results showed that the most effective term weighting is TRR. The most effective classification algorithm is ANN. Feature selection with self-adaptive GA provides improvement of classification effectiveness and significant dimensionality reduction with all term weighting methods and with all classification algorithms.
Controller design based on μ analysis and PSO algorithm.
Lari, Ali; Khosravi, Alireza; Rajabi, Farshad
2014-03-01
In this paper an evolutionary algorithm is employed to address the controller design problem based on μ analysis. Conventional solutions to μ synthesis problem such as D-K iteration method often lead to high order, impractical controllers. In the proposed approach, a constrained optimization problem based on μ analysis is defined and then an evolutionary approach is employed to solve the optimization problem. The goal is to achieve a more practical controller with lower order. A benchmark system named two-tank system is considered to evaluate performance of the proposed approach. Simulation results show that the proposed controller performs more effective than high order H(∞) controller and has close responses to the high order D-K iteration controller as the common solution to μ synthesis problem. © 2013 ISA Published by ISA All rights reserved.
Research and Applications of Shop Scheduling Based on Genetic Algorithms
Directory of Open Access Journals (Sweden)
Hang ZHAO
Full Text Available ABSTRACT Shop Scheduling is an important factor affecting the efficiency of production, efficient scheduling method and a research and application for optimization technology play an important role for manufacturing enterprises to improve production efficiency, reduce production costs and many other aspects. Existing studies have shown that improved genetic algorithm has solved the limitations that existed in the genetic algorithm, the objective function is able to meet customers' needs for shop scheduling, and the future research should focus on the combination of genetic algorithm with other optimized algorithms. In this paper, in order to overcome the shortcomings of early convergence of genetic algorithm and resolve local minimization problem in search process,aiming at mixed flow shop scheduling problem, an improved cyclic search genetic algorithm is put forward, and chromosome coding method and corresponding operation are given.The operation has the nature of inheriting the optimal individual ofthe previous generation and is able to avoid the emergence of local minimum, and cyclic and crossover operation and mutation operation can enhance the diversity of the population and then quickly get the optimal individual, and the effectiveness of the algorithm is validated. Experimental results show that the improved algorithm can well avoid the emergency of local minimum and is rapid in convergence.
An improved multi-objective evolutionary algorithm based on point of reference
Zhang, Boyi; Zhou, Xue; Liu, Yuqing; Xu, Xiangli; Zhang, Libiao
2018-03-01
In the article presents a new evolutionary algorithms, this algorithm is based on reference points. This algorithm according to a archive find the non-dominated solution, and make this solution from large to small order according to crowding distance and let the space is divided to several small space equidistant, in each the subspace to obtain its centroid as the reference point. The method used in this paper are not predefined reference point but in the course of evolution according to the current state of dynamic reference point particles to guide the evolution, finally using five effectiveness test functions prove algorithm.
Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm
Directory of Open Access Journals (Sweden)
S. Talatahari
2014-01-01
Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.
Cross entropy-based memetic algorithms: An application study over the tool switching problem
Directory of Open Access Journals (Sweden)
Jhon Edgar Amaya
2013-05-01
Full Text Available This paper presents a parameterized schema for building memetic algorithms based on cross-entropy (CE methods. This novel schema is general in nature, and features multiple probability mass functions and Lamarckian learning. The applicability of the approach is assessed by considering the Tool Switching Problem, a complex combinatorial problem in the field of Flexible Manufacturing Systems. An exhaustive evaluation (including techniques ranging from local search and evolutionary algorithms to constructive methods provides evidence of the effectiveness of CE-based memetic algorithms.
Hooke–Jeeves Method-used Local Search in a Hybrid Global Optimization Algorithm
Directory of Open Access Journals (Sweden)
V. D. Sulimov
2014-01-01
Full Text Available Modern methods for optimization investigation of complex systems are based on development and updating the mathematical models of systems because of solving the appropriate inverse problems. Input data desirable for solution are obtained from the analysis of experimentally defined consecutive characteristics for a system or a process. Causal characteristics are the sought ones to which equation coefficients of mathematical models of object, limit conditions, etc. belong. The optimization approach is one of the main ones to solve the inverse problems. In the main case it is necessary to find a global extremum of not everywhere differentiable criterion function. Global optimization methods are widely used in problems of identification and computation diagnosis system as well as in optimal control, computing to-mography, image restoration, teaching the neuron networks, other intelligence technologies. Increasingly complicated systems of optimization observed during last decades lead to more complicated mathematical models, thereby making solution of appropriate extreme problems significantly more difficult. A great deal of practical applications may have the problem con-ditions, which can restrict modeling. As a consequence, in inverse problems the criterion functions can be not everywhere differentiable and noisy. Available noise means that calculat-ing the derivatives is difficult and unreliable. It results in using the optimization methods without calculating the derivatives.An efficiency of deterministic algorithms of global optimization is significantly restrict-ed by their dependence on the extreme problem dimension. When the number of variables is large they use the stochastic global optimization algorithms. As stochastic algorithms yield too expensive solutions, so this drawback restricts their applications. Developing hybrid algo-rithms that combine a stochastic algorithm for scanning the variable space with deterministic local search
A MATLAB GUI based algorithm for modelling Magnetotelluric data
Timur, Emre; Onsen, Funda
2016-04-01
The magnetotelluric method is an electromagnetic survey technique that images the electrical resistivity distribution of layers in subsurface depths. Magnetotelluric method measures simultaneously total electromagnetic field components such as both time-varying magnetic field B(t) and induced electric field E(t). At the same time, forward modeling of magnetotelluric method is so beneficial for survey planning purpose, for comprehending the method, especially for students, and as part of an iteration process in inverting measured data. The MTINV program can be used to model and to interpret geophysical electromagnetic (EM) magnetotelluric (MT) measurements using a horizontally layered earth model. This program uses either the apparent resistivity and phase components of the MT data together or the apparent resistivity data alone. Parameter optimization, which is based on linearized inversion method, can be utilized in 1D interpretations. In this study, a new MATLAB GUI based algorithm has been written for the 1D-forward modeling of magnetotelluric response function for multiple layers to use in educational studies. The code also includes an automatic Gaussian noise option for a demanded ratio value. Numerous applications were carried out and presented for 2,3 and 4 layer models and obtained theoretical data were interpreted using MTINV, in order to evaluate the initial parameters and effect of noise. Keywords: Education, Forward Modelling, Inverse Modelling, Magnetotelluric
Warehouse Optimization Model Based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Guofeng Qin
2013-01-01
Full Text Available This paper takes Bao Steel logistics automated warehouse system as an example. The premise is to maintain the focus of the shelf below half of the height of the shelf. As a result, the cost time of getting or putting goods on the shelf is reduced, and the distance of the same kind of goods is also reduced. Construct a multiobjective optimization model, using genetic algorithm to optimize problem. At last, we get a local optimal solution. Before optimization, the average cost time of getting or putting goods is 4.52996 s, and the average distance of the same kinds of goods is 2.35318 m. After optimization, the average cost time is 4.28859 s, and the average distance is 1.97366 m. After analysis, we can draw the conclusion that this model can improve the efficiency of cargo storage.
The Research of Disease Spots Extraction Based on Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Kangshun Li
2017-01-01
Full Text Available According to the characteristics of maize disease spot performance in the image, this paper designs two-histogram segmentation method based on evolutionary algorithm, which combined with the analysis of image of maize diseases and insect pests, with full consideration of color and texture characteristic of the lesion of pests and diseases, the chroma and gray image, composed of two tuples to build a two-dimensional histogram, solves the problem of one-dimensional histograms that cannot be clearly divided into target and background bimodal distribution and improved the traditional two-dimensional histogram application in pest damage lesion extraction. The chromosome coding suitable for the characteristics of lesion image is designed based on second segmentation of the genetic algorithm Otsu. Determining initial population with analysis results of lesion image, parallel selection, optimal preservation strategy, and adaptive mutation operator are used to improve the search efficiency. Finally, by setting the fluctuation threshold, we continue to search for the best threshold in the range of fluctuations for implementation of global search and local search.
A cooperative control algorithm for camera based observational systems.
Energy Technology Data Exchange (ETDEWEB)
Young, Joseph G.
2012-01-01
Over the last several years, there has been considerable growth in camera based observation systems for a variety of safety, scientific, and recreational applications. In order to improve the effectiveness of these systems, we frequently desire the ability to increase the number of observed objects, but solving this problem is not as simple as adding more cameras. Quite often, there are economic or physical restrictions that prevent us from adding additional cameras to the system. As a result, we require methods that coordinate the tracking of objects between multiple cameras in an optimal way. In order to accomplish this goal, we present a new cooperative control algorithm for a camera based observational system. Specifically, we present a receding horizon control where we model the underlying optimal control problem as a mixed integer linear program. The benefit of this design is that we can coordinate the actions between each camera while simultaneously respecting its kinematics. In addition, we further improve the quality of our solution by coupling our algorithm with a Kalman filter. Through this integration, we not only add a predictive component to our control, but we use the uncertainty estimates provided by the filter to encourage the system to periodically observe any outliers in the observed area. This combined approach allows us to intelligently observe the entire region of interest in an effective and thorough manner.
Is STAPLE algorithm confident to assess segmentation methods in PET imaging?
International Nuclear Information System (INIS)
Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Vermandel, Maximilien; Baillet, Clio
2015-01-01
Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging.Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used.Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results.The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging. (paper)
Is STAPLE algorithm confident to assess segmentation methods in PET imaging?
Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien
2015-12-01
Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.
An accurate projection algorithm for array processor based SPECT systems
International Nuclear Information System (INIS)
King, M.A.; Schwinger, R.B.; Cool, S.L.
1985-01-01
A data re-projection algorithm has been developed for use in single photon emission computed tomography (SPECT) on an array processor based computer system. The algorithm makes use of an accurate representation of pixel activity (uniform square pixel model of intensity distribution), and is rapidly performed due to the efficient handling of an array based algorithm and the Fast Fourier Transform (FFT) on parallel processing hardware. The algorithm consists of using a pixel driven nearest neighbour projection operation to an array of subdivided projection bins. This result is then convolved with the projected uniform square pixel distribution before being compressed to original bin size. This distribution varies with projection angle and is explicitly calculated. The FFT combined with a frequency space multiplication is used instead of a spatial convolution for more rapid execution. The new algorithm was tested against other commonly used projection algorithms by comparing the accuracy of projections of a simulated transverse section of the abdomen against analytically determined projections of that transverse section. The new algorithm was found to yield comparable or better standard error and yet result in easier and more efficient implementation on parallel hardware. Applications of the algorithm include iterative reconstruction and attenuation correction schemes and evaluation of regions of interest in dynamic and gated SPECT
Wavelet-LMS algorithm-based echo cancellers
Seetharaman, Lalith K.; Rao, Sathyanarayana S.
2002-12-01
This paper presents Echo Cancellers based on the Wavelet-LMS Algorithm. The performance of the Least Mean Square Algorithm in Wavelet transform domain is observed and its application in Echo cancellation is analyzed. The Widrow-Hoff Least Mean Square Algorithm is most widely used algorithm for Adaptive filters that function as Echo Cancellers. The present day communication signals are widely non-stationary in nature and some errors crop up when Least Mean Square Algorithm is used for the Echo Cancellers handling such signals. The analysis of non-stationary signals often involves a compromise between how well transitions or discontinuities can be located. The multi-scale or multi-resolution of signal analysis, which is the essence of wavelet transform, makes Wavelets popular in non-stationary signal analysis. In this paper, we present a Wavelet-LMS algorithm wherein the wavelet coefficients of a signal are modified adaptively using the Least Mean Square Algorithm and then reconstructed to give an Echo-free signal. The Echo Canceller based on this Algorithm is found to have a better convergence and a comparatively lesser MSE (Mean Square error).
A SAT-Based Algorithm for Reparameterization in Symbolic Simulation
National Research Council Canada - National Science Library
Chauhan, Pankaj; Kroening, Daniel; Clarke, Edmund
2003-01-01
.... Efficient SAT solvers have been applied successfully for many verification problems. This paper presents a novel SAT-based reparameterization algorithm that is largely immune to the large number of input variables that need to be quantified...
Regularization algorithms based on total least squares
DEFF Research Database (Denmark)
Hansen, Per Christian; O'Leary, Dianne P.
1996-01-01
Discretizations of inverse problems lead to systems of linear equations with a highly ill-conditioned coefficient matrix, and in order to compute stable solutions to these systems it is necessary to apply regularization methods. Classical regularization methods, such as Tikhonov's method or trunc...
Quantum cluster variational method and message passing algorithms revisited
Domínguez, E.; Mulet, Roberto
2018-02-01
We present a general framework to study quantum disordered systems in the context of the Kikuchi's cluster variational method (CVM). The method relies in the solution of message passing-like equations for single instances or in the iterative solution of complex population dynamic algorithms for an average case scenario. We first show how a standard application of the Kikuchi's CVM can be easily translated to message passing equations for specific instances of the disordered system. We then present an "ad hoc" extension of these equations to a population dynamic algorithm representing an average case scenario. At the Bethe level, these equations are equivalent to the dynamic population equations that can be derived from a proper cavity ansatz. However, at the plaquette approximation, the interpretation is more subtle and we discuss it taking also into account previous results in classical disordered models. Moreover, we develop a formalism to properly deal with the average case scenario using a replica-symmetric ansatz within this CVM for quantum disordered systems. Finally, we present and discuss numerical solutions of the different approximations for the quantum transverse Ising model and the quantum random field Ising model in two-dimensional lattices.
A Chinese text classification system based on Naive Bayes algorithm
Directory of Open Access Journals (Sweden)
Cui Wei
2016-01-01
Full Text Available In this paper, aiming at the characteristics of Chinese text classification, using the ICTCLAS(Chinese lexical analysis system of Chinese academy of sciences for document segmentation, and for data cleaning and filtering the Stop words, using the information gain and document frequency feature selection algorithm to document feature selection. Based on this, based on the Naive Bayesian algorithm implemented text classifier , and use Chinese corpus of Fudan University has carried on the experiment and analysis on the system.
Research and Implementation of Signature Detection Based on Matching Algorithm
Shi, Jie; Tang, YingJie; Chen, ShiBin
2018-03-01
Errors such as wrong signature or upside down signature occur mostly during gathering in a bookbinding production line, and affect the quality of bookbinding. This paper presents a new algorithm for signature detection to detect these errors rapidly and accurately. The algorithm constructs scale space firstly by making use of pyramid method in morphology, then creates a region of interest by selecting a appropriate Pyramid image, extracts features from regions of interest, and make them matching templates, furthermore, filters the sample image and extracts the contour, finally selects the appropriate similarity coefficient for template matching, and obtain the matching results. This algorithm is implemented with MVtec Haclon software. Experiments show that the algorithm can anti-rotation, has strong robustness. The matching accuracy is 100%, meanwhile, the low time consumption of the algorithm can meet the demand of high-speed production.
Energy conservation in Newmark based time integration algorithms
DEFF Research Database (Denmark)
Krenk, Steen
2006-01-01
Energy balance equations are established for the Newmark time integration algorithm, and for the derived algorithms with algorithmic damping introduced via averaging, the so-called a-methods. The energy balance equations form a sequence applicable to: Newmark integration of the undamped equations...... by the algorithm. The magnitude and character of these terms as well as the associated damping terms are discussed in relation to energy conservation and stability of the algorithms. It is demonstrated that the additional terms in the energy lead to periodic fluctuations of the mechanical energy and are the cause......, and that energy fluctuations take place for integration intervals close to the stability limit. (c) 2006 Elsevier B.V. All rights reserved....
Directory of Open Access Journals (Sweden)
Taimoor Zahid
2016-09-01
Full Text Available Battery energy storage management for electric vehicles (EV and hybrid EV is the most critical and enabling technology since the dawn of electric vehicle commercialization. A battery system is a complex electrochemical phenomenon whose performance degrades with age and the existence of varying material design. Moreover, it is very tedious and computationally very complex to monitor and control the internal state of a battery’s electrochemical systems. For Thevenin battery model we established a state-space model which had the advantage of simplicity and could be easily implemented and then applied the least square method to identify the battery model parameters. However, accurate state of charge (SoC estimation of a battery, which depends not only on the battery model but also on highly accurate and efficient algorithms, is considered one of the most vital and critical issue for the energy management and power distribution control of EV. In this paper three different estimation methods, i.e., extended Kalman filter (EKF, particle filter (PF and unscented Kalman Filter (UKF, are presented to estimate the SoC of LiFePO4 batteries for an electric vehicle. Battery’s experimental data, current and voltage, are analyzed to identify the Thevenin equivalent model parameters. Using different open circuit voltages the SoC is estimated and compared with respect to the estimation accuracy and initialization error recovery. The experimental results showed that these online SoC estimation methods in combination with different open circuit voltage-state of charge (OCV-SoC curves can effectively limit the error, thus guaranteeing the accuracy and robustness.
Parameter identification for structural dynamics based on interval analysis algorithm
Yang, Chen; Lu, Zixing; Yang, Zhenyu; Liang, Ke
2018-04-01
A parameter identification method using interval analysis algorithm for structural dynamics is presented in this paper. The proposed uncertain identification method is investigated by using central difference method and ARMA system. With the help of the fixed memory least square method and matrix inverse lemma, a set-membership identification technology is applied to obtain the best estimation of the identified parameters in a tight and accurate region. To overcome the lack of insufficient statistical description of the uncertain parameters, this paper treats uncertainties as non-probabilistic intervals. As long as we know the bounds of uncertainties, this algorithm can obtain not only the center estimations of parameters, but also the bounds of errors. To improve the efficiency of the proposed method, a time-saving algorithm is presented by recursive formula. At last, to verify the accuracy of the proposed method, two numerical examples are applied and evaluated by three identification criteria respectively.
Movia, A.; Beinat, A.; Crosilla, F.
2015-04-01
The recognition of vegetation by the analysis of very high resolution (VHR) aerial images provides meaningful information about environmental features; nevertheless, VHR images frequently contain shadows that generate significant problems for the classification of the image components and for the extraction of the needed information. The aim of this research is to classify, from VHR aerial images, vegetation involved in the balance process of the environmental biochemical cycle, and to discriminate it with respect to urban and agricultural features. Three classification algorithms have been experimented in order to better recognize vegetation, and compared to NDVI index; unfortunately all these methods are conditioned by the presence of shadows on the images. Literature presents several algorithms to detect and remove shadows in the scene: most of them are based on the RGB to HSI transformations. In this work some of them have been implemented and compared with one based on RGB bands. Successively, in order to remove shadows and restore brightness on the images, some innovative algorithms, based on Procrustes theory, have been implemented and applied. Among these, we evaluate the capability of the so called "not-centered oblique Procrustes" and "anisotropic Procrustes" methods to efficiently restore brightness with respect to a linear correlation correction based on the Cholesky decomposition. Some experimental results obtained by different classification methods after shadows removal carried out with the innovative algorithms are presented and discussed.
Directory of Open Access Journals (Sweden)
Mahdi Sadeghzadeh
2014-02-01
Full Text Available Genetic Algorithm is an algorithm based on population and many optimization problems are solved with this method, successfully. With increasing demand for computer attacks, security, efficient and reliable Internet has increased. Cryptographic systems have studied the science of communication is hidden, and includes two case categories including encryption, password and analysis. In this paper, several code analyses based on genetic algorithms, tabu search and simulated annealing for a permutation of encrypted text are investigated. The study also attempts to provide and to compare the performance in terms of the amount of check and control algorithms and the results are compared.
Fibonacci’s Computation Methods vs Modern Algorithms
Directory of Open Access Journals (Sweden)
Ernesto Burattini
2013-12-01
Full Text Available In this paper we discuss some computational procedures given by Leonardo Pisano Fibonacci in his famous Liber Abaci book, and we propose their translation into a modern language for computers (C ++. Among the other we describe the method of “cross” multiplication, we evaluate its computational complexity in algorithmic terms and we show the output of a C ++ code that describes the development of the method applied to the product of two integers. In a similar way we show the operations performed on fractions introduced by Fibonacci. Thanks to the possibility to reproduce on a computer, the Fibonacci’s different computational procedures, it was possible to identify some calculation errors present in the different versions of the original text.
Application of genetic algorithm method on machine maintenance
Donoriyanto, D. S.; Anam, A. S.; Pudji W, E.
2018-01-01
This study aims to determine the optimal Hell Nailing machine maintenance schedule by using Genetic Algorithm method. This method can solve the problems faced by the company that is, often the occurrence of damage at the time has not been done back treatment, this research conducted at PT. Karyamitra Budisentosa which is a company engaged in the production of producing women’s shoes with demand patterns in accordance with consumer demand. The variables used are machine maintenance optimization while the obeservation variables include data of damage time, data maintenance time, data setup machine data downtime. Data collected from interviews conducted at PT. Karyamita Budisentosa in the form of machine maintenance data. The result of this research is the optimal machine maintenance schedule in 1 year done 3 times.
A novel clustering algorithm based on quantum games
International Nuclear Information System (INIS)
Li Qiang; He Yan; Jiang Jingping
2009-01-01
Enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum game with the problem of data clustering, and then develop a quantum-game-based clustering algorithm, in which data points in a dataset are considered as players who can make decisions and implement quantum strategies in quantum games. After each round of a quantum game, each player's expected payoff is calculated. Later, he uses a link-removing-and-rewiring (LRR) function to change his neighbors and adjust the strength of links connecting to them in order to maximize his payoff. Further, algorithms are discussed and analyzed in two cases of strategies, two payoff matrixes and two LRR functions. Consequently, the simulation results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms have fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.
Random Walk Quantum Clustering Algorithm Based on Space
Xiao, Shufen; Dong, Yumin; Ma, Hongyang
2018-01-01
In the random quantum walk, which is a quantum simulation of the classical walk, data points interacted when selecting the appropriate walk strategy by taking advantage of quantum-entanglement features; thus, the results obtained when the quantum walk is used are different from those when the classical walk is adopted. A new quantum walk clustering algorithm based on space is proposed by applying the quantum walk to clustering analysis. In this algorithm, data points are viewed as walking participants, and similar data points are clustered using the walk function in the pay-off matrix according to a certain rule. The walk process is simplified by implementing a space-combining rule. The proposed algorithm is validated by a simulation test and is proved superior to existing clustering algorithms, namely, Kmeans, PCA + Kmeans, and LDA-Km. The effects of some of the parameters in the proposed algorithm on its performance are also analyzed and discussed. Specific suggestions are provided.
An Improved Direction Finding Algorithm Based on Toeplitz Approximation
Directory of Open Access Journals (Sweden)
Qing Wang
2013-01-01
Full Text Available In this paper, a novel direction of arrival (DOA estimation algorithm called the Toeplitz fourth order cumulants multiple signal classification method (TFOC-MUSIC algorithm is proposed through combining a fast MUSIC-like algorithm termed the modified fourth order cumulants MUSIC (MFOC-MUSIC algorithm and Toeplitz approximation. In the proposed algorithm, the redundant information in the cumulants is removed. Besides, the computational complexity is reduced due to the decreased dimension of the fourth-order cumulants matrix, which is equal to the number of the virtual array elements. That is, the effective array aperture of a physical array remains unchanged. However, due to finite sampling snapshots, there exists an estimation error of the reduced-rank FOC matrix and thus the capacity of DOA estimation degrades. In order to improve the estimation performance, Toeplitz approximation is introduced to recover the Toeplitz structure of the reduced-dimension FOC matrix just like the ideal one which has the Toeplitz structure possessing optimal estimated results. The theoretical formulas of the proposed algorithm are derived, and the simulations results are presented. From the simulations, in comparison with the MFOC-MUSIC algorithm, it is concluded that the TFOC-MUSIC algorithm yields an excellent performance in both spatially-white noise and in spatially-color noise environments.
A Novel Preferential Diffusion Recommendation Algorithm Based on User’s Nearest Neighbors
Directory of Open Access Journals (Sweden)
Fuguo Zhang
2017-01-01
Full Text Available Recommender system is a very efficient way to deal with the problem of information overload for online users. In recent years, network based recommendation algorithms have demonstrated much better performance than the standard collaborative filtering methods. However, most of network based algorithms do not give a high enough weight to the influence of the target user’s nearest neighbors in the resource diffusion process, while a user or an object with high degree will obtain larger influence in the standard mass diffusion algorithm. In this paper, we propose a novel preferential diffusion recommendation algorithm considering the significance of the target user’s nearest neighbors and evaluate it in the three real-world data sets: MovieLens 100k, MovieLens 1M, and Epinions. Experiments results demonstrate that the novel preferential diffusion recommendation algorithm based on user’s nearest neighbors can significantly improve the recommendation accuracy and diversity.
A High Performance Cloud-Based Protein-Ligand Docking Prediction Algorithm
Directory of Open Access Journals (Sweden)
Jui-Le Chen
2013-01-01
Full Text Available The potential of predicting druggability for a particular disease by integrating biological and computer science technologies has witnessed success in recent years. Although the computer science technologies can be used to reduce the costs of the pharmaceutical research, the computation time of the structure-based protein-ligand docking prediction is still unsatisfied until now. Hence, in this paper, a novel docking prediction algorithm, named fast cloud-based protein-ligand docking prediction algorithm (FCPLDPA, is presented to accelerate the docking prediction algorithm. The proposed algorithm works by leveraging two high-performance operators: (1 the novel migration (information exchange operator is designed specially for cloud-based environments to reduce the computation time; (2 the efficient operator is aimed at filtering out the worst search directions. Our simulation results illustrate that the proposed method outperforms the other docking algorithms compared in this paper in terms of both the computation time and the quality of the end result.
Homotopy Iteration Algorithm for Crack Parameters Identification with Composite Element Method
Directory of Open Access Journals (Sweden)
Ling Huang
2013-01-01
Full Text Available An approach based on homotopy iteration algorithm is proposed to identify the crack parameters in beam structures. In the forward problem, a fully open crack model with the composite element method is employed for the vibration analysis. The dynamic responses of the cracked beam in time domain are obtained from the Newmark direct integration method. In the inverse analysis, an identification approach based on homotopy iteration algorithm is studied to identify the location and the depth of a cracked beam. The identification equation is derived by minimizing the error between the calculated acceleration response and the simulated measured one. Newton iterative method with the homotopy equation is employed to track the correct path and improve the convergence of the crack parameters. Two numerical examples are conducted to illustrate the correctness and efficiency of the proposed method. And the effects of the influencing parameters, such as measurement time duration, measurement points, division of the homotopy parameter and measurement noise, are studied.
ANNIT - An Efficient Inversion Algorithm based on Prediction Principles
Růžek, B.; Kolář, P.
2009-04-01
Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good
Molecular dynamics algorithms for quantum Monte Carlo methods
Miura, Shinichi
2009-11-01
In the present Letter, novel molecular dynamics methods compatible with corresponding quantum Monte Carlo methods are developed. One is a variational molecular dynamics method that is a molecular dynamics analog of quantum variational Monte Carlo method. The other is a variational path integral molecular dynamics method, which is based on the path integral molecular dynamics method for finite temperature systems by Tuckerman et al. [M. Tuckerman, B.J. Berne, G.J. Martyna, M.L. Klein, J. Chem. Phys. 99 (1993) 2796]. These methods are applied to model systems including the liquid helium-4, demonstrated to work satisfactorily for the tested ground state calculations.
DEFF Research Database (Denmark)
Rubæk, Tonny; Meaney, P. M.; Meincke, Peter
2007-01-01
Breast-cancer screening using microwave imaging is emerging as a new promising technique as a supplement to X-ray mammography. To create tomographic images from microwave measurements, it is necessary to solve a nonlinear inversion problem, for which an algorithm based on the iterative Gauss-Newton...... method has been developed at Dartmouth College. This algorithm determines the update values at each iteration by solving the set of normal equations of the problem using the Tikhonov algorithm. In this paper, a new algorithm for determining the iteration update values in the Gauss-Newton algorithm...... algorithm is compared to the Gauss-Newton algorithm with Tikhonov regularization and is shown to reconstruct images of similar quality using fewer iterations....
Model-based fault diagnosis techniques design schemes, algorithms, and tools
Ding, Steven
2008-01-01
The objective of this book is to introduce basic model-based FDI schemes, advanced analysis and design algorithms, and the needed mathematical and control theory tools at a level for graduate students and researchers as well as for engineers. This is a textbook with extensive examples and references. Most methods are given in the form of an algorithm that enables a direct implementation in a programme. Comparisons among different methods are included when possible.
Indian Academy of Sciences (India)
algorithms such as synthetic (polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language ... ·1 x:=sln(theta) x : = sm(theta) 1. ~. Idl d.t Read A.B,C. ~ lei ~ Print x.y.z. L;;;J. Figure 2 Symbols used In flowchart language to rep- resent Assignment, Read.
Indian Academy of Sciences (India)
In the previous articles, we have discussed various common data-structures such as arrays, lists, queues and trees and illustrated the widely used algorithm design paradigm referred to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted ...
Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
International Nuclear Information System (INIS)
Liu, Hui; Tian, Hong-qi; Li, Yan-fei; Zhang, Lei
2015-01-01
Highlights: • Four hybrid algorithms are proposed for the wind speed decomposition. • Adaboost algorithm is adopted to provide a hybrid training framework. • MLP neural networks are built to do the forecasting computation. • Four important network training algorithms are included in the MLP networks. • All the proposed hybrid algorithms are suitable for the wind speed predictions. - Abstract: The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are proposed for the high-precision multi-step wind speed predictions based on the Adaboost (Adaptive Boosting) algorithm and the MLP (Multilayer Perceptron) neural networks. In the hybrid Adaboost–MLP forecasting architecture, four important algorithms are adopted for the training and modeling of the MLP neural networks, including GD-ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm and BFGS algorithm. The aim of the study is to investigate the promoted forecasting percentages of the MLP neural networks by the Adaboost algorithm’ optimization under various training algorithms. The hybrid models in the performance comparison include Adaboost–GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results show that: (1) the proposed hybrid Adaboost–MLP forecasting architecture is effective for the wind speed predictions; (2) the Adaboost algorithm has promoted the forecasting performance of the MLP neural networks considerably; (3) among the proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-FR–MLP model has the best performance; and (4) the improved percentages of the MLP neural networks by the Adaboost algorithm decrease step by step with the following sequence of training algorithms as: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS
An AK-LDMeans algorithm based on image clustering
Chen, Huimin; Li, Xingwei; Zhang, Yongbin; Chen, Nan
2018-03-01
Clustering is an effective analytical technique for handling unmarked data for value mining. Its ultimate goal is to mark unclassified data quickly and correctly. We use the roadmap for the current image processing as the experimental background. In this paper, we propose an AK-LDMeans algorithm to automatically lock the K value by designing the Kcost fold line, and then use the long-distance high-density method to select the clustering centers to further replace the traditional initial clustering center selection method, which further improves the efficiency and accuracy of the traditional K-Means Algorithm. And the experimental results are compared with the current clustering algorithm and the results are obtained. The algorithm can provide effective reference value in the fields of image processing, machine vision and data mining.
A Constrained Algorithm Based NMFα for Image Representation
Directory of Open Access Journals (Sweden)
Chenxue Yang
2014-01-01
Full Text Available Nonnegative matrix factorization (NMF is a useful tool in learning a basic representation of image data. However, its performance and applicability in real scenarios are limited because of the lack of image information. In this paper, we propose a constrained matrix decomposition algorithm for image representation which contains parameters associated with the characteristics of image data sets. Particularly, we impose label information as additional hard constraints to the α-divergence-NMF unsupervised learning algorithm. The resulted algorithm is derived by using Karush-Kuhn-Tucker (KKT conditions as well as the projected gradient and its monotonic local convergence is proved by using auxiliary functions. In addition, we provide a method to select the parameters to our semisupervised matrix decomposition algorithm in the experiment. Compared with the state-of-the-art approaches, our method with the parameters has the best classification accuracy on three image data sets.
Learning algorithms for feedforward networks based on finite samples
Energy Technology Data Exchange (ETDEWEB)
Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M.; Iyengar, S.S.
1994-09-01
Two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by feedforward networks, are discussed. The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can be directly adapted to concept learning problems.
A multicore based parallel image registration method.
Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L; Foran, David J
2009-01-01
Image registration is a crucial step for many image-assisted clinical applications such as surgery planning and treatment evaluation. In this paper we proposed a landmark based nonlinear image registration algorithm for matching 2D image pairs. The algorithm was shown to be effective and robust under conditions of large deformations. In landmark based registration, the most important step is establishing the correspondence among the selected landmark points. This usually requires an extensive search which is often computationally expensive. We introduced a nonregular data partition algorithm using the K-means clustering algorithm to group the landmarks based on the number of available processing cores. The step optimizes the memory usage and data transfer. We have tested our method using IBM Cell Broadband Engine (Cell/B.E.) platform.
Genetic Algorithm-Based Identification of Fractional-Order Systems
Directory of Open Access Journals (Sweden)
Shengxi Zhou
2013-05-01
Full Text Available Fractional calculus has become an increasingly popular tool for modeling the complex behaviors of physical systems from diverse domains. One of the key issues to apply fractional calculus to engineering problems is to achieve the parameter identification of fractional-order systems. A time-domain identification algorithm based on a genetic algorithm (GA is proposed in this paper. The multi-variable parameter identification is converted into a parameter optimization by applying GA to the identification of fractional-order systems. To evaluate the identification accuracy and stability, the time-domain output error considering the condition variation is designed as the fitness function for parameter optimization. The identification process is established under various noise levels and excitation levels. The effects of external excitation and the noise level on the identification accuracy are analyzed in detail. The simulation results show that the proposed method could identify the parameters of both commensurate rate and non-commensurate rate fractional-order systems from the data with noise. It is also observed that excitation signal is an important factor influencing the identification accuracy of fractional-order systems.
2D-3D Face Recognition Method Basedon a Modified CCA-PCA Algorithm
Directory of Open Access Journals (Sweden)
Patrik Kamencay
2014-03-01
Full Text Available This paper presents a proposed methodology for face recognition based on an information theory approach to coding and decoding face images. In this paper, we propose a 2D-3D face-matching method based on a principal component analysis (PCA algorithm using canonical correlation analysis (CCA to learn the mapping between a 2D face image and 3D face data. This method makes it possible to match a 2D face image with enrolled 3D face data. Our proposed fusion algorithm is based on the PCA method, which is applied to extract base features. PCA feature-level fusion requires the extraction of different features from the source data before features are merged together. Experimental results on the TEXAS face image database have shown that the classification and recognition results based on the modified CCA-PCA method are superior to those based on the CCA method. Testing the 2D-3D face match results gave a recognition rate for the CCA method of a quite poor 55% while the modified CCA method based on PCA-level fusion achieved a very good recognition score of 85%.
The guitar chord-generating algorithm based on complex network
Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais
2016-02-01
This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.
AdaBoost-based algorithm for network intrusion detection.
Hu, Weiming; Hu, Wei; Maybank, Steve
2008-04-01
Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.
A Flocking Based algorithm for Document Clustering Analysis
Energy Technology Data Exchange (ETDEWEB)
Cui, Xiaohui [ORNL; Gao, Jinzhu [ORNL; Potok, Thomas E [ORNL
2006-01-01
Social animals or insects in nature often exhibit a form of emergent collective behavior known as flocking. In this paper, we present a novel Flocking based approach for document clustering analysis. Our Flocking clustering algorithm uses stochastic and heuristic principles discovered from observing bird flocks or fish schools. Unlike other partition clustering algorithm such as K-means, the Flocking based algorithm does not require initial partitional seeds. The algorithm generates a clustering of a given set of data through the embedding of the high-dimensional data items on a two-dimensional grid for easy clustering result retrieval and visualization. Inspired by the self-organized behavior of bird flocks, we represent each document object with a flock boid. The simple local rules followed by each flock boid result in the entire document flock generating complex global behaviors, which eventually result in a clustering of the documents. We evaluate the efficiency of our algorithm with both a synthetic dataset and a real document collection that includes 100 news articles collected from the Internet. Our results show that the Flocking clustering algorithm achieves better performance compared to the K- means and the Ant clustering algorithm for real document clustering.
IR and visual image registration based on mutual information and PSO-Powell algorithm
Zhuang, Youwen; Gao, Kun; Miu, Xianghu
2014-11-01
Infrared and visual image registration has a wide application in the fields of remote sensing and military. Mutual information (MI) has proved effective and successful in infrared and visual image registration process. To find the most appropriate registration parameters, optimal algorithms, such as Particle Swarm Optimization (PSO) algorithm or Powell search method, are often used. The PSO algorithm has strong global search ability and search speed is fast at the beginning, while the weakness is low search performance in late search stage. In image registration process, it often takes a lot of time to do useless search and solution's precision is low. Powell search method has strong local search ability. However, the search performance and time is more sensitive to initial values. In image registration, it is often obstructed by local maximum and gets wrong results. In this paper, a novel hybrid algorithm, which combined PSO algorithm and Powell search method, is proposed. It combines both advantages that avoiding obstruction caused by local maximum and having higher precision. Firstly, using PSO algorithm gets a registration parameter which is close to global minimum. Based on the result in last stage, the Powell search method is used to find more precision registration parameter. The experimental result shows that the algorithm can effectively correct the scale, rotation and translation additional optimal algorithm. It can be a good solution to register infrared difference of two images and has a greater performance on time and precision than traditional and visible images.
Heuristic-based scheduling algorithm for high level synthesis
Mohamed, Gulam; Tan, Han-Ngee; Chng, Chew-Lye
1992-01-01
A new scheduling algorithm is proposed which uses a combination of a resource utilization chart, a heuristic algorithm to estimate the minimum number of hardware units based on operator mobilities, and a list-scheduling technique to achieve fast and near optimal schedules. The schedule time of this algorithm is almost independent of the length of mobilities of operators as can be seen from the benchmark example (fifth order digital elliptical wave filter) presented when the cycle time was increased from 17 to 18 and then to 21 cycles. It is implemented in C on a SUN3/60 workstation.
Restart-Based Genetic Algorithm for the Quadratic Assignment Problem
Misevicius, Alfonsas
The power of genetic algorithms (GAs) has been demonstrated for various domains of the computer science, including combinatorial optimization. In this paper, we propose a new conceptual modification of the genetic algorithm entitled a "restart-based genetic algorithm" (RGA). An effective implementation of RGA for a well-known combinatorial optimization problem, the quadratic assignment problem (QAP), is discussed. The results obtained from the computational experiments on the QAP instances from the publicly available library QAPLIB show excellent performance of RGA. This is especially true for the real-life like QAPs.
Device to device power control algorithm based on interference alignment
Directory of Open Access Journals (Sweden)
WANG Zhen
2016-04-01
Full Text Available In this paper,we present a power control algorithm based on interference alignment (IA for device to device(D2D network.The algorithm provides the opportunity for all D2D Links to share the available subcarriers simultaneously using IA technique.Besides,it controls the power budget of each D2D pair in order to maximize the sum-rate of the system without inducing excessive interference to cellular users(CU.Simulations show that the proposed power control algorithm achieves a significant sum-rate increase up to 6 bit·s-1·Hz-1 when the interference treshold is 10 dBm,which is compared with traditional prower control algorithm based on frequency division multiple access(FDMA.
Visual Perception Based Rate Control Algorithm for HEVC
Feng, Zeqi; Liu, PengYu; Jia, Kebin
2018-01-01
For HEVC, rate control is an indispensably important video coding technology to alleviate the contradiction between video quality and the limited encoding resources during video communication. However, the rate control benchmark algorithm of HEVC ignores subjective visual perception. For key focus regions, bit allocation of LCU is not ideal and subjective quality is unsatisfied. In this paper, a visual perception based rate control algorithm for HEVC is proposed. First bit allocation weight of LCU level is optimized based on the visual perception of luminance and motion to ameliorate video subjective quality. Then λ and QP are adjusted in combination with the bit allocation weight to improve rate distortion performance. Experimental results show that the proposed algorithm reduces average 0.5% BD-BR and maximum 1.09% BD-BR at no cost in bitrate accuracy compared with HEVC (HM15.0). The proposed algorithm devotes to improving video subjective quality under various video applications.
Validation of Agent Based Distillation Movement Algorithms
National Research Council Canada - National Science Library
Gill, Andrew
2003-01-01
Agent based distillations (ABD) are low-resolution abstract models, which can be used to explore questions associated with land combat operations in a short period of time Movement of agents within the EINSTein and MANA ABDs...
Sensor Saturation Compensated Smoothing Algorithm for Inertial Sensor Based Motion Tracking
Directory of Open Access Journals (Sweden)
Quoc Khanh Dang
2014-05-01
Full Text Available In this paper, a smoothing algorithm for compensating inertial sensor saturation is proposed. The sensor saturation happens when a sensor measures a value that is larger than its dynamic range. This can lead to a considerable accumulated error. To compensate the lost information in saturated sensor data, we propose a smoothing algorithm in which the saturation compensation is formulated as an optimization problem. Based on a standard smoothing algorithm with zero velocity intervals, two saturation estimation methods were proposed. Simulation and experiments prove that the proposed methods are effective in compensating the sensor saturation.
A quantitative measure based infrared image enhancement algorithm using plateau histogram
Lai, Rui; Yang, Yin-tang; Wang, Bing-jian; Zhou, Hui-xin
2010-11-01
A quantitative measure based scene-adaptive contrast enhancement algorithm for an infrared (IR) image is proposed. This method regulates the probability density function (PDF) of the raw image firstly, and then applies an improved plateau histogram equalization method whose plateau threshold is determined by the concavity of the regulated PDF to enhance the raw IR image. In the stepped parameter tuning process of the algorithm, quantitative measure EME is used as the criterion to determine the optimal PDF regulator factor and plateau threshold. The above improvements contribute to the performance promotion of the proposed algorithm, whose effectiveness is validated by the final assessment with visual quality and quantitative measures.
Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm
Zhang, Runmei; Wu, Yulu; Zhang, Guangbin; Zhou, Wei; Tao, Yuqian
2018-03-01
In view of the current point cloud registration software has high hardware requirements, heavy workload and moltiple interactive definition, the source of software with better processing effect is not open, a two--step registration method based on normal vector distribution feature and coarse feature based iterative closest point (ICP) algorithm is proposed in this paper. This method combines fast point feature histogram (FPFH) algorithm, define the adjacency region of point cloud and the calculation model of the distribution of normal vectors, setting up the local coordinate system for each key point, and obtaining the transformation matrix to finish rough registration, the rough registration results of two stations are accurately registered by using the ICP algorithm. Experimental results show that, compared with the traditional ICP algorithm, the method used in this paper has obvious time and precision advantages for large amount of point clouds.
A Sustainable City Planning Algorithm Based on TLBO and Local Search
Zhang, Ke; Lin, Li; Huang, Xuanxuan; Liu, Yiming; Zhang, Yonggang
2017-09-01
Nowadays, how to design a city with more sustainable features has become a center problem in the field of social development, meanwhile it has provided a broad stage for the application of artificial intelligence theories and methods. Because the design of sustainable city is essentially a constraint optimization problem, the swarm intelligence algorithm of extensive research has become a natural candidate for solving the problem. TLBO (Teaching-Learning-Based Optimization) algorithm is a new swarm intelligence algorithm. Its inspiration comes from the “teaching” and “learning” behavior of teaching class in the life. The evolution of the population is realized by simulating the “teaching” of the teacher and the student “learning” from each other, with features of less parameters, efficient, simple thinking, easy to achieve and so on. It has been successfully applied to scheduling, planning, configuration and other fields, which achieved a good effect and has been paid more and more attention by artificial intelligence researchers. Based on the classical TLBO algorithm, we propose a TLBO_LS algorithm combined with local search. We design and implement the random generation algorithm and evaluation model of urban planning problem. The experiments on the small and medium-sized random generation problem showed that our proposed algorithm has obvious advantages over DE algorithm and classical TLBO algorithm in terms of convergence speed and solution quality.
Genetic Algorithm-based Affine Parameter Estimation for Shape Recognition
Directory of Open Access Journals (Sweden)
Yuxing Mao
2014-06-01
Full Text Available Shape recognition is a classically difficult problem because of the affine transformation between two shapes. The current study proposes an affine parameter estimation method for shape recognition based on a genetic algorithm (GA. The contributions of this study are focused on the extraction of affine-invariant features, the individual encoding scheme, and the fitness function construction policy for a GA. First, the affine-invariant characteristics of the centroid distance ratios (CDRs of any two opposite contour points to the barycentre are analysed. Using different intervals along the azimuth angle, the different numbers of CDRs of two candidate shapes are computed as representations of the shapes, respectively. Then, the CDRs are selected based on predesigned affine parameters to construct the fitness function. After that, a GA is used to search for the affine parameters with optimal matching between candidate shapes, which serve as actual descriptions of the affine transformation between the shapes. Finally, the CDRs are resampled based on the estimated parameters to evaluate the similarity of the shapes for classification. The experimental results demonstrate the robust performance of the proposed method in shape recognition with translation, scaling, rotation and distortion.
An Automated Energy Detection Algorithm Based on Consecutive Mean Excision
2018-01-01
ARL-TR-8268 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Consecutive Mean Excision...not return it to the originator. ARL-TR-8268 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm...2018 2. REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy
Algorithmic Algebraic Combinatorics and Gröbner Bases
Klin, Mikhail; Jurisic, Aleksandar
2009-01-01
This collection of tutorial and research papers introduces readers to diverse areas of modern pure and applied algebraic combinatorics and finite geometries with a special emphasis on algorithmic aspects and the use of the theory of Grobner bases. Topics covered include coherent configurations, association schemes, permutation groups, Latin squares, the Jacobian conjecture, mathematical chemistry, extremal combinatorics, coding theory, designs, etc. Special attention is paid to the description of innovative practical algorithms and their implementation in software packages such as GAP and MAGM
The Research and Application of SURF Algorithm Based on Feature Point Selection Algorithm
Directory of Open Access Journals (Sweden)
Zhang Fang Hu
2014-04-01
Full Text Available As the pixel information of depth image is derived from the distance information, when implementing SURF algorithm with KINECT sensor for static sign language recognition, there can be some mismatched pairs in palm area. This paper proposes a feature point selection algorithm, by filtering the SURF feature points step by step based on the number of feature points within adaptive radius r and the distance between the two points, it not only greatly improves the recognition rate, but also ensures the robustness under the environmental factors, such as skin color, illumination intensity, complex background, angle and scale changes. The experiment results show that the improved SURF algorithm can effectively improve the recognition rate, has a good robustness.
A Modified MinMaxk-Means Algorithm Based on PSO.
Wang, Xiaoyan; Bai, Yanping
The MinMax k -means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k -means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k -means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k -means algorithm and the original MinMax k -means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically.
Three-dimensional particle tracking velocimetry algorithm based on tetrahedron vote
Cui, Yutong; Zhang, Yang; Jia, Pan; Wang, Yuan; Huang, Jingcong; Cui, Junlei; Lai, Wing T.
2018-02-01
A particle tracking velocimetry algorithm based on tetrahedron vote, which is named TV-PTV, is proposed to overcome the limited selection problem of effective algorithms for 3D flow visualisation. In this new cluster-matching algorithm, tetrahedrons produced by the Delaunay tessellation are used as the basic units for inter-frame matching, which results in a simple algorithmic structure of only two independent preset parameters. Test results obtained using the synthetic test image data from the Visualisation Society of Japan show that TV-PTV presents accuracy comparable to that of the classical algorithm based on new relaxation method (NRX). Compared with NRX, TV-PTV possesses a smaller number of loops in programming and thus a shorter computing time, especially for large particle displacements and high particle concentration. TV-PTV is confirmed practically effective using an actual 3D wake flow.
Guo, Y C; Wang, H; Wu, H P; Zhang, M Q
2015-12-21
Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.
A Total Variation Regularization Based Super-Resolution Reconstruction Algorithm for Digital Video
Directory of Open Access Journals (Sweden)
Zhang Liangpei
2007-01-01
Full Text Available Super-resolution (SR reconstruction technique is capable of producing a high-resolution image from a sequence of low-resolution images. In this paper, we study an efficient SR algorithm for digital video. To effectively deal with the intractable problems in SR video reconstruction, such as inevitable motion estimation errors, noise, blurring, missing regions, and compression artifacts, the total variation (TV regularization is employed in the reconstruction model. We use the fixed-point iteration method and preconditioning techniques to efficiently solve the associated nonlinear Euler-Lagrange equations of the corresponding variational problem in SR. The proposed algorithm has been tested in several cases of motion and degradation. It is also compared with the Laplacian regularization-based SR algorithm and other TV-based SR algorithms. Experimental results are presented to illustrate the effectiveness of the proposed algorithm.
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem
Directory of Open Access Journals (Sweden)
Shi-hua Zhan
2016-01-01
Full Text Available Simulated annealing (SA algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters’ setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA algorithm to solve traveling salesman problem (TSP. LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.
Fuzzy logic-based diagnostic algorithm for implantable cardioverter defibrillators.
Bárdossy, András; Blinowska, Aleksandra; Kuzmicz, Wieslaw; Ollitrault, Jacky; Lewandowski, Michał; Przybylski, Andrzej; Jaworski, Zbigniew
2014-02-01
The paper presents a diagnostic algorithm for classifying cardiac tachyarrhythmias for implantable cardioverter defibrillators (ICDs). The main aim was to develop an algorithm that could reduce the rate of occurrence of inappropriate therapies, which are often observed in existing ICDs. To achieve low energy consumption, which is a critical factor for implantable medical devices, very low computational complexity of the algorithm was crucial. The study describes and validates such an algorithm and estimates its clinical value. The algorithm was based on the heart rate variability (HRV) analysis. The input data for our algorithm were: RR-interval (I), as extracted from raw intracardiac electrogram (EGM), and in addition two other features of HRV called here onset (ONS) and instability (INST). 6 diagnostic categories were considered: ventricular fibrillation (VF), ventricular tachycardia (VT), sinus tachycardia (ST), detection artifacts and irregularities (including extrasystoles) (DAI), atrial tachyarrhythmias (ATF) and no tachycardia (i.e. normal sinus rhythm) (NT). The initial set of fuzzy rules based on the distributions of I, ONS and INST in the 6 categories was optimized by means of a software tool for automatic rule assessment using simulated annealing. A training data set with 74 EGM recordings was used during optimization, and the algorithm was validated with a validation data set with 58 EGM recordings. Real life recordings stored in defibrillator memories were used. Additionally the algorithm was tested on 2 sets of recordings from the PhysioBank databases: MIT-BIH Arrhythmia Database and MIT-BIH Supraventricular Arrhythmia Database. A custom CMOS integrated circuit implementing the diagnostic algorithm was designed in order to estimate the power consumption. A dedicated Web site, which provides public online access to the algorithm, has been created and is available for testing it. The total number of events in our training and validation sets was 132. In
Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter
2017-10-01
A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.
A Modified Rife Algorithm for Off-Grid DOA Estimation Based on Sparse Representations.
Chen, Tao; Wu, Huanxin; Guo, Limin; Liu, Lutao
2015-11-24
In this paper we address the problem of off-grid direction of arrival (DOA) estimation based on sparse representations in the situation of multiple measurement vectors (MMV). A novel sparse DOA estimation method which changes MMV problem to SMV is proposed. This method uses sparse representations based on weighted eigenvectors (SRBWEV) to deal with the MMV problem. MMV problem can be changed to single measurement vector (SMV) problem by using the linear combination of eigenvectors of array covariance matrix in signal subspace as a new SMV for sparse solution calculation. So the complexity of this proposed algorithm is smaller than other DOA estimation algorithms of MMV. Meanwhile, it can overcome the limitation of the conventional sparsity-based DOA estimation approaches that the unknown directions belong to a predefined discrete angular grid, so it can further improve the DOA estimation accuracy. The modified Rife algorithm for DOA estimation (MRife-DOA) is simulated based on SRBWEV algorithm. In this proposed algorithm, the largest and sub-largest inner products between the measurement vector or its residual and the atoms in the dictionary are utilized to further modify DOA estimation according to the principle of Rife algorithm and the basic idea of coarse-to-fine estimation. Finally, simulation experiments show that the proposed algorithm is effective and can reduce the DOA estimation error caused by grid effect with lower complexity.
An Adaptive Connectivity-based Centroid Algorithm for Node Positioning in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Aries Pratiarso
2015-06-01
Full Text Available In wireless sensor network applications, the position of nodes is randomly distributed following the contour of the observation area. A simple solution without any measurement tools is provided by range-free method. However, this method yields the coarse estimating position of the nodes. In this paper, we propose Adaptive Connectivity-based (ACC algorithm. This algorithm is a combination of Centroid as range-free based algorithm, and hop-based connectivity algorithm. Nodes have a possibility to estimate their own position based on the connectivity level between them and their reference nodes. Each node divides its communication range into several regions where each of them has a certain weight depends on the received signal strength. The weighted value is used to obtain the estimated position of nodes. Simulation result shows that the proposed algorithm has up to 3 meter error of estimated position on 100x100 square meter observation area, and up to 3 hop counts for 80 meters' communication range. The proposed algorithm performs an average error positioning up to 10 meters better than Weighted Centroid algorithm. Keywords: adaptive, connectivity, centroid, range-free.
Approximation Algorithms for Model-Based Diagnosis
Feldman, A.B.
2010-01-01
Model-based diagnosis is an area of abductive inference that uses a system model, together with observations about system behavior, to isolate sets of faulty components (diagnoses) that explain the observed behavior, according to some minimality criterion. This thesis presents greedy approximation
A new recontruction algorithm for use with capacitance-based tomography
Directory of Open Access Journals (Sweden)
Ø. Isaksen
1994-01-01
Full Text Available A new reconstruction algorithm for use with capacitance-based process tomography is proposed. A numerical simulator, capable of calculating the capacitances for a particular sensor configuration and flow regime is used together with a parameter representation of the dielectric distribution and an optimization algorithm. The algorithm calculates these parameters and hence the dielectric distribution, by minimizing a function defined as a weighted sum of square differences between the measured and estimated capacitances. The method is tested by using both synthetic and experimental data, and the results are compared with results from the commonly used Linear Back Projection (LBP algorithm. The method is capable of obtaining the correct parameter values for all the flow regimes tested, and does provide a better estimate than the LBP method. The method proves to be very promising, and is a step towards quantitative capacitance tomography.
Schwarz-based algorithms for compressible flows
Energy Technology Data Exchange (ETDEWEB)
Tidriri, M.D. [ICASE, Hampton, VA (United States)
1996-12-31
To compute steady compressible flows one often uses an implicit discretization approach which leads to a large sparse linear system that must be solved at each time step. In the derivation of this system one often uses a defect-correction procedure, in which the left-hand side of the system is discretized with a lower order approximation than that used for the right-hand side. This is due to storage considerations and computational complexity, and also to the fact that the resulting lower order matrix is better conditioned than the higher order matrix. The resulting schemes are only moderately implicit. In the case of structured, body-fitted grids, the linear system can easily be solved using approximate factorization (AF), which is among the most widely used methods for such grids. However, for unstructured grids, such techniques are no longer valid, and the system is solved using direct or iterative techniques. Because of the prohibitive computational costs and large memory requirements for the solution of compressible flows, iterative methods are preferred. In these defect-correction methods, which are implemented in most CFD computer codes, the mismatch in the right and left hand side operators, together with explicit treatment of the boundary conditions, lead to a severely limited CFL number, which results in a slow convergence to steady state aerodynamic solutions. Many authors have tried to replace explicit boundary conditions with implicit ones. Although they clearly demonstrate that high CFL numbers are possible, the reduction in CPU time is not clear cut.
Compressive Sensing Image Fusion Based on Particle Swarm Optimization Algorithm
Li, X.; Lv, J.; Jiang, S.; Zhou, H.
2017-09-01
In order to solve the problem that the spatial matching is difficult and the spectral distortion is large in traditional pixel-level image fusion algorithm. We propose a new method of image fusion that utilizes HIS transformation and the recently developed theory of compressive sensing that is called HIS-CS image fusion. In this algorithm, the particle swarm optimization algorithm is used to select the fusion coefficient ω. In the iterative process, the image fusion coefficient ω is taken as particle, and the optimal value is obtained by combining the optimal objective function. Then we use the compression-aware weighted fusion algorithm for remote sensing image fusion, taking the coefficient ω as the weight value. The algorithm ensures the optimal selection of fusion effect with a certain degree of self-adaptability. To evaluate the fused images, this paper uses five kinds of index parameters such as Entropy, Standard Deviation, Average Gradient, Degree of Distortion and Peak Signal-to-Noise Ratio. The experimental results show that the image fusion effect of the algorithm in this paper is better than that of traditional methods.
Davey, Neil S.; Godil, Haris
2013-05-01
This article presents a comparative study between a well-known SLAM (Simultaneous Localization and Mapping) algorithm, called Gmapping, and a standard Dead-Reckoning algorithm; the study is based on experimental results of both approaches by using a commercial skid-based turning robot, P3DX. Five main base-case scenarios are conducted to evaluate and test the effectiveness of both algorithms. The results show that SLAM outperformed the Dead Reckoning in terms of map-making accuracy in all scenarios but one, since SLAM did not work well in a rapidly changing environment. Although the main conclusion about the excellence of SLAM is not surprising, the presented test method is valuable to professionals working in this area of mobile robots, as it is highly practical, and provides solid and valuable results. The novelty of this study lies in its simplicity. The simple but novel test method for quantitatively comparing robot mapping algorithms using SLAM and Dead Reckoning and some applications using autonomous robots are being patented by the authors in U.S. Patent Application Nos. 13/400,726 and 13/584,862.
An efficient non-dominated sorting method for evolutionary algorithms.
Fang, Hongbing; Wang, Qian; Tu, Yi-Cheng; Horstemeyer, Mark F
2008-01-01
We present a new non-dominated sorting algorithm to generate the non-dominated fronts in multi-objective optimization with evolutionary algorithms, particularly the NSGA-II. The non-dominated sorting algorithm used by NSGA-II has a time complexity of O(MN(2)) in generating non-dominated fronts in one generation (iteration) for a population size N and M objective functions. Since generating non-dominated fronts takes the majority of total computational time (excluding the cost of fitness evaluations) of NSGA-II, making this algorithm faster will significantly improve the overall efficiency of NSGA-II and other genetic algorithms using non-dominated sorting. The new non-dominated sorting algorithm proposed in this study reduces the number of redundant comparisons existing in the algorithm of NSGA-II by recording the dominance information among solutions from their first comparisons. By utilizing a new data structure called the dominance tree and the divide-and-conquer mechanism, the new algorithm is faster than NSGA-II for different numbers of objective functions. Although the number of solution comparisons by the proposed algorithm is close to that of NSGA-II when the number of objectives becomes large, the total computational time shows that the proposed algorithm still has better efficiency because of the adoption of the dominance tree structure and the divide-and-conquer mechanism.
Designers' Cognitive Thinking Based on Evolutionary Algorithms
Zhang Shutao; Jianning Su; Chibing Hu; Peng Wang
2013-01-01
The research on cognitive thinking is important to construct the efficient intelligent design systems. But it is difficult to describe the model of cognitive thinking with reasonable mathematical theory. Based on the analysis of design strategy and innovative thinking, we investigated the design cognitive thinking model that included the external guide thinking of "width priority - depth priority" and the internal dominated thinking of "divergent thinking - convergent thinking", built a reaso...
Parameters Identification of Photovoltaic Cells Based on Differential Evolution Algorithm
Directory of Open Access Journals (Sweden)
Liao Hui
2016-01-01
Full Text Available For the complex nonlinear model of photovoltaic cells, traditional evolution strategy is easy to fall into the local optimal and its identification time is too long when taking parameters identification, then the difference algorithm is proposed in this study, which is to solve the problems of parameter identification in photovoltaic cell model, where it is very difficult to achieve with other identification algorithms. In this method, the random data is selected as the initial generation; the successful evolution to the next generation is done through a certain strategy of difference algorithm, which can achieve the effective identification of control parameters. It is proved that the method has a good global optimization and the fast convergence ability, and the simulation results are shown that the differential evolution has high identification ability and it is an effective method to identify the parameters of photovoltaic cells, where the photovoltaic cells can be widely used in other places with these parameters.
Research on machine learning framework based on random forest algorithm
Ren, Qiong; Cheng, Hui; Han, Hai
2017-03-01
With the continuous development of machine learning, industry and academia have released a lot of machine learning frameworks based on distributed computing platform, and have been widely used. However, the existing framework of machine learning is limited by the limitations of machine learning algorithm itself, such as the choice of parameters and the interference of noises, the high using threshold and so on. This paper introduces the research background of machine learning framework, and combined with the commonly used random forest algorithm in machine learning classification algorithm, puts forward the research objectives and content, proposes an improved adaptive random forest algorithm (referred to as ARF), and on the basis of ARF, designs and implements the machine learning framework.
Quantum Image Encryption Algorithm Based on Image Correlation Decomposition
Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun
2015-02-01
A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.
A particle tracking velocimetry algorithm based on the Voronoi diagram
Zhang, Yang; Wang, Yuan; Yang, Bin; He, Wenbo
2015-07-01
Particle tracking velocimetry (PTV) algorithms have great applications in tracking discrete particles across successive images. In managing complex flows, classic PTV algorithms typically follow delicate concepts that may lead to a higher risk of disturbance caused by the parameter settings. To avoid such a ‘closure problem’, a PTV algorithm based on the Voronoi diagram (VD-PTV) is developed. This algorithm has a simple structure, as it is designed to possess only one controlling parameter. The VD-PTV is tested using two types of synthetic flows. The result shows that the VD-PTV exhibits a stable performance with good accuracy level and is independent of parameter pre-setting. Moreover, the VD-PTV demonstrates satisfactory computing speed.
Target Image Matching Algorithm Based on Binocular CCD Ranging
Directory of Open Access Journals (Sweden)
Dongming Li
2014-01-01
Full Text Available This paper proposed target image in a subpixel level matching algorithm for binocular CCD ranging, which is based on the principle of binocular CCD ranging. In the paper, firstly, we introduced the ranging principle of the binocular ranging system and deduced a binocular parallax formula. Secondly, we deduced the algorithm which was named improved cross-correlation matching algorithm and cubic surface fitting algorithm for target images matched, and it could achieve a subpixel level matching for binocular CCD ranging images. Lastly, through experiment we have analyzed and verified the actual CCD ranging images, then analyzed the errors of the experimental results and corrected the formula of calculating system errors. Experimental results showed that the actual measurement accuracy of a target within 3 km was higher than 0.52%, which meet the accuracy requirements of the high precision binocular ranging.
Clustering Multiple Sclerosis Subgroups with Multifractal Methods and Self-Organizing Map Algorithm
Karaca, Yeliz; Cattani, Carlo
Magnetic resonance imaging (MRI) is the most sensitive method to detect chronic nervous system diseases such as multiple sclerosis (MS). In this paper, Brownian motion Hölder regularity functions (polynomial, periodic (sine), exponential) for 2D image, such as multifractal methods were applied to MR brain images, aiming to easily identify distressed regions, in MS patients. With these regions, we have proposed an MS classification based on the multifractal method by using the Self-Organizing Map (SOM) algorithm. Thus, we obtained a cluster analysis by identifying pixels from distressed regions in MR images through multifractal methods and by diagnosing subgroups of MS patients through artificial neural networks.
Plagiarism Detection Based on SCAM Algorithm
DEFF Research Database (Denmark)
Anzelmi, Daniele; Carlone, Domenico; Rizzello, Fabio
2011-01-01
Plagiarism is a complex problem and considered one of the biggest in publishing of scientific, engineering and other types of documents. Plagiarism has also increased with the widespread use of the Internet as large amount of digital data is available. Plagiarism is not just direct copy but also...... paraphrasing, rewording, adapting parts, missing references or wrong citations. This makes the problem more difficult to handle adequately. Plagiarism detection techniques are applied by making a distinction between natural and programming languages. Our proposed detection process is based on natural language...... document. Our plagiarism detection system, like many Information Retrieval systems, is evaluated with metrics of precision and recall....
Gamshadzaei, Mohammad Hossein; Rahimzadegan, Majid
2017-10-01
Identification of water extents in Landsat images is challenging due to surfaces with similar reflectance to water extents. The objective of this study is to provide stable and accurate methods for identifying water extents in Landsat images based on meta-heuristic algorithms. Then, seven Landsat images were selected from various environmental regions in Iran. Training of the algorithms was performed using 40 water pixels and 40 nonwater pixels in operational land imager images of Chitgar Lake (one of the study regions). Moreover, high-resolution images from Google Earth were digitized to evaluate the results. Two approaches were considered: index-based and artificial intelligence (AI) algorithms. In the first approach, nine common water spectral indices were investigated. AI algorithms were utilized to acquire coefficients of optimal band combinations to extract water extents. Among the AI algorithms, the artificial neural network algorithm and also the ant colony optimization, genetic algorithm, and particle swarm optimization (PSO) meta-heuristic algorithms were implemented. Index-based methods represented different performances in various regions. Among AI methods, PSO had the best performance with average overall accuracy and kappa coefficient of 93% and 98%, respectively. The results indicated the applicability of acquired band combinations to extract accurately and stably water extents in Landsat imagery.
Driver Distraction Using Visual-Based Sensors and Algorithms
Directory of Open Access Journals (Sweden)
Alberto Fernández
2016-10-01
Full Text Available Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information or even, distraction detection from specific actions (e.g., phone usage. Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed.
Driver Distraction Using Visual-Based Sensors and Algorithms.
Fernández, Alberto; Usamentiaga, Rubén; Carús, Juan Luis; Casado, Rubén
2016-10-28
Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information) or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed.
Visual Contrast Enhancement Algorithm Based on Histogram Equalization.
Ting, Chih-Chung; Wu, Bing-Fei; Chung, Meng-Liang; Chiu, Chung-Cheng; Wu, Ya-Ching
2015-07-13
Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE) because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA) based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods.
Visual Contrast Enhancement Algorithm Based on Histogram Equalization
Directory of Open Access Journals (Sweden)
Chih-Chung Ting
2015-07-01
Full Text Available Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods.
Techniques based on genetic algorithms for large deflection ...
Indian Academy of Sciences (India)
A couple of non-convex search strategies, based on the genetic algorithm, are suggested and numerically explored in the context of large-deﬂection analysis of planar, elastic beams. The ﬁrst of these strategies is based on the stationarity of the energy functional in the equilibrium state and may therefore be considered ...
Genetic based optimization for multicast routing algorithm for MANET
Indian Academy of Sciences (India)
Algorithm (GA) and particle swarm optimization (PSO) to improve the solution. Sim- ulations were conducted by varying number of mobile nodes and results compared with Multicast AODV (MAODV) protocol, PSO based and GA based solution. The proposed optimization improves jitter, end to end delay and Packet Delivery ...
Multiphase Return Trajectory Optimization Based on Hybrid Algorithm
Directory of Open Access Journals (Sweden)
Yi Yang
2016-01-01
Full Text Available A hybrid trajectory optimization method consisting of Gauss pseudospectral method (GPM and natural computation algorithm has been developed and utilized to solve multiphase return trajectory optimization problem, where a phase is defined as a subinterval in which the right-hand side of the differential equation is continuous. GPM converts the optimal control problem to a nonlinear programming problem (NLP, which helps to improve calculation accuracy and speed of natural computation algorithm. Through numerical simulations, it is found that the multiphase optimal control problem could be solved perfectly.
ECG based Myocardial Infarction detection using Hybrid Firefly Algorithm.
Kora, Padmavathi
2017-12-01
Myocardial Infarction (MI) is one of the most frequent diseases, and can also cause demise, disability and monetary loss in patients who suffer from cardiovascular disorder. Diagnostic methods of this ailment by physicians are typically invasive, even though they do not fulfill the required detection accuracy. Recent feature extraction methods, for example, Auto Regressive (AR) modelling; Magnitude Squared Coherence (MSC); Wavelet Coherence (WTC) using Physionet database, yielded a collection of huge feature set. A large number of these features may be inconsequential containing some excess and non-discriminative components that present excess burden in computation and loss of execution performance. So Hybrid Firefly and Particle Swarm Optimization (FFPSO) is directly used to optimise the raw ECG signal instead of extracting features using the above feature extraction techniques. Provided results in this paper show that, for the detection of MI class, the FFPSO algorithm with ANN gives 99.3% accuracy, sensitivity of 99.97%, and specificity of 98.7% on MIT-BIH database by including NSR database also. The proposed approach has shown that methods that are based on the feature optimization of the ECG signals are the perfect to diagnosis the condition of the heart patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluating segmentation algorithms for diffusion-weighted MR images: a task-based approach
Jha, Abhinav K.; Kupinski, Matthew A.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.
2010-02-01
Apparent Diffusion Coefficient (ADC) of lesions obtained from Diffusion Weighted Magnetic Resonance Imaging is an emerging biomarker for evaluating anti-cancer therapy response. To compute the lesion's ADC, accurate lesion segmentation must be performed. To quantitatively compare these lesion segmentation algorithms, standard methods are used currently. However, the end task from these images is accurate ADC estimation, and these standard methods don't evaluate the segmentation algorithms on this task-based measure. Moreover, standard methods rely on the highly unlikely scenario of there being perfectly manually segmented lesions. In this paper, we present two methods for quantitatively comparing segmentation algorithms on the above task-based measure; the first method compares them given good manual segmentations from a radiologist, the second compares them even in absence of good manual segmentations.
A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm
Ortiz, Francisco
2004-01-01
COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions
Algorithm for image retrieval based on edge gradient orientation statistical code.
Zeng, Jiexian; Zhao, Yonggang; Li, Weiye; Fu, Xiang
2014-01-01
Image edge gradient direction not only contains important information of the shape, but also has a simple, lower complexity characteristic. Considering that the edge gradient direction histograms and edge direction autocorrelogram do not have the rotation invariance, we put forward the image retrieval algorithm which is based on edge gradient orientation statistical code (hereinafter referred to as EGOSC) by sharing the application of the statistics method in the edge direction of the chain code in eight neighborhoods to the statistics of the edge gradient direction. Firstly, we construct the n-direction vector and make maximal summation restriction on EGOSC to make sure this algorithm is invariable for rotation effectively. Then, we use Euclidean distance of edge gradient direction entropy to measure shape similarity, so that this method is not sensitive to scaling, color, and illumination change. The experimental results and the algorithm analysis demonstrate that the algorithm can be used for content-based image retrieval and has good retrieval results.
Optimal Sensor Placement for Health Monitoring of High-Rise Structure Based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Ting-Hua Yi
2011-01-01
Full Text Available Optimal sensor placement (OSP technique plays a key role in the structural health monitoring (SHM of large-scale structures. Based on the criterion of the OSP for the modal test, an improved genetic algorithm, called “generalized genetic algorithm (GGA”, is adopted to find the optimal placement of sensors. The dual-structure coding method instead of binary coding method is proposed to code the solution. Accordingly, the dual-structure coding-based selection scheme, crossover strategy and mutation mechanism are given in detail. The tallest building in the north of China is implemented to demonstrate the feasibility and effectiveness of the GGA. The sensor placements obtained by the GGA are compared with those by exiting genetic algorithm, which shows that the GGA can improve the convergence of the algorithm and get the better placement scheme.
Data Clustering on Breast Cancer Data Using Firefly Algorithm with Golden Ratio Method
Directory of Open Access Journals (Sweden)
DEMIR, M.
2015-05-01
Full Text Available Heuristic methods are problem solving methods. In general, they obtain near-optimal solutions, and they do not take the care of provability of this case. The heuristic methods do not guarantee to obtain the optimal results; however, they guarantee to obtain near-optimal solutions in considerable time. In this paper, an application was performed by using firefly algorithm - one of the heuristic methods. The golden ratio was applied to different steps of firefly algorithm and different parameters of firefly algorithm to develop a new algorithm - called Firefly Algorithm with Golden Ratio (FAGR. It was shown that the golden ratio made firefly algorithm be superior to the firefly algorithm without golden ratio. At this aim, the developed algorithm was applied to WBCD database (breast cancer database to cluster data obtained from breast cancer patients. The highest obtained success rate among all executions is 96% and the highest obtained average success rate in all executions is 94.5%.
Research on retailer data clustering algorithm based on Spark
Huang, Qiuman; Zhou, Feng
2017-03-01
Big data analysis is a hot topic in the IT field now. Spark is a high-reliability and high-performance distributed parallel computing framework for big data sets. K-means algorithm is one of the classical partition methods in clustering algorithm. In this paper, we study the k-means clustering algorithm on Spark. Firstly, the principle of the algorithm is analyzed, and then the clustering analysis is carried out on the supermarket customers through the experiment to find out the different shopping patterns. At the same time, this paper proposes the parallelization of k-means algorithm and the distributed computing framework of Spark, and gives the concrete design scheme and implementation scheme. This paper uses the two-year sales data of a supermarket to validate the proposed clustering algorithm and achieve the goal of subdividing customers, and then analyze the clustering results to help enterprises to take different marketing strategies for different customer groups to improve sales performance.
An Adaline based arcing fault detection algorithm for single-pole autoreclosers
Energy Technology Data Exchange (ETDEWEB)
Karacasu, Ozgur; Hakan Hocaoglu, M. [Gebze Institute of Technology, Department of Electronics Engineering, 41400 Gebze, Kocaeli (Turkey)
2011-02-15
In this paper, a new Adaline based adaptive single-pole autorecloser algorithm is proposed to discriminate permanent and transient faults in HV transmission lines. The proposed algorithm is implemented by processing only terminal voltages and also used to estimate secondary arc extinction time. The algorithm is simulationally analyzed using ATP version of EMTP by varying fault locations and pre fault loading conditions to demonstrate the capabilities and limitations of the method. In addition to that, measured data, which are taken from an actual power system, are also used for testing the algorithm. Results show that the method can successfully be implemented for real time application and computationally less expensive when compared with other methods. (author)
A novel pseudoderivative-based mutation operator for real-coded adaptive genetic algorithms
Kanwal, Maxinder S; Ramesh, Avinash S; Huang, Lauren A
2013-01-01
Recent development of large databases, especially those in genetics and proteomics, is pushing the development of novel computational algorithms that implement rapid and accurate search strategies. One successful approach has been to use artificial intelligence and methods, including pattern recognition (e.g. neural networks) and optimization techniques (e.g. genetic algorithms). The focus of this paper is on optimizing the design of genetic algorithms by using an adaptive mutation rate that is derived from comparing the fitness values of successive generations. We propose a novel pseudoderivative-based mutation rate operator designed to allow a genetic algorithm to escape local optima and successfully continue to the global optimum. Once proven successful, this algorithm can be implemented to solve real problems in neurology and bioinformatics. As a first step towards this goal, we tested our algorithm on two 3-dimensional surfaces with multiple local optima, but only one global optimum, as well as on the N-queens problem, an applied problem in which the function that maps the curve is implicit. For all tests, the adaptive mutation rate allowed the genetic algorithm to find the global optimal solution, performing significantly better than other search methods, including genetic algorithms that implement fixed mutation rates. PMID:24627784