AN SVAD ALGORITHM BASED ON FNNKD METHOD
Institute of Scientific and Technical Information of China (English)
Chen Dong; Zhang Yan; Kuang Jingming
2002-01-01
The capacity of mobile communication system is improved by using Voice Activity Detection (VAD) technology. In this letter, a novel VAD algorithm, SVAD algorithm based on Fuzzy Neural Network Knowledge Discovery (FNNKD) method is proposed. The performance of SVAD algorithm is discussed and compared with traditional algorithm recommended by ITU G.729B in different situations. The simulation results show that the SVAD algorithm performs better.
Kernel method-based fuzzy clustering algorithm
Institute of Scientific and Technical Information of China (English)
Wu Zhongdong; Gao Xinbo; Xie Weixin; Yu Jianping
2005-01-01
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.
ADAPTIVE FUSION ALGORITHMS BASED ON WEIGHTED LEAST SQUARE METHOD
Institute of Scientific and Technical Information of China (English)
SONG Kaichen; NIE Xili
2006-01-01
Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion,are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coefficients and measurement noise is established, is proposed by giving attention to the correlation of measurement noise. Then a simplified weighted fusion algorithm is deduced on the assumption that measurement noise is uncorrelated. In addition, an algorithm, which can adjust the weight coefficients in the simplified algorithm by making estimations of measurement noise from measurements, is presented. It is proved by emulation and experiment that the precision performance of the multi-sensor system based on these algorithms is better than that of the multi-sensor system based on other algorithms.
New Iris Localization Method Based on Chaos Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
Jia Dongli; Muhammad Khurram Khan; Zhang Jiashu
2005-01-01
This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is used to extract the boundary of the iris. Simulation results show that the proposed algorithms is efficient and robust, and can achieve sub pixel precision. Because Genetic Algorithms (GAs) can search in a large space, the algorithm does not need accurate estimation of iris center for subsequent localization, and hence can lower the requirement for original iris image processing. On this point, the present localization algirithm is superior to Daugmans algorithm.
A NUMERICAL METHOD BASED ENCRYPTION ALGORITHM WITH STEGANOGRAPHY
Directory of Open Access Journals (Sweden)
Amartya Ghosh
2013-02-01
Full Text Available Now-a-days many encryption algorithms have been proposed for network security. In this paper, a new cryptographic algorithm for network security is proposed to assist the effectiveness of network security. Here symmetric key concept instead of public key is considered to develop the encryption – decryption algorithm. Also, to give more security in the algorithm, the idea of one way function alongwith Newton’s method is applied as a secret key to the proposed work as well as Digital Signature Standard (DSS technology is used to send the key. Moreover, steganography is used to hide the cipher within a picture in encryption algorithm. In brief, a numerical method based secret key encryption – decryption algorithm is developed using steganography to enhance the network security.
A network diagnostics method based on pattern recognition algorithms
Olizarovich, E. V.; Rodchenko, V. G.
2009-01-01
This report deals with the problem of designing and building of a computer network diagnostic system. Diagnostic content problems are reviewed, as well as ways of their solution based on mathematical and computer modelling methods. A traffic analysis-based diagnostic method is suggested for process statuses in a computer network. The method is based on algorithms of the mathematical pattern recognition theory. To build a diagnostic system, a multi-level model building and verification arrange...
Barzilai-Borwein method in graph drawing algorithm based on Kamada-Kawai algorithm
Hasal, Martin; Pospisil, Lukas; Nowakova, Jana
2016-06-01
Extension of Kamada-Kawai algorithm, which was designed for calculating layouts of simple undirected graphs, is presented in this paper. Graphs drawn by Kamada-Kawai algorithm exhibit symmetries, tend to produce aesthetically pleasing and crossing-free layouts for planar graphs. Minimization of Kamada-Kawai algorithm is based on Newton-Raphson method, which needs Hessian matrix of second derivatives of minimized node. Disadvantage of Kamada-Kawai embedder algorithm is computational requirements. This is caused by searching of minimal potential energy of the whole system, which is minimized node by node. The node with highest energy is minimized against all nodes till the local equilibrium state is reached. In this paper with Barzilai-Borwein (BB) minimization algorithm, which needs only gradient for minimum searching, instead of Newton-Raphson method, is worked. It significantly improves the computational time and requirements.
A Matrix Pencil Algorithm Based Multiband Iterative Fusion Imaging Method
Zou, Yong Qiang; Gao, Xun Zhang; Li, Xiang; Liu, Yong Xiang
2016-01-01
Multiband signal fusion technique is a practicable and efficient way to improve the range resolution of ISAR image. The classical fusion method estimates the poles of each subband signal by the root-MUSIC method, and some good results were get in several experiments. However, this method is fragile in noise for the proper poles could not easy to get in low signal to noise ratio (SNR). In order to eliminate the influence of noise, this paper propose a matrix pencil algorithm based method to estimate the multiband signal poles. And to deal with mutual incoherent between subband signals, the incoherent parameters (ICP) are predicted through the relation of corresponding poles of each subband. Then, an iterative algorithm which aimed to minimize the 2-norm of signal difference is introduced to reduce signal fusion error. Applications to simulate dada verify that the proposed method get better fusion results at low SNR.
A Novel Assembly Line Balancing Method Based on PSO Algorithm
Directory of Open Access Journals (Sweden)
Xiaomei Hu
2014-01-01
Full Text Available Assembly line is widely used in manufacturing system. Assembly line balancing problem is a crucial question during design and management of assembly lines since it directly affects the productivity of the whole manufacturing system. The model of assembly line balancing problem is put forward and a general optimization method is proposed. The key data on assembly line balancing problem is confirmed, and the precedence relations diagram is described. A double objective optimization model based on takt time and smoothness index is built, and balance optimization scheme based on PSO algorithm is proposed. Through the simulation experiments of examples, the feasibility and validity of the assembly line balancing method based on PSO algorithm is proved.
Research on Palmprint Identification Method Based on Quantum Algorithms
Directory of Open Access Journals (Sweden)
Hui Li
2014-01-01
Full Text Available Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%.
An Improved Image Segmentation Algorithm Based on MET Method
Directory of Open Access Journals (Sweden)
Z. A. Abo-Eleneen
2012-09-01
Full Text Available Image segmentation is a basic component of many computer vision systems and pattern recognition. Thresholding is a simple but effective method to separate objects from the background. A commonly used method, Kittler and Illingworth's minimum error thresholding (MET, improves the image segmentation effect obviously. Its simpler and easier to implement. However, it fails in the presence of skew and heavy-tailed class-conditional distributions or if the histogram is unimodal or close to unimodal. The Fisher information (FI measure is an important concept in statistical estimation theory and information theory. Employing the FI measure, an improved threshold image segmentation algorithm FI-based extension of MET is developed. Comparing with the MET method, the improved method in general can achieve more robust performance when the data for either class is skew and heavy-tailed.
A constrained optimization algorithm based on the simplex search method
Mehta, Vivek Kumar; Dasgupta, Bhaskar
2012-05-01
In this article, a robust method is presented for handling constraints with the Nelder and Mead simplex search method, which is a direct search algorithm for multidimensional unconstrained optimization. The proposed method is free from the limitations of previous attempts that demand the initial simplex to be feasible or a projection of infeasible points to the nonlinear constraint boundaries. The method is tested on several benchmark problems and the results are compared with various evolutionary algorithms available in the literature. The proposed method is found to be competitive with respect to the existing algorithms in terms of effectiveness and efficiency.
An Emotion-Based Method to Perform Algorithmic Composition
Huang, Chih-Fang; Lin, En-Ju
2013-01-01
The generative music using algorithmic composition techniques has been developed in many years. However it usually lacks of emotion-based mechanism to generate music with specific affective features. In this article the automated music algorithm will be performed based on Prof. Phil Winosr’s “MusicSculptor” software with proper emotion parameter mapping to drive the music content with specific context using various music pa-rameters distribution with different probability control, in order to...
Distortion Parameters Analysis Method Based on Improved Filtering Algorithm
Directory of Open Access Journals (Sweden)
ZHANG Shutuan
2013-10-01
Full Text Available In order to realize the accurate distortion parameters test of aircraft power supply system, and satisfy the requirement of corresponding equipment in the aircraft, the novel power parameters test system based on improved filtering algorithm is introduced in this paper. The hardware of the test system has the characters of s portable and high-speed data acquisition and processing, and the software parts utilize the software Labwindows/CVI as exploitation software, and adopt the pre-processing technique and adding filtering algorithm. Compare with the traditional filtering algorithm, the test system adopted improved filtering algorithm can help to increase the test accuracy. The application shows that the test system with improved filtering algorithm can realize the accurate test results, and reach to the design requirements.
Color Image Segmentation Method Based on Improved Spectral Clustering Algorithm
Directory of Open Access Journals (Sweden)
Dong Qin
2014-08-01
Full Text Available Contraposing to the features of image data with high sparsity of and the problems on determination of clustering numbers, we try to put forward an color image segmentation algorithm, combined with semi-supervised machine learning technology and spectral graph theory. By the research of related theories and methods of spectral clustering algorithms, we introduce information entropy conception to design a method which can automatically optimize the scale parameter value. So it avoids the unstability in clustering result of the scale parameter input manually. In addition, we try to excavate available priori information existing in large number of non-generic data and apply semi-supervised algorithm to improve the clustering performance for rare class. We also use added tag data to compute similar matrix and perform clustering through FKCM algorithms. By the simulation of standard dataset and image segmentation, the experiments demonstrate our algorithm has overcome the defects of traditional spectral clustering methods, which are sensitive to outliers and easy to fall into local optimum, and also poor in the convergence rate
Applied RCM2 Algorithms Based on Statistical Methods
Institute of Scientific and Technical Information of China (English)
Fausto Pedro García Márquez; Diego J. Pedregal
2007-01-01
The main purpose of this paper is to implement a system capable of detecting faults in railway point mechanisms. This is achieved by developing an algorithm that takes advantage of three empirical criteria simultaneously capable of detecting faults from records of measurements of force against time. The system is dynamic in several respects: the base reference data is computed using all the curves free from faults as they are encountered in the experimental data; the algorithm that uses the three criteria simultaneously may be applied in on-line situations as each new data point becomes available; and recursive algorithms are applied to filter noise from the raw data in an automatic way. Encouraging results are found in practice when the system is applied to a number of experiments carried out by an industrial sponsor.
Improved Algorithm for Weak GPS Signal Acquisition Based on Delay-accumulation Method
Li, Yuanming; Li, Jing; Zhang, Peng; Zheng, Yong
2016-01-01
A new improved algorithm is proposed to solve the problem of GPS weak signal capture that the traditional algorithms are unavailable to capture under a weak signal environment. This algorithm is based on the analysis of double block zero padding (DBZP) algorithm and it adopts the delay-accumulation method to retain the operation results temporarily which are discarded in DBZP algorithm. Waiting for delaying 1 ms, the corresponding correlation calculation results are obtained. Then superimpose...
Visual tracking method based on cuckoo search algorithm
Gao, Ming-Liang; Yin, Li-Ju; Zou, Guo-Feng; Li, Hai-Tao; Liu, Wei
2015-07-01
Cuckoo search (CS) is a new meta-heuristic optimization algorithm that is based on the obligate brood parasitic behavior of some cuckoo species in combination with the Lévy flight behavior of some birds and fruit flies. It has been found to be efficient in solving global optimization problems. An application of CS is presented to solve the visual tracking problem. The relationship between optimization and visual tracking is comparatively studied and the parameters' sensitivity and adjustment of CS in the tracking system are experimentally studied. To demonstrate the tracking ability of a CS-based tracker, a comparative study of tracking accuracy and speed of the CS-based tracker with six "state-of-art" trackers, namely, particle filter, meanshift, PSO, ensemble tracker, fragments tracker, and compressive tracker are presented. Comparative results show that the CS-based tracker outperforms the other trackers.
GPU-based parallel algorithm for blind image restoration using midfrequency-based methods
Xie, Lang; Luo, Yi-han; Bao, Qi-liang
2013-08-01
GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.
A New Genetic Algorithm Based on Niche Technique and Local Search Method
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The genetic algorithm has been widely used in many fields as an easy robust global search and optimization method. In this paper, a new genetic algorithm based on niche technique and local search method is presented under the consideration of inadequacies of the simple genetic algorithm. In order to prove the adaptability and validity of the improved genetic algorithm, optimization problems of multimodal functions with equal peaks, unequal peaks and complicated peak distribution are discussed. The simulation results show that compared to other niching methods, this improved genetic algorithm has obvious potential on many respects, such as convergence speed, solution accuracy, ability of global optimization, etc.
On the importance of graph search algorithms for DRGEP-based mechanism reduction methods
Niemeyer, Kyle E
2016-01-01
The importance of graph search algorithm choice to the directed relation graph with error propagation (DRGEP) method is studied by comparing basic and modified depth-first search, basic and R-value-based breadth-first search (RBFS), and Dijkstra's algorithm. By using each algorithm with DRGEP to produce skeletal mechanisms from a detailed mechanism for n-heptane with randomly-shuffled species order, it is demonstrated that only Dijkstra's algorithm and RBFS produce results independent of species order. In addition, each algorithm is used with DRGEP to generate skeletal mechanisms for n-heptane covering a comprehensive range of autoignition conditions for pressure, temperature, and equivalence ratio. Dijkstra's algorithm combined with a coefficient scaling approach is demonstrated to produce the most compact skeletal mechanism with a similar performance compared to larger skeletal mechanisms resulting from the other algorithms. The computational efficiency of each algorithm is also compared by applying the DRG...
A Steganographic Method Based on Integer Wavelet Transform & Genatic Algorithm
Directory of Open Access Journals (Sweden)
Preeti Arora
2014-05-01
Full Text Available The proposed system presents a novel approach of building a secure data hiding technique of steganography using inverse wavelet transform along with Genetic algorithm. The prominent focus of the proposed work is to develop RS-analysis proof design with higest imperceptibility. Optimal Pixal Adjustment process is also adopted to minimize the difference error between the input cover image and the embedded-image and in order to maximize the hiding capacity with low distortions respectively. The analysis is done for mapping function, PSNR, image histogram, and parameter of RS analysis. The simulation results highlights that the proposed security measure basically gives better and optimal results in comparison to prior research work conducted using wavelets and genetic algorithm.
A novel method to design S-box based on chaotic map and genetic algorithm
International Nuclear Information System (INIS)
The substitution box (S-box) is an important component in block encryption algorithms. In this Letter, the problem of constructing S-box is transformed to a Traveling Salesman Problem and a method for designing S-box based on chaos and genetic algorithm is proposed. Since the proposed method makes full use of the traits of chaotic map and evolution process, stronger S-box is obtained. The results of performance test show that the presented S-box has good cryptographic properties, which justify that the proposed algorithm is effective in generating strong S-boxes. -- Highlights: ► The problem of constructing S-box is transformed to a Traveling Salesman Problem. ► We present a new method for designing S-box based on chaos and genetic algorithm. ► The proposed algorithm is effective in generating strong S-boxes.
Method of fault diagnosis in nuclear power plant base on genetic algorithm and knowledge base
International Nuclear Information System (INIS)
Via using the knowledge base, combining Genetic Algorithm and classical probability and contraposing the characteristic of the fault diagnosis of NPP. The authors put forward a method of fault diagnosis. In the process of fault diagnosis, this method contact the state of NPP with the colony in GA and transform the colony to get the individual that adapts to the condition. On the 950MW full size simulator in Beijing NPP simulation training center, experimentation shows it has comparative adaptability to the imperfection of expert knowledge, illusive signal and other instance
Asymptotically Optimal Algorithm for Short-Term Trading Based on the Method of Calibration
V'yugin, Vladimir
2012-01-01
A trading strategy based on a natural learning process, which asymptotically outperforms any trading strategy from RKHS (Reproduced Kernel Hilbert Space), is presented. In this process, the trader rationally chooses his gambles using predictions made by a randomized well calibrated algorithm. Our strategy is based on Dawid's notion of calibration with more general changing checking rules and on some modification of Kakade and Foster's randomized algorithm for computing calibrated forecasts. We use also Vovk's method of defensive forecasting in RKHS.
A Novel Super Resolution Algorithm Using Interpolation and LWT Based Denoising Method
Sapan Naik, Asst. Professor; Viral Borisagar, Asst. Professor
2012-01-01
Image capturing technique has some limitations and due to that we often get low resolution(LR) images. Super Resolution(SR) is a process by which we can generate High Resolution(HR) image from one or more LR images. Here we have proposed one SR algorithm which take three shifted and noisy LR images and generate HR image using Lifting Wavelet Transform(LWT) based denoising method and Directional Filtering and Data Fusion based Edge-Guided Interpolation Algorithm.
Space-borne antenna adaptive anti-jamming method based on gradient-genetic algorithm
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm(GA), which is combined with gradient-like reproduction operators is presented,to search for the best weight for pattern synthesis in radio frequency(RF).Combined,the GA's the capability of the whole searching is,but not limited by selection of the initial parameter,with the gradient algorithm's advantage of fast searching.The proposed method requires a smaller sized initial population and lower computational complexity.Therefore,it is flexible to implement this method in the real-time systems.By using the proposed algorithm,the designer can efficiently control both main-lobe shaping and side-lobe level.Simulation results based on the spot survey data show that the algorithm proposed is efficient and feasible.
A novel method to design S-box based on chaotic map and genetic algorithm
Wang, Yong; Wong, Kwok-Wo; Li, Changbing; Li, Yang
2012-01-01
The substitution box (S-box) is an important component in block encryption algorithms. In this Letter, the problem of constructing S-box is transformed to a Traveling Salesman Problem and a method for designing S-box based on chaos and genetic algorithm is proposed. Since the proposed method makes full use of the traits of chaotic map and evolution process, stronger S-box is obtained. The results of performance test show that the presented S-box has good cryptographic properties, which justify that the proposed algorithm is effective in generating strong S-boxes.
Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy
Tian, Yuling; Zhang, Hongxian
2016-01-01
For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic–there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions. PMID:27487242
Directory of Open Access Journals (Sweden)
Jiancai Song
Full Text Available In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP using a modified genetic algorithm (MGA with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM or fault detection and exclusion (FDE. This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.
Song, Jiancai; Xue, Guixiang; Kang, Yanan
2016-01-01
In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones. PMID:26943638
Fast Matrix Computation Algorithms Based on Rough Attribute Vector Tree Method in RDSS
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The concepts of Rough Decision Support System (RDSS)and equivalence matrix are introduced in this paper. Based on a rough attribute vector tree (RAVT) method, two kinds of matrix computation algorithms - Recursive Matrix Computation (RMC) and Parallel Matrix Computation (PMC) are proposed for rules extraction, attributes reduction and data cleaning finished synchronously. The algorithms emphasize the practicability and efficiency of rules generation. A case study of PMC is analyzed, and a comparison experiment of RMC algorithm shows that it is feasible and efficient for data mining and knowledge-discovery in RDSS.
Penalty Algorithm Based on Conjugate Gradient Method for Solving Portfolio Management Problem
Directory of Open Access Journals (Sweden)
Wang YaLin
2009-01-01
Full Text Available A new approach was proposed to reformulate the biobjectives optimization model of portfolio management into an unconstrained minimization problem, where the objective function is a piecewise quadratic polynomial. We presented some properties of such an objective function. Then, a class of penalty algorithms based on the well-known conjugate gradient methods was developed to find the solution of portfolio management problem. By implementing the proposed algorithm to solve the real problems from the stock market in China, it was shown that this algorithm is promising.
Cost Analysis of Algorithm Based Billboard Manger Based Handover Method in LEO satellite Networks
Directory of Open Access Journals (Sweden)
Suman Kumar Sikdar
2012-12-01
Full Text Available Now-a-days LEO satellites have an important role in global communication system. They have some advantages like low power requirement and low end-to-end delay, more efficient frequency spectrum utilization between satellites and spot beams over GEO and MEO. So in future they can be used as a replacement of modern terrestrial wireless networks. But the handover occurrence is more due to the speed of the LEOs. Different protocol has been proposed for a successful handover among which BMBHO is more efficient. But it had a problem during the selection of the mobile node during handover. In our previous work we have proposed an algorithm so that the connection can be established easily with the appropriate satellite. In this paper we will evaluate the mobility management cost of Algorithm based Billboard Manager Based Handover method (BMBHO. A simulation result shows that the cost is lower than the cost of Mobile IP of SeaHO-LEO and PatHOLEO
NONLINEAR FILTER METHOD OF GPS DYNAMIC POSITIONING BASED ON BANCROFT ALGORITHM
Institute of Scientific and Technical Information of China (English)
ZHANGQin; TAOBen-zao; ZHAOChao-ying; WANGLi
2005-01-01
Because of the ignored items after linearization, the extended Kalman filter (EKF) becomes a form of suboptimal gradient descent algorithm. The emanative tendency exists in GPS solution when the filter equations are ill-posed. The deviation in the estimation cannot be avoided. Furthermore, the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions. To solve the above problems in GPS dynamic positioning by using EKF, a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American. The method separates the spatial parts from temporal parts during processing the GPS filter problems, and solves the nonlinear GPS dynamic positioning, thus getting stable and reliable dynamic positioning solutions.
Numerical algorithm based on the PDE method for solution of the Fokker-Planck equation
International Nuclear Information System (INIS)
This paper discus a fast and accurate algorithm for numerical solution of Fokker-Planck equation (FPE) based on the PDE (Partial Differential Equation) method. The PDE concepts and methods largely are used in computer simulation of fluid-dynamical systems. This method can be used for studying of stochastic beam dynamics in one dimensional phase space in the storage ring. The performances of the PDE-method are calculated using the stochastic cooling process in the CR storage ring (FAIR, Germany).
Improved Algorithm for Weak GPS Signal Acquisition Based on Delay-accumulation Method
Directory of Open Access Journals (Sweden)
LI Yuanming
2016-01-01
Full Text Available A new improved algorithm is proposed to solve the problem of GPS weak signal capture that the traditional algorithms are unavailable to capture under a weak signal environment. This algorithm is based on the analysis of double block zero padding (DBZP algorithm and it adopts the delay-accumulation method to retain the operation results temporarily which are discarded in DBZP algorithm. Waiting for delaying 1 ms, the corresponding correlation calculation results are obtained. Then superimpose the obtained results with the operation results retained temporarily and compare the coherent accumulation results with the threshold value. The data measurements are increased by improving the utilization rate of correlation operation results in the improved algorithm on the premise of increasing little computation. Simulation results showed that the improved algorithm can improve the acquisition algorithm processing gain and it is able to capture the signals whose carrier-to-noise ratio(C/N0 is 17 dB-Hz and the detection probability can achieve to 91%.
2D-3D Face Recognition Method Based on a Modified CCA-PCA Algorithm
Directory of Open Access Journals (Sweden)
Patrik Kamencay
2014-03-01
Full Text Available This paper presents a proposed methodology for face recognition based on an information theory approach to coding and decoding face images. In this paper, we propose a 2D-3D face-matching method based on a principal component analysis (PCA algorithm using canonical correlation analysis (CCA to learn the mapping between a 2D face image and 3D face data. This method makes it possible to match a 2D face image with enrolled 3D face data. Our proposed fusion algorithm is based on the PCA method, which is applied to extract base features. PCA feature-level fusion requires the extraction of different features from the source data before features are merged together. Experimental results on the TEXAS face image database have shown that the classification and recognition results based on the modified CCA-PCA method are superior to those based on the CCA method. Testing the 2D-3D face match results gave a recognition rate for the CCA method of a quite poor 55% while the modified CCA method based on PCA-level fusion achieved a very good recognition score of 85%.
A new Initial Centroid finding Method based on Dissimilarity Tree for K-means Algorithm
Kumar, Abhishek; Gupta, Suresh Chandra
2015-01-01
Cluster analysis is one of the primary data analysis technique in data mining and K-means is one of the commonly used partitioning clustering algorithm. In K-means algorithm, resulting set of clusters depend on the choice of initial centroids. If we can find initial centroids which are coherent with the arrangement of data, the better set of clusters can be obtained. This paper proposes a method based on the Dissimilarity Tree to find, the better initial centroid as well as every bit more acc...
Directory of Open Access Journals (Sweden)
Prof. Vikas Gupta
2014-01-01
Full Text Available Due to the exponential increase of noise pollution, the demand for noise controlling system is also increases. Basically two types of techniques are used for noise cancellation active and passive. But passive techniques are inactive for low frequency noise, hence there is an increasing demand of research and developmental work on active noise cancellation techniques. In this paper we introduce a new method in the active noise cancellation system. This new method is the transfer function based method which used Genetic and Particle swarm optimization (PSO algorithm for noise cancellation. This method is very simple and efficient for low frequency noise cancellation. Here we analysis the performance of this method in the presence of white Gaussian noise and compare the results of Particle swarm optimization (PSO and Genetic algorithm. Both algorithms are suitable for different environment, so we observe their performance in different fields. In this paper a comparative study of Genetic and Particle swarm optimization (PSO is described with proper results. It will go in depth what exactly transfer function method, how it work and advantages over neural network based method
Arablouei, Reza; Doğançay, Kutluyıl; Werner, Stefan
2014-01-01
We develop a recursive total least-squares (RTLS) algorithm for errors-in-variables system identification utilizing the inverse power method and the dichotomous coordinate-descent (DCD) iterations. The proposed algorithm, called DCD-RTLS, outperforms the previously-proposed RTLS algorithms, which are based on the line-search method, with reduced computational complexity. We perform a comprehensive analysis of the DCD-RTLS algorithm and show that it is asymptotically unbiased as well as being ...
An effective trust-based recommendation method using a novel graph clustering algorithm
Moradi, Parham; Ahmadian, Sajad; Akhlaghian, Fardin
2015-10-01
Recommender systems are programs that aim to provide personalized recommendations to users for specific items (e.g. music, books) in online sharing communities or on e-commerce sites. Collaborative filtering methods are important and widely accepted types of recommender systems that generate recommendations based on the ratings of like-minded users. On the other hand, these systems confront several inherent issues such as data sparsity and cold start problems, caused by fewer ratings against the unknowns that need to be predicted. Incorporating trust information into the collaborative filtering systems is an attractive approach to resolve these problems. In this paper, we present a model-based collaborative filtering method by applying a novel graph clustering algorithm and also considering trust statements. In the proposed method first of all, the problem space is represented as a graph and then a sparsest subgraph finding algorithm is applied on the graph to find the initial cluster centers. Then, the proposed graph clustering algorithm is performed to obtain the appropriate users/items clusters. Finally, the identified clusters are used as a set of neighbors to recommend unseen items to the current active user. Experimental results based on three real-world datasets demonstrate that the proposed method outperforms several state-of-the-art recommender system methods.
Urinary stone size estimation: a new segmentation algorithm-based CT method
Energy Technology Data Exchange (ETDEWEB)
Liden, Mats; Geijer, Haakan [Oerebro University, School of Health and Medical Sciences, Oerebro (Sweden); Oerebro University Hospital, Department of Radiology, Oerebro (Sweden); Andersson, Torbjoern [Oerebro University, School of Health and Medical Sciences, Oerebro (Sweden); Broxvall, Mathias [Oerebro University, Centre for Modelling and Simulation, Oerebro (Sweden); Thunberg, Per [Oerebro University, School of Health and Medical Sciences, Oerebro (Sweden); Oerebro University Hospital, Department of Medical Physics, Oerebro (Sweden)
2012-04-15
The size estimation in CT images of an obstructing ureteral calculus is important for the clinical management of a patient presenting with renal colic. The objective of the present study was to develop a reader independent urinary calculus segmentation algorithm using well-known digital image processing steps and to validate the method against size estimations by several readers. Fifty clinical CT examinations demonstrating urinary calculi were included. Each calculus was measured independently by 11 readers. The mean value of their size estimations was used as validation data for each calculus. The segmentation algorithm consisted of interpolated zoom, binary thresholding and morphological operations. Ten examinations were used for algorithm optimisation and 40 for validation. Based on the optimisation results three segmentation method candidates were identified. Between the primary segmentation algorithm using cubic spline interpolation and the mean estimation by 11 readers, the bias was 0.0 mm, the standard deviation of the difference 0.26 mm and the Bland-Altman limits of agreement 0.0{+-}0.5 mm. The validation showed good agreement between the suggested algorithm and the mean estimation by a large number of readers. The limit of agreement was narrower than the inter-reader limit of agreement previously reported for the same data. (orig.)
Blind restoration method of three-dimensional microscope image based on RL algorithm
Yao, Jin-li; Tian, Si; Wang, Xiang-rong; Wang, Jing-li
2013-08-01
Thin specimens of biological tissue appear three dimensional transparent under a microscope. The optic slice images can be captured by moving the focal planes at the different locations of the specimen. The captured image has low resolution due to the influence of the out-of-focus information comes from the planes adjacent to the local plane. Using traditional methods can remove the blur in the images at a certain degree, but it needs to know the point spread function (PSF) of the imaging system accurately. The accuracy degree of PSF influences the restoration result greatly. In fact, it is difficult to obtain the accurate PSF of the imaging system. In order to restore the original appearance of the specimen under the conditions of the imaging system parameters are unknown or there is noise and spherical aberration in the system, a blind restoration methods of three-dimensional microscope based on the R-L algorithm is proposed in this paper. On the basis of the exhaustive study of the two-dimension R-L algorithm, according to the theory of the microscopy imaging and the wavelet transform denoising pretreatment, we expand the R-L algorithm to three-dimension space. It is a nonlinear restoration method with the maximum entropy constraint. The method doesn't need to know the PSF of the microscopy imaging system precisely to recover the blur image. The image and PSF converge to the optimum solutions by many alterative iterations and corrections. The matlab simulation and experiments results show that the expansion algorithm is better in visual indicators, peak signal to noise ratio and improved signal to noise ratio when compared with the PML algorithm, and the proposed algorithm can suppress noise, restore more details of target, increase image resolution.
International Nuclear Information System (INIS)
Because it is difficulty to accurately determine the extraction steam turbine enthalpy and the exhaust enthalpy, the calculated result from the conventional equivalent enthalpy drop method of PWR nuclear steam turbine is not accurate. This paper presents the improved algorithm on the equivalent enthalpy drop method of PWR nuclear steam turbine to solve this problem and takes the secondary circuit thermal system calculation of 1000 MW PWR as an example. The results show that, comparing with the design value, the error of actual thermal efficiency of the steam turbine cycle obtained by the improved algorithm is within the allowable range. Since the improved method is based on the isentropic expansion process, the extraction steam turbine enthalpy and the exhaust enthalpy can be determined accurately, which is more reasonable and accurate compared to the traditional equivalent enthalpy drop method. (authors)
Self-Organizing Genetic Algorithm Based Method for Constructing Bayesian Networks from Databases
Institute of Scientific and Technical Information of China (English)
郑建军; 刘玉树; 陈立潮
2003-01-01
The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.
Ramlau, R.; Saxenhuber, D.; Yudytskiy, M.
2014-07-01
The problem of atmospheric tomography arises in ground-based telescope imaging with adaptive optics (AO), where one aims to compensate in real-time for the rapidly changing optical distortions in the atmosphere. Many of these systems depend on a sufficient reconstruction of the turbulence profiles in order to obtain a good correction. Due to steadily growing telescope sizes, there is a strong increase in the computational load for atmospheric reconstruction with current methods, first and foremost the MVM. In this paper we present and compare three novel iterative reconstruction methods. The first iterative approach is the Finite Element- Wavelet Hybrid Algorithm (FEWHA), which combines wavelet-based techniques and conjugate gradient schemes to efficiently and accurately tackle the problem of atmospheric reconstruction. The method is extremely fast, highly flexible and yields superior quality. Another novel iterative reconstruction algorithm is the three step approach which decouples the problem in the reconstruction of the incoming wavefronts, the reconstruction of the turbulent layers (atmospheric tomography) and the computation of the best mirror correction (fitting step). For the atmospheric tomography problem within the three step approach, the Kaczmarz algorithm and the Gradient-based method have been developed. We present a detailed comparison of our reconstructors both in terms of quality and speed performance in the context of a Multi-Object Adaptive Optics (MOAO) system for the E-ELT setting on OCTOPUS, the ESO end-to-end simulation tool.
Method and application of wavelet shrinkage denoising based on genetic algorithm
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Genetic algorithm (GA) based on wavelet transform threshold shrinkage (WTS) and translation-invafiant threshold shrinkage (TIS) is introduced into the method of noise reduction, where parameters used in WTS and TIS, such as wavelet function,decomposition levels, hard or soft threshold and threshold can be selected automatically. This paper ends by comparing two noise reduction methods on the basis of their denoising performances, computation time, etc. The effectiveness of these methods introduced in this paper is validated by the results of analysis of the simulated and real signals.
A scalable method for parallelizing sampling-based motion planning algorithms
Jacobs, Sam Ade
2012-05-01
This paper describes a scalable method for parallelizing sampling-based motion planning algorithms. It subdivides configuration space (C-space) into (possibly overlapping) regions and independently, in parallel, uses standard (sequential) sampling-based planners to construct roadmaps in each region. Next, in parallel, regional roadmaps in adjacent regions are connected to form a global roadmap. By subdividing the space and restricting the locality of connection attempts, we reduce the work and inter-processor communication associated with nearest neighbor calculation, a critical bottleneck for scalability in existing parallel motion planning methods. We show that our method is general enough to handle a variety of planning schemes, including the widely used Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees (RRT) algorithms. We compare our approach to two other existing parallel algorithms and demonstrate that our approach achieves better and more scalable performance. Our approach achieves almost linear scalability on a 2400 core LINUX cluster and on a 153,216 core Cray XE6 petascale machine. © 2012 IEEE.
An adaptive turbo-shaft engine modeling method based on PS and MRR-LSSVR algorithms
Institute of Scientific and Technical Information of China (English)
Wang Jiankang; Zhang Haibo; Yan Changkai; Duan Shujing; Huang Xianghua
2013-01-01
In order to establish an adaptive turbo-shaft engine model with high accuracy,a new modeling method based on parameter selection (PS) algorithm and multi-input multi-output recursive reduced least square support vector regression (MRR-LSSVR) machine is proposed.Firstly,the PS algorithm is designed to choose the most reasonable inputs of the adaptive module.During this process,a wrapper criterion based on least square support vector regression (LSSVR) machine is adopted,which can not only reduce computational complexity but also enhance generalization performance.Secondly,with the input variables determined by the PS algorithm,a mapping model of engine parameter estimation is trained off-line using MRR-LSSVR,which has a satisfying accuracy within 5‰.Finally,based on a numerical simulation platform of an integrated helicopter/turbo-shaft engine system,an adaptive turbo-shaft engine model is developed and tested in a certain flight envelope.Under the condition of single or multiple engine components being degraded,many simulation experiments are carried out,and the simulation results show the effectiveness and validity of the proposed adaptive modeling method.
Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network
International Nuclear Information System (INIS)
There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions. The experiments show that this method can improve the recognition rate and the time of feature extraction
State Generation Method for Humanoid Motion Planning Based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Xuyang Wang
2008-11-01
Full Text Available A new approach to generate the original motion data for humanoid motion planning is presented in this paper. And a state generator is developed based on the genetic algorithm, which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate stable states that satisfy the constraint conditions for humanoid robots.To deal with the multiple constraints and inverse kinematics, the state generation is finally simplified as a problem of optimizing and searching. In our method, we introduce a convenient mathematic representation for the constraints involved in the state generator, and solve the optimization problem with the genetic algorithm to acquire a desired state. To demonstrate the effectiveness and advantage of the method, a number of motion states are generated according to the requirements of the motion.
State Generation Method for Humanoid Motion Planning Based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Xuyang Wang
2012-05-01
Full Text Available A new approach to generate the original motion data for humanoid motion planning is presented in this paper. And a state generator is developed based on the genetic algorithm, which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate stable states that satisfy the constraint conditions for humanoid robots.To deal with the multiple constraints and inverse kinematics, the state generation is finally simplified as a problem of optimizing and searching. In our method, we introduce a convenient mathematic representation for the constraints involved in the state generator, and solve the optimization problem with the genetic algorithm to acquire a desired state. To demonstrate the effectiveness and advantage of the method, a number of motion states are generated according to the requirements of the motion.
Two Novel On-policy Reinforcement Learning Algorithms based on TD(lambda)-methods
Wiering, M.A.; Hasselt, H. van
2007-01-01
This paper describes two novel on-policy reinforcement learning algorithms, named QV(lambda)-learning and the actor critic learning automaton (ACLA). Both algorithms learn a state value-function using TD(lambda)-methods. The difference between the algorithms is that QV-learning uses the learned valu
Directory of Open Access Journals (Sweden)
Aliasghar Baziar
2015-03-01
Full Text Available Abstract In order to handle large scale problems this study has used shuffled frog leaping algorithm. This algorithm is an optimization method based on natural memetics that uses a new two-phase modification to it to have a better search in the problem space. The suggested algorithm is evaluated by comparing to some well known algorithms using several benchmark optimization problems. The simulation results have clearly shown the superiority of this algorithm over other well-known methods in the area.
Method of transient identification based on a possibilistic approach, optimized by genetic algorithm
International Nuclear Information System (INIS)
This work develops a method for transient identification based on a possible approach, optimized by Genetic Algorithm to optimize the number of the centroids of the classes that represent the transients. The basic idea of the proposed method is to optimize the partition of the search space, generating subsets in the classes within a partition, defined as subclasses, whose centroids are able to distinguish the classes with the maximum correct classifications. The interpretation of the subclasses as fuzzy sets and the possible approach provided a heuristic to establish influence zones of the centroids, allowing to achieve the 'don't know' answer for unknown transients, that is, outside the training set. (author)
Convergence Analysis of Contrastive Divergence Algorithm Based on Gradient Method with Errors
Xuesi Ma; Xiaojie Wang
2015-01-01
Contrastive Divergence has become a common way to train Restricted Boltzmann Machines; however, its convergence has not been made clear yet. This paper studies the convergence of Contrastive Divergence algorithm. We relate Contrastive Divergence algorithm to gradient method with errors and derive convergence conditions of Contrastive Divergence algorithm using the convergence theorem of gradient method with errors. We give specific convergence conditions of Contrastive Divergence ...
A Method for Crude Oil Selection and Blending Optimization Based on Improved Cuckoo Search Algorithm
Institute of Scientific and Technical Information of China (English)
Yang Huihua; Ma Wei; Zhang Xiaofeng; Li Hu; Tian Songbai
2014-01-01
Reifneries often need to ifnd similar crude oil to replace the scarce crude oil for stabilizing the feedstock prop-erty. We introduced the method for calculation of crude blended properties ifrstly, and then created a crude oil selection and blending optimization model based on the data of crude oil property. The model is a mixed-integer nonlinear programming (MINLP) with constraints, and the target is to maximize the similarity between the blended crude oil and the objective crude oil. Furthermore, the model takes into account the selection of crude oils and their blending ratios simultaneously, and trans-forms the problem of looking for similar crude oil into the crude oil selection and blending optimization problem. We ap-plied the Improved Cuckoo Search (ICS) algorithm to solving the model. Through the simulations, ICS was compared with the genetic algorithm, the particle swarm optimization algorithm and the CPLEX solver. The results show that ICS has very good optimization efifciency. The blending solution can provide a reference for reifneries to ifnd the similar crude oil. And the method proposed can also give some references to selection and blending optimization of other materials.
Predicting Modeling Method of Ship Radiated Noise Based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Guohui Li
2016-01-01
Full Text Available Because the forming mechanism of underwater acoustic signal is complex, it is difficult to establish the accurate predicting model. In this paper, we propose a nonlinear predicting modeling method of ship radiated noise based on genetic algorithm. Three types of ship radiated noise are taken as real underwater acoustic signal. First of all, a basic model framework is chosen. Secondly, each possible model is done with genetic coding. Thirdly, model evaluation standard is established. Fourthly, the operation of genetic algorithm such as crossover, reproduction, and mutation is designed. Finally, a prediction model of real underwater acoustic signal is established by genetic algorithm. By calculating the root mean square error and signal error ratio of underwater acoustic signal predicting model, the satisfactory results are obtained. The results show that the proposed method can establish the accurate predicting model with high prediction accuracy and may play an important role in the further processing of underwater acoustic signal such as noise reduction and feature extraction and classification.
Research and Simulation of FECG Signal Blind Separation Algorithm Based on Gradient Method
Directory of Open Access Journals (Sweden)
Yu Chen
2012-08-01
Full Text Available Independent Component Analysis (ICA is a new developed signal separation and digital analysis technology in recent years. ICA has widely used because it does not need to know the signal prior information, which has became the hot spot in signal processing field research. In this study, we firstly introduce the principle, meaning and blind source separation algorithm based on the gradient. By using the traditional natural gradient algorithm and Equi-variant Adaptive Source Separation via Independent (EASI blind separation algorithm, mixing ECG signals with noises had been separated effectively into the Maternal Electrocardiograph (MECG signal, Fetal Electrocardiograph (FECG signal and noise signal. The algorithm separation test showed that EASI algorithm can better separate the fetal ECG signal and because the gradient algorithm is a kind of online algorithm, which can be used for clinical fetal ECG signal of the real-time detection with important practical value and research significance.
A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm.
de Brito, Daniel M; Maracaja-Coutinho, Vinicius; de Farias, Savio T; Batista, Leonardo V; do Rêgo, Thaís G
2016-01-01
Genomic Islands (GIs) are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP--Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me. PMID:26731657
A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm.
Directory of Open Access Journals (Sweden)
Daniel M de Brito
Full Text Available Genomic Islands (GIs are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP--Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me.
Adaptive Initialization Method Based on Spatial Local Information for k-Means Algorithm
Honghong Liao; Jinhai Xiang; Weiping Sun; Jianghua Dai; Shengsheng Yu
2014-01-01
k-means algorithm is a widely used clustering algorithm in data mining and machine learning community. However, the initial guess of cluster centers affects the clustering result seriously, which means that improper initialization cannot lead to a desirous clustering result. How to choose suitable initial centers is an important research issue for k-means algorithm. In this paper, we propose an adaptive initialization framework based on spatial local information (AIF-SLI), which takes advanta...
Adaptive Initialization Method Based on Spatial Local Information for k-Means Algorithm
Directory of Open Access Journals (Sweden)
Honghong Liao
2014-01-01
Full Text Available k-means algorithm is a widely used clustering algorithm in data mining and machine learning community. However, the initial guess of cluster centers affects the clustering result seriously, which means that improper initialization cannot lead to a desirous clustering result. How to choose suitable initial centers is an important research issue for k-means algorithm. In this paper, we propose an adaptive initialization framework based on spatial local information (AIF-SLI, which takes advantage of local density of data distribution. As it is difficult to estimate density correctly, we develop two approximate estimations: density by t-nearest neighborhoods (t-NN and density by ϵ-neighborhoods (ϵ-Ball, leading to two implements of the proposed framework. Our empirical study on more than 20 datasets shows promising performance of the proposed framework and denotes that it has several advantages: (1 can find the reasonable candidates of initial centers effectively; (2 it can reduce the iterations of k-means’ methods significantly; (3 it is robust to outliers; and (4 it is easy to implement.
Xie, Li; Li, Guangyao; Xiao, Mang; Peng, Lei
2016-04-01
Various kinds of remote sensing image classification algorithms have been developed to adapt to the rapid growth of remote sensing data. Conventional methods typically have restrictions in either classification accuracy or computational efficiency. Aiming to overcome the difficulties, a new solution for remote sensing image classification is presented in this study. A discretization algorithm based on information entropy is applied to extract features from the data set and a vector space model (VSM) method is employed as the feature representation algorithm. Because of the simple structure of the feature space, the training rate is accelerated. The performance of the proposed method is compared with two other algorithms: back propagation neural networks (BPNN) method and ant colony optimization (ACO) method. Experimental results confirm that the proposed method is superior to the other algorithms in terms of classification accuracy and computational efficiency.
Directory of Open Access Journals (Sweden)
Jing Xu
2016-07-01
Full Text Available As the sound signal of a machine contains abundant information and is easy to measure, acoustic-based monitoring or diagnosis systems exhibit obvious superiority, especially in some extreme conditions. However, the sound directly collected from industrial field is always polluted. In order to eliminate noise components from machinery sound, a wavelet threshold denoising method optimized by an improved fruit fly optimization algorithm (WTD-IFOA is proposed in this paper. The sound is firstly decomposed by wavelet transform (WT to obtain coefficients of each level. As the wavelet threshold functions proposed by Donoho were discontinuous, many modified functions with continuous first and second order derivative were presented to realize adaptively denoising. However, the function-based denoising process is time-consuming and it is difficult to find optimal thresholds. To overcome these problems, fruit fly optimization algorithm (FOA was introduced to the process. Moreover, to avoid falling into local extremes, an improved fly distance range obeying normal distribution was proposed on the basis of original FOA. Then, sound signal of a motor was recorded in a soundproof laboratory, and Gauss white noise was added into the signal. The simulation results illustrated the effectiveness and superiority of the proposed approach by a comprehensive comparison among five typical methods. Finally, an industrial application on a shearer in coal mining working face was performed to demonstrate the practical effect.
Matsui, Futoshi; Goriki, Shin'ichi; Shimizu, Yukio; Tomizawa, Hiromitsu; Kawato, Sakae; Kobayashi, Takao
2008-05-01
Arbitrary spatial beam shaping was demonstrated with a membrane electrostatic actuator type deformable mirror (DM). An automatic closed loop system must optimize such beam shapes as flattop. Well-characterized short pulse laser beam is widely required for a photocathode RF gun or for microscopic processing, etc. We propose a new sophisticated optimizing method based on a genetic algorithm (GA) for spatial shaping. A membrane type DM is driven by electrostatic attraction power, and applied electrode voltages vs displacement of membrane surface have a square function relationship. We prepare discrete electrode voltages to linearly change displacement as a utilized gene of the initial population in GA. Using uniform crossover without mutation in this method, we can make an arbitrary spatial beam shape quasi-flattop.
Directory of Open Access Journals (Sweden)
Li Honglin
2009-03-01
Full Text Available Abstract Background Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. Results The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105–112. Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 Å to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 ± 0.18 seconds per molecule renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. Conclusion On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms
Sheta, B.; Elhabiby, M.; Sheimy, N.
2012-07-01
A robust scale and rotation invariant image matching algorithm is vital for the Visual Based Navigation (VBN) of aerial vehicles, where matches between an existing geo-referenced database images and the real-time captured images are used to georeference (i.e. six transformation parameters - three rotation and three translation) the real-time captured image from the UAV through the collinearity equations. The georeferencing information is then used in aiding the INS integration Kalman filter as Coordinate UPdaTe (CUPT). It is critical for the collinearity equations to use the proper optimization algorithm to ensure accurate and fast convergence for georeferencing parameters with the minimum required conjugate points necessary for convergence. Fast convergence to a global minimum will require non-linear approach to overcome the high degree of non-linearity that will exist in case of having large oblique images (i.e. large rotation angles).The main objective of this paper is investigating the estimation of the georeferencing parameters necessary for VBN of aerial vehicles in case of having large values of the rotational angles, which will lead to non-linearity of the estimation model. In this case, traditional least squares approaches will fail to estimate the georeferencing parameters, because of the expected non-linearity of the mathematical model. Five different nonlinear least squares methods are presented for estimating the transformation parameters. Four gradient based nonlinear least squares methods (Trust region, Trust region dogleg algorithm, Levenberg-Marquardt, and Quasi-Newton line search method) and one non-gradient method (Nelder-Mead simplex direct search) is employed for the six transformation parameters estimation process. The research was done on simulated data and the results showed that the Nelder-Mead method has failed because of its dependency on the objective function without any derivative information. Although, the tested gradient methods
Biazzo, Indaco; Braunstein, Alfredo; Zecchina, Riccardo
2012-08-01
We study the behavior of an algorithm derived from the cavity method for the prize-collecting steiner tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks, networks, and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the dhea solver, a branch and cut integer linear programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two postprocessing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases.
Directory of Open Access Journals (Sweden)
Chang Liu
2015-01-01
Full Text Available Path planning is a classic optimization problem which can be solved by many optimization algorithms. The complexity of three-dimensional (3D path planning for autonomous underwater vehicles (AUVs requires the optimization algorithm to have a quick convergence speed. This work provides a new 3D path planning method for AUV using a modified firefly algorithm. In order to solve the problem of slow convergence of the basic firefly algorithm, an improved method was proposed. In the modified firefly algorithm, the parameters of the algorithm and the random movement steps can be adjusted according to the operating process. At the same time, an autonomous flight strategy is introduced to avoid instances of invalid flight. An excluding operator was used to improve the effect of obstacle avoidance, and a contracting operator was used to enhance the convergence speed and the smoothness of the path. The performance of the modified firefly algorithm and the effectiveness of the 3D path planning method were proved through a varied set of experiments.
Adjoint Algorithm for CAD-Based Shape Optimization Using a Cartesian Method
Nemec, Marian; Aftosmis, Michael J.
2004-01-01
Adjoint solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape optimization. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (geometric parameters that control the shape). More recently, emerging adjoint applications focus on the analysis problem, where the adjoint solution is used to drive mesh adaptation, as well as to provide estimates of functional error bounds and corrections. The attractive feature of this approach is that the mesh-adaptation procedure targets a specific functional, thereby localizing the mesh refinement and reducing computational cost. Our focus is on the development of adjoint-based optimization techniques for a Cartesian method with embedded boundaries.12 In contrast t o implementations on structured and unstructured grids, Cartesian methods decouple the surface discretization from the volume mesh. This feature makes Cartesian methods well suited for the automated analysis of complex geometry problems, and consequently a promising approach to aerodynamic optimization. Melvin et developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the Euler equations. In both approaches, a boundary condition is introduced to approximate the effects of the evolving surface shape that results in accurate gradient computation. Central to automated shape optimization algorithms is the issue of geometry modeling and control. The need to optimize complex, "real-life" geometry provides a strong incentive for the use of parametric-CAD systems within the optimization procedure. In previous work, we presented
A User Differential Range Error Calculating Algorithm Based on Analytic Method
Institute of Scientific and Technical Information of China (English)
SHAO Bo; LIU Jiansheng; ZHAO Ruibin; HUANG Zhigang; LI Rui
2011-01-01
To enhance the integrity,an analytic method (AM) which has less execution time is proposed to calculate the user differential range error (UDRE) used by the user to detect the potential risk.An ephemeris and clock correction calculation method is introduced first.It shows that the most important thing of computing UDRE is to find the worst user location (WUL) in the service volume.Then,a UDRE algorithm using AM is described to solve this problem.By using the covariance matrix of the error vector,the searching of WUL is converted to an analytic geometry problem.The location of WUL can be obtained directly by mathematical derivation.Experiments are conducted to compare the performance between the proposed AM algorithm and the exhaustive grid search (EGS) method used in the master station.The results show that the correctness of the AM algorithm can be proved by the EGS method and the AM algorithm can reduce the calculation time by more than 90%.The computational complexity of this proposed algorithm is better than that of EGS.Thereby this algorithm is more suitable for computing UDRE at the master station.
Two Novel On-policy Reinforcement Learning Algorithms based on TD(lambda)-methods
Wiering, M.A.; Hasselt, H. van
2007-01-01
This paper describes two novel on-policy reinforcement learning algorithms, named QV(lambda)-learning and the actor critic learning automaton (ACLA). Both algorithms learn a state value-function using TD(lambda)-methods. The difference between the algorithms is that QV-learning uses the learned value function and a form of Q-learning to learn Q-values, whereas ACLA uses the value function and a learning automaton-like update rule to update the actor. We describe several possible advantages of...
New Tabu Search based global optimization methods outline of algorithms and study of efficiency.
Stepanenko, Svetlana; Engels, Bernd
2008-04-15
The study presents two new nonlinear global optimization routines; the Gradient Only Tabu Search (GOTS) and the Tabu Search with Powell's Algorithm (TSPA). They are based on the Tabu-Search strategy, which tries to determine the global minimum of a function by the steepest descent-mildest ascent strategy. The new algorithms are explained and their efficiency is compared with other approaches by determining the global minima of various well-known test functions with varying dimensionality. These tests show that for most tests the GOTS possesses a much faster convergence than global optimizer taken from the literature. The efficiency of the TSPA compares to the efficiency of genetic algorithms. PMID:17910004
A Semi-Supervised WLAN Indoor Localization Method Based on ℓ1-Graph Algorithm
Institute of Scientific and Technical Information of China (English)
Liye Zhang; Lin Ma; Yubin Xu
2015-01-01
For indoor location estimation based on received signal strength ( RSS ) in wireless local area networks ( WLAN) , in order to reduce the influence of noise on the positioning accuracy, a large number of RSS should be collected in offline phase. Therefore, collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper, the traditional semi⁃supervised learning method based on k⁃NN andε⁃NN graph for reducing collection workload of offline phase are analyzed, and the result shows that the k⁃NN or ε⁃NN graph are sensitive to data noise, which limit the performance of semi⁃supervised learning WLAN indoor localization system. Aiming at the above problem, it proposes a ℓ1⁃graph⁃algorithm⁃based semi⁃supervised learning ( LG⁃SSL) indoor localization method in which the graph is built by ℓ1⁃norm algorithm. In our system, it firstly labels the unlabeled data using LG⁃SSL and labeled data to build the Radio Map in offline training phase, and then uses LG⁃SSL to estimate user’ s location in online phase. Extensive experimental results show that, benefit from the robustness to noise and sparsity ofℓ1⁃graph, LG⁃SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.
Automatic PET-CT Image Registration Method Based on Mutual Information and Genetic Algorithms
Martina Marinelli; Vincenzo Positano; Francesco Tucci; Danilo Neglia; Luigi Landini
2012-01-01
Hybrid PET/CT scanners can simultaneously visualize coronary artery disease as revealed by computed tomography (CT) and myocardial perfusion as measured by positron emission tomography (PET). Manual registration is usually required in clinical practice to compensate spatial mismatch between datasets. In this paper, we present a registration algorithm that is able to automatically align PET/CT cardiac images. The algorithm bases on mutual information (MI) as registration metric and on genetic ...
Jie-Sheng Wang; Chen-Xu Ning
2015-01-01
In order to improve the accuracy and real-time of all kinds of information in the cash business, and solve the problem which accuracy and stability is not high of the data linkage between cash inventory forecasting and cash management information in the commercial bank, a hybrid learning algorithm is proposed based on adaptive population activity particle swarm optimization (APAPSO) algorithm combined with the least squares method (LMS) to optimize the adaptive network-based fuzzy inference s...
Institute of Scientific and Technical Information of China (English)
LI Zicheng; SUN Yukun
2006-01-01
Considering the detection principle that "when load current is periodic current, the integral in a cycle for absolute value of load current subtracting fundamental active current is the least", harmonic current real-time detection methods for power active filter are proposed based on direct computation, simple iterative algorithm and optimal iterative algorithm. According to the direct computation method, the amplitude of the fundamental active current can be accurately calculated when load current is placed in stable state. The simple iterative algorithm and the optimal iterative algorithm provide an idea about judging the state of load current. On the basis of the direct computation method, the simple iterative algorithm, the optimal iterative algorithm and precise definition of the basic concepts such as the true amplitude of the fundamental active current when load current is placed in varying state, etc., the double linear construction idea is proposed in which the amplitude of the fundamental active current at the moment of the sample is accurately calculated by using the first linear construction and the condition which disposes the next sample is created by using the second linear construction. On the basis of the double linear construction idea, a harmonic current real-time detection method for power active filter is proposed based on the double linear construction algorithm. This method has the characteristics of small computing quantity, fine real-time performance, being capable of accurately calculating the amplitude of the fundamental active current and so on.
International Nuclear Information System (INIS)
Many problems need to be solved before vision systems can actually be applied in industry, such as the precision of the kinematics model of the robot control algorithm based on visual information, active compensation of the camera's focal length and orientation during the movement of the robot, and understanding the mapping of the physical 3-D space into 2-D camera coordinates. An algorithm is proposed to enable robot to move actively even if the relative positions between the camera and the robot is unknown. To solve the correction problem, this study proposes vision system model with six camera parameters. To develop the robot vision control algorithm, the N-R and EKG methods are applied to the vision system model. Finally, the position accuracy and processing time of the two algorithms developed based based on the EKG and the N-R methods are compared experimentally by making the robot perform slender bar placement task
Directory of Open Access Journals (Sweden)
Alexander B. Bakulev
2012-11-01
Full Text Available This article deals with mathematical models and algorithms, providing mobility of sequential programs parallel representation on the high-level language, presents formal model of operation environment processes management, based on the proposed model of programs parallel representation, presenting computation process on the base of multi-core processors.
Alexander B. Bakulev; Marina A. Bakuleva; Svetlana B. Avilkina
2012-01-01
This article deals with mathematical models and algorithms, providing mobility of sequential programs parallel representation on the high-level language, presents formal model of operation environment processes management, based on the proposed model of programs parallel representation, presenting computation process on the base of multi-core processors.
International Nuclear Information System (INIS)
Highlights: • BBO algorithm is capable of finding suitably optimized loading pattern. • It seems BBO reaches to better final parameter value in comparison with the PSO. • PSO exhibits faster convergence characteristics in comparison with BBO. • Even with same initial random patterns the BBO is found to outperform PSO. - Abstract: In this investigation, we developed a new optimization method, i.e., biogeography based optimization (BBO), for loading pattern optimization problem of pressurized water reactors. BBO is a novel stochastic force based on the science of biogeography. Biogeography is the schoolwork of geographical allotment of biological organisms. BBO make use of migration operator to share information between the problem solutions. The problem solutions are called as habitats and sharing of features is called migration. For the evaluation of the proposed method, we applied a multi-objective fitness function i.e., the maximization of reactivity at BOC and the flattening of power distribution are achieved efficiently and simultaneously. The neutronic calculation is done by CITATION and WIMS codes
A New Tool Wear Monitoring Method Based on Ant Colony Algorithm
Directory of Open Access Journals (Sweden)
Qianjian Guo
2013-06-01
Full Text Available Tool wear prediction is a major contributor to the dimensional errors of a work piece in precision machining, which plays an important role in industry for higher productivity and product quality. Tool wear monitoring is an effective way to predict the tool wear loss in milling process. In this paper, a new bionic prediction model is presented based on the generation mechanism of tool wear loss. Different milling conditions are estimated as the input variables, tool wear loss is estimated as the output variable, neural network method is proposed to establish the mapping relation and ant algorithm is used to train the weights of BP neural networks during tool wear modeling. Finally, a real-time tool wear loss estimator is developed based on ant colony alogrithm and experiments have been conducted for measuring tool wear based on the estimator in a milling machine. The experimental and estimated results are found to be in satisfactory agreement with average error lower than 6%.
Unsupervised classification algorithm based on EM method for polarimetric SAR images
Fernández-Michelli, J. I.; Hurtado, M.; Areta, J. A.; Muravchik, C. H.
2016-07-01
In this work we develop an iterative classification algorithm using complex Gaussian mixture models for the polarimetric complex SAR data. It is a non supervised algorithm which does not require training data or an initial set of classes. Additionally, it determines the model order from data, which allows representing data structure with minimum complexity. The algorithm consists of four steps: initialization, model selection, refinement and smoothing. After a simple initialization stage, the EM algorithm is iteratively applied in the model selection step to compute the model order and an initial classification for the refinement step. The refinement step uses Classification EM (CEM) to reach the final classification and the smoothing stage improves the results by means of non-linear filtering. The algorithm is applied to both simulated and real Single Look Complex data of the EMISAR mission and compared with the Wishart classification method. We use confusion matrix and kappa statistic to make the comparison for simulated data whose ground-truth is known. We apply Davies-Bouldin index to compare both classifications for real data. The results obtained for both types of data validate our algorithm and show that its performance is comparable to Wishart's in terms of classification quality.
Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.
Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don
2016-01-01
Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms. PMID:27005632
Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors
Directory of Open Access Journals (Sweden)
Jonghoon Seo
2016-03-01
Full Text Available Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel’s type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms.
International Nuclear Information System (INIS)
We present a moment-based acceleration algorithm applied to Monte Carlo simulation of thermal radiative-transfer problems. Our acceleration algorithm employs a continuum system of moments to accelerate convergence of stiff absorption–emission physics. The combination of energy-conserving tallies and the use of an asymptotic approximation in optically thick regions remedy the difficulties of local energy conservation and mitigation of statistical noise in such regions. We demonstrate the efficiency and accuracy of the developed method. We also compare directly to the standard linearization-based method of Fleck and Cummings [1]. A factor of 40 reduction in total computational time is achieved with the new algorithm for an equivalent (or more accurate) solution as compared with the Fleck–Cummings algorithm
An algorithm to improve sampling efficiency for uncertainty propagation using sampling based method
Energy Technology Data Exchange (ETDEWEB)
Campolina, Daniel; Lima, Paulo Rubens I., E-mail: campolina@cdtn.br, E-mail: pauloinacio@cpejr.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores; Pereira, Claubia; Veloso, Maria Auxiliadora F., E-mail: claubia@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear
2015-07-01
Sample size and computational uncertainty were varied in order to investigate sample efficiency and convergence of the sampling based method for uncertainty propagation. Transport code MCNPX was used to simulate a LWR model and allow the mapping, from uncertain inputs of the benchmark experiment, to uncertain outputs. Random sampling efficiency was improved through the use of an algorithm for selecting distributions. Mean range, standard deviation range and skewness were verified in order to obtain a better representation of uncertainty figures. Standard deviation of 5 pcm in the propagated uncertainties for 10 n-samples replicates was adopted as convergence criterion to the method. Estimation of 75 pcm uncertainty on reactor k{sub eff} was accomplished by using sample of size 93 and computational uncertainty of 28 pcm to propagate 1σ uncertainty of burnable poison radius. For a fixed computational time, in order to reduce the variance of the uncertainty propagated, it was found, for the example under investigation, it is preferable double the sample size than double the amount of particles followed by Monte Carlo process in MCNPX code. (author)
An algorithm to improve sampling efficiency for uncertainty propagation using sampling based method
International Nuclear Information System (INIS)
Sample size and computational uncertainty were varied in order to investigate sample efficiency and convergence of the sampling based method for uncertainty propagation. Transport code MCNPX was used to simulate a LWR model and allow the mapping, from uncertain inputs of the benchmark experiment, to uncertain outputs. Random sampling efficiency was improved through the use of an algorithm for selecting distributions. Mean range, standard deviation range and skewness were verified in order to obtain a better representation of uncertainty figures. Standard deviation of 5 pcm in the propagated uncertainties for 10 n-samples replicates was adopted as convergence criterion to the method. Estimation of 75 pcm uncertainty on reactor keff was accomplished by using sample of size 93 and computational uncertainty of 28 pcm to propagate 1σ uncertainty of burnable poison radius. For a fixed computational time, in order to reduce the variance of the uncertainty propagated, it was found, for the example under investigation, it is preferable double the sample size than double the amount of particles followed by Monte Carlo process in MCNPX code. (author)
Directory of Open Access Journals (Sweden)
Luman Zhao
2015-01-01
Full Text Available A thrust allocation method was proposed based on a hybrid optimization algorithm to efficiently and dynamically position a semisubmersible drilling rig. That is, the thrust allocation was optimized to produce the generalized forces and moment required while at the same time minimizing the total power consumption under the premise that forbidden zones should be taken into account. An optimization problem was mathematically formulated to provide the optimal thrust allocation by introducing the corresponding design variables, objective function, and constraints. A hybrid optimization algorithm consisting of a genetic algorithm and a sequential quadratic programming (SQP algorithm was selected and used to solve this problem. The proposed method was evaluated by applying it to a thrust allocation problem for a semisubmersible drilling rig. The results indicate that the proposed method can be used as part of a cost-effective strategy for thrust allocation of the rig.
Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method
Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen
2008-01-01
In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…
NUMERICAL METHOD BASED ON HAMILTON SYSTEM AND SYMPLECTIC ALGORITHM TO DIFFERENTIAL GAMES
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The resolution of differential games often concerns the difficult problem of two points border value (TPBV), then ascribe linear quadratic differential game to Hamilton system. To Hamilton system, the algorithm of symplectic geometry has the merits of being able to copy the dynamic structure of Hamilton system and keep the measure of phase plane. From the viewpoint of Hamilton system, the symplectic characters of linear quadratic differential game were probed; as a try, Symplectic-Runge-Kutta algorithm was presented for the resolution of infinite horizon linear quadratic differential game. An example of numerical calculation was given, and the result can illuminate the feasibility of this method. At the same time, it embodies the fine conservation characteristics of symplectic algorithm to system energy.
An infrared small target detection algorithm based on high-speed local contrast method
Cui, Zheng; Yang, Jingli; Jiang, Shouda; Li, Junbao
2016-05-01
Small-target detection in infrared imagery with a complex background is always an important task in remote sensing fields. It is important to improve the detection capabilities such as detection rate, false alarm rate, and speed. However, current algorithms usually improve one or two of the detection capabilities while sacrificing the other. In this letter, an Infrared (IR) small target detection algorithm with two layers inspired by Human Visual System (HVS) is proposed to balance those detection capabilities. The first layer uses high speed simplified local contrast method to select significant information. And the second layer uses machine learning classifier to separate targets from background clutters. Experimental results show the proposed algorithm pursue good performance in detection rate, false alarm rate and speed simultaneously.
A genetic algorithm approach for assessing soil liquefaction potential based on reliability method
Indian Academy of Sciences (India)
M H Bagheripour; I Shooshpasha; M Afzalirad
2012-02-01
Deterministic approaches are unable to account for the variations in soil’s strength properties, earthquake loads, as well as source of errors in evaluations of liquefaction potential in sandy soils which make them questionable against other reliability concepts. Furthermore, deterministic approaches are incapable of precisely relating the probability of liquefaction and the factor of safety (FS). Therefore, the use of probabilistic approaches and especially, reliability analysis is considered since a complementary solution is needed to reach better engineering decisions. In this study, Advanced First-Order Second-Moment (AFOSM) technique associated with genetic algorithm (GA) and its corresponding sophisticated optimization techniques have been used to calculate the reliability index and the probability of liquefaction. The use of GA provides a reliable mechanism suitable for computer programming and fast convergence. A new relation is developed here, by which the liquefaction potential can be directly calculated based on the estimated probability of liquefaction (), cyclic stress ratio (CSR) and normalized standard penetration test (SPT) blow counts while containing a mean error of less than 10% from the observational data. The validity of the proposed concept is examined through comparison of the results obtained by the new relation and those predicted by other investigators. A further advantage of the proposed relation is that it relates and FS and hence it provides possibility of decision making based on the liquefaction risk and the use of deterministic approaches. This could be beneficial to geotechnical engineers who use the common methods of FS for evaluation of liquefaction. As an application, the city of Babolsar which is located on the southern coasts of Caspian Sea is investigated for liquefaction potential. The investigation is based primarily on in situ tests in which the results of SPT are analysed.
Jamadi, Mohammad; Merrikh-Bayat, Farshad
2014-01-01
This paper proposes an effective method for estimating the parameters of double-cage induction motors by using Artificial Bee Colony (ABC) algorithm. For this purpose the unknown parameters in the electrical model of asynchronous machine are calculated such that the sum of the square of differences between full load torques, starting torques, maximum torques, starting currents, full load currents, and nominal power factors obtained from model and provided by manufacturer is minimized. In orde...
Histogram-Based Estimation of Distribution Algorithm: A Competent Method for Continuous Optimization
Institute of Scientific and Technical Information of China (English)
Nan Ding; Shu-De Zhou; Zeng-Qi Sun
2008-01-01
Designing efficient estimation of distribution algorithms for optimizing complex continuous problems is still a challenging task. This paper utilizes histogram probabilistic model to describe the distribution of population and to generate promising solutions. The advantage of histogram model, its intrinsic multimodality, makes it proper to describe the solution distribution of complex and multimodal continuous problems. To make histogram model more efficiently explore and exploit the search space, several strategies are brought into the algorithms: the surrounding effect reduces the population size in estimating the model with a certain number of the bins and the shrinking strategy guarantees the accuracy of optimal solutions. Furthermore, this paper shows that histogram-based EDA (Estimation of distributiona lgorithm) can give comparable or even much better performance than those predominant EDAs based on Gaussianmodels.
Sheta, B.; Elhabiby, M.; Sheimy, N.
2012-01-01
A robust scale and rotation invariant image matching algorithm is vital for the Visual Based Navigation (VBN) of aerial vehicles, where matches between an existing geo-referenced database images and the real-time captured images are used to georeference (i.e. six transformation parameters - three rotation and three translation) the real-time captured image from the UAV through the collinearity equations. The georeferencing information is then used in aiding the INS integration Kalman filter a...
Directory of Open Access Journals (Sweden)
A New Algorithm Based on the Homotopy Perturbation Method For a Class of Singularly Perturbed Boundary Value Problems
2013-12-01
Full Text Available . In this paper, a new algorithm is presented to approximate the solution of a singularly perturbed boundary value problem with leftlayer based on the homotopy perturbation technique and applying the Laplace transformation. The convergence theorem and the error bound of the proposed method are proved. The method is examined by solving two examples. The results demonstrate the reliability and efficiency of the proposed method.
Zhang, Ying; Liang, Jixing; Jiang, Shengming; Chen, Wei
2016-01-01
Due to their special environment, Underwater Wireless Sensor Networks (UWSNs) are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO) is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object's mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field. PMID:26861348
Zhang, Ying; Liang, Jixing; Jiang, Shengming; Chen, Wei
2016-01-01
Due to their special environment, Underwater Wireless Sensor Networks (UWSNs) are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO) is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object’s mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field. PMID:26861348
Directory of Open Access Journals (Sweden)
M. A. Demir
2012-04-01
Full Text Available Blind equalization is a technique for adaptive equalization of a communication channel without the use of training sequence. Although the constant modulus algorithm (CMA is one of the most popular adaptive blind equalization algorithms, because of using fixed step size it suffers from slow convergence rate. A novel enhanced variable step size CMA algorithm (VSS-CMA based on autocorrelation of error signal has been proposed to improve the weakness of CMA for application to blind equalization in this paper. The new algorithm resolves the conflict between the convergence rate and precision of the fixed step-size conventional CMA algorithm. Computer simulations have been performed to illustrate the performance of the proposed method in simulated frequency selective Rayleigh fading channels and experimental real communication channels. The obtained simulation results using single carrier (SC IEEE 802.16-2004 protocol have demonstrated that the proposed VSS-CMA algorithm has considerably better performance than conventional CMA, normalized CMA (N-CMA and the other VSS-CMA algorithms.
DEFF Research Database (Denmark)
Nadernejad, Ehsan; Sharifzadeh, Sara
2013-01-01
In this paper, a new pixon-based method is presented for image segmentation. In the proposed algorithm, bilateral filtering is used as a kernel function to form a pixonal image. Using this filter reduces the noise and smoothes the image slightly. By using this pixon-based method, the image over...... segmentation could be avoided. Indeed, the bilateral filtering, as a preprocessing step, eliminates the unnecessary details of the image and results in a few numbers of pixons, faster performance and more robustness against unwanted environmental noises. Then, the obtained pixonal image is segmented using the...... hierarchical clustering method (Fuzzy C-means algorithm). The experimental results show that the proposed pixon-based approach has a reduced computational load and a better accuracy compared to the other existing pixon-based image segmentation techniques....
Directory of Open Access Journals (Sweden)
Jie-Sheng Wang
2015-06-01
Full Text Available In order to improve the accuracy and real-time of all kinds of information in the cash business, and solve the problem which accuracy and stability is not high of the data linkage between cash inventory forecasting and cash management information in the commercial bank, a hybrid learning algorithm is proposed based on adaptive population activity particle swarm optimization (APAPSO algorithm combined with the least squares method (LMS to optimize the adaptive network-based fuzzy inference system (ANFIS model parameters. Through the introduction of metric function of population diversity to ensure the diversity of population and adaptive changes in inertia weight and learning factors, the optimization ability of the particle swarm optimization (PSO algorithm is improved, which avoids the premature convergence problem of the PSO algorithm. The simulation comparison experiments are carried out with BP-LMS algorithm and standard PSO-LMS by adopting real commercial banks’ cash flow data to verify the effectiveness of the proposed time series prediction of bank cash flow based on improved PSO-ANFIS optimization method. Simulation results show that the optimization speed is faster and the prediction accuracy is higher.
Ruan, Cong; Sun, Xiao-Min; Song, Yi-Xu
In this paper, we propose a method to optimize etching yield parameters. By means of defining a fitness function between the actual etching profile and the simulation profile, the etching yield parameters solving problem is transformed into an optimization problem. The problem is nonlinear and high dimensional, and each simulation is computationally expensive. To solve this problem, we need to search a better solution in a multidimensional space. Ordinal optimization and tabu search hybrid algorithm is introduced to solve this complex problem. This method ensures getting good enough solution in an acceptable time. The experimental results illustrate that simulation profile obtained by this method is very similar with the actual etching profile in surface topography. It also proves that our proposed method has feasibility and validity.
Directory of Open Access Journals (Sweden)
Ashkan Emami Ale Agha
2013-06-01
Full Text Available One of the most important concepts in multi programming Operating Systems is scheduling. It helps in choosing the processes for execution. Round robin method is one of the most important algorithms in scheduling. It is the most popular algorithm due to its fairness and starvation free nature towards the processes, which is achieved by using proper quantum time. The main challenge in this algorithm is selection of quantum time. This parameter affects on average Waiting Time and average Turnaround Time in execution queue. As the quantum time is static, it causes less context switching in case of high quantum time and high context switching in case of less quantum time. Increasing context switch leads to high average waiting time, high average turnaround time which is an overhead and degrades the system performance. With respect to these points, the algorithms should calculate proper value for the quantum time. Two main classes of algorithms that are proposed to calculate the quantum time include static and dynamic methods. In static methods quantum time is fixed during the scheduling. Dynamic algorithms are one of these methods that change the value of quantum time in each cycle. For example in one method the value of quantum time in each cycle is equal to the median of burst times of processes in ready queue and for another method this value is equal to arithmetic mean of burst times of ready processes.In this paper we proposed a new method to obtaining quantum time in each cycle based on arithmetic-harmonic mean (HARM. Harmonic mean is calculated by dividing the number of observations by the reciprocal of each number in the series. With examples we show that in some cases it can provides better scheduling criteria and improves the average Turnaround Time and average Waiting Time.
Directory of Open Access Journals (Sweden)
Yukai Yao
2015-01-01
Full Text Available We propose an optimized Support Vector Machine classifier, named PMSVM, in which System Normalization, PCA, and Multilevel Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.
Trobec, Roman
2015-01-01
This book is concentrated on the synergy between computer science and numerical analysis. It is written to provide a firm understanding of the described approaches to computer scientists, engineers or other experts who have to solve real problems. The meshless solution approach is described in more detail, with a description of the required algorithms and the methods that are needed for the design of an efficient computer program. Most of the details are demonstrated on solutions of practical problems, from basic to more complicated ones. This book will be a useful tool for any reader interes
Survey on Parameters of Fingerprint Classification Methods Based On Algorithmic Flow
Directory of Open Access Journals (Sweden)
Dimple Parekh
2011-09-01
Full Text Available Classification refers to assigning a given fingerprint to one of the existing classes already recognized inthe literature. A search over all the records in the database takes a long time, so the goal is to reduce thesize of the search space by choosing an appropriate subset of database for search. Classifying afingerprint images is a very difficult pattern recognition problem, due to the minimal interclassvariability and maximal intraclass variability. This paper presents a sequence flow diagram which willhelp in developing the clarity on designing algorithm for classification based on various parametersextracted from the fingerprint image. It discusses in brief the ways in which the parameters are extractedfrom the image. Existing fingerprint classification approaches are based on these parameters as inputfor classifying the image. Parameters like orientation map, singular points, spurious singular points,ridge flow, transforms and hybrid feature are discussed in the paper.
A brain-region-based meta-analysis method utilizing the Apriori algorithm
Niu, Zhendong; Nie, Yaoxin; Zhou, Qian; Zhu, Linlin; Wei, Jieyao
2016-01-01
Background Brain network connectivity modeling is a crucial method for studying the brain’s cognitive functions. Meta-analyses can unearth reliable results from individual studies. Meta-analytic connectivity modeling is a connectivity analysis method based on regions of interest (ROIs) which showed that meta-analyses could be used to discover brain network connectivity. Results In this paper, we propose a new meta-analysis method that can be used to find network connectivity models based on t...
Improved Power Flow Algorithm for VSC-HVDC System Based on High-Order Newton-Type Method
Directory of Open Access Journals (Sweden)
Yanfang Wei
2013-01-01
Full Text Available Voltage source converter (VSC based high-voltage direct-current (HVDC system is a new transmission technique, which has the most promising applications in the fields of power systems and power electronics. Considering the importance of power flow analysis of the VSC-HVDC system for its utilization and exploitation, the improved power flow algorithms for VSC-HVDC system based on third-order and sixth-order Newton-type method are presented. The steady power model of VSC-HVDC system is introduced firstly. Then the derivation solving formats of multivariable matrix for third-order and sixth-order Newton-type power flow method of VSC-HVDC system are given. The formats have the feature of third-order and sixth-order convergence based on Newton method. Further, based on the automatic differentiation technology and third-order Newton method, a new improved algorithm is given, which will help in improving the program development, computation efficiency, maintainability, and flexibility of the power flow. Simulations of AC/DC power systems in two-terminal, multi-terminal, and multi-infeed DC with VSC-HVDC are carried out for the modified IEEE bus systems, which show the effectiveness and practicality of the presented algorithms for VSC-HVDC system.
Directory of Open Access Journals (Sweden)
Erik Cuevas
2015-01-01
Full Text Available In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC algorithm and the evolutionary method harmony search (HS. With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness.
Cuevas, Erik; Díaz, Margarita
2015-01-01
In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC) algorithm and the evolutionary method harmony search (HS). With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples) are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness. PMID:26339228
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances are distilled through an improved phase-located loop (PLL) system at first, and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively. The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm, and identifies PQ disturbances with the fused result finally. Compared with a single neural network, the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong. However, a single neural network may fail in this case. Furthermore, the combining neural network is more reliable than a single neural network. The simulation results prove the conclusions above.
Numerical methods and inversion algorithms in reservoir simulation based on front tracking
Energy Technology Data Exchange (ETDEWEB)
Haugse, Vidar
1999-04-01
This thesis uses front tracking to analyse laboratory experiments on multiphase flow in porous media. New methods for parameter estimation for two- and three-phase relative permeability experiments have been developed. Up scaling of heterogeneous and stochastic porous media is analysed. Numerical methods based on front tracking is developed and analysed. Such methods are efficient for problems involving steep changes in the physical quantities. Multi-dimensional problems are solved by combining front tracking with dimensional splitting. A method for adaptive grid refinement is developed.
Directory of Open Access Journals (Sweden)
Ebrahim BARATI
2013-03-01
Full Text Available In this paper the optimization of kinematics, which has great influence in performance of flapping foil propulsion, is investigated. The purpose of optimization is to design a flapping-wing micro aircraft with appropriate kinematics and aerodynamics features, making the micro aircraft suitable for transportation over large distance with minimum energy consumption. On the point of optimal design, the pitch amplitude, wing reduced frequency and phase difference between plunging and pitching are considered as given parameters and consumed energy, generated thrust by wings and lost power are computed using the 2D quasi-steady aerodynamic model and multi-objective genetic algorithm. Based on the thrust optimization, the increase in pitch amplitude reduces the power consumption. In this case the lost power increases and the maximum thrust coefficient is computed of 2.43. Based on the power optimization, the results show that the increase in pitch amplitude leads to power consumption increase. Additionally, the minimum lost power obtained in this case is 23% at pitch amplitude of 25°, wing reduced frequency of 0.42 and phase angle difference between plunging and pitching of 77°. Furthermore, the wing reduced frequency can be estimated using regression with respect to pitch amplitude, because reduced frequency variations with pitch amplitude is approximately a linear function.
Yang, Yun; Kimura, Shinji
This paper proposes an efficient design algorithm for power/ground (P/G) network synthesis with dynamic signal consideration, which is mainly caused by Ldi/dt noise and Cdv/dt decoupling capacitance (DECAP) current in the distribution network. To deal with the nonlinear global optimization under synthesis constraints directly, the genetic algorithm (GA) is introduced. The proposed GA-based synthesis method can avoid the linear transformation loss and the restraint condition complexity in current SLP, SQP, ICG, and random-walk methods. In the proposed Hybrid Grid Synthesis algorithm, the dynamic signal is simulated in the gene disturbance process, and Trapezoidal Modified Euler (TME) method is introduced to realize the precise dynamic time step process. We also use a hybrid-SLP method to reduce the genetic execute time and increase the network synthesis efficiency. Experimental results on given power distribution network show the reduction on layout area and execution time compared with current P/G network synthesis methods.
An Aircraft Navigation System Fault Diagnosis Method Based on Optimized Neural Network Algorithm
Institute of Scientific and Technical Information of China (English)
Jean-dedieu Weyepe
2014-01-01
Air data and inertial reference system (ADIRS) is one of the complex sub-system in the aircraft navigation system and it plays an important role into the flight safety of the aircraft. This paper propose an optimize neural network algorithm which is a combination of neural network and ant colony algorithm to improve efficiency of maintenance engineer job task.
Projection Classification Based Iterative Algorithm
Zhang, Ruiqiu; Li, Chen; Gao, Wenhua
2015-05-01
Iterative algorithm has good performance as it does not need complete projection data in 3D image reconstruction area. It is possible to be applied in BGA based solder joints inspection but with low convergence speed which usually acts with x-ray Laminography that has a worse reconstruction image compared to the former one. This paper explores to apply one projection classification based method which tries to separate the object to three parts, i.e. solute, solution and air, and suppose that the reconstruction speed decrease from solution to two other parts on both side lineally. And then SART and CAV algorithms are improved under the proposed idea. Simulation experiment result with incomplete projection images indicates the fast convergence speed of the improved iterative algorithms and the effectiveness of the proposed method. Less the projection images, more the superiority is also founded.
He, Hongyang; Xu, Jiangning; Qin, Fangjun; Li, Feng
2015-11-01
In order to shorten the alignment time and eliminate the small initial misalignment limit for compass alignment of strap-down inertial navigation system (SINS), which is sometimes not easy to satisfy when the ship is moored or anchored, an optimal model based time-varying parameter compass alignment algorithm is proposed in this paper. The contributions of the work presented here are twofold. First, the optimization of compass alignment parameters, which involves a lot of trial-and-error traditionally, is achieved based on genetic algorithm. On this basis, second, the optimal parameter varying model is established by least-square polynomial fitting. Experiments are performed with a navigational grade fiber optical gyroscope SINS, which validate the efficiency of the proposed method.
Li, Chen; Pan, Zengxin; Mao, Feiyue; Gong, Wei; Chen, Shihua; Min, Qilong
2015-10-01
The signal-to-noise ratio (SNR) of an atmospheric lidar decreases rapidly as range increases, so that maintaining high accuracy when retrieving lidar data at the far end is difficult. To avoid this problem, many de-noising algorithms have been developed; in particular, an effective de-noising algorithm has been proposed to simultaneously retrieve lidar data and obtain a de-noised signal by combining the ensemble Kalman filter (EnKF) and the Fernald method. This algorithm enhances the retrieval accuracy and effective measure range of a lidar based on the Fernald method, but sometimes leads to a shift (bias) in the near range as a result of the over-smoothing caused by the EnKF. This study proposes a new scheme that avoids this phenomenon using a particle filter (PF) instead of the EnKF in the de-noising algorithm. Synthetic experiments show that the PF performs better than the EnKF and Fernald methods. The root mean square error of PF are 52.55% and 38.14% of that of the Fernald and EnKF methods, and PF increases the SNR by 44.36% and 11.57% of that of the Fernald and EnKF methods, respectively. For experiments with real signals, the relative bias of the EnKF is 5.72%, which is reduced to 2.15% by the PF in the near range. Furthermore, the suppression impact on the random noise in the far range is also made significant via the PF. An extensive application of the PF method can be useful in determining the local and global properties of aerosols. PMID:26480164
General moving objects recognition method based on graph embedding dimension reduction algorithm
Institute of Scientific and Technical Information of China (English)
Yi ZHANG; Jie YANG; Kun LIU
2009-01-01
Effective and robust recognition and tracking of objects are the key problems in visual surveillance systems. Most existing object recognition methods were designed with particular objects in mind. This study presents a general moving objects recognition method using global features of targets. Targets are extracted with an adaptive Gaussian mixture model and their silhouette images are captured and unified. A new objects silhouette database is built to provide abundant samples to train the subspace feature. This database is more convincing than the previous ones. A more effective dimension reduction method based on graph embedding is used to obtain the projection eigenvector. In our experiments, we show the effective performance of our method in addressing the moving objects recognition problem and its superiority compared with the previous methods.
International Nuclear Information System (INIS)
Highlights: ► The performance of GA, HNN and combination of them in BPP optimization in PWR core are adequate. ► It seems HNN + GA arrives to better final parameter value in comparison with the two other methods. ► The computation time for HNN + GA is higher than GA and HNN. Thus a trade-off is necessary. - Abstract: In the last decades genetic algorithm (GA) and Hopfield Neural Network (HNN) have attracted considerable attention for the solution of optimization problems. In this paper, a hybrid optimization method based on the combination of the GA and HNN is introduced and applied to the burnable poison placement (BPP) problem to increase the quality of the results. BPP in a nuclear reactor core is a combinatorial and complicated problem. Arrangement and the worth of the burnable poisons (BPs) has an impressive effect on the main control parameters of a nuclear reactor. Improper design and arrangement of the BPs can be dangerous with respect to the nuclear reactor safety. In this paper, increasing BP worth along with minimizing the radial power peaking are considered as objective functions. Three optimization algorithms, genetic algorithm, Hopfield neural network optimization and a hybrid optimization method, are applied to the BPP problem and their efficiencies are compared. The hybrid optimization method gives better result in finding a better BP arrangement.
Improved Power Flow Algorithm for VSC-HVDC System Based on High-Order Newton-Type Method
Yanfang Wei; Qiang He; Yonghui Sun; Yanzhou Sun; Cong Ji
2013-01-01
Voltage source converter (VSC) based high-voltage direct-current (HVDC) system is a new transmission technique, which has the most promising applications in the fields of power systems and power electronics. Considering the importance of power flow analysis of the VSC-HVDC system for its utilization and exploitation, the improved power flow algorithms for VSC-HVDC system based on third-order and sixth-order Newton-type method are presented. The steady power model of VSC-HVDC system is introdu...
An Improved Robot Path Planning Algorithm Based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Hammin Liu
2012-12-01
Full Text Available Robot path planning is a NP problem; traditional optimization methods are not very effective to solve it. Traditional genetic algorithm trapped into the local minimum easily. Therefore, based on a simple genetic algorithm and combine the base ideology of orthogonal design method then applied it to the population initialization, using the intergenerational elite mechanism, as well as the introduction of adaptive local search operator to prevent trapped into the local minimum and improve the convergence speed to form a new genetic algorithm. Through the series of numerical experiments, the new algorithm has been proved to be efficiency. We also use the proposed algorithm to solve the robot path planning problem and the experiment results indicated that the new algorithm is efficiency for solving the robot path planning problems and the best path usually can be found.
Zhao, Peng; Zhang, Yan; Qian, Weiping
2015-10-01
Diffuse reflection laser ranging is one of the feasible ways to realize high precision measurement of the space debris. However, the weak echo of diffuse reflection results in a poor signal-to-noise ratio. Thus, it is difficult to realize the real-time signal extraction for diffuse reflection laser ranging when echo signal photons are blocked by a large amount of noise photons. The Genetic Algorithm, originally evolved from the idea of natural selection process, is a heuristic search algorithm which is famous for the adaptive optimization and the global search ability. To the best of our knowledge, this paper is the first one to propose a method of real-time signal extraction for diffuse reflection laser ranging based on Genetic Algorithm. The extraction results are regarded as individuals in the population. Besides, short-term linear fitting degree and data correlation level are used as selection criteria to search for an optimal solution. Fine search in the real-time data part gives the suitable new data quickly in real-time signal extraction. A coarse search in both historical data and real-time data after the fine search is designed. The co-evolution of both parts can increase the search accuracy of real-time data as well as the precision of the history data. Simulation experiments show that our method has good signal extraction capability in poor signal-to-noise ratio circumstance, especially for data with high correlation.
Liu, Yun; Zhao, Yuejin; Liu, Ming; Dong, Liquan; Hui, Mei; Liu, Xiaohua; Wu, Yijian
2015-09-01
As an important branch of infrared imaging technology, infrared target tracking and detection has a very important scientific value and a wide range of applications in both military and civilian areas. For the infrared image which is characterized by low SNR and serious disturbance of background noise, an innovative and effective target detection algorithm is proposed in this paper, according to the correlation of moving target frame-to-frame and the irrelevance of noise in sequential images based on OpenCV. Firstly, since the temporal differencing and background subtraction are very complementary, we use a combined detection method of frame difference and background subtraction which is based on adaptive background updating. Results indicate that it is simple and can extract the foreground moving target from the video sequence stably. For the background updating mechanism continuously updating each pixel, we can detect the infrared moving target more accurately. It paves the way for eventually realizing real-time infrared target detection and tracking, when transplanting the algorithms on OpenCV to the DSP platform. Afterwards, we use the optimal thresholding arithmetic to segment image. It transforms the gray images to black-white images in order to provide a better condition for the image sequences detection. Finally, according to the relevance of moving objects between different frames and mathematical morphology processing, we can eliminate noise, decrease the area, and smooth region boundaries. Experimental results proves that our algorithm precisely achieve the purpose of rapid detection of small infrared target.
A method for classification of network traffic based on C5.0 Machine Learning Algorithm
DEFF Research Database (Denmark)
Bujlow, Tomasz; Riaz, M. Tahir; Pedersen, Jens Myrup
2012-01-01
and classification, an algorithm for recognizing flow direction and the C5.0 itself. Classified applications include Skype, FTP, torrent, web browser traffic, web radio, interactive gaming and SSH. We performed subsequent tries using different sets of parameters and both training and classification options...
Ensemble Methods Foundations and Algorithms
Zhou, Zhi-Hua
2012-01-01
An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field. After presenting background and terminology, the book covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, the Stacking method, mixture of experts, and diversity measures. It also discusses multiclass extension, noise tolerance, error-ambiguity a
FEATURE SELECTION METHODS AND ALGORITHMS
Directory of Open Access Journals (Sweden)
L.Ladha,
2011-05-01
Full Text Available Feature selection is an important topic in data mining, especially for high dimensional datasets. Feature selection (also known as subset selection is a process commonly used in machine learning, wherein subsets of the features available from the data are selected for application of a learning algorithm. The best subset contains the least number of dimensions that most contribute to accuracy; wediscard the remaining, unimportant dimensions. This is an important stage of preprocessing and is one of two ways of avoiding the curse of dimensionality (the other is feature extraction. There are twoapproaches in Feature selection known as Forward selection and backward selection. Feature selection has been an active research area in pattern recognition, statistics, and data mining communities.The main idea of feature selection is to choose a subset of input variables by eliminating features with little or no predictive information. Feature selection methods can be decomposed into three broad classes. One is Filter methods and another one is Wrapper method and the third one is Embedded method. This paper presents an empirical comparison of feature selection methods and its algorithms. In view of the substantial number of existing feature selection algorithms, the need arises to count on criteria that enable to adequately decide which algorithm to use in certain situations. This work reviews several fundamental algorithms found in the literature and assesses their performance in a controlled scenario.
Diversity-Based Boosting Algorithm
Directory of Open Access Journals (Sweden)
Jafar A. Alzubi
2016-05-01
Full Text Available Boosting is a well known and efficient technique for constructing a classifier ensemble. An ensemble is built incrementally by altering the distribution of training data set and forcing learners to focus on misclassification errors. In this paper, an improvement to Boosting algorithm called DivBoosting algorithm is proposed and studied. Experiments on several data sets are conducted on both Boosting and DivBoosting. The experimental results show that DivBoosting is a promising method for ensemble pruning. We believe that it has many advantages over traditional boosting method because its mechanism is not solely based on selecting the most accurate base classifiers but also based on selecting the most diverse set of classifiers.
Tao, Wang; Dongying, Wang; Yu, Pei; Wei, Fan
2015-09-01
To resolve the measured target position to determine and locate leak problems with current gas leak detection and localization systems based on ultrasonic technology, this paper presents an improved multi-array ultrasonic gas leak TDOA (time difference of arrival) localization and detection method. This method involves arranging ultrasonic transducers at equal intervals in a high-sensitivity detector array, using small differences in ultrasonic sound intensity to determine the scope of the leak and generate a rough localization, and then using an array TDOA localization algorithm to determine the precise leak location. This method is then implemented in an ultrasonic leak detection and localization system. Experimental results showed that the TDOA localization method, using auxiliary sound intensity factors to avoid dependence on a single sound intensity to determine the leak size and location, achieved a localization error of less than 2 mm. The validity and correctness of this approach were thus verified.
Universal Algorithm for Online Trading Based on the Method of Calibration
Vladimir V'yugin; Vladimir Trunov
2012-01-01
We present a universal algorithm for online trading in Stock Market which performs asymptotically at least as good as any stationary trading strategy that computes the investment at each step using a fixed function of the side information that belongs to a given RKHS (Reproducing Kernel Hilbert Space). Using a universal kernel, we extend this result for any continuous stationary strategy. In this learning process, a trader rationally chooses his gambles using predictions made by a randomized ...
Fast Density Based Clustering Algorithm
Priyanka Trikha; Singh Vijendra
2013-01-01
Clustering problem is an unsupervised learning problem. It is a procedure that partition data objects into matching clusters. The data objects in the same cluster are quite similar to each other and dissimilar in the other clusters. The traditional algorithms do not meet the latest multiple requirements simultaneously for objects. Density-based clustering algorithms find clusters based on density of data points in a region. DBSCAN algorithm is one of the density-based clustering algorithms. I...
Institute of Scientific and Technical Information of China (English)
ZHANG Shi-hai; LIU Shu-jun; LIU Xiao-yan; OU Jin-ping
2006-01-01
First, the high-rise building structure design process is divided into three relevant steps, that is,scheme generation and creation, performance evaluation, and scheme optimization. Then with the application of relational database, the case database of high-rise structures is constructed, the structure form-selection designing methods such as the smart algorithm based on CBR, DM, FINS, NN and GA is presented, and the original forms system of this method and its general structure are given. CBR and DM are used to generate scheme candidates; FINS and NN to evaluate and optimize the scheme performance; GA to create new structure forms.Finally, the application cases are presented, whose results fit in with the real project. It proves by combining and using the expert intelligence, algorithm intelligence and machine intelligence that this method makes good use of not only the engineering project knowledge and expertise but also much deeper knowledge contained in various engineering cases. In other words, it is because the form selection has a strong background support of vast real cases that its results prove more reliable and more acceptable. So the introduction of this method prorides an effective approach to improving the quality, efficiency, automatic and smart level of high-rise structures form selection design.
Directory of Open Access Journals (Sweden)
Jun Wang
2015-01-01
Full Text Available The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.
Directory of Open Access Journals (Sweden)
Qu Li
2014-01-01
Full Text Available Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy.
Institute of Scientific and Technical Information of China (English)
贺建军; 喻寿益; 钟掘
2003-01-01
A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings. The difference from GA is that AGA takes objective function as adaptability function directly, so it cuts down some unnecessary time expense because of float-point calculation of function conversion. The difference from SAA is that AGA need not execute a very long Markov chain iteration at each point of temperature, so it speeds up the convergence of solution and makes no assumption on the search space,so it is simple and easy to be implemented. It can be applied to a wide class of problems. The optimizing principle and the implementing steps of AGA were expounded. The example of the parameter optimization of a typical complex electromechanical system named temper mill shows that AGA is effective and superior to the conventional GA and SAA. The control system of temper mill optimized by AGA has the optimal performance in the adjustable ranges of its parameters.
Adaptive de-noising method based on wavelet and adaptive learning algorithm in on-line PD monitoring
Institute of Scientific and Technical Information of China (English)
王立欣; 诸定秋; 蔡惟铮
2002-01-01
It is an important step in the online monitoring of partial discharge (PD) to extract PD pulses from various background noises. An adaptive de-noising method is introduced for adaptive noise reduction during detection of PD pulses. This method is based on Wavelet Transform (WT) , and in the wavelet domain the noises decomposed at the levels are reduced by independent thresholds. Instead of the standard hard thresholding function, a new type of hard thresholding function with continuous derivative is employed by this method. For the selection of thresholds, an unsupervised learning algorithm based on gradient in a mean square error (MSE) is present to search for the optimal threshold for noise reduction, and the optimal threshold is selected when the minimum MSE is obtained. With the simulating signals and on-site experimental data processed by this method,it is shown that the background noises such as narrowband noises can be reduced efficiently. Furthermore, it is proved that in comparison with the conventional wavelet de-noising method the adaptive de-noising method has a better performance in keeping the pulses and is more adaptive when suppressing the background noises of PD signals.
International Nuclear Information System (INIS)
In this paper, a new type of narrow-band function is proposed for the artificial history simulation method based on narrow-band superposition, which aims to meet the needs of both fitting of the target response spectrum and envelop of the power spectral density. The new narrow-band function is based on the normal distribution function and trigonometric functions. Its band width can be controlled and it decays rapidly on both sides. While the target response spectrum is fitted by superimposing the new narrow-band time history, the power spectral density is enveloped by modifying the Fourier amplitude spectrum locally. The numerical example demonstrates that not only the artificial time history generated by this algorithm reaches high matching precision to the target response spectrum, but also the corresponding calculated power spectrum envelopes the target power spectrum. (authors)
Directory of Open Access Journals (Sweden)
Qing Guo
2015-04-01
Full Text Available A gait identification method for a lower extremity exoskeleton is presented in order to identify the gait sub-phases in human-machine coordinated motion. First, a sensor layout for the exoskeleton is introduced. Taking the difference between human lower limb motion and human-machine coordinated motion into account, the walking gait is divided into five sub-phases, which are ‘double standing’, ‘right leg swing and left leg stance’, ‘double stance with right leg front and left leg back’, ‘right leg stance and left leg swing’, and ‘double stance with left leg front and right leg back’. The sensors include shoe pressure sensors, knee encoders, and thigh and calf gyroscopes, and are used to measure the contact force of the foot, and the knee joint angle and its angular velocity. Then, five sub-phases of walking gait are identified by a C4.5 decision tree algorithm according to the data fusion of the sensors’ information. Based on the simulation results for the gait division, identification accuracy can be guaranteed by the proposed algorithm. Through the exoskeleton control experiment, a division of five sub-phases for the human-machine coordinated walk is proposed. The experimental results verify this gait division and identification method. They can make hydraulic cylinders retract ahead of time and improve the maximal walking velocity when the exoskeleton follows the person’s motion.
Fantin, Yuri S.; Neverov, Alexey D; Favorov, Alexander V.; Alvarez-Figueroa, Maria V.; Braslavskaya, Svetlana I.; Gordukova, Maria A.; Karandashova, Inga V.; Kuleshov, Konstantin V.; Myznikova, Anna I; Polishchuk, Maya S.; Reshetov, Denis A.; Voiciehovskaya, Yana A.; Mironov, Andrei A.; Chulanov, Vladimir P.
2013-01-01
Sanger sequencing is a common method of reading DNA sequences. It is less expensive than high-throughput methods, and it is appropriate for numerous applications including molecular diagnostics. However, sequencing mixtures of similar DNA of pathogens with this method is challenging. This is important because most clinical samples contain such mixtures, rather than pure single strains. The traditional solution is to sequence selected clones of PCR products, a complicated, time-consuming, and ...
3D PET image reconstruction based on Maximum Likelihood Estimation Method (MLEM) algorithm
Słomski, Artur; Bednarski, Tomasz; Białas, Piotr; Czerwiński, Eryk; Kapłon, Łukasz; Kochanowski, Andrzej; Korcyl, Grzegorz; Kowal, Jakub; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Molenda, Marcin; Moskal, Paweł; Niedźwiecki, Szymon; Pałka, Marek; Pawlik, Monika; Raczyński, Lech; Salabura, Piotr; Gupta-Sharma, Neha; Silarski, Michał; Smyrski, Jerzy; Strzelecki, Adam; Wiślicki, Wojciech; Zieliński, Marcin; Zoń, Natalia
2015-01-01
Positron emission tomographs (PET) do not measure an image directly. Instead, they measure at the boundary of the field-of-view (FOV) of PET tomograph a sinogram that consists of measurements of the sums of all the counts along the lines connecting two detectors. As there is a multitude of detectors build-in typical PET tomograph structure, there are many possible detector pairs that pertain to the measurement. The problem is how to turn this measurement into an image (this is called imaging). Decisive improvement in PET image quality was reached with the introduction of iterative reconstruction techniques. This stage was reached already twenty years ago (with the advent of new powerful computing processors). However, three dimensional (3D) imaging remains still a challenge. The purpose of the image reconstruction algorithm is to process this imperfect count data for a large number (many millions) of lines-of-responce (LOR) and millions of detected photons to produce an image showing the distribution of the l...
Zhuo, Li; Zheng, Jing; Li, Xia; Wang, Fang; Ai, Bin; Qian, Junping
2008-10-01
The high-dimensional feature vectors of hyper spectral data often impose a high computational cost as well as the risk of "over fitting" when classification is performed. Therefore it is necessary to reduce the dimensionality through ways like feature selection. Currently, there are two kinds of feature selection methods: filter methods and wrapper methods. The former kind requires no feedback from classifiers and estimates the classification performance indirectly. The latter kind evaluates the "goodness" of selected feature subset directly based on the classification accuracy. Many experimental results have proved that the wrapper methods can yield better performance, although they have the disadvantage of high computational cost. In this paper, we present a Genetic Algorithm (GA) based wrapper method for classification of hyper spectral data using Support Vector Machine (SVM), a state-of-art classifier that has found success in a variety of areas. The genetic algorithm (GA), which seeks to solve optimization problems using the methods of evolution, specifically survival of the fittest, was used to optimize both the feature subset, i.e. band subset, of hyper spectral data and SVM kernel parameters simultaneously. A special strategy was adopted to reduce computation cost caused by the high-dimensional feature vectors of hyper spectral data when the feature subset part of chromosome was designed. The GA-SVM method was realized using the ENVI/IDL language, and was then tested by applying to a HYPERION hyper spectral image. Comparison of the optimized results and the un-optimized results showed that the GA-SVM method could significantly reduce the computation cost while improving the classification accuracy. The number of bands used for classification was reduced from 198 to 13, while the classification accuracy increased from 88.81% to 92.51%. The optimized values of the two SVM kernel parameters were 95.0297 and 0.2021, respectively, which were different from the
A new method by steering kernel-based Richardson–Lucy algorithm for neutron imaging restoration
International Nuclear Information System (INIS)
Motivated by industrial applications, neutron radiography has become a powerful tool for non-destructive investigation techniques. However, resulted from a combined effect of neutron flux, collimated beam, limited spatial resolution of detector and scattering, etc., the images made with neutrons are degraded severely by blur and noise. For dealing with it, by integrating steering kernel regression into Richardson–Lucy approach, we present a novel restoration method in this paper, which is capable of suppressing noise while restoring details of the blurred imaging result efficiently. Experimental results show that compared with the other methods, the proposed method can improve the restoration quality both visually and quantitatively
Directory of Open Access Journals (Sweden)
Tim eHolmes
2013-12-01
Full Text Available Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioural measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA, which has been used as a tool to identify aesthetic preferences (Holmes & Zanker, 2012. In the present study, the GDEA was used to investigate the preferred combination of colour and shape which have been promoted in the Bauhaus arts school. We used the same 3 shapes (square, circle, triangle used by Kandinsky (1923, with the 3 colour palette from the original experiment (A, an extended 7 colour palette (B, and 8 different shape orientation (C. Participants were instructed to look for their preferred circle, triangle or square in displays with 8 stimuli of different shapes, colours and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested 6 participants extensively on the different conditions and found consistent preferences for individuals, but little evidence at the group level for preference consistent with Kandinsky’s claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of colour and shapes, but also that these associations are robust within a single individual. These individual differences go some way towards challenging the claims of the universal preference for colour/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the vast potential of the GDEA in experimental aesthetics
HISTORY BASED PROBABILISTIC BACKOFF ALGORITHM
Directory of Open Access Journals (Sweden)
Narendran Rajagopalan
2012-01-01
Full Text Available Performance of Wireless LAN can be improved at each layer of the protocol stack with respect to energy efficiency. The Media Access Control layer is responsible for the key functions like access control and flow control. During contention, Backoff algorithm is used to gain access to the medium with minimum probability of collision. After studying different variations of back off algorithms that have been proposed, a new variant called History based Probabilistic Backoff Algorithm is proposed. Through mathematical analysis and simulation results using NS-2, it is seen that proposed History based Probabilistic Backoff algorithm performs better than Binary Exponential Backoff algorithm.
A sport scene images segmentation method based on edge detection algorithm
Chen, Biqing
2011-12-01
This paper proposes a simple, fast sports scene image segmentation method; a lot of work so far has been looking for a way to reduce the different shades of emotions in smooth area. A novel method of pretreatment, proposed the elimination of different shades feelings. Internal filling mechanism is used to change the pixels enclosed by the interest as interest pixels. For some test has achieved harvest sports scene images has been confirmed.
Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.
2016-04-01
Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the
Numerical Method based on SIMPLE Algorithm for a Two-Phase Flow with Non-condensable Gas
International Nuclear Information System (INIS)
In this study, a numerical method based on SIMPLE algorithm for a two-phase flow with non-condensable gas has been developed in order to simulate thermal hydraulics in a containment of a nuclear power plant. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields include gas, drops, and continuous liquid. The gas field can contains vapor and non-condensable gases such as air and hydrogen. In order to resolve mixing phenomena of gas species, gas transport equations for each species base on the gas mass fractions are solved with gas phase governing equations such as mass, momentum and energy equations. Methods to evaluate the properties of the gas species were implemented in the code. They are constant or polynomial function based a user input and a property library from Chemkin and JANAF table for gas specific heat. Properties for the gas mixture which are dependent on mole fractions of the gas species were evaluated by a mix rule
Quasigroup based crypto-algorithms
Shcherbacov, Victor
2012-01-01
Modifications of Markovski quasigroup based crypto-algorithm have been proposed. Some of these modifications are based on the systems of orthogonal n-ary groupoids. T-quasigroups based stream ciphers have been constructed.
Edge Crossing Minimization Algorithm for Hierarchical Graphs Based on Genetic Algorithms
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
We present an edge crossing minimization algorithm forhierarchical gr aphs based on genetic algorithms, and comparing it with some heuristic algorithm s. The proposed algorithm is more efficient and has the following advantages: th e frame of the algorithms is unified, the method is simple, and its implementati on and revision are easy.
Directory of Open Access Journals (Sweden)
U. Jeong
2015-06-01
Full Text Available An online version of the OMI (Ozone Monitoring Instrument near-ultraviolet (UV aerosol retrieval algorithm was developed to retrieve aerosol optical thickness (AOT and single scattering albedo (SSA based on the optimal estimation (OE method. Instead of using the traditional look-up tables for radiative transfer calculations, it performs online radiative transfer calculations with the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT model to eliminate interpolation errors and improve stability. The OE-based algorithm has the merit of providing useful estimates of uncertainties simultaneously with the inversion products. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in Northeast Asia (DRAGON NE-Asia 2012 were used to validate the retrieved AOT and SSA. The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET products that is comparable to or better than the correlation with the operational product during the campaign. The estimated retrieval noise and smoothing error perform well in representing the envelope curve of actual biases of AOT at 388 nm between the retrieved AOT and AERONET measurements. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface albedo at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine mode fraction (FMF were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for future studies.
Genetic algorithms as global random search methods
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
An Improved DDoS Detection Method with EAQPSO-SVM Algorithm Based on Data Center Network
Directory of Open Access Journals (Sweden)
Peng Yu
2014-01-01
Full Text Available This study presents a novel approach for the prediction and detection of distributed denial of service (DDoS attacks by using EAQPSO-SVM algorithm which is implemented through combining the improved Quantum-behaved Particle Swarm Optimization (QPSO algorithm with Support Vector Machine (SVM theory. In order to improve the global searching performance of the classical QPSO algorithm for avoiding falling into local extreme value point, the Evolution Speed Factor (ESF and Aggregation Degree Factor (ADF were introduced in the EAQPSO-SVM algorithm to establish a binary relation function for correcting the self-adaptive expansion-contraction coefficient. Furthermore, a hybrid entropies strategy is proposed to identify the potential DDoS attacks by comparing the mean value entropy with average alarm threshold. Simulation results demonstrate that the proposed method remarkably improves the abilities of prediction and detection of DDoS attacks. Meanwhile, a novel framework of performance evaluation further proves that the proposed algorithm has better generalization ability and superior performance in terms of less algorithm execution time, average iterations, average relative variance and root mean square error.
HISTORY BASED PROBABILISTIC BACKOFF ALGORITHM
Narendran Rajagopalan; C.Mala
2012-01-01
Performance of Wireless LAN can be improved at each layer of the protocol stack with respect to energy efficiency. The Media Access Control layer is responsible for the key functions like access control and flow control. During contention, Backoff algorithm is used to gain access to the medium with minimum probability of collision. After studying different variations of back off algorithms that have been proposed, a new variant called History based Probabilistic Backoff Algorithm is proposed....
Genetic algorithm and particle swarm optimization combined with Powell method
Bento, David; Pinho, Diana; Pereira, Ana I.; Lima, Rui
2013-10-01
In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.
Koo, Keunhwi; Kim, Soo-Yong; Jeong, Jae Jin; Kim, Sang Woo
2014-09-01
This study introduces a two-dimensional (2D) partial response maximum likelihood (PRML) method to reconstruct a degraded data page having 2D inter-symbol interference for holographic data storage. The proposed 2D PRML method consists of 2D partial response (PR) target, 2D equalizer using least mean square algorithm, and 2D soft output Viterbi algorithm (SOVA) having just two one-dimensional (1D) SOVAs in horizontal and vertical directions. To accurately organize a trellis diagram of the 1D SOVA in structural accordance with the 2D PR target, this study proposes the self-reference process for the extrinsic information in the 1D SOVA. Finally, simulation results show that the proposed method has bit error rate performance similar to that of modified 2D SOVA having four 1D SOVAs despite the relatively low computational complexity. Moreover, parallel processing is possible in the two 1D SOVAs through the self-reference process.
Eigenvalue Decomposition-Based Modified Newton Algorithm
Directory of Open Access Journals (Sweden)
Wen-jun Wang
2013-01-01
Full Text Available When the Hessian matrix is not positive, the Newton direction may not be the descending direction. A new method named eigenvalue decomposition-based modified Newton algorithm is presented, which first takes the eigenvalue decomposition of the Hessian matrix, then replaces the negative eigenvalues with their absolute values, and finally reconstructs the Hessian matrix and modifies the searching direction. The new searching direction is always the descending direction. The convergence of the algorithm is proven and the conclusion on convergence rate is presented qualitatively. Finally, a numerical experiment is given for comparing the convergence domains of the modified algorithm and the classical algorithm.
Mirzadeh, Zeynab; Mehri, Razieh; Rabbani, Hossein
2010-01-01
In this paper the degraded video with blur and noise is enhanced by using an algorithm based on an iterative procedure. In this algorithm at first we estimate the clean data and blur function using Newton optimization method and then the estimation procedure is improved using appropriate denoising methods. These noise reduction techniques are based on local statistics of clean data and blur function. For estimated blur function we use LPA-ICI (local polynomial approximation - intersection of confidence intervals) method that use an anisotropic window around each point and obtain the enhanced data employing Wiener filter in this local window. Similarly, to improvement the quality of estimated clean video, at first we transform the data to wavelet transform domain and then improve our estimation using maximum a posterior (MAP) estimator and local Laplace prior. This procedure (initial estimation and improvement of estimation by denoising) is iterated and finally the clean video is obtained. The implementation of this algorithm is slow in MATLAB1 environment and so it is not suitable for online applications. However, MATLAB has the capability of running functions written in C. The files which hold the source for these functions are called MEX-Files. The MEX functions allow system-specific APIs to be called to extend MATLAB's abilities. So, in this paper to speed up our algorithm, the written code in MATLAB is sectioned and the elapsed time for each section is measured and slow sections (that use 60% of complete running time) are selected. Then these slow sections are translated to C++ and linked to MATLAB. In fact, the high loads of information in images and processed data in the "for" loops of relevant code, makes MATLAB an unsuitable candidate for writing such programs. The written code for our video deblurring algorithm in MATLAB contains eight "for" loops. These eighth "for" utilize 60% of the total execution time of the entire program and so the runtime should be
International Nuclear Information System (INIS)
Parameter-search methods are problem-sensitive. All methods depend on some meta-parameters of their own, which must be determined experimentally in advance. A better choice of these intrinsic parameters for a certain parameter-search method may improve its performance. Moreover, there are various implementations of the same method, which may also affect its performance. The choice of the matching (error) function has a great impact on the search process in terms of finding the optimal parameter set and minimizing the computational cost. An initial assessment of the matching function ability to distinguish between good and bad models is recommended, before launching exhaustive computations. However, different runs of a parameter search method may result in the same optimal parameter set or in different parameter sets (the model is insufficiently constrained to accurately characterize the real system). Robustness of the parameter set is expressed by the extent to which small perturbations in the parameter values are not affecting the best solution. A parameter set that is not robust is unlikely to be physiologically relevant. Robustness can also be defined as the stability of the optimal parameter set to small variations of the inputs. When trying to estimate things like the minimum, or the least-squares optimal parameters of a nonlinear system, the existence of multiple local minima can cause problems with the determination of the global optimum. Techniques such as Newton's method, the Simplex method and Least-squares Linear Taylor Differential correction technique can be useful provided that one is lucky enough to start sufficiently close to the global minimum. All these methods suffer from the inability to distinguish a local minimum from a global one because they follow the local gradients towards the minimum, even if some methods are resetting the search direction when it is likely to get stuck in presumably a local minimum. Deterministic methods based on
Lüdtke Rainer; Willich Stefan N; Ostermann Thomas
2008-01-01
Abstract Background Regression to the mean (RTM) occurs in situations of repeated measurements when extreme values are followed by measurements in the same subjects that are closer to the mean of the basic population. In uncontrolled studies such changes are likely to be interpreted as a real treatment effect. Methods Several statistical approaches have been developed to analyse such situations, including the algorithm of Mee and Chua which assumes a known population mean μ. We extend this ap...
Evolutionary algorithm based configuration interaction approach
Chakraborty, Rahul
2016-01-01
A stochastic configuration interaction method based on evolutionary algorithm is designed as an affordable approximation to full configuration interaction (FCI). The algorithm comprises of initiation, propagation and termination steps, where the propagation step is performed with cloning, mutation and cross-over, taking inspiration from genetic algorithm. We have tested its accuracy in 1D Hubbard problem and a molecular system (symmetric bond breaking of water molecule). We have tested two different fitness functions based on energy of the determinants and the CI coefficients of determinants. We find that the absolute value of CI coefficients is a more suitable fitness function when combined with a fixed selection scheme.
An Experimental Method for the Active Learning of Greedy Algorithms
Velazquez-Iturbide, J. Angel
2013-01-01
Greedy algorithms constitute an apparently simple algorithm design technique, but its learning goals are not simple to achieve.We present a didacticmethod aimed at promoting active learning of greedy algorithms. The method is focused on the concept of selection function, and is based on explicit learning goals. It mainly consists of an…
An image segmentation method based on accelerated Dijkstra algorithm%一种基于加速Dijkstra算法的图像分割技术
Institute of Scientific and Technical Information of China (English)
戴虹
2011-01-01
An optimal path searching algorithm called " Dijkstra Algorithm" is used for image segmentation. An accelerated Dijkstra Algorithm is presented to reduce the calculation work of the classical Dijkstra algorithm and to accelerate its operating speed. Live-Wire image segmentation method based on the accelerated Dijkstra algorithm is presented to sketch the object' s contour of interest in an image and area filling method is used to segment the object. The experimental results show that the algorithm can run image segmentation successfully and has good anti-noise ability, in addition, the algorithm has less interactive times than that of the manual segmentation method and run faster than the original live-Wire algorithm.%利用最短路径搜索算法中的Dijkstra算法进行图像分割.提出一种加速Dijkstra算法减小经典Dijkstra算法的运算量,以加快其运行速度.提出基于加速Dijkstra算法的Live-Wire图像分割方法勾画出一幅图像中感兴趣目标的轮廓并采用边界填充分割该目标.实验结果表明该算法能正确地进行图像分割,抗噪声性能好,与手工分割法相比交互次数较少,与原Live-Wire分割算法相比运行时间较短.
International Nuclear Information System (INIS)
We propose a new method for selecting importance factors (for regions of interest like organs at risk) used to plan conformal radiotherapy. Importance factors, also known as weighting factors or penalty factors, are essential in determining the relative importance of multiple objectives or the penalty ratios of constraints incorporated into cost functions, especially in dealing with dose optimization in radiotherapy treatment planning. Researchers usually choose importance factors on the basis of a trial-and-error process to reach a balance between all the objectives. In this study, we used a genetic algorithm and adopted a real-number encoding method to represent both beam weights and importance factors in each chromosome. The algorithm starts by optimizing the beam weights for a fixed number of iterations then modifying the importance factors for another fixed number of iterations. During the first phase, the genetic operators, such as crossover and mutation, are carried out only on beam weights, and importance factors for each chromosome are not changed or 'frozen'. In the second phase, the situation is reversed: the beam weights are 'frozen' and the importance factors are changed after crossover and mutation. Through alternation of these two phases, both beam weights and importance factors are adjusted according to a fitness function that describes the conformity of dose distribution in planning target volume and dose-tolerance constraints in organs at risk. Those chromosomes with better fitness are passed into the next generation, showing that they have a better combination of beam weights and importance factors. Although the ranges of the importance factors should be set in advance by using this algorithm, it is much more convenient than selecting specific numbers for importance factors. Three clinical examples are presented and compared with manual plans to verify this method. Three-dimensional standard displays and dose-volume histograms are shown to
Research of the Kernel Operator Library Based on Cryptographic Algorithm
Institute of Scientific and Technical Information of China (English)
王以刚; 钱力; 黄素梅
2001-01-01
The variety of encryption mechanism and algorithms which were conventionally used have some limitations.The kernel operator library based on Cryptographic algorithm is put forward. Owing to the impenetrability of algorithm, the data transfer system with the cryptographic algorithm library has many remarkable advantages in algorithm rebuilding and optimization,easily adding and deleting algorithm, and improving the security power over the traditional algorithm. The user can choose any one in all algorithms with the method against any attack because the cryptographic algorithm library is extensible.
Energy Technology Data Exchange (ETDEWEB)
Cao, Ye [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Tang, Xiao-Bin, E-mail: tangxiaobin@nuaa.edu.cn [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Peng; Meng, Jia; Huang, Xi; Wen, Liang-Sheng [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Chen, Da [Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)
2015-10-11
The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr{sub 3}) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr{sub 3} detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R{sup 2}=0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible. - Highlights: • An airborne radioactivity monitoring equipment NH-UAV was developed to measure radionuclide after a nuclear accident. • A spectrum correction algorithm was proposed to obtain precise information on the detected radioactivity within a small area. • The spectrum correction method was verified as feasible. • The corresponding spectrum correction coefficients increase first and then stay constant.
International Nuclear Information System (INIS)
The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr3) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr3 detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R2=0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible. - Highlights: • An airborne radioactivity monitoring equipment NH-UAV was developed to measure radionuclide after a nuclear accident. • A spectrum correction algorithm was proposed to obtain precise information on the detected radioactivity within a small area. • The spectrum correction method was verified as feasible. • The corresponding spectrum correction coefficients increase first and then stay constant
Ramos, A; Talaia, P; Queirós de Melo, F J
2016-01-01
The main goal of this work was to develop an approached model to study dynamic behavior and prediction of the stress distribution in an in vitro Charnley cemented hip arthroplasty. An alternative version of the described pseudo-dynamic procedure is proposed by using the time integration Newmark algorithm. An internal restoring force vector is numerically calculated from the displacement, velocity, and acceleration vectors. A numerical model of hip replacement was developed to analyze the deformation of a dynamically stressed structure for all time steps. The experimental measurement of resulting internal forces generated in the structure (internal restoring force vector) is the second fundamental step of the pseudo-dynamic procedure. These data (as a feedback) are used by the time integration algorithm, which allows updating of the structure's shape for the next displacement, velocity, and acceleration vectors. In the field of Biomechanics, the potentialities of this method contribute to the determination of a dynamically equivalent in vitro stress field of a cemented hip prosthesis; implant fitted in patients with a normal mobility or practice sports. Consequences of the stress distribution in the implant zone that underwent cyclic fatigue loads were also discussed by using a finite element model. Application of this method in Biomechanics appears as a useful tool in the approximate stress field characterization of the peak stress state. Results show a peak value around two times the static situation, more for making possible the prediction of future damage and a programed clinical examination in patients using hip prosthesis. PMID:25483822
Novel biomedical tetrahedral mesh methods: algorithms and applications
Yu, Xiao; Jin, Yanfeng; Chen, Weitao; Huang, Pengfei; Gu, Lixu
2007-12-01
Tetrahedral mesh generation algorithm, as a prerequisite of many soft tissue simulation methods, becomes very important in the virtual surgery programs because of the real-time requirement. Aiming to speed up the computation in the simulation, we propose a revised Delaunay algorithm which makes a good balance of quality of tetrahedra, boundary preservation and time complexity, with many improved methods. Another mesh algorithm named Space-Disassembling is also presented in this paper, and a comparison of Space-Disassembling, traditional Delaunay algorithm and the revised Delaunay algorithm is processed based on clinical soft-tissue simulation projects, including craniofacial plastic surgery and breast reconstruction plastic surgery.
A New Method of Detecting Pulmonary Nodules with PET/CT Based on an Improved Watershed Algorithm
Zhao, Juanjuan; Ji, Guohua; Qiang, Yan; Han, Xiaohong; Pei, Bo; Shi, Zhenghao
2015-01-01
Background Integrated 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is widely performed for staging solitary pulmonary nodules (SPNs). However, the diagnostic efficacy of SPNs based on PET/CT is not optimal. Here, we propose a method of detection based on PET/CT that can differentiate malignant and benign SPNs with few false-positives. Method Our proposed method combines the features of positron-emission tomography (PET) and computed tomography (CT)....
A novel algorithmic method for piezoresistance calculation
International Nuclear Information System (INIS)
A novel algorithmic method, based on the different stress distribution on the surface of thin film in an SOI microstructure, is put forward to calculate the value of the silicon piezoresistance on the sensitive film. In the proposed method, we take the Ritz method as an initial theoretical model to calculate the rate of piezoresistance ΔR/R through an integral (the closed area Ω where the surface piezoresistance of the film lies as the integral area and the product of stress σ and piezoresistive coefficient π as the integral object) and compare the theoretical values with the experimental results. Compared with the traditional method, this novel calculation method is more accurate when applied to calculating the value of the silicon piezoresistance on the sensitive film of an SOI pieoresistive pressure sensor. (semiconductor devices)
Seizure detection algorithms based on EMG signals
DEFF Research Database (Denmark)
Conradsen, Isa
Background: the currently used non-invasive seizure detection methods are not reliable. Muscle fibers are directly connected to the nerves, whereby electric signals are generated during activity. Therefore, an alarm system on electromyography (EMG) signals is a theoretical possibility. Objective......: to show whether medical signal processing of EMG data is feasible for detection of epileptic seizures. Methods: EMG signals during generalised seizures were recorded from 3 patients (with 20 seizures in total). Two possible medical signal processing algorithms were tested. The first algorithm was...... patients, while the frequency-based algorithm was efficient for detecting the seizures in the third patient. Conclusion: Our results suggest that EMG signals could be used to develop an automatic seizuredetection system. However, different patients might require different types of algorithms /approaches....
SOM-based algorithms for qualitative variables.
Cottrell, Marie; Ibbou, Smaïl; Letrémy, Patrick
2004-01-01
It is well known that the SOM algorithm achieves a clustering of data which can be interpreted as an extension of Principal Component Analysis, because of its topology-preserving property. But the SOM algorithm can only process real-valued data. In previous papers, we have proposed several methods based on the SOM algorithm to analyze categorical data, which is the case in survey data. In this paper, we present these methods in a unified manner. The first one (Kohonen Multiple Correspondence Analysis, KMCA) deals only with the modalities, while the two others (Kohonen Multiple Correspondence Analysis with individuals, KMCA_ind, Kohonen algorithm on DISJonctive table, KDISJ) can take into account the individuals, and the modalities simultaneously. PMID:15555858
International Nuclear Information System (INIS)
In this paper, a novel and effective damage diagnosis algorithm is proposed to localize and quantify structural damage using incomplete modal data, considering the existence of some limitations in the number of attached sensors on structures. The damage detection problem is formulated as an optimization problem by computing static displacements in the reduced model of a structure subjected to a unique static load. The static responses are computed through the flexibility matrix of the damaged structure obtained based on the incomplete modal data of the structure. In the algorithm, an iterated improved reduction system method is applied to prepare an accurate reduced model of a structure. The optimization problem is solved via a new evolutionary optimization algorithm called the cuckoo optimization algorithm. The efficiency and robustness of the presented method are demonstrated through three numerical examples. Moreover, the efficiency of the method is verified by an experimental study of a five-story shear building structure on a shaking table considering only two sensors. The obtained damage identification results for the numerical and experimental studies show the suitable and stable performance of the proposed damage identification method for structures with limited sensors. (paper)
Zare Hosseinzadeh, Ali; Bagheri, Abdollah; Ghodrati Amiri, Gholamreza; Koo, Ki-Young
2014-04-01
In this paper, a novel and effective damage diagnosis algorithm is proposed to localize and quantify structural damage using incomplete modal data, considering the existence of some limitations in the number of attached sensors on structures. The damage detection problem is formulated as an optimization problem by computing static displacements in the reduced model of a structure subjected to a unique static load. The static responses are computed through the flexibility matrix of the damaged structure obtained based on the incomplete modal data of the structure. In the algorithm, an iterated improved reduction system method is applied to prepare an accurate reduced model of a structure. The optimization problem is solved via a new evolutionary optimization algorithm called the cuckoo optimization algorithm. The efficiency and robustness of the presented method are demonstrated through three numerical examples. Moreover, the efficiency of the method is verified by an experimental study of a five-story shear building structure on a shaking table considering only two sensors. The obtained damage identification results for the numerical and experimental studies show the suitable and stable performance of the proposed damage identification method for structures with limited sensors.
Bechet, P.; Mitran, R.; Munteanu, M.
2013-08-01
Non-contact methods for the assessment of vital signs are of great interest for specialists due to the benefits obtained in both medical and special applications, such as those for surveillance, monitoring, and search and rescue. This paper investigates the possibility of implementing a digital processing algorithm based on the MUSIC (Multiple Signal Classification) parametric spectral estimation in order to reduce the observation time needed to accurately measure the heart rate. It demonstrates that, by proper dimensioning the signal subspace, the MUSIC algorithm can be optimized in order to accurately assess the heart rate during an 8-28 s time interval. The validation of the processing algorithm performance was achieved by minimizing the mean error of the heart rate after performing simultaneous comparative measurements on several subjects. In order to calculate the error the reference value of heart rate was measured using a classic measurement system through direct contact.
Knowledge-based tracking algorithm
Corbeil, Allan F.; Hawkins, Linda J.; Gilgallon, Paul F.
1990-10-01
This paper describes the Knowledge-Based Tracking (KBT) algorithm for which a real-time flight test demonstration was recently conducted at Rome Air Development Center (RADC). In KBT processing, the radar signal in each resolution cell is thresholded at a lower than normal setting to detect low RCS targets. This lower threshold produces a larger than normal false alarm rate. Therefore, additional signal processing including spectral filtering, CFAR and knowledge-based acceptance testing are performed to eliminate some of the false alarms. TSC's knowledge-based Track-Before-Detect (TBD) algorithm is then applied to the data from each azimuth sector to detect target tracks. In this algorithm, tentative track templates are formed for each threshold crossing and knowledge-based association rules are applied to the range, Doppler, and azimuth measurements from successive scans. Lastly, an M-association out of N-scan rule is used to declare a detection. This scan-to-scan integration enhances the probability of target detection while maintaining an acceptably low output false alarm rate. For a real-time demonstration of the KBT algorithm, the L-band radar in the Surveillance Laboratory (SL) at RADC was used to illuminate a small Cessna 310 test aircraft. The received radar signal wa digitized and processed by a ST-100 Array Processor and VAX computer network in the lab. The ST-100 performed all of the radar signal processing functions, including Moving Target Indicator (MTI) pulse cancelling, FFT Doppler filtering, and CFAR detection. The VAX computers performed the remaining range-Doppler clustering, beamsplitting and TBD processing functions. The KBT algorithm provided a 9.5 dB improvement relative to single scan performance with a nominal real time delay of less than one second between illumination and display.
Directory of Open Access Journals (Sweden)
Ying-Chih Lai
2016-05-01
Full Text Available The demand for pedestrian navigation has increased along with the rapid progress in mobile and wearable devices. This study develops an accurate and usable Step Length Estimation (SLE method for a Pedestrian Dead Reckoning (PDR system with features including a wide range of step lengths, a self-contained system, and real-time computing, based on the multi-sensor fusion and Fuzzy Logic (FL algorithms. The wide-range SLE developed in this study was achieved by using a knowledge-based method to model the walking patterns of the user. The input variables of the FL are step strength and frequency, and the output is the estimated step length. Moreover, a waist-mounted sensor module has been developed using low-cost inertial sensors. Since low-cost sensors suffer from various errors, a calibration procedure has been utilized to improve accuracy. The proposed PDR scheme in this study demonstrates its ability to be implemented on waist-mounted devices in real time and is suitable for the indoor and outdoor environments considered in this study without the need for map information or any pre-installed infrastructure. The experiment results show that the maximum distance error was within 1.2% of 116.51 m in an indoor environment and was 1.78% of 385.2 m in an outdoor environment.
Generalized Evolutionary Algorithm based on Tsallis Statistics
Dukkipati, Ambedkar; Murty, M. Narasimha; Bhatnagar, Shalabh
2004-01-01
Generalized evolutionary algorithm based on Tsallis canonical distribution is proposed. The algorithm uses Tsallis generalized canonical distribution to weigh the configurations for `selection' instead of Gibbs-Boltzmann distribution. Our simulation results show that for an appropriate choice of non-extensive index that is offered by Tsallis statistics, evolutionary algorithms based on this generalization outperform algorithms based on Gibbs-Boltzmann distribution.
Application of detecting algorithm based on network
Institute of Scientific and Technical Information of China (English)
张凤斌; 杨永田; 江子扬; 孙冰心
2004-01-01
Because currently intrusion detection systems cannot detect undefined intrusion behavior effectively,according to the robustness and adaptability of the genetic algorithms, this paper integrates the genetic algorithms into an intrusion detection system, and a detection algorithm based on network traffic is proposed. This algorithm is a real-time and self-study algorithm and can detect undefined intrusion behaviors effectively.
Swarm Intelligence Based Algorithms: A Critical Analysis
Yang, Xin-She
2014-01-01
Many optimization algorithms have been developed by drawing inspiration from swarm intelligence (SI). These SI-based algorithms can have some advantages over traditional algorithms. In this paper, we carry out a critical analysis of these SI-based algorithms by analyzing their ways to mimic evolutionary operators. We also analyze the ways of achieving exploration and exploitation in algorithms by using mutation, crossover and selection. In addition, we also look at algorithms using dynamic sy...
A Hybrid Algorithm for Satellite Data Transmission Schedule Based on Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
LI Yun-feng; WU Xiao-yue
2008-01-01
A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission. At first, based on description of satellite data transmission request, satellite data transmission task modal and satellite data transmission scheduling problem model are established. Secondly, the conflicts in scheduling are discussed. According to the meaning of possible conflict, the method to divide possible conflict task set is given. Thirdly, a hybrid algorithm which consists of genetic algorithm and heuristic information is presented. The heuristic information comes from two concepts, conflict degree and conflict number. Finally, an example shows the algorithm's feasibility and performance better than other traditional algorithms.
Cao, Ye; Tang, Xiao-Bin; Wang, Peng; Meng, Jia; Huang, Xi; Wen, Liang-Sheng; Chen, Da
2015-10-01
The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr3) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr3 detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R2=0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible.
Directory of Open Access Journals (Sweden)
Bisheng He
2014-01-01
Full Text Available A time-space network based optimization method is designed for high-speed rail train timetabling problem to improve the service level of the high-speed rail. The general time-space path cost is presented which considers both the train travel time and the high-speed rail operation requirements: (1 service frequency requirement; (2 stopping plan adjustment; and (3 priority of train types. Train timetabling problem based on time-space path aims to minimize the total general time-space path cost of all trains. An improved branch-and-price algorithm is applied to solve the large scale integer programming problem. When dealing with the algorithm, a rapid branching and node selection for branch-and-price tree and a heuristic train time-space path generation for column generation are adopted to speed up the algorithm computation time. The computational results of a set of experiments on China’s high-speed rail system are presented with the discussions about the model validation, the effectiveness of the general time-space path cost, and the improved branch-and-price algorithm.
Optimisation of nonlinear motion cueing algorithm based on genetic algorithm
Asadi, Houshyar; Mohamed, Shady; Rahim Zadeh, Delpak; Nahavandi, Saeid
2015-04-01
Motion cueing algorithms (MCAs) are playing a significant role in driving simulators, aiming to deliver the most accurate human sensation to the simulator drivers compared with a real vehicle driver, without exceeding the physical limitations of the simulator. This paper provides the optimisation design of an MCA for a vehicle simulator, in order to find the most suitable washout algorithm parameters, while respecting all motion platform physical limitations, and minimising human perception error between real and simulator driver. One of the main limitations of the classical washout filters is that it is attuned by the worst-case scenario tuning method. This is based on trial and error, and is effected by driving and programmers experience, making this the most significant obstacle to full motion platform utilisation. This leads to inflexibility of the structure, production of false cues and makes the resulting simulator fail to suit all circumstances. In addition, the classical method does not take minimisation of human perception error and physical constraints into account. Production of motion cues and the impact of different parameters of classical washout filters on motion cues remain inaccessible for designers for this reason. The aim of this paper is to provide an optimisation method for tuning the MCA parameters, based on nonlinear filtering and genetic algorithms. This is done by taking vestibular sensation error into account between real and simulated cases, as well as main dynamic limitations, tilt coordination and correlation coefficient. Three additional compensatory linear blocks are integrated into the MCA, to be tuned in order to modify the performance of the filters successfully. The proposed optimised MCA is implemented in MATLAB/Simulink software packages. The results generated using the proposed method show increased performance in terms of human sensation, reference shape tracking and exploiting the platform more efficiently without reaching
Institute of Scientific and Technical Information of China (English)
XIA Yuan-yuan; SHAO He-song; LI Shi-xiong; LU Jing-yu
2012-01-01
The essential for microseismic monitoring is fast and accurate calculation of seismic wave source location.The precision of most traditional microseismic monitoring processes of mines,using TDOA location method in two-dimensional space to position the microseismic events,as well as the accuracy of positioning microseismic events,may be reduced by the two-dimensional model and simple method,and ill-conditioned equations produced by TDOA location method will increase the positioning error.This article,based on inversion theory,studies the mathematical model of TDOA location method,polarization analysis location method,and comprehensive difference location method of adding angle factor in the traditional TDOA location method.The feasibility of three methods is verified by numerical simulation and analysis of the positioning error of them.The results show that the comprehensive location method of adding angle difference has strong positioning stability and high positioning accuracy,and it may reduce the impact effectively about ill-conditioned equations to positioning results.Comprehensive location method with the data of actual measure may get better positioning results.
Cheng, Xuemin; Hao, Qun; Xie, Mengdi
2016-01-01
Video stabilization is an important technology for removing undesired motion in videos. This paper presents a comprehensive motion estimation method for electronic image stabilization techniques, integrating the speeded up robust features (SURF) algorithm, modified random sample consensus (RANSAC), and the Kalman filter, and also taking camera scaling and conventional camera translation and rotation into full consideration. Using SURF in sub-pixel space, feature points were located and then matched. The false matched points were removed by modified RANSAC. Global motion was estimated by using the feature points and modified cascading parameters, which reduced the accumulated errors in a series of frames and improved the peak signal to noise ratio (PSNR) by 8.2 dB. A specific Kalman filter model was established by considering the movement and scaling of scenes. Finally, video stabilization was achieved with filtered motion parameters using the modified adjacent frame compensation. The experimental results proved that the target images were stabilized even when the vibrating amplitudes of the video become increasingly large. PMID:27070603
Cheng, Xuemin; Hao, Qun; Xie, Mengdi
2016-01-01
Video stabilization is an important technology for removing undesired motion in videos. This paper presents a comprehensive motion estimation method for electronic image stabilization techniques, integrating the speeded up robust features (SURF) algorithm, modified random sample consensus (RANSAC), and the Kalman filter, and also taking camera scaling and conventional camera translation and rotation into full consideration. Using SURF in sub-pixel space, feature points were located and then matched. The false matched points were removed by modified RANSAC. Global motion was estimated by using the feature points and modified cascading parameters, which reduced the accumulated errors in a series of frames and improved the peak signal to noise ratio (PSNR) by 8.2 dB. A specific Kalman filter model was established by considering the movement and scaling of scenes. Finally, video stabilization was achieved with filtered motion parameters using the modified adjacent frame compensation. The experimental results proved that the target images were stabilized even when the vibrating amplitudes of the video become increasingly large. PMID:27070603
Differential Search Algorithm Based Edge Detection
Gunen, M. A.; Civicioglu, P.; Beşdok, E.
2016-06-01
In this paper, a new method has been presented for the extraction of edge information by using Differential Search Optimization Algorithm. The proposed method is based on using a new heuristic image thresholding method for edge detection. The success of the proposed method has been examined on fusion of two remote sensed images. The applicability of the proposed method on edge detection and image fusion problems have been analysed in detail and the empirical results exposed that the proposed method is useful for solving the mentioned problems.
Structure-Based Algorithms for Microvessel Classification
Smith, Amy F.
2015-02-01
© 2014 The Authors. Microcirculation published by John Wiley & Sons Ltd. Objective: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. Methods: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. Results: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. Conclusions: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.
Duality based optical flow algorithms with applications
DEFF Research Database (Denmark)
Rakêt, Lars Lau
We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X...... chromatograms, where registration only have to be done in one of the two dimensions, resulting in a vector valued registration problem with values having several hundred dimensions. We propose a novel method for solving this problem, where instead of a vector valued data term, the different channels are coupled...
Graphical model construction based on evolutionary algorithms
Institute of Scientific and Technical Information of China (English)
Youlong YANG; Yan WU; Sanyang LIU
2006-01-01
Using Bayesian networks to model promising solutions from the current population of the evolutionary algorithms can ensure efficiency and intelligence search for the optimum. However, to construct a Bayesian network that fits a given dataset is a NP-hard problem, and it also needs consuming mass computational resources. This paper develops a methodology for constructing a graphical model based on Bayesian Dirichlet metric. Our approach is derived from a set of propositions and theorems by researching the local metric relationship of networks matching dataset. This paper presents the algorithm to construct a tree model from a set of potential solutions using above approach. This method is important not only for evolutionary algorithms based on graphical models, but also for machine learning and data mining.The experimental results show that the exact theoretical results and the approximations match very well.
利用盲源分离算法实现DOA估计%DOA estimation method based on blind source separation algorithm
Institute of Scientific and Technical Information of China (English)
徐先峰; 刘义艳; 段晨东
2012-01-01
A new DOA (direction-of-arrival) estimation method based on an algorithm for fast blind source separation (FBSS-DOA) is proposed in this paper. A group of correlation matrices possessing diagonal structure is generated. A cost function of joint diagonalization for blind source separation is introduced. For solving this cost function, a fast multiplied iterative algorithm in complex-valued domain is utilized. The demixing matrix was then estimated and the estimation of DOA was realized. Compared with familiar algorithms, the algorithm has more generality and better estimation performance. The simulation results illustrate its efficiency.%提出一种基于快速盲源分离算法实现波达方向(DOA)估计的方法.构造了具有对角化结构的相关矩阵组,引入解盲源分离问题的联合对角化代价函数,采用一种快速的复数域乘性迭代算法求解代价函数,得到混迭矩阵逆的估计,进而实现DOA估计.与同类算法相比,该算法具有更广的适用性和更精确的DOA估计性能.仿真实验结果验证了算法的快速收敛性和优越的估计性能.
Gaubert, Stephane; Qu, Zheng
2011-01-01
Max-plus based methods have been recently developed to approximate the value function of possibly high dimensional optimal control problems. A critical step of these methods consists in approximating a function by a supremum of a small number of functions (max-plus "basis functions") taken from a prescribed dictionary. We study several variants of this approximation problem, which we show to be continuous versions of the facility location and $k$-center combinatorial optimization problems, in which the connection costs arise from a Bregman distance. We give theoretical error estimates, quantifying the number of basis functions needed to reach a prescribed accuracy. We derive from our approach a refinement of the curse of dimensionality free method introduced previously by McEneaney, with a higher accuracy for a comparable computational cost.
Institute of Scientific and Technical Information of China (English)
Menghan Wang∗,Zongmin Yue; Lie Meng
2016-01-01
In order to prevent cracking appeared in the work⁃piece during the hot stamping operation, this paper proposes a hybrid optimization method based on Hammersley sequence sampling ( HSS) , finite analysis, back⁃propagation ( BP ) neural network and genetic algorithm ( GA ) . The mechanical properties of high strength boron steel are characterized on the basis of uniaxial tensile test at elevated temperatures. The samples of process parameters are chosen via the HSS that encourages the exploration throughout the design space and hence achieves better discovery of possible global optimum in the solution space. Meanwhile, numerical simulation is carried out to predict the forming quality for the optimized design. A BP neural network model is developed to obtain the mathematical relationship between optimization goal and design variables, and genetic algorithm is used to optimize the process parameters. Finally, the results of numerical simulation are compared with those of production experiment to demonstrate that the optimization strategy proposed in the paper is feasible.
Directory of Open Access Journals (Sweden)
Li Ma
2015-01-01
Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA. The proposed algorithm combines artificial fish swarm algorithm (AFSA with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM.
Ma, Li; Li, Yang; Fan, Suohai; Fan, Runzhu
2015-01-01
Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA). The proposed algorithm combines artificial fish swarm algorithm (AFSA) with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI) are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM). PMID:26649068
Ma, Li; Li, Yang; Fan, Suohai; Fan, Runzhu
2015-01-01
Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA). The proposed algorithm combines artificial fish swarm algorithm (AFSA) with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI) are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM). PMID:26649068
Kostrzewa, Daniel; Josiński, Henryk
2016-06-01
The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version inspired by dynamic growth of weeds colony. The authors of the present paper have modified the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals' selection. The goal of the project was to evaluate the modified exIWO by testing its usefulness for multidimensional numerical functions optimization. The optimized functions: Griewank, Rastrigin, and Rosenbrock are frequently used as benchmarks because of their characteristics.
A Simplification Algorithm Based On Appearance Maintenance
Directory of Open Access Journals (Sweden)
Fang Wan
2010-12-01
Full Text Available This paper present a new simplification algorithm named EQEM which is based on the QEM algorith to simplify geometry model with texture. The algorithm used a new framework to integrate geometry and texture factor into simplification process. In the framework, an error metric descriptor is described in detail. Firstly, Gauss curvature of the vertex should be calculated to assure good geometry similarity. Then, the descriptor take into account the visual importance in the simplification. In this way, we introduce a method of edge detection algorithm in image processing, which use mallat wavelet method to quickly extract the distinct edges from a texture image. Also, we compute the color distance of the vertices which are not belonged to any edges as the supplement of the metric descriptor. Experiment prove the simplification can make the sharp-simplified model keep similar appearance. For the descriptor is extended from the QEM error metric and can also be calculated by matrix multiplication, the algorithm is with high efficiency. After all, for all the parameters in the error metric formula are adjustable, algorithm can fit for different type of the mesh models and simplification scale.
ALGORITHM AND METHODS OF HUMAN RESOURCES EVALUATION
Gontiuk, Viktoriia
2014-01-01
The paper deals with the scientific position and methodical approaches of human resource evaluation and indicates it importance in the organization management. This study provides the algorithm of human resources evaluation. Author argues that the most fully human resources evaluation manifests in complex using of different methods (qualitative, quantitative and combined methods).
FACE RECOGNITION BASED ON CUCKOO SEARCH ALGORITHM
VIPINKUMAR TIWARI
2012-01-01
Feature Selection is a optimization technique used in face recognition technology. Feature selection removes the irrelevant, noisy and redundant data thus leading to the more accurate recognition of face from the database.Cuckko Algorithm is one of the recent optimization algorithm in the league of nature based algorithm. Its optimization results are better than the PSO and ACO optimization algorithms. The proposal of applying the Cuckoo algorithm for feature selection in the process of face ...
The Improved Cuckoo Search Algorithm Based on Quadratic Interpolation Method%基于二次插值法的布谷鸟搜索算法研究
Institute of Scientific and Technical Information of China (English)
刘佳; 冯震; 徐越群
2015-01-01
The Cuckoo Search algorithm (CS) was studied, and in order to improve the shortcomings of the basic CS algorithm, such as low optimization precision and convergence slowly and poor local search ability in late evolution, an improved CS algorithm(QI_GSO) based on quadratic interpolation method was proposed in this paper. New algorithm makes full use of the bird’s nest local information, enhances the local search ability of the algorithm, and speeds up the convergence of the global optimal solution. The feasibility and effectiveness of the new approach was verified through testing by functions. The experimental results show that the QI_CS algorithm is significantly superior to original CS and can greatly improve the ability of seeking the global excellent result and convergence property and accuracy, which is an effective method to solve multimodal function optimization problem.%对基本的布谷鸟搜索算法（Cuckoo Search，CS）进行研究，为改进CS算法局部搜索能力差、进化后期收敛速度慢、求解精度低等缺陷，考虑到二次插值法是一种局部搜索能力较强的搜索方法，提出一种基于二次插值法的布谷鸟搜索算法（QI_CS）。新算法充分利用鸟窝个体局部的优化信息，增强算法的局部搜索能力，加快算法搜索全局最优解的收敛速度。仿真实验结果表明，QI_CS 算法在保持原算法的强大全局寻优能力的基础上大幅提高算法的收敛能力和求解精度，是求解多峰函数优化问题的一种可行和有效的方法。
Yusran
2013-01-01
This research discussed about optimization of multi-type Distributed Generation (DG) capacity and location. Multi-type DG was used in this research to investigate the effect of DG type to losses and voltage profile of network. The three types of DG were injecting active power only; injecting both active and reactive power; and the one injecting active power and absorbing reactive power. This research used combination of Binary Encoding Genetic Algorithm (GA) and Newton Raphson (NR...
A New Page Ranking Algorithm Based On WPRVOL Algorithm
Directory of Open Access Journals (Sweden)
Roja Javadian Kootenae
2013-03-01
Full Text Available The amount of information on the web is always growing, thus powerful search tools are needed to search for such a large collection. Search engines in this direction help users so they can find their desirable information among the massive volume of information in an easier way. But what is important in the search engines and causes a distinction between them is page ranking algorithm used in them. In this paper a new page ranking algorithm based on "Weighted Page Ranking based on Visits of Links (WPRVOL Algorithm" for search engines is being proposed which is called WPR'VOL for short. The proposed algorithm considers the number of visits of first and second level in-links. The original WPRVOL algorithm takes into account the number of visits of first level in-links of the pages and distributes rank scores based on the popularity of the pages whereas the proposed algorithm considers both in-links of that page (first level in-links and in-links of the pages that point to it (second level in-links in order to calculation of rank of the page, hence more related pages are displayed at the top of search result list. In the summary it is said that the proposed algorithm assigns higher rank to pages that both themselves and pages that point to them be important.
DNA Coding Based Knowledge Discovery Algorithm
Institute of Scientific and Technical Information of China (English)
LI Ji-yun; GENG Zhao-feng; SHAO Shi-huang
2002-01-01
A novel DNA coding based knowledge discovery algorithm was proposed, an example which verified its validity was given. It is proved that this algorithm can discover new simplified rules from the original rule set efficiently.
DE and NLP Based QPLS Algorithm
Yu, Xiaodong; Huang, Dexian; Wang, Xiong; Liu, Bo
As a novel evolutionary computing technique, Differential Evolution (DE) has been considered to be an effective optimization method for complex optimization problems, and achieved many successful applications in engineering. In this paper, a new algorithm of Quadratic Partial Least Squares (QPLS) based on Nonlinear Programming (NLP) is presented. And DE is used to solve the NLP so as to calculate the optimal input weights and the parameters of inner relationship. The simulation results based on the soft measurement of diesel oil solidifying point on a real crude distillation unit demonstrate that the superiority of the proposed algorithm to linear PLS and QPLS which is based on Sequential Quadratic Programming (SQP) in terms of fitting accuracy and computational costs.
Opposition-Based Adaptive Fireworks Algorithm
Directory of Open Access Journals (Sweden)
Chibing Gong
2016-07-01
Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.
RED Algorithm based Iris Recognition
Directory of Open Access Journals (Sweden)
Mayuri M. Memane
2012-07-01
Full Text Available Human iris is one of the most reliable biometric because of its uniqueness, stability and non-invasive nature. Biometrics based human authentication systems are becoming more important as government & corporations worldwide deploy them in such schemes as access & border control, time & attendance record, driving license registration and national ID card schemes. For this various preprocessing steps are carried out on the iris image which also includes segmentation. Normalization deals with polar to rectangular conversion. The edges are detected using canny edge detector. Features are extracted using ridge energy direction algorithm. It uses two directional filters i.e. horizontal and vertical oriented. The final template is generated by comparing the two templates and considering the predominant edge. This final template is match with the stored one using hamming distance and the match ID is displayed.
Distance Concentration-Based Artificial Immune Algorithm
Institute of Scientific and Technical Information of China (English)
LIU Tao; WANG Yao-cai; WANG Zhi-jie; MENG Jiang
2005-01-01
The diversity, adaptation and memory of biological immune system attract much attention of researchers. Several optimal algorithms based on immune system have also been proposed up to now. The distance concentration-based artificial immune algorithm (DCAIA) is proposed to overcome defects of the classical artificial immune algorithm (CAIA) in this paper. Compared with genetic algorithm (GA) and CAIA, DCAIA is good for solving the problem of precocity,holding the diversity of antibody, and enhancing convergence rate.
Zhang, Yanjun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong
2016-02-01
Given that the traditional signal processing methods can not effectively distinguish the different vibration intrusion signal, a feature extraction and recognition method of the vibration information is proposed based on EMD-AWPP and HOSA-SVM, using for high precision signal recognition of distributed fiber optic intrusion detection system. When dealing with different types of vibration, the method firstly utilizes the adaptive wavelet processing algorithm based on empirical mode decomposition effect to reduce the abnormal value influence of sensing signal and improve the accuracy of signal feature extraction. Not only the low frequency part of the signal is decomposed, but also the high frequency part the details of the signal disposed better by time-frequency localization process. Secondly, it uses the bispectrum and bicoherence spectrum to accurately extract the feature vector which contains different types of intrusion vibration. Finally, based on the BPNN reference model, the recognition parameters of SVM after the implementation of the particle swarm optimization can distinguish signals of different intrusion vibration, which endows the identification model stronger adaptive and self-learning ability. It overcomes the shortcomings, such as easy to fall into local optimum. The simulation experiment results showed that this new method can effectively extract the feature vector of sensing information, eliminate the influence of random noise and reduce the effects of outliers for different types of invasion source. The predicted category identifies with the output category and the accurate rate of vibration identification can reach above 95%. So it is better than BPNN recognition algorithm and improves the accuracy of the information analysis effectively. PMID:27209772
A graph spectrum based geometric biclustering algorithm.
Wang, Doris Z; Yan, Hong
2013-01-21
Biclustering is capable of performing simultaneous clustering on two dimensions of a data matrix and has many applications in pattern classification. For example, in microarray experiments, a subset of genes is co-expressed in a subset of conditions, and biclustering algorithms can be used to detect the coherent patterns in the data for further analysis of function. In this paper, we present a graph spectrum based geometric biclustering (GSGBC) algorithm. In the geometrical view, biclusters can be seen as different linear geometrical patterns in high dimensional spaces. Based on this, the modified Hough transform is used to find the Hough vector (HV) corresponding to sub-bicluster patterns in 2D spaces. A graph can be built regarding each HV as a node. The graph spectrum is utilized to identify the eigengroups in which the sub-biclusters are grouped naturally to produce larger biclusters. Through a comparative study, we find that the GSGBC achieves as good a result as GBC and outperforms other kinds of biclustering algorithms. Also, compared with the original geometrical biclustering algorithm, it reduces the computing time complexity significantly. We also show that biologically meaningful biclusters can be identified by our method from real microarray gene expression data. PMID:23079285
A generalized GPU-based connected component labeling algorithm
Komura, Yukihiro
2016-01-01
We propose a generalized GPU-based connected component labeling (CCL) algorithm that can be applied to both various lattices and to non-lattice environments in a uniform fashion. We extend our recent GPU-based CCL algorithm without the use of conventional iteration to the generalized method. As an application of this algorithm, we deal with the bond percolation problem. We investigate bond percolation on the honeycomb and triangle lattices to confirm the correctness of this algorithm. Moreover, we deal with bond percolation on the Bethe lattice as a substitute for a network structure, and demonstrate the performance of this algorithm on those lattices.
Li, Chuan; Li, Lin; Jie ZHANG; Alexov, Emil
2012-01-01
The Gauss-Seidel method is a standard iterative numerical method widely used to solve a system of equations and, in general, is more efficient comparing to other iterative methods, such as the Jacobi method. However, standard implementation of the Gauss-Seidel method restricts its utilization in parallel computing due to its requirement of using updated neighboring values (i.e., in current iteration) as soon as they are available. Here we report an efficient and exact (not requiring assumptio...
Research of MD5 shadow table method based on MD5 algorithm%一种融入MD5的影子表算法研究
Institute of Scientific and Technical Information of China (English)
袁满; 康峰峰; 黄刚
2013-01-01
As for the rapid extraction of source data, the rapid identification of changing data and the rapid incremental extraction of data, underlying the analysis of the working principle of the traditional shadow table, this paper proposed a kind of improved linear algorithm which merged MD5 algorithm into the ST. It scanned compared tables for the linear and eliminates unnecessary inverse operation. During scanning these tables, it employed MD5 algorithm to calculate the whole record ' fingerprint ' , it reduced the frequency and duration of string matching, and it could quickly recognize the changed records. The algorithm was verified practically, and the result shows that the proposed algorithm can improve the efficiency of data extraction in database. Incremental extraction method based on shadow table is a general incremental capturing method, and it can be implemented in any database. These applications can easily be transplanted in all kinds of platforms, so it is suitable to solve the heterogeneous database replication issues.%为了快速提取源头数据、快速识别变化记录以及实现数据的快速增量提取,在剖析传统影子表法的工作原理上,提出基于MD5算法的影子表法的改进型线性算法,对对比表进行线性扫描,排除了不必要的回扫操作；同时通过MD5算法计算整条记录的“指纹”,降低了字符串比对次数和时间,能够迅速识别出发生变化的记录.对所提出算法进行了应用测试,结果表明通过融入MD5算法后的影子表法提高了数据提取效率.基于影子表的增量提取方法是一种通用的增量捕获方法,能在任何数据库上实现；应用程序可以方便地在多种平台间移植,因此很适合解决异构数据库复制问题.
Honey Bees Inspired Optimization Method: The Bees Algorithm.
Yuce, Baris; Packianather, Michael S; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo
2013-01-01
Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem. PMID:26462528
Honey Bees Inspired Optimization Method: The Bees Algorithm
Directory of Open Access Journals (Sweden)
Ernesto Mastrocinque
2013-11-01
Full Text Available Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.
Numerical Methods, Algorithms and Tools in C#
Dos Passos, Waldemar
2009-01-01
Along with providing the C# source code online, this book presents practical, ready-to-use mathematical routines employing the C# programming language from Microsoft. It shows how to write mathematically intense object-oriented computer programs. It covers a spectrum of computational tools, including sorting algorithms and optimization methods.
Indian Academy of Sciences (India)
Sangeetha S; S Jeevananthan
2015-12-01
Genetic Algorithms (GA) has always done justice to the art of optimization. One such endeavor has been made in employing the roots of GA in a most proficient way to determine the switching moments of a cascaded H-bridge seven level inverter with equal DC sources. Evolutionary techniques have proved themselves efficient to solve such an obscurity. GA is one of the methods to achieve the objective through biological mimicking. The extraordinary property of crossover is extracted using Random 3-Point Neighbourhood Crossover (RPNC) and Multi Midpoint Selective Bit Neighbourhood crossover (MMSBNC). This paper deals with solving of the selective harmonic equations (SHE) using binary coded GA specific to knowledge based neighbourhood multipoint crossover technique. This is directly related to the switching moments of the multilevel inverter under consideration. Although the previous root-finding techniques such as N-R or resultant like methods endeavor the same, the latter offers faster convergence, better program reliability and wide range of solutions. With an acute algorithm developed in Turbo C, the switching moments are calculated offline. The simulation results closely agree with the hardware results.
Zhang, Mei; Gu, Xiaoyun; Chen, Zhenjie; Li, Xue; Su, Mo
2007-06-01
Up until now, the optical cable network has covered many cities of China. However, there are still so many middle or small sized cities which are not connected to the grid backbone optical cable network of the country. It is urgent to connect these middle or small sized cities into the backbone optical cable network of the country as soon as possible. However, up until now, little work has been done to find a better way for route choice of main optical cables, including those based on GIS methods. This paper proposes a new method for route choice of main optical cables, i.e., the method for route choice of main optical cables based on Dijkstra Algorithm. In this paper, a model for route choice of main optical cables is built, the influencing factors are chosen and quantified according to the specific situation of Guanyun County, and the route of the main optical cables of Guanyun is chosen and drawn on the map. The result shows that the method proposed by this paper has more potentials than the traditional method used in Guanyun County.
Normalization based K means Clustering Algorithm
Virmani, Deepali; Taneja, Shweta; Malhotra, Geetika
2015-01-01
K-means is an effective clustering technique used to separate similar data into groups based on initial centroids of clusters. In this paper, Normalization based K-means clustering algorithm(N-K means) is proposed. Proposed N-K means clustering algorithm applies normalization prior to clustering on the available data as well as the proposed approach calculates initial centroids based on weights. Experimental results prove the betterment of proposed N-K means clustering algorithm over existing...
Directory of Open Access Journals (Sweden)
S. Vijaya Kumar
2010-07-01
Full Text Available This paper presents an automated system for detecting masses in mammogram images. Breast cancer is one of the leading causes of women mortality in the world. Since the causes are unknown, breast cancer cannot be prevented. It is difficult for radiologists to provide both accurate and uniform evaluation over the enormous number of ammograms generated in widespread screening. Microcalcifications (calcium deposits and masses are the earliest signs of breast carcinomas and their detection is one of the key issues for breast cancer control. Computer-aided detection of Microcalcifications and masses is an important and challenging task in breast cancer control. This paper presents a novel approach for detecting microcalcification clusters. First digitized mammogram has been taken from Mammography Image Analysis Society (MIAS database. The Mammogram is preprocessed using Adaptive median filtered. Next, the microcalcification clusters are identified by using the marker extractions of the gradient images obtained by multiscale morphological reconstruction and avoids Oversegmentation vivid in Watershed algorithm. Experimental result show that the microcalcification can be accurately and efficiently detected using the proposed approach.
Institute of Scientific and Technical Information of China (English)
吴振军; 冯为民; 胡智宏; 崔光照
2012-01-01
The asynchronous sampling leak causes errors in electric energy measurement. A new electric energy measurement method is proposed by fixing the sampling frequency, and this method is based on Simpson integral method, and it takes account of the energy leak in asynchronous sampling when system frequency shifts, thus it can achieve an accurate result. The modified Simpson integral formula is given. The ideal power system electric energy and the real one are simulated by the algorithm, and are compared with other methods. The simulation results illustrate that the nev algorithm can reduce the measurement errors dramatically and computational complexity has little increased. So the modified Simpson integral method has good practical value.%非同步采样的泄露是电能计量出现较大误差的原因.提出一种固定采样频率条件下的电能计量方法,该方法基于复化Simpson积分算法,在系统频率发生偏移时充分考虑非同步采样的泄露误差,能够得到较精确的电能计量结果.推导了改进复化Simpson积分公式,并利用该方法对理想及实际电力系统电能进行了仿真,和其它计量算法进行了对比.仿真结果表明使用改进的复化Simpson积分算法能显著提高计量精度,且计算量增加较少,具有很好的使用价值.
Stochastic Recursive Algorithms for Optimization Simultaneous Perturbation Methods
Bhatnagar, S; Prashanth, L A
2013-01-01
Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from sim...
Continuous Attributes Discretization Algorithm based on FPGA
Directory of Open Access Journals (Sweden)
Guoqiang Sun
2013-07-01
Full Text Available The paper addresses the problem of Discretization of continuous attributes in rough set. Discretization of continuous attributes is an important part of rough set theory because most of data that we usually gain are continuous data. In order to improve processing speed of discretization, we propose a FPGA-based discretization algorithm of continuous attributes making use of the speed advantage of FPGA. Combined attributes dependency degree of rough ret, the discretization system was divided into eight modules according to block design. This method can save much time of pretreatment in rough set and improve operation efficiency. Extensive experiments on a certain fighter fault diagnosis validate the effectiveness of the algorithm.
Social emotional optimization algorithm based on quadratic interpolation method%基于二次插值法的社会情感优化算法
Institute of Scientific and Technical Information of China (English)
武建娜; 崔志华; 刘静
2011-01-01
社会情感优化算法是一种模拟人类社会行为的新型群智能优化算法,算法中考虑了个体决策能力以及个体的情感对寻优结果的影响,因此算法的多样性比常见的群智能算法改善了很多,但是局部搜索能力还有待提高.二次插值法是一种局部搜索能力较强的搜索方法,把二次插值法引入社会情感优化算法,搜索效果会改善.通过使用测试函数对算法的优化性能进行测试,证明把二次插值法引入社会情感优化算法,可以使得社会情感优化算法的局部搜索能力增强,从而增强了社会情感优化算法的全局搜索能力.%Social Emotional Optimization Algorithm (SEOA) is a new swarm intelligent population-based optimization algorithm to simulate the human social behaviors. The individual decision-making ability and individual emotion which have impact on optimization results were taken into account, so the diversity of the algorithm has been improved a lot than common swam intelligence algorithms. However, the local search capacity needs to be updated. Quadratic interpolation method is better-behaved in local search. Therefore, the introduction of it into SEOA will improve the search capability. According to the test for the optimization performance by using benchmark functions, it is proved that the local search ability can be improved by introducing quadratic interpolation method into SEOA, thus increasing the global search capability.
A Multi-Scale Gradient Algorithm Based on Morphological Operators
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Watershed transformation is a powerful morphological tool for image segmentation. However, the performance of the image segmentation methods based on watershed transformation depends largely on the algorithm for computing the gradient of the image to be segmented. In this paper, we present a multi-scale gradient algorithm based on morphological operators for watershed-based image segmentation, with effective handling of both step and blurred edges. We also present an algorithm to eliminate the local minima produced by noise and quantization errors. Experimental results indicate that watershed transformation with the algorithms proposed in this paper produces meaningful segmentations, even without a region-merging step.
基于OpenCV算法库的摄像机标定方法%Camera Calibration Method Based on OpenCV Algorithm Library
Institute of Scientific and Technical Information of China (English)
刘国平; 蔡建平
2011-01-01
通过分析摄像机的透视投影成像模型和四个笛卡尔坐标系之间的变换关系，从而明确摄像机标定的目的就是求解其内外参数。比较常用标定方法的优缺点，在VC＋＋环境下开发了一种基于OpencV算法库的摄像机标定程序，实验结果表明，该程序能自动、快速、精确地标定摄像机。%Through analyzing the perspective imaging model and coordinate transformations between four different Cartesian coordinate systems, a camera calibration method based on OpenCV algorithm library is presented. The camera calibration aims to solve the intrin
一种基于FKT算法的人脸表情识别方法%A Method of Facial Expression Recognition Based on FKT Algorithm
Institute of Scientific and Technical Information of China (English)
邱伟
2011-01-01
Facial expression recognition has been one of the important research themes in the fields of pattern recognition and computer vision. In this paper, a face detection system base on the dynamic cascade learning algorithm is implemented by C++ programs. With the help of the obtained face detector, face samples are extracted to form the data sets for expression recognition. Finally, FKT (Fuktunaga-Koontz Transform) algorithm is applied to solve the problem of expression recognition. The experimental results demonstrate the effectiveness of the proposed method.%人脸表情识别是模式识别和计算机视觉领域的重要课题之一.本文使用C++编程实现基于动态级联算法的人脸检测器,使用人脸检测器提取出表情识别需要的人脸数据集,通过FKT(Fukunaga-Koontz Transform)算法来解决表情识别问题.实验结果表明算法的有效性.
FACE RECOGNITION BASED ON CUCKOO SEARCH ALGORITHM
Directory of Open Access Journals (Sweden)
VIPINKUMAR TIWARI
2012-07-01
Full Text Available Feature Selection is a optimization technique used in face recognition technology. Feature selection removes the irrelevant, noisy and redundant data thus leading to the more accurate recognition of face from the database.Cuckko Algorithm is one of the recent optimization algorithm in the league of nature based algorithm. Its optimization results are better than the PSO and ACO optimization algorithms. The proposal of applying the Cuckoo algorithm for feature selection in the process of face recognition is presented in this paper.
ILU preconditioning based on the FAPINV algorithm
Directory of Open Access Journals (Sweden)
Davod Khojasteh Salkuyeh
2015-01-01
Full Text Available A technique for computing an ILU preconditioner based on the factored approximate inverse (FAPINV algorithm is presented. We show that this algorithm is well-defined for H-matrices. Moreover, when used in conjunction with Krylov-subspace-based iterative solvers such as the GMRES algorithm, results in reliable solvers. Numerical experiments on some test matrices are given to show the efficiency of the new ILU preconditioner.
Tang, Guang-hua; Xu, Chuan-long; Shao, Li-tang; Yang, Dao-ye; Zhou, Bin; Wang, Shi-min
2009-04-01
Valuable achievements on differential optical absorption spectroscopy (DOAS) for monitoring atmospheric pollutants gas have been made in the past decades. Based on the idea of setting the threshold according to the maximum value, symbolized as OD'm, of differential optical density, the algorithm of traditional DOAS was combined with the DOAS algorithm based on the kalman filtering to improve the detection limit without losing measurement accuracy in the present article. Two algorithms have different inversion accuracy at the same ratio of signal to noise and the problem of inversion accuracy was well resolved by combining two algorithms at short light path length. Theoretical and experimental research on the concentration measurement of SO2 in the flue gases was carried out at the normal temperature and atmospheric pressure. The research results show that with the OD'm less than 0.0481, the measurement precision is very high for SO2 with the improved DOAS algorithm. The measurement lower limit of SO2 is less than 28.6 mg x m(-3) and the zero drift of the system is less than 2.9 mg x m(-3). If the OD'm is between 0.0481 and 0.9272, the measurement precision is high with the traditional DOAS algorithm. However, if the OD'm is more than 0.922, the errors of measurement results for both two DOAS algorithms are very large and the linearity correction must be performed. PMID:19626898
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.
Cryptography Based MSLDIP Watermarking Algorithm
Directory of Open Access Journals (Sweden)
Abdelmgeid A. Ali
2015-08-01
Full Text Available In recent years, internet revolution resulted in an explosive growth in multimedia applications. The rapid advancement of internet has made it easier to send the data accurate and faster to the destination. Aside to this, it is easier to modify and misuse the valuable information through hacking at the same time. Digital watermarking is one of the proposed solutions for copyright protection of multimedia data. In this paper cryptography based MSLDIP watermarking method (Modified Substitute Last Digit in Pixel is proposed. The main goal of this method is to increase the security of the MSLDIP technique besides to hiding the watermark in the pixels of digital image in such a manner that the human visual system is not able to differentiate between the cover image and the watermarked image. Also the experimental results showed that this method can be used effectively in the field of watermarking.
Accuracy verification methods theory and algorithms
Mali, Olli; Repin, Sergey
2014-01-01
The importance of accuracy verification methods was understood at the very beginning of the development of numerical analysis. Recent decades have seen a rapid growth of results related to adaptive numerical methods and a posteriori estimates. However, in this important area there often exists a noticeable gap between mathematicians creating the theory and researchers developing applied algorithms that could be used in engineering and scientific computations for guaranteed and efficient error control. The goals of the book are to (1) give a transparent explanation of the underlying mathematical theory in a style accessible not only to advanced numerical analysts but also to engineers and students; (2) present detailed step-by-step algorithms that follow from a theory; (3) discuss their advantages and drawbacks, areas of applicability, give recommendations and examples.
Algorithms for Irrelevance-Based Partial MAPs
Shimony, Solomon Eyal
2013-01-01
Irrelevance-based partial MAPs are useful constructs for domain-independent explanation using belief networks. We look at two definitions for such partial MAPs, and prove important properties that are useful in designing algorithms for computing them effectively. We make use of these properties in modifying our standard MAP best-first algorithm, so as to handle irrelevance-based partial MAPs.
Designers' Cognitive Thinking Based on Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Zhang Shutao
2013-09-01
Full Text Available The research on cognitive thinking is important to construct the efficient intelligent design systems. But it is difficult to describe the model of cognitive thinking with reasonable mathematical theory. Based on the analysis of design strategy and innovative thinking, we investigated the design cognitive thinking model that included the external guide thinking of "width priority - depth priority" and the internal dominated thinking of "divergent thinking - convergent thinking", built a reasoning mechanism of design information with the thinking mathematics theory and established a product image form design model with the generalized interactive genetic algorithm. The example of testing machine form design shows that the method is reasonable and feasible.
Genetic algorithm-based form error evaluation
Cui, Changcai; Li, Bing; Huang, Fugui; Zhang, Rencheng
2007-07-01
Form error evaluation of geometrical products is a nonlinear optimization problem, for which a solution has been attempted by different methods with some complexity. A genetic algorithm (GA) was developed to deal with the problem, which was proved simple to understand and realize, and its key techniques have been investigated in detail. Firstly, the fitness function of GA was discussed emphatically as a bridge between GA and the concrete problems to be solved. Secondly, the real numbers-based representation of the desired solutions in the continual space optimization problem was discussed. Thirdly, many improved evolutionary strategies of GA were described on emphasis. These evolutionary strategies were the selection operation of 'odd number selection plus roulette wheel selection', the crossover operation of 'arithmetic crossover between near relatives and far relatives' and the mutation operation of 'adaptive Gaussian' mutation. After evolutions from generation to generation with the evolutionary strategies, the initial population produced stochastically around the least-squared solutions of the problem would be updated and improved iteratively till the best chromosome or individual of GA appeared. Finally, some examples were given to verify the evolutionary method. Experimental results show that the GA-based method can find desired solutions that are superior to the least-squared solutions except for a few examples in which the GA-based method can obtain similar results to those by the least-squared method. Compared with other optimization techniques, the GA-based method can obtain almost equal results but with less complicated models and computation time.
A solution quality assessment method for swarm intelligence optimization algorithms.
Zhang, Zhaojun; Wang, Gai-Ge; Zou, Kuansheng; Zhang, Jianhua
2014-01-01
Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of "value performance," the "ordinal performance" is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and "good enough" set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO), particle swarm optimization (PSO), and artificial fish swarm algorithm (AFS) were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method. PMID:25013845
Morshed, Mohammad Sarwar; Kamal, Mostafa Mashnoon; Khan, Somaiya Islam
2016-07-01
Inventory has been a major concern in supply chain and numerous researches have been done lately on inventory control which brought forth a number of methods that efficiently manage inventory and related overheads by reducing cost of replenishment. This research is aimed towards providing a better replenishment policy in case of multi-product, single supplier situations for chemical raw materials of textile industries in Bangladesh. It is assumed that industries currently pursue individual replenishment system. The purpose is to find out the optimum ideal cycle time and individual replenishment cycle time of each product for replenishment that will cause lowest annual holding and ordering cost, and also find the optimum ordering quantity. In this paper indirect grouping strategy has been used. It is suggested that indirect grouping Strategy outperforms direct grouping strategy when major cost is high. An algorithm by Kaspi and Rosenblatt (1991) called RAND is exercised for its simplicity and ease of application. RAND provides an ideal cycle time (T) for replenishment and integer multiplier (ki) for individual items. Thus the replenishment cycle time for each product is found as T×ki. Firstly, based on data, a comparison between currently prevailing (individual) process and RAND is provided that uses the actual demands which presents 49% improvement in total cost of replenishment. Secondly, discrepancies in demand is corrected by using Holt's method. However, demands can only be forecasted one or two months into the future because of the demand pattern of the industry under consideration. Evidently, application of RAND with corrected demand display even greater improvement. The results of this study demonstrates that cost of replenishment can be significantly reduced by applying RAND algorithm and exponential smoothing models.
Multicast Routing Based on Hybrid Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
CAO Yuan-da; CAI Gui
2005-01-01
A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.
A rule-based algorithm for automatic bond type perception
Zhang Qian; Zhang Wei; Li Youyong; Wang Junmei; Zhang Liling; Hou Tingjun
2012-01-01
Abstract Assigning bond orders is a necessary and essential step for characterizing a chemical structure correctly in force field based simulations. Several methods have been developed to do this. They all have advantages but with limitations too. Here, an automatic algorithm for assigning chemical connectivity and bond order regardless of hydrogen for organic molecules is provided, and only three dimensional coordinates and element identities are needed for our algorithm. The algorithm uses ...
A Global Optimization Algorithm Based on Incremental Metamodel Method%一种基于增量元模型方法的全局优化算法
Institute of Scientific and Technical Information of China (English)
魏昕; 吴义忠; 陈立平
2013-01-01
A new global optimization method based on incremental metamodel was proposed for the complex simulation model problem. Firstly, to overcome the defects of existing incremental Latin hyper-cube design, which was hard to control the number of sampling points and limited to multiples, we proposed an improved incremental Latin hyper-cube sampling method based on subtraction rule idea. Secondly, combined incremental Latin hyper - cube design and the method of incremental update radial basis functions, we proposed a new efficient global optimization algorithm. Finally, the method was applied to a pressure vessel design problem and the results of the example demonstrate the efficiency and engineering practicability of the presented method.%针对复杂仿真模型的全局优化问题,提出一种基于增量元模型方法的全局优化算法.首先,分析了现有增量拉丁超立方采样方法新增点数量难以控制以及其数值必须为原采样点数量的整数倍的缺陷,在此基础上利用减法规则思想改进了增量拉丁超立方采样；其次,将改进后的增量拉丁超立方采样与径向基函数的增量更新方法相结合,提出了一种全新的高效全局优化算法；最后,将该算法应用于压力容器的优化设计,计算结果证明了该方法的实用性与工程有效性.
Product design optimization method based on genetic algorithm%运用遗传算法的产品造型设计方案优化方法
Institute of Scientific and Technical Information of China (English)
杨延璞; 余隋怀; 陈登凯
2012-01-01
Starting from the product semantics, the research presented a product design optimization method based on genetic algorithm and constructed a product design evolution model based on semantic. By constructing product gene coding and gene string and the fitness function,new programs were developed through optimizing original product design programs. Application on panel furniture design proves that the method is suitable.%从产品语义出发,提出一种基于遗传算法的产品造型设计方案优化方法,构造基于语义的产品造型进化设计模型.通过构造产品造型基因编码和基因串及适应度函数,对产品造型设计方案进行优化并形成新的方案,应用板式家具的造型设计验证了方法的适宜性.
Enterprise Human Resources Information Mining Based on Improved Apriori Algorithm
Directory of Open Access Journals (Sweden)
Lei He
2013-05-01
Full Text Available With the unceasing development of information and technology in today’s modern society, enterprises’ demand of human resources information mining is getting bigger and bigger. Based on the enterprise human resources information mining situation, this paper puts forward a kind of improved Apriori algorithm based model on the enterprise human resources information mining, this model introduced data mining technology and traditional Apriori algorithm, and improved on its basis, divided the association rules mining task of the original algorithm into two subtasks of producing frequent item sets and producing rule, using SQL technology to directly generating frequent item sets, and using the method of establishing chart to extract the information which are interested to customers. The experimental results show that the improved Apriori algorithm based model on the enterprise human resources information mining is better in efficiency than the original algorithm, and the practical application test results show that the improved algorithm is practical and effective.
PDE Based Algorithms for Smooth Watersheds.
Hodneland, Erlend; Tai, Xue-Cheng; Kalisch, Henrik
2016-04-01
Watershed segmentation is useful for a number of image segmentation problems with a wide range of practical applications. Traditionally, the tracking of the immersion front is done by applying a fast sorting algorithm. In this work, we explore a continuous approach based on a geometric description of the immersion front which gives rise to a partial differential equation. The main advantage of using a partial differential equation to track the immersion front is that the method becomes versatile and may easily be stabilized by introducing regularization terms. Coupling the geometric approach with a proper "merging strategy" creates a robust algorithm which minimizes over- and under-segmentation even without predefined markers. Since reliable markers defined prior to segmentation can be difficult to construct automatically for various reasons, being able to treat marker-free situations is a major advantage of the proposed method over earlier watershed formulations. The motivation for the methods developed in this paper is taken from high-throughput screening of cells. A fully automated segmentation of single cells enables the extraction of cell properties from large data sets, which can provide substantial insight into a biological model system. Applying smoothing to the boundaries can improve the accuracy in many image analysis tasks requiring a precise delineation of the plasma membrane of the cell. The proposed segmentation method is applied to real images containing fluorescently labeled cells, and the experimental results show that our implementation is robust and reliable for a variety of challenging segmentation tasks. PMID:26625408
Speech Enhancement based on Compressive Sensing Algorithm
Sulong, Amart; Gunawan, Teddy S.; Khalifa, Othman O.; Chebil, Jalel
2013-12-01
There are various methods, in performance of speech enhancement, have been proposed over the years. The accurate method for the speech enhancement design mainly focuses on quality and intelligibility. The method proposed with high performance level. A novel speech enhancement by using compressive sensing (CS) is a new paradigm of acquiring signals, fundamentally different from uniform rate digitization followed by compression, often used for transmission or storage. Using CS can reduce the number of degrees of freedom of a sparse/compressible signal by permitting only certain configurations of the large and zero/small coefficients, and structured sparsity models. Therefore, CS is significantly provides a way of reconstructing a compressed version of the speech in the original signal by taking only a small amount of linear and non-adaptive measurement. The performance of overall algorithms will be evaluated based on the speech quality by optimise using informal listening test and Perceptual Evaluation of Speech Quality (PESQ). Experimental results show that the CS algorithm perform very well in a wide range of speech test and being significantly given good performance for speech enhancement method with better noise suppression ability over conventional approaches without obvious degradation of speech quality.
FMS Scheduling Simulation Based on an Evolution Algorithm
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A FMS (flexible manufacturing system) scheduling algorithm based on an evolution algorithm (EA) is developed by intensively analyzing and researching the scheduling method in this paper. Many factors related to FMS scheduling are considered sufficiently. New explanations for a common kind of the encoding model are given. The rationality of encoding model is ensured by designing a set ofnew encoding methods, while the simulation experiment is performed. The results show that a FMS scheduling optimum problem with multi-constraint conditions can be effectively solved by a FMS scheduling simulation model based on EA. Comparing this method with others, this algorithm has the advantage of good stability and quick convergence.
A local distribution based spatial clustering algorithm
Deng, Min; Liu, Qiliang; Li, Guangqiang; Cheng, Tao
2009-10-01
Spatial clustering is an important means for spatial data mining and spatial analysis, and it can be used to discover the potential spatial association rules and outliers among the spatial data. Most existing spatial clustering algorithms only utilize the spatial distance or local density to find the spatial clusters in a spatial database, without taking the spatial local distribution characters into account, so that the clustered results are unreasonable in many cases. To overcome such limitations, this paper develops a new indicator (i.e. local median angle) to measure the local distribution at first, and further proposes a new algorithm, called local distribution based spatial clustering algorithm (LDBSC in abbreviation). In the process of spatial clustering, a series of recursive search are implemented for all the entities so that those entities with its local median angle being very close or equal are clustered. In this way, all the spatial entities in the spatial database can be automatically divided into some clusters. Finally, two tests are implemented to demonstrate that the method proposed in this paper is more prominent than DBSCAN, as well as that it is very robust and feasible, and can be used to find the clusters with different shapes.
A Genetic Algorithm based Service Restoration
Directory of Open Access Journals (Sweden)
K. Sathish Kumar
2010-06-01
Full Text Available A genetic algorithm (GA is a search technique used in computing to find exact or approximate solutions to optimization and search problems. Genetic algorithms are a particular class of evolutionary algorithms that use techniques inspired by evolutionary biology such as inheritance, mutation, selection and crossover. GA is a method for search and optimization based on the process of natural selection and evolution. In this approach, several modifications are done for effective implementation of GA to solve the Electric Power Service Restoration Problem. The GA is suitable for the supply restoration because it is very easy to change constraints or objectives, or applynew ones. The objective function includes all the objectives and constraints required for a practical supply restoration scheme. GA starts with number of solutions to a problem, encoded as a string of status of sectionalizing and tie switches. The status of the switch ‘1’ and ‘0’ has been considered as ‘close’ and ‘open’ condition of theswitch. The string that encodes each string is ‘chromosome’ and the set of solutions are termed as population.
Video segmentation using multiple features based on EM algorithm
Institute of Scientific and Technical Information of China (English)
张风超; 杨杰; 刘尔琦
2004-01-01
Object-based video segmentation is an important issue for many multimedia applications. A video segmentation method based on EM algorithm is proposed. We consider video segmentation as an unsupervised classification problem and apply EM algorithm to obtain the maximum-likelihood estimation of the Gaussian model parameters for model-based segmentation. We simultaneously combine multiple features (motion, color) within a maximum likelihood framework to obtain accurate segment results. We also use the temporal consistency among video frames to improve the speed of EM algorithm. Experimental results on typical MPEG-4 sequences and real scene sequences show that our method has an attractive accuracy and robustness.
Clonal Selection Algorithm Based Iterative Learning Control with Random Disturbance
Directory of Open Access Journals (Sweden)
Yuanyuan Ju
2013-01-01
Full Text Available Clonal selection algorithm is improved and proposed as a method to solve optimization problems in iterative learning control. And a clonal selection algorithm based optimal iterative learning control algorithm with random disturbance is proposed. In the algorithm, at the same time, the size of the search space is decreased and the convergence speed of the algorithm is increased. In addition a model modifying device is used in the algorithm to cope with the uncertainty in the plant model. In addition a model is used in the algorithm cope with the uncertainty in the plant model. Simulations show that the convergence speed is satisfactory regardless of whether or not the plant model is precise nonlinear plants. The simulation test verify the controlled system with random disturbance can reached to stability by using improved iterative learning control law but not the traditional control law.
A PSO-Based Subtractive Data Clustering Algorithm
Directory of Open Access Journals (Sweden)
Gamal Abdel-Azeem
2013-03-01
Full Text Available There is a tremendous proliferation in the amount of information available on the largest shared information source, the World Wide Web. Fast and high-quality clustering algorithms play an important role in helping users to effectively navigate, summarize, and organize the information. Recent studies have shown that partitional clustering algorithms such as the k-means algorithm are the most popular algorithms for clustering large datasets. The major problem with partitional clustering algorithms is that they are sensitive to the selection of the initial partitions and are prone to premature converge to local optima. Subtractive clustering is a fast, one-pass algorithm for estimating the number of clusters and cluster centers for any given set of data. The cluster estimates can be used to initialize iterative optimization-based clustering methods and model identification methods. In this paper, we present a hybrid Particle Swarm Optimization, Subtractive + (PSO clustering algorithm that performs fast clustering. For comparison purpose, we applied the Subtractive + (PSO clustering algorithm, PSO, and the Subtractive clustering algorithms on three different datasets. The results illustrate that the Subtractive + (PSO clustering algorithm can generate the most compact clustering results as compared to other algorithms.
Optical Sensor Based Corn Algorithm Evaluation
Optical sensor based algorithms for corn fertilization have developed by researchers in several states. The goal of this international research project was to evaluate these different algorithms and determine their robustness over a large geographic area. Concurrently the goal of this project was to...
FAST NAS-RIF ALGORITHM USING ITERATIVE CONJUGATE GRADIENT METHOD
Directory of Open Access Journals (Sweden)
A.M.Raid
2014-04-01
Full Text Available Many improvements on image enhancemen have been achieved by The Non-negativity And Support constraints Recursive Inverse Filtering (NAS-RIF algorithm. The Deterministic constraints such as non negativity, known finite support, and existence of blur invariant edges are given for the true image. NASRIF algorithms iterative and simultaneously estimate the pixels of the true image and the Point Spread Function (PSF based on conjugate gradients method. NAS-RIF algorithm doesn’t assume parametric models for either the image or the blur, so we update the parameters of conjugate gradient method and the objective function for improving the minimization of the cost function and the time for execution. We propose a different version of linear and nonlinear conjugate gradient methods to obtain the better results of image restoration with high PSNR.
Yang, Qidong; Zuo, Hongchao; Li, Weidong
2016-01-01
Improving the capability of land-surface process models to simulate soil moisture assists in better understanding the atmosphere-land interaction. In semi-arid regions, due to limited near-surface observational data and large errors in large-scale parameters obtained by the remote sensing method, there exist uncertainties in land surface parameters, which can cause large offsets between the simulated results of land-surface process models and the observational data for the soil moisture. In this study, observational data from the Semi-Arid Climate Observatory and Laboratory (SACOL) station in the semi-arid loess plateau of China were divided into three datasets: summer, autumn, and summer-autumn. By combing the particle swarm optimization (PSO) algorithm and the land-surface process model SHAW (Simultaneous Heat and Water), the soil and vegetation parameters that are related to the soil moisture but difficult to obtain by observations are optimized using three datasets. On this basis, the SHAW model was run with the optimized parameters to simulate the characteristics of the land-surface process in the semi-arid loess plateau. Simultaneously, the default SHAW model was run with the same atmospheric forcing as a comparison test. Simulation results revealed the following: parameters optimized by the particle swarm optimization algorithm in all simulation tests improved simulations of the soil moisture and latent heat flux; differences between simulated results and observational data are clearly reduced, but simulation tests involving the adoption of optimized parameters cannot simultaneously improve the simulation results for the net radiation, sensible heat flux, and soil temperature. Optimized soil and vegetation parameters based on different datasets have the same order of magnitude but are not identical; soil parameters only vary to a small degree, but the variation range of vegetation parameters is large. PMID:26991786
基于三帧间差分的障碍物检测算法%Obstacle Detection Algorithm Based on Three Inter-Frame Difference Method
Institute of Scientific and Technical Information of China (English)
郭文俊; 乔世东
2015-01-01
机动车私人拥有量的不断上升，导致了交通事故在逐年的增加。故此，怎样最大程度的减少交通事故成了我们关注的焦点。本文以基于机器视觉的道路识别技术与障碍物检测技术为研究对象，提出了基于三帧间的差分方法，该方法利用相邻三帧图像两两差分，再将两个差分结果相“与”并进行二值化，最终确定运动目标在图像中的位置。%The continuously rising in privately owned motor vehicle leads to the increase in traffic accidents. Therefore, how to re⁃duce the traffic accidents and the losses caused by the accidents have became our focus. The thesis is based on road recognition tech⁃nology and obstacle detection technology, it puts forward a new algorithm called three inter-frame difference method. This method uses neighboring three frames to make different inter-frame difference, then uses the two different inter-frame results to conduct an opera⁃tion“&”, and then runs the binary operation. Finally, the targets are located in the image.
Intelligent Environments Methods, Algorithms and Applications
Monekosso, Dorothy; Kuno, Yoshinori
2008-01-01
This innovative book discusses engineering solutions for the automatic understanding of a complex scene via multi-modal arrays of sensors. It focuses on research dealing with robotic platforms that augment an environment. In particular, it considers the study of information fusion methods, the study of algorithms for ontology learning from tabula rasa information and the integration of new types of sensors into existing networks of heterogeneous sensors. It also concentrates on the development and deployment of fielded solutions in public spaces and the evaluation of systems. Intelligent Envir
New Iterative Learning Control Algorithms Based on Vector Plots Analysis1）
Institute of Scientific and Technical Information of China (English)
XIESheng-Li; TIANSen-Ping; XIEZhen-Dong
2004-01-01
Based on vector plots analysis, this paper researches the geometric frame of iterativelearning control method. New structure of iterative learning algorithms is obtained by analyzingthe vector plots of some general algorithms. The structure of the new algorithm is different fromthose of the present algorithms. It is of faster convergence speed and higher accuracy. Simulationspresented here illustrate the effectiveness and advantage of the new algorithm.
Efficient mining of association rules based on gravitational search algorithm
Directory of Open Access Journals (Sweden)
Fariba Khademolghorani
2011-07-01
Full Text Available Association rules mining are one of the most used tools to discover relationships among attributes in a database. A lot of algorithms have been introduced for discovering these rules. These algorithms have to mine association rules in two stages separately. Most of them mine occurrence rules which are easily predictable by the users. Therefore, this paper discusses the application of gravitational search algorithm for discovering interesting association rules. This evolutionary algorithm is based on the Newtonian gravity and the laws of motion. Furthermore, contrary to the previous methods, the proposed method in this study is able to mine the best association rules without generating frequent itemsets and is independent of the minimum support and confidence values. The results of applying this method in comparison with the method of mining association rules based upon the particle swarm optimization show that our method is successful.
Genetic Algorithm Based Self Tuning Regulator
Directory of Open Access Journals (Sweden)
S.KANTHALAKSHMI
2010-12-01
Full Text Available In this paper, Genetic Algorithm is used for two basic tasks of a Self Tuned Regulator (STR - system identification and PID tuning, providing the controller the ability to automatically tune its parameters while the physical plant dynamic characteristics changes, in an optimal way. The performance of the ball and hoop system, which is difficult to control optimally using a PID controller because of the constantly changing system parameters, is presented. Then, the proposed GA based optimal adaptive controller is designed for the same. Perturbations are applied to the system to check the robustness of the proposed system. The results reflect that proposed scheme improves the performance of the process in terms of time domain specifications, robustness to parametric changes and optimum stability. Also, a comparison with the conventional Ziegler-Nichols method proves the superiority of GA based system.
Agent-based Algorithm for Spatial Distribution of Objects
Collier, Nathan
2012-06-02
In this paper we present an agent-based algorithm for the spatial distribution of objects. The algorithm is a generalization of the bubble mesh algorithm, initially created for the point insertion stage of the meshing process of the finite element method. The bubble mesh algorithm treats objects in space as bubbles, which repel and attract each other. The dynamics of each bubble are approximated by solving a series of ordinary differential equations. We present numerical results for a meshing application as well as a graph visualization application.
Research on Algorithms for Mining Distance-Based Outliers
Institute of Scientific and Technical Information of China (English)
WANGLizhen; ZOULikun
2005-01-01
The outlier detection is an important and valuable research in KDD (Knowledge discover in database). The identification of outliers can lead to the discovery of truly unexpected knowledge in areas such as electronic commerce, credit card fraud, and even weather forecast. In existing methods that we have seen for finding outliers, the notion of DB-(Distance-based) outliers is not restricted computationally to small values of the number of dimensions k and goes beyond the data space. Here, we study algorithms for mining DB-outliers. We focus on developing algorithms unlimited by k. First, we present a Partition-based algorithm (the PBA). The key idea is to gain efficiency by divide-and-conquer. Second, we present an optimized algorithm called Object-class-based algorithm (the OCBA). The computing of this algorithm has nothing to do with k and the efficiency of this algorithm is as good as the cell-based algorithm. We provide experimental results showing that the two new algorithms have better execution efficiency.
A hybrid features based image matching algorithm
Tu, Zhenbiao; Lin, Tao; Sun, Xiao; Dou, Hao; Ming, Delie
2015-12-01
In this paper, we present a novel image matching method to find the correspondences between two sets of image interest points. The proposed method is based on a revised third-order tensor graph matching method, and introduces an energy function that takes four kinds of energy term into account. The third-order tensor method can hardly deal with the situation that the number of interest points is huge. To deal with this problem, we use a potential matching set and a vote mechanism to decompose the matching task into several sub-tasks. Moreover, the third-order tensor method sometimes could only find a local optimum solution. Thus we use a cluster method to divide the feature points into some groups and only sample feature triangles between different groups, which could make the algorithm to find the global optimum solution much easier. Experiments on different image databases could prove that our new method would obtain correct matching results with relatively high efficiency.
Automatic Image Registration Algorithm Based on Wavelet Transform
Institute of Scientific and Technical Information of China (English)
LIU Qiong; NI Guo-qiang
2006-01-01
An automatic image registration approach based on wavelet transform is proposed. This proposed method utilizes multiscale wavelet transform to extract feature points. A coarse-to-fine feature matching method is utilized in the feature matching phase. A two-way matching method based on cross-correlation to get candidate point pairs and a fine matching based on support strength combine to form the matching algorithm. At last, based on an affine transformation model, the parameters are iteratively refined by using the least-squares estimation approach. Experimental results have verified that the proposed algorithm can realize automatic registration of various kinds of images rapidly and effectively.
Directory of Open Access Journals (Sweden)
Chuanfa Chen
2015-03-01
Full Text Available Remote-sensing-derived elevation data sets often suffer from noise and outliers due to various reasons, such as the physical limitations of sensors, multiple reflectance, occlusions and low contrast of texture. Outliers generally have a seriously negative effect on DEM construction. Some interpolation methods like ordinary kriging (OK are capable of smoothing noise inherent in sample points, but are sensitive to outliers. In this paper, a robust algorithm of multiquadric method (MQ based on an Improved Huber loss function (MQ-IH has been developed to decrease the impact of outliers on DEM construction. Theoretically, the improved Huber loss function is null for outliers, quadratic for small errors, and linear for others. Simulated data sets drawn from a mathematical surface with different error distributions were employed to analyze the robustness of MQ-IH. Results indicate that MQ-IH obtains a good balance between efficiency and robustness. Namely, the performance of MQ-IH is comparative to those of the classical MQ and MQ based on the Classical Huber loss function (MQ-CH when sample points follow a normal distribution, and the former outperforms the latter two when sample points are subject to outliers. For example, for the Cauchy error distribution with the location parameter of 0 and scale parameter of 1, the root mean square errors (RMSEs of MQ-CH and the classical MQ are 0.3916 and 1.4591, respectively, whereas that of MQ-IH is 0.3698. The performance of MQ-IH is further evaluated by qualitative and quantitative analysis through a real-world example of DEM construction with the stereo-images-derived elevation points. Results demonstrate that compared with the classical interpolation methods, including natural neighbor (NN, OK and ANUDEM (a program that calculates regular grid digital elevation models (DEMs with sensible shape and drainage structure from arbitrarily large topographic data sets, and two versions of MQ, including the
Drilling Path Optimization Based on Particle Swarm Optimization Algorithm
Institute of Scientific and Technical Information of China (English)
ZHU Guangyu; ZHANG Weibo; DU Yuexiang
2006-01-01
This paper presents a new approach based on the particle swarm optimization (PSO) algorithm for solving the drilling path optimization problem belonging to discrete space. Because the standard PSO algorithm is not guaranteed to be global convergence or local convergence, based on the mathematical algorithm model, the algorithm is improved by adopting the method of generate the stop evolution particle over again to get the ability of convergence to the global optimization solution. And the operators are improved by establishing the duality transposition method and the handle manner for the elements of the operator, the improved operator can satisfy the need of integer coding in drilling path optimization. The experiment with small node numbers indicates that the improved algorithm has the characteristics of easy realize, fast convergence speed, and better global convergence characteristics, hence the new PSO can play a role in solving the problem of drilling path optimization in drilling holes.
QPSO-based adaptive DNA computing algorithm.
Karakose, Mehmet; Cigdem, Ugur
2013-01-01
DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409
QPSO-Based Adaptive DNA Computing Algorithm
Directory of Open Access Journals (Sweden)
Mehmet Karakose
2013-01-01
Full Text Available DNA (deoxyribonucleic acid computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO. Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1 parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2 adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3 numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm.
Vehicle parameter identification using population based algorithms
GÖKDAĞ, Hakan
2015-01-01
This work deals with parameter identification of a vehicle using population based algorithms such as Particle Swarm Optimization (PSO), Artificial Bee Colony Optimization (ABC) and Genetic Algorithm (GA). Full vehicle model with seven degree of freedom (DoF) is employed, and two objective functions based on reference and computed responses are proposed. Solving the optimization problem vehicle mass, moments of inertia and vehicle center of gravity parameters, which are necessary for later app...
Fast image matching algorithm based on projection characteristics
Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun
2011-06-01
Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.
Collaborative Filtering Algorithms Based on Kendall Correlation in Recommender Systems
Institute of Scientific and Technical Information of China (English)
YAO Yu; ZHU Shanfeng; CHEN Xinmeng
2006-01-01
In this work, Kendall correlation based collaborative filtering algorithms for the recommender systems are proposed. The Kendall correlation method is used to measure the correlation amongst users by means of considering the relative order of the users' ratings. Kendall based algorithm is based upon a more general model and thus could be more widely applied in e-commerce. Another discovery of this work is that the consideration of only positive correlated neighbors in prediction, in both Pearson and Kendall algorithms, achieves higher accuracy than the consideration of all neighbors, with only a small loss of coverage.
A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems
Ali, Ahmed F.; Mohamed A. Tawhid
2016-01-01
Cuckoo search algorithm is a promising metaheuristic population based method. It has been applied to solve many real life problems. In this paper, we propose a new cuckoo search algorithm by combining the cuckoo search algorithm with the Nelder–Mead method in order to solve the integer and minimax optimization problems. We call the proposed algorithm by hybrid cuckoo search and Nelder–Mead method (HCSNM). HCSNM starts the search by applying the standard cuckoo search for number of iterations ...
Harwati; Ikha Virdyanawaty, Riezky; Mansur, Agus
2016-01-01
Industrial Engineering is one of the departments in Faculty of Industrial Technology. It has more than 200 reshmen in every academic year. However, many students are dropped out because they couldn't complete their study in appropriate time. Variables that influence the drop out case are not yet studied. The objective of this paper is discovering the highest accuracy level between the two methods used, i.e. Naïve Bayesand Support Vector Machines algorithms. The method with the highest accuracy will be discovered from the patterns forms and parameters of every attribute which most influence the students’ length of study period. The result shows that the highest accuracy method is Naïve Bayes Algorithm with accuracy degree of 80.67%. Discussion of this paper emphasizes on the variables that influence the students’ study period.
A PRESSURE-BASED ALGORITHM FOR CAVITATING FLOW COMPUTATIONS
Institute of Scientific and Technical Information of China (English)
ZHANG Ling-xin; ZHAO Wei-guo; SHAO Xue-ming
2011-01-01
A pressure-based algorithm for the prediction of cavitating flows is presented. The algorithm employs a set of equations including the Navier-Stokes equations and a cavitation model explaining the phase change between liquid and vapor. A pressure-based method is used to construct the algorithm and the coupling between pressure and velocity is considered. The pressure correction equation is derived from a new continuity equation which employs a source term related to phase change rate instead of the material derivative of density Dp/Dt.Thispressure-based algorithm allows for the computation of steady or unsteady,2-Dor 3-D cavitating flows. Two 2-D cases, flows around a flat-nose cylinder and around a NACA0015 hydrofoil, are simulated respectively, and the periodic cavitation behaviors associated with the re-entrant jets are captured. This algorithm shows good capability of computating time-dependent cavitating flows.
Daylighting simulation: methods, algorithms, and resources
Energy Technology Data Exchange (ETDEWEB)
Carroll, William L.
1999-12-01
This document presents work conducted as part of Subtask C, ''Daylighting Design Tools'', Subgroup C2, ''New Daylight Algorithms'', of the IEA SHC Task 21 and the ECBCS Program Annex 29 ''Daylight in Buildings''. The search for and collection of daylighting analysis methods and algorithms led to two important observations. First, there is a wide range of needs for different types of methods to produce a complete analysis tool. These include: Geometry; Light modeling; Characterization of the natural illumination resource; Materials and components properties, representations; and Usability issues (interfaces, interoperability, representation of analysis results, etc). Second, very advantageously, there have been rapid advances in many basic methods in these areas, due to other forces. They are in part driven by: The commercial computer graphics community (commerce, entertainment); The lighting industry; Architectural rendering and visualization for projects; and Academia: Course materials, research. This has led to a very rich set of information resources that have direct applicability to the small daylighting analysis community. Furthermore, much of this information is in fact available online. Because much of the information about methods and algorithms is now online, an innovative reporting strategy was used: the core formats are electronic, and used to produce a printed form only secondarily. The electronic forms include both online WWW pages and a downloadable .PDF file with the same appearance and content. Both electronic forms include live primary and indirect links to actual information sources on the WWW. In most cases, little additional commentary is provided regarding the information links or citations that are provided. This in turn allows the report to be very concise. The links are expected speak for themselves. The report consists of only about 10+ pages, with about 100+ primary links, but
An Efficient Association Rules Algorithm Based on Compressed Matrix
Directory of Open Access Journals (Sweden)
Zhiyong Wang
2013-10-01
Full Text Available This paper analyses the classic Apriori algorithm as well as some disadvantages of the improved algorithms, based on which the paper improves the Boolean matrix. A row and a column are added on the former Boolean matrix to store the row vector of weight and account of the column vector. According to the quality of Apriori algorithm, Boolean matrix is largely compressed, which greatly reduces the complexity of space. At the same time, we adopt the method of weighting vector inner-product to find frequent K-itemsets so as to get the association rules. The complexity of space and time is developed to a large extent by the improved algorithm. In the end, the paper gives the computing procedure of the improved algorithm and by experiments, it proves that the algorithm is effective.
Analog Circuit Design Optimization Based on Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Mansour Barari
2014-01-01
Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.
Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms
Lee Chien-Cheng; Huang Shin-Sheng; Shih Cheng-Yuan
2010-01-01
This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RD...
International Nuclear Information System (INIS)
One method for on-line fault diagnosis in synchronous generator is stator current harmonics analysis. Then artificial neural network is considered in this paper in order to evaluate stator current harmonics in different loads. Training set of artificial neural network is made ready by generator modeling, finite element method and state space model. Many points from generator capability curve are used in order to complete this set. Artificial neural network which is used in this paper is a percept ron network with a single hidden layer, Eight hidden neurons and back propagation algorithm. Results are indicated that the trained artificial neural network can identify stator current harmonics for arbitrary load from the capability curve. The error is less than 10% in comparison with values obtained directly from the CFE-SS algorithm. The rating parameters of modeled generator are 43950 (kV A), 11(KV), 3000 (rpm), 50 (H Z), (P F=0.8)
Institute of Scientific and Technical Information of China (English)
苏义鑫; 向炉阳; 张丹红
2012-01-01
It is necessary to track the maximum power point of solar cell array rapidly and accurately to improve the efficiency of photovoltaic system. A simulation model of photovoltaic cells arrays was established according to the electrical characteristics of solar cell array. This model can simulate output characteristics of the solar cell array under different sunshine and temperature conditions. Aiming at the shortage of duty ratio perturbation,a duty ratio perturbation based on fuzzy - PI control for maximum power point tracking ( MPPT) was proposed and simulated under Matlab environment. Simulation results show that duty ratio perturbation algorithm based on fuzzy - PI control can track the maximum power of photovoltaic cells rapidly and increase the maximum power point tracking accuracy and have good static and dynamic performance when compared with the duty ratio perturbation method.%根据光伏电池的特性,搭建了其仿真模型,能够模拟不同日照和温度条件下电池的输出特性.针对占空比扰动法的不足,提出了一种基于模糊- PI控制的占空比扰动法进行最大功率点跟踪,并在Matlab环境下进行了仿真验证.仿真结果表明,与占空比扰动法相比,该方法在外界环境变化时能够快速跟踪光伏电池的最大功率点,有效提高最大功率点的跟踪精度,具有良好的动态和稳态性能.
Paduszyński, Kamil
2016-08-22
The aim of the paper is to address all the disadvantages of currently available models for calculating infinite dilution activity coefficients (γ(∞)) of molecular solutes in ionic liquids (ILs)-a relevant property from the point of view of many applications of ILs, particularly in separations. Three new models are proposed, each of them based on distinct machine learning algorithm: stepwise multiple linear regression (SWMLR), feed-forward artificial neural network (FFANN), and least-squares support vector machine (LSSVM). The models were established based on the most comprehensive γ(∞) data bank reported so far (>34 000 data points for 188 ILs and 128 solutes). Following the paper published previously [J. Chem. Inf. Model 2014, 54, 1311-1324], the ILs were treated in terms of group contributions, whereas the Abraham solvation parameters were used to quantify an impact of solute structure. Temperature is also included in the input data of the models so that they can be utilized to obtain temperature-dependent data and thus related thermodynamic functions. Both internal and external validation techniques were applied to assess the statistical significance and explanatory power of the final correlations. A comparative study of the overall performance of the investigated SWMLR/FFANN/LSSVM approaches is presented in terms of root-mean-square error and average absolute relative deviation between calculated and experimental γ(∞), evaluated for different families of ILs and solutes, as well as between calculated and experimental infinite dilution selectivity for separation problems benzene from n-hexane and thiophene from n-heptane. LSSVM is shown to be a method with the lowest values of both training and generalization errors. It is finally demonstrated that the established models exhibit an improved accuracy compared to the state-of-the-art model, namely, temperature-dependent group contribution linear solvation energy relationship, published in 2011 [J. Chem
Optimal fractional order PID design via Tabu Search based algorithm.
Ateş, Abdullah; Yeroglu, Celaleddin
2016-01-01
This paper presents an optimization method based on the Tabu Search Algorithm (TSA) to design a Fractional-Order Proportional-Integral-Derivative (FOPID) controller. All parameter computations of the FOPID employ random initial conditions, using the proposed optimization method. Illustrative examples demonstrate the performance of the proposed FOPID controller design method. PMID:26652128
Fisher, Jason C.
2013-01-01
Long-term groundwater monitoring networks can provide essential information for the planning and management of water resources. Budget constraints in water resource management agencies often mean a reduction in the number of observation wells included in a monitoring network. A network design tool, distributed as an R package, was developed to determine which wells to exclude from a monitoring network because they add little or no beneficial information. A kriging-based genetic algorithm method was used to optimize the monitoring network. The algorithm was used to find the set of wells whose removal leads to the smallest increase in the weighted sum of the (1) mean standard error at all nodes in the kriging grid where the water table is estimated, (2) root-mean-squared-error between the measured and estimated water-level elevation at the removed sites, (3) mean standard deviation of measurements across time at the removed sites, and (4) mean measurement error of wells in the reduced network. The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The network design tool was applied to optimize two observation well networks monitoring the water table of the eastern Snake River Plain aquifer, Idaho; these networks include the 2008 Federal-State Cooperative water-level monitoring network (Co-op network) with 166 observation wells, and the 2008 U.S. Geological Survey-Idaho National Laboratory water-level monitoring network (USGS-INL network) with 171 wells. Each water-level monitoring network was optimized five times: by removing (1) 10, (2) 20, (3) 40, (4) 60, and (5) 80 observation wells from the original network. An examination of the trade-offs associated with changes in the number of wells to remove indicates that 20 wells can be removed from the Co-op network with a relatively small degradation of the estimated water table map, and 40 wells
Network Intrusion Detection based on GMKL Algorithm
Directory of Open Access Journals (Sweden)
Li Yuxiang
2013-06-01
Full Text Available According to the 31th statistical reports of China Internet network information center (CNNIC, by the end of December 2012, the number of Chinese netizens has reached 564 million, and the scale of mobile Internet users also reached 420 million. But when the network brings great convenience to people's life, it also brings huge threat in the life of people. So through collecting and analyzing the information in the computer system or network we can detect any possible behaviors that can damage the availability, integrity and confidentiality of the computer resource, and make timely treatment to these behaviors which have important research significance to improve the operation environment of network and network service. At present, the Neural Network, Support Vector machine (SVM and Hidden Markov Model, Fuzzy inference and Genetic Algorithms are introduced into the research of network intrusion detection, trying to build a healthy and secure network operation environment. But most of these algorithms are based on the total sample and it also hypothesizes that the number of the sample is infinity. But in the field of network intrusion the collected data often cannot meet the above requirements. It often shows high latitudes, variability and small sample characteristics. For these data using traditional machine learning methods are hard to get ideal results. In view of this, this paper proposed a Generalized Multi-Kernel Learning method to applied to network intrusion detection. The Generalized Multi-Kernel Learning method can be well applied to large scale sample data, dimension complex, containing a large number of heterogeneous information and so on. The experimental results show that applying GMKL to network attack detection has high classification precision and low abnormal practical precision.
Discovering simple DNA sequences by the algorithmic significance method.
Milosavljević, A; Jurka, J
1993-08-01
A new method, 'algorithmic significance', is proposed as a tool for discovery of patterns in DNA sequences. The main idea is that patterns can be discovered by finding ways to encode the observed data concisely. In this sense, the method can be viewed as a formal version of the Occam's Razor principle. In this paper the method is applied to discover significantly simple DNA sequences. We define DNA sequences to be simple if they contain repeated occurrences of certain 'words' and thus can be encoded in a small number of bits. Such definition includes minisatellites and microsatellites. A standard dynamic programming algorithm for data compression is applied to compute the minimal encoding lengths of sequences in linear time. An electronic mail server for identification of simple sequences based on the proposed method has been installed at the Internet address pythia/anl.gov. PMID:8402207
Efficient Satellite Scheduling Based on Improved Vector Evaluated Genetic Algorithm
Directory of Open Access Journals (Sweden)
Tengyue Mao
2012-03-01
Full Text Available Satellite scheduling is a typical multi-peak, many-valley, nonlinear multi-objective optimization problem. How to effectively implement the satellite scheduling is a crucial research in space areas.This paper mainly discusses the performance of VEGA (Vector Evaluated Genetic Algorithm based on the study of basic principles of VEGA algorithm, algorithm realization and test function, and then improves VEGA algorithm through introducing vector coding, new crossover and mutation operators, new methods to assign fitness and hold good individuals. As a result, the diversity and convergence of improved VEGA algorithm of improved VEGA algorithm have been significantly enhanced and will be applied to Earth-Mars orbit optimization. At the same time, this paper analyzes the results of the improved VEGA, whose results of performance analysis and evaluation show that although VEGA has a profound impact upon multi-objective evolutionary research, multi-objective evolutionary algorithm on the basis of Pareto seems to be a more effective method to get the non-dominated solutions from the perspective of diversity and convergence of experimental result. Finally, based on Visual C + + integrated development environment, we have implemented improved vector evaluation algorithm in the satellite scheduling.
Alternative Method for Solving Traveling Salesman Problem by Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Zuzana Čičková
2008-06-01
Full Text Available This article describes the application of Self Organizing Migrating Algorithm (SOMA to the well-known optimization problem - Traveling Salesman Problem (TSP. SOMA is a relatively new optimization method that is based on Evolutionary Algorithms that are originally focused on solving non-linear programming problems that contain continuous variables. The TSP has model character in many branches of Operation Research because of its computational complexity; therefore the use of Evolutionary Algorithm requires some special approaches to guarantee feasibility of solutions. In this article two concrete examples of TSP as 8 cities set and 25 cities set are given to demonstrate the practical use of SOMA. Firstly, the penalty approach is applied as a simple way to guarantee feasibility of solution. Then, new approach that works only on feasible solutions is presented.
Cuckoo search algorithm based on conjugate gradient method%基于共轭梯度的布谷鸟搜索算法
Institute of Scientific and Technical Information of China (English)
杜利敏; 阮奇; 冯登科
2013-01-01
布谷鸟搜索算法(Cuckoo Search, CS)是基于群体智能的新型随机全局优化算法，具有控制参数少、搜索路径优和全局寻优能力强等优点，但也存在局部搜索能力较弱、收敛速度偏慢和收敛精度不够高等缺点。为了克服 CS 算法的缺点，提出一种基于共轭梯度的布谷鸟搜索算法(CGCS)，使经过 Lévy 飞行机制和淘汰机制进化后的布谷鸟种群沿着相互共轭的方向迅速下降，从而在保持算法的强大全局寻优能力的基础上大幅提高算法的收敛能力。用4个典型测试函数分别对 CGCS 算法和 CS 算法进行性能测试，结果表明，CGCS 算法比 CS 算法具有更快的收敛速度、更高的收敛精度和更稳定的优化结果。CGCS 算法同时具有很强的全局寻优能力、收敛能力和鲁棒性，特别适合多峰及高维函数的优化。% Cuckoo search algorithm is a novel stochastic global optimization algorithm based on swarm intelligence, with advantages of few control parameters, optimal search path and good global search capability, but it also has shortcomings of weak local search ability, slow convergence velocity and low convergence accuracy. In order to overcome these disadvantages of CS algorithm, an improved cuckoo search algorithm based on conjugate gradient is introduced. After evolved from Lévy flights and elimination mechanism, the cuckoo populations decline rapidly in the mutually conjugate directions so that the convergence ability of algorithm is strengthened significantly under the condition of maintaining the strong global search capability of CS algorithm. The CGCS algorithm and CS algorithm are tested by four typical test functions. The conclusions indicate that CGCS algorithm has faster convergence velocity, higher convergence accuracy and more stable optimization results. Meanwhile CGCS algorithm has good global search capability, convergence ability and robustness, which is
Fast parallel algorithm for slicing STL based on pipeline
Ma, Xulong; Lin, Feng; Yao, Bo
2016-04-01
In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.
Fast parallel algorithm for slicing STL based on pipeline
Ma, Xulong; Lin, Feng; Yao, Bo
2016-05-01
In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.
Methods in Logic Based Control
DEFF Research Database (Denmark)
Christensen, Georg Kronborg
1999-01-01
Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...
Wavelet Image Encryption Algorithm Based on AES
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Traditional encryption techniques have some limits for multimedia information, especially image and video, which are considered only to be common data. In this paper, we propose a wavelet-based image encryption algorithm based on the Advanced Encryption Standard, which encrypts only those low frequency coefficients of image wavelet decomposition. The experimental results are satisfactory.
Diversity-Based Adaptive Evolutionary Algorithms
Jr., Maury Meirelles Gouvêa; Araújo, Aluizio Fausto Ribeiro
2010-01-01
This paper presented a survey about diversity-based evolutionary algorithms. Two sets of models were presented, one to minimize the diversity loss and another to control the population diversity based on a desired diversity range or level. The problem of the inappropriate level of diversity with respect to the environment and its dynamic can be
Genetic Algorithm based PID controller for Frequency Regulation Ancillary services
Directory of Open Access Journals (Sweden)
Sandeep Bhongade
2010-12-01
Full Text Available In this paper, the parameters of Proportional, Integral and Derivative (PID controller for Automatic Generation Control (AGC suitable in restructured power system is tuned according to Generic Algorithms (GAs based performance indices. The key idea of the proposed method is to use the fitness function based on Area Control Error (ACE. The functioning of the proposed Genetic Algorithm based PID (GAPID controller has been demonstrated on a 75-bus Indian power system network and the results have been compared with those obtained by using Least Square Minimization method.
Genetic algorithm based separation cascade optimization
International Nuclear Information System (INIS)
The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)
Crowd Density Estimation based on Improved Harris Algorithm & Optics Alg.
Directory of Open Access Journals (Sweden)
Cheng Xu
2014-05-01
Full Text Available In this paper, we propose a method to estimate crowd density using improved Harris and Optics Algorithm. First of all, the images are pre-processed, corner features of the crowd are detected by the improved Harris algorithm, and then the formed density point data will be analyzed. Then, we use the optics density clustering theory to analyze the corner characters of crowd density which based on the distribution of the feature points. At last, the crowd density is estimated by the machine learning algorithm. The experiments are using PETS2009 database and the self-shooting datasets. The proposed approach has been tested on a number of image sequences, and it has good performance.The results show that our approach is superior to other methods, compared to the original Harris algorithm. Our method improves the efficiency of estimation and has a significant impact on preventing the accidents of crowd area with high density.
Directory of Open Access Journals (Sweden)
Xiangwei Guo
2016-02-01
Full Text Available An estimation of the power battery state of charge (SOC is related to the energy management, the battery cycle life and the use cost of electric vehicles. When a lithium-ion power battery is used in an electric vehicle, the SOC displays a very strong time-dependent nonlinearity under the influence of random factors, such as the working conditions and the environment. Hence, research on estimating the SOC of a power battery for an electric vehicle is of great theoretical significance and application value. In this paper, according to the dynamic response of the power battery terminal voltage during a discharging process, the second-order RC circuit is first used as the equivalent model of the power battery. Subsequently, on the basis of this model, the least squares method (LS with a forgetting factor and the adaptive unscented Kalman filter (AUKF algorithm are used jointly in the estimation of the power battery SOC. Simulation experiments show that the joint estimation algorithm proposed in this paper has higher precision and convergence of the initial value error than a single AUKF algorithm.
A new method for constructing total energy conservation algorithms
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Based on a basic rule for the research on numerical methods which requires that the properties of the original problem should be preserved as much as possible under discretization, a new method for constructing total energy conservation algorithms is presented. By this method, all kinds of implicit schemes with energy conservation laws including many classical conservation schemes can be constructed from a kind of special function. Also, the concrete criterion for judging total energy conservation schemes is given. Numerical tests show that these new schemes are effective.
SIMULATED ANNEALING BASED POLYNOMIAL TIME QOS ROUTING ALGORITHM FOR MANETS
Institute of Scientific and Technical Information of China (English)
Liu Lianggui; Feng Guangzeng
2006-01-01
Multi-constrained Quality-of-Service (QoS) routing is a big challenge for Mobile Ad hoc Networks (MANETs) where the topology may change constantly. In this paper a novel QoS Routing Algorithm based on Simulated Annealing (SA_RA) is proposed. This algorithm first uses an energy function to translate multiple QoS weights into a single mixed metric and then seeks to find a feasible path by simulated annealing. The paper outlines simulated annealing algorithm and analyzes the problems met when we apply it to Qos Routing (QoSR) in MANETs. Theoretical analysis and experiment results demonstrate that the proposed method is an effective approximation algorithms showing better performance than the other pertinent algorithm in seeking the (approximate) optimal configuration within a period of polynomial time.
Distribution network planning algorithm based on Hopfield neural network
Institute of Scientific and Technical Information of China (English)
GAO Wei-xin; LUO Xian-jue
2005-01-01
This paper presents a new algorithm based on Hopfield neural network to find the optimal solution for an electric distribution network. This algorithm transforms the distribution power network-planning problem into a directed graph-planning problem. The Hopfield neural network is designed to decide the in-degree of each node and is in combined application with an energy function. The new algorithm doesn't need to code city streets and normalize data, so the program is easier to be realized. A case study applying the method to a district of 29 street proved that an optimal solution for the planning of such a power system could be obtained by only 26 iterations. The energy function and algorithm developed in this work have the following advantages over many existing algorithms for electric distribution network planning: fast convergence and unnecessary to code all possible lines.
Label propagation algorithm based on local cycles for community detection
Zhang, Xian-Kun; Fei, Song; Song, Chen; Tian, Xue; Ao, Yang-Yue
2015-12-01
Label propagation algorithm (LPA) has been proven to be an extremely fast method for community detection in large complex networks. But an important issue of the algorithm has not yet been properly addressed that random update orders in label propagation process hamper the algorithm robustness of algorithm. We note that when there are multiple maximal labels among a node neighbors' labels, choosing a node' label from which there is a local cycle to the node instead of a random node' label can avoid the labels propagating among communities at random. In this paper, an improved LPA based on local cycles is given. We have evaluated the proposed algorithm on computer-generated networks with planted partition and some real-world networks whose community structure are already known. The result shows that the performance of the proposed approach is even significantly improved.
An optimization algorithm for volumetrically segmented aperture-based IMRT
International Nuclear Information System (INIS)
There are few algorithms to create aperture-based IMRT such as Iterative least-square algorithm, Simultaneous projection algorithm (Cimmino's algorithm), Mixed integer programming, etc. In this present work, a Volumetrically Segmented Aperture Optimization (VSAO) algorithm is introduced and its usefulness in generating aperture-based IMRT plans is investigated in different case studies
A Novel Image Encryption Algorithm Based on DNA Subsequence Operation
Zhang, Qiang; Xue, Xianglian; Wei, Xiaopeng
2012-01-01
We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack. PMID:23093912
A motion retargeting algorithm based on model simplification
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A new motion retargeting algorithm is presented, which adapts the motion capture data to a new character. To make the resulting motion realistic, the physically-based optimization method is adopted. However, the optimization process is difficult to converge to the optimal value because of high complexity of the physical human model. In order to address this problem, an appropriate simplified model automatically determined by a motion analysis technique is utilized, and then motion retargeting with this simplified model as an intermediate agent is implemented. The entire motion retargeting algorithm involves three steps of nonlinearly constrained optimization: forward retargeting, motion scaling and inverse retargeting. Experimental results show the validity of this algorithm.
Knowledge Automatic Indexing Based on Concept Lexicon and Segmentation Algorithm
Institute of Scientific and Technical Information of China (English)
WANG Lan-cheng; JIANG Dan; LE Jia-jin
2005-01-01
This paper is based on two existing theories about automatic indexing of thematic knowledge concept. The prohibit-word table with position information has been designed. The improved Maximum Matching-Minimum Backtracking method has been researched. Moreover it has been studied on improved indexing algorithm and application technology based on rules and thematic concept word table.
Institute of Scientific and Technical Information of China (English)
秦岭; 阚树林
2013-01-01
针对制造系统中车间调度过程存在的动态性与复杂性问题，本文基于粒子群算法，结合多Agent协同优化性，构建了粒子群算法的是适应度函数，以及多Agent车间调度的行动策略，提出了基于多Agent粒子群改进算法（particle swarm improved algorithm based on multi-agent，PSIMA），建立了基于多Agent粒子群改进算法流程。最后，通过具体实例，该方法比传统粒子群算法在计算时间以及计算复杂度上有明显改进，为解决制造系统中车间调度问题提供了一种新的方法指导。%To solve the dynamic and complex calculation problems in production scheduling procedure, a fitness function of particle swarm algorithm and operation strategy of shop scheduling agent are constructed by means of particle swarm algorithm and multi-agent cooperation characteristic. Moreover, an improved algorithm based on particle swarm algorithm is established and an optimal shop scheduling procedure by particle swarm algorithm based on multi-agent in this paper. Finally, the simulation system of production dynamic scheduling by particle swarm improved algorithm based on multi-agent was demonstrated and validated by QUEST software. It has shown the production scheduling calculation time in proposed method can be improved, and provide a support for adapting to complex and dynamic production scheduling.
Scalable force directed graph layout algorithms using fast multipole methods
Yunis, Enas
2012-06-01
We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach to graph layout that treats the vertices V as repelling charged particles with the edges E connecting them acting as springs. Traditionally, the amount of work required in applying the Force-Directed Graph Layout algorithm is O(|V|2 + |E|) using direct calculations and O(|V| log |V| + |E|) using truncation, filtering, and/or multi-level techniques. Correct application of the Fast Multipole Method allows us to maintain a lower complexity of O(|V| + |E|) while regaining most of the precision lost in other techniques. Solving layout problems for truly large graphs with millions of vertices still requires a scalable algorithm and implementation. We have been able to leverage the scalability and architectural adaptability of the ExaFMM library to create a Force-Directed Graph Layout implementation that runs efficiently on distributed multicore and multi-GPU architectures. © 2012 IEEE.
Ant colony algorithm based on genetic method for continuous optimization problem%基于遗传机制的蚁群算法求解连续优化问题
Institute of Scientific and Technical Information of China (English)
朱经纬; 蒙陪生; 王乘
2007-01-01
A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions.
An Improved Convexity Based Segmentation Algorithm for Heavily Camouflaged Images
Directory of Open Access Journals (Sweden)
Amarjot Singh
2013-03-01
Full Text Available The paper proposes an advanced convexity based segmentation algorithm for heavily camouflaged images. The convexity of the intensity function is used to detect camouflaged objects from complex environments. We take advantage of operator for the detection of 3D concave or convex graylevels to exhibit the effectiveness of camouflage breaking based on convexity. The biological motivation behind operator and its high robustness make it suitable for camouflage breaking. The traditional convexity based algorithm identifies the desired targets but in addition also identifies sub-targets due to their three dimensional behavior. The problem is overcome by combining the conventional algorithm with thresholding. The proposed method is able to eliminate the sub-targets leaving behind only the target of interest in the input image. The proposed method is compared with the conventional operator. It is also compared with some conventional edge based operator for performance evaluation.
Second Attribute Algorithm Based on Tree Expression
Institute of Scientific and Technical Information of China (English)
Su-Qing Han; Jue Wang
2006-01-01
One view of finding a personalized solution of reduct in an information system is grounded on the viewpoint that attribute order can serve as a kind of semantic representation of user requirements. Thus the problem of finding personalized solutions can be transformed into computing the reduct on an attribute order. The second attribute theorem describes the relationship between the set of attribute orders and the set of reducts, and can be used to transform the problem of searching solutions to meet user requirements into the problem of modifying reduct based on a given attribute order. An algorithm is implied based on the second attribute theorem, with computation on the discernibility matrix. Its time complexity is O(n2 × m) (n is the number of the objects and m the number of the attributes of an information system).This paper presents another effective second attribute algorithm for facilitating the use of the second attribute theorem,with computation on the tree expression of an information system. The time complexity of the new algorithm is linear in n. This algorithm is proved to be equivalent to the algorithm on the discernibility matrix.
Raytracing Based upon the Sympletic Algorithm
Wang, Y.; Li, C.
2014-12-01
The raytracing is the basic problem in seismic imaging, and the reliability of the imaging depends on the accuracies both spatial trajectory and traveltime of the ray, and is using in seismology broadly. The seismic ray travels through the inhomogeneous media fallows the the eikonal equation, and the eikonal equation is an one order differential equation of traveltime, and satisfies the Hamilton System. In Cartesian coordinate system, we use a separable Hamilton System function. In this paper, the Sympletic algorithm method with bi-cubic convolution algorithm was used to solve the Hamilton System to deal with the raytracing problem. Compared with the Fsat Marching Method (FMM), The result shows that the Sympletic algorithm method (SAM) can keep the stability of the solution for the eikonal equation. Due to the use of the Sympletic algorithm, the method can produce a reliable seismic wavefront with an accurate ray trajectory (Fig.1). Meanwhile, the numerical modeling shows that the use of SAM can not only keep the stability of the Hamilton System with a fast computation but also improve the accuracy of the seismic ray tracing (Fig.2).
Algorithm for calculating torque base in vehicle traction control system
Li, Hongzhi; Li, Liang; Song, Jian; Wu, Kaihui; Qiao, Yanjuan; Liu, Xingchun; Xia, Yongguang
2012-11-01
Existing research on the traction control system(TCS) mainly focuses on control methods, such as the PID control, fuzzy logic control, etc, aiming at achieving an ideal slip rate of the drive wheel over long control periods. The initial output of the TCS (referred to as the torque base in this paper), which has a great impact on the driving performance of the vehicle in early cycles, remains to be investigated. In order to improve the control performance of the TCS in the first several cycles, an algorithm is proposed to determine the torque base. First, torque bases are calculated by two different methods, one based on states judgment and the other based on the vehicle dynamics. The confidence level of the torque base calculated based on the vehicle dynamics is also obtained. The final torque base is then determined based on the two torque bases and the confidence level. Hardware-in-the-loop(HIL) simulation and vehicle tests emulating sudden start on low friction roads have been conducted to verify the proposed algorithm. The control performance of a PID-controlled TCS with and without the proposed torque base algorithm is compared, showing that the proposed algorithm improves the performance of the TCS over the first several cycles and enhances about 5% vehicle speed by contrast. The proposed research provides a more proper initial value for TCS control, and improves the performance of the first several control cycles of the TCS.
Methods and Algorithms for Economic MPC in Power Production Planning
DEFF Research Database (Denmark)
Sokoler, Leo Emil
This thesis concerns methods and algorithms for power production planning in contemporary and future power systems. Power production planning is a task that involves decisions across different time scales and planning horizons. Hours-ahead to days-ahead planning is handled by solving a mixed...... variance. Simulations show that MV-EMPC reduces cost and risk compared to CE-EMPC. The simulations also show that the economic performance of CE-EMPC can be much improved using a constraint back-off heuristic. Efficient solution of the optimal control problems (OCPs) that arise in EMPC is important, as the...... OCPs are solved online. We present special-purpose algorithms for EMPC of linear systems that exploit the high degree of structure in the OCPs. A Riccati-based homogeneous and self-dual interior-point method is developed for the special case, where the OCP objective function is a linear function. We...
Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms
Directory of Open Access Journals (Sweden)
Cheng-Yuan Shih
2010-01-01
Full Text Available This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA and quadratic discriminant analysis (QDA. It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.
Dr. R.Manicka chezian; Nishad Pm
2012-01-01
There are several algorithms like binary search, linear search, Interpolation search, Ternary search and, etc used for search. Search algorithms locate the position of an item in a sorted. But the time taken for the search is huge. The search algorithm initially set the first and last index for the search; this directly leads to thetime complexity. This paper proposes a new prefix search indexing algorithm is called Subset Count Index Based Search Algorithm (SCIBS). This algorithm achieved th...
Iterative Enhanced Directional Based Demosaicking Algorithm
Directory of Open Access Journals (Sweden)
A.Jayachandran ,
2011-07-01
Full Text Available Demosaicing is a process of obtaining a full color image by interpolating the missing colors of an image captured from a digital still and video cameras that use a single-sensor array. This paper provides an effective iterative demosaicing algorithm applying a weighted-edge interpolation to handle green pixels followed by a series of color difference interpolation to update red, blue, and green pixels. Then border of the image is enhanced using some adaptive techniques. Experimental results show that the proposed method performs much better than other latest demosaicing techniques in terms of image quality. In comparison to the other algorithms, this algorithm proposed here results in increased PSNR value.
Wireless Sensor Network Path Optimization Based on Hybrid Algorithm
Directory of Open Access Journals (Sweden)
Zeyu Sun
2013-09-01
Full Text Available One merit of genetic algorithm is fast overall searching, but this algorithm usually results in low efficiency because of large quantities of redundant codes. The advantages of ant colony algorithm are strong suitability and good robustness while its disadvantages are tendency to stagnation, slow speed of convergence. Put forward based on improved ant colony algorithm for wireless sensor network path optimization approach will first need to pass the data in the shortest path for transmission, assuming that transmission path jam, it will clog information sent to the initial position, so the follow-up need to pass data can choose other reasonable path so as to avoid the defects of the traditional method. Genetic ant colony is proposed to avoid the faults of both algorithms above. The proposed algorithm determines distribution of pheromones on path through fast searching and changing the operation of selection operator, crossover operator and mutation operator of genetic ant colony, and then solves the problems efficiently through parallelism, positive feedback and iteration of ant colony algorithm. Therefore, the faults of both algorithms are conquered and the aim of combinational optimization is achieved. At last, the validity and feasibility is demonstrated by means of simulation experiment of traveling salesman problem.
Economic emission load dispatch through fuzzy based bacterial foraging algorithm
Energy Technology Data Exchange (ETDEWEB)
Hota, P.K.; Barisal, A.K. [Department of Electrical Engineering, UCE, Burla, Orissa (India); Chakrabarti, R. [Department of Electrical Engineering, Jadavpur University, Kolkata (India)
2010-09-15
This paper presents a newly developed optimization approach involving a modified bacterial foraging algorithm (MBFA) applied for the solution of the economic and emission load dispatch (EELD) problem. The approach utilizes the natural selection of global optimum bacterium having successful foraging strategies in the fitness function. The bacterial foraging algorithm (BFA) appears to be a robust and reliable optimization algorithm for the solution of the EELD problems. To obtain the best compromising solution a fuzzy decision making approach using MBFA is applied to the standard IEEE 30-bus six generator test system and a Taiwan power system of 40 generating units with valve point loading effects. The results confirm the potential and effectiveness of the proposed algorithm compared to various methods such as, linear programming (LP), multi-objective stochastic search technique (MOSST), differential evolution (DE), non-dominated sorting genetic algorithm (NSGA), niched pareto genetic algorithm (NPGA), strength pareto evolutionary algorithm (SPEA) and fuzzy clustering based particle swarm optimization (FCPSO) performed in different central load dispatch centers to solve EELD problems. The quality and usefulness of the proposed algorithm is demonstrated through its application to two standard test systems in comparison with the other existing techniques. The current proposal was found to be better than, or at least comparable to, them, considering the quality of the solutions obtained. (author)
Agent Based Patient Scheduling Using Heuristic Algorithm
Directory of Open Access Journals (Sweden)
Juliet A Murali
2010-01-01
Full Text Available This paper describes about an agent based approach to patient scheduling using experience based learning. A heuristic algorithm is also used in the proposed framework. The evaluation on different learning techniques shows that the experience based learning (EBL gives better solution. The processing time decreases as the experience increases. The heuristic algorithm make use of EBL in calculating the processing time. The main objective of this patient scheduling system is to reduce the waiting time of patient in hospitals and to complete their treatment in minimum required time. The framework is implemented in JADE. In this approach the patients and resources are represented as patient agents (PA and resource agents (RA respectively. Even though mathematical model give optimal solution, the computational complexity increases for large size problems. Heuristic solution gives better solution for large size problems. The comparisons of the proposed framework with other scheduling rules shows that an agent based approach to patient scheduling using EBL is better.
QRS Detection Based on an Advanced Multilevel Algorithm
Directory of Open Access Journals (Sweden)
Wissam Jenkal
2016-01-01
Full Text Available This paper presents an advanced multilevel algorithm used for the QRS complex detection. This method is based on three levels. The first permits the extraction of higher peaks using an adaptive thresholding technique. The second allows the QRS region detection. The last level permits the detection of Q, R and S waves. The proposed algorithm shows interesting results compared to recently published methods. The perspective of this work is the implementation of this method on an embedded system for a real time ECG monitoring system.
Analog Group Delay Equalizers Design Based on Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
M. Laipert
2006-04-01
Full Text Available This paper deals with a design method of the analog all-pass filter designated for equalization of the group delay frequency response of the analog filter. This method is based on usage of evolutionary algorithm, the Differential Evolution algorithm in particular. We are able to design such equalizers to be obtained equal-ripple group delay frequency response in the pass-band of the low-pass filter. The procedure works automatically without an input estimation. The method is presented on solving practical examples.
Web mining based on chaotic social evolutionary programming algorithm
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
With an aim to the fact that the K-means clustering algorithm usually ends in local optimization and is hard to harvest global optimization, a new web clustering method is presented based on the chaotic social evolutionary programming (CSEP) algorithm. This method brings up the manner of that a cognitive agent inherits a paradigm in clustering to enable the cognitive agent to acquire a chaotic mutation operator in the betrayal. As proven in the experiment, this method can not only effectively increase web clustering efficiency, but it can also practically improve the precision of web clustering.
Algorithms for Quantum Branching Programs Based on Fingerprinting
Ablayev, Farid; 10.4204/EPTCS.9.1
2009-01-01
In the paper we develop a method for constructing quantum algorithms for computing Boolean functions by quantum ordered read-once branching programs (quantum OBDDs). Our method is based on fingerprinting technique and representation of Boolean functions by their characteristic polynomials. We use circuit notation for branching programs for desired algorithms presentation. For several known functions our approach provides optimal QOBDDs. Namely we consider such functions as Equality, Palindrome, and Permutation Matrix Test. We also propose a generalization of our method and apply it to the Boolean variant of the Hidden Subgroup Problem.
Bell-Curve Based Evolutionary Optimization Algorithm
Sobieszczanski-Sobieski, J.; Laba, K.; Kincaid, R.
1998-01-01
The paper presents an optimization algorithm that falls in the category of genetic, or evolutionary algorithms. While the bit exchange is the basis of most of the Genetic Algorithms (GA) in research and applications in America, some alternatives, also in the category of evolutionary algorithms, but use a direct, geometrical approach have gained popularity in Europe and Asia. The Bell-Curve Based Evolutionary Algorithm (BCB) is in this alternative category and is distinguished by the use of a combination of n-dimensional geometry and the normal distribution, the bell-curve, in the generation of the offspring. The tool for creating a child is a geometrical construct comprising a line connecting two parents and a weighted point on that line. The point that defines the child deviates from the weighted point in two directions: parallel and orthogonal to the connecting line, the deviation in each direction obeying a probabilistic distribution. Tests showed satisfactory performance of BCB. The principal advantage of BCB is its controllability via the normal distribution parameters and the geometrical construct variables.
AN OPTIMIZATION ALGORITHM BASED ON BACTERIA BEHAVIOR
Directory of Open Access Journals (Sweden)
Ricardo Contreras
2014-09-01
Full Text Available Paradigms based on competition have shown to be useful for solving difficult problems. In this paper we present a new approach for solving hard problems using a collaborative philosophy. A collaborative philosophy can produce paradigms as interesting as the ones found in algorithms based on a competitive philosophy. Furthermore, we show that the performance - in problems associated to explosive combinatorial - is comparable to the performance obtained using a classic evolutive approach.
Relevance Feedback Algorithm Based on Collaborative Filtering in Image Retrieval
Directory of Open Access Journals (Sweden)
Yan Sun
2010-12-01
Full Text Available Content-based image retrieval is a very dynamic study field, and in this field, how to improve retrieval speed and retrieval accuracy is a hot issue. The retrieval performance can be improved when applying relevance feedback to image retrieval and introducing the participation of people to the retrieval process. However, as for many existing image retrieval methods, there are disadvantages of relevance feedback with information not being fully saved and used, and their accuracy and flexibility are relatively poor. Based on this, the collaborative filtering technology was combined with relevance feedback in this study, and an improved relevance feedback algorithm based on collaborative filtering was proposed. In the method, the collaborative filtering technology was used not only to predict the semantic relevance between images in database and the retrieval samples, but to analyze feedback log files in image retrieval, which can make the historical data of relevance feedback be fully used by image retrieval system, and further to improve the efficiency of feedback. The improved algorithm presented has been tested on the content-based image retrieval database, and the performance of the algorithm has been analyzed and compared with the existing algorithms. The experimental results showed that, compared with the traditional feedback algorithms, this method can obviously improve the efficiency of relevance feedback, and effectively promote the recall and precision of image retrieval.
Verification-Based Interval-Passing Algorithm for Compressed Sensing
Wu, Xiaofu; Yang, Zhen
2013-01-01
We propose a verification-based Interval-Passing (IP) algorithm for iteratively reconstruction of nonnegative sparse signals using parity check matrices of low-density parity check (LDPC) codes as measurement matrices. The proposed algorithm can be considered as an improved IP algorithm by further incorporation of the mechanism of verification algorithm. It is proved that the proposed algorithm performs always better than either the IP algorithm or the verification algorithm. Simulation resul...
An Image Identification Algorithm Based on Digital Signature Method%基于数字签名方式的图像真伪鉴别算法
Institute of Scientific and Technical Information of China (English)
李晓飞; 申铉京; 陈海鹏; 吕颖达
2012-01-01
针对图像的真伪问题,提出了一种基于数字签名方式的图像真伪鉴别算法.首先对图像进行预处理来提高图像的抗JPEG压缩性,然后把图像等分成2个区域,分别从2个区域中提取块均值的高5位映射为GF(25)域中的元素来构造RS编码,生成的校验码经Arnold变换置乱后作为数字签名对图像进行真伪鉴别.实验结果表明,该算法不但能够有效地检测出图像内容是否被篡改,并且能够准确定位篡改位置,提高了图像对JPEG压缩的稳健性,有效地区分JPEG压缩操作和蓄意篡改.%In view of the question of images' authenticity, an effective and robust image identification algorithm is presented based on digital signature. Firstly, image is preprocessed to enhance the capability of images' anti-JPEG compression. Then the image is divided into two regions equally, and the top five of image' s block average value are extracted and mapped to the element of GF (25) to construct the RS code. The generated check code is scrambled by Arnold transform as digital signature to authenticate the original image. Experimental results show that the algorithm not only can detect whether the content of the image is tampered or not but also can accurately locate the tampered position, which improves the image on the robustness of JPEG compression. Thus this algorithm can effectively distinguish JPEG compression operation from the deliberate tampering.
A Novel Algorithm Based on 3D-MUSIC Algorithm for Localizing Near-Field Source
Institute of Scientific and Technical Information of China (English)
SHAN Zhi-yong; ZHOU Xi-lang; PEN Gen-jiang
2005-01-01
A novel 3-D MUSIC algorithm based on the classical 3D-MUSIC algorithm for the location of near-field source was presented. Under the far-field assumption of actual near-field, two algebraic relations of the location parameters between the actual near-field sources and the far-field ones were derived. With Fourier transformation and polynomial-root methods, the elevation and the azimuth of the far-field were obtained, the tracking paths can be developed, and the location parameters of the near-field source can be determined, then the more accurate results can be estimated using an optimization method. The computer simulation results p rove that the algorithm for the location of the near-fields is more accurate, effective and suitable for real-time applications.
Directory of Open Access Journals (Sweden)
Gh. Assadipour
2012-01-01
Full Text Available
ENGLISH ABSTRACT:The trade-off between time, cost, and quality is one of the important problems of project management. This problem assumes that all project activities can be executed in different modes of cost, time, and quality. Thus a manager should select each activity’s mode such that the project can meet the deadline with the minimum possible cost and the maximum achievable quality. As the problem is NP-hard and the objectives are in conflict with each other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic algorithm, is implemented as the optimisation method. The proposed algorithm provides project managers with a set of non-dominated or Pareto-optimal solutions, and enables them to choose the best one according to their preferences. A set of problems of different sizes is generated and solved using the proposed algorithm. Three metrics are employed for evaluating the performance of the algorithm, appraising the diversity and convergence of the achieved Pareto fronts. Finally a comparison is made between CellDE and another meta-heuristic available in the literature. The results show the superiority of CellDE.
AFRIKAANSE OPSOMMING: ‘n Balans tussen tyd, koste en gehalte is een van die belangrike probleme van projekbestuur. Die vraagstuk maak gewoonlik die aanname dat alle projekaktiwiteite uitgevoer kan word op uiteenlopende wyses wat verband hou met koste, tyd en gehalte. ‘n Projekbestuurder selekteer gewoonlik die uitvoeringsmetodes sodanig per aktiwiteit dat gehoor gegegee word aan minimum koste en maksimum gehalte teen die voorwaarde van voltooiingsdatum wat bereik moet word.
Aangesien die beskrewe problem NP-hard is, word dit behandel ten opsigte van konflikterende doelwitte met ‘n multidoelwit metaheuristiese metode (CellDE. Die metode is ‘n hibride-sellulêre genetiese algoritme. Die algoritme lewer aan die besluitvormer ‘n versameling van ongedomineerde of Pareto
Co-evolution algorithm based on punctuated anytime learning and sampling method%基于间隔时间学习和抽样法的协同进化算法
Institute of Scientific and Technical Information of China (English)
肖喜丽
2012-01-01
When evaluating individuals, the selection of representation and the evaluation of the combination of the individuals and representations need lots of computation in co-evolution algorithm. For cooperative co-evolutionary genetic algorithm, calculated amount is small, but it can only obtain one greedy solution. Multi-pattern symbiotic evolutionary algorithm can overcome the shortcoming, but its calculated amount is too big. In this paper we proposed punctuated anytime learning co-evolution algorithm using punctuated anytime learning method, this approach interacts information every N generations. Based on this algorithm, the sampling method was used to co-evolutionary algorithms. The experimental results and mathematical analysis show that this algorithm is effective to reduce the calculated amount.%协同进化算法中，计算个体适应度时，代表个体的选择以及代表个体与个体的组合评估需要很大的计算量。协同进化遗传算法虽然计算量相对小一点，但是只能获得一个贪婪解。多模式共生进化算法虽能克服协同进化遗传算法的这个缺点，但是计算量太大。本文利用间隔时间学习方法提出间隔时间学习协同进化算法，该算法每隔N代交互一次信息。在此基础上，将抽样法应用到协同进化算法中。实验结果表明，这种方法能有效地减少计算量，且本文从数学方面进行了分析验证。
Decision Tree Based Algorithm for Intrusion Detection
Directory of Open Access Journals (Sweden)
Kajal Rai
2016-01-01
Full Text Available An Intrusion Detection System (IDS is a defense measure that supervises activities of the computer network and reports the malicious activities to the network administrator. Intruders do many attempts to gain access to the network and try to harm the organization’s data. Thus the security is the most important aspect for any type of organization. Due to these reasons, intrusion detection has been an important research issue. An IDS can be broadly classified as Signature based IDS and Anomaly based IDS. In our proposed work, the decision tree algorithm is developed based on C4.5 decision tree approach. Feature selection and split value are important issues for constructing a decision tree. In this paper, the algorithm is designed to address these two issues. The most relevant features are selected using information gain and the split value is selected in such a way that makes the classifier unbiased towards most frequent values. Experimentation is performed on NSL-KDD (Network Security Laboratory Knowledge Discovery and Data Mining dataset based on number of features. The time taken by the classifier to construct the model and the accuracy achieved is analyzed. It is concluded that the proposed Decision Tree Split (DTS algorithm can be used for signature based intrusion detection.
Cloud-based Evolutionary Algorithms: An algorithmic study
Merelo, Juan-J; Mora, Antonio M; Castillo, Pedro; Romero, Gustavo; Laredo, JLJ
2011-01-01
After a proof of concept using Dropbox(tm), a free storage and synchronization service, showed that an evolutionary algorithm using several dissimilar computers connected via WiFi or Ethernet had a good scaling behavior in terms of evaluations per second, it remains to be proved whether that effect also translates to the algorithmic performance of the algorithm. In this paper we will check several different, and difficult, problems, and see what effects the automatic load-balancing and asynchrony have on the speed of resolution of problems.
Institute of Scientific and Technical Information of China (English)
ZHENG Yu; CHEN Zhuang-zhuang; LI Ya-juan; DUAN Jian
2009-01-01
A novel automatic alignment algorithm of single mode fiber-waveguide based on improved genetic algorithm is proposed. The genetic searching is based on the dynamic crossover operator and the adaptive mutation operator to solve the premature convergence of simple genetic algorithm The improved genetic algorithm combines with hill-climbing method and pattern searching algorithm, to solve low precision of simple genetic algorithm in later searching. The simulation results indicate that the improved genetic algorithm can rise the alignment precision and reach the coupling loss of 0.01 dB when platform moves near 207 space points averagely.
RLS Adaptive Filtering Algorithms Based on Parallel Computations
V. I. Djigan
2005-01-01
The paper presents a family of the sliding window RLS adaptive filtering algorithms with the regularization of adaptive filter correlation matrix. The algorithms are developed in forms, fitted to the implementation by means of parallel computations. The family includes RLS and fast RLS algorithms based on generalized matrix inversion lemma, fast RLS algorithms based on square root free inverse QR decomposition and linearly constrained RLS algorithms. The considered algorithms are mathematical...
Quantum Monte Carlo methods algorithms for lattice models
Gubernatis, James; Werner, Philipp
2016-01-01
Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in ...
Form Errors Evaluation Based on a Hybrid Optimization Algorithm
Directory of Open Access Journals (Sweden)
Ke Zhang
2011-08-01
Full Text Available In order to realize precision measurement of parts, based on the analysis of existent evaluation methods for form errors, a hybrid evaluation method is provided in this paper. The hybrid global optimization algorithm based on ant colony optimization and simplex search method is proposed. The optimum model and the calculation process are introduced, where the planar straightness error is discussed as an example. The hybrid optimization algorithm can improve the efficiency and accuracy of searching in the whole field by gradually shrinking the area of optimization variable. Finally, a control experiment is carried out, and the calculation results by using different method such as the least square, simplex search, Powell optimum methods and GA, show that the hybrid evaluation method is feasible and satisfactory in the evaluation of form errors.
Institute of Scientific and Technical Information of China (English)
牛晓峰; 梁伟; 赵宇宏; 侯华; 穆彦青; 黄志伟; 杨伟明
2011-01-01
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.%提出一种新的基于投影法的隐式有限差分算法,用于计算速度场和压力.这种方法的特点是将计算区域根据雷诺数分成几个区域；对于远离壁面的区域,热金属流按牛顿流计算；对于贴近壁面的区域,热金属流按非牛顿流计算.通过非参数统计和实验的方法证明新算法的正确性.数值模拟结果表明,新算法的计算速度要快于基于SOLA-VOF法的显式有限差分方法.
Efficient Iris Recognition Algorithm Using Method of Moments
Directory of Open Access Journals (Sweden)
Bimi Jain
2012-09-01
Full Text Available This paper presents an efficient biometric algorithm for iris recognition using Fast Fourier Transform and moments. Biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by the individual. The Fast Fourier Transform converts image from spatial domain to frequency domain and also filters noise in the image giving more precise information. Moments are area descriptors used to characterize the shape and size of the image. The moments values are invariant to scale and orientation of the object under study, also insensitive to rotation and scale transformation. At last Euclidean distance formula is used for image matching. The CASIA database clearly demonstrates an efficient method for Biometrics. As per experimental result,the algorithm is achieving higher Correct Recognition Rate.
Efficient Iris Recognition Algorithm Using Method of Moments
Directory of Open Access Journals (Sweden)
Bimi Jain
2012-10-01
Full Text Available This paper presents an efficient biometric algorithm for iris recognition using Fast Fourier Transform andmoments. Biometric system provides automatic identification of an individual based on a unique feature orcharacteristic possessed by the individual. The Fast Fourier Transform converts image from spatialdomain to frequency domain and also filters noise in the image giving more precise information. Momentsare area descriptors used to characterize the shape and size of the image. The moments values areinvariant to scale and orientation of the object under study, also insensitive to rotation and scaletransformation. At last Euclidean distance formula is used for image matching.The CASIA database clearly demonstrates an efficient method for Biometrics. As per experimentalresult,the algorithm is achieving higher Correct Recognition Rate.
Occurrences Algorithm for String Searching Based on Brute-force Algorithm
Ababneh Mohammad; Oqeili Saleh; Rawan A. Abdeen
2006-01-01
This study proposes a string searching algorithm as an improvement of the brute-force searching algorithm. The algorithm is named as, Occurrences algorithm. It is based on performing preprocessing for the pattern and for the text before beginning to search for the pattern in the text.
Physics-based signal processing algorithms for micromachined cantilever arrays
Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W
2013-11-19
A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.
Genetic Algorithm-based Optimized Design Method for Casing String%基于遗传算法的套管柱优化设计方法
Institute of Scientific and Technical Information of China (English)
何英明; 王瑞和; 雷杨; 臧艳彬; 何英君
2012-01-01
In light of changeable external load of casing in complex geologic conditions, the optimized method to design casing string on the basis of genetic algorithm was established. The genetic algorithm theory was applied to determine the coding mode of chromosome, production method of initial population, and evaluation function of chromosome and genetic operation. Thus, the optimized design model for casing string on the basis of genetic algo- rithm was established to overcome the defects of complex calculation process and neglect of casing costs and risk factor in the traditional design method of casing string strength concerning complex geologic conditions. The design verification of some casing string in Puguang Gasfield shows that the design method is accurate and reliable. It improves the reliability of casing string and helps to reduce the costs. The present study offers the method to optimize the design of casing string in complex geologic conditions.%针对复杂地质条件下套管外载荷多变的特点,建立了基于遗传算法的套管柱优化设计方法。应用遗传算法理论,确定染色体编码方式、初始种群的产生方法、染色体评估函数及遗传操作,建立基于遗传算法的套管柱优化设计模型,从而克服了传统套管柱设计方法在复杂地质条件下套管柱强度设计中运算过程复杂,无法兼顾套管成本与风险因素的缺点。对普光气田某井套管柱进行的设计验证情况表明,该方法设计结果准确可靠,既提高了套管柱可靠性,又有利于降低成本。该项研究为复杂地质条件下优化套管柱设计提供了新的方法。
Network-based recommendation algorithms: A review
Yu, Fei; Gillard, Sebastien; Medo, Matus
2015-01-01
Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use - such as the possible influence of recommendation on the evolution of systems that use it - and finally discuss open research directions and challenges.
Network-based recommendation algorithms: A review
Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš
2016-06-01
Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.
LSB Based Quantum Image Steganography Algorithm
Jiang, Nan; Zhao, Na; Wang, Luo
2016-01-01
Quantum steganography is the technique which hides a secret message into quantum covers such as quantum images. In this paper, two blind LSB steganography algorithms in the form of quantum circuits are proposed based on the novel enhanced quantum representation (NEQR) for quantum images. One algorithm is plain LSB which uses the message bits to substitute for the pixels' LSB directly. The other is block LSB which embeds a message bit into a number of pixels that belong to one image block. The extracting circuits can regain the secret message only according to the stego cover. Analysis and simulation-based experimental results demonstrate that the invisibility is good, and the balance between the capacity and the robustness can be adjusted according to the needs of applications.
Knowledge Template Based Multi-perspective Car Recognition Algorithm
Directory of Open Access Journals (Sweden)
Bo Cai
2010-12-01
Full Text Available In order to solve the problem due to the vehicle-oriented society such as traffic jam or traffic accident, intelligent transportation system(ITS is raised and become scientist’s research focus, with the purpose of giving people better and safer driving condition and assistance. The core of intelligent transport system is the vehicle recognition and detection, and it’s the prerequisites for other related problems. Many existing vehicle recognition algorithms are aiming at one specific direction perspective, mostly front/back and side view. To make the algorithm more robust, our paper raised a vehicle recognition algorithm for oblique vehicles while also do research on front/back and side ones. The algorithm is designed based on the common knowledge of the car, such as shape, structure and so on. The experimental results of many car images show that our method has fine accuracy in car recognition.
Hybrid Collision Detection Algorithm based on Image Space
Directory of Open Access Journals (Sweden)
XueLi Shen
2013-07-01
Full Text Available Collision detection is an important application in the field of virtual reality, and efficiently completing collision detection has become the research focus. For the poorly real-time defect of collision detection, this paper has presented an algorithm based on the hybrid collision detection, detecting the potential collision object sets quickly with the mixed bounding volume hierarchy tree, and then using the streaming pattern collision detection algorithm to make an accurate detection. With the above methods, it can achieve the purpose of balancing load of the CPU and GPU and speeding up the detection rate. The experimental results show that compared with the classic Rapid algorithm, this algorithm can effectively improve the efficiency of collision detection.
Filter model based dwell time algorithm for ion beam figuring
Li, Yun; Xing, Tingwen; Jia, Xin; Wei, Haoming
2010-10-01
The process of Ion Beam Figuring (IBF) can be described by a two-dimensional convolution equation which including dwell time. Solving the dwell time is a key problem in IBF. Theoretically, the dwell time can be solved from a two-dimensional deconvolution. However, it is often ill-posed]; the suitable solution of that is hard to get. In this article, a dwell time algorithm is proposed, depending on the characters of IBF. Usually, the Beam Removal Function (BRF) in IBF is Gaussian, which can be regarded as a headstand Gaussian filter. In its stop-band, the filter has various filtering abilities for various frequencies. The dwell time algorithm proposed in this article is just based on this concept. The Curved Surface Smooth Extension (CSSE) method and Fast Fourier Transform (FFT) algorithm are also used. The simulation results show that this algorithm is high precision, effective, and suitable for actual application.
Core Business Selection Based on Ant Colony Clustering Algorithm
Directory of Open Access Journals (Sweden)
Yu Lan
2014-01-01
Full Text Available Core business is the most important business to the enterprise in diversified business. In this paper, we first introduce the definition and characteristics of the core business and then descript the ant colony clustering algorithm. In order to test the effectiveness of the proposed method, Tianjin Port Logistics Development Co., Ltd. is selected as the research object. Based on the current situation of the development of the company, the core business of the company can be acquired by ant colony clustering algorithm. Thus, the results indicate that the proposed method is an effective way to determine the core business for company.
Algorithmic fault tree construction by component-based system modeling
International Nuclear Information System (INIS)
Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)
ITO-based evolutionary algorithm to solve traveling salesman problem
International Nuclear Information System (INIS)
In this paper, a ITO algorithm inspired by ITO stochastic process is proposed for Traveling Salesmen Problems (TSP), so far, many meta-heuristic methods have been successfully applied to TSP, however, as a member of them, ITO needs further demonstration for TSP. So starting from designing the key operators, which include the move operator, wave operator, etc, the method based on ITO for TSP is presented, and moreover, the ITO algorithm performance under different parameter sets and the maintenance of population diversity information are also studied
Measuring Disorientation Based on the Needleman-Wunsch Algorithm
Güyer, Tolga; Atasoy, Bilal; Somyürek, Sibel
2015-01-01
This study offers a new method to measure navigation disorientation in web based systems which is powerful learning medium for distance and open education. The Needleman-Wunsch algorithm is used to measure disorientation in a more precise manner. The process combines theoretical and applied knowledge from two previously distinct research areas,…
Reducing Ultrasonic Signal Noise by Algorithms based on Wavelet Thresholding
Directory of Open Access Journals (Sweden)
M. Kreidl
2002-01-01
Full Text Available Traditional techniques for reducing ultrasonic signal noise are based on the optimum frequency of an acoustic wave, ultrasonic probe construction and low-noise electronic circuits. This paper describes signal processing methods for noise suppression using a wavelet transform. Computer simulations of the proposed testing algorithms are presented.
Zhu, Liuhong; Guo, Gang
2012-01-01
This study tested an improved fiber tracking algorithm, which was based on fiber assignment using a continuous tracking algorithm and a two-tensor model. Different models and tracking decisions were used by judging the type of estimation of each voxel. This method should solve the cross-track problem. This study included eight healthy subjects, two axonal injury patients and seven demyelinating disease patients. This new algorithm clearly exhibited a difference in nerve fiber direction betwee...
A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems.
Ali, Ahmed F; Tawhid, Mohamed A
2016-01-01
Cuckoo search algorithm is a promising metaheuristic population based method. It has been applied to solve many real life problems. In this paper, we propose a new cuckoo search algorithm by combining the cuckoo search algorithm with the Nelder-Mead method in order to solve the integer and minimax optimization problems. We call the proposed algorithm by hybrid cuckoo search and Nelder-Mead method (HCSNM). HCSNM starts the search by applying the standard cuckoo search for number of iterations then the best obtained solution is passing to the Nelder-Mead algorithm as an intensification process in order to accelerate the search and overcome the slow convergence of the standard cuckoo search algorithm. The proposed algorithm is balancing between the global exploration of the Cuckoo search algorithm and the deep exploitation of the Nelder-Mead method. We test HCSNM algorithm on seven integer programming problems and ten minimax problems and compare against eight algorithms for solving integer programming problems and seven algorithms for solving minimax problems. The experiments results show the efficiency of the proposed algorithm and its ability to solve integer and minimax optimization problems in reasonable time. PMID:27217988
Lagrangian relaxation based algorithm for trigeneration planning with storages
DEFF Research Database (Denmark)
Rong, Aiying; Lahdelma, Risto; Luh, Peter
2008-01-01
of three energy commodities follows a joint characteristic. This paper presents a Lagrangian relaxation (LR) based algorithm for trigeneration planning with storages based on deflected subgradient optimization method. The trigeneration planning problem is modeled as a linear programming (LP) problem....... The linear cost function poses the convergence challenge to the LR algorithm and the joint characteristic of trigeneration plants makes the operating region of trigeneration system more complicated than that of power-only generation system and that of combined heat and power (CHP) system. We develop...... an effective method for the long-term planning problem based on the proper strategy to form Lagrangian subproblems and solve the Lagrangian dual (LD) problem based on deflected subgradient optimization method. We also develop a heuristic for restoring feasibility from the LD solution. Numerical...
2014-01-01
In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibil...
Performance-Based Seismic Design of Steel Frames Utilizing Colliding Bodies Algorithm
Veladi, H.
2014-01-01
A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm.
Performance-based seismic design of steel frames utilizing colliding bodies algorithm.
Veladi, H
2014-01-01
A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm. PMID:25202717
The optimal time-frequency atom search based on a modified ant colony algorithm
Institute of Scientific and Technical Information of China (English)
GUO Jun-feng; LI Yan-jun; YU Rui-xing; ZHANG Ke
2008-01-01
In this paper,a new optimal time-frequency atom search method based on a modified ant colony algorithm is proposed to improve the precision of the traditional methods.First,the discretization formula of finite length time-frequency atom is inferred at length.Second; a modified ant colony algorithm in continuous space is proposed.Finally,the optimal timefrequency atom search algorithm based on the modified ant colony algorithm is described in detail and the simulation experiment is carried on.The result indicates that the developed algorithm is valid and stable,and the precision of the method is higher than that of the traditional method.
BACKPROPAGATION LEARNING ALGORITHM BASED ON LEVENBERG MARQUARDT ALGORITHM
Directory of Open Access Journals (Sweden)
S.Sapna
2012-10-01
Full Text Available Data Mining aims at discovering knowledge out of data and presenting it in a form that is easily compressible to humans. Data Mining represents a process developed to examine large amounts of data routinely collected. The term also refers to a collection of tools used to perform the process. One of the useful applications in the field of medicine is the incurable chronic disease diabetes. Data Mining algorithm is used for testing the accuracy in predicting diabetic status. Fuzzy Systems are been used for solving a wide range of problems in different application domain and Genetic Algorithm for designing. Fuzzy systems allows in introducing the learning and adaptation capabilities. Neural Networks are efficiently used for learning membership functions. Diabetes occurs throughout the world, but Type 2 is more common in the most developed countries. The greater increase in prevalence is however expected in Asia and Africa where most patients will likely be found by 2030. This paper is proposed on the Levenberg – Marquardt algorithm which is specifically designed to minimize sum-of-square error functions. Levernberg-Marquardt algorithm gives the best performance in the prediction of diabetes compared to any other backpropogation algorithm.
Using LBG quantization for particle-based collision detection algorithm
Institute of Scientific and Technical Information of China (English)
SAENGHAENGTHAM Nida; KANONGCHAIYOS Pizzanu
2006-01-01
Most collision detection algorithms can be efficiently used only with solid and rigid objects, for instance, Hierarchical methods which must have their bounding representation recalculated every time deformation occurs. An alternative algorithm using particle-based method is then proposed which can detect the collision among non-rigid deformable polygonal models.However, the original particle-based collision detection algorithm might not be sufficient enough in some situations due to the improper particle dispersion. Therefore, this research presents an improved algorithm which provides a particle to detect in each separated area so that particles always covered all over the object. The surface partitioning can be efficiently performed by using LBG quantization since it can classify object vertices into several groups base on a number of factors as required. A particle is then assigned to move between vertices in a group by the attractive forces received from other particles on neighbouring objects.Collision is detected when the distance between a pair of corresponding particles becomes very small. Lastly, the proposed algorithm has been implemented to show that collision detection can be conducted in real-time.
Integer pixel digital speckle correlation method based on improved CS algorithm%基于改进CS算法的整像素数字散斑相关方法
Institute of Scientific and Technical Information of China (English)
周海芳; 杨秋翔; 杨剑
2015-01-01
为克服基于传统数字散斑相关方法搜索结果易陷入局部最优、后期收敛速度慢等缺点，引入基于群体智能的布谷鸟搜索算法，从随机步长、鸟巢更新策略和最优鸟巢扰动策略3方面对算法进行改进。以模拟散斑图为研究对象，观察改进布谷鸟搜索算法在相关搜索时鸟巢的运动轨迹，与基本布谷鸟搜索算法、粒子群算法在寻优精度和收敛速度方面进行比较。仿真结果验证了该算法应用于数字散斑相关方法的可行性和优越性。%To overcome the defects including easily falling into local optimum and slow convergence speed in the later stage of tra-ditional digital speckle correlation method,the cuckoo search algorithm based on swarm intelligence was introduced,and it was improved from three aspects including the random step length,the nest update strategy and the best nest disturbance strategy. Study was pictured to simulate specklegram,the nest trajectory of improved search algorithm cuckoo was observed during the search.The accuracy and convergence speed of the proposed algorithm were compare with that of the basic cuckoo search algo-rithm and particle swarm optimization algorithm.Simulation results show that the algorithm used in digital speckle correlation method is feasible and superior.
A Single Pattern Matching Algorithm Based on Character Frequency
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Based on the study of single pattern matching, MBF algorithm is proposed by imitating the string searching procedure of human. The algorithm preprocesses the pattern by using the idea of Quick Search algorithm and the already-matched pattern psefix and suffix information. In searching phase, the algorithm makes use of the!character using frequency and the continue-skip idea. The experiment shows that MBF algorithm is more efficient than other algorithms.
A novel Retinex algorithm based on alternating direction optimization
Fu, Xueyang; Lin, Qin; Guo, Wei; Huang, Yue; Zeng, Delu; Ding, Xinghao
2013-10-01
The goal of the Retinex theory is to removed the effects of illumination from the observed images. To address this typical ill-posed inverse problem, many existing Retinex algorithms obtain an enhanced image by using different assumptions either on the illumination or on the reflectance. One significant limitation of these Retinex algorithms is that if the assumption is false, the result is unsatisfactory. In this paper, we firstly build a Retinex model which includes two variables: the illumination and the reflectance. We propose an efficient and effective algorithm based on alternating direction optimization to solve this problem where FFT (Fast Fourier Transform) is used to speed up the computation. Comparing with most existing Retinex algorithms, the proposed method solve the illumination image and reflectance image without converting images to the logarithmic domain. One of the advantages in this paper is that, unlike other traditional Retinex algorithms, our method can simultaneously estimate the illumination image and the reflectance image, the later of which is the ideal image without the illumination effect. Since our method can directly separate the illumination and the reflectance, and the two variables constrain each other mutually in the computing process, the result is robust to some degree. Another advantage is that our method has less computational cost and can be applied to real-time processing.
Image enhancement based on edge boosting algorithm
Ngernplubpla, Jaturon; Chitsobhuk, Orachat
2015-12-01
In this paper, a technique for image enhancement based on proposed edge boosting algorithm to reconstruct high quality image from a single low resolution image is described. The difficulty in single-image super-resolution is that the generic image priors resided in the low resolution input image may not be sufficient to generate the effective solutions. In order to achieve a success in super-resolution reconstruction, efficient prior knowledge should be estimated. The statistics of gradient priors in terms of priority map based on separable gradient estimation, maximum likelihood edge estimation, and local variance are introduced. The proposed edge boosting algorithm takes advantages of these gradient statistics to select the appropriate enhancement weights. The larger weights are applied to the higher frequency details while the low frequency details are smoothed. From the experimental results, the significant performance improvement quantitatively and perceptually is illustrated. It can be seen that the proposed edge boosting algorithm demonstrates high quality results with fewer artifacts, sharper edges, superior texture areas, and finer detail with low noise.
AN IMPROVED FAST BLIND DECONVOLUTION ALGORITHM BASED ON DECORRELATION AND BLOCK MATRIX
Institute of Scientific and Technical Information of China (English)
Yang Jun'an; He Xuefan; Tan Ying
2008-01-01
In order to alleviate the shortcomings of most blind deconvolution algorithms,this paper proposes an improved fast algorithm for blind deconvolution based on decorrelation technique and broadband block matrix. Althougth the original algorithm can overcome the shortcomings of current blind deconvolution algorithms,it has a constraint that the number of the source signals must be less than that of the channels. The improved algorithm deletes this constraint by using decorrelation technique. Besides,the improved algorithm raises the separation speed in terms of improving the computing methods of the output signal matrix. Simulation results demonstrate the validation and fast separation of the improved algorithm.
Gradient Gene Algorithm: a Fast Optimization Method to MST Problem
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The extension of Minimum Spanning Tree(MST) problem is an NP hardproblem which does not exit a polynomial time algorithm. In this paper, a fast optimizat ion method on MST problem--the Gradient Gene Algorithm is introduced. Compar ed with other evolutionary algorithms on MST problem, it is more advanced: firstly, very simple and easy to realize; then, efficient and accurate; finally general on other combination optimization problems.
Node-Dependence-Based Dynamic Incentive Algorithm in Opportunistic Networks
Directory of Open Access Journals (Sweden)
Ruiyun Yu
2014-01-01
Full Text Available Opportunistic networks lack end-to-end paths between source nodes and destination nodes, so the communications are mainly carried out by the “store-carry-forward” strategy. Selfish behaviors of rejecting packet relay requests will severely worsen the network performance. Incentive is an efficient way to reduce selfish behaviors and hence improves the reliability and robustness of the networks. In this paper, we propose the node-dependence-based dynamic gaming incentive (NDI algorithm, which exploits the dynamic repeated gaming to motivate nodes relaying packets for other nodes. The NDI algorithm presents a mechanism of tolerating selfish behaviors of nodes. Reward and punishment methods are also designed based on the node dependence degree. Simulation results show that the NDI algorithm is effective in increasing the delivery ratio and decreasing average latency when there are a lot of selfish nodes in the opportunistic networks.
Fast wavelet based algorithms for linear evolution equations
Engquist, Bjorn; Osher, Stanley; Zhong, Sifen
1992-01-01
A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
Image completion algorithm based on texture synthesis
Institute of Scientific and Technical Information of China (English)
Zhang Hongying; Peng Qicong; Wu Yadong
2007-01-01
A new algorithm is proposed for completing the missing parts caused by the removal of foreground or background elements from an image of natural scenery in a visually plausible way.The major contributions of the proposed algorithm are: (1) for most natural images, there is a strong orientation of texture or color distribution.So a method is introduced to compute the main direction of the texture and complete the image by limiting the search to one direction to carry out image completion quite fast; (2) there exists a synthesis ordering for image completion.The searching order of the patches is denned to ensure the regions with more known information and the structures should be completed before filling in other regions; (3) to improve the visual effect of texture synthesis, an adaptive scheme is presented to determine the size of the template window for capturing the features of various scales.A number of examples are given to demonstrate the effectiveness of the proposed algorithm.
Grid-based DBSCAN Algorithm with Referential Parameters
Darong, Huang; Peng, Wang
A new algorithm GRPDBSCAN (Grid-based DBSCAN Algorithm with Referential Parameters) is proposed in this paper. GRPDBSCAN, which combined the grid partition technique and multi-density based clustering algorithm, has improved its efficiency. On the other hand, because the Eps and Minpts parameters of the DBSCAN algorithm were auto-generated, so they were more objective. Experimental results shown that the new algorithm not only can better differentiate between noises and discovery clusters of arbitrary shapes but also have more robust.
Multi-Agent Reinforcement Learning Algorithm Based on Action Prediction
Institute of Scientific and Technical Information of China (English)
TONG Liang; LU Ji-lian
2006-01-01
Multi-agent reinforcement learning algorithms are studied. A prediction-based multi-agent reinforcement learning algorithm is presented for multi-robot cooperation task. The multi-robot cooperation experiment based on multi-agent inverted pendulum is made to test the efficency of the new algorithm, and the experiment results show that the new algorithm can achieve the cooperation strategy much faster than the primitive multiagent reinforcement learning algorithm.
Asian Option Pricing Based on Genetic Algorithms
Institute of Scientific and Technical Information of China (English)
YunzhongLiu; HuiyuXuan
2004-01-01
The cross-fertilization between artificial intelligence and computational finance has resulted in some of the most active research areas in financial engineering. One direction is the application of machine learning techniques to pricing financial products, which is certainly one of the most complex issues in finance. In the literature, when the interest rate,the mean rate of return and the volatility of the underlying asset follow general stochastic processes, the exact solution is usually not available. In this paper, we shall illustrate how genetic algorithms (GAs), as a numerical approach, can be potentially helpful in dealing with pricing. In particular, we test the performance of basic genetic algorithms by using it to the determination of prices of Asian options, whose exact solutions is known from Black-Scholesoption pricing theory. The solutions found by basic genetic algorithms are compared with the exact solution, and the performance of GAs is ewluated accordingly. Based on these ewluations, some limitations of GAs in option pricing are examined and possible extensions to future works are also proposed.
A Hybrid Metaheuristic for Biclustering Based on Scatter Search and Genetic Algorithms
Nepomuceno, Juan A.; Troncoso, Alicia; Aguilar–Ruiz, Jesús S.
In this paper a hybrid metaheuristic for biclustering based on Scatter Search and Genetic Algorithms is presented. A general scheme of Scatter Search has been used to obtain high-quality biclusters, but a way of generating the initial population and a method of combination based on Genetic Algorithms have been chosen. Experimental results from yeast cell cycle and human B-cell lymphoma are reported. Finally, the performance of the proposed hybrid algorithm is compared with a genetic algorithm recently published.
Algorithmic Methods for Sponsored Search Advertising
Feldman, Jon
2008-01-01
Modern commercial Internet search engines display advertisements along side the search results in response to user queries. Such sponsored search relies on market mechanisms to elicit prices for these advertisements, making use of an auction among advertisers who bid in order to have their ads shown for specific keywords. We present an overview of the current systems for such auctions and also describe the underlying game-theoretic aspects. The game involves three parties--advertisers, the search engine, and search users--and we present example research directions that emphasize the role of each. The algorithms for bidding and pricing in these games use techniques from three mathematical areas: mechanism design, optimization, and statistical estimation. Finally, we present some challenges in sponsored search advertising.
A Novel RFID Anti-Collision Algorithm based on Binary Tree
Directory of Open Access Journals (Sweden)
Linpeng Hai
2013-12-01
Full Text Available The method to deal with the tag collision in RFID system can be directly called “Multiple Access”. According to the ideas of these different anti-collision algorithms, they can be divided into two categories. One is the binary tree algorithm based on deterministic; the other is the statistical-based ALOHA algorithm. Overall, however, there is still room for improvement on anti-collision algorithm path optimization and communication complexity,. This paper focuses on binary tree algorithm. After analysis of the basic binary tree algorithm, dynamic binary tree algorithm, Trajan binary tree algorithm, paper propose a novel binary tree algorithm based on the dichotomy. Simulation performance shows that there have upgraded path optimization and communication efficiency
A transport-based condensed history algorithm
International Nuclear Information System (INIS)
Condensed history algorithms are approximate electron transport Monte Carlo methods in which the cumulative effects of multiple collisions are modeled in a single step of (user-specified) path length s0. This path length is the distance each Monte Carlo electron travels between collisions. Current condensed history techniques utilize a splitting routine over the range 0 le s le s0. For example, the PEnELOPE method splits each step into two substeps; one with length ξs0 and one with length (1 minusξ)s0, where ξ is a random number from 0 0 is fixed (not sampled from an exponential distribution), conventional condensed history schemes are not transport processes. Here the authors describe a new condensed history algorithm that is a transport process. The method simulates a transport equation that approximates the exact Boltzmann equation. The new transport equation has a larger mean free path than, and preserves two angular moments of, the Boltzmann equation. Thus, the new process is solved more efficiently by Monte Carlo, and it conserves both particles and scattering power
Unified HMM-based layout analysis framework and algorithm
Institute of Scientific and Technical Information of China (English)
陈明; 丁晓青; 吴佑寿
2003-01-01
To manipulate the layout analysis problem for complex or irregular document image, a Unified HMM-based Layout Analysis Framework is presented in this paper. Based on the multi-resolution wavelet analysis results of the document image, we use HMM method in both inner-scale image model and trans-scale context model to classify the pixel region properties, such as text, picture or background. In each scale, a HMM direct segmentation method is used to get better inner-scale classification result. Then another HMM method is used to fuse the inner-scale result in each scale and then get better final seg- mentation result. The optimized algorithm uses a stop rule in the coarse to fine multi-scale segmentation process, so the speed is improved remarkably. Experiments prove the efficiency of proposed algorithm.
Institute of Scientific and Technical Information of China (English)
郭平; 程代杰
2003-01-01
As the base of intelligent system, it is very important to guarantee the consistency and non-redundancy of knowledge in knowledge database. Since the variety of knowledge sources, it is necessary to dispose knowledge with redundancy, inclusion and even contradiction during the integration of knowledge database. This paper researches the integration method based on the multi-knowledge database. Firstly, it finds out the inconsistent knowledge sets between the knowledge databases by rough set classification and presents one method eliminating the inconsistency by test data. Then, it regards consistent knowledge sets as the initial population of genetic calculation and constructs a genetic adaptive function based on accuracy, practicability and spreadability of knowledge representation to carry on the genetic calculation. Lastly, classifying the results of genetic calculation reduces the knowledge redundancy of knowledge database. This paper also presents a frameworkfor knowledge database integration based on the rough set classification and genetic algorithm.
Nonuniformity correction algorithm based on Gaussian mixture model
Mou, Xin-gang; Zhang, Gui-lin; Hu, Ruo-lan; Zhou, Xiao
2011-08-01
As an important tool to acquire information of target scene, infrared detector is widely used in imaging guidance field. Because of the limit of material and technique, the performance of infrared imaging system is known to be strongly affected by the spatial nonuniformity in the photoresponse of the detectors in the array. Temporal highpass filter(THPF) is a popular adaptive NUC algorithm because of its simpleness and effectiveness. However, there still exists the problem of ghosting artifact in the algorithms caused by blind update of parameters, and the performance is noticeably degraded when the methods are applied over scenes with lack of motion. In order to tackle with this problem, a novel adaptive NUC algorithm based on Gaussian mixed model (GMM) is put forward according to traditional THPF. The drift of the detectors is assumed to obey a single Gaussian distribution, and the update of the parameters is selectively performed based on the scene. GMM is applied in the new algorithm for background modeling, in which the background is updated selectively so as to avoid the influence of the foreground target on the update of the background, thus eliminating the ghosting artifact. The performance of the proposed algorithm is evaluated with infrared image sequences with simulated and real fixed-pattern noise. The results show a more reliable fixed-pattern noise reduction, tracking the parameter drift, and presenting a good adaptability to scene changes.
An Initiative-Learning Algorithm Based on System Uncertainty
Institute of Scientific and Technical Information of China (English)
ZHAO Jun
2005-01-01
Initiative-learning algorithms are characterized by and hence advantageous for their independence of prior domain knowledge.Usually,their induced results could more objectively express the potential characteristics and patterns of information systems.Initiative-learning processes can be effectively conducted by system uncertainty,because uncertainty is an intrinsic common feature of and also an essential link between information systems and their induced results.Obviously,the effectiveness of such initiative-learning framework is heavily dependent on the accuracy of system uncertainty measurements.Herein,a more reasonable method for measuring system uncertainty is developed based on rough set theory and the conception of information entropy;then a new algorithm is developed on the bases of the new system uncertainty measurement and the Skowron's algorithm for mining propositional default decision rules.The proposed algorithm is typically initiative-learning.It is well adaptable to system uncertainty.As shown by simulation experiments,its comprehensive performances are much better than those of congeneric algorithms.
Navigation Algorithm Using Fuzzy Control Method in Mobile Robotics
Directory of Open Access Journals (Sweden)
Cviklovič Vladimír
2016-03-01
Full Text Available The issue of navigation methods is being continuously developed globally. The aim of this article is to test the fuzzy control algorithm for track finding in mobile robotics. The concept of an autonomous mobile robot EN20 has been designed to test its behaviour. The odometry navigation method was used. The benefits of fuzzy control are in the evidence of mobile robot’s behaviour. These benefits are obtained when more physical variables on the base of more input variables are controlled at the same time. In our case, there are two input variables - heading angle and distance, and two output variables - the angular velocity of the left and right wheel. The autonomous mobile robot is moving with human logic.
The Books Recommend Service System Based on Improved Algorithm for Mining Association Rules
Institute of Scientific and Technical Information of China (English)
王萍
2009-01-01
The Apriori algorithm is a classical method of association rules mining. Based on analysis of this theory, the paper provides an improved Apriori algorithm. The paper puts foward with algorithm combines HASH table technique and reduction of candidate item sets to en-hance the usage efficiency of resources as well as the individualized service of the data library.
Ziwen Sun; Li Tao; Xinyu Wang; Zhiping Zhou
2015-01-01
Based on multiobjective particle swarm optimization, a localization algorithm named multiobjective particle swarm optimization localization algorithm (MOPSOLA) is proposed to solve the multiobjective optimization localization issues in wireless sensor networks. The multiobjective functions consist of the space distance constraint and the geometric topology constraint. The optimal solution is found by multiobjective particle swarm optimization algorithm. Dynamic method is adopted to maintain t...
DIGITAL SPECKLE CORRELATION METHOD IMPROVED BY GENETIC ALGORITHM
Institute of Scientific and Technical Information of China (English)
MaShaopeng; JillGuanchang
2003-01-01
The digital speckle correlation method is an important optical metrology for surface displacement and strain measurement. With this technique, the whole field deformation information can be obtained by tracking the geometric points on the speckle images based on a correlation-matching search technique. However, general search techniques suffer from great computational complexity in the processing of speckle images with large deformation and the large random errors in the processing of images of bad quality. In this paper, an advanced approach based on genetic algorithms (GA) for correlation-matching search is developed. Benefiting from the abilities of global optimum and parallelism searching of GA, this new approach can complete the correlation-matching search with less computational consumption and at high accuracy. Two experimental results from the simulated speckle images have proved the efficiency of the new approach.
Quantitative Methods in Supply Chain Management Models and Algorithms
Christou, Ioannis T
2012-01-01
Quantitative Methods in Supply Chain Management presents some of the most important methods and tools available for modeling and solving problems arising in the context of supply chain management. In the context of this book, “solving problems” usually means designing efficient algorithms for obtaining high-quality solutions. The first chapter is an extensive optimization review covering continuous unconstrained and constrained linear and nonlinear optimization algorithms, as well as dynamic programming and discrete optimization exact methods and heuristics. The second chapter presents time-series forecasting methods together with prediction market techniques for demand forecasting of new products and services. The third chapter details models and algorithms for planning and scheduling with an emphasis on production planning and personnel scheduling. The fourth chapter presents deterministic and stochastic models for inventory control with a detailed analysis on periodic review systems and algorithmic dev...
An improved algorithm for the normalized elimination of the small-component method
Zou, Wenli; Filatov, Michael; Cremer, Dieter
2011-01-01
A new algorithm for the iterative solution of the normalized elimination of the small component (NESC) method is presented that is less costly than previous algorithms and that is based on (1) solving the NESC equations for the uncontracted rather than contracted basis ("First-Diagonalize-then-Contr
An Algorithm of Sensor Management Based on Dynamic Target Detection
Institute of Scientific and Technical Information of China (English)
LIUXianxing; ZHOULin; JINYong
2005-01-01
The probability density of stationary target is only evolved at measurement update, but the probability density of dynamic target is evolved not only at measurement update but also during measurements, this paper researches an algorithm of dynamic targets detection. Firstly, it presents the evolution of probability density at measurement update by Bayes' rule and the evolution of probability density during measurements by Fokker-Planck differential equations, respectively. Secondly, the method of obtaining information entropy by the probability density is given and sensor resources are distributed based on the evolution of information entropy viz. the maximization of information gain. Simulation results show that compared with the algorithm of serial search, this algorithm is feasible and effective when it is used to detect dynamic target.
Crime Busting Model Based on Dynamic Ranking Algorithms
Directory of Open Access Journals (Sweden)
Yang Cao
2013-01-01
Full Text Available This paper proposed a crime busting model with two dynamic ranking algorithms to detect the likelihood of a suspect and the possibility of a leader in a complex social network. Signally, in order to obtain the priority list of suspects, an advanced network mining approach with a dynamic cumulative nominating algorithm is adopted to rapidly reduce computational expensiveness than most other topology-based approaches. Our method can also greatly increase the accuracy of solution with the enhancement of semantic learning filtering at the same time. Moreover, another dynamic algorithm of node contraction is also presented to help identify the leader among conspirators. Test results are given to verify the theoretical results, which show the great performance for either small or large datasets.
A Multi-Scale Settlement Matching Algorithm Based on ARG
Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia
2016-06-01
Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.
An algorithm for motif-based network design
Mäki-Marttunen, Tuomo
2016-01-01
A determinant property of the structure of a biological network is the distribution of local connectivity patterns, i.e., network motifs. In this work, a method for creating directed, unweighted networks while promoting a certain combination of motifs is presented. This motif-based network algorithm starts with an empty graph and randomly connects the nodes by advancing or discouraging the formation of chosen motifs. The in- or out-degree distribution of the generated networks can be explicitly chosen. The algorithm is shown to perform well in producing networks with high occurrences of the targeted motifs, both ones consisting of 3 nodes as well as ones consisting of 4 nodes. Moreover, the algorithm can also be tuned to bring about global network characteristics found in many natural networks, such as small-worldness and modularity.
Image File Security using Base-64 Algorithm
Directory of Open Access Journals (Sweden)
Pooja Guwalani
2014-12-01
Full Text Available Information security is becoming a vital component of any data storage and transmission operations. Since visual representation of data is gaining importance, data in the form of images are used to exchange and convey information between entities. As the use of digital techniques for transmitting and storing images are increasing, it becomes an important issue to protect the confidentiality, integrity and authenticity of images. There are various techniques which are discovered to encrypt the images to make them more secure. The primary goal of this paper is security management. A mechanism to provide authentication of users and ensure integrity, accuracy and safety of images. Moreover, an image-based data requires more effort during encryption and decryption. In this paper, we describe how Base64 algorithm can be used to achieve this purpose.
A Genetic Algorithm-Based Feature Selection
Directory of Open Access Journals (Sweden)
Babatunde Oluleye
2014-07-01
Full Text Available This article details the exploration and application of Genetic Algorithm (GA for feature selection. Particularly a binary GA was used for dimensionality reduction to enhance the performance of the concerned classifiers. In this work, hundred (100 features were extracted from set of images found in the Flavia dataset (a publicly available dataset. The extracted features are Zernike Moments (ZM, Fourier Descriptors (FD, Lengendre Moments (LM, Hu 7 Moments (Hu7M, Texture Properties (TP and Geometrical Properties (GP. The main contributions of this article are (1 detailed documentation of the GA Toolbox in MATLAB and (2 the development of a GA-based feature selector using a novel fitness function (kNN-based classification error which enabled the GA to obtain a combinatorial set of feature giving rise to optimal accuracy. The results obtained were compared with various feature selectors from WEKA software and obtained better results in many ways than WEKA feature selectors in terms of classification accuracy
METHOD OF CENTERS ALGORITHM FOR MULTI-OBJECTIVE PROGRAMMING PROBLEMS
Institute of Scientific and Technical Information of China (English)
Tarek Emam
2009-01-01
In this paper, we consider a method of centers for solving multi-objective programming problems, where the objective functions involved are concave functions and the set of feasible points is convex. The algorithm is defined so that the sub-problems that must be solved during its execution may be solved by finite-step procedures. Conditions are given under which the algorithm generates sequences of feasible points and constraint multiplier vectors that have accumulation points satisfying the KKT conditions. Finally, we establish convergence of the proposed method of centers algorithm for solving multiobjective programming problems.
Cognitive radio resource allocation based on coupled chaotic genetic algorithm
Institute of Scientific and Technical Information of China (English)
Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang
2010-01-01
A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed.
Cognitive radio resource allocation based on coupled chaotic genetic algorithm
International Nuclear Information System (INIS)
A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed
An optimized hybrid encode based compression algorithm for hyperspectral image
Wang, Cheng; Miao, Zhuang; Feng, Weiyi; He, Weiji; Chen, Qian; Gu, Guohua
2013-12-01
Compression is a kernel procedure in hyperspectral image processing due to its massive data which will bring great difficulty in date storage and transmission. In this paper, a novel hyperspectral compression algorithm based on hybrid encoding which combines with the methods of the band optimized grouping and the wavelet transform is proposed. Given the characteristic of correlation coefficients between adjacent spectral bands, an optimized band grouping and reference frame selection method is first utilized to group bands adaptively. Then according to the band number of each group, the redundancy in the spatial and spectral domain is removed through the spatial domain entropy coding and the minimum residual based linear prediction method. Thus, embedded code streams are obtained by encoding the residual images using the improved embedded zerotree wavelet based SPIHT encode method. In the experments, hyperspectral images collected by the Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS) were used to validate the performance of the proposed algorithm. The results show that the proposed approach achieves a good performance in reconstructed image quality and computation complexity.The average peak signal to noise ratio (PSNR) is increased by 0.21~0.81dB compared with other off-the-shelf algorithms under the same compression ratio.
Multifeature Fusion Vehicle Detection Algorithm Based on Choquet Integral
Directory of Open Access Journals (Sweden)
Wenhui Li
2014-01-01
Full Text Available Vision-based multivehicle detection plays an important role in Forward Collision Warning Systems (FCWS and Blind Spot Detection Systems (BSDS. The performance of these systems depends on the real-time capability, accuracy, and robustness of vehicle detection methods. To improve the accuracy of vehicle detection algorithm, we propose a multifeature fusion vehicle detection algorithm based on Choquet integral. This algorithm divides the vehicle detection problem into two phases: feature similarity measure and multifeature fusion. In the feature similarity measure phase, we first propose a taillight-based vehicle detection method, and then vehicle taillight feature similarity measure is defined. Second, combining with the definition of Choquet integral, the vehicle symmetry similarity measure and the HOG + AdaBoost feature similarity measure are defined. Finally, these three features are fused together by Choquet integral. Being evaluated on public test collections and our own test images, the experimental results show that our method has achieved effective and robust multivehicle detection in complicated environments. Our method can not only improve the detection rate but also reduce the false alarm rate, which meets the engineering requirements of Advanced Driving Assistance Systems (ADAS.
Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm
Institute of Scientific and Technical Information of China (English)
Haidong Xu; Mingyan Jiang; Kun Xu
2015-01-01
The artificial bee colony (ABC) algorithm is a com-petitive stochastic population-based optimization algorithm. How-ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in-sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA cal ed Archimedean copula estima-tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench-mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen-tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.
Promoter sequences and algorithmical methods for identifying them.
Vanet, A; Marsan, L; Sagot, M F
1999-01-01
This paper presents a survey of currently available mathematical models and algorithmical methods for trying to identify promoter sequences. The methods concern both searching in a genome for a previously defined consensus and extracting a consensus from a set of sequences. Such methods were often tailored for either eukaryotes or prokaryotes although this does not preclude use of the same method for both types of organisms. The survey therefore covers all methods; however, emphasis is placed on prokaryotic promoter sequence identification. Illustrative applications of the main extracting algorithms are given for three bacteria. PMID:10673015
CUDT: A CUDA Based Decision Tree Algorithm
Directory of Open Access Journals (Sweden)
Win-Tsung Lo
2014-01-01
Full Text Available Decision tree is one of the famous classification methods in data mining. Many researches have been proposed, which were focusing on improving the performance of decision tree. However, those algorithms are developed and run on traditional distributed systems. Obviously the latency could not be improved while processing huge data generated by ubiquitous sensing node in the era without new technology help. In order to improve data processing latency in huge data mining, in this paper, we design and implement a new parallelized decision tree algorithm on a CUDA (compute unified device architecture, which is a GPGPU solution provided by NVIDIA. In the proposed system, CPU is responsible for flow control while the GPU is responsible for computation. We have conducted many experiments to evaluate system performance of CUDT and made a comparison with traditional CPU version. The results show that CUDT is 5∼55 times faster than Weka-j48 and is 18 times speedup than SPRINT for large data set.
Entropy-Based Search Algorithm for Experimental Design
Malakar, N. K.; Knuth, K. H.
2011-03-01
The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.
Determination of Selection Method in Genetic Algorithm for Land Suitability
Directory of Open Access Journals (Sweden)
Irfianti Asti Dwi
2016-01-01
Full Text Available Genetic Algoirthm is one alternative solution in the field of modeling optimization, automatic programming and machine learning. The purpose of the study was to compare some type of selection methods in Genetic Algorithm for land suitability. Contribution of this research applies the best method to develop region based horticultural commodities. This testing is done by comparing the three methods on the method of selection, the Roulette Wheel, Tournament Selection and Stochastic Universal Sampling. Parameters of the locations used in the test scenarios include Temperature = 27°C, Rainfall = 1200 mm, hummidity = 30%, Cluster fruit = 4, Crossover Probabiitiy (Pc = 0.6, Mutation Probabilty (Pm = 0.2 and Epoch = 10. The second test epoch incluides location parameters consist of Temperature = 30°C, Rainfall = 2000 mm, Humidity = 35%, Cluster fruit = 5, Crossover Probability (Pc = 0.7, Mutation Probability (Pm = 0.3 and Epoch 10. The conclusion of this study shows that the Roulette Wheel is the best method because it produces more stable and fitness value than the other two methods.
Directory of Open Access Journals (Sweden)
D. A. Viattchenin
2009-01-01
Full Text Available A method for constructing a subset of labeled objects which is used in a heuristic algorithm of possible clusterization with partial training is proposed in the paper. The method is based on data preprocessing by the heuristic algorithm of possible clusterization using a transitive closure of a fuzzy tolerance. Method efficiency is demonstrated by way of an illustrative example.
Historical Feature Pattern Extraction Based Network Attack Situation Sensing Algorithm
Directory of Open Access Journals (Sweden)
Yong Zeng
2014-01-01
Full Text Available The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE. First, HFPE algorithm seeks similar indications from the history situation sequence recorded and weighs the link intensity between occurred indication and subsequent effect. Then it calculates the probability that a certain effect reappears according to the current indication and makes a prediction after weighting. Meanwhile, HFPE method gives an evolution algorithm to derive the prediction deviation from the views of pattern and accuracy. This algorithm can continuously promote the adaptability of HFPE through gradual fine-tuning. The method preserves the rules in sequence at its best, does not need data preprocessing, and can track and adapt to the variation of situation sequence continuously.
Computer Crime Forensics Based on Improved Decision Tree Algorithm
Directory of Open Access Journals (Sweden)
Ying Wang
2014-04-01
Full Text Available To find out the evidence of crime-related evidence and association rules among massive data, the classic decision tree algorithms such as ID3 for classification analysis have appeared in related prototype systems. So how to make it more suitable for computer forensics in variable environments becomes a hot issue. When selecting classification attributes, ID3 relies on computation of information entropy. Then the attributes owning more value are selected as classification nodes of the decision tress. Such classification is unrealistic under many cases. During the process of ID3 algorithm there are too many logarithms, so it is complicated to handle with the dataset which has various classification attributes. Therefore, contraposing the special demand for computer crime forensics, ID3 algorithm is improved and a novel classification attribute selection method based on Maclaurin-Priority Value First method is proposed. It adopts the foot changing formula and infinitesimal substitution to simplify the logarithms in ID3. For the errors generated in this process, an apposite constant is introduced to be multiplied by the simplified formulas for compensation. The idea of Priority Value First is introduced to solve the problems of value deviation. The performance of improved method is strictly proved in theory. Finally, the experiments verify that our scheme has advantage in computation time and classification accuracy, compared to ID3 and two existing algorithms
Adaptive algorithm for mobile user positioning based on environment estimation
Directory of Open Access Journals (Sweden)
Grujović Darko
2014-01-01
Full Text Available This paper analyzes the challenges to realize an infrastructure independent and a low-cost positioning method in cellular networks based on RSS (Received Signal Strength parameter, auxiliary timing parameter and environment estimation. The proposed algorithm has been evaluated using field measurements collected from GSM (Global System for Mobile Communications network, but it is technology independent and can be applied in UMTS (Universal Mobile Telecommunication Systems and LTE (Long-Term Evolution networks, also.
DELAUNAY-BASED SURFACE RECONSTRUCTION ALGORITHM IN REVERSE ENGINEERING
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Triangulation of scattered points is the first important section during reverse engineering. New concepts of dynamic circle and closed point are put forward based on current basic method. These new concepts can narrow the extent which triangulation process should seek through and optimize the triangles during producing them. Updating the searching edges dynamically controls progress of triangulation. Intersection judgment between new triangle and produced triangles is changed into intersection judgment between new triangle and searching edges. Examples illustrate superiorities of this new algorithm.
Research on Wavelet-Based Algorithm for Image Contrast Enhancement
Institute of Scientific and Technical Information of China (English)
Wu Ying-qian; Du Pei-jun; Shi Peng-fei
2004-01-01
A novel wavelet-based algorithm for image enhancement is proposed in the paper. On the basis of multiscale analysis, the proposed algorithm solves efficiently the problem of noise over-enhancement, which commonly occurs in the traditional methods for contrast enhancement. The decomposed coefficients at same scales are processed by a nonlinear method, and the coefficients at different scales are enhanced in different degree. During the procedure, the method takes full advantage of the properties of Human visual system so as to achieve better performance. The simulations demonstrate that these characters of the proposed approach enable it to fully enhance the content in images, to efficiently alleviate the enhancement of noise and to achieve much better enhancement effect than the traditional approaches.
Directory of Open Access Journals (Sweden)
D. Haritha
2012-03-01
Full Text Available A robust and efficient face recognition system was developed and evaluated. The each individual face is characterized by 2D-DCT coefficients which follows a finite mixture of doubly truncated Gaussian distribution. In modelling the features vector of the face the number of components (in the mixture model are determined by hierarchical clustering. The model parameters are estimated using EM algorithm. The face recognition algorithm is developed by maximum likelihood under Baysian frame. The method was tested on two available face databases namely JNTUK and yale. The recognition rates computed for different methods of face recognition have revealed that the proposed method performs very well when compared to the other approaches. It is also observed that the proposed system require less number of DCT coefficients in each block and serve well even with large and small databases. The hybridization of hierarchical clustering with model based approach has significantly improved the recognition rate of the system even with the simple features like DCT. Keywords: Face recognition system, doubly truncated Gaussian mixture model, Hierarchical clustering algorithm, DCT coefficients.
Liu, Dong-sheng; Fan, Shu-jiang
2014-01-01
In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389
Institute of Scientific and Technical Information of China (English)
WANG Ding; ZHANG Li; WU Ying
2009-01-01
Based on the constrained total least squares (CTLS) passive location algorithm with bearing-only measurements, in this paper, the same passive location problem is transformed into the structured total least squares (STLS) problem. The solution of the STLS problem for passive location can be obtained using the inverse iteration method. It also expatiates that both the STLS algorithm and the CTLS algorithm have the same location mean squares error under certain condition. Finally, the article presents a kind of location and tracking algorithm for moving target by combining STLS location algorithm with Kalman filter (KF). The efficiency and superiority of the proposed algorithms can be confirmed by computer simulation results.
User Equilibrium Exchange Allocation Algorithm Based on Super Network
Directory of Open Access Journals (Sweden)
Peiyi Dong
2013-12-01
Full Text Available The theory of super network is an effective method to various traffic networks with means of multiple decision-making. It provides us with a favorable pricing decision tool for it combines a practical transport network with the space pricing decision. Spatial price equilibrium problem has always been the important research direction of the Transport Economics and regional transportation planning. As to how to combine the two, this paper presents the user equilibrium exchange allocation algorithm based on super network, which successfully keep the classical spatial price equilibrium problems (SPE into a super-network analysis framework. Through super-network analysis, we can add two virtual nodes in the network, which correspond to the virtual supply node and the super-super-demand virtual node, analysis the user equivalence with the SPE equilibrium and find the concrete steps of users exchange allocation algorithm based on super-network equilibrium. Finally, we carried out experiments to verify. The experiments show that: through the user equilibrium exchange SPE allocation algorithm based on super-network, we can get the steady-state equilibrium solution, which demonstrate that the algorithm is reasonable.
A Cryptographic Algorithm based onBilinear Transformation
Phani krishna kishore M; Venugopal IVS
2011-01-01
The technique of producing ciphers via transformations from one domain to another domain has been widely studied. In this paper a new cryptographic algorithm is presented based on complex bilinear transformations, the strength and performance of the algorithm is analyzed.
Institute of Scientific and Technical Information of China (English)
麦范金; 李东普; 岳晓光
2011-01-01
Bi-direction marching method is a traditional algorithm, which can find ambiguity but can not solve the ambiguity problem. In order to find a better solution, this paper proposes a combination method based on bidirection marching method and feature selection algorithm. Through the accumulation of corpus, a Chinese word segmentation system is designed. Experimental results show that the new Chinese word segmentation method is better than traditional methods.%传统的双向匹配算法虽然能够发现歧义现象,但是却不能解决歧义问题.为了更好地进行歧义消解,提出了一种基于双向匹配法和特征选择算法的中文分词技术,通过积累的语料库,设计并实现了一个基于两种方法的分词系统.该系统的实验结果表明,基于双向匹配法和特征选择算法的中文分词技术比传统方法的效果要好.
An Improved Image Segmentation Based on Mean Shift Algorithm
Institute of Scientific and Technical Information of China (English)
CHENHanfeng; QIFeihu
2003-01-01
Gray image segmentation is to segment an image into some homogeneous regions and only one gray level is defined for each region as the result. These grayl evels are called major gray levels. Mean shift algorithm(MSA) has shown its efficiency in image segmentation. An improved gray image segmentation method based on MSAis proposed in this paper since usual image segmentation methods based on MSA often fail in segmenting imageswith weak edges. Corrupted block and its J-value are defined firstly in the proposed method. Then, J-matrix gotten from corrupted blocks are proposed to measure whether weak edges appear in the image. According to the J-matrix, major gray levels gotten with usual segmen-tation methods based on MSA are augmented and corre-sponding allocation windows are modified to detect weak edges. Experimental results demonstrate the effectiveness of the proposed method in gray image segmentation.
Synthetic aperture sonar movement compensation algorithm based on time-delay and phase estimation
Institute of Scientific and Technical Information of China (English)
JIANG Nan; SUN Dajun; TIAN Tan
2003-01-01
The effects of movement errors on imaging results of synthetic aperture sonar andthe necessity of movement compensation are discussed. Based on analyzing so-called displacedphase center algorithm, an improved algorithm is proposed. In this method, the time delayis estimated firstly, then the phase is estimated for the residual error, so that the range ofmovement error suited to the algorithm is extended to some extent. Some simulation resultson computer and experimental results in the test tank using the proposed algorithm are givenas well.
Image Encryption Algorithm Based on Chaotic Economic Model
S. S. Askar; Karawia, A. A.; Ahmad Alshamrani
2015-01-01
In literature, chaotic economic systems have got much attention because of their complex dynamic behaviors such as bifurcation and chaos. Recently, a few researches on the usage of these systems in cryptographic algorithms have been conducted. In this paper, a new image encryption algorithm based on a chaotic economic map is proposed. An implementation of the proposed algorithm on a plain image based on the chaotic map is performed. The obtained results show that the proposed algorithm can su...
Effective Term Based Text Clustering Algorithms
P. Ponmuthuramalingam,; T. Devi
2010-01-01
Text clustering methods can be used to group large sets of text documents. Most of the text clustering methods do not address the problems of text clustering such as very high dimensionality of the data and understandability of the clustering descriptions. In this paper, a frequent term based approach of clustering has been introduced; it provides a natural way of reducing a large dimensionality of the document vector space. This approach is based on clustering the low dimensionality frequent...
A STEREO MATCHING ALGORITHM BASED ON ADAPTIVE WINDOWS
Directory of Open Access Journals (Sweden)
Chuen-Horng Lin
2012-06-01
Full Text Available The aim of this paper is to develop a stereo matching algorithm based on adaptive windows for a stereo vision domain. This method retains the advantageous image processing speed of traditional methods, and proposes a means of decreasing the error rate, making it the best choice for application in real time systems. Depending on the characteristics of different regions, the proposed method provides a suitable window for stereo vision matching. The processing method is differentiated into disparity consistency, the disparity for a smooth region, the vote disparity between the 8-neighbors and the uniqueness of disparity. A different processing method is used in the lab with the sum of absolute difference (SAD, and the result is compared with a fixed window method; the result proves that this method improves on the SAD method, and yields more accurate depth information.
Acoustic Environments: Applying Evolutionary Algorithms for Sound based Morphogenesis
DEFF Research Database (Denmark)
Foged, Isak Worre; Pasold, Anke; Jensen, Mads Brath;
2012-01-01
The research investigates the application of evolutionary computation in relation to sound based morphogenesis. It does so by using the Sabine equation for performance benchmark in the development of the spatial volume and refl ectors, effectively creating the architectural expression as a whole....... Additional algorithms are created and used to organise the entire set of 200 refl ector components and manufacturing constraints based upon the GA studies. An architectural pavilion is created based upon the studies illustrating the applicability of both developed methods and techniques....
Information theoretic methods for image processing algorithm optimization
Prokushkin, Sergey F.; Galil, Erez
2015-01-01
Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).
A Location-Based Business Information Recommendation Algorithm
Directory of Open Access Journals (Sweden)
Shudong Liu
2015-01-01
Full Text Available Recently, many researches on information (e.g., POI, ADs recommendation based on location have been done in both research and industry. In this paper, we firstly construct a region-based location graph (RLG, in which region node respectively connects with user node and business information node, and then we propose a location-based recommendation algorithm based on RLG, which can combine with user short-ranged mobility formed by daily activity and long-distance mobility formed by social network ties and sequentially can recommend local business information and long-distance business information to users. Moreover, it can combine user-based collaborative filtering with item-based collaborative filtering, and it can alleviate cold start problem which traditional recommender systems often suffer from. Empirical studies from large-scale real-world data from Yelp demonstrate that our method outperforms other methods on the aspect of recommendation accuracy.
An iteratively Reweighted Least Square algorithm for RSS-based sensor network localization
Pang, GKH; Qiao, D
2011-01-01
In this article, we give a new algorithm for localization based on RSS measurement. There are many measurement methods for localizing the unknown nodes in a sensor network. RSS is the most popular one due to its simple and cheap hardware requirement. However, accurate algorithm based on RSS is needed to obtain the positions of unknown nodes. Recent algorithms such as MDS(Multi-Dimensional Scaling)-MAP, PDM (Proximity Distance Matrix) cannot give accurate results based on RSS as the RSS signal...
Vergallo, P.; Lay-Ekuakille, A.
2013-08-01
Brain activity can be recorded by means of EEG (Electroencephalogram) electrodes placed on the scalp of the patient. The EEG reflects the activity of groups of neurons located in the head, and the fundamental problem in neurophysiology is the identification of the sources responsible of brain activity, especially if a seizure occurs and in this case it is important to identify it. The studies conducted in order to formalize the relationship between the electromagnetic activity in the head and the recording of the generated external field allow to know pattern of brain activity. The inverse problem, that is given the sampling field at different electrodes the underlying asset must be determined, is more difficult because the problem may not have a unique solution, or the search for the solution is made difficult by a low spatial resolution which may not allow to distinguish between activities involving sources close to each other. Thus, sources of interest may be obscured or not detected and known method in source localization problem as MUSIC (MUltiple SIgnal Classification) could fail. Many advanced source localization techniques achieve a best resolution by exploiting sparsity: if the number of sources is small as a result, the neural power vs. location is sparse. In this work a solution based on the spatial sparsity of the field signal is presented and analyzed to improve MUSIC method. For this purpose, it is necessary to set a priori information of the sparsity in the signal. The problem is formulated and solved using a regularization method as Tikhonov, which calculates a solution that is the better compromise between two cost functions to minimize, one related to the fitting of the data, and another concerning the maintenance of the sparsity of the signal. At the first, the method is tested on simulated EEG signals obtained by the solution of the forward problem. Relatively to the model considered for the head and brain sources, the result obtained allows to
Vergallo, P; Lay-Ekuakille, A
2013-08-01
Brain activity can be recorded by means of EEG (Electroencephalogram) electrodes placed on the scalp of the patient. The EEG reflects the activity of groups of neurons located in the head, and the fundamental problem in neurophysiology is the identification of the sources responsible of brain activity, especially if a seizure occurs and in this case it is important to identify it. The studies conducted in order to formalize the relationship between the electromagnetic activity in the head and the recording of the generated external field allow to know pattern of brain activity. The inverse problem, that is given the sampling field at different electrodes the underlying asset must be determined, is more difficult because the problem may not have a unique solution, or the search for the solution is made difficult by a low spatial resolution which may not allow to distinguish between activities involving sources close to each other. Thus, sources of interest may be obscured or not detected and known method in source localization problem as MUSIC (MUltiple SIgnal Classification) could fail. Many advanced source localization techniques achieve a best resolution by exploiting sparsity: if the number of sources is small as a result, the neural power vs. location is sparse. In this work a solution based on the spatial sparsity of the field signal is presented and analyzed to improve MUSIC method. For this purpose, it is necessary to set a priori information of the sparsity in the signal. The problem is formulated and solved using a regularization method as Tikhonov, which calculates a solution that is the better compromise between two cost functions to minimize, one related to the fitting of the data, and another concerning the maintenance of the sparsity of the signal. At the first, the method is tested on simulated EEG signals obtained by the solution of the forward problem. Relatively to the model considered for the head and brain sources, the result obtained allows to
Performance evaluation of sensor allocation algorithm based on covariance control
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The covariance control capability of sensor allocation algorithms based on covariance control strategy is an important index to evaluate the performance of these algorithms. Owing to lack of standard performance metric indices to evaluate covariance control capability, sensor allocation ratio, etc, there are no guides to follow in the design procedure of sensor allocation algorithm in practical applications. To meet these demands, three quantified performance metric indices are presented, which are average covariance misadjustment quantity (ACMQ), average sensor allocation ratio (ASAR) and matrix metric influence factor (MMIF), where ACMQ, ASAR and MMIF quantify the covariance control capability, the usage of sensor resources and the robustness of sensor allocation algorithm, respectively. Meanwhile, a covariance adaptive sensor allocation algorithm based on a new objective function is proposed to improve the covariance control capability of the algorithm based on information gain. The experiment results show that the proposed algorithm have the advantage over the preceding sensor allocation algorithm in covariance control capability and robustness.
Zheng, Genrang; Lin, ZhengChun
The problem of winner determination in combinatorial auctions is a hotspot electronic business, and a NP hard problem. A Hybrid Artificial Fish Swarm Algorithm(HAFSA), which is combined with First Suite Heuristic Algorithm (FSHA) and Artificial Fish Swarm Algorithm (AFSA), is proposed to solve the problem after probing it base on the theories of AFSA. Experiment results show that the HAFSA is a rapidly and efficient algorithm for The problem of winner determining. Compared with Ant colony Optimization Algorithm, it has a good performance with broad and prosperous application.
Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization
Chiu, Chung-Cheng; Ting, Chih-Chung
2016-01-01
Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412
ECONOMIC PRICING BASED JOB SCHEDULING ALGORITHM
Directory of Open Access Journals (Sweden)
V.K.MANAVALASUNDARAM
2012-06-01
Full Text Available The incentive approach provides a fair basis in successfully managing the decentralization and heterogeneity that is present in human economies. Competitive economic models provide algorithms/policies and tools for resource sharing or allocation in Grid systems. These models can be based on exchanging or prices. In the Demand Pricing Model, all participants need to own resources and trade resources by exchanges (e.g., storage space for CPU time. In the Best Bid Pricing Model, the resources have a price, based on the negotiation mechanism. They aim to enhance the system throughput,utilization, and complete execution at the earliest possible time rather than improving the utility of application processing. They do not take resource access cost (price into consideration, which means thatthe value of processing applications at any time is treated the same. The end user does not want to pay the highest price but wants to negotiate a particular price based on the demand, value, priority, and available budget. In an economic approach, the scheduling decisions are made dynamically at runtime and they are driven and directed by the end-users requirements.
Evaluations of composition for buffer materials based on genetic algorithms
International Nuclear Information System (INIS)
To provide an overall functional evaluations of buffer materials, this study attempted to investigate the relationships among the engineering properties, plastic index (PI), compaction efficiency, hydraulic conductivity(k); sorption properties, distribution ratio(Rd) for some buffer materials composed of quartz sand and bentonite. According to engineering and sorption properties, the optimal composition can be found out with some optimal approaches. However, a genetic algorithm (GA) is a robust method for searching the optimum solution to a complex problem and widely is applied to many different topics. It is a search algorithm based upon mechanics of natural selection, derived from the theory of natural evolution. The study of genetic algorithms (GAS) has developed into powerful optimization approach since 1970, so this study tries to apply GAS to this problem. Under both synthetic groundwater (GW) and seawater (SW) conditions, the composition of quartz sand and bentonite was evaluated by associating engineering and sorption properties. Due to ends of experiments, this study assumes linearly proportional relationship among bentonite content of buffer materials, PI, k, and sorption properties. And GAS was carried out using a population size of 50, a crossover rate of 0,5, and a mutation rate of 0,1. The final results based on genetic algorithms are consistent with consequences of previous tests. From the viewpoints of associated engineering and sorption properties, the buffer materials nearly containing 70% bentonite are probably the most favorable choice. These results will show a determination of more effective buffer material composition. (authors)
aTrunk—An ALS-Based Trunk Detection Algorithm
Directory of Open Access Journals (Sweden)
Sebastian Lamprecht
2015-08-01
Full Text Available This paper presents a rapid multi-return ALS-based (Airborne Laser Scanning tree trunk detection approach. The multi-core Divide & Conquer algorithm uses a CBH (Crown Base Height estimation and 3D-clustering approach to isolate points associated with single trunks. For each trunk, a principal-component-based linear model is fitted, while a deterministic modification of LO-RANSAC is used to identify an optimal model. The algorithm returns a vector-based model for each identified trunk while parameters like the ground position, zenith orientation, azimuth orientation and length of the trunk are provided. The algorithm performed well for a study area of 109 trees (about 2/3 Norway Spruce and 1/3 European Beech, with a point density of 7.6 points per m2, while a detection rate of about 75% and an overall accuracy of 84% were reached. Compared to crown-based tree detection methods, the aTrunk approach has the advantages of a high reliability (5% commission error and its high tree positioning accuracy (0.59m average difference and 0.78m RMSE. The usage of overlapping segments with parametrizable size allows a seamless detection of the tree trunks.
Faster algorithms for RNA-folding using the Four-Russians method
2014-01-01
Background The secondary structure that maximizes the number of non-crossing matchings between complimentary bases of an RNA sequence of length n can be computed in O(n3) time using Nussinov’s dynamic programming algorithm. The Four-Russians method is a technique that reduces the running time for certain dynamic programming algorithms by a multiplicative factor after a preprocessing step where solutions to all smaller subproblems of a fixed size are exhaustively enumerated and solved. Frid and Gusfield designed an O(n3logn) algorithm for RNA folding using the Four-Russians technique. In their algorithm the preprocessing is interleaved with the algorithm computation. Theoretical results We simplify the algorithm and the analysis by doing the preprocessing once prior to the algorithm computation. We call this the two-vector method. We also show variants where instead of exhaustive preprocessing, we only solve the subproblems encountered in the main algorithm once and memoize the results. We give a simple proof of correctness and explore the practical advantages over the earlier method. The Nussinov algorithm admits an O(n2) time parallel algorithm. We show a parallel algorithm using the two-vector idea that improves the time bound to O(n2logn). Practical results We have implemented the parallel algorithm on graphics processing units using the CUDA platform. We discuss the organization of the data structures to exploit coalesced memory access for fast running times. The ideas to organize the data structures also help in improving the running time of the serial algorithms. For sequences of length up to 6000 bases the parallel algorithm takes only about 2.5 seconds and the two-vector serial method takes about 57 seconds on a desktop and 15 seconds on a server. Among the serial algorithms, the two-vector and memoized versions are faster than the Frid-Gusfield algorithm by a factor of 3, and are faster than Nussinov by up to a factor of 20. The source-code for the
NOVEL QUANTUM-INSPIRED GENETIC ALGORITHM BASED ON IMMUNITY
Institute of Scientific and Technical Information of China (English)
Li Ying; Zhao Rongchun; Zhang Yanning; Jiao Licheng
2005-01-01
A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's advantages, IQGA utilizes the characteristics and knowledge in the pending problems for restraining the repeated and ineffective operations during evolution, so as to improve the algorithm efficiency. The experimental results of the knapsack problem show that the performance of IQGA is superior to the Conventional Genetic Algorithm (CGA), the Immune Genetic Algorithm (IGA) and QGA.
Research on Damage Detection Method Based on Trust Region Algorithm%基于改进信赖域的结构损伤识别方法
Institute of Scientific and Technical Information of China (English)
王天辉; 马立元; 郝永峰; 李世龙
2013-01-01
A least-square objective function based on flexibility is put forward in the paper. The identification problem is transformed to an optimization problem through minimizing the differences between the experimental and analytical modal flexibility. The trust region approach is used to solve the optimization problem to make the process more robust and reliable, and to sl-ove the problem that flexibility sensitivity method is applied in complex structure. Finally , the feasibility and effectiveness of the method is verified by numerical simulation on a missile launch pad .%提出了基于柔度的最小二乘目标函数,极小化结构实测模态柔度与分析模态柔度之间的误差,将损伤识别问题转化为二次优化问题；采用信赖域方法求解该问题,使优化过程具有更强的鲁棒性和可靠性,同时解决了柔度灵敏度方法应用在复杂结构中的问题.最后,通过某导弹发射台的骨架损伤数值仿真,验证了该方法的可行性和有效性.
Speech Segmentation Algorithm Based On Fuzzy Memberships
Luis D. Huerta; Jose Antonio Huesca; Julio C. Contreras
2010-01-01
In this work, an automatic speech segmentation algorithm with text independency was implemented. In the algorithm, the use of fuzzy memberships on each characteristic in different speech sub-bands is proposed. Thus, the segmentation is performed a greater detail. Additionally, we tested with various speech signal frequencies and labeling, and we could observe how they affect the performance of the segmentation process in phonemes. The speech segmentation algorithm used is described. During th...
A Radio-Map Automatic Construction Algorithm Based on Crowdsourcing
Yu, Ning; Xiao, Chenxian; Wu, Yinfeng; Feng, Renjian
2016-01-01
Traditional radio-map-based localization methods need to sample a large number of location fingerprints offline, which requires huge amount of human and material resources. To solve the high sampling cost problem, an automatic radio-map construction algorithm based on crowdsourcing is proposed. The algorithm employs the crowd-sourced information provided by a large number of users when they are walking in the buildings as the source of location fingerprint data. Through the variation characteristics of users’ smartphone sensors, the indoor anchors (doors) are identified and their locations are regarded as reference positions of the whole radio-map. The AP-Cluster method is used to cluster the crowdsourced fingerprints to acquire the representative fingerprints. According to the reference positions and the similarity between fingerprints, the representative fingerprints are linked to their corresponding physical locations and the radio-map is generated. Experimental results demonstrate that the proposed algorithm reduces the cost of fingerprint sampling and radio-map construction and guarantees the localization accuracy. The proposed method does not require users’ explicit participation, which effectively solves the resource-consumption problem when a location fingerprint database is established. PMID:27070623
A New Aloha Anti-Collision Algorithm Based on CDMA
Bai, Enjian; Feng, Zhu
The tags' collision is a common problem in RFID (radio frequency identification) system. The problem has affected the integrity of the data transmission during the process of communication in the RFID system. Based on analysis of the existing anti-collision algorithm, a novel anti-collision algorithm is presented. The new algorithm combines the group dynamic frame slotted Aloha algorithm with code division multiple access technology. The algorithm can effectively reduce the collision probability between tags. Under the same number of tags, the algorithm is effective in reducing the reader recognition time and improve overall system throughput rate.
A research on fast FCM algorithm based on weighted sample
Institute of Scientific and Technical Information of China (English)
KUANG Ping; ZHU Qing-xin; WANG Ming-wen; CHEN Xu-dong; QING Li
2006-01-01
To improve the computational performance of the fuzzy C-means (FCM) algorithm used in dataset clustering with large numbers,the concepts of the equivalent samples and the weighting samples based on eigenvalue distribution of the samples in the feature space were introduced and a novel fast cluster algorithm named weighted fuzzy C-means (WFCM) algorithm was put forward,which came from the traditional FCM algorithm.It was proved that the duster results were equivalent in dataset with two different cluster algorithms:WFCM and FCM.Furthermore,the WFCM algorithm had better computational performance than the ordinary FCM algorithm.The experiment of the gray image segmentation showed that the WFCM algorithm is a fast and effective cluster algorithm.
Indexing Algorithm Based on Improved Sparse Local Sensitive Hashing
Directory of Open Access Journals (Sweden)
Yiwei Zhu
2014-01-01
Full Text Available In this article, we propose a new semantic hashing algorithm to address the new-merging problems such as the difficulty in similarity measurement brought by high-dimensional data. Based on local sensitive hashing and spectral hashing, we introduce sparse principal component analysis (SPCA to reduce the dimension of the data set which exclude the redundancy in the parameter list, and thus make high dimensional indexing and retrieval faster and more efficient. In the meanwhile, we employ Boosting algorithm in machine learning to determine the threshold of hashing, so as to improve its adaptive ability to real data and extend its range of application. According to experiments, this method not only has satisfying performance on multimedia data sets such as images and texts, but also performs better than the common indexing methods.
Fast Non-Local Means Algorithm Based on Krawtchouk Moments
Institute of Scientific and Technical Information of China (English)
吴一全; 戴一冕; 殷骏; 吴健生
2015-01-01
Non-local means (NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical for real applications. Thus, a fast non-local means algorithm based on Krawtchouk moments is proposed to improve the denoising performance and reduce the computing time. Krawtchouk moments of each image patch are calculated and used in the subsequent similarity measure in order to perform a weighted averaging. Instead of computing the Euclid-ean distance of two image patches, the similarity measure is obtained by low-order Krawtchouk moments, which can reduce a lot of computational complexity. Since Krawtchouk moments can extract local features and have a good anti-noise ability, they can classify the useful information out of noise and provide an accurate similarity measure. Detailed experiments demonstrate that the proposed method outperforms the original NLM method and other moment-based methods according to a comprehensive consideration on subjective visual quality, method noise, peak signal to noise ratio (PSNR), structural similarity (SSIM) index and computing time. Most importantly, the proposed method is around 35 times faster than the original NLM method.
Memoryless cooperative graph search based on the simulated annealing algorithm
Institute of Scientific and Technical Information of China (English)
Hou Jian; Yan Gang-Feng; Fan Zhen
2011-01-01
We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip consensus method based scheme is presented to update the key parameter-radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment.
Artificial Bee Colony Algorithm Based on Information Learning.
Gao, Wei-Feng; Huang, Ling-Ling; Liu, San-Yang; Dai, Cai
2015-12-01
Inspired by the fact that the division of labor and cooperation play extremely important roles in the human history development, this paper develops a novel artificial bee colony algorithm based on information learning (ILABC, for short). In ILABC, at each generation, the whole population is divided into several subpopulations by the clustering partition and the size of subpopulation is dynamically adjusted based on the last search experience, which results in a clear division of labor. Furthermore, the two search mechanisms are designed to facilitate the exchange of information in each subpopulation and between different subpopulations, respectively, which acts as the cooperation. Finally, the comparison results on a number of benchmark functions demonstrate that the proposed method performs competitively and effectively when compared to the selected state-of-the-art algorithms. PMID:25594992
Directory of Open Access Journals (Sweden)
K. Kumaravel
2015-05-01
Full Text Available Wireless Mesh Network (WMN uses the latest technology which helps in providing end users a high quality service referred to as the Internet’s “last mile”. Also considering WMN one of the most important technologies that are employed is multicast communication. Among the several issues routing which is significantly an important issue is addressed by every WMN technologies and this is done during the process of data transmission. The IEEE 802.11s Standard entails and sets procedures which need to be followed to facilitate interconnection and thus be able to devise an appropriate WMN. There has been introduction of several protocols by many authors which are mainly devised on the basis of machine learning and artificial intelligence. Multi-path routing may be considered as one such routing method which facilitates transmission of data over several paths, proving its capabilities as a useful strategy for achieving reliability in WMN. Though, multi-path routing in any manner cannot really guarantee deterministic transmission. As here there are multiple paths available for enabling data transmission from source to destination node. The algorithm that had been employed before in the studies conducted did not take in to consideration routing metrics which include energy aware metrics that are used for path selection during transferring of data. The following study proposes use of the hybrid multipath routing algorithm while taking in to consideration routing metrics which include energy, minimal loss for efficient path selection and transferring of data. Proposed algorithm here has two phases. In the first phase prim’s algorithm has been proposed so that in networks route discovery may be possible. For the second one the Hybrid firefly algorithm which is based on harmony search has been employed for selection of the most suitable and best through proper analysis of metrics which include energy awareness and minimal loss for every path that has
Multichannel algorithm based on generalized positional numeration system
Lavrenov, Alexandre
2007-01-01
This report is devoted to introduction in multichannel algorithm based on generalized numeration notations (GPN). The internal, external and mixed account are entered. The concept of the GPN and its classification as decomposition of an integer on composed of integers is discussed. Realization of multichannel algorithm on the basis of GPN is introduced. In particular, some properties of Fibonacci multichannel algorithm are discussed.
Digital Image Mosaic Technology Based on Improved Genetic Algorithm
Directory of Open Access Journals (Sweden)
Li Yan
2014-03-01
Full Text Available Image mosaic technology is an important technology in the field of image processing. Based on the general adaptability and clustering of genetic algorithm, we improve it, and apply it to the mosaic algorithm in image processing. In this paper, we test the validity and reliability of the designed algorithm in the process of image mosaic algorithm. Based on the image illumination mosaic and painting texture mosaic image we achieve certain artistic effect. From the convergence results of general algorithm, the results of numerical show substantially concussion, oscillation amplitude reaches a maximum of . The calculation results of the genetic algorithm still have certain degree of concussion, oscillation amplitude reaches a maximum of , convergence results are slightly better than the general algorithm. The improved genetic algorithm results have no concussion, the stability is very good, and the results have better astringency.
Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm
Abbas, Ahmed
2013-01-07
A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into p-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013
Institute of Scientific and Technical Information of China (English)
贾冀婷
2015-01-01
To improve the automation ability of testcase generation in software testing is very important to guarantee the quality of soft-ware and reduce the cost of software. In this paper,propose an automatic testcase generation method based on particle swarm optimiza-tion,artificial bee colony algorithm and K-means clustering algorithm,and carry out the simulation experiments. The results show that the improved algorithm’ s efficiency is better and convergence ability is stronger than other algorithms such as particle swarm optimization and genetic algorithm in the automation ability of testcase generation.%软件测试中测试用例自动生成技术对于确保软件质量与降低开发成本都是非常重要的。文中基于K均值聚类算法与粒子群算法和人工蜂群算法相结合的混合算法，提出了一种测试用例自动生成方法，并且对此方法进行了仿真实验。实验结果表明，与基本的粒子群算法、遗传算法的测试用例自动生成方法相比较，基于文中改进算法的测试用例自动生成方法具有测试用例自动生成效率高、收敛能力强等优点。
A RBF Network Learning Scheme Using Immune Algorithm Based on Information Entropy
Institute of Scientific and Technical Information of China (English)
GONG Xin-bao; ZANG Xiao-gang; ZHOU Xi-lang
2005-01-01
A hybrid learning method combining immune algorithm and least square method is proposed to design the radial basis function(RBF) networks. The immune algorithm based on information entropy is used to determine the structure and parameters of RBF nonlinear hidden layer, and weights of RBF linear output layer are computed with least square method. By introducing the diversity control and immune memory mechanism, the algorithm improves the efficiency and overcomes the immature problem in genetic algorithm. Computer simulations demonstrate that the RBF networks designed in this method have fast convergence speed with good performances.
Energy conservation in Newmark based time integration algorithms
DEFF Research Database (Denmark)
Krenk, Steen
2006-01-01
Energy balance equations are established for the Newmark time integration algorithm, and for the derived algorithms with algorithmic damping introduced via averaging, the so-called a-methods. The energy balance equations form a sequence applicable to: Newmark integration of the undamped equations...... algorithmic energy vanishes, and that energy fluctuations take place for integration intervals close to the stability limit. (c) 2006 Elsevier B.V. All rights reserved....
Identification of Hammerstein Model Based on Quantum Genetic Algorithm
Zhang Hai Li
2013-01-01
Nonlinear system identification is a main topic of modern identification. A new method for nonlinear system identification is presented by using Quantum Genetic Algorithm(QGA).The problems of nonlinear system identification are cast as function optimization overprameter space，and the Quantum Genetic Algorithm is adopted to solve the optimization problem. Simulation experiments show that: compared with the genetic algorithm, quantum genetic algorithm is an effective swarm intelligence algorith...
Efficient Algorithms for Global Optimisation Methods in Computer Vision (Dagstuhl Seminar 11471)
Bruhn, Andrés; Pock, Thomas; Tai, Xue-Cheng
2012-01-01
This report documents the program and the results of Dagstuhl Seminar 11471 Efficient Algorithms for Global Optimisation Methods in Computer Vision, taking place November 20-25 in 2011. The focus of the seminar was to discuss the design of efficient computer vision algorithms based on global optimisation methods in the context of the entire design pipeline. Since there is no such conference that deals with all aspects of the design process -- modelling, mathematical analy...
Variance-based fingerprint distance adjustment algorithm for indoor localization
Institute of Scientific and Technical Information of China (English)
Xiaolong Xu; Yu Tang; Xinheng Wang; Yun Zhang
2015-01-01
The multipath effect and movements of people in in-door environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength in-dication (RSSI) and the variance of RSSI, we propose a novel variance-based fingerprint distance adjustment algorithm (VFDA). Based on the rule that variance decreases with the increase of RSSI mean, VFDA calculates RSSI variance with the mean value of received RSSIs. Then, we can get the correction weight. VFDA adjusts the fingerprint distances with the correction weight based on the variance of RSSI, which is used to correct the fingerprint distance. Besides, a threshold value is applied to VFDA to im-prove its performance further. VFDA and VFDA with the threshold value are applied in two kinds of real typical indoor environments deployed with several Wi-Fi access points. One is a quadrate lab room, and the other is a long and narrow corridor of a building. Experimental results and performance analysis show that in in-door environments, both VFDA and VFDA with the threshold have better positioning accuracy and environmental adaptability than the current typical positioning methods based on the k-nearest neighbor algorithm and the weighted k-nearest neighbor algorithm with similar computational costs.
Design and optimization of DBSCAN Algorithm based on CUDA
Wang, Bingchen; Zhang, Chenglong; Song, Lei; Zhao, Lianhe; Dou, Yu; Yu, Zihao
2015-01-01
DBSCAN is a very classic algorithm for data clus- tering, which is widely used in many fields. However, with the data scale growing much more bigger than before, the traditional serial algorithm can not meet the performance requirement. Recently, parallel computing based on CUDA has developed very fast and has great advantage on big data. This paper summarizes the algorithms proposed before and improves the performance of the old DBSCAN algorithm by using CUDA and parallel computing. The algo...
Wireless Sensor Network Path Optimization Based on Hybrid Algorithm
Zeyu Sun; Li, Zhenping
2013-01-01
One merit of genetic algorithm is fast overall searching, but this algorithm usually results in low efficiency because of large quantities of redundant codes. The advantages of ant colony algorithm are strong suitability and good robustness while its disadvantages are tendency to stagnation, slow speed of convergence. Put forward based on improved ant colony algorithm for wireless sensor network path optimization approach will first need to pass the data in the shortest path for transmission,...
The Result Integration Algorithm Based on Matching Strategy
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The following paper provides a new algorithm: a result integration algorithm based on matching strategy. The algorithm extracts the title and the abstract of Web pages, calculates the relevance between the query string and the Web pages, decides the Web pages accepted, rejected and sorts them out in user interfaces. The experiment results indicate obviously that the new algorithms improve the precision of meta-search engine. This technique is very useful to meta-search engine.
A new classification algorithm based on RGH-tree search
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, we put forward a new classification algorithm based on RGH-Tree search and perform the classification analysis and comparison study. This algorithm can save computing resource and increase the classification efficiency. The experiment shows that this algorithm can get better effect in dealing with three dimensional multi-kind data. We find that the algorithm has better generalization ability for small training set and big testing result.
Institute of Scientific and Technical Information of China (English)
郭惠勇; 王磊; 李正良
2011-01-01
为解决结构多损伤情况下的位置识别和损伤程度判定问题,提出了一种基于改进粒子群优化算法和贝叶斯理论的两阶段损伤识别方法,该方法采用频率和模态应变能作为损伤定位源数据,分别用基于频率改变和基于应变能耗散率的识别方法进行损伤信息的初步提取,再利用贝叶斯融合理论对损伤位置进行较为精确的判定.然后,利用粒子群优化(PSO)算法对损伤位置和程度进行更为精确的二次识别.考虑到简单PSO算法易陷入局部最优解,提出了3种改进措施,即粒子位置突变、最优记忆粒子微搜索和双收敛措施.数值仿真结果表明:采用贝叶斯融合理论可以有效地识别出可能的损伤单元,在此基础上用改进的PSO算法可以更精确地识别损伤的位置和程度,同时采用3种改进措施的PSO算法的识别精度明显优于其他PSO算法和遗传算法.%In order to solve structural multi-damage identification problem, a two-stage identification method based on the particle swarm optimization(PSO) algorithm and the Bayesian theory was proposed. In this method, structural modal strain energy (MSE) and frequency are considered as two information sources, and the methods based on frequency change and MSE dissipation ratio are utilized to extract damage information. Then, the Bayesian theory is utilized to integrate the two information sources and preliminarily detect structural damage locations. Finally, the PSO algorithm is adopted to precisely identify structural damage locations and extents. In order to improve the identification results of a simple PSO algorithm, three improved strategies, particle position mutation, elitist micro-search and double convergence criterion, were presented. The simulation results for a two-dimensional truss structure show that the Bayesian theory can identify the suspected damage locations, the improved PSO algorithm can precisely detect the damage extent, and
Algorithms for Synthesizing Priorities in Component-based Systems
Cheng, Chih-Hong; Chen, Yu-Fang; Yan, Rongjie; Jobstmann, Barbara; Ruess, Harald; Buckl, Christian; Knoll, Alois
2011-01-01
We present algorithms to synthesize component-based systems that are safe and deadlock-free using priorities, which define stateless-precedence between enabled actions. Our core method combines the concept of fault-localization (using safety-game) and fault-repair (using SAT for conflict resolution). For complex systems, we propose three complementary methods as preprocessing steps for priority synthesis, namely (a) data abstraction to reduce component complexities, (b) alphabet abstraction and #-deadlock to ignore components, and (c) automated assumption learning for compositional priority synthesis.
A Multiple Model Approach to Modeling Based on LPF Algorithm
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Input-output data fitting methods are often used for unknown-structure nonlinear system modeling. Based on model-on-demand tactics, a multiple model approach to modeling for nonlinear systems is presented. The basic idea is to find out, from vast historical system input-output data sets, some data sets matching with the current working point, then to develop a local model using Local Polynomial Fitting (LPF) algorithm. With the change of working points, multiple local models are built, which realize the exact modeling for the global system. By comparing to other methods, the simulation results show good performance for its simple, effective and reliable estimation.``
A Developed Algorithm of Apriori Based on Association Analysis
Institute of Scientific and Technical Information of China (English)
LI Pingxiang; CHEN Jiangping; BIAN Fuling
2004-01-01
A method for mining frequent itemsets by evaluating their probability of supports based on association analysis is presented. This paper obtains the probability of every 1-itemset by scanning the database, then evaluates the probability of every 2-itemset, every 3-itemset, every k-itemset from the frequent 1-itemsets and gains all the candidate frequent itemsets. This paper also scans the database for verifying the support of the candidate frequent itemsets. Last, the frequent itemsets are mined. The method reduces a lot of time of scanning database and shortens the computation time of the algorithm.
LEACH Algorithm Based on Load Balancing
Directory of Open Access Journals (Sweden)
Wangang Wang
2013-09-01
Full Text Available This paper discusses advantages of LEACH Algorithm and the existing improved model which takes the famous hierarchy clustering routing protocol LEACH Algorithm as researching object. Then the paper indicates the problem that in the algorithm capacity factor of cluster head node is not taken into account leading the structure of clusters to be not so reasonable. This research discusses an energy-uniform cluster and cluster head selecting mechanism in which “Pseudo cluster head” concept is introduced in order to coordinate with “Load Monitor” Mechanism and “Load Leisure” Mechanism to maintain load balancing of cluster head character and stability of network topology. On the basis of LEACH Protocol improving algorithm of LEACH-C, CEFL and DCHS. NS2 simulation instrument is applied to do simulation analysis on the improved algorithm. Simulation result shows that LEACH-P Protocol effectively increase energy utilization efficiency, lengthens network lifetime and balances network load.
Clonal Selection Based Memetic Algorithm for Job Shop Scheduling Problems
Institute of Scientific and Technical Information of China (English)
Jin-hui Yang; Liang Sun; Heow Pueh Lee; Yun Qian; Yan-chun Liang
2008-01-01
A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exploration and exploitation. In the clonal selection mechanism, clonal selection, hypermutation and receptor edit theories are presented to construct an evolutionary searching mechanism which is used for exploration. In the local search mechanism, a simulated annealing local search algorithm based on Nowicki and Smutnicki's neighborhood is presented to exploit local optima. The proposed algorithm is examined using some well-known benchmark problems. Numerical results validate the effectiveness of the proposed algorithm.
Research of Video Steganalysis Algorithm Based on H265 Protocol
Directory of Open Access Journals (Sweden)
Wu Kaicheng
2015-01-01
This paper researches LSB matching VSA based on H265 protocol with the research background of 26 original Video sequences, it firstly extracts classification features out from training samples as input of SVM, and trains in SVM to obtain high-quality category classification model, and then tests whether there is suspicious information in the video sample. The experimental results show that VSA algorithm based on LSB matching can be more practical to obtain all frame embedded secret information and carrier and video of local frame embedded. In addition, VSA adopts the method of frame by frame with a strong robustness in resisting attack in the corresponding time domain.
An interactive segmentation method based on superpixel
DEFF Research Database (Denmark)
Yang, Shu; Zhu, Yaping; Wu, Xiaoyu
2015-01-01
This paper proposes an interactive image-segmentation method which is based on superpixel. To achieve fast segmentation, the method is used to establish a Graphcut model using superpixels as nodes, and a new energy function is proposed. Experimental results demonstrate that the authors' method has...... excellent performance in terms of segmentation accuracy and computation efficiency compared with other segmentation algorithm based on pixels....
An Abnormal Speech Detection Algorithm Based on GMM-UBM
Directory of Open Access Journals (Sweden)
Jun He
2014-05-01
Full Text Available To overcome the defects of common used algorithms based on model for abnormal speech recognition, which existed insufficient training data and difficult to fit each type of abnormal characters, an abnormal speech detection method based on GMM-UBM was proposed in this paper. For compensating the defects of methods based on model which difficult to deal with the diversification speech. Firstly, many normal utterances and unknowing type abnormal utterances came from different speaker, were used to train the GMM-UBM for normal speech and abnormal speech, respectively; secondly, the GMM-UBM obtained by training normal speech and abnormal speech were used to s core for these testing utterances. From the results show that compared with GMM and GMM-SVM methods under 24 Gaussians and the ratio of training speech and testing is 6:4, the correct classification ratio of this proposed have 6.1% and 4.4% improvement, respectively
Directory of Open Access Journals (Sweden)
He Peng Ju
2016-01-01
Full Text Available Nowadays, detecting fetal ECG using abdominal signal is a commonly used method, but fetal ECG signal will be affected by maternal ECG. Current FECG extraction algorithms are mainly aiming at multiple channels signal. They often assume there is only one fetus and did not consider multiple births. This paper proposed a single channel blind source separation (SCBSS algorithm based on source number estimation using multi-algorithm fusion to process single abdominal signal. The method decomposed collected single channel signal into multiple intrinsic mode function (IMF utilizing Empirical Mode Decomposition (EMD, mapping single channel into multiple channels. Four multiple channel source number estimation (MCSNE methods (Bootstrap, Hough, AIC and PCA were weighting fused to estimate accurate source number and the particle swarm optimization algorithm (PSO was employed to determine weighted coefficient. According to source number and IMF, nonnegative matrix was constructed and nonnegative matrix factorization (NMF was employed to separate mixed signals. Experiments used single channel signal mixed by four man-made signals and single channel ECG mixed by two to verify the proposed algorithm. Results showed that the proposed algorithm could determine number of independent signal in single acquired signal. FECG could be extracted from single channel observed signal and the algorithm can be used to solve separation of MECG and FECG.
A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem
Dong-sheng Liu; Shu-jiang Fan
2014-01-01
In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context cla...
A Novel Method to Implement the Matrix Pencil Super Resolution Algorithm for Indoor Positioning
Directory of Open Access Journals (Sweden)
Tariq Jamil Saifullah Khanzada
2011-10-01
Full Text Available This article highlights the estimation of the results for the algorithms implemented in order to estimate the delays and distances for the indoor positioning system. The data sets for the transmitted and received signals are captured at a typical outdoor and indoor area. The estimation super resolution algorithms are applied. Different state of art and super resolution techniques based algorithms are applied to avail the optimal estimates of the delays and distances between the transmitted and received signals and a novel method for matrix pencil algorithm is devised. The algorithms perform variably at different scenarios of transmitted and received positions. Two scenarios are experienced, for the single antenna scenario the super resolution techniques like ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique and theMatrix Pencil algorithms give optimal performance compared to the conventional techniques. In two antenna scenario RootMUSIC and Matrix Pencil algorithm performed better than other algorithms for the distance estimation, however, the accuracy of all the algorithms is worst than the single antenna scenario. In all cases our devised Matrix Pencil algorithm achieved the best estimation results.
Matched field localization based on CS-MUSIC algorithm
Guo, Shuangle; Tang, Ruichun; Peng, Linhui; Ji, Xiaopeng
2016-04-01
The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.
Research on fault diagnosis of nuclear power plants based on genetic algorithms and fuzzy logic
International Nuclear Information System (INIS)
Based on genetic algorithms and fuzzy logic and using expert knowledge, mini-knowledge tree model and standard signals from simulator, a new fuzzy-genetic method is developed to fault diagnosis in nuclear power plants. A new replacement method of genetic algorithms is adopted. Fuzzy logic is used to calculate the fitness of the strings in genetic algorithms. Experiments on the simulator show it can deal with the uncertainty and the fuzzy factor
A Block-Based Multi-Scale Background Extraction Algorithm
Directory of Open Access Journals (Sweden)
Seyed H. Davarpanah
2010-01-01
Full Text Available Problem statement: To extract the moving objects, vision-based surveillance systems subtract the current image from a predefined background image. The efficiency of these systems mainly depends on accuracy of the extracted background image. It should be able to adapt to the changes continuously. In addition, especially in real-time applications the time complexity of this adaptation is a critical matter. Approach: In this study, to extract an adaptive background, a combination of blocking and multi-scale methods is presented. Because of being less sensitive to local movements, block-based techniques are proper to control the non-stationary objects movements, especially in outdoor applications. They can be useful to reduce the effect of these objects on the extracted background. We also used the blocking method to intelligently select the regions which the temporal filtering has to be applied on. In addition, an amended multi-scale algorithm is introduced. This algorithm is a hybrid algorithm, a combination of some nonparametric and parametric filters. It uses a nonparametric filter in the spatial domain to initiate two primary backgrounds. In continue two adapted two-dimensional filters will be used to extract the final background. Results: The qualitative and quantitative results of our experiments certify not only the quality of the final extracted background is acceptable, but also its time consumption is approximately half in compare to the similar methods. Conclusion: Using Multi scaling filtering and applying the filters just to some selected nonoverlapped blocks reduce the time consumption of the extracting background algorithm.
A novel pipeline based FPGA implementation of a genetic algorithm
Thirer, Nonel
2014-05-01
To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.
Solving SAT by Algorithm Transform of Wu‘s Method
Institute of Scientific and Technical Information of China (English)
贺思敏; 张钹
1999-01-01
Recently algorithms for solving propositional satisfiability problem, or SAT,have aroused great interest,and more attention has been paid to transformation problem solving.The commonly used transformation is representation transform,but since its intermediate computing procedure is a black box from the viewpoint of the original problem,this approach has many limitations.In this paper,a new approach called algorithm transform is proposed and applied to solving SAT by Wu's method,a general algorithm for solving polynomial equations.B y establishing the correspondence between the primitive operation in Wu's method and clause resolution is SAT,it is shown that Wu's method,when used for solving SAT,,is primarily a restricted clause resolution procedure.While Wu's method introduces entirely new concepts.e.g.characteristic set of clauses,to resolution procedure,the complexity result of resolution procedure suggests an exponential lower bound to Wu's method for solving general polynomial equations.Moreover,this algorithm transform can help achieve a more efficient implementation of Wu's method since it can avoid the complex manipulation of polynomials and can make the best use of domain specific knowledge.
A Knowledge-Based Simulated Annealing Algorithm to Multiple Satellites Mission Planning Problems
Da-Wei Jin; Li-Ning Xing
2013-01-01
The multiple satellites mission planning is a complex combination optimization problem. A knowledge-based simulated annealing algorithm is proposed to the multiple satellites mission planning problems. The experimental results suggest that the proposed algorithm is effective to the given problem. The knowledge-based simulated annealing method will provide a useful reference for the improvement of existing optimization approaches.
CVLEACH: Coverage based energy efficient LEACH algorithm
Directory of Open Access Journals (Sweden)
Ankit Thakkar
2012-06-01
Full Text Available Designing a protocol stack for wireless sensor network (WSNis a challenging task due to energy, computational and storageconstraints. Energy spent for communication between sensornodes dominates the energy spent for the computation [10].Multi-hop short range communication between wireless sensorsnodes is energy efficient compared to single-hop long rangecommunication. Hierarchical clustering is one of the possiblesolutions to save energy of wireless sensor nodes. Low-EnergyAdaptive Clustering Hierarchy (LEACH, Centralized Low-Energy Adaptive Clustering Hierarchy (LEACH-C andAdvanced Low-Energy Adaptive Clustering Hierarchy(ALEACH are energy efficient hierarchical clustering routingprotocol. In this paper we proposed Coverage based Low-EnergyAdaptive Clustering Hierarchy routing protocol – CVLEACH tomake uniform distribution of Cluster Heads (CHs by creatingnon-overlapped cluster regions using overhearing properties ofthe sensor nodes, which makes the routing protocol more energyefficient and prolongs life time of a wireless sensor network.Simulation results show that CVLEACH improves network lifetime compared to LEACH and ALEACH algorithms.
Radioisotopes Identification Algorithm Based on Generic Database
International Nuclear Information System (INIS)
The homeland security market is seeking for advanced radiation detectors with improved isotope identification capability. This need is increasing due to the operational difficulties derived by the high probability of innocent alarm shielding and masking scenarios. The identification algorithm should focus on discrimination between Naturally Occurring radioactive Material (NORM) and medical isotopes from industrial sources or Special Nuclear Materials (SNM) following the standards for HLS. The SpecIdentifier software application developed to provide spectrum analysis and identification solutions for various types of detectors. The key requirement is identification of radio-isotopes included in standards for spectroscopic radiation detectors (SPRD).The process of isotope identification is based on spectrum analysis leaning on multi-parametric tests. The parameters include Peak-to-Compton ratio, FWHM (resolution), gain and other values. However, many obstacles are in the way to the proper determination of each parameter: Peak-to-Compton ratio varies with scintillator’s geometry; spectrum shape and resolution vary with scintillator’s physical properties; temperature dependency of scintillation light yield result in gain instability; non-proportionality in light yield as function of incident gamma energy; high count rates results in shift the calibration relation (gain)(4,5). These and other obstacles are considered by the proposed approach to the spectrum analysis and are implemented in the SpecIdentifier software
P300 Detection Algorithm Based on Fisher Distance
Directory of Open Access Journals (Sweden)
Pan WANG
2010-12-01
Full Text Available With the aim to improve the divisibility of the features extracted by wavelet transformation in P300 detection, we researched the P300 frequency domain of event related potentials and the influence of mother wavelet selection towards the divisibility of extracted features, and then a novel P300 feature extraction method based on wavelet transform and Fisher distance. This can select features dynamically for a particular subject and thereby overcome the drawbacks of no systematic feature selection method during traditional P300 feature extraction based on wavelet transform. In this paper, both the BCI Competition 2003 and the BCI Competition 2005 data sets of P300 were used for validation, the experiment results showed that the proposed method can increase the divisibility by 121.8% of the features extracted by wavelet transformation, and the classification results showed that the proposed method can increase the classification accuracy by 1.2% while reduce 73.5% of the classification time. At the same time, integration of multi-domain algorithm is proposed based on the research of EEG feature extraction algorithm, and can be utilized in EEG preprocessing and feature extraction, even classification.
Regularization algorithms based on total least squares
DEFF Research Database (Denmark)
Hansen, Per Christian; O'Leary, Dianne P.
1996-01-01
or truncated {\\em SVD}, are not designed for problems in which both the coefficient matrix and the right-hand side are known only approximately. For this reason, we develop {\\em TLS}\\/-based regularization methods that take this situation into account. Here, we survey two different approaches to incorporation...
Image-based surface matching algorithm oriented to structural biology.
Merelli, Ivan; Cozzi, Paolo; D'Agostino, Daniele; Clematis, Andrea; Milanesi, Luciano
2011-01-01
Emerging technologies for structure matching based on surface descriptions have demonstrated their effectiveness in many research fields. In particular, they can be successfully applied to in silico studies of structural biology. Protein activities, in fact, are related to the external characteristics of these macromolecules and the ability to match surfaces can be important to infer information about their possible functions and interactions. In this work, we present a surface-matching algorithm, based on encoding the outer morphology of proteins in images of local description, which allows us to establish point-to-point correlations among macromolecular surfaces using image-processing functions. Discarding methods relying on biological analysis of atomic structures and expensive computational approaches based on energetic studies, this algorithm can successfully be used for macromolecular recognition by employing local surface features. Results demonstrate that the proposed algorithm can be employed both to identify surface similarities in context of macromolecular functional analysis and to screen possible protein interactions to predict pairing capability. PMID:21566253
An Innovative Thinking-Based Intelligent Information Fusion Algorithm
Directory of Open Access Journals (Sweden)
Huimin Lu
2013-01-01
Full Text Available This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.
Fast Subspace Tracking Algorithm Based on the Constrained Projection Approximation
Directory of Open Access Journals (Sweden)
Amir Valizadeh
2009-01-01
Full Text Available We present a new algorithm for tracking the signal subspace recursively. It is based on an interpretation of the signal subspace as the solution of a constrained minimization task. This algorithm, referred to as the constrained projection approximation subspace tracking (CPAST algorithm, guarantees the orthonormality of the estimated signal subspace basis at each iteration. Thus, the proposed algorithm avoids orthonormalization process after each update for postprocessing algorithms which need an orthonormal basis for the signal subspace. To reduce the computational complexity, the fast CPAST algorithm is introduced which has O(nr complexity. In addition, for tracking the signal sources with abrupt change in their parameters, an alternative implementation of the algorithm with truncated window is proposed. Furthermore, a signal subspace rank estimator is employed to track the number of sources. Various simulation results show good performance of the proposed algorithms.
Institute of Scientific and Technical Information of China (English)
Liuhong Zhu; Gang Guo
2012-01-01
This study tested an improved fiber tracking algorithm, which was based on fiber assignment using a continuous tracking algorithm and a two-tensor model. Different models and tracking decisions were used by judging the type of estimation of each voxel. This method should solve the cross-track problem. This study included eight healthy subjects, two axonal injury patients and seven demyelinating disease patients. This new algorithm clearly exhibited a difference in nerve fiber direction between axonal injury and demyelinating disease patients and healthy control subjects. Compared with fiber assignment with a continuous tracking algorithm, our novel method can track more and longer nerve fibers, and also can solve the fiber crossing problem.
Information criterion based fast PCA adaptive algorithm
Institute of Scientific and Technical Information of China (English)
Li Jiawen; Li Congxin
2007-01-01
The novel information criterion (NIC) algorithm can find the principal subspace quickly, but it is not an actual principal component analysis (PCA) algorithm and hence it cannot find the orthonormal eigen-space which corresponds to the principal component of input vector.This defect limits its application in practice.By weighting the neural network's output of NIC, a modified novel information criterion (MNIC) algorithm is presented.MNIC extractes the principal components and corresponding eigenvectors in a parallel online learning program, and overcomes the NIC's defect.It is proved to have a single global optimum and nonquadratic convergence rate, which is superior to the conventional PCA online algorithms such as Oja and LMSER.The relationship among Oja, LMSER and MNIC is exhibited.Simulations show that MNIC could converge to the optimum fast.The validity of MNIC is proved.
An optimization-based iterative algorithm for recovering fluorophore location
Yi, Huangjian; Peng, Jinye; Jin, Chen; He, Xiaowei
2015-10-01
Fluorescence molecular tomography (FMT) is a non-invasive technique that allows three-dimensional visualization of fluorophore in vivo in small animals. In practical applications of FMT, however, there are challenges in the image reconstruction since it is a highly ill-posed problem due to the diffusive behaviour of light transportation in tissue and the limited measurement data. In this paper, we presented an iterative algorithm based on an optimization problem for three dimensional reconstruction of fluorescent target. This method alternates weighted algebraic reconstruction technique (WART) with steepest descent method (SDM) for image reconstruction. Numerical simulations experiments and physical phantom experiment are performed to validate our method. Furthermore, compared to conjugate gradient method, the proposed method provides a better three-dimensional (3D) localization of fluorescent target.
Institute of Scientific and Technical Information of China (English)
高红民; 周惠; 徐立中; 石爱业
2014-01-01
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algorithm and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13%at small training samples and the weaknesses of the conventional methods are overcome.
Economic Load Dispatch by Hybrid Swarm Intelligence Based Gravitational Search Algorithm
Directory of Open Access Journals (Sweden)
Hari Mohan Dubey
2013-07-01
Full Text Available This paper presents a novel heuristic optimization method to solve complex economic load dispatch problem using a hybrid method based on particle swarm optimization (PSO and gravitational search algorithm (GSA. This algorithm named as hybrid PSOGSA combines the social thinking feature in PSO with the local search capability of GSA. To analyze the performance of the PSOGSA algorithm it has been tested on four different standard test cases of different dimensions and complexity levels arising due to practical operating constraints. The obtained results are compared with recently reported methods. The comparison confirms the robustness and efficiency of the algorithm over other existing techniques.
A fast algorithm for image reconstruction based on sparse decomposition
Institute of Scientific and Technical Information of China (English)
YIN Zhongke; WANG Jianying; Pierre Vandergheynst
2007-01-01
It is very slow at present to reconstruct an image from its sparse decomposition results.To overcome this one of the main drawbacks in image sparse decomposition,the property of the energy distribution of atoms is studied in this paper.Based on the property that energy of most atoms is highly concentrated,an algorithm is proposed to fast reconstruct an image from atoms' parameters by limiting atom reconstruction calculating within the atom energy concentrating area.Moreover,methods for fast calculating atom energy and normalization are also put forward.The fast algorithm presented in this Paper improves the speed of the image reconstructing by approximately 32 times without degrading the reconstructed image quality.
ROBIL: Robot Path Planning Based on PBIL Algorithm
Directory of Open Access Journals (Sweden)
Bo-Yeong Kang
2014-09-01
Full Text Available Genetic algorithm (GAs have attracted considerable interest for their usefulness in solving complex robot path planning problems. Specifically, researchers have combined conventional GAs with problem-specific operators and initialization techniques to find the shortest paths in a variety of robotic environments. Unfortunately, these approaches have exhibited inherently unstable performance, and they have tended to make other aspects of the problem-solving process (e.g., adjusting parameter sensitivities and creating high-quality initial populations unmanageable. As an alternative to conventional GAs, we propose a new population-based incremental learning (PBIL algorithm for robot path planning, a probabilistic model of nodes, and an edge bank for generating promising paths. Experimental results demonstrate the computational superiority of the proposed method over conventional GA approaches.
Adaptive learning algorithm based on mixture Gaussian background
Institute of Scientific and Technical Information of China (English)
Zha Yufei; Bi Duyan
2007-01-01
The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data.To address the problem, a new method is proposed.Firstly, the recursive equations are inferred based on the maximum likelihood rule.Secondly, the forgetting factor and learning rate factor are redefined, and their still more general formulations are obtained by analyzing their practical functions.Lastly, the convergence of the proposed algorithm is proved to enable the estimation converge to a local maximum of the data likelihood function according to the stochastic approximation theory.The experiments show that the proposed learning algorithm excels the formers both in converging rate and accuracy.
Complete Boolean Satisfiability Solving Algorithms Based on Local Search
Institute of Scientific and Technical Information of China (English)
Wen-Sheng Guo; Guo-Wu Yang; William N.N.Hung; Xiaoyu Song
2013-01-01
Boolean satisfiability (SAT) is a well-known problem in computer science,artificial intelligence,and operations research.This paper focuses on the satisfiability problem of Model RB structure that is similar to graph coloring problems and others.We propose a translation method and three effective complete SAT solving algorithms based on the characterization of Model RB structure.We translate clauses into a graph with exclusive sets and relative sets.In order to reduce search depth,we determine search order using vertex weights and clique in the graph.The results show that our algorithms are much more effective than the best SAT solvers in numerous Model RB benchmarks,especially in those large benchmark instances.
Clustering-based robust three-dimensional phase unwrapping algorithm.
Arevalillo-Herráez, Miguel; Burton, David R; Lalor, Michael J
2010-04-01
Relatively recent techniques that produce phase volumes have motivated the study of three-dimensional (3D) unwrapping algorithms that inherently incorporate the third dimension into the process. We propose a novel 3D unwrapping algorithm that can be considered to be a generalization of the minimum spanning tree (MST) approach. The technique combines characteristics of some of the most robust existing methods: it uses a quality map to guide the unwrapping process, a region growing mechanism to progressively unwrap the signal, and also cut surfaces to avoid error propagation. The approach has been evaluated in the context of noncontact measurement of dynamic objects, suggesting a better performance than MST-based approaches. PMID:20357860
Routing Optimization Based on Taboo Search Algorithm for Logistic Distribution
Directory of Open Access Journals (Sweden)
Hongxue Yang
2014-04-01
Full Text Available Along with the widespread application of the electronic commerce in the modern business, the logistic distribution has become increasingly important. More and more enterprises recognize that the logistic distribution plays an important role in the process of production and sales. A good routing for logistic distribution can cut down transport cost and improve efficiency. In order to cut down transport cost and improve efficiency, a routing optimization based on taboo search for logistic distribution is proposed in this paper. Taboo search is a metaheuristic search method to perform local search used for logistic optimization. The taboo search is employed to accelerate convergence and the aspiration criterion is combined with the heuristics algorithm to solve routing optimization. Simulation experimental results demonstrate that the optimal routing in the logistic distribution can be quickly obtained by the taboo search algorithm
Directory of Open Access Journals (Sweden)
Jiang Ting
2010-01-01
Full Text Available We optimize the cluster structure to solve problems such as the uneven energy consumption of the radar sensor nodes and random cluster head selection in the traditional clustering routing algorithm. According to the defined cost function for clusters, we present the clustering algorithm which is based on radio-free space path loss. In addition, we propose the energy and distance pheromones based on the residual energy and aggregation of the radar sensor nodes. According to bionic heuristic algorithm, a new ant colony-based clustering algorithm for radar sensor networks is also proposed. Simulation results show that this algorithm can get a better balance of the energy consumption and then remarkably prolong the lifetime of the radar sensor network.
The study on the spam filtering technology based on Bayesian algorithm
Directory of Open Access Journals (Sweden)
Wang Chunping
2013-01-01
Full Text Available This paper analyzed spam filtering technology, carried out a detailed study of Naive Bayes algorithm, and proposed the improved Naive Bayesian mail filtering technology. Improvement can be seen in text selection as well as feature extraction. The general Bayesian text classification algorithm mostly takes information gain and cross-entropy algorithm in feature selection. Through the principle of Bayesian analysis, it was found that the characteristics distribution is closely related to the ability of the feature representing class, so this paper proposes a new feature selection method based on class conditional distribution algorithm. Finally, the experiments show that the proposed algorithm can effectively filter spam.