WorldWideScience

Sample records for algebraic field theory

  1. Factorization algebras in quantum field theory

    CERN Document Server

    Costello, Kevin

    2017-01-01

    Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.

  2. Lectures on algebraic quantum field theory and operator algebras

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Berlin Univ. (Germany). Institut fuer Theoretische Physik. E-mail: schroer@cbpf.br

    2001-04-01

    In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)

  3. Combinatorial Hopf Algebras in (Noncommutative) Quantum Field Theory

    CERN Document Server

    Tanasa, Adrian

    2010-01-01

    We briefly review the r\\^ole played by algebraic structures like combinatorial Hopf algebras in the renormalizability of (noncommutative) quantum field theory. After sketching the commutative case, we analyze the noncommutative Grosse-Wulkenhaar model.

  4. Noncommuting Electric Fields and Algebraic Consistency in Noncommutative Gauge theories

    CERN Document Server

    Banerjee, R

    2003-01-01

    We show that noncommuting electric fields occur naturally in noncommutative gauge theories. Using this noncommutativity, which is field dependent, and a hamiltonian generalisation of the Seiberg-Witten Map, the algebraic consistency in the lagrangian and hamiltonian formulations of these theories, is established. The stability of the Poisson algebra, under this generalised map, is studied.

  5. Algebraic geometry informs perturbative quantum field theory

    CERN Document Server

    Broadhurst, David

    2014-01-01

    Single-scale Feynman diagrams yield integrals that are periods, namely projective integrals of rational functions of Schwinger parameters. Algebraic geometry may therefore inform us of the types of number to which these integrals evaluate. We give examples at 3, 4 and 6 loops of massive Feynman diagrams that evaluate to Dirichlet $L$-series of modular forms and examples at 6, 7 and 8 loops of counterterms that evaluate to multiple zeta values or polylogarithms of the sixth root of unity. At 8 loops and beyond, algebraic geometry informs us that polylogs are insufficient for the evaluation of terms in the beta-function of $\\phi^4$ theory. Here, modular forms appear as obstructions to polylogarithmic evaluation.

  6. Combinatorial Hopf Algebras in Quantum Field Theory I

    Science.gov (United States)

    Figueroa, Héctor; Gracia-Bondía, José M.

    This paper stands at the interface between combinatorial Hopf algebra theory and renormalization theory. Its plan is as follows: Sec. 1.1 is the introduction, and contains an elementary invitation to the subject as well. The rest of Sec. 1 is devoted to the basics of Hopf algebra theory and examples in ascending level of complexity. Section 2 turns around the all-important Faà di Bruno Hopf algebra. Section 2.1 contains a first, direct approach to it. Section 2.2 gives applications of the Faà di Bruno algebra to quantum field theory and Lagrange reversion. Section 2.3 rederives the related Connes-Moscovici algebras. In Sec. 3, we turn to the Connes-Kreimer Hopf algebras of Feynman graphs and, more generally, to incidence bialgebras. In Sec. 3.1, we describe the first. Then in Sec. 3.2, we give a simple derivation of (the properly combinatorial part of) Zimmermann's cancellation-free method, in its original diagrammatic form. In Sec. 3.3, general incidence algebras are introduced, and the Faà di Bruno bialgebras are described as incidence bialgebras. In Sec. 3.4, deeper lore on Rota's incidence algebras allows us to reinterpret Connes-Kreimer algebras in terms of distributive lattices. Next, the general algebraic-combinatorial proof of the cancellation-free formula for antipodes is ascertained. The structure results for commutative Hopf algebras are found in Sec. 4. An outlook section very briefly reviews the coalgebraic aspects of quantization and the Rota-Baxter map in renormalization.

  7. Noncommuting electric fields and algebraic consistency in noncommutative gauge theories

    Science.gov (United States)

    Banerjee, Rabin

    2003-05-01

    We show that noncommuting electric fields occur naturally in θ-expanded noncommutative gauge theories. Using this noncommutativity, which is field dependent, and a Hamiltonian generalization of the Seiberg-Witten map, the algebraic consistency in the Lagrangian and Hamiltonian formulations of these theories is established. A comparison of results in different descriptions shows that this generalized map acts as a canonical transformation in the physical subspace only. Finally, we apply the Hamiltonian formulation to derive the gauge symmetries of the action.

  8. Combinatorial Hopf algebras in quantum field theory I

    CERN Document Server

    Figueroa, H; Figueroa, Hector; Gracia-Bondia, Jose M.

    2004-01-01

    This manuscript collects and expands for the most part a series of lectures on the interface between combinatorial Hopf algebra theory (CHAT) and renormalization theory, delivered by the second-named author in the framework of the joint mathematical physics seminar of the Universites d'Artois and Lille 1, from late January till mid-February 2003. The plan is as follows: Section 1 is the introduction, and Section 2 contains an elementary invitation to the subject. Sections 3-7 are devoted to the basics of Hopf algebra theory and examples, in ascending level of complexity. Section 8 contains a first, direct approach to the Faa di Bruno Hopf algebra. Section 9 gives applications of that to quantum field theory and Lagrange reversion. Section 10 rederives the Connes-Moscovici algebras. In Section 11 we turn to Hopf algebras of Feynman graphs. Then in Section 12 we give an extremely simple derivation of (the properly combinatorial part of) Zimmermann's method, in its original diagrammatic form. In Section 13 gener...

  9. Cosmological applications of algebraic quantum field theory in curved spacetimes

    CERN Document Server

    Hack, Thomas-Paul

    2016-01-01

    This book provides a largely self-contained and broadly accessible exposition on two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology; and a fundamental study of the perturbations in inflation. The two central sections of the book dealing with these applications are preceded by sections providing a pedagogical introduction to the subject. Introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation is also given. The reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but no background in QFT on curved spacetimes or the algebraic approach to QFT is required.

  10. Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes

    CERN Document Server

    Hack, Thomas-Paul

    2015-01-01

    This monograph provides a largely self--contained and broadly accessible exposition of two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology and a fundamental study of the perturbations in Inflation. The two central sections of the book dealing with these applications are preceded by sections containing a pedagogical introduction to the subject as well as introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation. The target reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but does not need to have a background in QFT on curved spacetimes or the algebraic approach to QFT. In particul...

  11. Noncommutative Common Cause Principles in algebraic quantum field theory

    Science.gov (United States)

    Hofer-Szabó, Gábor; Vecsernyés, Péter

    2013-04-01

    States in algebraic quantum field theory "typically" establish correlation between spacelike separated events. Reichenbach's Common Cause Principle, generalized to the quantum field theoretical setting, offers an apt tool to causally account for these superluminal correlations. In the paper we motivate first why commutativity between the common cause and the correlating events should be abandoned in the definition of the common cause. Then we show that the Noncommutative Weak Common Cause Principle holds in algebraic quantum field theory with locally finite degrees of freedom. Namely, for any pair of projections A, B supported in spacelike separated regions VA and VB, respectively, there is a local projection C not necessarily commuting with A and B such that C is supported within the union of the backward light cones of VA and VB and the set {C, C⊥} screens off the correlation between A and B.

  12. Noncommutative Common Cause Principles in Algebraic Quantum Field Theory

    CERN Document Server

    Hofer-Szabó, Gábor

    2012-01-01

    States in algebraic quantum field theory "typically" establish correlation between spacelike separated events. Reichenbach's Common Cause Principle, generalized to the quantum field theoretical setting, offers an apt tool to causally account for these superluminal correlations. In the paper we motivate first why commutativity between the common cause and the correlating events should be abandoned in the definition of the common cause. Then we show that the Noncommutative Weak Common Cause Principle holds in algebraic quantum field theory with locally finite degrees of freedom. Namely, for any pair of projections A, B supported in spacelike separated regions V_A and V_B, respectively, there is a local projection C not necessarily commuting with A and B such that C is supported within the union of the backward light cones of V_A and V_B and the set {C, non-C} screens off the correlation between A and B.

  13. Operator Algebras and Noncommutative Geometric Aspects in Conformal Field Theory

    Science.gov (United States)

    Longo, Roberto

    2010-03-01

    The Operator Algebraic approach to Conformal Field Theory has been particularly fruitful in recent years (leading for example to the classification of all local conformal nets on the circle with central charge c < 1, jointly with Y. Kawahigashi). On the other hand the Operator Algebraic viewpoint offers a natural perspective for a Noncommutative Geometric context within Conformal Field Theory. One basic point here is to uncover the relevant structures. In this talk I will explain some of the basic steps in this "Noncommutative Geometrization program" up to the recent construction of a spectral triple associated with certain Ramond representations of the Supersymmetric Virasoro net. So Alain Connes framework enters into play. This is a joint work with S. Carpi, Y. Kawahigashi, and R. Hillier.

  14. Perturbative algebraic quantum field theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Falk

    2013-08-15

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  15. Algebraic theory of numbers

    CERN Document Server

    Samuel, Pierre

    2008-01-01

    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  16. Hopf Algebra Structure of a Model Quantum Field Theory

    CERN Document Server

    Solomon, A I; Blasiak, P; Horzela, A; Penson, K A

    2006-01-01

    Recent elegant work on the structure of Perturbative Quantum Field Theory (PQFT) has revealed an astonishing interplay between analysis(Riemann Zeta functions), topology (Knot theory), combinatorial graph theory (Feynman Diagrams) and algebra (Hopf structure). The difficulty inherent in the complexities of a fully-fledged field theory such as PQFT means that the essential beauty of the relationships between these areas can be somewhat obscured. Our intention is to display some, although not all, of these structures in the context of a simple zero-dimensional field theory; i.e. a quantum theory of non-commuting operators which do not depend on spacetime. The combinatorial properties of these boson creation and annihilation operators, which is our chosen example, may be described by graphs, analogous to the Feynman diagrams of PQFT, which we show possess a Hopf algebra structure. Our approach is based on the partition function for a boson gas. In a subsequent note in these Proceedings we sketch the relationship...

  17. Batalin-Vilkovisky algebras and two-dimensional topological field theories

    CERN Document Server

    Getzler, E

    1994-01-01

    Batalin-Vilkovisky algebras are a new type of algebraic structure on graded vector spaces, which first arose in the work of Batalin and Vilkovisky on gauge fixing in quantum field theory. In this article, we show that there is a natural structure of a Batalin-Vilkovisky algebra on the cohomology of a topological field theory in two dimensions. Lian and Zuckerman have constructed this Batalin-Vilkovisky structure, in the setting of topological chiral field theories, and shown that the structure is non-trivial in two-dimensional string theory. Our approach is to use algebraic topology, whereas their proofs have a more algebraic character.

  18. Perturbative algebraic quantum field theory an introduction for mathematicians

    CERN Document Server

    Rejzner, Kasia

    2016-01-01

    Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities. We discuss in detail the examples of scalar fields and gauge theories and generalize them to QFT on curved spacetimes. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses QFT on curved spacetimes and effective quantum gravity. The book aims to be accessible researchers and graduate students interested in the mathematical foundations of pQFT are th...

  19. Field Theories on Canonical and Lie-Algebra Noncommutative Spacetimes

    CERN Document Server

    Amelino-Camelia, G; Doplicher, L; Amelino-Camelia, Giovanni; Arzano, Michele; Doplicher, Luisa

    2002-01-01

    Field theories on canonical noncommutative spacetimes, which are being studied also in connection with string theory, and on $\\kappa$-Minkowski spacetime, which is a popular example of Lie-algebra noncommutative spacetime, can be naturally constructed by introducing a suitable generating functional for Green functions in energy-momentum space. Direct reference to a star product is not necessary. It is sufficient to make use of the simple properties that the Fourier transform preserves in these spacetimes and establish the rules for products of wave exponentials that are dictated by the non-commutativity of the coordinates. The approach also provides an elementary description of "planar" and "non-planar" Feynman diagrams. We also comment on the rich phenomenology emerging from the analysis of these theories.

  20. Field Theories on Canonical and Lie-Algebra Noncommutative Spacetimes

    Science.gov (United States)

    Amelino-Camelia, G.; Arzano, M.; Doplicher, L.

    2003-01-01

    Field theories on canonical noncommutative spacetimes, which are being studied also in connection with string theory, and on k-Minkowski spacetime, which is a popular example of Lie-algebra noncommutative spacetime, can be naturally constructed by introducing a suitable generating functional for Green functions in energy-momentum space. Direct reference to a star product is not necessary. It is sufficient to make use of the simple properties that the Fourier transform preserves in these spacetimes and establish the rules for products of wave exponentials that are dictated by the non-commutativity of the coordinates. The approach also provides an elementary description of "planar" and "non-planar" Feynman diagrams. We also comment on the rich phenomenology emerging from the analysis of these theories.

  1. Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory

    Science.gov (United States)

    Sakellariadou, Mairi; Stabile, Antonio; Vitiello, Giuseppe

    2013-06-01

    We report the results obtained in the study of Alain Connes noncommutative spectral geometry construction focusing on its essential ingredient of the algebra doubling. We show that such a two-sheeted structure is related with the gauge structure of the theory, its dissipative character and carries in itself the seeds of quantization. From the algebraic point of view, the algebra doubling process has the same structure of the deformed Hops algebra structure which characterizes quantum field theory.

  2. Noncommutative spectral geometry and the deformed Hopf algebra structure of quantum field theory

    CERN Document Server

    Sakellariadou, Mairi; Vitiello, Giuseppe

    2013-01-01

    We report the results obtained in the study of Alain Connes noncommutative spectral geometry construction focusing on its essential ingredient of the algebra doubling. We show that such a two-sheeted structure is related with the gauge structure of the theory, its dissipative character and carries in itself the seeds of quantization. From the algebraic point of view, the algebra doubling process has the same structure of the deformed Hops algebra structure which characterizes quantum field theory.

  3. Clifford Algebra Cℓ 3(ℂ) for Applications to Field Theories

    Science.gov (United States)

    Panicaud, B.

    2011-10-01

    The multivectorial algebras present yet both an academic and a technological interest. Difficulties can occur for their use. Indeed, in all applications care is taken to distinguish between polar and axial vectors and between scalars and pseudo scalars. Then a total of eight elements are often considered even if they are not given the correct name of multivectors. Eventually because of their simplicity, only the vectorial algebra or the quaternions algebra are explicitly used for physical applications. Nevertheless, it should be more convenient to use directly more complex algebras in order to have a wider range of application. The aim of this paper is to inquire into one particular Clifford algebra which could solve this problem. The present study is both didactic concerning its construction and pragmatic because of the introduced applications. The construction method is not an original one. But this latter allows to build up the associated real algebra as well as a peculiar formalism that enables a formal analogy with the classical vectorial algebra. Finally several fields of the theoretical physics will be described thanks to this algebra, as well as a more applied case in general relativity emphasizing simultaneously its relative validity in this particular domain and the easiness of modeling some physical problems.

  4. An Algebraic Construction of Boundary Quantum Field Theory

    Science.gov (United States)

    Longo, Roberto; Witten, Edward

    2011-04-01

    We build up local, time translation covariant Boundary Quantum Field Theory nets of von Neumann algebras {mathcal A_V} on the Minkowski half-plane M + starting with a local conformal net {mathcal A} of von Neumann algebras on {mathbb R} and an element V of a unitary semigroup {mathcal E(mathcal A)} associated with {mathcal A}. The case V = 1 reduces to the net {mathcal A_+} considered by Rehren and one of the authors; if the vacuum character of {mathcal A} is summable, {mathcal A_V} is locally isomorphic to {mathcal A_+}. We discuss the structure of the semigroup {mathcal E(mathcal A)}. By using a one-particle version of Borchers theorem and standard subspace analysis, we provide an abstract analog of the Beurling-Lax theorem that allows us to describe, in particular, all unitaries on the one-particle Hilbert space whose second quantization promotion belongs to {mathcal E(mathcal A^{(0)})} with {mathcal A^{(0)}} the U(1)-current net. Each such unitary is attached to a scattering function or, more generally, to a symmetric inner function. We then obtain families of models via any Buchholz-Mack-Todorov extension of {mathcal A^{(0)}}. A further family of models comes from the Ising model.

  5. Algebraic extensions of fields

    CERN Document Server

    McCarthy, Paul J

    1991-01-01

    ""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta

  6. Noncommutative o*(N) and usp*(2N) algebras and the corresponding gauge field theories

    CERN Document Server

    Bars, Itzhak; Vasilev, M

    2001-01-01

    The extension of the noncommutative u*(N) Lie algebra to noncommutative orthogonal and symplectic Lie algebras is studied. Using an anti-automorphism of the star-matrix algebra, we show that the u*(N) can consistently be restricted to o*(N) and usp*(N) algebras that have new mathematical structures. We give explicit fundamental matrix representations of these algebras, through which the formulation for the corresponding noncommutative gauge field theories are obtained. In addition, we present a D-brane configuration with an orientifold which realizes geometrically our algebraic construction, thus embedding the new noncommutative gauge theories in superstring theory in the presence of a constant background magnetic field. Some algebraic generalizations that may have applications in other areas of physics are also discussed.

  7. Noncommutative o*(N) and usp*(2N) algebras and the corresponding gauge field theories

    Science.gov (United States)

    Bars, I.; Sheikh-Jabbari, M. M.; Vasiliev, M. A.

    2001-10-01

    The extension of the noncommutative u*(N) Lie algebra to noncommutative orthogonal and symplectic Lie algebras is studied. Using an antiautomorphism of the star-matrix algebra, we show that the u*(N) can consistently be restricted to o*(N) and usp*(N) algebras that have new mathematical structures. We give explicit fundamental matrix representations of these algebras, through which the formulation for the corresponding noncommutative gauge field theories are obtained. In addition, we present a D-brane configuration with an orientifold that realizes geometrically our algebraic construction, thus embedding the new noncommutative gauge theories in a superstring theory in the presence of a constant background magnetic field. Some algebraic generalizations that may have applications in other areas of physics are also discussed.

  8. Quantum field theory on toroidal topology: Algebraic structure and applications

    Science.gov (United States)

    Khanna, F. C.; Malbouisson, A. P. C.; Malbouisson, J. M. C.; Santana, A. E.

    2014-05-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus ΓDd=(S1)d×RD-d is developed from a Lie-group representation and c*c*-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ41. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space-time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy-momentum tensor. Self interacting four-fermion systems, described by the Gross-Neveu and Nambu-Jona-Lasinio models, are considered. Then finite size effects on

  9. Open and Closed String field theory interpreted in classical Algebraic Topology

    OpenAIRE

    Sullivan, Dennis

    2003-01-01

    There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.

  10. Free differential algebras their use in field theory and dual formulation

    CERN Document Server

    Castellani, L; Castellani, Leonardo; Perotto, Alberto

    1995-01-01

    The gauging of free differential algebras (FDA's) produces gauge field theories containing antisymmetric tensors. The FDA's extend the Cartan-Maurer equations of ordinary Lie algebras by incorporating p-form potentials (p > 1). We study here the algebra of FDA transformations. To every p-form in the FDA we associate an extended Lie derivative \\ell generating a corresponding ``gauge" transformation. The field theory based on the FDA is invariant under these new transformations. This gives geometrical meaning to the antisymmetric tensors. The algebra of Lie derivatives is shown to close and provides the dual formulation of FDA's.

  11. Combinatorial Hopf algebraic description of the multiscale renormalization in quantum field theory

    CERN Document Server

    Krajewski, Thomas; Tanasa, Adrian

    2012-01-01

    We define in this paper several Hopf algebras describing the combinatorics of the so-called multi-scale renormalization in quantum field theory. After a brief recall of the main mathematical features of multi-scale renormalization, we define assigned graphs, that are graphs with appropriate decorations for the multi-scale framework. We then define Hopf algebras on these assigned graphs and on the Gallavotti-Nicol\\`o trees, particular class of trees encoding the supplementary informations of the assigned graphs. Several morphisms between these combinatorial Hopf algebras and the Connes-Kreimer algebra are given. Finally, scale dependent couplings are analyzed via this combinatorial algebraic setting.

  12. Algebraic number theory

    CERN Document Server

    Jarvis, Frazer

    2014-01-01

    The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...

  13. Lorentz covariant field theory on noncommutative spacetime based on DFR algebra

    CERN Document Server

    Okumura, Y

    2003-01-01

    Lorentz covariance is the fundamental principle of every relativistic field theory which insures consistent physical descriptions. Even if the space-time is noncommutative, field theories on it should keep Lorentz covariance. In this letter, it is shown that the field theory on noncommutative spacetime is Lorentz covariant if the noncommutativity emerges from the algebra of spacetime operators described by Doplicher, Fredenhagen and Roberts.

  14. Algebraic theory of molecules

    CERN Document Server

    Iachello, F

    1995-01-01

    1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters

  15. K-theory for ring C*-algebras - the case of number fields with higher roots of unity

    OpenAIRE

    Li, Xin; Lück, Wolfgang

    2012-01-01

    We compute K-theory for ring C*-algebras in the case of higher roots of unity and thereby completely determine the K-theory for ring C*-algebras attached to rings of integers in arbitrary number fields.

  16. The theory of algebraic numbers

    CERN Document Server

    Pollard, Harry

    1998-01-01

    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  17. Linear algebraic theory of partial coherence: continuous fields and measures of partial coherence.

    Science.gov (United States)

    Ozaktas, Haldun M; Gulcu, Talha Cihad; Alper Kutay, M

    2016-11-01

    This work presents a linear algebraic theory of partial coherence for optical fields of continuous variables. This approach facilitates use of linear algebraic techniques and makes it possible to precisely define the concepts of incoherence and coherence in a mathematical way. We have proposed five scalar measures for the degree of partial coherence. These measures are zero for incoherent fields, unity for fully coherent fields, and between zero and one for partially coherent fields.

  18. Algebraic number theory

    CERN Document Server

    Weiss, Edwin

    1998-01-01

    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  19. The Cutkosky Rule of Three Dimensional Noncommutative Field Theory in Lie Algebraic Noncommutative Spacetime

    Science.gov (United States)

    Sasai, Yuya; Sasakura, Naoki

    2009-12-01

    We have investigated the unitarity of three dimensional noncommutative scalar field theory in Lie algebraic noncommutative spacetime [x̂i, x̂j] = 2iκɛijkx̂k, (i, j, k = 0, 1, 2). This noncommutative field theory possesses an SL(2, R)/Z2 group momentum space, which leads to a Hopf algebraic translational symmetry. We have checked the Cutkosky rule of the one-loop self-energy diagrams in the noncommutative φ3 theory when we include a braiding, which is necessary for the noncommutative field theory to possess the Hopf algebraic translational symmetry at quantum level. Then, we have found that the Cutkosky rule is satisfied if the mass of the scalar field is less than 1/√2κ , which however leads to be violations of the Cutkosky rule for smaller masses in more complicated diagrams.

  20. The Cutkosky rule of three dimensional noncommutative field theory in Lie algebraic noncommutative spacetime

    CERN Document Server

    Sasai, Yuya

    2009-01-01

    We investigate the unitarity of three dimensional noncommutative scalar field theory in the Lie algebraic noncommutative spacetime [x^i,x^j]=2i kappa epsilon^{ijk}x_k. This noncommutative field theory possesses a SL(2,R)/Z_2 group momentum space, which leads to a Hopf algebraic translational symmetry. We check the Cutkosky rule of the one-loop self-energy diagrams in the noncommutative phi^3 theory when we include a braiding, which is necessary for the noncommutative field theory to possess the Hopf algebraic translational symmetry at quantum level. Then, we find that the Cutkosky rule is satisfied if the mass is less than 1/(2^(1/2)kappa).

  1. Algebra versus analysis in statistical mechanics and quantum field theory

    OpenAIRE

    McCoy, Barry M.

    2000-01-01

    I contrast the profound differences in the ways in which algebra and analysis are used in physics. In particular I discuss the fascinating phenomenon that theoretical physicists devote almost all their efforts to algebraic problems even though all problems of experimental interest require some methods of analysis.

  2. Heisenberg double of supersymmetric algebras for noncommutative quantum field theory

    Science.gov (United States)

    Kirchanov, V. S.

    2013-09-01

    The ground work is laid for the construction of a Heisenberg superdouble in the form of a smash product of a standard Poincaré-Lie quantum-operator superalgebra with coalgebra and its double Lie spatial superalgebra with coalgebra, which are Hopf algebras and a Hopf modular algebra, respectively. Deformation of the superalgebras is realized by Drinfeld twists for the shift and supershift operators. As a result, an extended algebra is obtained, containing a non(anti)commutative superspace and quantum-group generators.

  3. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    Science.gov (United States)

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  4. Domain wall solitons and Hopf algebraic translational symmetries in noncommutative field theories

    Science.gov (United States)

    Sasai, Yuya; Sasakura, Naoki

    2008-02-01

    Domain wall solitons are the simplest topological objects in field theories. The conventional translational symmetry in a field theory is the generator of a one-parameter family of domain wall solutions, and induces a massless moduli field which propagates along a domain wall. We study similar issues in braided noncommutative field theories possessing Hopf algebraic translational symmetries. As a concrete example, we discuss a domain wall soliton in the scalar ϕ4 braided noncommutative field theory in Lie-algebraic noncommutative space-time, [xi,xj]=2iκγijkxk (i,j,k=1,2,3), which has a Hopf algebraic translational symmetry. We first discuss the existence of a domain wall soliton in view of Derrick’s theorem, and construct explicitly a one-parameter family of solutions in perturbation of the noncommutativity parameter κ. We then find the massless moduli field which propagates on the domain wall soliton. We further extend our analysis to the general Hopf algebraic translational symmetry.

  5. Domain wall solitons and Hopf algebraic translational symmetries in noncommutative field theories

    CERN Document Server

    Sasai, Yuya

    2007-01-01

    Domain wall solitons are the simplest topological objects in field theories. The conventional translational symmetry in a field theory is the generator of a one-parameter family of domain wall solutions, and induces a massless moduli field which propagates along a domain wall. We study similar issues in braided noncommutative field theories possessing Hopf algebraic translational symmetries. As a concrete example, we discuss a domain wall soliton in the scalar phi^4 braided noncommutative field theory in Lie-algebraic noncommutative spacetime, [x^i,x^j]=2i kappa epsilon^{ijk}x_k (i,j,k=1,2,3), which has a Hopf algebraic translational symmetry. We first discuss the existence of a domain wall soliton in view of Derrick's theorem, and construct explicitly a one-parameter family of solutions in perturbation of the noncommutativity parameter kappa. We then find the massless moduli field which propagates on the domain wall soliton. We further extend our analysis to the general Hopf algebraic translational symmetry.

  6. Quantum field theory on toroidal topology: algebraic structure and applications

    CERN Document Server

    Khanna, F C; Malbouisson, J M C; Santana, A E

    2014-01-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordstr\\"om, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particles physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matted physics.

  7. Algebraic cobordism theory attached to algebraic equivalence

    CERN Document Server

    Krishna, Amalendu

    2012-01-01

    After the algebraic cobordism theory of Levine-Morel, we develop a theory of algebraic cobordism modulo algebraic equivalence. We prove that this theory can reproduce Chow groups modulo algebraic equivalence and the zero-th semi-topological K-groups. We also show that with finite coefficients, this theory agrees with the algebraic cobordism theory. We compute our cobordism theory for some low dimensional or special types of varieties. The results on infinite generation of some Griffiths groups by Clemens and on smash-nilpotence by Voevodsky and Voisin are also lifted and reinterpreted in terms of this cobordism theory.

  8. The Casimir Effect from the Point of View of Algebraic Quantum Field Theory

    Science.gov (United States)

    Dappiaggi, Claudio; Nosari, Gabriele; Pinamonti, Nicola

    2016-06-01

    We consider a region of Minkowski spacetime bounded either by one or by two parallel, infinitely extended plates orthogonal to a spatial direction and a real Klein-Gordon field satisfying Dirichlet boundary conditions. We quantize these two systems within the algebraic approach to quantum field theory using the so-called functional formalism. As a first step we construct a suitable unital ∗-algebra of observables whose generating functionals are characterized by a labelling space which is at the same time optimal and separating and fulfils the F-locality property. Subsequently we give a definition for these systems of Hadamard states and we investigate explicit examples. In the case of a single plate, it turns out that one can build algebraic states via a pull-back of those on the whole Minkowski spacetime, moreover inheriting from them the Hadamard property. When we consider instead two plates, algebraic states can be put in correspondence with those on flat spacetime via the so-called method of images, which we translate to the algebraic setting. For a massless scalar field we show that this procedure works perfectly for a large class of quasi-free states including the Poincaré vacuum and KMS states. Eventually Wick polynomials are introduced. Contrary to the Minkowski case, the extended algebras, built in globally hyperbolic subregions can be collected in a global counterpart only after a suitable deformation which is expressed locally in terms of a *-isomorphism. As a last step, we construct explicitly the two-point function and the regularized energy density, showing, moreover, that the outcome is consistent with the standard results of the Casimir effect.

  9. Rigidification of algebras over essentially algebraic theories

    CERN Document Server

    Rosicky, J

    2012-01-01

    Badzioch and Bergner proved a rigidification theorem saying that each homotopy simplicial algebra is weakly equivalent to a simplicial algebra. The question is whether this result can be extended from algebraic theories to finite limit theories and from simplicial sets to more general monoidal model categories. We will present some answers to this question.

  10. Computer algebra in quantum field theory integration, summation and special functions

    CERN Document Server

    Schneider, Carsten

    2013-01-01

    The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including

  11. K-theory for ring C*-algebras attached to function fields with only one infinite place

    OpenAIRE

    2011-01-01

    We study the K-theory of ring C*-algebras associated to rings of integers in global function fields with only one single infinite place. First, we compute the torsion-free part of the K-groups of these ring C*-algebras. Secondly, we show that, under a certain primeness condition, the torsion part of K-theory determines the inertia degrees at infinity of our function fields.

  12. Field Theory on Noncommutative Space-Time and the Deformed Virasoro Algebra

    CERN Document Server

    Chaichian, Masud; Presnajder, P

    2000-01-01

    First we briefly describe the link between the Virasoro algebra and the free scalar field on a two-dimensional space-time given as a standard commutative cylinder, and in the Euclidean version on a complex plane. The field-theoretical model generalized then to the noncommutative cylinder leads to discrete time-evolution. Its Euclidean version is shown to be equivalent to a model on a complex $q$-plane. There is a direct link between the model on a noncommutative cylinder and the deformed Virasoro algebra suggested earlier, which describes the symmetry of the theory. The problems with the supersymmetric extension of the model on a noncommutative super-space are briefly discussed.

  13. String field representation of the Virasoro algebra

    Science.gov (United States)

    Mertes, Nicholas; Schnabl, Martin

    2016-12-01

    We construct a representation of the zero central charge Virasoro algebra using string fields in Witten's open bosonic string field theory. This construction is used to explore extensions of the KBc algebra and find novel algebraic solutions of open string field theory.

  14. String field representation of the Virasoro algebra

    CERN Document Server

    Mertes, Nicholas

    2016-01-01

    We construct a representation of the zero central charge Virasoro algebra using string fields in Witten's open bosonic string field theory. This construction is used to explore extensions of the KBc algebra and find novel algebraic solutions of open string field theory.

  15. Distribution theory of algebraic numbers

    CERN Document Server

    Yang, Chung-Chun

    2008-01-01

    The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.

  16. Group actions on C*-algebras, 3-cocycles and quantum field theory

    Science.gov (United States)

    Carey, A. L.; Grundling, H.; Raeburn, I.; Sutherland, C.

    1995-03-01

    We study group extensions Δ→Γ→Ω, where Γ acts on a C*-algebra A. Given a twisted covariant representation π, V of the pair A, Δ we construct 3-cocycles on Ω with values in the centre of the group generated by V(Δ). These 3-cocycles are obstructions to the existence of an extension of Ω by V(Δ) which acts on A compatibly with Γ. The main theorems of the paper introduce a subsidiary invariant Λ which classifies actions of Γ on V(Δ) and in terms of which a necessary and sufficient condition for the the cohomology class of the 3-cocycle to be non-trivial may be formulated. Examples are provided which show how non-trivial 3-cocycles may be realised. The framework we choose to exhibit these essentially mathematical results is influenced by anomalous gauge field theories. We show how to interpret our results in that setting in two ways, one motivated by an algebraic approach to constrained dynamics and the other by the descent equation approach to constructing cocycles on gauge groups. In order to make comparisons with the usual approach to cohomology in gauge theory we conclude with a Lie algebra version of the invariant Λ and the 3-cocycle.

  17. On the stability of KMS states in perturbative algebraic quantum field theories

    CERN Document Server

    Drago, Nicolo; Pinamonti, Nicola

    2016-01-01

    We analyze the stability properties shown by KMS states for interacting massive scalar fields propagating over Minkowski spacetime, recently constructed in the framework of perturbative algebraic quantum field theories by Fredenhagen and Lindner \\cite{FredenhagenLindner}. In particular, we prove the validity of the return to equilibrium property when the interaction Lagrangean has compact spatial support. Surprisingly, this does not hold anymore, if the adiabatic limit is considered, namely when the interaction Lagrangean is invariant under spatial translations. Consequently, an equilibrium state under the adiabatic limit for a perturbative interacting theory evolved with the free dynamics does not converge anymore to the free equilibrium state. Actually, we show that its ergodic mean converges to a non equilibrium steady state for the free theory.

  18. Uniform Algebras Over Complete Valued Fields

    CERN Document Server

    Mason, Jonathan W

    2012-01-01

    UNIFORM algebras have been extensively investigated because of their importance in the theory of uniform approximation and as examples of complex Banach algebras. An interesting question is whether analogous algebras exist when a complete valued field other than the complex numbers is used as the underlying field of the algebra. In the Archimedean setting, this generalisation is given by the theory of real function algebras introduced by S. H. Kulkarni and B. V. Limaye in the 1980s. This thesis establishes a broader theory accommodating any complete valued field as the underlying field by involving Galois automorphisms and using non-Archimedean analysis. The approach taken keeps close to the original definitions from the Archimedean setting. Basic function algebras are defined and generalise real function algebras to all complete valued fields. Several examples are provided. Each basic function algebra is shown to have a lattice of basic extensions related to the field structure. In the non-Archimedean settin...

  19. Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review

    Directory of Open Access Journals (Sweden)

    Ion C. Baianu

    2009-04-01

    Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.

  20. Algebraic approach to quantum field theory on a class of noncommutative curved spacetimes

    CERN Document Server

    Ohl, Thorsten

    2009-01-01

    In this article we construct the quantum field theory of a free real scalar field on a class of noncommutative manifolds, obtained via deformation quantization using triangular Drinfel'd twists. We construct deformed quadratic action functionals and compute the corresponding equation of motion operators. The Green's operators and the fundamental solution of the deformed equation of motion are obtained in terms of formal power series. It is shown that, using the deformed fundamental solution, we can define the Weyl algebra of field observables, which in general depends on the spacetime deformation parameter. This dependence is absent in the special case of Killing deformations, which include in particular the Moyal-Weyl deformation of the Minkowski spacetime.

  1. Coproduct and star product in field theories on Lie-algebra noncommutative space-times

    Science.gov (United States)

    Amelino-Camelia, Giovanni; Arzano, Michele

    2002-04-01

    We propose a new approach to field theory on κ-Minkowski noncommutative space-time, a popular example of Lie-algebra space-time. Our proposal is essentially based on the introduction of a star product, a technique which is proving to be very fruitful in analogous studies of canonical noncommutative space-times, such as the ones recently found to play a role in the description of certain string-theory backgrounds. We find to be incorrect the expectation, previously reported in the literature, that the lack of symmetry of the κ-Poincaré coproduct should lead to interaction vertices that are not symmetric under exchanges of the momenta of identical particles entering the relevant processes. We show that in κ-Minkowski the coproduct and the star product must indeed treat momenta in a nonsymmetric way, but the overall structure of interaction vertices is symmetric under exchange of identical particles. We also show that in κ-Minkowski field theories it is convenient to introduce the concepts of ``planar'' and ``nonplanar'' Feynman loop diagrams, again in close analogy with the corresponding concepts previously introduced in the study of field theories in canonical noncommutative space-times.

  2. Unified (p,q;α,γ,l)-deformation of oscillator algebra and two-dimensional conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Burban, I.M., E-mail: burban@bitp.kiev.ua

    2013-11-29

    The unified (p,q;α,γ,l)-deformation of a number of well-known deformed oscillator algebras is introduced. The deformation is constructed by imputing new free parameters into the structure functions and by generalizing the defining relations of these algebras. The generalized Jordan–Schwinger and Holstein–Primakoff realizations of the U{sub pq}{sup αγl}(su(2)) algebra by the generalized (p,q;α,γ,l)-deformed operators are found. The generalized (p,q;α,γ,l)-deformation of the two-dimensional conformal field theory is established. By introducing the (p,q;α,γ,l)-operator product expansion (OPE) between the energy–momentum tensor and primary fields, we obtain the (p,q;α,γ,l)-deformed centerless Virasoro algebra. The two-point correlation function of the primary generalized (p,q;α,γ,l)-deformed fields is calculated.

  3. Noncommutative Field Theory on Yang's Space-Time Algebra, Covariant Moyal Star Product and Matrix Model

    CERN Document Server

    Tanaka, S

    2004-01-01

    Noncommutative field theory on Yang's quantized space-time algebra (YSTA) is studied. It gives a theoretical framework to reformulate the matrix model as quantum mechanics of $D_0$ branes in a Lorentz-covariant form. The so-called kinetic term ($\\sim {\\hat{P_i}}^2)$ and potential term ($\\sim {[\\hat{X_i},\\hat{X_j}]}^2)$ of $D_0$ branes in the matrix model are described now in terms of Casimir operator of $SO(D,1)$, a subalgebra of the primary algebra $SO(D+1,1)$ which underlies YSTA with two contraction- parameters, $\\lambda$ and $R$. $D$-dimensional noncommutative space-time and momentum operators $\\hat{X_\\mu}$ and $\\hat{P_\\mu}$ in YSTA show a distinctive spectral structure, that is, space-components $\\hat{X_i}$ and $\\hat{P_i}$ have discrete eigenvalues, and time-components $\\hat{X_0}$ and $\\hat{P_0}$ continuous eigenvalues, consistently with Lorentz-covariance. According to the method of Lorentz-covariant Moyal star product proper to YSTA, the field equation of $D_0$ brane on YSTA is derived in a nontrivial ...

  4. Observable Algebra in Field Algebra of G-spin Models

    Institute of Scientific and Technical Information of China (English)

    蒋立宁

    2003-01-01

    Field algebra of G-spin models can provide the simplest examples of lattice field theory exhibiting quantum symmetry. Let D(G) be the double algebra of a finite group G and D(H), a sub-algebra of D(G) determined by subgroup H of G. This paper gives concrete generators and the structure of the observable algebra AH, which is a D(H)-invariant sub-algebra in the field algebra of G-spin models F, and shows that AH is a C*-algebra. The correspondence between H and AH is strictly monotonic. Finally, a duality between D(H) and AH is given via an irreducible vacuum C*-representation of F.

  5. Algebra of the Infrared: String Field Theoretic Structures in Massive ${\\cal N}=(2,2)$ Field Theory In Two Dimensions

    CERN Document Server

    Gaiotto, Davide; Witten, Edward

    2015-01-01

    We introduce a "web-based formalism" for describing the category of half-supersymmetric boundary conditions in $1+1$ dimensional massive field theories with ${\\cal N}=(2,2)$ supersymmetry and unbroken $U(1)_R$ symmetry. We show that the category can be completely constructed from data available in the far infrared, namely, the vacua, the central charges of soliton sectors, and the spaces of soliton states on $\\mathbb{R}$, together with certain "interaction and boundary emission amplitudes". These amplitudes are shown to satisfy a system of algebraic constraints related to the theory of $A_\\infty$ and $L_\\infty$ algebras. The web-based formalism also gives a method of finding the BPS states for the theory on a half-line and on an interval. We investigate half-supersymmetric interfaces between theories and show that they have, in a certain sense, an associative "operator product." We derive a categorification of wall-crossing formulae. The example of Landau-Ginzburg theories is described in depth drawing on ide...

  6. Fields and Forms on -Algebras

    Indian Academy of Sciences (India)

    Cătălin Ciupală

    2005-02-01

    In this paper we introduce non-commutative fields and forms on a new kind of non-commutative algebras: -algebras. We also define the Frölicher–Nijenhuis bracket in the non-commutative geometry on -algebras.

  7. Topics in algebraic and topological K-theory

    CERN Document Server

    Baum, Paul Frank; Meyer, Ralf; Sánchez-García, Rubén; Schlichting, Marco; Toën, Bertrand

    2011-01-01

    This volume is an introductory textbook to K-theory, both algebraic and topological, and to various current research topics within the field, including Kasparov's bivariant K-theory, the Baum-Connes conjecture, the comparison between algebraic and topological K-theory of topological algebras, the K-theory of schemes, and the theory of dg-categories.

  8. Combinatorial Hopf algebra for the Ben Geloun-Rivasseau tensor field theory

    CERN Document Server

    Raasakka, Matti

    2013-01-01

    The Ben Geloun-Rivasseau quantum field theoretical model is the first tensor model shown to be perturbatively renormalizable. We define here an appropriate Hopf algebra describing the combinatorics of this new tensorial renormalization. The structure we propose is significantly different from the previously defined Connes-Kreimer combinatorial Hopf algebras due to the involved combinatorial and topological properties of the tensorial Feynman graphs. In particular, the 2- and 4-point function insertions must be defined to be non-trivial only if the superficial divergence degree of the associated Feynman integral is conserved.

  9. Algebraic and stochastic coding theory

    CERN Document Server

    Kythe, Dave K

    2012-01-01

    Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.

  10. Foliation theory in algebraic geometry

    CERN Document Server

    McKernan, James; Pereira, Jorge

    2016-01-01

    Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.  Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...

  11. Algebraic K-theory of generalized schemes

    DEFF Research Database (Denmark)

    Anevski, Stella Victoria Desiree

    Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry...

  12. Algebraic Theories over Nominal Sets

    CERN Document Server

    Kurz, Alexander; Velebil, Jiří

    2010-01-01

    We investigate the foundations of a theory of algebraic data types with variable binding inside classical universal algebra. In the first part, a category-theoretic study of monads over the nominal sets of Gabbay and Pitts leads us to introduce new notions of finitary based monads and uniform monads. In a second part we spell out these notions in the language of universal algebra, show how to recover the logics of Gabbay-Mathijssen and Clouston-Pitts, and apply classical results from universal algebra.

  13. Introduction to algebraic independence theory

    CERN Document Server

    Philippon, Patrice

    2001-01-01

    In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.

  14. Algebraic aspects of gauge theories

    Science.gov (United States)

    Zharinov, V. V.

    2014-08-01

    Gauge theories are primary tools in modern elementary particle physics. The generally recognized mathematical foundations of these theories are in differential geometry, namely, in the theory of connections in a principal fiber bundle. We propose another approach to the mathematical description of gauge theories based on a combination of algebraic and geometric methods.

  15. Homology theory on algebraic varieties

    CERN Document Server

    Wallace, Andrew H

    1958-01-01

    Homology Theory on Algebraic Varieties, Volume 6 deals with the principles of homology theory in algebraic geometry and includes the main theorems first formulated by Lefschetz, one of which is interpreted in terms of relative homology and another concerns the Poincaré formula. The actual details of the proofs of these theorems are introduced by geometrical descriptions, sometimes aided with diagrams. This book is comprised of eight chapters and begins with a discussion on linear sections of an algebraic variety, with emphasis on the fibring of a variety defined over the complex numbers. The n

  16. Algebraic approach to quantum field theory on a class of noncommutative curved spacetimes

    Science.gov (United States)

    Ohl, Thorsten; Schenkel, Alexander

    2010-12-01

    In this article we study the quantization of a free real scalar field on a class of noncommutative manifolds, obtained via formal deformation quantization using triangular Drinfel’d twists. We construct deformed quadratic action functionals and compute the corresponding equation of motion operators. The Green’s operators and the fundamental solution of the deformed equation of motion are obtained in terms of formal power series. It is shown that, using the deformed fundamental solution, we can define deformed *-algebras of field observables, which in general depend on the spacetime deformation parameter. This dependence is absent in the special case of Killing deformations, which include in particular the Moyal-Weyl deformation of the Minkowski spacetime.

  17. C*-algebras and operator theory

    CERN Document Server

    Murphy, Gerald J

    1990-01-01

    This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

  18. Duality theories for Boolean algebras with operators

    CERN Document Server

    Givant, Steven

    2014-01-01

    In this new text, Steven Givant—the author of several acclaimed books, including works co-authored with Paul Halmos and Alfred Tarski—develops three theories of duality for Boolean algebras with operators. Givant addresses the two most recognized dualities (one algebraic and the other topological) and introduces a third duality, best understood as a hybrid of the first two. This text will be of interest to graduate students and researchers in the fields of mathematics, computer science, logic, and philosophy who are interested in exploring special or general classes of Boolean algebras with operators. Readers should be familiar with the basic arithmetic and theory of Boolean algebras, as well as the fundamentals of point-set topology.

  19. Higher algebraic K-theory an overview

    CERN Document Server

    Lluis-Puebla, Emilio; Gillet, Henri; Soulé, Christophe; Snaith, Victor

    1992-01-01

    This book is a general introduction to Higher Algebraic K-groups of rings and algebraic varieties, which were first defined by Quillen at the beginning of the 70's. These K-groups happen to be useful in many different fields, including topology, algebraic geometry, algebra and number theory. The goal of this volume is to provide graduate students, teachers and researchers with basic definitions, concepts and results, and to give a sampling of current directions of research. Written by five specialists of different parts of the subject, each set of lectures reflects the particular perspective ofits author. As such, this volume can serve as a primer (if not as a technical basic textbook) for mathematicians from many different fields of interest.

  20. Solutions in Bosonic String Field Theory and AdS Higher Spin Algebras

    Science.gov (United States)

    Polyakov, Dimitri

    The following sections are included: * Introduction. SFT vs Vasiliev's HS EOM: The Motivation * c = 1 Model and HS Algebra in SFT Solution: A Warm-up Example * SFT Ansatz Solution: Bell Polynomials, Star Product Computation and Generating Function for Enveloping of HS Algebras * References

  1. Algebraic connection theory of L-modules

    NARCIS (Netherlands)

    Ruiter, Jan de

    1972-01-01

    It is striking that many contravariant algebraic aspects of manifolds and especially of connections and cunvature are not restricted to manifolds. Another question raised by the theory is the following one: how far are diffenentiable functions and differentiable fields on a differentiable manifold d

  2. Capacity theory on algebraic curves

    CERN Document Server

    Rumely, Robert S

    1989-01-01

    Capacity is a measure of size for sets, with diverse applications in potential theory, probability and number theory. This book lays foundations for a theory of capacity for adelic sets on algebraic curves. Its main result is an arithmetic one, a generalization of a theorem of Fekete and Szegö which gives a sharp existence/finiteness criterion for algebraic points whose conjugates lie near a specified set on a curve. The book brings out a deep connection between the classical Green's functions of analysis and Néron's local height pairings; it also points to an interpretation of capacity as a kind of intersection index in the framework of Arakelov Theory. It is a research monograph and will primarily be of interest to number theorists and algebraic geometers; because of applications of the theory, it may also be of interest to logicians. The theory presented generalizes one due to David Cantor for the projective line. As with most adelic theories, it has a local and a global part. Let /K be a smooth, complet...

  3. On the identification of finite operator algebras in two-dimensional conformally invariant field theories

    Energy Technology Data Exchange (ETDEWEB)

    Christe, P.; Flume, R.

    1987-04-09

    We investigate the structure of the linear differential operators whose solutions determine the four-point correlations of primary operators in the d=2 conformally invariant SU(2) sigma-model with Wess-Zumino term and the d=2 critical statistical systems with central Virasoro charge smaller than one. Factorisation properties of the differential operators are related to a finite closure of the operator algebras. We recover the selection and fusion rules of Fateev, Zamolodchikov and Gepner, Witten for the SU(2) sigma-model. It is outlined how the results of the SU(2) model can be used for the identification of closed operator algebras in the statistical model.

  4. On the identification of finite operator algebras in two-dimensional conformally invariant field theories

    Energy Technology Data Exchange (ETDEWEB)

    Christe, P.; Flume, R.

    1986-10-01

    We investigate the structure of the linear differential operators whose solutions determine the four point correlations of primary operators in the d=2 conformally invariant SU(2) sigma-model with Wess-Zumino term and the d=2 critical statistical systems with central Virasoro charge smaller than one. Factorisation properties of the differential operators are related to a finite closure of the operator algebras. We recover the selection and fusion rules of Fateev, Zamolodchikov and Gepner, Witten for the SU(2) sigma-model. It is outlined how the results of the SU(2) model can be used for the identification of closed operator algebras in the statistical model.

  5. Krichever-Novikov type algebras theory and applications

    CERN Document Server

    Schlichenmaier, Martin

    2014-01-01

    Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are

  6. Algebraic and structural automata theory

    CERN Document Server

    Mikolajczak, B

    1991-01-01

    Automata Theory is part of computability theory which covers problems in computer systems, software, activity of nervous systems (neural networks), and processes of live organisms development.The result of over ten years of research, this book presents work in the following areas of Automata Theory: automata morphisms, time-varying automata, automata realizations and relationships between automata and semigroups.Aimed at those working in discrete mathematics and computer science, parts of the book are suitable for use in graduate courses in computer science, electronics, telecommunications, and control engineering. It is assumed that the reader is familiar with the basic concepts of algebra and graph theory.

  7. Renormalization in quantum field theory and the Riemann-Hilbert problem. I. Hopf algebra structure of graphs and the main theorem

    Energy Technology Data Exchange (ETDEWEB)

    Connes, A.; Kreimer, D. [Institut des Hautes Etudes Sci., Bures sur Yvette (France)

    2000-03-01

    This paper gives a complete selfcontained proof of our result (1999) showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra H which is commutative asan algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra G whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of H. We show then that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop {gamma}(z) element of G, z element of C, where C is a small circle of complex dimensions around the integer dimension D of space-time. Our main result is that the renormalized theory is just the evaluation at z=D of the holomorphic part {gamma}{sub +} of the Birkhoff decomposition of {gamma}. We begin to analyse the group G and show that it is a semi-direct product of an easily understood abelian group by a highly non-trivial group closely tied up with groups of diffeomorphisms. (orig.)

  8. International Conference on Semigroups, Algebras and Operator Theory

    CERN Document Server

    Meakin, John; Rajan, A

    2015-01-01

    This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will f...

  9. Renormalization and Hopf Algebraic Structure of the 5-Dimensional Quartic Tensor Field Theory

    CERN Document Server

    Avohou, Remi Cocou; Tanasa, Adrian

    2015-01-01

    This paper is devoted to the study of renormalization of the quartic melonic tensor model in dimension (=rank) five. We review the perturbative renormalization and the computation of the one loop beta function, confirming the asymptotic freedom of the model. We then define the Connes-Kreimer-like Hopf algebra describing the combinatorics of the renormalization of this model and we analyze in detail, at one- and two-loop levels, the Hochschild cohomology allowing to write the combinatorial Dyson-Schwinger equations. Feynman tensor graph Hopf subalgebras are also exhibited.

  10. Mixed motives and algebraic K-theory

    CERN Document Server

    Jannsen, Uwe

    1990-01-01

    The relations that could or should exist between algebraic cycles, algebraic K-theory, and the cohomology of - possibly singular - varieties, are the topic of investigation of this book. The author proceeds in an axiomatic way, combining the concepts of twisted Poincaré duality theories, weights, and tensor categories. One thus arrives at generalizations to arbitrary varieties of the Hodge and Tate conjectures to explicit conjectures on l-adic Chern characters for global fields and to certain counterexamples for more general fields. It is to be hoped that these relations ions will in due course be explained by a suitable tensor category of mixed motives. An approximation to this is constructed in the setting of absolute Hodge cycles, by extending this theory to arbitrary varieties. The book can serve both as a guide for the researcher, and as an introduction to these ideas for the non-expert, provided (s)he knows or is willing to learn about K-theory and the standard cohomology theories of algebraic varietie...

  11. Multiple Schramm-Loewner evolutions for conformal field theories with Lie algebra symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Kazumitsu, E-mail: sakai@gokutan.c.u-tokyo.ac.jp [Institute of Physics, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902 (Japan)

    2013-02-11

    We provide multiple Schramm-Loewner evolutions (SLEs) to describe the scaling limit of multiple interfaces in critical lattice models possessing Lie algebra symmetries. The critical behavior of the models is described by Wess-Zumino-Witten (WZW) models. Introducing a multiple Brownian motion on a Lie group as well as that on the real line, we construct the multiple SLE with additional Lie algebra symmetries. The connection between the resultant SLE and the WZW model can be understood via SLE martingales satisfied by the correlation functions in the WZW model. Due to interactions among SLE traces, these Brownian motions have drift terms which are determined by partition functions for the corresponding WZW model. As a concrete example, we apply the formula to the su{sup -hat} (2){sub k}-WZW model. Utilizing the fusion rules in the model, we conjecture that there exists a one-to-one correspondence between the partition functions and the topologically inequivalent configurations of the SLE traces. Furthermore, solving the Knizhnik-Zamolodchikov equation, we exactly compute the probabilities of occurrence for certain configurations (i.e. crossing probabilities) of traces for the triple SLE.

  12. L∞-algebra models and higher Chern-Simons theories

    Science.gov (United States)

    Ritter, Patricia; Sämann, Christian

    2016-10-01

    We continue our study of zero-dimensional field theories in which the fields take values in a strong homotopy Lie algebra. In the first part, we review in detail how higher Chern-Simons theories arise in the AKSZ-formalism. These theories form a universal starting point for the construction of L∞-algebra models. We then show how to describe superconformal field theories and how to perform dimensional reductions in this context. In the second part, we demonstrate that Nambu-Poisson and multisymplectic manifolds are closely related via their Heisenberg algebras. As a byproduct of our discussion, we find central Lie p-algebra extensions of 𝔰𝔬(p + 2). Finally, we study a number of L∞-algebra models which are physically interesting and which exhibit quantized multisymplectic manifolds as vacuum solutions.

  13. General Theory of Algebraic Equations

    CERN Document Server

    Bezout, Etienne

    2008-01-01

    This book provides the first English translation of Bezout's masterpiece, the General Theory of Algebraic Equations. It follows, by almost two hundred years, the English translation of his famous mathematics textbooks. Here, Bézout presents his approach to solving systems of polynomial equations in several variables and in great detail. He introduces the revolutionary notion of the "polynomial multiplier," which greatly simplifies the problem of variable elimination by reducing it to a system of linear equations. The major result presented in this work, now known as "Bézout's theorem," is stat

  14. Division Algebras and Quantum Theory

    CERN Document Server

    Baez, John C

    2011-01-01

    Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the "three-fold way". It is perhaps easiest to see it in the study of irreducible unitary representations of groups on complex Hilbert spaces. These representations come in three kinds: those that are not isomorphic to their own dual (the truly "complex" representations), those that are self-dual thanks to a symmetric bilinear pairing (which are "real", in that they are the complexifications of representations on real Hilbert spaces), and those that are self-dual thanks to an antisymmetric bilinear pairing (which are...

  15. Operator theory, operator algebras and applications

    CERN Document Server

    Lebre, Amarino; Samko, Stefan; Spitkovsky, Ilya

    2014-01-01

    This book consists of research papers that cover the scientific areas of the International Workshop on Operator Theory, Operator Algebras and Applications, held in Lisbon in September 2012. The volume particularly focuses on (i) operator theory and harmonic analysis (singular integral operators with shifts; pseudodifferential operators, factorization of almost periodic matrix functions; inequalities; Cauchy type integrals; maximal and singular operators on generalized Orlicz-Morrey spaces; the Riesz potential operator; modification of Hadamard fractional integro-differentiation), (ii) operator algebras (invertibility in groupoid C*-algebras; inner endomorphisms of some semi group, crossed products; C*-algebras generated by mappings which have finite orbits; Folner sequences in operator algebras; arithmetic aspect of C*_r SL(2); C*-algebras of singular integral operators; algebras of operator sequences) and (iii) mathematical physics (operator approach to diffraction from polygonal-conical screens; Poisson geo...

  16. Parafermion Fields Constructed by Current Algebra

    Institute of Scientific and Technical Information of China (English)

    YANGZhan-Ying; SHIKang-Jie; WANGPei; ZHAOLiu

    2004-01-01

    In this letter, the parafermion fields constructed by current algebra are considered. It is proved that there must be a parafermion field with respect to each form of current algebra. We also obtain the corresponding representation and unitary relation of the parafermion field from any current algebra.

  17. Finite-dimensional division algebras over fields

    CERN Document Server

    Jacobson, Nathan

    2009-01-01

    Finite-Dimensional Division Algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts; they arose first in the study of the so-called 'multiplication algebras of Riemann matrices'. The largest part of the book is the fifth chapter, dealing with involutorial simple algebras of finite dimension over a field. Of parti

  18. Algebraic differential calculus for gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Landi, G.; Marmo, G. (Naples Univ. (Italy). Dipt. di Scienze Fisiche Istituto Nazionale di Fisica Nucleare, Naples (Italy))

    1990-12-01

    The guiding idea in this paper is that, from the point of view of physics, functions and fields are more important than the (space time) manifold over which they are defined. The line pursued in these notes belongs to the general framework of ideas that replaces the space M by the ring of functions on it. Our essential observation, underlying this work, is that much of mathematical physics requires only a few differential operators (Lie derivative, d, {delta}) operating on modules of sections of suitable bundles. A connection (=gauge potential) can be described by a lift of vector fields from the base to the total space of a principal bundle. Much of the information can be encoded in the lift without reference to the bundle structures. In this manner, one arrives at an 'algebraic differential calculus' and its graded generalization that we are going to discuss. We are going to give an exposition of 'algebraic gauge theory' in both ungraded and graded versions. We show how to deal with the essential features of electromagnetism, Dirac, Kaluza-Klein and 't Hooft-Polyakov monopoles. We also show how to break the symmetry from SU(2) to U(1) without Higgs field. We briefly show how to deal with tests particles in external fields and with the Lagrangian formulation of field theories. (orig./HSI).

  19. Derivations of the Moyal algebra and noncommutative gauge theories

    CERN Document Server

    Wallet, Jean-Christophe

    2008-01-01

    The differential calculus based on the derivations of an associative algebra underlies most of the noncommutative field theories considered so far. We review the essential properties of this framework and the main features of noncommutative connections in the case of non graded associative unital algebras with involution. We extend this framework to the case of ${\\mathbb{Z}}_2$-graded unital involutive algebras. We show, in the case of the Moyal algebra or some related ${\\mathbb{Z}}_2$-graded version of it, that the derivation based differential calculus is a suitable framework to construct Yang-Mills-Higgs type models on Moyal (or related) algebras, the covariant coordinates having in particular a natural interpretation as Higgs fields. We also exhibit, in one situation, a link between the renormalisable NC $\\varphi^4$-model with harmonic term and a gauge theory model. Some possible consequences of this are briefly discussed.

  20. Derivations of the Moyal Algebra and Noncommutative Gauge Theories

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Wallet

    2009-01-01

    Full Text Available The differential calculus based on the derivations of an associative algebra underlies most of the noncommutative field theories considered so far. We review the essential properties of this framework and the main features of noncommutative connections in the case of non graded associative unital algebras with involution. We extend this framework to the case of Z2-graded unital involutive algebras. We show, in the case of the Moyal algebra or some related Z2-graded version of it, that the derivation based differential calculus is a suitable framework to construct Yang-Mills-Higgs type models on Moyal (or related algebras, the covariant coordinates having in particular a natural interpretation as Higgs fields. We also exhibit, in one situation, a link between the renormalisable NC φ4-model with harmonic term and a gauge theory model. Some possible consequences of this are briefly discussed.

  1. Derivations of the Moyal Algebra and Noncommutative Gauge Theories

    Science.gov (United States)

    Wallet, Jean-Christophe

    2009-01-01

    The differential calculus based on the derivations of an associative algebra underlies most of the noncommutative field theories considered so far. We review the essential properties of this framework and the main features of noncommutative connections in the case of non graded associative unital algebras with involution. We extend this framework to the case of Z2-graded unital involutive algebras. We show, in the case of the Moyal algebra or some related Z2-graded version of it, that the derivation based differential calculus is a suitable framework to construct Yang-Mills-Higgs type models on Moyal (or related) algebras, the covariant coordinates having in particular a natural interpretation as Higgs fields. We also exhibit, in one situation, a link between the renormalisable NC φ4-model with harmonic term and a gauge theory model. Some possible consequences of this are briefly discussed.

  2. On deformation theory of quantum vertex algebras

    CERN Document Server

    Grosse, H; Grosse, Harald; Schlesinger, Karl-Georg

    2005-01-01

    We study an algebraic deformation problem which captures the data of the general deformation problem for a quantum vertex algebra. We derive a system of coupled equations which is the counterpart of the Maurer-Cartan equation on the usual Hochschild complex of an assocative algebra. We show that this system of equations results from an action principle. This might be the starting point for a perturbative treatment of the deformation problem of quantum vertex algebras. Our action generalizes the action of the Kodaira-Spencer theory of gravity and might therefore also be of relevance for applications in string theory.

  3. Noise as a Boolean algebra of sigma-fields

    CERN Document Server

    Tsirelson, Boris

    2011-01-01

    The black noise of two-dimensional percolation, disclosed recently by O. Schramm, S. Smirnov and C. Garban, exceeds the limits of the existing framework based on one-dimensional intervals. A remake of the theory of noises, provided here, treats them as Boolean algebras of sigma-fields. Completeness of the Boolean algebra implies classicality, which answers an old question of J. Feldman.

  4. Symmetric linear systems - An application of algebraic systems theory

    Science.gov (United States)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  5. Twisting theory for weak Hopf algebras

    Institute of Scientific and Technical Information of China (English)

    CHEN Ju-zhen; ZHANG Yan; WANG Shuan-hong

    2008-01-01

    The main aim of this paper is to study the twisting theory of weak Hopf algebras and give an equivalence between the (braided) monoidal categories of weak Hopf bimodules over the original and the twisted weak Hopf algebra to generalize the result from Oeckl (2000).

  6. Three-Algebra Bfss Matrix Theory

    Science.gov (United States)

    Sato, Matsuo

    2013-11-01

    We extend the BFSS matrix theory by means of Lie 3-algebra. The extended model possesses the same supersymmetry as the original BFSS matrix theory, and thus as the infinite momentum frame limit of M-theory. We study dynamics of the model by choosing the minimal Lie 3-algebra that includes u(N) algebra. We can solve a constraint in the minimal model and obtain two phases. In one phase, the model reduces to the original matrix model. In another phase, it reduces to a simple supersymmetric model.

  7. Three-Algebra BFSS Matrix Theory

    CERN Document Server

    Sato, Matsuo

    2013-01-01

    We extend the BFSS matrix theory by means of Lie 3-algebra. The extended model possesses the same supersymmetry as the original BFSS matrix theory, and thus as the infinite momentum frame limit of M-theory. We study dynamics of the model by choosing the minimal Lie 3-algebra that includes u(N) algebra. We can solve a constraint in the minimal model and obtain two phases. In one phase, the model reduces to the original matrix model. In another phase, it reduces to a simple supersymmetric model.

  8. Function theory for a beltrami algebra

    Directory of Open Access Journals (Sweden)

    B. A. Case

    1985-01-01

    Full Text Available Complex functions are investigated which are solutions of an elliptic system of partial differential equations associated with a real parameter function. The functions f associated with a particualr parameter function g on a domain D form a Beltrami algebra denoted by the pair (D,g and a function theory is developed in this algebra. A strong conformality property holds for all functions in a (D,g algebra. For g≡|z|=r the algebra (D,r is that of the analytic functions.

  9. Multifractal vector fields and stochastic Clifford algebra

    Energy Technology Data Exchange (ETDEWEB)

    Schertzer, Daniel, E-mail: Daniel.Schertzer@enpc.fr; Tchiguirinskaia, Ioulia, E-mail: Ioulia.Tchiguirinskaia@enpc.fr [University Paris-Est, Ecole des Ponts ParisTech, Hydrology Meteorology and Complexity HM& Co, Marne-la-Vallée (France)

    2015-12-15

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  10. Multifractal vector fields and stochastic Clifford algebra.

    Science.gov (United States)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  11. Perturbative Topological Field Theory

    Science.gov (United States)

    Dijkgraaf, Robbert

    We give a review of the application of perturbative techniques to topological quantum field theories, in particular three-dimensional Chern-Simons-Witten theory and its various generalizations. To this end we give an introduction to graph homology and homotopy algebras and the work of Vassiliev and Kontsevich on perturbative knot invariants.

  12. Splitting full matrix algebras over algebraic number fields

    CERN Document Server

    Ivanyos, Gábor; Schicho, Joseph

    2011-01-01

    Let K be an algebraic number field of degree d and discriminant D over Q. Let A be an associative algebra over K given by structure constants such that A is siomorphic to the algebra M_n(K) of n by n matrices over K for some positive integer n. Suppose that d, n and D are bounded. Then an isomorphism of A with M_n(K) can be constructed by a polynomial time ff-algorithm. (An ff-algorithm is a deterministic procedure which is allowed to call oracles for factoring integers and factoring univariate polynomials over finite fields.) As a consequence, we obtain a polynomial time ff-algorithm to compute isomorphisms of central simple algebras of bounded degree over K.

  13. Representation Theory of Algebraic Groups and Quantum Groups

    CERN Document Server

    Gyoja, A; Shinoda, K-I; Shoji, T; Tanisaki, Toshiyuki

    2010-01-01

    Invited articles by top notch expertsFocus is on topics in representation theory of algebraic groups and quantum groupsOf interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics

  14. Distinguishing division algebras by finite splitting fields

    CERN Document Server

    Krashen, Daniel

    2010-01-01

    This paper is concerned with the problem of determining the number of division algebras which share the same collection of finite splitting fields. As a corollary we are able to determine when two central division algebras may be distinguished by their finite splitting fields over certain fields.

  15. Developments and retrospectives in Lie theory algebraic methods

    CERN Document Server

    Penkov, Ivan; Wolf, Joseph

    2014-01-01

    This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those  workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics.  Many of the contributors have had leading roles in both the classical and modern developments of Lie theory and its applications. This Work, entitled Developments and Retrospectives in Lie Theory, and comprising 26 articles, is organized in two volumes: Algebraic Methods and Geometric and Analytic Methods. This is the Algebraic Methods volume. The Lie Theory Workshop series, founded by Joe Wolf and Ivan Penkov and joined shortly thereafter by Geoff Mason, has been running for over two decades. Travel to the workshops has usually been supported by the NSF, and local universities have provided hospitality. The workshop talks have been seminal in describing new perspectives in the field covering broad areas of current research.  Mos...

  16. W∞ Algebras from Noncommutative Chern Simons Theory

    Science.gov (United States)

    Pinzul, A.; Stern, A.

    We examine Chern Simons theory written on a noncommutative plane with a "hole", and show that the algebra of observables is a nonlinear deformation of the w∞ algebra. The deformation depends on the level (the coefficient in the Chern Simons action), and the noncommutativity parameter, which were identified, respectively, with the inverse filling fraction (minus one) and the inverse density in a recent description of the fractional quantum Hall effect. We remark on the quantization of our algebra. The results are sensitive to the choice of ordering in the Gauss law.

  17. Homology theory on algebraic varieties

    CERN Document Server

    Wallace, Andrew H

    2014-01-01

    Concise and authoritative, this monograph is geared toward advanced undergraduate and graduate students. The main theorems whose proofs are given here were first formulated by Lefschetz and have since turned out to be of fundamental importance in the topological aspects of algebraic geometry. The proofs are fairly elaborate and involve a considerable amount of detail; therefore, some appear in separate chapters that include geometrical descriptions and diagrams.The treatment begins with a brief introduction and considerations of linear sections of an algebraic variety as well as singular and h

  18. Algebraic methods in system theory

    Science.gov (United States)

    Brockett, R. W.; Willems, J. C.; Willsky, A. S.

    1975-01-01

    Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.

  19. Nicely semiramified division algebras over Henselian fields

    Directory of Open Access Journals (Sweden)

    Karim Mounirh

    2005-01-01

    Full Text Available This paper deals with the structure of nicely semiramified valued division algebras. We prove that any defectless finite-dimensional central division algebra over a Henselian field E with an inertial maximal subfield and a totally ramified maximal subfield (not necessarily of radical type (resp., split by inertial and totally ramified field extensions of E is nicely semiramified.

  20. A Relational Localisation Theory for Topological Algebras

    OpenAIRE

    2012-01-01

    In this thesis, we develop a relational localisation theory for topological algebras, i.e., a theory that studies local approximations of a topological algebra’s relational counterpart. In order to provide an appropriate framework for our considerations, we first introduce a general Galois theory between continuous functions and closed relations on an arbitrary topological space. Subsequently to this rather foundational discussion, we establish the desired localisation theory comprising the i...

  1. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    OpenAIRE

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  2. Infinite Dimensional Free Algebra and the Forms of the Master Field

    CERN Document Server

    Halpern, M B

    1999-01-01

    We find an infinite dimensional free algebra which lives at large N in any SU(N)-invariant action or Hamiltonian theory of bosonic matrices. The natural basis of this algebra is a free-algebraic generalization of Chebyshev polynomials and the dual basis is closely related to the planar connected parts. This leads to a number of free-algebraic forms of the master field including an algebraic derivation of the Gopakumar-Gross form. For action theories, these forms of the master field immediately give a number of new free-algebraic packagings of the planar Schwinger-Dyson equations.

  3. Understanding geometric algebra for electromagnetic theory

    CERN Document Server

    Arthur, John W

    2011-01-01

    "This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison"--Provided by publisher.

  4. Valued Graphs and the Representation Theory of Lie Algebras

    Directory of Open Access Journals (Sweden)

    Joel Lemay

    2012-07-01

    Full Text Available Quivers (directed graphs, species (a generalization of quivers and their representations play a key role in many areas of mathematics including combinatorics, geometry, and algebra. Their importance is especially apparent in their applications to the representation theory of associative algebras, Lie algebras, and quantum groups. In this paper, we discuss the most important results in the representation theory of species, such as Dlab and Ringel’s extension of Gabriel’s theorem, which classifies all species of finite and tame representation type. We also explain the link between species and K-species (where K is a field. Namely, we show that the category of K -species can be viewed as a subcategory of the category of species. Furthermore, we prove two results about the structure of the tensor ring of a species containing no oriented cycles. Specifically, we prove that two such species have isomorphic tensor rings if and only if they are isomorphic as “crushed” species, and we show that if K is a perfect field, then the tensor algebra of a K -species tensored with the algebraic closure of K is isomorphic to, or Morita equivalent to, the path algebra of a quiver.

  5. Boundary Conformal Field Theory

    CERN Document Server

    Cardy, J L

    2004-01-01

    Boundary conformal field theory (BCFT) is simply the study of conformal field theory (CFT) in domains with a boundary. It gains its significance because, in some ways, it is mathematically simpler: the algebraic and geometric structures of CFT appear in a more straightforward manner; and because it has important applications: in string theory in the physics of open strings and D-branes, and in condensed matter physics in boundary critical behavior and quantum impurity models. In this article, however, I describe the basic ideas from the point of view of quantum field theory, without regard to particular applications nor to any deeper mathematical formulations.

  6. An Infinite Dimensional Symmetry Algebra in String Theory

    CERN Document Server

    Evans, Mark; Nanopoulos, Dimitri V.; Evans, Mark; Giannakis, Ioannis

    1994-01-01

    Symmetry transformations of the space-time fields of string theory are generated by certain similarity transformations of the stress-tensor of the associated conformal field theories. This observation is complicated by the fact that, as we explain, many of the operators we habitually use in string theory (such as vertices and currents) have ill-defined commutators. However, we identify an infinite-dimensional subalgebra whose commutators are not singular, and explicitly calculate its structure constants. This constitutes a subalgebra of the gauge symmetry of string theory, although it may act on auxiliary as well as propagating fields. We term this object a {\\it weighted tensor algebra}, and, while it appears to be a distant cousin of the $W$-algebras, it has not, to our knowledge, appeared in the literature before.

  7. Controlled algebraic G-theory, I

    CERN Document Server

    Carlsson, Gunnar

    2011-01-01

    This paper extends the notion of geometric control in algebraic K-theory from additive categories with split exact sequences to other exact structures. In particular, we construct exact categories of modules over a Noetherian ring filtered by subsets of a metric space and sensitive to the large scale properties of the space. The algebraic K-theory of these categories is related to the bounded K-theory of geometric modules of Pedersen and Weibel the way G-theory is classically related to K-theory. We recover familiar results in the new setting, including the nonconnective bounded excision and equivariant properties. We apply the results to the G-theoretic Novikov conjecture which is shown to be stronger than the usual K-theoretic conjecture.

  8. Methods of algebraic geometry in control theory

    CERN Document Server

    Falb, Peter

    1999-01-01

    "Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...

  9. Introduction to the theory of abstract algebras

    CERN Document Server

    Pierce, Richard S

    2014-01-01

    Intended for beginning graduate-level courses, this text introduces various aspects of the theory of abstract algebra. The book is also suitable as independent reading for interested students at that level as well as a primary source for a one-semester course that an instructor may supplement to expand to a full year. Author Richard S. Pierce, a Professor of Mathematics at Seattle's University of Washington, places considerable emphasis on applications of the theory and focuses particularly on lattice theory.After a preliminary review of set theory, the treatment presents the basic definitions

  10. Topics in field theory

    CERN Document Server

    Karpilovsky, G

    1989-01-01

    This monograph gives a systematic account of certain important topics pertaining to field theory, including the central ideas, basic results and fundamental methods.Avoiding excessive technical detail, the book is intended for the student who has completed the equivalent of a standard first-year graduate algebra course. Thus it is assumed that the reader is familiar with basic ring-theoretic and group-theoretic concepts. A chapter on algebraic preliminaries is included, as well as a fairly large bibliography of works which are either directly relevant to the text or offer supplementary material of interest.

  11. Representation Theory of Analytic Holonomy C* Algebras

    CERN Document Server

    Ashtekar, Abhay

    2008-01-01

    Integral calculus on the space of gauge equivalent connections is developed. Loops, knots, links and graphs feature prominently in this description. The framework is well--suited for quantization of diffeomorphism invariant theories of connections. The general setting is provided by the abelian C* algebra of functions on the quotient space of connections generated by Wilson loops (i.e., by the traces of holonomies of connections around closed loops). The representation theory of this algebra leads to an interesting and powerful "duality" between gauge-equivalence classes of connections and certain equivalence classes of closed loops. In particular, regular measures on (a suitable completion of) connections/gauges are in 1-1 correspondence with certain functions of loops and diffeomorphism invariant measures correspond to (generalized) knot and link invariants. By carrying out a non-linear extension of the theory of cylindrical measures on topological vector spaces, a faithful, diffeomorphism invariant measure...

  12. Chiral deformations of conformal field theories

    Science.gov (United States)

    Dijkgraaf, Robbert

    1997-02-01

    We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the W1+∞ algebra, that is treated in detail.

  13. Chiral Deformations of Conformal Field Theories

    CERN Document Server

    Dijkgraaf, R

    1996-01-01

    We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the $W_{1+\\infty}$ algebra, that is treated in detail.

  14. Chiral deformations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Math.

    1997-06-02

    We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the W{sub 1+{infinity}} algebra, that is treated in detail. (orig.).

  15. Chiral Deformations of Conformal Field Theories

    OpenAIRE

    Dijkgraaf, R.

    1996-01-01

    We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the $W_{1+\\infty}$ algebra, that is treat...

  16. Algebraic Theories and (Infinity,1)-Categories

    CERN Document Server

    Cranch, James

    2010-01-01

    We adapt the classical framework of algebraic theories to work in the setting of (infinity,1)-categories developed by Joyal and Lurie. This gives a suitable approach for describing highly structured objects from homotopy theory. A central example, treated at length, is the theory of E_infinity spaces: this has a tidy combinatorial description in terms of span diagrams of finite sets. We introduce a theory of distributive laws, allowing us to describe objects with two distributing E_infinity stuctures. From this we produce a theory of E_infinity ring spaces. We also study grouplike objects, and produce theories modelling infinite loop spaces (or connective spectra), and infinite loop spaces with coherent multiplicative structure (or connective ring spectra). We use this to construct the units of a grouplike E_infinity ring space in a natural manner. Lastly we provide a speculative pleasant description of the K-theory of monoidal quasicategories and quasicategories with ring-like structures.

  17. Field theory

    CERN Document Server

    Roman, Steven

    2006-01-01

    Intended for graduate courses or for independent study, this book presents the basic theory of fields. The first part begins with a discussion of polynomials over a ring, the division algorithm, irreducibility, field extensions, and embeddings. The second part is devoted to Galois theory. The third part of the book treats the theory of binomials. The book concludes with a chapter on families of binomials - the Kummer theory. This new edition has been completely rewritten in order to improve the pedagogy and to make the text more accessible to graduate students.  The exercises have also been im

  18. Canonical Noncommutativity Algebra for the Tetrad Field in General Relativity

    CERN Document Server

    Kober, Martin

    2011-01-01

    General relativity under the assumption of noncommuting components of the tetrad field is considered in this paper. Since the algebraic properties of the tetrad field representing the gravitational field are assumed to correspond to the noncommutativity algebra of the coordinates in the canonical case of noncommutative geometry, this idea is closely related to noncommutative geometry as well as to canonical quantization of gravity. According to this presupposition there are derived generalized field equations for general relativity which are obtained by replacing the usual tetrad field by the tetrad field operator within the actions and then building expectation values of the corresponding field equations between coherent states. These coherent states refer to creation and annihilation operators created from the components of the tetrad field operator. In this sense the obtained theory could be regarded as a kind of semiclassical approximation of a complete quantum description of gravity. The consideration pr...

  19. Model Theory in Algebra, Analysis and Arithmetic

    CERN Document Server

    Dries, Lou; Macpherson, H Dugald; Pillay, Anand; Toffalori, Carlo; Wilkie, Alex J

    2014-01-01

    Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.

  20. Algebra

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Through most of Greek history, mathematicians concentrated on geometry, although Euclid considered the theory of numbers. The Greek mathematician Diophantus (3rd century),however, presented problems that had to be solved by what we would today call algebra. His book is thus the first algebra text.

  1. Dilation Theory for Rank 2 Graph Algebras

    CERN Document Server

    Davidson, Kenneth R; Yang Di Lian

    2007-01-01

    An analysis is given of $*$-representations of rank 2 single vertex graphs. We develop dilation theory for the non-selfadjoint algebras $\\A_\\theta$ and $\\A_u$ which are associated with the commutation relation permutation $\\theta$ of a 2 graph and, more generally, with commutation relations determined by a unitary matrix $u$ in $M_m(\\bC) \\otimes M_n(\\bC)$. We show that a defect free row contractive representation has a unique minimal dilation to a $*$-representation and we provide a new simpler proof of Solel's row isometric dilation of two $u$-commuting row contractions. Furthermore it is shown that the C*-envelope of $\\A_u$ is the generalised Cuntz algebra $\\O_{X_u}$ for the product system $X_u$ of $u$; that for $m\\geq 2 $ and $n \\geq 2 $ contractive representations of $\\Ath$ need not be completely contractive; and that the universal tensor algebra $\\T_+(X_u)$ need not be isometrically isomorphic to $\\A_u$.

  2. Elementary number theory an algebraic approach

    CERN Document Server

    Bolker, Ethan D

    2007-01-01

    This text uses the concepts usually taught in the first semester of a modern abstract algebra course to illuminate classical number theory: theorems on primitive roots, quadratic Diophantine equations, and the Fermat conjecture for exponents three and four. The text contains abundant numerical examples and a particularly helpful collection of exercises, many of which are small research problems requiring substantial study or outside reading. Some problems call for new proofs for theorems already covered or for inductive explorations and proofs of theorems found in later chapters.Ethan D. Bolke

  3. Realisation of a Lorentz algebra in Lorentz violating theory

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Oindrila [S. N. Bose National Centre for Basic Sciences, Kolkata (India)

    2012-11-15

    A Lorentz non-invariant higher derivative effective action in flat spacetime, characterised by a constant vector, can be made invariant under infinitesimal Lorentz transformations by restricting the allowed field configurations. These restricted fields are defined as functions of the background vector in such a way that background dependence of the dynamics of the physical system is no longer manifest. We show here that they also provide a field basis for the realisation of a Lorentz algebra and allow the construction of a Poincare invariant symplectic two-form on the covariant phase space of the theory. (orig.)

  4. Polylogarithm identities, cluster algebras and the N=4 supersymmetric theory

    CERN Document Server

    Vergu, C

    2015-01-01

    Scattering amplitudes in N = 4 super-Yang Mills theory can be computed to higher perturbative orders than in any other four-dimensional quantum field theory. The results are interesting transcendental functions. By a hidden symmetry (dual conformal symmetry) the arguments of these functions have a geometric interpretation in terms of configurations of points in CP^3 and they turn out to be cluster coordinates. We briefly introduce cluster algebras and discuss their Poisson structure and the Sklyanin bracket. Finally, we present a 40-term trilogarithm identity which was discovered by accident while studying the physical results.

  5. Algebraic structure and Poisson's theory of mechanico-electrical systems

    Institute of Scientific and Technical Information of China (English)

    Liu Hong-Ji; Tang Yi-Fa; Fu Jing-Li

    2006-01-01

    The algebraic structure and Poisson's integral theory of mechanico-electrical systems are studied.The Hamilton canonical equations and generalized Hamilton canonical equations and their the contravariant algebraic forms for mechanico-electrical systems are obtained.The Lie algebraic structure and the Poisson's integral theory of Lagrange mechanico-electrical systems are derived.The Lie algebraic structure admitted and Poisson's integral theory of the Lagrange-Maxwell mechanico-electrical systems are presented.Two examples are presented to illustrate these results.

  6. Noncommutative fields and actions of twisted Poincaré algebra

    Science.gov (United States)

    Chaichian, M.; Kulish, P. P.; Tureanu, A.; Zhang, R. B.; Zhang, Xiao

    2008-04-01

    Within the context of the twisted Poincaré algebra, there exists no noncommutative analog of the Minkowski space interpreted as the homogeneous space of the Poincaré group quotiented by the Lorentz group. The usual definition of commutative classical fields as sections of associated vector bundles on the homogeneous space does not generalize to the noncommutative setting, and the twisted Poincaré algebra does not act on noncommutative fields in a canonical way. We make a tentative proposal for the definition of noncommutative classical fields of any spin over the Moyal space, which has the desired representation theoretical properties. We also suggest a way to search for noncommutative Minkowski spaces suitable for studying noncommutative field theory with deformed Poincaré symmetries.

  7. Noncommutative fields and actions of twisted Poincare algebra

    CERN Document Server

    Chaichian, M; Tureanu, A; Zhang, R B; Zhang, Xiao

    2007-01-01

    Within the context of the twisted Poincar\\'e algebra, there exists no noncommutative analogue of the Minkowski space interpreted as the homogeneous space of the Poincar\\'e group quotiented by the Lorentz group. The usual definition of commutative classical fields as sections of associated vector bundles on the homogeneous space does not generalise to the noncommutative setting, and the twisted Poincar\\'e algebra does not act on noncommutative fields in a canonical way. We make a tentative proposal for the definition of noncommutative classical fields of any spin over the Moyal space, which has the desired representation theoretical properties. We also suggest a way to search for noncommutative Minkowski spaces suitable for studying noncommutative field theory with deformed Poincar\\'e symmetries.

  8. K-theory of Continuous Deformations of C*-algebras

    Institute of Scientific and Technical Information of China (English)

    Takahiro SUDO

    2007-01-01

    We study K-theory of continuous deformations of C*-algebras to obtain that their K-theory is the same as that of the fiber at zero. We also consider continuous or discontinuous deformations of Cuntz and Toeplitz algebras.

  9. Decomposition Theory in the Teaching of Elementary Linear Algebra.

    Science.gov (United States)

    London, R. R.; Rogosinski, H. P.

    1990-01-01

    Described is a decomposition theory from which the Cayley-Hamilton theorem, the diagonalizability of complex square matrices, and functional calculus can be developed. The theory and its applications are based on elementary polynomial algebra. (KR)

  10. Optical potentials in algebraic scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Levay, Peter [Institute of Theoretical Physics, Technical University of Budapest, Budapest (Hungary)

    1999-02-12

    Using the theory of induced representations new realizations for the Lie algebras of the groups SO(2, 1), SO(2, 2), SO(3, 2) are found. The eigenvalue problem of the Casimir operators yield Schroedinger equations with non-Hermitian interaction terms (i.e. optical potentials). For the group SO(2, 2) we have a two-parameter family of (matrix-valued) potentials containing terms of Poeschl-Teller and Gendenshtein type. We calculate the S-matrices for special values of this two-parameter family. In particular we also include a derivation of the S-matrix for the two-dimensional scattering problem on a complex Gendenshtein potential. The canonically transformed realization results in a non-local optical potential. (author)

  11. Space-time algebra for the generalization of gravitational field equations

    Indian Academy of Sciences (India)

    Süleyman Demir

    2013-05-01

    The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravitomagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of gravitoelectromagnetic Klein–Gordon equation has been obtained. Finally, the analogy in formulation between massive gravitational theory and electromagnetism has been discussed.

  12. E-Theory for C*-algebras over topological spaces

    CERN Document Server

    Dadarlat, Marius

    2009-01-01

    We define E-theory for separable C*-algebras over second countable topological spaces and establish its basic properties. This includes an approximation theorem that relates the E-theory over a general space to the E-theories over finite approximations to this space. We obtain effective criteria for determining the invertibility of E-theory elements over possibly infinite-dimensional spaces. Furthermore, we prove a Universal Multicoefficient Theorem for C*-algebras over totally disconnected metrisable compact spaces.

  13. Central simple Poisson algebras

    Institute of Scientific and Technical Information of China (English)

    SU Yucai; XU Xiaoping

    2004-01-01

    Poisson algebras are fundamental algebraic structures in physics and symplectic geometry. However, the structure theory of Poisson algebras has not been well developed. In this paper, we determine the structure of the central simple Poisson algebras related to locally finite derivations, over an algebraically closed field of characteristic zero.The Lie algebra structures of these Poisson algebras are in general not finitely-graded.

  14. Endomorphisms and Modular Theory of 2-Graph C*-Algebras

    CERN Document Server

    Yang, Dilian

    2009-01-01

    In this paper, we initiate the study of endomorphisms and modular theory of the graph C*-algebras $\\O_{\\theta}$of a 2-graph $\\Fth$ on a single vertex. We prove that there is a semigroup isomorphism between unital endomorphisms of $\\O_{\\theta}$ and its unitary pairs with a \\textit{twisted property}. We characterize when endomorphisms preserve the fixed point algebra $\\fF$ of the gauge automorphisms and its canonical masa $\\fD$. Some other properties of endomorphisms are also investigated. As far as the modular theory of $\\O_{\\theta}$ is concerned, we show that the algebraic *-algebra generated by the generators of $\\O_{\\theta}$ with the inner product induced from a distinguished state $\\omega$ is a modular Hilbert algebra. Consequently, we obtain that the von Neumann algebra $\\pi(\\O_{\\theta})''$ generated by the GNS representation of $\\omega$ is an AFD factor of type III$_1$, provided $\\frac{\\ln m}{\\ln n}\

  15. Numerical algebra, matrix theory, differential-algebraic equations and control theory festschrift in honor of Volker Mehrmann

    CERN Document Server

    Bollhöfer, Matthias; Kressner, Daniel; Mehl, Christian; Stykel, Tatjana

    2015-01-01

    This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on ...

  16. Elliptic Curves, Algebraic Geometry Approach in Gravity Theory and Uniformization of Multivariable Cubic Algebraic Equations

    OpenAIRE

    2008-01-01

    Based on the distinction between the covariant and contravariant metric tensor components in the framework of the affine geometry approach and the s.c. "gravitational theories with covariant and contravariant connection and metrics", it is shown that a wide variety of third, fourth, fifth, seventh, tenth- degree algebraic equations exists in gravity theory. This is important in view of finding new solutions of the Einstein's equations, if they are treated as algebraic ones. Since the obtained...

  17. Lectures on Iwahori-Hecke Algebras and their Representation Theory

    CERN Document Server

    Cherednik, Ivan; Howe, Roger; Lusztig, George

    2002-01-01

    Two basic problems of representation theory are to classify irreducible representations and decompose representations occuring naturally in some other context. Algebras of Iwahori-Hecke type are one of the tools and were, probably, first considered in the context of representation theory of finite groups of Lie type. This volume consists of notes of the courses on Iwahori-Hecke algebras and their representation theory, given during the CIME summer school which took place in 1999 in Martina Franca, Italy.

  18. W-Infinity Algebras from Noncommutative Chern-Simons Theory

    CERN Document Server

    Pinzul, A N

    2003-01-01

    We examine Chern-Simons theory written on a noncommutative plane with a `hole', and show that the algebra of observables is a nonlinear deformation of the $w_\\infty$ algebra. The deformation depends on the level (the coefficient in the Chern-Simons action), which was identified recently with the inverse filling fraction in the fractional quantum Hall effect.

  19. Cyclic structures in algebraic (co)homology theories

    CERN Document Server

    Kowalzig, Niels

    2010-01-01

    This note discusses the cyclic cohomology of a left Hopf algebroid ($\\times_A$-Hopf algebra) with coefficients in a right module-left comodule, defined using a straightforward generalisation of the original operators given by Connes and Moscovici for Hopf algebras. Lie-Rinehart homology is a special case of this theory. A generalisation of cyclic duality that makes sense for arbitrary para-cyclic objects yields a dual homology theory. The twisted cyclic homology of an associative algebra provides an example of this dual theory that uses coefficients that are not necessarily stable anti Yetter-Drinfel'd modules.

  20. The universal C*-algebra of the electromagnetic field II. Topological charges and spacelike linear fields

    Science.gov (United States)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2017-02-01

    Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.

  1. Verifying Process Algebra Proofs in Type Theory

    NARCIS (Netherlands)

    Sellink, M.P.A.

    2008-01-01

    In this paper we study automatic verification of proofs in process algebra. Formulas of process algebra are represented by types in typed λ-calculus. Inhabitants (terms) of these types represent proofs. The specific typed λ-calculus we use is the Calculus of Inductive Constructions as implemented in

  2. Fourier theory and C∗-algebras

    Science.gov (United States)

    Bédos, Erik; Conti, Roberto

    2016-07-01

    We discuss a number of results concerning the Fourier series of elements in reduced twisted group C∗-algebras of discrete groups, and, more generally, in reduced crossed products associated to twisted actions of discrete groups on unital C∗-algebras. A major part of the article gives a review of our previous work on this topic, but some new results are also included.

  3. A braided Yang-Baxter Algebra in a Theory of two coupled Lattice Quantum KdV algebraic properties and ABA representations

    CERN Document Server

    Fioravanti, D; Fioravanti, Davide; Rossi, Marco

    2001-01-01

    A generalization of the Yang-Baxter algebra is found in quantizing the monodromy matrix of two (m)KdV equations discretized on a space lattice. This braided Yang-Baxter equation still ensures that the transfer matrix generates operators in involution which form the Cartan sub-algebra of the braided quantum group. Representations diagonalizing these operators are described through relying on an easy generalization of Algebraic Bethe Ansatz techniques. The conjecture that this monodromy matrix algebra leads, {\\it in the cylinder continuum limit}, to a Perturbed Minimal Conformal Field Theory description is analysed and supported.

  4. Logarithmic conformal field theory

    Science.gov (United States)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  5. Evolution algebras and their applications

    CERN Document Server

    Tian, Jianjun Paul

    2008-01-01

    Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.

  6. Noncommutative string theory, the R-matrix, and Hopf algebras

    Science.gov (United States)

    Watts, P.

    2000-02-01

    Motivated by the form of the noncommutative /*-product in a system of open strings and Dp-branes with constant nonzero Neveu-Schwarz 2-form, we define a deformed multiplication operation on a quasitriangular Hopf algebra in terms of its R-matrix, and comment on some of its properties. We show that the noncommutative string theory /*-product is a particular example of this multiplication, and comment on other possible Hopf algebraic properties which may underlie the theory.

  7. Application of Fuzzy Algebra in Coding Theory

    Directory of Open Access Journals (Sweden)

    Kharatti Lal

    2016-01-01

    Full Text Available Fuzziness means different things depending upon the domain of application and the way it is measured. By means of fuzzy sets, vague notions can be described mathematically now a vigorous area of research with manifold applications. It should be mentioned that there are natural ways (not necessarily trivial to fuzzily various mathematical structures such as topological spaces, algebraic structure etc. The notion of L-fuzzy sets later more generalizations were also made using various membership sets and operations. In this section we let F denote the field of integers module 2, we define a fuzzy code as a fuzzy subset of Fn where F n = {(a1, ....an | a i  F, i = 1, ...n} and n is a fixed arbitrary positive integers we recall that Fn is a vector space over F. We give an analysis of the Hamming distance between two fuzzy code words and the error – correcting capability of a code in terms of its corresponding fuzzy codes. The results appearing in the first part of this section are from [17].

  8. Singularity theory for W-algebra potentials

    CERN Document Server

    Gaite, J C

    1993-01-01

    The Landau potentials of $W_3$-algebra models are analyzed with algebraic-geometric methods. The number of ground states and the number of independent perturbations of every potential coincide and can be computed. This number agrees with the structure of ground states obtained in a previous paper, namely, as the phase structure of the IRF models of Jimbo et al. The singularities associated to these potentials are identified.

  9. An Algebraic Theory of Information: An Introduction and Survey

    Directory of Open Access Journals (Sweden)

    Juerg Kohlas

    2014-04-01

    Full Text Available This review examines some particular, but important and basic aspects of information: Information is related to questions and should provide at least partial answers. Information comes in pieces, and it should be possible to aggregate these pieces. Finally, it should be possible to extract that part of a piece of information which relates to a given question. Modeling these concepts leads to an algebraic theory of information. This theory centers around two different but closely related types of information algebras, each containing operations for aggregation or combination of information and for extracting information relevant to a given question. Generic constructions of instances of such algebras are presented. In particular, the close connection of information algebras to logic and domain theory will be exhibited.

  10. Algebraic approach to form factors in the complex sinh-Gordon theory

    CERN Document Server

    Lashkevich, Michael

    2016-01-01

    We study form factors of the quantum complex sinh-Gordon theory in the algebraic approach. In the case of exponential fields the form factors can be obtained from the known form factors of the $Z_N$-symmetric Ising model. The algebraic construction also provides an Ansatz for form factors of descendant operators. We obtain generating functions of such form factors and establish their main properties: the cluster factorization and reflection equations.

  11. Algebraic approach to form factors in the complex sinh-Gordon theory

    Science.gov (United States)

    Lashkevich, Michael; Pugai, Yaroslav

    2017-01-01

    We study form factors of the quantum complex sinh-Gordon theory in the algebraic approach. In the case of exponential fields the form factors can be obtained from the known form factors of the ZN-symmetric Ising model. The algebraic construction also provides an Ansatz for form factors of descendant operators. We obtain generating functions of such form factors and establish their main properties: the cluster factorization and reflection equations.

  12. K-Theory for group C^*-algebras

    CERN Document Server

    Baum, Paul F

    2009-01-01

    These notes are based on a lecture course given by the first author in the Sedano Winter School on K-theory held in Sedano, Spain, on January 22-27th of 2007. They aim at introducing K-theory of C^*-algebras, equivariant K-homology and KK-theory in the context of the Baum-Connes conjecture.

  13. Noncommutative Field Theory on Homogeneous Gravitational Waves

    CERN Document Server

    Halliday, S; Halliday, Sam; Szabo, Richard J.

    2006-01-01

    We describe an algebraic approach to the time-dependent noncommutative geometry of a six-dimensional Cahen-Wallach pp-wave string background supported by a constant Neveu-Schwarz flux, and develop a general formalism to construct and analyse quantum field theories defined thereon. Various star-products are derived in closed explicit form and the Hopf algebra of twisted isometries of the plane wave is constructed. Scalar field theories are defined using explicit forms of derivative operators, traces and noncommutative frame fields for the geometry, and various physical features are described. Noncommutative worldvolume field theories of D-branes in the pp-wave background are also constructed.

  14. Gravity, Gauge Theories and Geometric Algebra

    CERN Document Server

    Lasenby, A; Gull, S F; Lasenby, Anthony; Doran, Chris; Gull, Stephen

    1998-01-01

    A new gauge theory of gravity is presented. The theory is constructed in a flat background spacetime and employs gauge fields to ensure that all relations between physical quantities are independent of the positions and orientations of the matter fields. In this manner all properties of the background spacetime are removed from physics, and what remains are a set of `intrinsic' relations between physical fields. The properties of the gravitational gauge fields are derived from both classical and quantum viewpoints. Field equations are then derived from an action principle, and consistency with the minimal coupling procedure selects an action that is unique up to the possible inclusion of a cosmological constant. This in turn singles out a unique form of spin-torsion interaction. A new method for solving the field equations is outlined and applied to the case of a time-dependent, spherically-symmetric perfect fluid. A gauge is found which reduces the physics to a set of essentially Newtonian equations. These e...

  15. A cohomology theory of grading-restricted vertex algebras

    CERN Document Server

    Huang, Yi-Zhi

    2010-01-01

    We introduce a cohomology theory of grading-restricted vertex algebras. To construct the "correct" cohomologies, we consider linear maps from tensor powers of a grading-restricted vertex algebra to "rational functions valued in the algebraic completion of a module for the algebra," instead of linear maps from tensor powers of the algebra to a module for the algebra. One subtle complication arising from such "rational functions valued in the algebraic completion of a module" is that we have to carefully address the issue of convergence when we compose these linear maps with vertex operators. In particular, for each $n\\in \\N$, we have an inverse system $\\{H^{n}_{m}(V, W)\\}_{m\\in \\Z_{+}}$ of $n$-th cohomologies and an additional $n$-th cohomology $H_{\\infty}^{n}(V, W)$ of a grading-restricted vertex algebra $V$ with coefficients in a $V$-module $W$ such that $H_{\\infty}^{n}(V, W)$ is isomorphic to the inverse limit of the inverse system $\\{H^{n}_{m}(V, W)\\}_{m\\in \\Z_{+}}$. In the case of $n=2$, there is an addit...

  16. Algebraic Formulation of the Operatorial Perturbation Theory; 1

    CERN Document Server

    Müller, A H; Müller, Ary W. Espinosa; Vásquez, Adelio R. Matamala

    1996-01-01

    A new totally algebraic formalism based on general, abstract ladder operators has been proposed. This approach heavily grounds in the superoperator formalism of Primas. However it is necessary to introduce many improvements in his formalism. In this regard, it has been introduced a new set of superoperators featured by their algebraic structure. Also, two lemmas and one theorem have been developed in order to algebraically reformulate the theory on more rigorous grounds. Finally, we have been able to build a coherent and self-contained formalism independent on any matricial representation , removing in this way the degeneracy problem .

  17. Algebraically special Einstein-Maxwell fields

    Science.gov (United States)

    Van den Bergh, Norbert

    2017-01-01

    The Geroch-Held-Penrose formalism is used to re-analyse algebraically special non-null Einstein-Maxwell fields, aligned as well as non-aligned, in the presence of a possible non-vanishing cosmological constant. A new invariant characterization is given of the García-Plebański and Plebański-Hacyan metrics within the family of aligned solutions and of the Griffiths metrics within the family of the non-aligned solutions. As a corollary also the double alignment of the Debever-McLenaghan `class D' metrics with non-vanishing cosmological constant is shown to be equivalent with the shear-free and geodesic behavior of their Debever-Penrose vectors.

  18. Algebras of holomorphic functions and control theory

    CERN Document Server

    Sasane, Amol

    2009-01-01

    This accessible, undergraduate-level text illustrates the role of algebras of holomorphic functions in the solution of an important engineering problem: the stabilization of a linear control system. Its concise and self-contained treatment avoids the use of higher mathematics and forms a bridge to more advanced treatments. The treatment consists of two components: the algebraic framework, which serves as the abstract language for posing and solving the problem of stabilization; and the analysis component, which examines properties of specific rings of holomorphic functions. Elementary, self-co

  19. Function algebras on finite sets basic course on many-valued logic and clone theory

    CERN Document Server

    Lau, Dietlinde

    2006-01-01

    Gives an introduction to the theory of function algebras. This book gives the general concepts of the Universal Algebra in order to familiarize the reader from the beginning on with the algebraic side of function algebras. It is a source on function algebras for students and researchers in mathematical logic and theoretical computer science.

  20. The $K$-groups and the index theory of certain comparison $C^*$-algebras

    CERN Document Server

    Monthubert, Bertrand

    2010-01-01

    We compute the $K$-theory of comparison $C^*$-algebra associated to a manifold with corners. These comparison algebras are an example of the abstract pseudodifferential algebras introduced by Connes and Moscovici \\cite{M3}. Our calculation is obtained by showing that the comparison algebras are a homomorphic image of a groupoid $C^*$-algebra. We then prove an index theorem with values in the $K$-theory groups of the comparison algebra.

  1. A Workshop on Algebraic Design Theory and Hadamard Matrices

    CERN Document Server

    2015-01-01

    This volume develops the depth and breadth of the mathematics underlying the construction and analysis of Hadamard matrices and their use in the construction of combinatorial designs. At the same time, it pursues current research in their numerous applications in security and cryptography, quantum information, and communications. Bridges among diverse mathematical threads and extensive applications make this an invaluable source for understanding both the current state of the art and future directions. The existence of Hadamard matrices remains one of the most challenging open questions in combinatorics. Substantial progress on their existence has resulted from advances in algebraic design theory using deep connections with linear algebra, abstract algebra, finite geometry, number theory, and combinatorics. Hadamard matrices arise in a very diverse set of applications. Starting with applications in experimental design theory and the theory of error-correcting codes, they have found unexpected and important ap...

  2. Monotonic Property in Field Algebra of G-Spin Model

    Institute of Scientific and Technical Information of China (English)

    蒋立宁

    2003-01-01

    Let F be the field algebra of G-spin model, D(G) the double algebra of a finite group G and D(H) the sub-Hopf algerba of D(G) determined by the subgroup H of G. The paper builds a correspondence between D(H) and the D(H)-invariant sub-C*-algebra AH in F, and proves that the correspondence is strictly monotonic.

  3. Ultraproducts of Tannakian Categories and Generic Representation Theory of Unipotent Algebraic Groups

    CERN Document Server

    Crumley, Michael

    2010-01-01

    The principle of tannakian duality states that any neutral tannakian category is tensorially equivalent to the category Rep_k G of finite dimensional representations of some affine group scheme G and field k, and conversely. Originally motivated by an attempt to find a first-order explanation for generic cohomology of algebraic groups, we study neutral tannakian categories as abstract first-order structures and, in particular, ultraproducts of them. One of the main theorems of this dissertation is that certain naturally definable subcategories of these ultraproducts are themselves neutral tannakian categories, hence tensorially equivalent to Comod_A for some Hopf algebra A over a field k. We are able to give a fairly tidy description of the representing Hopf algebras of these categories, and explicitly compute them in several examples. For the second half of this dissertation we turn our attention to the representation theories of certain unipotent algebraic groups, namely the additive group G_a and the Heise...

  4. Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory

    CERN Document Server

    Landau, Olav Arnfinn

    2011-01-01

    This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory o

  5. N=2 gauge theories and degenerate fields of Toda theory

    CERN Document Server

    Kanno, Shoichi; Shiba, Shotaro; Tachikawa, Yuji

    2009-01-01

    We discuss the correspondence between degenerate fields of the W_N algebra and punctures of Gaiotto's description of the Seiberg-Witten curve of N=2 superconformal gauge theories. Namely, we find that the type of degenerate fields of the W_N algebra, with null states at level one, is classified by Young diagrams with N boxes, and that the singular behavior of the Seiberg-Witten curve near the puncture agrees with that of W_N generators. We also find how to translate mass parameters of the gauge theory to the momenta of the Toda theory.

  6. Hilbert's Tenth Problem over Function Fields of Positive Characteristic Not Containing the Algebraic Closure of a Finite Field

    OpenAIRE

    Eisentraeger, Kirsten; Shlapentokh, Alexandra

    2013-01-01

    We prove that the existential theory of any function field $K$ of characteristic $p> 0$ is undecidable in the language of rings provided that the constant field does not contain the algebraic closure of a finite field. We also extend the undecidability proof for function fields of higher transcendence degree to characteristic 2 and show that the first-order theory of {\\bf any} function field of positive characteristic is undecidable in the language of rings without parameters.

  7. Linear {GLP}-algebras and their elementary theories

    Science.gov (United States)

    Pakhomov, F. N.

    2016-12-01

    The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.

  8. Symmetry algebras in Chern-Simons theories with boundary: canonical approach

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mu-In. E-mail: mipark@physics.sogang.ac.kr

    1999-04-05

    I consider the classical Kac-Moody algebra and Virasoro algebra in Chern-Simons theory with boundary within Dirac's canonical method and Noether's procedure. It is shown that the usual (bulk) Gauss law constraint becomes a second-class constraint because of the boundary effect. From this fact, the Dirac bracket can be constructed explicitly without introducing additional gauge conditions and the classical Kac-Moody and Virasoro algebras are obtained within the usual Dirac method. The equivalence to the symplectic reduction method is presented and the connection to the Banados' work is clarified. Also the generalization to the Yang-Mills-Chern-Simons theory is considered where the diffeomorphism symmetry is broken by the (three-dimensional) Yang-Mills term. In this case, the same Kac-Moody algebras are obtained although the two theories are sharply different in the canonical structures. Both models realize the holography principle explicitly and the pure CS theory reveals the correspondence of the Chern-Simons theory with boundary/conformal field theory, which is more fundamental and generalizes the conjectured anti-de Sitter/conformal field theory correspondence.

  9. Schaum's outline of theory and problems of linear algebra

    CERN Document Server

    Lipschutz, Seymour

    2001-01-01

    This third edition of the successful outline in linear algebra--which sold more than 400,000 copies in its past two editions--has been thoroughly updated to increase its applicability to the fields in which linear algebra is now essential: computer science, engineering, mathematics, physics, and quantitative analysis. Revised coverage includes new problems relevant to computer science and a revised chapter on linear equations.

  10. Multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups

    CERN Document Server

    Varchenko, A N

    1995-01-01

    This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in conformal field theory. The equation is defined in terms of a Lie algebra. Kohno and Drinfeld found that the monodromy of the differential equation is described in terms of the quantum group associated with the Lie algebra. It turns out that this phenomenon is the tip of the iceberg. The Knizhnik-Zamolodchikov differential equation is solved in multidimens

  11. A bigraded version of the Weil algebra and of the Weil homomorphism for Donaldson invariants. Elementary algebra and cohomology behind the Baulieu-Singer approach to Witten's topological Yang-Mills quantum field theory

    Science.gov (United States)

    Dubois-Violette, Michel

    1996-05-01

    We describe a bigraded generalization of the Weil algebra, of its basis and of the characteristic homomorphism which besides ordinary characteristic classes also maps on cohomology classes leading to Donaldson invariants in the appropriate context. Furthermore these cohomology classes exhaust the image of the generalized characteristic homomorphisms.

  12. Enveloping -*-Algebra of a Smooth Frechet Algebra Crossed Product by $\\mathbb{R}, K$-Theory and Differential Structure in *-Algebras

    Indian Academy of Sciences (India)

    Subhash J Bhatt

    2006-05-01

    Given an -tempered strongly continuous action of $\\mathbb{R}$ by continuous $∗$-automorphisms of a Frechet $∗$-algebra , it is shown that the enveloping -*-algebra $E(S(\\mathbb{R},A^∞,))$ of the smooth Schwartz crossed product $S(\\mathbb{R},A^∞,)$ of the Frechet algebra $A^∞$ of $C^∞$-elements of is isomorphic to the -*-crossed product $C^∗(\\mathbb{R}, E(A), )$ of the enveloping -*-algebra () of by the induced action. When is a hermitian $\\mathcal{Q}$-algebra, one gets -theory isomorphism $R K_∗(S(\\mathbb{R},A^∞,))=K_∗(C^∗(\\mathbb{R}, E(A),)$ for the representable -theory of Frechet algebras. An application to the differential structure of a *-algebra defined by densely defined differential seminorms is given.

  13. Time and the Algebraic Theory of Moments

    OpenAIRE

    Hiley, Basil J.

    2013-01-01

    We introduce the notion of an extended moment in time, the duron. This is a region of temporal ambiguity which arises naturally in the nature of process which we take to be basic. We introduce an algebra of process and show how it is related to, but different from, the monoidal category introduced by Abramsky and Coecke. By considering the limit as the duration of the moment approaches the infinitesimal, we obtain a pair of dynamical equations, one expressed in terms of a commutator and the o...

  14. Noncommutative Solitons and the W_{1+\\infty} Algebras in Quantum Hall Theory

    CERN Document Server

    Chan, C T; Chan, Chuan-Tsung; Lee, Jen-Chi

    2001-01-01

    We show that U(\\infty) symmetry transformations of the noncommutative field theory in the Moyal space are generated by a combination of two W_{1+\\infty} algebras in the Landau problem. Geometrical meaning of this infinite symmetry is illustrated by examining the transformations of an invariant subgroup on the noncommutative solitons, which generate deformations and boosts of solitons.

  15. The Nonlinear Field Space Theory

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)

    2016-08-10

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  16. The Nonlinear Field Space Theory

    Directory of Open Access Journals (Sweden)

    Jakub Mielczarek

    2016-08-01

    Full Text Available In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity, as well as in condensed matter physics (e.g. continuous spin chains, and can shed new light on the issue of divergences in quantum field theories.

  17. The Nonlinear Field Space Theory

    Science.gov (United States)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-08-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  18. Algebraic partial Boolean algebras

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Derek [Math Department, Lafayette College, Easton, PA 18042 (United States)

    2003-04-04

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A{sub 5} sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E{sub 8}.

  19. C*-Algebras over Topological Spaces: Filtrated K-Theory

    CERN Document Server

    Meyer, Ralf

    2008-01-01

    We define the filtrated K-theory of a C*-algebra over a finite topological space X and explain how to construct a spectral sequence that computes the bivariant Kasparov theory over X in terms of filtrated K-theory. For finite spaces with totally ordered lattice of open subsets, this spectral sequence becomes an exact sequence as in the Universal Coefficient Theorem, with the same consequences for classification. We also exhibit an example where filtrated K-theory is not yet a complete invariant. We describe a space with four points and two C*-algebras over this space in the bootstrap class that have isomorphic filtrated K-theory but are not KK(X)-equivalent. For this particular space, we enrich filtrated K-theory by another K-theory functor, so that there is again a Universal Coefficient Theorem. Thus the enriched filtrated K-theory is a complete invariant for purely infinite, stable C*-algebras with this particular spectrum and belonging to the appropriate bootstrap class.

  20. Embedding of exact $C^{*}$-algebras and continuous fields in the Cuntz algebra $O_2$

    CERN Document Server

    Kirchberg, E; Kirchberg, Eberhard

    1997-01-01

    We prove that any separable exact C*-algebra is isomorphic to a subalgebra of the Cuntz algebra ${\\cal O}_2.$ We further prove that if $A$ is a simple separable unital nuclear C*-algebra, then ${\\cal O}_2 \\otimes A \\cong {\\cal O}_2,$ and if, in addition, $A$ is purely infinite, then ${\\cal O}_{\\infty} The embedding of exact C*-algebras in $ØA{2}$ is continuous in the following sense. If $A$ is a continuous field of C*-algebras over a compact manifold or finite CW complex $X$ with fiber $A (x)$ over $x \\in X,$ such that the algebra of continuous sections of $A$ is separable and exact, then there is a family of injective homomorphisms $\\phi_x : A (x) \\to {\\cal O}_2$ such that for every continuous section $a$ of $A$ the function $x \\mapsto \\phi_x (a (x))$ is continuous. Moreover, one can say something about the modulus of continuity of the functions $x \\mapsto \\phi_x (a (x))$ in terms of the structure of the continuous field. In particular, we show that the continuous field $\\theta and $v (\\theta)$ are mapped t...

  1. Gauge Theories on Open Lie Algebra Noncommutative Spaces

    Science.gov (United States)

    Agarwal, A.; Akant, L.

    It is shown that noncommutative spaces, which are quotients of associative algebras by ideals generated by highly nonlinear relations of a particular type, admit extremely simple formulae for deformed or star products. Explicit construction of these star products is carried out. Quantum gauge theories are formulated on these spaces, and the Seiberg-Witten map is worked out in detail.

  2. Partial Fractions in Calculus, Number Theory, and Algebra

    Science.gov (United States)

    Yackel, C. A.; Denny, J. K.

    2007-01-01

    This paper explores the development of the method of partial fraction decomposition from elementary number theory through calculus to its abstraction in modern algebra. This unusual perspective makes the topic accessible and relevant to readers from high school through seasoned calculus instructors.

  3. Category of trees in representation theory of quantum algebras

    Energy Technology Data Exchange (ETDEWEB)

    Moskaliuk, N. M.; Moskaliuk, S. S., E-mail: mss@bitp.kiev.ua [NAS of Ukraine, Bogolyubov Institute for Theoretical Physics (Ukraine)

    2013-10-15

    New applications of categorical methods are connected with new additional structures on categories. One of such structures in representation theory of quantum algebras, the category of Kuznetsov-Smorodinsky-Vilenkin-Smirnov (KSVS) trees, is constructed, whose objects are finite rooted KSVS trees and morphisms generated by the transition from a KSVS tree to another one.

  4. Algebraic formulation of quantum theory, particle identity and entanglement

    Science.gov (United States)

    Govindarajan, T. R.

    2016-08-01

    Quantum theory as formulated in conventional framework using statevectors in Hilbert spaces misses the statistical nature of the underlying quantum physics. Formulation using operators 𝒞∗ algebra and density matrices appropriately captures this feature in addition leading to the correct formulation of particle identity. In this framework, Hilbert space is an emergent concept. Problems related to anomalies and quantum epistemology are discussed.

  5. Generalized exterior algebras

    CERN Document Server

    Marchuk, Nikolay

    2011-01-01

    Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann algebra and Clifford algebra. Specialists consider models of gravity that based on a mathematical formalism with two metric tensors. We hope that the considered in this paper 2-metric exterior algebra can be useful for development of this model in gravitation theory. Especially in description of fermions in presence of a gravity field.

  6. Pure L-functions from algebraic geometry over finite fields

    CERN Document Server

    Wan, D

    2000-01-01

    This is an expository paper which gives a simple arithmetic introduction to the conjectures of Weil and Dwork concerning zeta functions of algebraic varieties over finite fields. A number of further open questions are raised.

  7. Magnetic translation algebra with or without magnetic field

    Science.gov (United States)

    Mudry, Christopher; Chamon, Claudio

    2013-03-01

    The magnetic translation algebra plays an important role in the quantum Hall effect. Murthy and Shankar have shown how to realize this algebra using fermionic bilinears defined on a two-dimensional square lattice. We show that, in any dimension d, it is always possible to close the magnetic translation algebra using fermionic bilinears, be it in the continuum or on the lattice. We also show that these generators are complete in even, but not odd, dimensions, in the sense that any fermionic Hamiltonian in even dimensions that conserves particle number can be represented in terms of the generators of this algebra, whether or not time-reversal symmetry is broken. As an example, we reproduce the f-sum rule of interacting electrons at vanishing magnetic field using this representation. We also show that interactions can significantly change the bare band width of lattice Hamiltonians when represented in terms of the generators of the magnetic translation algebra.

  8. Extended Supersymmetric BMS$_3$ algebras and Their Free Field Realisations

    CERN Document Server

    Banerjee, Nabamita; Lodato, Ivano; Mukhi, Sunil; Neogi, Turmoli

    2016-01-01

    We study $N=(2,4,8)$ supersymmetric extensions of the three dimensional BMS algebra (BMS$_3$) with most generic possible central extensions. We find that $N$-extended supersymmetric BMS$_3$ algebras can be derived by a suitable contraction of two copies of the extended superconformal algebras. Extended algebras from all the consistent contractions are obtained by scaling left-moving and right-moving supersymmetry generators symmetrically, while Virasoro and R-symmetry generators are scaled asymmetrically. On the way, we find that the BMS/GCA correspondence does not in general hold for supersymmetric systems. Using the $\\beta$-$\\gamma$ and the ${\\mathfrak b}$-${\\mathfrak c}$ systems, we construct free field realisations of all the extended super-BMS$_3$ algebras.

  9. Currents in supersymmetric field theories

    CERN Document Server

    Derendinger, Jean-Pierre

    2016-01-01

    A general formalism to construct and improve supercurrents and source or anomaly superfields in two-derivative N=1 supersymmetric theories is presented. It includes arbitrary gauge and chiral superfields and a linear superfield coupled to gauge fields. These families of supercurrent structures are characterized by their energy-momentum tensors and R currents and they display a specific relation to the dilatation current of the theory. The linear superfield is introduced in order to describe the gauge coupling as a background (or propagating) field. Supersymmetry does not constrain the dependence on this gauge coupling field of gauge kinetic terms and holomorphicity restrictions are absent. Applying these results to an effective (Wilson) description of super-Yang-Mills theory, matching or cancellation of anomalies leads to an algebraic derivation of the all-order NSVZ beta function.

  10. Index maps in the K-theory of graph algebras

    DEFF Research Database (Denmark)

    Meier Carlsen, Toke; Eilers, Søren; Tomforde, Mark

    2012-01-01

    Let C*(E) be the graph C*-algebra associated to a graph E and let J be a gauge-invariant ideal in C*(E). We compute the cyclic six-term exact sequence in K-theory associated to the extension in terms of the adjacency matrix associated to E. The ordered six-term exact sequence is a complete stable...... isomorphism invariant for several classes of graph C*-algebras, for instance those containing a unique proper nontrivial ideal. Further, in many other cases, finite collections of such sequences constitute complete invariants. Our results allow for explicit computation of the invariant, giving an exact...

  11. Evolution operator equation: Integration with algebraic and finite difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado

    1997-10-01

    The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.

  12. Enumerating algebras over a finite field

    Directory of Open Access Journals (Sweden)

    Michael Vaughan-Lee

    2013-09-01

    Full Text Available Graham Higman wrote two immensely important and in uential papers on enumerating p-groups in the late 1950s. The papers were entitled Enumerating p-groups I and II, and were published in the Proceedings of the London Mathematical Society in 1960. A complete description of the algebras of dimension 2 over a nite eld is given by Petersson and Scherer. They also give formulae for the number of algebras of dimension 2 over GF(q, which agree with the formulae given here. We give the formulae for the numbers of algebras of dimensions 2, 3 and 4 in Section 2. In Section 3 we give a broad outline of how the formulae can be obtained and in Section 4 we draw some quite precise conclusions about the asymptotic form of the formulae for general n.

  13. Yang-Baxter algebras, integrable theories and quantum groups

    Energy Technology Data Exchange (ETDEWEB)

    Vega, H.J. de (Paris-6 Univ., 75 (France). Lab. de Physique Theorique et Hautes Energies)

    1990-12-01

    The Yang-Baxter algebras (YBA) are introduced in a general framework stressing their power to exactly solve the lattice models associated to them. The algebraic Bethe Ansatz is developed as an eigenvector construction based on the YBA. The six-vertex model solution is given explicitely. It is explained how these lattice models yield both solvable massive QFT and conformal models in appropriated scaling (continuous) limits within the lattice light-cone approach. This approach permit to define and solve rigorously massive QFT as an appropriate continuum limit of gapless vertex models. The deep links between the YBA and Lie algebras are analyzed including the quantum groups that underly the trigonometric/hyperbolic YBA. Braid and quantum groups are derived from trigonometric/hyperbolic YBA in the limit of infinite spectral parameter. To conclude, some recent developments in the domain of integrable theories are summarized. (orig.).

  14. Many rational points coding theory and algebraic geometry

    CERN Document Server

    Hurt, Norman E

    2003-01-01

    This monograph presents a comprehensive treatment of recent results on algebraic geometry as they apply to coding theory and cryptography, with the goal the study of algebraic curves and varieties with many rational points. They book surveys recent developments on abelian varieties, in particular the classification of abelian surfaces, hyperelliptic curves, modular towers, Kloosterman curves and codes, Shimura curves and modular jacobian surfaces. Applications of abelian varieties to cryptography are presented including a discussion of hyperelliptic curve cryptosystems. The inter-relationship of codes and curves is developed building on Goppa's results on algebraic-geometry cods. The volume provides a source book of examples with relationships to advanced topics regarding Sato-Tate conjectures, Eichler-Selberg trace formula, Katz-Sarnak conjectures and Hecke operators.

  15. Conformal field theory on the plane

    CERN Document Server

    Ribault, Sylvain

    2014-01-01

    We provide an introduction to conformal field theory on the plane in the conformal bootstrap approach. We introduce the main ideas of the bootstrap approach to quantum field theory, and how they apply to two-dimensional theories with local conformal symmetry. We describe the mathematical structures which appear in such theories, from the Virasoro algebra and its representations, to the BPZ equations and their solutions. As examples, we study a number of models: Liouville theory, (generalized) minimal models, free bosonic theories, the $H_3^+$ model, and the $SU_2$ and $\\widetilde{SL}_2(\\mathbb{R})$ WZW models.

  16. Dual number coefficient octonion algebra, field equations and conservation laws

    Science.gov (United States)

    Chanyal, B. C.; Chanyal, S. K.

    2016-08-01

    Starting with octonion algebra, we develop the dual number coefficient octonion (DNCO) algebra having sixteen components. DNCO forms of generalized potential, field and current equations are discussed in consistent manner. We have made an attempt to write the DNCO form of generalized Dirac-Maxwell's equations in presence of electric and magnetic charges (dyons). Accordingly, we demonstrate the work-energy theorem of classical mechanics reproducing the continuity equation for dyons in terms of DNCO algebra. Further, we discuss the DNCO form of linear momentum conservation law for dyons.

  17. Algebra of Complex Vectors and Applications in Electromagnetic Theory and Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Kundeti Muralidhar

    2015-08-01

    Full Text Available A complex vector is a sum of a vector and a bivector and forms a natural extension of a vector. The complex vectors have certain special geometric properties and considered as algebraic entities. These represent rotations along with specified orientation and direction in space. It has been shown that the association of complex vector with its conjugate generates complex vector space and the corresponding basis elements defined from the complex vector and its conjugate form a closed complex four dimensional linear space. The complexification process in complex vector space allows the generation of higher n-dimensional geometric algebra from (n — 1-dimensional algebra by considering the unit pseudoscalar identification with square root of minus one. The spacetime algebra can be generated from the geometric algebra by considering a vector equal to square root of plus one. The applications of complex vector algebra are discussed mainly in the electromagnetic theory and in the dynamics of an elementary particle with extended structure. Complex vector formalism simplifies the expressions and elucidates geometrical understanding of the basic concepts. The analysis shows that the existence of spin transforms a classical oscillator into a quantum oscillator. In conclusion the classical mechanics combined with zeropoint field leads to quantum mechanics.

  18. Vortex lattice theory: A linear algebra approach

    Science.gov (United States)

    Chamoun, George C.

    Vortex lattices are prevalent in a large class of physical settings that are characterized by different mathematical models. We present a coherent and generalized Hamiltonian fluid mechanics-based formulation that reduces all vortex lattices into a classic problem in linear algebra for a non-normal matrix A. Via Singular Value Decomposition (SVD), the solution lies in the null space of the matrix (i.e., we require nullity( A) > 0) as well as the distribution of its singular values. We demonstrate that this approach provides a good model for various types of vortex lattices, and makes it possible to extract a rich amount of information on them. The contributions of this thesis can be classified into four main points. The first is asymmetric equilibria. A 'Brownian ratchet' construct was used which converged to asymmetric equilibria via a random walk scheme that utilized the smallest singular value of A. Distances between configurations and equilibria were measured using the Frobenius norm ||·||F and 2-norm ||·||2, and conclusions were made on the density of equilibria within the general configuration space. The second contribution used Shannon Entropy, which we interpret as a scalar measure of the robustness, or likelihood of lattices to occur in a physical setting. Third, an analytic model was produced for vortex street patterns on the sphere by using SVD in conjunction with expressions for the center of vorticity vector and angular velocity. Equilibrium curves within the configuration space were presented as a function of the geometry, and pole vortices were shown to have a critical role in the formation and destruction of vortex streets. The fourth contribution entailed a more complete perspective of the streamline topology of vortex streets, linking the bifurcations to critical points on the equilibrium curves.

  19. Geometry of the gauge algebra in noncommutative Yang-Mills theory

    Science.gov (United States)

    Lizzi, Fedele; Zampini, Alessandro; Szabo, Richard J.

    2001-08-01

    A detailed description of the infinite-dimensional Lie algebra of star-gauge transformations in non-commutative Yang-Mills theory is presented. Various descriptions of this algebra are given in terms of inner automorphisms of the underlying deformed algebra of functions on spacetime, of deformed symplectic diffeomorphisms, of the infinite unitary Lie algebra u(∞), and of the C*-algebra of compact operators on a quantum mechanical Hilbert space. The spacetime and string interpretations are also elucidated.

  20. Geometry of the Gauge Algebra in Noncommutative Yang-Mills Theory

    CERN Document Server

    Lizzi, F; Zampini, A

    2001-01-01

    A detailed description of the infinite-dimensional Lie algebra of star-gauge transformations in noncommutative Yang-Mills theory is presented. Various descriptions of this algebra are given in terms of inner automorphisms of the underlying deformed algebra of functions on spacetime, of deformed symplectic diffeomorphisms, of the infinite unitary Lie algebra, and of the algebra of compact operators on a quantum mechanical Hilbert space. The spacetime and string interpretations are also elucidated.

  1. Riemann surfaces and algebraic curves a first course in Hurwitz theory

    CERN Document Server

    Cavalieri, Renzo

    2016-01-01

    Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.

  2. Inverse Determinant Sums and Connections Between Fading Channel Information Theory and Algebra

    CERN Document Server

    Vehkalahti, Roope

    2011-01-01

    Since the invention of space-time coding numerous algebraic methods have been applied to code design. In particular algebraic number theory and central simple algebras have been at the forefront of the research. In the first part of the paper we will push this direction further and show how the error probability of algebraic codes is tied to some central aspects of algebraic number theory and central simple algebras. In particular we prove how the error probability of several algebraic codes is tied to the corresponding zeta functions and unit groups. In the second part of this paper we turn to study what information theory can say about algebra. We will first derive some corollaries from the diversity-multiplexing gain tradeoff (DMT) Zheng and Tse and later show how these results can be used to analyze the unit group of orders of certain division algebras.

  3. Modern Quantum Field Theory

    Science.gov (United States)

    Banks, Tom

    2008-09-01

    1. Introduction; 2. Quantum theory of free scalar fields; 3. Interacting field theory; 4. Particles of spin one, and gauge invariance; 5. Spin 1/2 particles and Fermi statistics; 6. Massive quantum electrodynamics; 7. Symmetries, Ward identities and Nambu Goldstone bosons; 8. Non-abelian gauge theory; 9. Renormalization and effective field theory; 10. Instantons and solitons; 11. Concluding remarks; Appendices; References; Index.

  4. Integrand Reduction Reloaded: Algebraic Geometry and Finite Fields

    Science.gov (United States)

    Sameshima, Ray D.; Ferroglia, Andrea; Ossola, Giovanni

    2017-01-01

    The evaluation of scattering amplitudes in quantum field theory allows us to compare the phenomenological prediction of particle theory with the measurement at collider experiments. The study of scattering amplitudes, in terms of their symmetries and analytic properties, provides a theoretical framework to develop techniques and efficient algorithms for the evaluation of physical cross sections and differential distributions. Tree-level calculations have been known for a long time. Loop amplitudes, which are needed to reduce the theoretical uncertainty, are more challenging since they involve a large number of Feynman diagrams, expressed as integrals of rational functions. At one-loop, the problem has been solved thanks to the combined effect of integrand reduction, such as the OPP method, and unitarity. However, plenty of work is still needed at higher orders, starting with the two-loop case. Recently, integrand reduction has been revisited using algebraic geometry. In this presentation, we review the salient features of integrand reduction for dimensionally regulated Feynman integrals, and describe an interesting technique for their reduction based on multivariate polynomial division. We also show a novel approach to improve its efficiency by introducing finite fields. Supported in part by the National Science Foundation under Grant PHY-1417354.

  5. Renormalizable Tensor Field Theories

    CERN Document Server

    Geloun, Joseph Ben

    2016-01-01

    Extending tensor models at the field theoretical level, tensor field theories are nonlocal quantum field theories with Feynman graphs identified with simplicial complexes. They become relevant for addressing quantum topology and geometry in any dimension and therefore form an interesting class of models for studying quantum gravity. We review the class of perturbatively renormalizable tensor field theories and some of their features.

  6. On logical, algebraic, and probabilistic aspects of fuzzy set theory

    CERN Document Server

    Mesiar, Radko

    2016-01-01

    The book is a collection of contributions by leading experts, developed around traditional themes discussed at the annual Linz Seminars on Fuzzy Set Theory. The different chapters have been written by former PhD students, colleagues, co-authors and friends of Peter Klement, a leading researcher and the organizer of the Linz Seminars on Fuzzy Set Theory. The book also includes advanced findings on topics inspired by Klement’s research activities, concerning copulas, measures and integrals, as well as aggregation problems. Some of the chapters reflect personal views and controversial aspects of traditional topics, while others deal with deep mathematical theories, such as the algebraic and logical foundations of fuzzy set theory and fuzzy logic. Originally thought as an homage to Peter Klement, the book also represents an advanced reference guide to the mathematical theories related to fuzzy logic and fuzzy set theory with the potential to stimulate important discussions on new research directions in the fiel...

  7. Advanced classical field theory

    CERN Document Server

    Giachetta, Giovanni; Sardanashvily, Gennadi

    2009-01-01

    Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory

  8. A note on the "logarithmic-W_3" octuplet algebra and its Nichols algebra

    OpenAIRE

    Semikhatov, A M

    2013-01-01

    We describe a Nichols-algebra-motivated construction of an octuplet chiral algebra that is a "W_3-counterpart" of the triplet algebra of (p,1) logarithmic models of two-dimensional conformal field theory.

  9. Algebraic and combinatorial Brill-Noether theory

    OpenAIRE

    Caporaso, Lucia

    2011-01-01

    The interplay between algebro-geometric and combinatorial Brill-Noether theory is studied. The Brill-Noether variety of a graph shown to be non-empty if the Brill-Noether number is non-negative, as a consequence of the analogous fact for smooth projective curves. Similarly, the existence of a graph for which the Brill-Noether variety is empty implies the emptiness of the corresponding Brill-Noether variety for a general curve. The main tool is a refinement of Baker's Specialization Lemma.

  10. A complexity theory based on Boolean algebra

    DEFF Research Database (Denmark)

    Skyum, Sven; Valiant, Leslie

    1985-01-01

    relevance in Turing-machine-based complexity theory can be replicated easily and naturally in this elementary framework. Finer distinctions about the computational relationships among natural problems can be made than in previous formulations and some negative results are proved.......A projection of a Boolean function is a function obtained by substituting for each of its variables a variable, the negation of a variable, or a constant. Reducibilities among computational problems under this relation of projection are considered. It is shown that much of what is of everyday...

  11. Bilinear covariants and spinor fields duality in quantum Clifford algebras

    Energy Technology Data Exchange (ETDEWEB)

    Abłamowicz, Rafał, E-mail: rablamowicz@tntech.edu [Department of Mathematics, Box 5054, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Gonçalves, Icaro, E-mail: icaro.goncalves@ufabc.edu.br [Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, 05508-090, São Paulo, SP (Brazil); Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy)

    2014-10-15

    Classification of quantum spinor fields according to quantum bilinear covariants is introduced in a context of quantum Clifford algebras on Minkowski spacetime. Once the bilinear covariants are expressed in terms of algebraic spinor fields, the duality between spinor and quantum spinor fields can be discussed. Thus, by endowing the underlying spacetime with an arbitrary bilinear form with an antisymmetric part in addition to a symmetric spacetime metric, quantum algebraic spinor fields and deformed bilinear covariants can be constructed. They are thus compared to the classical (non quantum) ones. Classes of quantum spinor fields classes are introduced and compared with Lounesto's spinor field classification. A physical interpretation of the deformed parts and the underlying Z-grading is proposed. The existence of an arbitrary bilinear form endowing the spacetime already has been explored in the literature in the context of quantum gravity [S. W. Hawking, “The unpredictability of quantum gravity,” Commun. Math. Phys. 87, 395 (1982)]. Here, it is shown further to play a prominent role in the structure of Dirac, Weyl, and Majorana spinor fields, besides the most general flagpoles and flag-dipoles. We introduce a new duality between the standard and the quantum spinor fields, by showing that when Clifford algebras over vector spaces endowed with an arbitrary bilinear form are taken into account, a mixture among the classes does occur. Consequently, novel features regarding the spinor fields can be derived.

  12. Factors Relating to the Success or Failure of College Algebra Internet Students: A Grounded Theory Study

    OpenAIRE

    Walker, Christine

    2008-01-01

    The purpose of this grounded theory study was to discover the factors that contribute to the success or failure of college algebra for students taking college algebra by distance education Internet, and then generate a theory of success or failure of the group of College Algebra Internet students at one Utah college. Qualitative data were collected and analyzed on students’ perceptions and perspectives of a College Algebra Internet course that they took during the spring or summer 2006 semest...

  13. Height inequality of algebraic points on curves over functional fields

    CERN Document Server

    Tan, S L

    1995-01-01

    The purpose of this paper is to give a linear and effective height inequality for algebraic points on curves over functional fields. Our height inequality can be viewed as the logarithmic canonical class inequality of a punctured curve over a functional field (a fibered surface minus a section). This paper will appear in J. reine angew. Math.

  14. On Elliptic Algebras and Large-n Supersymmetric Gauge Theories

    CERN Document Server

    Koroteev, Peter

    2016-01-01

    In this note we further develop the duality between supersymmetric gauge theories in various dimensions and elliptic integrable systems such as Ruijsenaars-Schneider model and periodic intermediate long wave hydrodynamics. These models arise in instanton counting problems and are described by certain elliptic algebras. We discuss the correspondence between the two types of models by employing the large-n limit of the dual gauge theory. In particular we provide non-Abelian generalization of our previous result on the intermediate long wave model.

  15. A-D-E Classification of Conformal Field Theories

    CERN Document Server

    Cappelli, Andrea

    2009-01-01

    The ADE classification scheme is encountered in many areas of mathematics, most notably in the study of Lie algebras. Here such a scheme is shown to describe families of two-dimensional conformal field theories.

  16. Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory

    CERN Document Server

    Molina, Mercedes

    2016-01-01

    Presenting the collaborations of over thirty international experts in the latest developments in pure and applied mathematics, this volume serves as an anthology of research with a common basis in algebra, functional analysis and their applications. Special attention is devoted to non-commutative algebras, non-associative algebras, operator theory and ring and module theory. These themes are relevant in research and development in coding theory, cryptography and quantum mechanics. The topics in this volume were presented at the Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory, held May 23—25, 2014 at Cheikh Anta Diop University in Dakar, Senegal in honor of Professor Amin Kaidi. The workshop was hosted by the university's Laboratory of Algebra, Cryptology, Algebraic Geometry and Applications, in cooperation with the University of Almería and the University of Málaga. Dr. Kaidi's work focuses on non-associative rings and algebras, operator theory and functional analysis, and he...

  17. Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories.

    Science.gov (United States)

    Huang, Yu-tin; Johansson, Henrik

    2013-04-26

    We show that three-dimensional supergravity amplitudes can be obtained as double copies of either three-algebra super-Chern-Simons matter theory or two-algebra super-Yang-Mills theory when either theory is organized to display the color-kinematics duality. We prove that only helicity-conserving four-dimensional gravity amplitudes have nonvanishing descendants when reduced to three dimensions, implying the vanishing of odd-multiplicity S-matrix elements, in agreement with Chern-Simons matter theory. We explicitly verify the double-copy correspondence at four and six points for N = 12,10,8 supergravity theories and discuss its validity for all multiplicity.

  18. Balanced Topological Field Theories

    Science.gov (United States)

    Dijkgraaf, R.; Moore, G.

    We describe a class of topological field theories called ``balanced topological field theories''. These theories are associated to moduli problems with vanishing virtual dimension and calculate the Euler character of various moduli spaces. We show that these theories are closely related to the geometry and equivariant cohomology of ``iterated superspaces'' that carry two differentials. We find the most general action for these theories, which turns out to define Morse theory on field space. We illustrate the constructions with numerous examples. Finally, we relate these theories to topological sigma-models twisted using an isometry of the target space.

  19. Balanced Topological Field Theories

    CERN Document Server

    Dijkgraaf, R

    1997-01-01

    We describe a class of topological field theories called ``balanced topological field theories.'' These theories are associated to moduli problems with vanishing virtual dimension and calculate the Euler character of various moduli spaces. We show that these theories are closely related to the geometry and equivariant cohomology of ``iterated superspaces'' that carry two differentials. We find the most general action for these theories, which turns out to define Morse theory on field space. We illustrate the constructions with numerous examples. Finally, we relate these theories to topological sigma-models twisted using an isometry of the target space.

  20. Basic Research in the Mathematical Foundations of Stability Theory, Control Theory and Numerical Linear Algebra.

    Science.gov (United States)

    1979-09-01

    without determinantal divisors, Linear and Multilinear Algebra 7(1979), 107-109. 4. The use of integral operators in number theory (with C. Ryavec and...Gersgorin revisited, to appear in Letters in Linear Algebra. 15. A surprising determinantal inequality for real matrices (with C.R. Johnson), to appear in...Analysis: An Essay Concerning the Limitations of Some Mathematical Methods in the Social , Political and Biological Sciences, David Berlinski, MIT Press

  1. Algebra

    CERN Document Server

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  2. On 2-dimensional topological field theories

    CERN Document Server

    Dumitrescu, Florin

    2010-01-01

    In this paper we give a characterization of 2-dimensional topological field theories over a space $X$ as Frobenius bundles with connections over $LX$, the free loop space of $X$. This is a generalization of the folk theorem stating that 2-dimensional topological field theories (over a point) are described by finite-dimensional commutative Frobenius algebras. In another direction, this result extends the description of 1-dimensional topological field theories over a space $X$ as vector bundles with connections over $X$, cf. \\cite{DST}.

  3. Advances in Statistical Control, Algebraic Systems Theory, and Dynamic Systems Characteristics A Tribute to Michael K Sain

    CERN Document Server

    Won, Chang-Hee; Michel, Anthony N

    2008-01-01

    This volume - dedicated to Michael K. Sain on the occasion of his seventieth birthday - is a collection of chapters covering recent advances in stochastic optimal control theory and algebraic systems theory. Written by experts in their respective fields, the chapters are thematically organized into four parts: Part I focuses on statistical control theory, where the cost function is viewed as a random variable and performance is shaped through cost cumulants. In this respect, statistical control generalizes linear-quadratic-Gaussian and H-infinity control. Part II addresses algebraic systems th

  4. Mathematical aspects of quantum field theories

    CERN Document Server

    Strobl, Thomas

    2015-01-01

    Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...

  5. Infinite coupling duals of N=2 gauge theories and new rank 1 superconformal field theories

    OpenAIRE

    Argyres, Philip C.; Wittig, John R.

    2007-01-01

    We show that a proposed duality [arXiv:0711.0054] between infinitely coupled gauge theories and superconformal field theories (SCFTs) with weakly gauged flavor groups predicts the existence of new rank 1 SCFTs. These superconformal fixed point theories have the same Coulomb branch singularities as the rank 1 E_6, E_7, and E_8 SCFTs, but have smaller flavor symmetry algebras and different central charges. Gauging various subalgebras of the flavor algebras of these rank 1 SCFTs provides many ex...

  6. Diagrammatic Kazhdan-Lusztig theory for the (walled) Brauer algebra

    CERN Document Server

    Cox, Anton

    2010-01-01

    We determine the decomposition numbers for the Brauer and walled Brauer algebra in characteristic zero in terms of certain polynomials associated to cap and curl diagrams (recovering a result of Martin in the Brauer case). We consider a second family of polynomials associated to such diagrams, and use these to determine projective resolutions of the standard modules. We then relate these two families of polynomials to Kazhdan-Lusztig theory via the work of Lascoux-Sch\\"utzenberger and Boe, inspired by work of Brundan and Stroppel in the cap diagram case.

  7. Observable currents in lattice field theories

    CERN Document Server

    Zapata, José A

    2016-01-01

    Observable currents are spacetime local objects that induce physical observables when integrated on an auxiliary codimension one surface. Since the resulting observables are independent of local deformations of the integration surface, the currents themselves carry most of the information about the induced physical observables. I study observable currents in a multisymplectic framework for Lagrangian field theory over discrete spacetime. A weak version of observable currents preserves many of their properties, while inducing a family of observables capable of separating points in the space of physically distinct solutions. A Poisson bracket gives the space of observable currents the structure of a Lie algebra. Peierls bracket for bulk observables gives an algebra homomorphism mapping equivalence classes of bulk observables to weak observable currents. The study covers scalar fields, nonlinear sigma models and gauge theories (including gauge theory formulations of general relativity) on the lattice. Even when ...

  8. On Algebraic Integrability of Gelfand-Zeitlin fields

    CERN Document Server

    Colarusso, Mark

    2009-01-01

    We generalize a result of Kostant and Wallach concerning the algebraic integrability of the Gelfand-Zeitlin vector fields to the full set of strongly regular elements in $gl(n,\\mathbb{C})$. We use decomposition classes to stratify the strongly regular set by subvarieties $X_{D}$. We construct an \\'{e}tale cover $\\hat{\\mathfrak{g}}$ of $X_{D}$ and show that $X_{D}$ and $\\hat{\\mathfrak{g}}$ are smooth and irreducible. We then use Poisson geometry to lift the Gelfand-Zeitlin vector fields on $X_{D}$ to Hamiltonian vector fields on $\\hat{\\mathfrak{g}}$ and integrate these vector fields to an action of a connected, commutative algebraic group.

  9. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  10. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  11. Information field theory

    OpenAIRE

    Enßlin, Torsten

    2013-01-01

    Non-linear image reconstruction and signal analysis deal with complex inverse problems. To tackle such problems in a systematic way, I present information field theory (IFT) as a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms even for non-linear and non-Gaussian signal inference problems. IFT algorithms exploit spatial correlations of the signal fields and b...

  12. New symbolic tools for differential geometry, gravitation, and field theory

    Science.gov (United States)

    Anderson, I. M.; Torre, C. G.

    2012-01-01

    DifferentialGeometry is a Maple software package which symbolically performs fundamental operations of calculus on manifolds, differential geometry, tensor calculus, spinor calculus, Lie algebras, Lie groups, transformation groups, jet spaces, and the variational calculus. These capabilities, combined with dramatic recent improvements in symbolic approaches to solving algebraic and differential equations, have allowed for development of powerful new tools for solving research problems in gravitation and field theory. The purpose of this paper is to describe some of these new tools and present some advanced applications involving: Killing vector fields and isometry groups, Killing tensors, algebraic classification of solutions of the Einstein equations, and symmetry reduction of field equations.

  13. Clone Theory: Its Syntax and Semantics, Applications to Universal Algebra, Lambda Calculus and Algebraic Logic

    CERN Document Server

    Luo, Zhaohua

    2008-01-01

    The primary goal of this paper is to present a unified way to transform the syntax of a logic system into certain initial algebraic structure so that it can be studied algebraically. The algebraic structures which one may choose for this purpose are various clones over a full subcategory of a category. We show that the syntax of equational logic, lambda calculus and first order logic can be represented as clones or right algebras of clones over the set of positive integers. The semantics is then represented by structures derived from left algebras of these clones.

  14. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  15. Supergeometry in locally covariant quantum field theory

    CERN Document Server

    Hack, Thomas-Paul; Schenkel, Alexander

    2015-01-01

    In this paper we analyze supergeometric locally covariant quantum field theories. We develop suitable categories SLoc of super-Cartan supermanifolds, which generalize Lorentz manifolds in ordinary quantum field theory, and show that, starting from a few representation theoretic and geometric data, one can construct a functor A : SLoc --> S*Alg to the category of super-*-algebras which can be interpreted as a non-interacting super-quantum field theory. This construction turns out to disregard supersymmetry transformations as the morphism sets in the above categories are too small. We then solve this problem by using techniques from enriched category theory, which allows us to replace the morphism sets by suitable morphism supersets that contain supersymmetry transformations as their higher superpoints. We construct super-quantum field theories in terms of enriched functors eA : eSLoc --> eS*Alg between the enriched categories and show that supersymmetry transformations are appropriately described within the en...

  16. Lower bounds on the class number of algebraic function fields defined over any finite field

    CERN Document Server

    Ballet, Stéphane

    2011-01-01

    We give lower bounds on the number of effective divisors of degree $\\leq g-1$ with respect to the number of places of certain degrees of an algebraic function field of genus $g$ defined over a finite field. We deduce lower bounds and asymptotics for the class number, depending mainly on the number of places of a certain degree. We give examples of towers of algebraic function fields having a large class number.

  17. Light-Front quantization of field theory

    CERN Document Server

    Srivastava, P P

    1996-01-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincarè algebra and the LF Spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons.

  18. Quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sadovskii, Michael V.

    2013-06-01

    This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.

  19. Categorical Algebra and its Applications

    CERN Document Server

    1988-01-01

    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  20. Abstract algebra

    CERN Document Server

    Garrett, Paul B

    2007-01-01

    Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

  1. Dual Double Field Theory

    CERN Document Server

    Bergshoeff, Eric A; Penas, Victor A; Riccioni, Fabio

    2016-01-01

    We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.

  2. Flow Field Clustering via Algebraic Multigrid

    NARCIS (Netherlands)

    Griebel, M.; Preusser, T.; Rumpf, M.; Schweitzer, M.A.; Telea, A.

    2004-01-01

    We present a novel multiscale approach for flow visualization. We define a local alignment tensor that encodes a measure for alignment to the direction of a given flow field. This tensor induces an anisotropic differential operator on the flow domain, which is discretized with a standard finite elem

  3. A geometrical approach to two-dimensional Conformal Field Theory

    NARCIS (Netherlands)

    Dijkgraaf, Robertus Henricus

    1989-01-01

    This thesis is organized in the following way. In Chapter 2 we will give a brief introduction to conformal field theory along the lines of standard quantum field theory, without any claims to originality. We introduce the important concepts of the stress-energy tensor, the Virasoro algebra, and prim

  4. Engineering field theory

    CERN Document Server

    Baden Fuller, A J

    2014-01-01

    Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation

  5. Bounding the number of Fq-rational places in algebraic function fields using Weierstrass semigroups

    DEFF Research Database (Denmark)

    Geil, Hans Olav; Matsumoto, Ryutaroh

    2009-01-01

    We present a new bound on the number of Fq -rational places in an algebraic function field. It uses information about the generators of the Weierstrass semigroup related to a rational place. As we demonstrate, the bound has implications to the theory of towers of function fields....

  6. Noise as a Boolean algebra of sigma-fields. II. Classicality, blackness, spectrum

    CERN Document Server

    Tsirelson, Boris

    2011-01-01

    Similarly to noises, Boolean algebras of sigma-fields can be black. A noise may be treated as a homomorphism from a Boolean algebra of regular open sets to a Boolean algebra of sigma-fields. Spectral sets are useful also in this framework.

  7. Quantum field theory

    CERN Document Server

    Mandl, Franz

    2010-01-01

    Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic

  8. Covariantizing Classical Field Theories

    CERN Document Server

    López, Marco Castrillón

    2010-01-01

    We show how to enlarge the covariance group of any classical field theory in such a way that the resulting "covariantized" theory is 'essentially equivalent' to the original. In particular, our technique will render any classical field theory generally covariant, that is, the covariantized theory will be spacetime diffeomorphism-covariant and free of absolute objects. Our results thus generalize the well-known parametrization technique of Dirac and Kucha\\v{r}. Our constructions apply equally well to internal covariance groups, in which context they produce natural derivations of both the Utiyama minimal coupling and St\\"uckelberg tricks.

  9. Algebraic Quantum Gravity (AQG) III. Semiclassical Perturbation Theory

    CERN Document Server

    Giesel, K

    2006-01-01

    In the two previous papers of this series we defined a new combinatorical approach to quantum gravity, Algebraic Quantum Gravity (AQG). We showed that AQG reproduces the correct infinitesimal dynamics in the semiclassical limit, provided one incorrectly substitutes the non -- Abelean group SU(2) by the Abelean group $U(1)^3$ in the calculations. The mere reason why that substitution was performed at all is that in the non -- Abelean case the volume operator, pivotal for the definition of the dynamics, is not diagonisable by analytical methods. This, in contrast to the Abelean case, so far prohibited semiclassical computations. In this paper we show why this unjustified substitution nevertheless reproduces the correct physical result: Namely, we introduce for the first time semiclassical perturbation theory within AQG (and LQG) which allows to compute expectation values of interesting operators such as the master constraint as a power series in $\\hbar$ with error control. That is, in particular matrix elements...

  10. The Clifford algebra of physical space and Dirac theory

    Science.gov (United States)

    Vaz, Jayme, Jr.

    2016-09-01

    The claim found in many textbooks that the Dirac equation cannot be written solely in terms of Pauli matrices is shown to not be completely true. It is only true as long as the term β \\psi in the usual Dirac factorization of the Klein-Gordon equation is assumed to be the product of a square matrix β and a column matrix ψ. In this paper we show that there is another possibility besides this matrix product, in fact a possibility involving a matrix operation, and show that it leads to another possible expression for the Dirac equation. We show that, behind this other possible factorization is the formalism of the Clifford algebra of physical space. We exploit this fact, and discuss several different aspects of Dirac theory using this formalism. In particular, we show that there are four different possible sets of definitions for the parity, time reversal, and charge conjugation operations for the Dirac equation.

  11. A geometric formulation of exceptional field theory

    CERN Document Server

    Bosque, Pascal du; Lust, Dieter; Malek, Emanuel

    2016-01-01

    We formulate the full bosonic SL(5) exceptional field theory in a coordinate-invariant manner. Thereby we interpret the 10-dimensional extended space as a manifold with $\\mathrm{SL}(5)\\times\\mathbb{R}^+$-structure. We show that the algebra of generalised diffeomorphisms closes subject to a set of closure constraints which are reminiscent of the quadratic and linear constraints of maximal seven-dimensional gauged supergravities, as well as the section condition. We construct an action for the full bosonic SL(5) exceptional field theory, even when the $\\mathrm{SL}(5)\\times\\mathbb{R}^+$-structure is not locally flat.

  12. Operators and representation theory canonical models for algebras of operators arising in quantum mechanics

    CERN Document Server

    Jorgensen, PET

    1987-01-01

    Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e

  13. Elements of mathematics algebra

    CERN Document Server

    Bourbaki, Nicolas

    2003-01-01

    This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

  14. On n-ary algebras, branes and poly-vector gauge theories in noncommutative Clifford spaces

    Science.gov (United States)

    Castro, Carlos

    2010-09-01

    In this paper, poly-vector-valued gauge field theories in noncommutative Clifford spaces are presented. They are based on noncommutative (but associative) star products that require the use of the Baker-Campbell-Hausdorff formula. Using these star products allows the construction of actions for noncommutative p-branes (branes moving in noncommutative spaces). Noncommutative Clifford-space gravity as a poly-vector-valued gauge theory of twisted diffeomorphisms in Clifford spaces would require quantum Hopf algebraic deformations of Clifford algebras. We proceed with the study of n-ary algebras and find an important relationship among the n-ary commutators of the noncommuting spacetime coordinates [X1, X2, ..., Xn] with the poly-vector-valued coordinates X123sdotsdotsdotn in noncommutative Clifford spaces given by [X1, X2, ..., Xn] = n!X123sdotsdotsdotn. The large N limit of n-ary commutators of n hyper-matrices {\\bf X}_{i_1 i_2 \\cdots i_n} leads to Eguchi-Schild p-brane actions for p + 1 = n. A noncomutative n-ary • product of n functions is constructed which is a generalization of the binary star product * of two functions and is associated with the deformation quantization of n-ary structures and deformations of the Nambu-Poisson brackets.

  15. Algebra V homological algebra

    CERN Document Server

    Shafarevich, I

    1994-01-01

    This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.

  16. Combinatorial Algebra for second-quantized Quantum Theory

    CERN Document Server

    Blasiak, P; Solomon, A I; Horzela, A; Penson, K A

    2010-01-01

    We describe an algebra G of diagrams which faithfully gives a diagrammatic representation of the structures of both the Heisenberg-Weyl algebra H - the associative algebra of the creation and annihilation operators of quantum mechanics - and U(L_H), the enveloping algebra of the Heisenberg Lie algebra L_H. We show explicitly how G may be endowed with the structure of a Hopf algebra, which is also mirrored in the structure of U(L_H). While both H and U(L_H) are images of G, the algebra G has a richer structure and therefore embodies a finer combinatorial realization of the creation-annihilation system, of which it provides a concrete model.

  17. Homotopy Theory of Probability Spaces I: Classical independence and homotopy Lie algebras

    CERN Document Server

    Park, Jae-Suk

    2015-01-01

    This is the first installment of a series of papers whose aim is to lay a foundation for homotopy probability theory by establishing its basic principles and practices. The notion of a homotopy probability space is an enrichment of the notion of an algebraic probability space with ideas from algebraic homotopy theory. This enrichment uses a characterization of the laws of random variables in a probability space in terms of symmetries of the expectation. The laws of random variables are reinterpreted as invariants of the homotopy types of infinity morphisms between certain homotopy algebras. The relevant category of homotopy algebras is determined by the appropriate notion of independence for the underlying probability theory. This theory will be both a natural generalization and an effective computational tool for the study of classical algebraic probability spaces, while keeping the same central limit. This article is focused on the commutative case, where the laws of random variables are also described in t...

  18. Quantum field theory

    CERN Document Server

    de Wit, Bernard

    1990-01-01

    After a brief and practical introduction to field theory and the use of Feynman diagram, we discuss the main concept in gauge theories and their application in elementary particle physics. We present all the ingredients necessary for the construction of the standard model.

  19. Covariant Hamiltonian field theory

    CERN Document Server

    Giachetta, G; Sardanashvily, G

    1999-01-01

    We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.

  20. Algebraic equations an introduction to the theories of Lagrange and Galois

    CERN Document Server

    Dehn, Edgar

    2004-01-01

    Meticulous and complete, this presentation of Galois' theory of algebraic equations is geared toward upper-level undergraduate and graduate students. The theories of both Lagrange and Galois are developed in logical rather than historical form. And they are given a more thorough exposition than is customary. For this reason, and also because the author concentrates on concrete applications of algebraic theory, Algebraic Equations is an excellent supplementary text, offering students a concrete introduction to the abstract principles of Galois theory. Of further value are the many numerical ex

  1. Field Equations and Lagrangian for the Kaluza Metric Evaluated with Tensor Algebra Software

    Directory of Open Access Journals (Sweden)

    L. L. Williams

    2015-01-01

    Full Text Available This paper calculates the Kaluza field equations with the aid of a computer package for tensor algebra, xAct. The xAct file is provided with this paper. We find that Thiry’s field equations are correct, but only under limited circumstances. The full five-dimensional field equations under the cylinder condition are provided here, and we see that most of the other references miss at least some terms from them. We go on to establish the remarkable Kaluza Lagrangian, and verify that the field equations calculated from it match those calculated with xAct, thereby demonstrating self-consistency of these results. Many of these results can be found scattered throughout the literature, and we provide some pointers for historical purposes. But our intent is to provide a definitive exposition of the field equations of the classical, five-dimensional metric ansatz of Kaluza, along with the computer algebra data file to verify them, and then to recover the unique Lagrangian for the theory. In common terms, the Kaluza theory is an “ω=0” scalar field theory, but with unique electrodynamic couplings.

  2. Algebraic structures, physics and geometry from a Unified Field Theoretical framework

    CERN Document Server

    Cirilo-Lombardo, Diego Julio

    2014-01-01

    Starting from a Unified Field Theory (UFT) proposed previously by the authors, the possible fermionic representations arising from the same spacetime are considered from the algebraic and geometrical viewpoint. We specifically demonstrate in this UFT general context that the underlying basis of the single geometrical structure P (G,M) (the principal fiber bundle over the real spacetime manifold M with structural group G) reflecting the symmetries of the different fields carry naturally a biquaternionic structure instead of a complex one. This fact allows us to analyze algebraically and to interpret physically in a straighforward way the Majorana and Dirac representations and the relation of such structures with the spacetime signature and non-hermitian (CP) dynamic operators. Also, from the underlying structure of the tangent space, the existence of hidden (super) symmetries and the possibility of supersymmetric extensions of these UFT models are given showing that Rothstein's theorem is incomplete for that d...

  3. Some Aspects of Supersymmetric Field Theories with Minimal Length and Maximal Momentum

    CERN Document Server

    Nozari, Kourosh; Balef, F Rezaee

    2013-01-01

    We consider a real scalar field and a Majorana fermion field to construct a supersymmetric quantum theory of free fermion fields based on the deformed Heisenberg algebra $[x,p]=i\\hbar\\big(1-\\beta p+2\\beta^{2}p^{2}\\big)$, where $\\beta $ is a deformation parameter. We present a deformed supersymmetric algebra in the presence of minimal length and maximal momentum.

  4. Quantum theory of fields

    CERN Document Server

    Wentzel, Gregor

    2003-01-01

    A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular

  5. Forward error correction based on algebraic-geometric theory

    CERN Document Server

    A Alzubi, Jafar; M Chen, Thomas

    2014-01-01

    This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.

  6. Revisiting eight-manifold flux compactifications of M-theory using geometric algebra techniques

    CERN Document Server

    Babalic, Elena-Mirela

    2013-01-01

    Motivated by open problems in F-theory, we reconsider warped compactifications of M theory on 8-manifolds to AdS3 spaces in the presence of a non-trivial field strength of the M-theory 3-form, studying the most general conditions under which such backgrounds preserve N=2 supersymmetry in three dimensions. In contrast with previous studies, we allow for the most general pair of Majorana generalized Killing pinors on the internal 8-manifold, without imposing any chirality conditions on those pinors. We also show how such pinors can be lifted to the 9-dimensional metric cone over the compactification 8-manifold. We describe the translation of the generalized Killing pinor equations for such backgrounds to a system of differential and algebraic constraints on certain form-valued pinor bilinears and develop techniques through which such equations can be analyzed efficiently.

  7. Non-local potentials with LS terms in algebraic scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Levay, Peter [Department of Theoretical Physics, Institute of Physics, Technical University of Budapest, Budapest (Hungary)

    1997-10-21

    The group theoretical analysis of Coulomb scattering based on the SO(3,1) group is revisited. Using matrix-valued differential operators, modifying the angular momentum and the Runge-Lenz vector used hitherto for the realization of the so(3,1) (Lorentz) algebra, we obtain a three-dimensional solvable two-channel scattering problem. The interaction term besides the Coulomb potential contains a non-local potential of LS-type. Using the momentum representation the S-matrix can be calculated analytically. By employing a canonical transformation, another solvable three-dimensional scattering problem is found, in agreement with the expectations of algebraic scattering theory. The potential in this case is of Poeschl-Teller type with an LS term. It is also pointed out that our matrix-valued realization of the so(3,1) algebra can be cast to an instructive form with the help of su(2) gauge fields. An interesting connection between gauge transformations and supersymmetry transformations of supersymmetric quantum mechanics is also observed. These results enable us to construct other solvable scattering problems by using su(2) gauge transformations. (author)

  8. Infinite coupling duals of N=2 gauge theories and new rank 1 superconformal field theories

    CERN Document Server

    Argyres, Philip C

    2008-01-01

    We show that a proposed duality [arXiv:0711.0054] between infinitely coupled gauge theories and superconformal field theories (SCFTs) with weakly gauged flavor groups predicts the existence of new rank 1 SCFTs. These superconformal fixed point theories have the same Coulomb branch singularities as the rank 1 E_6, E_7, and E_8 SCFTs, but have smaller flavor symmetry algebras and different central charges. Gauging various subalgebras of the flavor algebras of these rank 1 SCFTs provides many examples of infinite-coupling dualities, satisfying an intricate set of consistency checks. They also provide examples of N=2 conformal theories with marginal couplings but no weak-coupling limits.

  9. Theory of electromagnetic fields

    CERN Document Server

    Wolski, Andrzej

    2011-01-01

    We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

  10. Cohomological Donaldson-Thomas theory of a quiver with potential and quantum enveloping algebras

    CERN Document Server

    Davison, Ben

    2016-01-01

    This paper is a companion paper to 1512.08898, on the general definition of Donaldson--Thomas invariants for Jacobi algebras, or equivalently, the integrality conjecture for such algebras. In this paper we concentrate on the Hodge-theoretic aspects of the theory, and explore the structure of the Cohomological Hall algebra associated to a quiver and potential, introduced by Kontsevich and Soibelman. Via a study of the representation theory of these algebras, we introduce a perverse filtration on them, and prove that they are quantum enveloping algebras, for which the integrality theorem, and the wall crossing theorem relating DT invariants for different Bridgeland stability conditions, are a K-theoretic shadow of the existence of PBW bases.

  11. SYMBOLIC ALGEBRAIC MANIPULATION BY DIGITAL COMPUTER IN PROBLEMS OF CONTROL THEORY.

    Science.gov (United States)

    shown, using a FORMAC program. The advantages over the conventional root locus method are discussed. Areas of possible future use of FORMAC in algebraic problems of control theory are discussed. (Author)

  12. Perturbative quantization of Yang-Mills theory with classical double as gauge algebra

    CERN Document Server

    Ruiz, F Ruiz

    2015-01-01

    Perturbative quantization of Yang-Mills theory with a gauge algebra given by the classical double of a semisimple Lie algebra is considered. The classical double of a real Lie algebra is a nonsemisimple real Lie algebra that admits a nonpositive definite invariant metric, the indefiniteness of the metric suggesting an apparent lack of unitarity. It is shown that the theory is UV divergent at one loop and that there are no radiative corrections at higher loops. One-loop UV divergences are removed through renormalization of the coupling constant, thus introducing a renormalization scale. The terms in the classical action that would spoil unitarity are proved to be cohomologically trivial with respect to the Slavnov-Taylor operator that controls gauge invariance for the quantum theory. Hence they do not contribute gauge invariant radiative corrections to the quantum effective action and the theory is unitary.

  13. Poincare algebra realized in Hamiltonian formalism of the Relativistic Theory of Gravitation

    CERN Document Server

    Soloviev, V O

    2010-01-01

    We obtain the Poincare group generators by proper choice of arbitrary functions present in the Relativistic Theory of Gravitation (RTG) Hamiltonian. Their Dirac brackets give the Poincare algebra in accordance with the fact that RTG has 10 integrals of motion.

  14. Perturbative quantization of Yang-Mills theory with classical double as gauge algebra

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Ruiz, F. [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)

    2016-02-15

    Perturbative quantization of Yang-Mills theory with a gauge algebra given by the classical double of a semisimple Lie algebra is considered. The classical double of a real Lie algebra is a nonsemisimple real Lie algebra that admits a nonpositive definite invariant metric, the indefiniteness of the metric suggesting an apparent lack of unitarity. It is shown that the theory is UV divergent at one loop and that there are no radiative corrections at higher loops. One-loop UV divergences are removed through renormalization of the coupling constant, thus introducing a renormalization scale. The terms in the classical action that would spoil unitarity are proved to be cohomologically trivial with respect to the Slavnov-Taylor operator that controls gauge invariance for the quantum theory. Hence they do not contribute gauge invariant radiative corrections to the quantum effective action and the theory is unitary. (orig.)

  15. Compactly supported Wannier functions and algebraic K -theory

    Science.gov (United States)

    Read, N.

    2017-03-01

    In a tight-binding lattice model with n orbitals (single-particle states) per site, Wannier functions are n -component vector functions of position that fall off rapidly away from some location, and such that a set of them in some sense span all states in a given energy band or set of bands; compactly supported Wannier functions are such functions that vanish outside a bounded region. They arise not only in band theory, but also in connection with tensor-network states for noninteracting fermion systems, and for flat-band Hamiltonians with strictly short-range hopping matrix elements. In earlier work, it was proved that for general complex band structures (vector bundles) or general complex Hamiltonians—that is, class A in the tenfold classification of Hamiltonians and band structures—a set of compactly supported Wannier functions can span the vector bundle only if the bundle is topologically trivial, in any dimension d of space, even when use of an overcomplete set of such functions is permitted. This implied that, for a free-fermion tensor network state with a nontrivial bundle in class A, any strictly short-range parent Hamiltonian must be gapless. Here, this result is extended to all ten symmetry classes of band structures without additional crystallographic symmetries, with the result that in general the nontrivial bundles that can arise from compactly supported Wannier-type functions are those that may possess, in each of d directions, the nontrivial winding that can occur in the same symmetry class in one dimension, but nothing else. The results are obtained from a very natural usage of algebraic K -theory, based on a ring of polynomials in e±i kx,e±i ky,..., which occur as entries in the Fourier-transformed Wannier functions.

  16. Quantum Field Theory

    CERN Document Server

    Zeidler, Eberhard

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...

  17. Microcontinuum field theories

    CERN Document Server

    Eringen, A Cemal

    1999-01-01

    Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...

  18. Tree Quantum Field Theory

    CERN Document Server

    Gurau, R; Rivasseau, V

    2008-01-01

    We propose a new formalism for quantum field theory which is neither based on functional integrals, nor on Feynman graphs, but on marked trees. This formalism is constructive, i.e. it computes correlation functions through convergent rather than divergent expansions. It applies both to Fermionic and Bosonic theories. It is compatible with the renormalization group, and it allows to define non-perturbatively {\\it differential} renormalization group equations. It accommodates any general stable polynomial Lagrangian. It can equally well treat noncommutative models or matrix models such as the Grosse-Wulkenhaar model. Perhaps most importantly it removes the space-time background from its central place in QFT, paving the way for a nonperturbative definition of field theory in noninteger dimension.

  19. Algebraic K-theory and derived equivalences suggested by T-duality for torus orientifolds

    CERN Document Server

    Rosenberg, Jonathan

    2016-01-01

    We show that certain isomorphisms of (twisted) KR-groups that underlie T-dualities of torus orientifold string theories have purely algebraic analogues in terms of algebraic K-theory of real varieties and equivalences of derived categories of (twisted) coherent sheaves. The most interesting conclusion is a kind of Mukai duality in which the "dual abelian variety" to a smooth projective genus-1 curve over R with no real points is (mildly) noncommutative.

  20. Filtrated K-theory for real rank zero C*-algebras

    DEFF Research Database (Denmark)

    Arklint, Sara Esther; Restorff, Gunnar; Ruiz, Efren

    2012-01-01

    The smallest primitive ideal spaces for which there exist counterexamples to the classification of non-simple, purely infinite, nuclear, separable C*-algebras using filtrated K-theory, are four-point spaces. In this article, we therefore restrict to real rank zero C*-algebras with four......-point primitive ideal spaces. Up to homeomorphism, there are ten different connected T0-spaces with exactly four points. We show that filtrated K-theory classifies real rank zero, tight, stable, purely infinite, nuclear, separable C*-algebras that satisfy that all simple subquotients are in the bootstrap class...

  1. Boolean algebra essentials

    CERN Document Server

    Solomon, Alan D

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  2. Invariants from classical field theory

    CERN Document Server

    Diaz, Rafael

    2007-01-01

    We introduce a method that generates invariant functions from classical field theories depending on external parameters. We apply our method to several field theories such as abelian BF, Chern-Simons and 2-dimensional Yang-Mills theory.

  3. Natural discretization in noncommutative field theory

    Energy Technology Data Exchange (ETDEWEB)

    Acatrinei, Ciprian Sorin, E-mail: acatrine@theory.nipne.ro [Department of Theoretical Physics, Horia Hulubei National Institute for Nuclear Physics, Bucharest (Romania)

    2015-12-07

    A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.

  4. Natural discretization in noncommutative field theory

    Science.gov (United States)

    Acatrinei, Ciprian Sorin

    2015-12-01

    A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.

  5. The structure of renormalization Hopf algebras for gauge theories I: Representing Feynman graphs on BV-algebras

    OpenAIRE

    Suijlekom, W.D. van

    2008-01-01

    We study the structure of renormalization Hopf algebras of gauge theories. We identify certain Hopf subalgebras in them, whose character groups are semidirect products of invertible formal power series with formal diffeomorphisms. This can be understood physically as wave function renormalization and renormalization of the coupling constants, respectively. After taking into account the Slavnov-Taylor identities for the couplings as generators of a Hopf ideal, we find Hopf subalgebras in the c...

  6. Polarization-free Quantization of Linear Field Theories

    CERN Document Server

    Lanéry, Suzanne

    2016-01-01

    It is well-known that there exist infinitely-many inequivalent representations of the canonical (anti)-commutation relations of Quantum Field Theory (QFT). A way out, suggested by Algebraic QFT, is to instead define the quantum theory as encompassing all possible (abstract) states. In the present paper, we describe a quantization scheme for general linear (aka. free) field theories that can be seen as intermediate between traditional Fock quantization and full Algebraic QFT, in the sense that: * it provides a constructive, explicit description of the resulting space of quantum states; * it does not require the choice of a polarization, aka. the splitting of classical solutions into positive vs. negative-frequency modes: in fact, any Fock representation corresponding to a "reasonable" choice of polarization is naturally embedded; * it supports the implementation of a "large enough" class of linear symplectomorphisms of the classical, infinite-dimensional phase space. The proposed quantization (like Algebraic Q...

  7. Topological Field Theory and Matrix Product States

    CERN Document Server

    Kapustin, Anton; You, Minyoung

    2016-01-01

    It is believed that most (perhaps all) gapped phases of matter can be described at long distances by Topological Quantum Field Theory (TQFT). On the other hand, it has been rigorously established that in 1+1d ground states of gapped Hamiltonians can be approximated by Matrix Product States (MPS). We show that the state-sum construction of 2d TQFT naturally leads to MPS in their standard form. In the case of systems with a global symmetry G, this leads to a classification of gapped phases in 1+1d in terms of Morita-equivalence classes of G-equivariant algebras. Non-uniqueness of the MPS representation is traced to the freedom of choosing an algebra in a particular Morita class. In the case of Short-Range Entangled phases, we recover the group cohomology classification of SPT phases.

  8. Painleve Field Theory

    CERN Document Server

    Aminov, G; Levin, A; Olshanetsky, M; Zotov, A

    2013-01-01

    We propose multidimensional versions of the Painleve VI equation and its degenerations. These field theories are related to the isomonodromy problems of flat holomorphic infinite rank bundles over elliptic curves and take the form of non-autonomous Hamiltonian equations. The modular parameter of curves plays the role of "time". Reduction of the field equations to the zero modes leads to SL(N,C) monodromy preserving equations. The latter coincide with the Painleve VI equation for N=2. We consider two types of the bundles. In the first one the group of automorphisms is the centrally and cocentrally extended loop group L(SL(N,C)) or some multiloop group. In the case of the Painleve VI field theory in D=1+1 four constants of the Painleve VI equation become dynamical fields. The second type of bundles are defined by the group of automorphisms of the noncommutative torus. They lead to the equations in dimension 2+1. In both cases we consider trigonometric, rational and scaling limits of the theories. Generically (e...

  9. Introduction to field theory

    CERN Document Server

    CERN. Geneva; CERN. Geneva

    2001-01-01

    Starting from the notion of path integrals as developed by Feynman, we discuss field theory in zero spacetime dimensions. The concepts of perturbation expansions, connected amplitudes, Feynman diagrams, classical solutions, renormalization and the effective action are developed. The model is extended to four spacetime dimensions, and the full Feynman rules for relativisitc scalar theory derived. The S matrix and the concept of unitarity are discussed, leading to the amputation rules for S matrix elements from considerations of unitarity. The rules are extended to include particles with spin-1/2 and spin-1. The high-energy behaviour of the theory is discussed as a method to derive the gauge symmetry of the various models.

  10. Gauge field theories

    CERN Document Server

    Frampton, Paul H

    2008-01-01

    This third edition on the classic Gauge Field Theories is an ideal reference for researchers starting work with the Large Hadron Collider and the future International Linear Collider. This latest title continues to offer an up to date reference containing revised chapters on electroweak interactions and model building including a completely new chapter on conformality. Within this essential reference logical organization of the material on gauge invariance, quantization, and renormalization is also discussed providing necessary reading for Cosmologists and Particle Astrophysicists

  11. Austerity and Geometric Structure of Field Theories

    Science.gov (United States)

    Kheyfets, Arkady

    The relation between the austerity idea and the geometric structure of the three basic field theories- -electrodynamics, Yang-Mills theory, and general relativity --is studied. The idea of austerity was originally suggested by J. A. Wheeler in an attempt to formulate the laws of physics in such a way that they would come into being only within "the gates of time" extending from big bang to big crunch, rather than exist from everlasting to everlasting. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity (PAR-DIFF)(CCIRC)(PAR -DIFF) = 0 used twice, at the 1-2-3-dimensional level (providing the homgeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories--electrodynamics, Yang-Mills theory, and general relativity. This dissertation: (a) analyses the difficulties by means of algebraic topology, integration theory and modern differential geometry based on the concepts of principal bundles and Ehresmann connections; (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for all the three theories and compatible with the original austerity idea; (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories, including the soldering form as a dynamical variable rather than as a background structure.

  12. Central extensions of Lax operator algebras

    Science.gov (United States)

    Schlichenmaier, M.; Sheinman, O. K.

    2008-08-01

    Lax operator algebras were introduced by Krichever and Sheinman as a further development of Krichever's theory of Lax operators on algebraic curves. These are almost-graded Lie algebras of current type. In this paper local cocycles and associated almost-graded central extensions of Lax operator algebras are classified. It is shown that in the case when the corresponding finite-dimensional Lie algebra is simple the two-cohomology space is one-dimensional. An important role is played by the action of the Lie algebra of meromorphic vector fields on the Lax operator algebra via suitable covariant derivatives.

  13. Higher Spin Double Field Theory : A Proposal

    CERN Document Server

    Bekaert, Xavier

    2016-01-01

    We construct a double field theory of higher spin gravity. Employing "semi-covariant" differential geometry, we spell a functional in which each term is completely covariant with respect to $\\mathbf{O}(4,4)$ T-duality, doubled diffeomorphisms, $\\mathbf{Spin}(1,3)$ local Lorentz symmetry and, separately, $\\mathbf{HS}(4)$ higher spin gauge symmetry. We also propose a set of BPS-like conditions whose solutions automatically satisfy the full Euler-Lagrange equations. As such a solution, we derive a linear dilaton vacuum. With extra algebraic constraints further imposed, our BPS proposal reduces to the bosonic Vasiliev equations.

  14. Supersymmetry in Open Superstring Field Theory

    CERN Document Server

    Erler, Theodore

    2016-01-01

    We realize the 16 unbroken supersymmetries on a BPS D-brane as invariances of the action of the corresponding open superstring field theory. We work in the small Hilbert space approach, where a symmetry of the action translates into a symmetry of the associated cyclic $A_\\infty$ structure. We compute the supersymmetry algebra, being careful to disentangle the components which produce a translation, a gauge transformation, and a symmetry transformation which vanishes on-shell. Via the minimal model theorem, we illustrate how supersymmetry of the action implies supersymmetry of the tree level open string scattering amplitudes.

  15. Gyrokinetic field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-08-01

    The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the particles' dynamics as well as the self-consistent behavior of the electromagnetic fields. The gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell's equations for the electromagnetic fields are both derived from the variational principle for the Lagrangian consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian formulation, the energy conservation property for the total nonlinear gyrokinetic system of equations is directly shown from the Noether's theorem. This formulation can be utilized in order to derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for fluctuations with arbitrary frequency. (author)

  16. 2D fractional supersymmetry for rational conformal field theory application for third-integer spin states

    CERN Document Server

    Pérez, A; Simon, P; de Traubenberg, M Rausch

    1996-01-01

    A 2D- fractional supersymmetry theory is algebraically constructed. The Lagrangian is derived using an adapted superspace including, in addition to a scalar field, two fields with spins 1/3,2/3. This theory turns out to be a rational conformal field theory. The symmetry of this model goes beyond the super Virasoro algebra and connects these third-integer spin states. Besides the stress-momentum tensor, we obtain a supercurrent of spin 4/3. Cubic relations are involved in order to close the algebra; the basic algebra is no longer a Lie or a super-Lie algebra. The central charge of this model is found to be 4/3. Finally, we analyse the form that a local invariant action should take.

  17. 2D fractional supersymmetry for rational conformal field theory: application for third-integer spin states

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A. [Strasbourg-1 Univ., 67 (France). Lab. de Physique Theorique; Rausch de Traubenberg, M. [Strasbourg-1 Univ., 67 (France). Lab. de Physique Theorique]|[Centre de Recherches Nucleaires, Bat. 40/II, 67037 Strasbourg Cedex 2 (France); Simon, P. [Strasbourg-1 Univ., 67 (France). Lab. de Physique Theorique

    1996-12-23

    A 2D fractional supersymmetry theory is algebraically constructed. The Lagrangian is derived using an adapted superspace including, in addition to a scalar field, two fields with spins 1/3,2/3. This theory turns out to be a rational conformal field theory. The symmetry of this model goes beyond the super-Virasoro algebra and connects these third-integer spin states. Besides the stress-momentum tensor, we obtain a supercurrent of spin 4/3. Cubic relations are involved in order to close the algebra; the basic algebra is no longer a Lie or a super-Lie algebra. The central charge of this model is found to be 5/3. Finally, we analyze the form that a local invariant action should take. (orig.).

  18. Schroedinger Invariance from Lifshitz Isometries in Holography and Field Theory

    CERN Document Server

    Hartong, Jelle; Obers, Niels A

    2014-01-01

    We study non-relativistic field theory coupled to a torsional Newton-Cartan geometry both directly as well as holographically. The latter involves gravity on asymptotically locally Lifshitz space-times. We define an energy-momentum tensor and a mass current and study the relation between conserved currents and conformal Killing vectors for flat Newton-Cartan backgrounds. It is shown that this involves two different copies of the Lifshitz algebra together with an equivalence relation that joins these two Lifshitz algebras into a larger Schroedinger algebra (without the central element). In the holographic setup this reveals a novel phenomenon in which a large bulk diffeomorphism is dual to a discrete gauge invariance of the boundary field theory.

  19. The Heisenberg algebra as near horizon symmetry of the black flower solutions of Chern–Simons-like theories of gravity

    Directory of Open Access Journals (Sweden)

    M.R. Setare

    2017-01-01

    Full Text Available In this paper we study the near horizon symmetry algebra of the non-extremal black hole solutions of the Chern–Simons-like theories of gravity, which are stationary but are not necessarily spherically symmetric. We define the extended off-shell ADT current which is an extension of the generalized ADT current. We use the extended off-shell ADT current to define quasi-local conserved charges such that they are conserved for Killing vectors and asymptotically Killing vectors which depend on dynamical fields of the considered theory. We apply this formalism to the Generalized Minimal Massive Gravity (GMMG and obtain conserved charges of a spacetime which describes near horizon geometry of non-extremal black holes. Eventually, we find the algebra of conserved charges in Fourier modes. It is interesting that, similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model also we obtain the Heisenberg algebra as the near horizon symmetry algebra of the black flower solutions. Also the vacuum state and all descendants of the vacuum have the same energy. Thus these zero energy excitations on the horizon appear as soft hairs on the black hole.

  20. The Heisenberg algebra as near horizon symmetry of the black flower solutions of Chern-Simons-like theories of gravity

    CERN Document Server

    Setare, M R

    2016-01-01

    In this paper we study the near horizon symmetry algebra of the non-extremal black hole solutions of the Chern-Simons-like theories of gravity, which are stationary but are not necessarily spherically symmetric. We define the extended off-shell ADT current which is an extension of the generalized ADT current. We use the extended off-shell ADT current to define quasi-local conserved charges such that they are conserved for Killing vectors and asymptotically Killing vectors which depend on dynamical fields of the considered theory. We apply this formalism to the Generalized Minimal Massive Gravity( GMMG) and obtain conserved charges of a spacetime which describes near horizon geometry of non-extremal black holes. Eventually, we find the algebra of conserved charges in Fourier modes. It is interesting that, similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model also we obtain the Heisenberg algebra as the near horizon symmetry algebra of the black flower solutions. ...

  1. The Heisenberg algebra as near horizon symmetry of the black flower solutions of Chern-Simons-like theories of gravity

    Science.gov (United States)

    Setare, M. R.; Adami, H.

    2017-01-01

    In this paper we study the near horizon symmetry algebra of the non-extremal black hole solutions of the Chern-Simons-like theories of gravity, which are stationary but are not necessarily spherically symmetric. We define the extended off-shell ADT current which is an extension of the generalized ADT current. We use the extended off-shell ADT current to define quasi-local conserved charges such that they are conserved for Killing vectors and asymptotically Killing vectors which depend on dynamical fields of the considered theory. We apply this formalism to the Generalized Minimal Massive Gravity (GMMG) and obtain conserved charges of a spacetime which describes near horizon geometry of non-extremal black holes. Eventually, we find the algebra of conserved charges in Fourier modes. It is interesting that, similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model also we obtain the Heisenberg algebra as the near horizon symmetry algebra of the black flower solutions. Also the vacuum state and all descendants of the vacuum have the same energy. Thus these zero energy excitations on the horizon appear as soft hairs on the black hole.

  2. Quantum groups and quantum field theory III. Renormalisation

    CERN Document Server

    Brouder, C; Brouder, Christian; Schmitt, William

    2002-01-01

    The Hopf algebra of renormalisation in quantum field theory is described at a general level. The products of fields at a point are assumed to form a bialgebra B and renormalisation endows T(T(B)^+), the double tensor algebra of B, with the structure of a noncommutative bialgebra. When the bialgebra B is commutative, renormalisation turns S(S(B)^+), the double symmetric algebra of B, into a commutative bialgebra. The usual Hopf algebra of renormalisation is recovered when the elements of $T^1(B)$ are not renormalised, i.e. when Feynman diagrams containing one single vertex are not renormalised. When B is the Hopf algebra of a commutative group, a homomorphism is established between the bialgebra S(S(B)^+) and the Faa di Bruno bialgebra of composition of series. The relation with the Connes-Moscovici Hopf algebra of diffeomorphisms is given. Finally, the bialgebra S(S(B)^+) is shown to give the same results as the standard renormalisation procedure for the scalar field.

  3. Geometries from field theories

    Science.gov (United States)

    Aoki, Sinya; Kikuchi, Kengo; Onogi, Tetsuya

    2015-10-01

    We propose a method to define a d+1-dimensional geometry from a d-dimensional quantum field theory in the 1/N expansion. We first construct a d+1-dimensional field theory from the d-dimensional one via the gradient-flow equation, whose flow time t represents the energy scale of the system such that trArr 0 corresponds to the ultraviolet and trArr infty to the infrared. We then define the induced metric from d+1-dimensional field operators. We show that the metric defined in this way becomes classical in the large-N limit, in the sense that quantum fluctuations of the metric are suppressed as 1/N due to the large-N factorization property. As a concrete example, we apply our method to the O(N) nonlinear σ model in two dimensions. We calculate the 3D induced metric, which is shown to describe an anti-de Sitter space in the massless limit. Finally, we discuss several open issues for future studies.

  4. Quantized Coulomb branches of Jordan quiver gauge theories and cyclotomic rational Cherednik algebras

    CERN Document Server

    Kodera, Ryosuke

    2016-01-01

    We study quantized Coulomb branches of quiver gauge theories of Jordan type. We prove that the quantized Coulomb branch is isomorphic to the spherical graded Cherednik algebra in the unframed case, and is isomorphic to the spherical cyclotomic rational Cherednik algebra in the framed case. We also prove that the quantized Coulomb branch is a deformation of a subquotient of the Yangian of the affine $\\mathfrak{gl}(1)$.

  5. Double Field Theory on Group Manifolds (Thesis)

    CERN Document Server

    Hassler, Falk

    2015-01-01

    This thesis deals with Double Field Theory (DFT), an effective field theory capturing the low energy dynamics of closed strings on a torus. It renders T-duality on a torus manifest by adding $D$ winding coordinates in addition to the $D$ space time coordinates. An essential consistency constraint of the theory, the strong constraint, only allows for field configurations which depend on half of the coordinates of the arising doubled space. I derive DFT${}_\\mathrm{WZW}$, a generalization of the current formalism. It captures the low energy dynamics of a closed bosonic string propagating on a compact group manifold. Its classical action and the corresponding gauge transformations arise from Closed String Field Theory up to cubic order in the massless fields. These results are rewritten in terms of a generalized metric and extended to all orders in the fields. There is an explicit distinction between background and fluctuations. For the gauge algebra to close, the latter have to fulfill a modified strong constrai...

  6. Unified field theories

    CERN Document Server

    Vizgin, Vladimir P

    2011-01-01

    Despite the rapidly expanding ambit of physical research and the continual appearance of new branches of physics, the main thrust in its development has been the attempt at a theoretical synthesis of the entire body of physical knowledge. Vladimir Vizgin's work presents perhaps the first systematic historico-scientific study of the formation and development of the unified field theories in the general context of 20th century physics. Concentrating on the first three decades of the century and drawing extensively on Russian sources, the author analyses the first successes, failures and paths of

  7. Higgs Effective Field Theories

    CERN Document Server

    2016-01-01

    The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.

  8. Lectures on Matrix Field Theory

    Science.gov (United States)

    Ydri, Badis

    The subject of matrix field theory involves matrix models, noncommutative geometry, fuzzy physics and noncommutative field theory and their interplay. In these lectures, a lot of emphasis is placed on the matrix formulation of noncommutative and fuzzy spaces, and on the non-perturbative treatment of the corresponding field theories. In particular, the phase structure of noncommutative $\\phi^4$ theory is treated in great detail, and an introduction to noncommutative gauge theory is given.

  9. KK-theory and Spectral Flow in von Neumann Algebras

    DEFF Research Database (Denmark)

    Kaad, Jens; Nest, Ryszard; Rennie, Adam

    2007-01-01

    We present a definition of spectral flow relative to any norm closed ideal J in any von Neumann algebra N. Given a path D(t) of selfadjoint operators in N which are invertible in N/J, the spectral flow produces a class in K_0(J). In the case when N is semifinite, the numerical spectral flow...

  10. Quantum field theory on projective modules

    CERN Document Server

    Gayral, V; Krajewski, T; Wulkenhaar, R

    2006-01-01

    We propose a general formulation of perturbative quantum field theory on (finitely generated) projective modules over noncommutative algebras. This is the analogue of scalar field theories with non-trivial topology in the noncommutative realm. We treat in detail the case of Heisenberg modules over noncommutative tori and show how these models can be understood as large rectangular pxq matrix models, in the limit p/q->theta, where theta is a possibly irrational number. We find out that the modele is highly sensitive to the number-theoretical aspect of theta and suffers from an UV/IR-mixing. We give a way to cure the entanglement and prove one-loop renormalizability.

  11. Lorentzian Lie (3-)algebra and toroidal compactification of M/string theory

    CERN Document Server

    Ho, Pei-Ming; Shiba, Shotaro

    2009-01-01

    We construct a class of Lie 3-algebras with an arbitrary number of pairs of generators with Lorentzian signature metric. Some examples are given and corresponding BLG models are studied. We show that such a system in general describes a supersymmetric massive vector multiplets after the ghost fields are Higgsed. Simple systems with nontrivial interaction are realized by infinite dimensional Lie 3-algebras associated with the loop algebras. The massive fields are then naturally identified with the Kaluza-Klein modes by the toroidal compactification triggered by the ghost fields. For example, Dp-brane with an (infinite dimensional) affine Lie algebra symmetry $\\hat g$ can be identified with D(p+1)-brane with gauge symmetry $g$.

  12. Putting Algebra Progress Monitoring into Practice: Insights from the Field

    Science.gov (United States)

    Foegen, Anne; Morrison, Candee

    2010-01-01

    Algebra progress monitoring is a research-based practice that extends a long history of research in curriculum-based measurement (CBM). This article describes the theoretical foundations and research evidence for algebra progress monitoring, along with critical features of the practice. A detailed description of one practitioner's implementation…

  13. Thermo-Field Extension of Open String Field Theory

    CERN Document Server

    Cantcheff, M Botta

    2015-01-01

    We study the implementation of Thermo Field Dynamics (TFD) to the covariant formulation of Open String Field Theory (OSFT). In this paper, we extend the state space and fields according to the duplication rules of TFD and construct the corresponding classical action. The result is a theory whose fields would encode the statistical information of open strings and, noticeably, present degrees of freedom that could be identified as those of closed strings. The physical spectrum of the free theory is studied through the cohomology of the extended BRST charge, and, as a result, we get new fields in the spectrum. We also show, however, that their appearing in the action is directly related to the choice of the inner product in the extended algebra, so that many fields could be eliminated from the theory by choosing that product conveniently. Finally, we study the extension of the three-vertex interaction and provide a simple prescription for it whose results at tree-level amplitudes agree with those of the conventi...

  14. Super Lie n-algebra extensions, higher WZW models, and super p-branes with tensor multiplet fields

    CERN Document Server

    Fiorenza, Domenico; Schreiber, Urs

    2013-01-01

    We formalize higher dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type sigma-model branes (open brane ending on background brane) are encoded precisely in (super-) L-infinity-extension theory and how the resulting "extended (super-)spacetimes" formalize spacetimes containing sigma model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super p-brane spectrum of superstring/M-theory is realized this way, including the pure sigma-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional spacetime with an M2-brane condensate turns out to be the ...

  15. Simplicities and Automorphisms of a Sp ecial Infinite Dimensional Lie Algebra

    Institute of Scientific and Technical Information of China (English)

    YU De-min; LI Ai-hua

    2013-01-01

    In this paper, a special infinite dimensional Lie algebra is studied. The infinite dimensional Lie algebra appears in the fields of conformal theory, mathematical physics, statistic mechanics and Hamilton operator. The infinite dimensional Lie algebras is pop-ularized Virasoro-like Lie algebra. Isomorphisms, homomorphisms, ideals of the infinite dimensional Lie algebra are studied.

  16. Quantum Field Theory on Curved Backgrounds -- A Primer

    CERN Document Server

    Benini, Marco; Hack, Thomas-Paul

    2013-01-01

    Goal of this review is to introduce the algebraic approach to quantum field theory on curved backgrounds. Based on a set of axioms, first written down by Haag and Kastler, this method consists of a two-step procedure. In the first one, a suitable algebra of observables is assigned to a physical system, which is meant to encode all algebraic relations among observables, such as commutation relations, while, in the second step, one must select an algebraic state in order to recover the standard Hilbert space interpretation of a quantum system. As quantum field theories possess infinitely many degrees of freedom, many unitarily inequivalent Hilbert space representations exist and the power of such approach is the ability to treat them all in a coherent manner. We will discuss in detail the algebraic approach for free fields in order to give to the reader all necessary information to deal with the recent literature, which focuses on the applications to specific problems, mostly in cosmology.

  17. Spectral theory of linear operators and spectral systems in Banach algebras

    CERN Document Server

    Müller, Vladimir

    2003-01-01

    This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. The theory is presented in a unified, axiomatic and elementary way. Many results appear here for the first time in a monograph. The material is self-contained. Only a basic knowledge of functional analysis, topology, and complex analysis is assumed. The monograph should appeal both to students who would like to learn about spectral theory and to experts in the field. It can also serve as a reference book. The present second edition contains a number of new results, in particular, concerning orbits and their relations to the invariant subspace problem. This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach alg...

  18. Introduction to abstract algebra

    CERN Document Server

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  19. Fundamental Field Theory in Ten Dimensions and The Early Universe

    CERN Document Server

    Patwardhan, A

    2006-01-01

    A unified field theory in ten dimensions, of all interactions, can describe high energy processes occuring in the early universe. In such a theory transitions that give properties of the universe can occur due to the presence of algebraic and geometric structures. A correspondence between theory and observations of the universe is made, to obtain a new interpretation and properties. This paper consists of a field theory and cosmological model of dark and normal energy and matter, cosmological constant, acceleration and inflation in the early universe.

  20. On the algebraic structure of isotropic generalized elasticity theories

    CERN Document Server

    Auffray, Nicolas

    2013-01-01

    In this paper the algebraic structure of the isotropic nth-order gradient elasticity is investigated. In the classical isotropic elasticity it is well-known that the constitutive relation can be broken down into two uncoupled relations between elementary part of the strain and the stress tensors (deviatoric and spherical). In this paper we demonstrate that this result can not be generalized and since 2nd-order isotropic elasticity there exist couplings between elementary parts of higher-order strain and stress tensors. Therefore, and in certain way, nth-order isotropic elasticity have the same kind of algebraic structure as anisotropic classical elasticity. This structure is investigated in the case of 2nd-order isotropic elasticity, and moduli characterizing the behavior are provided.

  1. Theory of interacting quantum fields

    CERN Document Server

    Rebenko, Alexei L

    2012-01-01

    This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 20th century on the basis of rigorous mathematical tools of the functional analysis, the theory of operators, and the theory of generalized functions. The book is useful for young scientists who desire to understand not only the formal structure of the quantum field theory but also its basic concepts and connection with classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of functional integration.

  2. Quaternions and Biquaternions: Algebra, Geometry and Physical Theories

    OpenAIRE

    Yefremov, A. P.

    2005-01-01

    The review of modern study of algebraic, geometric and differential properties of quaternionic (Q) numbers with their applications. Traditional and "tensor" formulation of Q-units with their possible representations are discussed and groups of Q-units transformations leaving Q-multiplication rule form-invariant are determined. A series of mathematical and physical applications is offered, among them use of Q-triads as a moveable frame, analysis of Q-spaces families, Q-formulation of Newtonian...

  3. Chameleon Field Theories

    CERN Document Server

    Khoury, Justin

    2013-01-01

    Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. In this article, we review two recent results on chameleon phenomenology. The first result a pair of no-go theorems limiting the cosmological impact of chameleons and their generalizations: i) the range of the chameleon force at cosmological density today can be at most ~Mpc; ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time. These theorems imply that chameleons have negligible effect on the linear growth of structure, and cannot account for the observed cosmic acceleration except as some form of dark energy. The second result pertains to the quantum stability of chameleon theories. We ...

  4. Quantum field theory of fluids.

    Science.gov (United States)

    Gripaios, Ben; Sutherland, Dave

    2015-02-20

    The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.

  5. Modern Quantum Field Theory II - Proceeeings of the International Colloquium

    Science.gov (United States)

    Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.

    1995-08-01

    The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory

  6. Flat Holography: Aspects of the dual field theory

    CERN Document Server

    Bagchi, Arjun; Kakkar, Ashish; Mehra, Aditya

    2016-01-01

    Assuming the existence of a field theory in D dimensions dual to (D+1)-dimensional flat space, governed by the asymptotic symmetries of flat space, we make some preliminary remarks about the properties of this field theory. We review briefly some successes of the 3d bulk - 2d boundary case and then focus on the 4d bulk - 3d boundary example, where the symmetry in question is the infinite dimensional BMS4 algebra. We look at the constraints imposed by this symmetry on a 3d field theory by constructing highest weight representations of this algebra. We construct two and three point functions of BMS primary fields and surprisingly find that symmetries constrain these correlators to be identical to those of a 2d relativistic conformal field theory. We then go one dimension higher and construct prototypical examples of 4d field theories which are putative duals of 5d Minkowski spacetimes. These field theories are ultra-relativistic limits of electrodynamics and Yang-Mills theories which exhibit invariance under th...

  7. Local spectral theory of endomorphisms of the disk algebra

    Directory of Open Access Journals (Sweden)

    Trivedi Shailesh

    2016-03-01

    Full Text Available Let A( denote the disk algebra. Every endomorphism of A( is induced by some ϕ ∈ A( with ‖ϕ‖ ≤ 1. In this paper, it is shown that if ϕ is not an automorphism of and ϕ has a fixed point in the open unit disk then the endomorphism induced by ϕ is decomposable if and only if the fixed set of ϕ is singleton. Further, we determine the local spectra of the endomorphism induced by ϕ in the cases when the fixed set of ϕ either includes unit circle or is a singleton.

  8. KK -theory and spectral flow in von Neumann algebras

    DEFF Research Database (Denmark)

    Kaad, Jens; Nest, Ryszard; Rennie, Adam

    2012-01-01

    We present a definition of spectral flow for any norm closed ideal J in any von Neumann algebra N. Given a path of selfadjoint operators in N which are invertible in N/J, the spectral flow produces a class in Ko (J). Given a semifinite spectral triple (A, H, D) relative to (N, t) with A separable......, we construct a class [D] ¿ KK1 (A, K(N)). For a unitary u ¿ A, the von Neumann spectral flow between D and u*Du is equal to the Kasparov product [u] A[D], and is simply related to the numerical spectral flow, and a refined C* -spectral flow....

  9. An action for F-theory: {SL}(2){{{R}}}^{+} exceptional field theory

    Science.gov (United States)

    Berman, David S.; Blair, Chris D. A.; Malek, Emanuel; Rudolph, Felix J.

    2016-10-01

    We construct the 12-dimensional exceptional field theory (EFT) associated to the group {SL}(2)× {{{R}}}+. Demanding the closure of the algebra of local symmetries leads to a constraint, known as the section condition, that must be imposed on all fields. This constraint has two inequivalent solutions, one giving rise to 11-dimensional supergravity and the other leading to F-theory. Thus {SL}(2)× {{{R}}}+ EFT contains both F-theory and M-theory in a single 12-dimensional formalism.

  10. Some Aspects of Supersymmetric Field Theories with Minimal Length and Maximal Momentum

    Directory of Open Access Journals (Sweden)

    Kourosh Nozari

    2013-01-01

    Full Text Available We consider a real scalar field and a Majorana fermion field to construct a supersymmetric quantum theory of free fermion fields based on the deformed Heisenberg algebra [ x , p ]  =  i ℏ ( 1 − β p + 2 β 2 p 2 , where β is a deformation parameter. We present a deformed supersymmetric algebra in the presence of minimal length and maximal momentum.

  11. Field redefinition invariance in quantum field theory

    CERN Document Server

    Apfeldorf, K M; Apfeldorf, Karyn M; Ordonez, Carlos

    1994-01-01

    We investigate the consequences of field redefinition invariance in quantum field theory by carefully performing nonlinear transformations in the path integral. We first present a ``paradox'' whereby a 1+1 freemassless scalar theory on a Minkowskian cylinder is reduced to an effectively quantum mechanical theory. We perform field redefinitions both before and after reduction to suggest that one should not ignore operator ordering issues in quantum field theory. We next employ a discretized version of the path integral for a free massless scalar quantum field in d dimensions to show that beyond the usual jacobian term, an infinite series of divergent ``extra'' terms arises in the action whenever a nonlinear field redefinition is made. The explicit forms for the first couple of these terms are derived. We evaluate Feynman diagrams to illustrate the importance of retaining the extra terms, and conjecture that these extra terms are the exact counterterms necessary to render physical quantities invariant under fie...

  12. Noncommutative Geometry in M-Theory and Conformal Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Morariu, Bogdan [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of Uq(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Funq (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.

  13. Linear algebraic groups

    CERN Document Server

    Springer, T A

    1998-01-01

    "[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

  14. Vladimir I. Arnold collected works : hydrodynamics, bifurcation theory, algebraic geometry : 1965-1972

    CERN Document Server

    Arnold, Vladimir I; Khesin, Boris; Marsden, Jerrold E; Varchenko, AN; Vassiliev, Victor A; Viro, Oleg Yanovich; Zakalyukin, Vladimir

    2013-01-01

    Vladimir Arnold was one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors. This second volume of his ""Collected Works"" focuses on hydrodynamics, bifurcation theory, and algebraic geometry.

  15. Algebraic circuits

    CERN Document Server

    Lloris Ruiz, Antonio; Parrilla Roure, Luis; García Ríos, Antonio

    2014-01-01

    This book presents a complete and accurate study of algebraic circuits, digital circuits whose performance can be associated with any algebraic structure. The authors distinguish between basic algebraic circuits, such as Linear Feedback Shift Registers (LFSRs) and cellular automata, and algebraic circuits, such as finite fields or Galois fields. The book includes a comprehensive review of representation systems, of arithmetic circuits implementing basic and more complex operations, and of the residue number systems (RNS). It presents a study of basic algebraic circuits such as LFSRs and cellular automata as well as a study of circuits related to Galois fields, including two real cryptographic applications of Galois fields.

  16. C=1 conformal field theories on Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R.; Verlinde, E.; Verlinde, H.

    1988-03-01

    We study the theory of c=1 torus and Z/sub 2/-orbifold models on general Riemann surfaces. The operator content and occurrence of multi-critical points in this class of theories is discussed. The partition functions and correlation functions of vertex operators and twist fields are calculated using the theory of double covered Riemann surfaces. It is shown that orbifold partition functions are sensitive to the Torelli group. We give an algebraic construction of the operator formulation of these nonchiral theories on higher genus surfaces. Modular transformations are naturally incorporated as canonical transformations in the Hilbert space.

  17. C=1 conformal field theories on Riemann surfaces

    Science.gov (United States)

    Dijkgraaf, Robbert; Verlinde, Erik; Verlinde, Herman

    1988-12-01

    We study the theory of c=1 torus and ℤ2-orbifold models on general Riemann surfaces. The operator content and occurrence of multi-critical points in this class of theories is discussed. The partition functions and correlation functions of vertex operators and twist fields are calculated using the theory of double covered Riemann surfaces. It is shown that orbifold partition functions are sensitive to the Torelli group. We give an algebraic construction of the operator formulation of these nonchiral theories on higher genus surfaces. Modular transformations are naturally incorporated as canonical transformations in the Hilbert space.

  18. Lorentz Dispersion Law from classical Hydrogen electron orbits in AC electric field via geometric algebra

    CERN Document Server

    Perez, Uzziel; Sugon, Quirino M; McNamara, Daniel J; Yoshikawa, Akimasa

    2015-01-01

    We studied the orbit of an electron revolving around an infinitely massive nucleus of a large classical Hydrogen atom subject to an AC electric field oscillating perpendicular to the electron's circular orbit. Using perturbation theory in geometric algebra, we show that the equation of motion of the electron perpendicular to the unperturbed orbital plane satisfies a forced simple harmonic oscillator equation found in Lorentz dispersion law in Optics. We show that even though we did not introduce a damping term, the initial orbital position and velocity of the electron results to a solution whose absorbed energies are finite at the dominant resonant frequency $\\omega=\\omega_0$; the electron slowly increases its amplitude of oscillation until it becomes ionized. We computed the average power absorbed by the electron both at the perturbing frequency and at the electron's orbital frequency. We graphed the trace of the angular momentum vector at different frequencies. We showed that at different perturbing frequen...

  19. Weighted Graph Theory Representation of Quantum Information Inspired by Lie Algebras

    CERN Document Server

    Belhaj, Abdelilah; Machkouri, Larbi; Sedra, Moulay Brahim; Ziti, Soumia

    2016-01-01

    Borrowing ideas from the relation between simply laced Lie algebras and Dynkin diagrams, a weighted graph theory representation of quantum information is addressed. In this way, the density matrix of a quantum state can be interpreted as a signless Laplacian matrix of an associated graph. Using similarities with root systems of simply laced Lie algebras, one-qubit theory is analyzed in some details and is found to be linked to a non-oriented weighted graph having two vertices. Moreover, this one-qubit theory is generalized to n-qubits. In this representation, quantum gates correspond to graph weight operations preserving the probability condition. A speculation from string theory, via D-brane quivers, is also given.

  20. The Adapted Ordering Method for the Representation Theory of Lie Algebras and Superalgebras and their Generalizations

    CERN Document Server

    Gato-Rivera, Beatriz

    2008-01-01

    In 1998 the Adapted Ordering Method was developed for the study of the representation theory of the superconformal algebras in two dimensions. It allows: to determine the maximal dimension for a given type of space of singular vectors, to identify all singular vectors by only a few coefficients, to spot subsingular vectors and to set the basis for constructing embedding diagrams. In this talk I introduce the present version of the Adapted Ordering Method, published in J. Phys. A: Math. Theor. 41 (2008) 045201, which can be applied to general Lie algebras and superalgebras and their generalizations, provided they can be triangulated.

  1. Fermionic ghosts in Moyal string field theory

    Science.gov (United States)

    Bars, Itzhak; Kishimoto, Isao; Matsuo, Yutaka

    2003-07-01

    We complete the construction of the Moyal star formulation of bosonic open string field theory (MSFT) by providing a detailed study of the fermionic ghost sector. In particular, as in the case of the matter sector, (1) we construct a map from Witten's star product to the Moyal product, (2) we propose a regularization scheme which is consistent with the matter sector and (3) as a check of the formalism, we derive the ghost Neumann coefficients algebraically directly from the Moyal product. The latter satisfy the Gross-Jevicki nonlinear relations even in the presence of the regulator, and when the regulator is removed they coincide numerically with the expression derived from conformal field theory. After this basic construction, we derive a regularized action of string field theory in the Siegel gauge and define the Feynman rules. We give explicitly the analytic expression of the off-shell four point function for tachyons, including the ghost contribution. Some of the results in this paper have already been used in our previous publications. This paper provides the technical details of the computations which were omitted there.

  2. Fermionic Ghosts in Moyal String Field Theory

    CERN Document Server

    Bars, Itzhak; Matsuo, Y

    2003-01-01

    We complete the construction of the Moyal star formulation of bosonic open string field theory (MSFT) by providing a detailed study of the fermionic ghost sector. In particular, as in the case of the matter sector, (1) we construct a map from Witten's star product to the Moyal product, (2) we propose a regularization scheme which is consistent with the matter sector and (3) as a check of the formalism, we derive the ghost Neumann coefficients algebraically directly from the Moyal product. The latter satisfy the Gross-Jevicki nonlinear relations even in the presence of the regulator, and when the regulator is removed they coincide numerically with the expression derived from conformal field theory. After this basic construction, we derive a regularized action of string field theory in the Siegel gauge and define the Feynman rules. We give explicitly the analytic expression of the off-shell four point function for tachyons, including the ghost contribution. Some of the results in this paper have already been us...

  3. Topics in Double Field Theory

    Science.gov (United States)

    Kwak, Seung Ki

    The existence of momentum and winding modes of closed string on a torus leads to a natural idea that the field theoretical approach of string theory should involve winding type coordinates as well as the usual space-time coordinates. Recently developed double field theory is motivated from this idea and it implements T-duality manifestly by doubling the coordinates. In this thesis we will mainly focus on the double field theory formulation of different string theories in its low energy limit: bosonic, heterotic, type II and its massive extensions, and N = 1 supergravity theory. In chapter 2 of the thesis we study the equivalence of different formulations of double field theory. There are three different formulations of double field theory: background field E formulation, generalized metric H formulation, and frame field EAM formulation. Starting from the frame field formalism and choosing an appropriate gauge, the equivalence of the three formulations of bosonic theory are explicitly verified. In chapter 3 we construct the double field theory formulation of heterotic strings. The global symmetry enlarges to O( D, D + n) for heterotic strings and the enlarged generalized metric features this symmetry. The structural form of bosonic theory can directly be applied to the heterotic theory with the enlarged generalized metric. In chapter 4 we develop a unified framework of double field theory for type II theories. The Ramond-Ramond potentials fit into spinor representations of the duality group O( D, D) and the theory displays Spin+( D, D) symmetry with its self-duality relation. For a specific form of RR 1-form the theory reduces to the massive deformation of type IIA theory due to Romans. In chapter 5 we formulate the N = 1 supersymmetric extension of double field theory including the coupling to n abelian vector multiplets. This theory features a local O(1, 9 + n) x O(1, 9) tangent space symmetry under which the fermions transform. (Copies available exclusively from

  4. Twin TQFTs and Frobenius Algebras

    Directory of Open Access Journals (Sweden)

    Carmen Caprau

    2013-01-01

    Full Text Available We introduce the category of singular 2-dimensional cobordisms and show that it admits a completely algebraic description as the free symmetric monoidal category on a twin Frobenius algebra, by providing a description of this category in terms of generators and relations. A twin Frobenius algebra (C,W,z,z∗ consists of a commutative Frobenius algebra C, a symmetric Frobenius algebra W, and an algebra homomorphism z:C→W with dual z∗:W→C, satisfying some extra conditions. We also introduce a generalized 2-dimensional Topological Quantum Field Theory defined on singular 2-dimensional cobordisms and show that it is equivalent to a twin Frobenius algebra in a symmetric monoidal category.

  5. Noncommutative Homotopy Algebras Associated with Open Strings

    Science.gov (United States)

    Kajiura, Hiroshige

    We discuss general properties of A∞-algebras and their applications to the theory of open strings. The properties of cyclicity for A∞-algebras are examined in detail. We prove the decomposition theorem, which is a stronger version of the minimal model theorem, for A∞-algebras and cyclic A∞-algebras and discuss various consequences of it. In particular, it is applied to classical open string field theories and it is shown that all classical open string field theories on a fixed conformal background are cyclic A∞-isomorphic to each other. The same results hold for classical closed string field theories, whose algebraic structure is governed by cyclic L∞-algebras.

  6. Conformal field theory and Loewner-Kufarev evolution

    CERN Document Server

    Markina, Irina

    2009-01-01

    One of the important aspects in recent trends in complex analysis has been the increasing degree of cross-fertilization between the latter and mathematical physics with great benefits to both subjects. Contour dynamics in the complex plane turned to be a meeting point for complex analysts, specialists in stochastic processes, and mathematical physicists. This was stimulated, first of all, by recent progress in understanding structures in the classical and stochastic L\\"owner evolutions, and in the Laplacian growth. The Virasoro algebra provides a basic algebraic object in conformal field theory (CFT) so it was not surprising that it turned to play an important role of a structural skeleton for contour dynamics. The present paper is a survey of recent progress in the study of the CFT viewpoint on contour dynamics, in particular, we show how the Witt and Virasoro algebras are related with the stochastic L\\"owner and classical L\\"owner-Kufarev equations.

  7. Gravity, torsion, Dirac field and computer algebra using MAPLE and REDUCE

    CERN Document Server

    Vulcanov, D N

    2002-01-01

    The article presents computer algebra procedures and routines applied to the study of the Dirac field on curved spacetimes. The main part of the procedures is devoted to the construction of Pauli and Dirac matrices algebra on an anholonomic orthonormal reference frame. Then these procedures are used to compute the Dirac equation on curved spacetimes in a sequence of special dedicated routines. A comparative review of such procedures obtained for two computer algebra platforms (REDUCE + EXCALC and MAPLE + GRTensorII) is carried out. Applications for the calculus of Dirac equation on specific examples of spacetimes with or without torsion are pointed out.

  8. Properties of Quaternion Algebra over the Real Number Field and Zp

    Institute of Scientific and Technical Information of China (English)

    QIN Ying-bing

    2010-01-01

    The ring of quaternion over R, denoted by R[i,j,k], is a quaternion algebra. In this paper, the roots of quadratic equation with one variable in quaternion field are investigated and it is shown that it has infinitely many roots. Then the properties of quaternion algebra over Zp are discussed, and the order of its unit group is determined. Lastly, another ring isomorphism of M2(Zp) and the quaternion algebra over Zp when p satisfies some particular conditions are presented.

  9. Couplings in Affine Toda Field Theories

    OpenAIRE

    1992-01-01

    We present a systematic derivation for a general formula for the n-point coupling constant valid for affine Toda theories related to any simple Lie algebra {\\bf g}. All n-point couplings with $n \\geq 4$ are completely determined in terms of the masses and the three-point couplings. A general fusing rule, formulated in the root space of the Lie algebra, is derived for all n-point couplings.

  10. Bitopological spaces theory, relations with generalized algebraic structures and applications

    CERN Document Server

    Dvalishvili, Badri

    2005-01-01

    This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, a

  11. 5d Field Theories and M Theory

    OpenAIRE

    Kol, Barak

    1997-01-01

    5-brane configurations describing 5d field theories are promoted to an M theory description a la Witten in terms of polynomials in two complex variables. The coefficients of the polynomials are the Coulomb branch. This picture resolves apparent singularities at vertices and reveals exponentially small corrections. These corrections ask to be compared to world line instanton corrections. From a different perspective this procedure may be used to define a diagrammatic representation of polynomi...

  12. An Extension to an Algebraic Method for Linear Time-Invariant System and Network Theory: The full AC-Calculus

    OpenAIRE

    Gerbracht, Eberhard H. -A.

    2007-01-01

    Being inspired by phasor analysis in linear circuit theory, and its algebraic counterpart - the AC-(operational)-calculus for sinusoids developed by W. Marten and W. Mathis - we define a complex structure on several spaces of real-valued elementary functions. This is used to algebraize inhomogeneous linear ordinary differential equations with inhomogenities stemming from these spaces. Thus we deduce an effective method to calculate particular solutions of these ODEs in a purely algebraic way.

  13. Properties of double field theory

    NARCIS (Netherlands)

    Penas, Victor Alejandro

    2016-01-01

    In this thesis we study several aspects of Double Field Theory (DFT). In general, Double Field Theory is subject to the so-called strong constraint. By using the Flux Formulation of DFT, we explore to what extent one can deal with the gauge consistency constraints of DFT without imposing the strong

  14. Geometry of Spin: Clifford Algebraic Approach

    Indian Academy of Sciences (India)

    Rukhsan-Ul-Haq

    2016-12-01

    Spin is a fundamental degree of freedom of matter and radiation.In quantum theory, spin is represented by Pauli matrices.Then the various algebraic properties of Pauli matricesare studied as properties of matrix algebra. What has beenshown in this article is that Pauli matrices are a representationof Clifford algebra of spin and hence all the propertiesof Pauli matrices follow from the underlying algebra. Cliffordalgebraic approach provides a geometrical and henceintuitive way to understand quantum theory of spin, and isa natural formalism to study spin. Clifford algebraic formalismhas lot of applications in every field where spin plays animportant role.

  15. Generalized exterior algebras

    OpenAIRE

    Marchuk, Nikolay

    2011-01-01

    Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this paper we define a notion of $N$-metric exterior algebra, which depends on $N$ matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as 0-metric exterior algebra. Clifford algebra can be considered as 1-metric exterior algebra. $N$-metric exterior algebras for $N\\geq2$ can be considered as generalizations of the Grassmann alg...

  16. Octonionic M-theory and /D=11 generalized conformal and superconformal algebras

    Science.gov (United States)

    Lukierski, Jerzy; Toppan, Francesco

    2003-08-01

    Following [Phys. Lett. B 539 (2002) 266] we further apply the octonionic structure to supersymmetric D=11 M-theory. We consider the octonionic 2n+1×2n+1 Dirac matrices describing the sequence of Clifford algebras with signatures (9+n,n) (n=0,1,2,…) and derive the identities following from the octonionic multiplication table. The case n=1 (4×4 octonion-valued matrices) is used for the description of the D=11 octonionic M-superalgebra with 52 real bosonic charges; the n=2 case (8×8 octonion-valued matrices) for the D=11 conformal M-algebra with 232 real bosonic charges. The octonionic structure is described explicitly for n=1 by the relations between the 528 Abelian O(10,1) tensorial charges Zμ, Zμν, Zμ…μ5 of the M-superalgebra. For n=2 we obtain 2080 real non-Abelian bosonic tensorial charges Zμν, Zμ1μ2μ3, Zμ1…μ6 which, suitably constrained describe the generalized D=11 octonionic conformal algebra. Further, we consider the supersymmetric extension of this octonionic conformal algebra which can be described as D=11 octonionic superconformal algebra with a total number of 64 real fermionic and 239 real bosonic generators.

  17. Geometric modular action for disjoint intervals and boundary conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Roberto [Universita di Roma (Italy); Martinetti, Pierre; Rehren, Karl-Henning [Universitaet Goettingen (Germany). Courant Centre

    2010-07-01

    In suitable states, the modular group of local algebras associated with unions of disjoint intervals in chiral conformal quantum field theory acts geometrically. We translate this result into the setting of boundary conformal quantum field theory and interpret it as a relation between temperature and acceleration.

  18. Free-field realisations of BMS$_3$ and super-BMS$_3$ algebras

    CERN Document Server

    Banerjee, Nabamita; Mukhi, Sunil; Neogi, Turmoli

    2015-01-01

    We construct an explicit realisation of the BMS$_3$ algebra with nonzero central charges using holomorphic free fields. This can be extended by the addition of chiral matter to a realisation having arbitrary values for the two independent central charges. We show that our construction naturally extends to a coupled SU(2)-BMS$_3$ system where the SU(2) Kac-Moody symmetry is realised via the Wakimoto representation, and to the supersymmetric BMS$_3$ algebra.

  19. Massless conformal fields, AdS(d+1/CFTd higher spin algebras and their deformations

    Directory of Open Access Journals (Sweden)

    Sudarshan Fernando

    2016-03-01

    Full Text Available We extend our earlier work on the minimal unitary representation of SO(d,2 and its deformations for d=4,5 and 6 to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO(d,2 and its deformations and massless conformal fields in Minkowskian spacetimes in d dimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS(d+1/CFTd higher spin algebra. For deformed minreps the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO(d−2 for massless representations.

  20. Resolving Witten's Superstring Field Theory

    CERN Document Server

    Erler, Theodore; Sachs, Ivo

    2014-01-01

    We regulate Witten's open superstring field theory by replacing the picture-changing insertion at the midpoint with a contour integral of picture changing insertions over the half-string overlaps of the cubic vertex. The resulting product between string fields is non-associative, but we provide a solution to the $A_\\infty$ relations defining all higher vertices. The result is an explicit covariant superstring field theory which by construction satisfies the classical BV master equation.

  1. The combinatorics of Green's functions in planar field theories

    Science.gov (United States)

    Ebrahimi-Fard, Kurusch; Patras, Frédéric

    2016-12-01

    The aim of this exposition is to provide a detailed description of the use of combinatorial algebra in quantum field theory in the planar setting. Particular emphasis is placed on the relations between different types of planar Green's functions. The primary object is a Hopf algebra that is naturally defined on variables representing non-commuting sources, and whose coproduct splits into two half-coproducts. The latter give rise to the notion of an unshuffle bialgebra. This setting allows a description of the relation between full and connected planar Green's functions to be given by solving a simple linear fixed point equation. We also include a brief outline of the consequences of our approach in the framework of ordinary quantum field theory.

  2. The Classification of Two-Dimensional Extended Topological Field Theories

    CERN Document Server

    Schommer-Pries, Christopher J

    2011-01-01

    We provide a complete generators and relations presentation of the 2-dimensional extended unoriented and oriented bordism bicategories as symmetric monoidal bicategories. Thereby we classify these types of 2-dimensional extended topological field theories with arbitrary target bicategory. As an immediate corollary we obtain a concrete classification when the target is the symmetric monoidal bicategory of algebras, bimodules, and intertwiners over a fixed commutative ground ring. In the oriented case, such an extended topological field theory is equivalent to specifying a (non-commutative) separable symmetric Frobenius algebra. We review the notion of symmetric monoidal bicategory, giving also a precise notion of generators and relations in this context. We provide several supporting lemmas, one of which provides a simple list of criteria for determining when a morphism of symmetric monoidal bicategories is an equivalence. We introduce the symmetric monoidal bicategory of bordisms with structure, where the all...

  3. Kinematic analysis of parallel manipulators by algebraic screw theory

    CERN Document Server

    Gallardo-Alvarado, Jaime

    2016-01-01

    This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators. Stands as the only book devoted to the acceleration, jerk and hyper-jerk (snap) analyses of rigid-body by means of screw theory; Provides new strategies to simplify the forward kinematic...

  4. Galois Correspondence in Field Algebra of G-spin Model

    Institute of Scientific and Technical Information of China (English)

    蒋立宁; 郭懋正

    2003-01-01

    @@ A C*-system is a pair (B, G) consisting of a unital C*-algebra B and a continuous group homomorphism α: G → Aut(B) where G is a compact group and Aut(B) the group of automor-phisms of B. If K is a normal subgroup of G and BK = {B∈ B: k(B) = B, k ∈ K}, then BK is a G-invariant C*-subalgebra of B. On the other hand, if A is a G-invariant C*-algebra with BG A B, set G (A) = {g ∈ G: g(A) = A, A ∈ A}, G (A) is a normal subgroup of G. Clearly K G(BK) and we call K Galois closed ifK = G(BK). Similarly, A BG(A) and we call A Galois closed if A = BG(A).

  5. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  6. Lectures on quantum field theory

    CERN Document Server

    Das, Ashok

    2008-01-01

    This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactio

  7. Non-Equilibrium Thermodynamics in Conformal Field Theory

    CERN Document Server

    Hollands, Stephan

    2016-01-01

    We present a model independent, operator algebraic approach to non-equilibrium quantum thermodynamics within the framework of two-dimensional Conformal Field Theory. Two infinite reservoirs in equilibrium at their own temperatures and chemical potentials are put in contact through a defect line, possibly by inserting a probe. As time evolves, the composite system then approaches a non-equilibrium steady state that we describe. In particular, we re-obtain recent formulas of Bernard and Doyon.

  8. Modern algebra essentials

    CERN Document Server

    Lutfiyya, Lutfi A

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.

  9. Relating the archetypes of logarithmic conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Creutzig, Thomas, E-mail: tcreutzig@mathematik.tu-darmstadt.de [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB 3255, Chapel Hill, NC 27599-3255 (United States); Fachbereich Mathematik, Technische Universität Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt (Germany); Ridout, David, E-mail: david.ridout@anu.edu.au [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200 (Australia)

    2013-07-21

    Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=−2 triplet model, the Wess–Zumino–Witten model on SL(2;R) at level k=−1/2 , and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and −1/2 . The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought.

  10. Relating the archetypes of logarithmic conformal field theory

    Science.gov (United States)

    Creutzig, Thomas; Ridout, David

    2013-07-01

    Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=-2 triplet model, the Wess-Zumino-Witten model on SL(2;R) at level k=-1/2 >, and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and -1/2 >. The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought.

  11. Symmetric structure of field algebra of G-spin models determined by a normal subgroup

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Qiaoling, E-mail: xinqiaoling0923@163.com; Jiang, Lining, E-mail: jianglining@bit.edu.cn [School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081 (China)

    2014-09-15

    Let G be a finite group and H a normal subgroup. D(H; G) is the crossed product of C(H) and CG which is only a subalgebra of D(G), the double algebra of G. One can construct a C*-subalgebra F{sub H} of the field algebra F of G-spin models, so that F{sub H} is a D(H; G)-module algebra, whereas F is not. Then the observable algebra A{sub (H,G)} is obtained as the D(H; G)-invariant subalgebra of F{sub H}, and there exists a unique C*-representation of D(H; G) such that D(H; G) and A{sub (H,G)} are commutants with each other.

  12. Scale-adaptive tensor algebra for local many-body methods of electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Liakh, Dmitry I [ORNL

    2014-01-01

    While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locally supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).

  13. Quantum Field Theory, Revised Edition

    Science.gov (United States)

    Mandl, F.; Shaw, G.

    1994-01-01

    Quantum Field Theory Revised Edition F. Mandl and G. Shaw, Department of Theoretical Physics, The Schuster Laboratory, The University, Manchester, UK When this book first appeared in 1984, only a handful of W± and Z° bosons had been observed and the experimental investigation of high energy electro-weak interactions was in its infancy. Nowadays, W± bosons and especially Z° bosons can be produced by the thousand and the study of their properties is a precise science. We have revised the text of the later chapters to incorporate these developments and discuss their implications. We have also taken this opportunity to update the references throughout and to make some improvements in the treatment of dimen-sional regularization. Finally, we have corrected some minor errors and are grateful to various people for pointing these out. This book is designed as a short and simple introduction to quantum field theory for students beginning research in theoretical and experimental physics. The three main objectives are to explain the basic physics and formalism of quantum field theory, to make the reader fully proficient in theory calculations using Feynman diagrams, and to introduce the reader to gauge theories, which play such a central role in elementary particle physics. The theory is applied to quantum electrodynamics (QED), where quantum field theory had its early triumphs, and to weak interactions where the standard electro-weak theory has had many impressive successes. The treatment is based on the canonical quantization method, because readers will be familiar with this, because it brings out lucidly the connection between invariance and conservation laws, and because it leads directly to the Feynman diagram techniques which are so important in many branches of physics. In order to help inexperienced research students grasp the meaning of the theory and learn to handle it confidently, the mathematical formalism is developed from first principles, its physical

  14. Noncommutative gravity and quantum field theory on noncummutative curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, Alexander

    2011-10-24

    The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the

  15. The Algebra Theory for PolynomialInterpolation Method

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    In this paper, several usually used polynomial interpolation methods are explained in view of vector basis and dimension in linearalgebra theory. Using transition matrixes, general conversion formula between the basis function sets of these polynomialinterpolation methods are given. An example also shows the effectiveness of the results.

  16. Introduction to applied algebraic systems

    CERN Document Server

    Reilly, Norman R

    2009-01-01

    This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as

  17. Lectures on matrix field theory

    CERN Document Server

    Ydri, Badis

    2017-01-01

    These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.

  18. Quantum field theory competitive models

    CERN Document Server

    Tolksdorf, Jürgen; Zeidler, Eberhard

    2009-01-01

    For more than 70 years, quantum field theory (QFT) can be seen as a driving force in the development of theoretical physics. Equally fascinating is the fruitful impact which QFT had in rather remote areas of mathematics. The present book features some of the different approaches, different physically viewpoints and techniques used to make the notion of quantum field theory more precise. For example, the present book contains a discussion including general considerations, stochastic methods, deformation theory and the holographic AdS/CFT correspondence. It also contains a discussion of more recent developments like the use of category theory and topos theoretic methods to describe QFT. The present volume emerged from the 3rd 'Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: 'To bring together outstanding experts working in...

  19. A landscape of field theories

    Science.gov (United States)

    Maxfield, Travis; Robbins, Daniel; Sethi, Savdeep

    2016-11-01

    Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2, 0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.

  20. A Landscape of Field Theories

    CERN Document Server

    Maxfield, Travis; Sethi, Savdeep

    2015-01-01

    Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.

  1. Algebraic description of G-flux in F-theory: new techniques for F-theory phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Braun, A.P. [Institute for Theoretical Physics, Vienna University (Austria); Collinucci, A. [Theory Group, Physics Department, CERN 1211 Geneva 23 (Switzerland); Physique Theorique et Mathematique Universite Libre de Bruxelles, C.P. 231, 1050 Bruxelles (Belgium); Valandro, R. [II Institute for Theoretical Physics, Hamburg University (Germany)

    2012-07-15

    We give a global algebraic description of the four-form flux in F-theory. We present how to compute its D3-tadpole and how to calculate the number of four-dimensional chiral states at the intersection of 7-branes directly in F-theory. We check that, in the weak coupling limit, we obtain the same results as using perturbative type IIB string theory. We develop these techniques in full generality. However, these can be readily applied to concrete models, as we show in an explicit example. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Mattson Solomon transform and algebra codes

    DEFF Research Database (Denmark)

    Martínez-Moro, E.; Benito, Diego Ruano

    2009-01-01

    In this note we review some results of the first author on the structure of codes defined as subalgebras of a commutative semisimple algebra over a finite field (see Martínez-Moro in Algebra Discrete Math. 3:99-112, 2007). Generator theory and those aspects related to the theory of Gröbner bases...

  3. The Theory of Conceptual Fields

    Science.gov (United States)

    Vergnaud, Gerard

    2009-01-01

    The theory of conceptual fields is a developmental theory. It has two aims: (1) to describe and analyse the progressive complexity, on a long- and medium-term basis, of the mathematical competences that students develop inside and outside school, and (2) to establish better connections between the operational form of knowledge, which consists in…

  4. Subgroups of ideal class groups of real quadratic algebraic function fields

    Institute of Scientific and Technical Information of China (English)

    WANG; Kunpeng(王鲲鹏); ZHANG; Xianke(张贤科)

    2003-01-01

    Necessary and sufficient condition on real quadratic algebraic function fields K is given for theirideal class groups H(K) to contain cyclic subgroups of order n. And eight series of such real quadratic functionfields K are obtained whose ideal class groups contain cyclic subgroups of order n. In particular, the ideal classnumbers of these function fields are divisible by n.

  5. Solvability of a Lie algebra of vector fields implies their integrability by quadratures

    Science.gov (United States)

    Cariñena, J. F.; Falceto, F.; Grabowski, J.

    2016-10-01

    We present a substantial generalisation of a classical result by Lie on integrability by quadratures. Namely, we prove that all vector fields in a finite-dimensional transitive and solvable Lie algebra of vector fields on a manifold can be integrated by quadratures.

  6. Conformal field theories with infinitely many conservation laws

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Ivan [Institut des Hautes Etudes Scientifiques F-91440, Bures-sur-Yvette (France)

    2013-02-15

    Globally conformal invariant quantum field theories in a D-dimensional space-time (D even) have rational correlation functions and admit an infinite number of conserved (symmetric traceless) tensor currents. In a theory of a scalar field of dimension D-2 they were demonstrated to be generated by bilocal normal products of free massless scalar fields with an O(N), U(N), or Sp(2N) (global) gauge symmetry [B. Bakalov, N. M. Nikolov, K.-H. Rehren, and I. Todorov, 'Unitary positive energy representations of scalar bilocal fields,' Commun. Math. Phys. 271, 223-246 (2007); e-print arXiv:math-ph/0604069v3; and 'Infinite dimensional Lie algebras in 4D conformal quantum field theory,' J. Phys. A Math Theor. 41, 194002 (2008); e-print arXiv:0711.0627v2 [hep-th

  7. On the renormalization of non-commutative field theories

    Science.gov (United States)

    Blaschke, Daniel N.; Garschall, Thomas; Gieres, François; Heindl, Franz; Schweda, Manfred; Wohlgenannt, Michael

    2013-01-01

    This paper addresses three topics concerning the quantization of non-commutative field theories (as defined in terms of the Moyal star product involving a constant tensor describing the non-commutativity of coordinates in Euclidean space). To start with, we discuss the Quantum Action Principle and provide evidence for its validity for non-commutative quantum field theories by showing that the equation of motion considered as insertion in the generating functional Z c [ j] of connected Green functions makes sense (at least at one-loop level). Second, we consider the generalization of the BPHZ renormalization scheme to non-commutative field theories and apply it to the case of a self-interacting real scalar field: Explicit computations are performed at one-loop order and the generalization to higher loops is commented upon. Finally, we discuss the renormalizability of various models for a self-interacting complex scalar field by using the approach of algebraic renormalization.

  8. Supersymmetry algebra and BPS states of super Yang-Mills theories on noncommutative tori

    Science.gov (United States)

    Konechny, Anatoly; Schwarz, Albert

    1999-04-01

    We consider 10-dimensional super Yang-Mills theory with topological terms compactified on a noncommutative torus. We calculate supersymmetry algebra and derive BPS energy spectra from it. The cases of d-dimensional tori with d=2,3,4 are considered in full detail. SO(d,d,Z)-invariance of the BPS spectrum and relation of new results to the previous work in this direction are discussed.

  9. Tensor networks, $p$-adic fields, and algebraic curves: arithmetic and the AdS$_3$/CFT$_2$ correspondence

    CERN Document Server

    Heydeman, Matthew; Saberi, Ingmar; Stoica, Bogdan

    2016-01-01

    One of the many remarkable properties of conformal field theory in two dimensions is its connection to algebraic geometry. Since every compact Riemann surface is a projective algebraic curve, many constructions of interest in physics (which a priori depend on the analytic structure of the spacetime) can be formulated in purely algebraic language. This opens the door to interesting generalizations, obtained by taking another choice of field: for instance, the $p$-adics. We generalize the AdS/CFT correspondence according to this principle; the result is a formulation of holography in which the bulk geometry is discrete---the Bruhat--Tits tree for $\\mathrm{PGL}(2,\\mathbb{Q}_p)$---but the group of bulk isometries nonetheless agrees with that of boundary conformal transformations and is not broken by discretization. We suggest that this forms the natural geometric setting for tensor networks that have been proposed as models of bulk reconstruction via quantum error correcting codes; in certain cases, geodesics in ...

  10. Neural fields theory and applications

    CERN Document Server

    Graben, Peter; Potthast, Roland; Wright, James

    2014-01-01

    With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...

  11. Solutions in Exceptional Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, Felix J. [Queen Mary University of London, Centre for Research in String Theory, School of Physics, London (United Kingdom)

    2016-04-15

    Exceptional Field Theory employs an extended spacetime to make supergravity fully covariant under the U-duality groups of M-theory. This allows for the wave and monopole solutions to be combined into a single solution which obeys a twisted self-duality relation. All fundamental, solitonic and Dirichlet branes of ten- and eleven-dimensonal supergravity may be extracted from this single solution in Exceptional Field Theory. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Spin gauge field theory of electric and magnetic spinors

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, J.S.R.; Farwell, R.S. (Kent Univ., Canterbury (UK))

    1981-06-05

    In the first section, a gauge theory of an unquantized generalized electron interacting with the electromagnetic field through two vector potentials is formulated, based on invariance of the Lagrangian under an algebra of spin space transformations. The covariant derivative is essentially expressed in terms of spin space operators. It is not possible to define dual monopole spinors in a four-component theory. However, a modified eight-component generalized electron gauge theory transforms into a dual monopole theory by using a square root of the charge conjugation operator. The covariant derivatives of the two spinors are members of a continuous set, and define curvature and torsion in spin space corresponding to the two spinors. Physically important 'weak spin curvature' is closely related to the total electromagnetic field. Possible physical interpretations and extensions of the theory are discussed.

  13. Noncommutative Gravity and Quantum Field Theory on Noncommutative Curved Spacetimes

    CERN Document Server

    Schenkel, Alexander

    2012-01-01

    The focus of this PhD thesis is on applications, new developments and extensions of the noncommutative gravity theory proposed by Julius Wess and his group. In part one we propose an extension of the usual symmetry reduction procedure to noncommutative gravity. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models. In part two we develop a new formalism for quantum field theory on noncommutative curved spacetimes by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. We also study explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories. The convergent deformation of simple toy models is investigated and it is found that ...

  14. Lectures on Conformal Field Theory

    CERN Document Server

    Qualls, Joshua D

    2015-01-01

    These lectures notes are based on courses given at National Taiwan University, National Chiao-Tung University, and National Tsing Hua University in the spring term of 2015. Although the course was offered primarily for graduate students, these lecture notes have been prepared for a more general audience. They are intended as an introduction to conformal field theories in various dimensions, with applications related to topics of particular interest: topics include the conformal bootstrap program, boundary conformal field theory, and applications related to the AdS/CFT correspondence. We assume the reader to be familiar with quantum mechanics at the graduate level and to have some basic knowledge of quantum field theory. Familiarity with string theory is not a prerequisite for this lectures, although it can only help.

  15. Nonlocal and quasilocal field theories

    Science.gov (United States)

    Tomboulis, E. T.

    2015-12-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.

  16. Multi-Matrix Models and Noncommutative Frobenius Algebras Obtained from Symmetric Groups and Brauer Algebras

    Science.gov (United States)

    Kimura, Yusuke

    2015-07-01

    It has been understood that correlation functions of multi-trace operators in SYM can be neatly computed using the group algebra of symmetric groups or walled Brauer algebras. On the other hand, such algebras have been known to construct 2D topological field theories (TFTs). After reviewing the construction of 2D TFTs based on symmetric groups, we construct 2D TFTs based on walled Brauer algebras. In the construction, the introduction of a dual basis manifests a similarity between the two theories. We next construct a class of 2D field theories whose physical operators have the same symmetry as multi-trace operators constructed from some matrices. Such field theories correspond to non-commutative Frobenius algebras. A matrix structure arises as a consequence of the noncommutativity. Correlation functions of the Gaussian complex multi-matrix models can be translated into correlation functions of the two-dimensional field theories.

  17. Multi-matrix models and Noncommutative Frobenius algebras obtained form symmetric groups and Brauer algebras

    CERN Document Server

    Kimura, Yusuke

    2014-01-01

    It has been understood that correlation functions of multi-trace operators in N=4 SYM can be neatly computed using the group algebra of symmetric groups or walled Brauer algebras. On the other hand such algebras have been known to construct 2D topological field theories (TFTs). After reviewing the construction of 2D TFTs based on symmetric groups, we construct 2D TFTs based on walled Brauer algebras. In the construction, the introduction of a dual basis manifests a similarity between the two theories. We next construct a class of 2D field theories whose physical operators have the same symmetry as multi-trace operators constructed from some matrices. Such field theories correspond to non-commutative Frobenius algebras. A matrix structure arises as a consequence of the noncommutativity. Correlation functions of the Gaussian complex multi-matrix models can be translated into correlation functions of the two-dimensional field theories.

  18. Background Independent String Field Theory

    CERN Document Server

    Bars, Itzhak

    2014-01-01

    We develop a new background independent Moyal star formalism in bosonic open string field theory. The new star product is formulated in a half-phase-space, and because phase space is independent of any background fields, the interactions are background independent. In this basis there is a large amount of symmetry, including a supersymmetry OSp(d|2) that acts on matter and ghost degrees of freedom, and simplifies computations. The BRST operator that defines the quadratic kinetic term of string field theory may be regarded as the solution of the equation of motion A*A=0 of a purely cubic background independent string field theory. We find an infinite number of non-perturbative solutions to this equation, and are able to associate them to the BRST operator of conformal field theories on the worldsheet. Thus, the background emerges from a spontaneous-type breaking of a purely cubic highly symmetric theory. The form of the BRST field breaks the symmetry in a tractable way such that the symmetry continues to be us...

  19. Nekrasov and Argyres-Douglas theories in spherical Hecke algebra representation

    CERN Document Server

    Rim, Chaiho

    2016-01-01

    AGT conjecture connects Nekrasov instanton partition function of 4D quiver gauge theory with 2D Liouville conformal blocks. We re-investigate this connection using the central extension of spherical Hecke algebra in q-coordinate representation, q being the instanton expansion parameter. Based on AFLT basis together with Matsuo's interwiner we construct gauge conformal state and demonstrate its equivalence to the Liouville conformal state with careful attention to the proper scaling behavior of the state. Using the colliding limit of regular states, we obtain the formal expression of irregular conformal states corresponding to Argyres-Douglas theory which involves summation of functions over Young diagrams.

  20. Algebras of Complete Hörmander Vector Fields, and Lie-Group Construction

    Directory of Open Access Journals (Sweden)

    Andrea Bonfiglioli

    2014-12-01

    Full Text Available The aim of this note is to characterize the Lie algebras g of the analytic vector fields in RN which coincide with the Lie algebras of the (analytic Lie groups defined on RN (with its usual differentiable structure. We show that such a characterization amounts to asking that: (i g is N-dimensional; (ii g admits a set of Lie generators which are complete vector fields; (iii g satisfies Hörmander’s rank condition. These conditions are necessary, sufficient and mutually independent. Our approach is constructive, in that for any such g we show how to construct a Lie group G = (RN, * whose Lie algebra is g. We do not make use of Lie’s Third Theorem, but we only exploit the Campbell-Baker-Hausdorff-Dynkin Theorem for ODE’s.

  1. Classical -Algebras and Generalized Drinfeld-Sokolov Bi-Hamiltonian Systems Within the Theory of Poisson Vertex Algebras

    Science.gov (United States)

    De Sole, Alberto; Kac, Victor G.; Valeri, Daniele

    2013-10-01

    We describe of the generalized Drinfeld-Sokolov Hamiltonian reduction for the construction of classical -algebras within the framework of Poisson vertex algebras. In this context, the gauge group action on the phase space is translated in terms of (the exponential of) a Lie conformal algebra action on the space of functions. Following the ideas of Drinfeld and Sokolov, we then establish under certain sufficient conditions the applicability of the Lenard-Magri scheme of integrability and the existence of the corresponding integrable hierarchy of bi-Hamiltonian equations.

  2. Elements of abstract algebra

    CERN Document Server

    Clark, Allan

    1984-01-01

    This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems.Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory)

  3. The universal C*-algebra of the electromagnetic field II. Topological charges and spacelike linear fields - Dedicated to Karl-Henning Rehren on the occasion of his 60th birthday

    Science.gov (United States)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2017-01-01

    Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.

  4. Two-Step Relaxation Newton Method for Nonsymmetric Algebraic Riccati Equations Arising from Transport Theory

    Directory of Open Access Journals (Sweden)

    Shulin Wu

    2009-01-01

    Full Text Available We propose a new idea to construct an effective algorithm to compute the minimal positive solution of the nonsymmetric algebraic Riccati equations arising from transport theory. For a class of these equations, an important feature is that the minimal positive solution can be obtained by computing the minimal positive solution of a couple of fixed-point equations with vector form. Based on the fixed-point vector equations, we introduce a new algorithm, namely, two-step relaxation Newton, derived by combining two different relaxation Newton methods to compute the minimal positive solution. The monotone convergence of the solution sequence generated by this new algorithm is established. Numerical results are given to show the advantages of the new algorithm for the nonsymmetric algebraic Riccati equations in vector form.

  5. Octonionic M-theory and D=11 Generalized Conformal and Superconformal Algebras

    CERN Document Server

    Lukierski, J

    2003-01-01

    Following [1] we further apply the octonionic structure to supersymmetric D=11 $M$-theory. We consider the octonionic $2^{n+1} \\times 2^{n+1}$ Dirac matrices describing the sequence of Clifford algebras with signatures ($9+n,n$) ($n=0,1,2, ...$) and derive the identities following from the octonionic multiplication table. The case $n=1$ ($4\\times 4$ octonion-valued matrices) is used for the description of the D=11 octonionic $M$-superalgebra with 52 real bosonic charges; the $n=2$ case ($8 \\times 8$ octonion-valued matrices) for the D=11 conformal $M$-algebra with 232 real bosonic charges. The octonionic structure is described explicitly for $n=1$ by the relations between the 512 Abelian O(10,1) tensorial charges $Z_\\mu$, $Z_{\\mu\

  6. Electromagnetic field theories for engineering

    CERN Document Server

    Salam, Md Abdus

    2014-01-01

    A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.

  7. Relating Berkovits and $A_\\infty$ Superstring Field Theories; Small Hilbert Space Perspective

    CERN Document Server

    Erler, Theodore

    2015-01-01

    In a previous paper it was shown that the recently constructed action for open superstring field theory based on $A_\\infty$ algebras can be re-written in Wess-Zumino-Witten-like form, thus establishing its relation to Berkovits' open superstring field theory. In this paper we explain the relation between these two theories from a different perspective which emphasizes the small Hilbert space, and in particular the relation between the $A_\\infty$ structures on both sides.

  8. Phenomenology of Noncommutative Field Theories

    CERN Document Server

    Carone, C D

    2006-01-01

    Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model.

  9. S-duality and the prepotential in N={2}^{star } theories (I): the ADE algebras

    Science.gov (United States)

    Billó, M.; Frau, M.; Fucito, F.; Lerda, A.; Morales, J. F.

    2015-11-01

    The prepotential of N={2}^{star } supersymmetric theories with unitary gauge groups in an Ω background satisfies a modular anomaly equation that can be recursively solved order by order in an expansion for small mass. By requiring that S-duality acts on the prepotential as a Fourier transform we generalise this result to N={2}^{star } theories with gauge algebras of the D and E type and show that their prepotentials can be written in terms of quasi-modular forms of SL(2, {Z}) . The results are checked against microscopic multi-instanton calculus based on localization for the A and D series and reproduce the known 1-instanton prepotential of the pure N=2 theories for any gauge group of ADE type. Our results can also be used to obtain the multi-instanton terms in the exceptional theories for which the microscopic instanton calculus and the ADHM construction are not available.

  10. S-duality and the prepotential of N=2* theories (I): the ADE algebras

    CERN Document Server

    Billo', M; Fucito, F; Lerda, A; Morales, J F

    2015-01-01

    The prepotential of N=2* supersymmetric theories with unitary gauge groups in an Omega-background satisfies a modular anomaly equation that can be recursively solved order by order in an expansion for small mass. By requiring that S-duality acts on the prepotential as a Fourier transform we generalise this result to N=2* theories with gauge algebras of the D and E type and show that their prepotentials can be written in terms of quasi-modular forms of SL(2,Z). The results are checked against microscopic multi-instanton calculus based on localization for the A and D series and reproduce the known 1-instanton prepotential of the pure N=2 theories for any gauge group of ADE type. Our results can also be used to obtain the multi-instanton terms in the exceptional theories for which the microscopic instanton calculus and the ADHM construction are not available.

  11. Introduction to algebra

    CERN Document Server

    Cameron, Peter J

    2007-01-01

    This Second Edition of a classic algebra text includes updated and comprehensive introductory chapters,. new material on axiom of Choice, p-groups and local rings, discussion of theory and applications, and over 300 exercises. It is an ideal introductory text for all Year 1 and 2 undergraduate students in mathematics. - ;Developed to meet the needs of modern students, this Second Edition of the classic algebra text by Peter Cameron covers all the abstract algebra an undergraduate student is likely to need. Starting with an introductory overview of numbers, sets and functions, matrices, polynomials, and modular arithmetic, the text then introduces the most important algebraic structures: groups, rings and fields, and their properties. This is followed by coverage of vector spaces and modules with. applications to abelian groups and canonical forms before returning to the construction of the number systems, including the existence of transcendental numbers. The final chapters take the reader further into the th...

  12. Topological field theory of dynamical systems.

    Science.gov (United States)

    Ovchinnikov, Igor V

    2012-09-01

    Here, it is shown that the path-integral representation of any stochastic or deterministic continuous-time dynamical model is a cohomological or Witten-type topological field theory, i.e., a model with global topological supersymmetry (Q-symmetry). As many other supersymmetries, Q-symmetry must be perturbatively stable due to what is generically known as non-renormalization theorems. As a result, all (equilibrium) dynamical models are divided into three major categories: Markovian models with unbroken Q-symmetry, chaotic models with Q-symmetry spontaneously broken on the mean-field level by, e.g., fractal invariant sets (e.g., strange attractors), and intermittent or self-organized critical (SOC) models with Q-symmetry dynamically broken by the condensation of instanton-antiinstanton configurations (earthquakes, avalanches, etc.) SOC is a full-dimensional phase separating chaos and Markovian dynamics. In the deterministic limit, however, antiinstantons disappear and SOC collapses into the "edge of chaos." Goldstone theorem stands behind spatio-temporal self-similarity of Q-broken phases known under such names as algebraic statistics of avalanches, 1/f noise, sensitivity to initial conditions, etc. Other fundamental differences of Q-broken phases is that they can be effectively viewed as quantum dynamics and that they must also have time-reversal symmetry spontaneously broken. Q-symmetry breaking in non-equilibrium situations (quenches, Barkhausen effect, etc.) is also briefly discussed.

  13. Bosonic colored group field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)

    2010-12-15

    Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)

  14. Unitarity of superstring field theory

    Science.gov (United States)

    Sen, Ashoke

    2016-12-01

    We complete the proof of unitarity of (compactified) heterotic and type II string field theories by showing that in the cut diagrams only physical states appear in the sum over intermediate states. This analysis takes into account the effect of mass and wave-function renormalization, and the possibility that the true vacuum may be related to the perturbative vacuum by small shifts in the string fields.

  15. Unitarity of Superstring Field Theory

    CERN Document Server

    Sen, Ashoke

    2016-01-01

    We complete the proof of unitarity of (compactified) heterotic and type II string field theories by showing that in the cut diagrams only physical states appear in the sum over intermediate states. This analysis takes into account the effect of mass and wave-function renormalization, and the possibility that the true vacuum may be related to the perturbative vacuum by small shifts in the string fields.

  16. Lukasiewicz-Moisil algebras

    CERN Document Server

    Boicescu, V; Georgescu, G; Rudeanu, S

    1991-01-01

    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  17. Algebra II textbook for students of mathematics

    CERN Document Server

    Gorodentsev, Alexey L

    2017-01-01

    This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.

  18. Algebra I textbook for students of mathematics

    CERN Document Server

    Gorodentsev, Alexey L

    2016-01-01

    This book is the first volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.

  19. The Wess-Zumino-Witten-Novikov theory, Knizhnik-Zamolodchikov equations, and Krichever-Novikov algebras, II

    OpenAIRE

    Schlichenmaier, Martin; Sheinman, Oleg K.

    2003-01-01

    This paper continues the same-named article, Part I (math.QA/9812083). We give a global operator approach to the WZWN theory for compact Riemann surfaces of an arbitrary genus g with marked points. Globality means here that we use Krichever-Novikov algebras of gauge and conformal symmetries (i.e. algebras of global symmetries) instead of loop and Virasoro algebras (which are local in this context). The elements of this global approach are described in Part I. In the present paper we give the ...

  20. Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics

    CERN Document Server

    Abramsky, Samson

    2009-01-01

    Our aim in this paper is to trace some of the surprising and beautiful connections which are beginning to emerge between a number of apparently disparate topics: Knot Theory, Categorical Quantum Mechanics, and Logic and Computation. We shall focus in particular on the following two topics: - The Temperley-Lieb algebra has always hitherto been presented as a quotient of some sort: either algebraically by generators and relations as in Jones' original presentation, or as a diagram algebra modulo planar isotopy as in Kauffman's presentation. We shall use tools from Geometry of Interaction, a dynamical interpretation of proofs under Cut Elimination developed as an off-shoot of Linear Logic, to give a direct description of the Temperley-Lieb category -- a "fully abstract presentation", in Computer Science terminology. This also brings something new to the Geometry of Interaction, since we are led to develop a planar version of it, and to verify that the interpretation of Cut-Elimination (the "Execution Formula", o...

  1. The K-Theory of Toeplitz C^*-Algebras of Right-Angled Artin Groups

    CERN Document Server

    Ivanov, Nikolay A

    2007-01-01

    To a graph $\\Gamma$ one can associate a C^*-algebra $C^*(\\Gamma)$ generated by isometries. Such $C^*$-algebras were studied recently by Crisp and Laca. They are a special case of the Toeplitz C^*-algebras $\\mathcal{T}(G, P)$ associated to quasi-latice ordered groups (G, P) introduced by Nica. Crisp and Laca proved that the so called "boundary quotients" $C^*_q(\\Gamma)$ of $C^*(\\Gamma)$ are simple and purely infinite. For a certain class of finite graphs $\\Gamma$ we show that $C^*_q(\\Gamma)$ can be represented as a full corner of a crossed product of an appropriate C^*-subalgebra of $C^*_q(\\Gamma)$ built by using $C^*(\\Gamma')$, where $\\Gamma'$ is a subgraph of $\\Gamma$ with one less vertex, by the group $\\mathbb{Z}$. Using induction on the number of the vertices of $\\Gamma$ we show that $C^*_q(\\Gamma)$ are nuclear and belong to the small bootstrap class. This also enables us to use the Pimsner-Voiculescu exact sequence to find their K-theory. Finally we use the Kirchberg-Phillips classification theorem to sho...

  2. The Theory of Prime Ideals of Leavitt Path Algebras over Arbitrary Graphs

    CERN Document Server

    Rangaswamy, Kulumani M

    2011-01-01

    Given an arbitrary graph E and a field K, the prime ideals as well as the primitive ideals of the Leavitt path algebra L_K(E) are completely described in terms of their generators. The stratification of the prime spectrum of L_K(E) is indicated with information on its individual stratum. Necessary and sufficient conditions are given on the graph E under which every prime ideal of L_K(E) is primitive. Leavitt path algebras of Krull dimension zero are characterized and those with various prescribed Krull dimension are constructed. The minimal prime ideals of L_K(E) are are described in terms of the graphical properties of E and using this, complete descriptions of the height one as well as the co-height one prime ideals of L_K(E) are given.

  3. An ideal topology type convergent theorem on scale effect algebras

    Institute of Scientific and Technical Information of China (English)

    WU JunDe; ZHOU XuanChang; Minhyung CHO

    2007-01-01

    The famous Antosik-Mikusinski convergent theorem on the Abel topological groups has very extensive applications in measure theory, summation theory and other analysis fields. In this paper, we establish the theorem on a class of effect algebras equipped with the ideal topology. This paper shows also that the ideal topology of effect algebras is a useful topology in studying the quantum logic theory.

  4. Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras

    Science.gov (United States)

    Zhang, Tianjie; Gao, Xing; Guo, Li

    2016-10-01

    The Hopf algebra and the Rota-Baxter algebra are the two algebraic structures underlying the algebraic approach of Connes and Kreimer to renormalization of perturbative quantum field theory. In particular, the Hopf algebra of rooted trees serves as the "baby model" of Feynman graphs in their approach and can be characterized by certain universal properties involving a Hochschild 1-cocycle. Decorated rooted trees have also been applied to study Feynman graphs. We will continue the study of universal properties of various spaces of decorated rooted trees with such a 1-cocycle, leading to the concept of a cocycle Hopf algebra. We further apply the universal properties to equip a free Rota-Baxter algebra with the structure of a cocycle Hopf algebra.

  5. Algebraic renormalization perturbative twisted considerations on topological Yang-Mills theory and on N=2 supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Fucito, F.; Tanzini, A. [Rome Univ. 2 (Italy). Dipt. di Fisica; Vilar, L.C.Q.; Ventura, O.S.; Sasaki, C.A.G. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, S.P. [Universidade do Estado (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    1997-07-01

    The aim of these notes is to provide a simple and pedagogical (as much as possible) introduction to what is nowadays commonly called Algebraic Renormalization. As the same itself let it understand, the Algebraic Renormalization gives a systematic set up in order to analyse the quantum extension of a given set of classical symmetries. The framework is purely algebraic, yielding a complete characterization of all possible anomalies and invariant counterterms without making use of any explicit computation of the Feynman diagrams. This goal is achieved by collecting, with the introduction of suitable ghost fields, all the symmetries into a unique operation summarized by a generalized Slavnov-Taylor (or master equation) identity which is the starting point for the quantum analysis. The Slavnov-Taylor identity allows to define a nilpotent operator whose cohomology classes in the space of the integrated local polynomials in the fields and their derivatives with dimensions bounded by power counting give all nontrivial anomalies and counterterms. I other words, the proof of the renormalizability is reduced to the computation of some cohomology classes. (author) 28 refs., 2 figs.

  6. Advanced linear algebra

    CERN Document Server

    Cooperstein, Bruce

    2010-01-01

    Vector SpacesFieldsThe Space FnVector Spaces over an Arbitrary Field Subspaces of Vector SpacesSpan and IndependenceBases and Finite Dimensional Vector SpacesBases and Infinite Dimensional Vector SpacesCoordinate VectorsLinear TransformationsIntroduction to Linear TransformationsThe Range and Kernel of a Linear TransformationThe Correspondence and Isomorphism TheoremsMatrix of a Linear TransformationThe Algebra of L(V, W) and Mmn(F)Invertible Transformations and MatricesPolynomialsThe Algebra of PolynomialsRoots of PolynomialsTheory of a Single Linear OperatorInvariant Subspaces of an Operator

  7. Encoding simplicial quantum geometry in group field theories

    Energy Technology Data Exchange (ETDEWEB)

    Oriti, D [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); Tlas, T, E-mail: daniele.oriti@aei.mpg.d, E-mail: tamer.tlas@aub.edu.l [Department of Mathematics, American Univeristy of Beirut, Bliss Street, Beirut, PO Box 11-0236 (Lebanon)

    2010-07-07

    An extended group field theory formalism for quantum gravity, based on a field that is a function of both group variables, interpreted as discretized connection, and Lie algebra variables, interpreted as discretized triads, has been proposed recently as an attempt to define models with a clearer link with simplicial geometry. In the context of such a formalism, we introduce a new symmetry requirement on the field. This leads, in 3D, to Feynman amplitudes interpreted as simplicial path integrals based on the Regge action, to a proper relation between the discrete connection and the triad vectors appearing in the Regge action, and to a much more satisfactory and transparent encoding of simplicial geometry already at the level of the group field theory action.

  8. Finite and Infinite W Algebras and their Applications

    CERN Document Server

    Tjin, T

    1993-01-01

    In this paper we present a systematic study of $W$ algebras from the Hamiltonian reduction point of view. The Drinfeld-Sokolov (DS) reduction scheme is generalized to arbitrary $sl_2$ embeddings thus showing that a large class of W algebras can be viewed as reductions of affine Lie algebras. The hierarchies of integrable evolution equations associated to these classical W algebras are constructed as well as the generalized Toda field theories which have them as Noether symmetry algebras. The problem of quantising the DS reductions is solved for arbitrary $sl_2$ embeddings and it is shown that any W algebra can be embedded into an affine Lie algebra. This also provides us with an algorithmic method to write down free field realizations for arbitrary W algebras. Just like affine Lie algebras W algebras have finite underlying structures called `finite W algebras'. We study the classical and quantum theory of these algebras, which play an important role in the theory of ordinary W algebras, in detail as well as s...

  9. Affine bracket algebra theory and algorithms and their applications in mechanical theorem proving

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper discusses two problems:one is some important theories and algorithms of affine bracket algebra;the other is about their applications in mechanical theorem proving.First we give some efficient algorithms including the boundary expanding algorithm which is a key feature in application.We analyze the characteristics of the boundary operator and this is the base for the implementation of the system.We also give some new theories or methods about the exact division,the representations and structure of affine geometry and so on.In practice,we implement the mechanical auto-proving system in Maple 10 based on the above algorithms and theories.Also we test about more than 100 examples and compare the results with the methods before.

  10. Affine bracket algebra theory and algorithms and their applications in mechanical theorem proving

    Institute of Scientific and Technical Information of China (English)

    Ning ZHANG; Hong-bo LI

    2007-01-01

    This paper discusses two problems: one is some important theories and algorithms of affine bracket algebra; the other is about their applications in mechanical theorem proving. First we give some efficient algorithms including the boundary expanding algorithm which is a key feature in application. We analyze the characteristics of the boundary operator and this is the base for the implementation of the system. We also give some new theories or methods about the exact division, the representations and structure of affine geometry and so on. In practice, we implement the mechanical auto-proving system in Maple 10 based on the above algorithms and theories. Also we test about more than 100 examples and compare the results with the methods before.

  11. Bohmian mechanics and quantum field theory.

    Science.gov (United States)

    Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino

    2004-08-27

    We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.

  12. Noncommutative geometry with graded differential Lie algebras

    Science.gov (United States)

    Wulkenhaar, Raimar

    1997-06-01

    Starting with a Hilbert space endowed with a representation of a unitary Lie algebra and an action of a generalized Dirac operator, we develop a mathematical concept towards gauge field theories. This concept shares common features with the Connes-Lott prescription of noncommutative geometry, differs from that, however, by the implementation of unitary Lie algebras instead of associative * -algebras. The general scheme is presented in detail and is applied to functions ⊗ matrices.

  13. Virasoro central charges for Nichols algebras

    CERN Document Server

    Semikhatov, A M

    2011-01-01

    Virasoro central charge associated with Nichols algebras is invariant under the Weyl groupoid action and takes very suggestive values for some items in Heckenberger's list of rank-2 Nichols algebras. In particular, this might be taken as an indication of the existence of reasonable logarithmic extensions of W3==WA2, WB2, and WG2 models of conformal field theory. In the W3 case, the construction of an octuplet extended algebra is outlined.

  14. Field Analysis and Potential Theory

    Science.gov (United States)

    1985-06-01

    T T T 430 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.5.7 But V2f [ dT - Z j V2 Jxdr T T hence V c2at 7- dT _- J2 (J2 dT T TT whence dalf [13 dT " 0 (5.7...8) at exterior points or dal pot [2] - O (5.7-8(a)) Similarly, dalf r dS - 0 (5.7-9) dal [y] ds - 0 (5.7-10) r Sec.5.7] RETARDED POTENTIAL THEORY 431

  15. Einstein's theory of unified fields

    CERN Document Server

    Tonnelat, Marie Antoinette

    2014-01-01

    First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or 'didactic exposition' of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research whic

  16. A course in field theory

    CERN Document Server

    Baal, Pierre Van

    2014-01-01

    ""… a pleasant novelty that manages the impossible: a full course in field theory from a derivation of the Dirac equation to the standard electroweak theory in less than 200 pages. Moreover, the final chapter consists of a careful selection of assorted problems, which are original and either anticipate or detail some of the topics discussed in the bulk of the chapters. Instead of building a treatise out of a collection of lecture notes, the author took the complementary approach and constructed a course out of a number of well-known and classic treatises. The result is fresh and useful. … the

  17. Mean field theory for U(n) dynamical groups

    Energy Technology Data Exchange (ETDEWEB)

    Rosensteel, G, E-mail: george.rosensteel@tulane.edu [Department of Physics, Tulane University, New Orleans, LA 70118 (United States)

    2011-04-22

    Algebraic mean field theory (AMFT) is a many-body physics modeling tool which firstly, is a generalization of Hartree-Fock mean field theory, and secondly, an application of the orbit method from Lie representation theory. The AMFT ansatz is that the physical system enjoys a dynamical group, which may be either a strong or a weak dynamical Lie group G. When G is a strong dynamical group, the quantum states are, by definition, vectors in one irreducible unitary representation (irrep) space, and AMFT is equivalent to the Kirillov orbit method for deducing properties of a representation from a direct geometrical analysis of the associated integral co-adjoint orbit. AMFT can be the only tractable method for analyzing some complex many-body systems when the dimension of the irrep space of the strong dynamical group is very large or infinite. When G is a weak dynamical group, the quantum states are not vectors in one irrep space, but AMFT applies if the densities of the states lie on one non-integral co-adjoint orbit. The computational simplicity of AMFT is the same for both strong and weak dynamical groups. This paper formulates AMFT explicitly for unitary Lie algebras, and applies the general method to the Lipkin-Meshkov-Glick su(2) model and the Elliott su(3) model. When the energy in the su(3) theory is a rotational scalar function, Marsden-Weinstein reduction simplifies AMFT dynamics to a two-dimensional phase space.

  18. A first course in abstract algebra rings, groups, and fields

    CERN Document Server

    Anderson, Marlow

    2014-01-01

    Numbers, Polynomials, and Factoring The Natural Numbers The Integers Modular Arithmetic Polynomials with Rational CoefficientsFactorization of PolynomialsSection I in a NutshellRings, Domains, and Fields Rings Subrings and Unity Integral Domains and Fields Ideals Polynomials over a Field Section II in a NutshellRing Homomorphisms and Ideals Ring HomomorphismsThe Kernel Rings of Cosets The Isomorphism Theorem for Rings Maximal and Prime Ideals The Chinese Remainder Theorem Section III in a NutshellGroups Symmetries of Geometric Figures PermutationsAbstract Groups Subgroups Cyclic Groups Section

  19. Spin from defects in two-dimensional quantum field theory

    CERN Document Server

    Novak, Sebastian

    2015-01-01

    We build two-dimensional quantum field theories on spin surfaces starting from theories on oriented surfaces with networks of topological defect lines and junctions. The construction uses a combinatorial description of the spin structure in terms of a triangulation equipped with extra data. The amplitude for the spin surfaces is defined to be the amplitude for the underlying oriented surface together with a defect network dual to the triangulation. Independence of the triangulation and of the other choices follows if the line defect and junctions are obtained from a Delta-separable Frobenius algebra with involutive Nakayama automorphism in the monoidal category of topological defects. For rational conformal field theory we can give a more explicit description of the defect category, and we work out two examples related to free fermions in detail: the Ising model and the so(n) WZW model at level 1.

  20. Protected gates for topological quantum field theories

    Energy Technology Data Exchange (ETDEWEB)

    Beverland, Michael E.; Pastawski, Fernando; Preskill, John [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States); Buerschaper, Oliver [Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin (Germany); Koenig, Robert [Institute for Advanced Study and Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Sijher, Sumit [Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2016-02-15

    We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.

  1. Conformal Field Theory, Automorphic Forms and Related Topics

    CERN Document Server

    Weissauer, Rainer; CFT 2011

    2014-01-01

    This book, part of the series Contributions in Mathematical and Computational Sciences, reviews recent developments in the theory of vertex operator algebras (VOAs) and their applications to mathematics and physics.   The mathematical theory of VOAs originated from the famous monstrous moonshine conjectures of J.H. Conway and S.P. Norton, which predicted a deep relationship between the characters of the largest simple finite sporadic group, the Monster, and the theory of modular forms inspired by the observations of J. MacKay and J. Thompson.   The contributions are based on lectures delivered at the 2011 conference on Conformal Field Theory, Automorphic Forms and Related Topics, organized by the editors as part of a special program offered at Heidelberg University that summer under the sponsorship of the MAThematics Center Heidelberg (MATCH).

  2. Field reparametrization in effective field theories

    CERN Document Server

    Passarino, Giampiero

    2016-01-01

    Debate topic for Effective Field Theory (EFT) is the choice of a "basis" for $\\mrdim = 6$ operators Clearly all bases are equivalent as long as they are a "basis", containing a minimal set of operators after the use of equations of motion and respecting gauge invariance. From a more formal point of view a basis is characterized by its closure with respect to renormalization. Equivalence of bases should always be understood as a statement for the S-matrix and not for the Lagrangian, as dictated by the equivalence theorem. Any phenomenological approach that misses one of these ingredients is still acceptable for a preliminar analysis, as long as it does not pretend to be an EFT. Here we revisit the equivalence theorem and its consequences for EFT when two sets of higher dimensional operators are connected by a set of non-linear, noninvariant, field reparametrizations.

  3. SOME RESULTS ON INFINITE DIMENSIONAL NOVIKOV ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    赵玉凤; 孟道骥

    2003-01-01

    This paper gives some sufficient conditions for determining the simplicity of infinite di-mensional Novikov algebras of characteristic 0, and also constructs a class of simple Novikovalgebras by extending the base field. At last, the deformation theory of Novikov algebras isintroduced.

  4. Variational methods for field theories

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Menahem, S.

    1986-09-01

    Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.

  5. Quantum Fields on Noncommutative Spacetimes: Theory and Phenomenology

    Directory of Open Access Journals (Sweden)

    Aiyalam P. Balachandran

    2010-06-01

    Full Text Available In the present work we review the twisted field construction of quantum field theory on noncommutative spacetimes based on twisted Poincaré invariance. We present the latest development in the field, in particular the notion of equivalence of such quantum field theories on a noncommutative spacetime, in this regard we work out explicitly the inequivalence between twisted quantum field theories on Moyal and Wick-Voros planes; the duality between deformations of the multiplication map on the algebra of functions on spacetime F(R^4 and coproduct deformations of the Poincaré-Hopf algebra HP acting on F(R^4; the appearance of a nonassociative product on F(R^4 when gauge fields are also included in the picture. The last part of the manuscript is dedicated to the phenomenology of noncommutative quantum field theories in the particular approach adopted in this review. CPT violating processes, modification of two-point temperature correlation function in CMB spectrum analysis and Pauli-forbidden transition in Be^4 are all effects which show up in such a noncommutative setting. We review how they appear and in particular the constraint we can infer from comparison between theoretical computations and experimental bounds on such effects. The best bound we can get, coming from Borexino experiment, is >10^{24} TeV for the energy scale of noncommutativity, which corresponds to a length scale <10^{-43} m. This bound comes from a different model of spacetime deformation more adapted to applications in atomic physics. It is thus model dependent even though similar bounds are expected for the Moyal spacetime as well as argued elsewhere.

  6. Kinetic mean-field theories

    Science.gov (United States)

    Karkheck, John; Stell, George

    1981-08-01

    A kinetic mean-field theory for the evolution of the one-particle distribution function is derived from maximizing the entropy. For a potential with a hard-sphere core plus tail, the resulting theory treats the hard-core part as in the revised Enskog theory. The tail, weighted by the hard-sphere pair distribution function, appears linearly in a mean-field term. The kinetic equation is accompanied by an entropy functional for which an H theorem was proven earlier. The revised Enskog theory is obtained by setting the potential tail to zero, the Vlasov equation is obtained by setting the hard-sphere diameter to zero, and an equation of the Enskog-Vlasov type is obtained by effecting the Kac limit on the potential tail. At equilibrium, the theory yields a radial distribution function that is given by the hard-sphere reference system and thus furnishes through the internal energy a thermodynamic description which is exact to first order in inverse temperature. A second natural route to thermodynamics (from the momentum flux which yields an approximate equation of state) gives somewhat different results; both routes coincide and become exact in the Kac limit. Our theory furnishes a conceptual basis for the association in the heuristically based modified Enskog theory (MET) of the contact value of the radial distribution function with the ''thermal pressure'' since this association follows from our theory (using either route to thermodynamics) and moreover becomes exact in the Kac limit. Our transport theory is readily extended to the general case of a soft repulsive core, e.g., as exhibited by the Lennard-Jones potential, via by-now-standard statistical-mechanical methods involving an effective hard-core potential, thus providing a self-contained statistical-mechanical basis for application to such potentials that is lacking in the standard versions of the MET. We obtain very good agreement with experiment for the thermal conductivity and shear viscosity of several

  7. Quantum field theory in topology changing spacetimes; Quantenfeldtheorie auf Raumzeiten mit Topologieaenderungen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, W.

    2007-03-15

    The goal of this diploma thesis is to present an overview of how to reduce the problem of topology change of general spacetimes to the investigation of elementary cobordisms. In the following we investigate the possibility to construct quantum fields on elementary cobordisms, in particular we discuss the trousers topology. Trying to avoid the problems occuring at spacetimes with instant topology change we use a model for simulating topology change. We construct the algebra of observables for a free scalar field with the algebraic approach to quantum field theory. Therefore we determine a fundamental solution of the eld equation. (orig.)

  8. Dynamical Mean-Field Theory

    OpenAIRE

    Vollhardt, D.; Byczuk, K.; Kollar, M.

    2011-01-01

    The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the ...

  9. Symmetries in Lagrangian Field Theory

    Science.gov (United States)

    Búa, Lucia; Bucataru, Ioan; León, Manuel de; Salgado, Modesto; Vilariño, Silvia

    2015-06-01

    By generalising the cosymplectic setting for time-dependent Lagrangian mechanics, we propose a geometric framework for the Lagrangian formulation of classical field theories with a Lagrangian depending on the independent variables. For that purpose we consider the first-order jet bundles J1π of a fiber bundle π : E → ℝk where ℝk is the space of independent variables. Generalized symmetries of the Lagrangian are introduced and the corresponding Noether theorem is proved.

  10. Boundedly controlled topology foundations of algebraic topology and simple homotopy theory

    CERN Document Server

    Anderson, Douglas R

    1988-01-01

    Several recent investigations have focused attention on spaces and manifolds which are non-compact but where the problems studied have some kind of "control near infinity". This monograph introduces the category of spaces that are "boundedly controlled" over the (usually non-compact) metric space Z. It sets out to develop the algebraic and geometric tools needed to formulate and to prove boundedly controlled analogues of many of the standard results of algebraic topology and simple homotopy theory. One of the themes of the book is to show that in many cases the proof of a standard result can be easily adapted to prove the boundedly controlled analogue and to provide the details, often omitted in other treatments, of this adaptation. For this reason, the book does not require of the reader an extensive background. In the last chapter it is shown that special cases of the boundedly controlled Whitehead group are strongly related to lower K-theoretic groups, and the boundedly controlled theory is compared to Sie...

  11. Higher AGT Correspondences, W-algebras, and Higher Quantum Geometric Langlands Duality from M-Theory

    CERN Document Server

    Tan, Meng-Chwan

    2016-01-01

    We further explore the implications of our framework in [arXiv:1301.1977, arXiv:1309.4775], and physically derive, from the principle that the spacetime BPS spectra of string-dual M-theory compactifications ought to be equivalent, (i) a 5d AGT correspondence for any compact Lie group, (ii) a 5d and 6d AGT correspondence on ALE space of type ADE, and (iii) identities between the ordinary, q-deformed and elliptic affine W-algebras associated with the 4d, 5d and 6d AGT correspondence, respectively, which also define a quantum geometric Langlands duality and its higher analogs formulated by Feigin-Frenkel-Reshetikhin in [3,4]. As an offshoot, we are led to the sought-after connection between the gauge-theoretic realization of the geometric Langlands correspondence by Kapustin-Witten [5,6] and its algebraic CFT formulation by Beilinson-Drinfeld [7], where one can also understand Wilson and 't Hooft-Hecke line operators in 4d gauge theory as monodromy loop operators in 2d CFT, for example. In turn, this will allow ...

  12. CIME-CIRM course Rationality Problems in Algebraic Geometry

    CERN Document Server

    Pirola, Gian

    2016-01-01

    Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments. It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.

  13. The algebras of large N matrix mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, M.B.; Schwartz, C.

    1999-09-16

    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.

  14. C*-Algebra approach to the index theory of boundary value problems

    CERN Document Server

    Melo, Severino; Schick, Thomas

    2012-01-01

    Boutet de Monvel's calculus provides a pseudodifferential framework which encompasses the classical differential boundary value problems. In an extension of the concept of Lopatinski and Shapiro, it associates to each operator two symbols: a pseudodifferential principal symbol, which is a bundle homomorphism, and an operator-valued boundary symbol. Ellipticity requires the invertibility of both. If the underlying manifold is compact, elliptic elements define Fredholm operators. Boutet de Monvel showed how then the index can be computed in topological terms. The crucial observation is that elliptic operators can be mapped to compactly supported $K$-theory classes on the cotangent bundle over the interior of the manifold. The Atiyah-Singer topological index map, applied to this class, then furnishes the index of the operator. Based on this result, Fedosov, Rempel-Schulze and Grubb have given index formulas in terms of the symbols. In this paper we survey previous work how C*-algebra K-theory can be used to give...

  15. Representations of cohomological Hall algebras and Donaldson-Thomas theory with classical structure groups

    CERN Document Server

    Young, Matthew B

    2016-01-01

    We introduce a new class of representations of the cohomological Hall algebras of Kontsevich and Soibelman which we call cohomological Hall modules, or CoHM for short. These representations are constructed from self-dual representations of a quiver with contravariant involution $\\sigma$ and provide a mathematical model for the space of BPS states in orientifold string theory. We use the CoHM to define a generalization of cohomological Donaldson-Thomas theory of quivers which allows the quiver representations to have orthogonal and symplectic structure groups. The associated invariants are called orientifold Donaldson-Thomas invariants. We prove the integrality conjecture for orientifold Donaldson-Thomas invariants of $\\sigma$-symmetric quivers. We also formulate precise conjectures regarding the geometric meaning of these invariants and the freeness of the CoHM of a $\\sigma$-symmetric quiver. We prove the freeness conjecture for disjoint union quivers, loop quivers and the affine Dynkin quiver of type $\\widet...

  16. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory textto algebraic coding theory. In the first chapter, you'll gain insideknowledge of coding fundamentals, which is essential for a deeperunderstanding of state-of-the-art coding systems.This book is a quick reference for those who are unfamiliar withthis topic, as well as for use with specific applications such as cryptographyand communication. Linear error-correcting block codesthrough elementary principles span eleven chapters of the text.Cyclic codes, some finite field algebra, Goppa codes, algebraic decodingalgorithms, and applications in public-key cryptography andsecret-key cryptography are discussed, including problems and solutionsat the end of each chapter. Three appendices cover the Gilbertbound and some related derivations, a derivation of the Mac-Williams' identities based on the probability of undetected error,and two important tools for algebraic decoding-namely, the finitefield Fourier transform and the Euclidean algorithm for polynomials.

  17. Algebraic Methods to Design Signals

    Science.gov (United States)

    2015-08-27

    algebraic number theory, finite geometry, and combinatorics in designing signals as a by- product of new combinatorial designs and the corresponding... constructions of cyclic 2-class partially balanced incomplete block designs using cyclotomy in finite fields. Our results give theoretical explanations of the...very small. We call the constructed sequences perfect sequences and they serve as perfect algebraic/combinatorial objects in designing signals for

  18. Lie Groupoids in Classical Field Theory I: Noether's Theorem

    CERN Document Server

    Costa, Bruno T; Pêgas, Luiz Henrique P

    2015-01-01

    In the two papers of this series, we initiate the development of a new approach to implementing the concept of symmetry in classical field theory, based on replacing Lie groups/algebras by Lie groupoids/algebroids, which are the appropriate mathematical tools to describe local symmetries when gauge transformations are combined with space-time transformations. Here, we outline the basis of the program and, as a first step, show how to (re)formulate Noether's theorem about the connection between symmetries and conservation laws in this approach.

  19. Exact time-localized solutions in Vacuum String Field Theory

    CERN Document Server

    Bonora, L; Santos, R J S; Tolla, D D

    2004-01-01

    We address the problem of finding star algebra projectors that exhibit localized time profiles. We use the double Wick rotation method, starting from an Euclidean (unconventional) lump solution, which is characterized by the Neumann matrix being the conventional one for the continuous spectrum, while the inverse of the conventional one for the discrete spectrum. This is still a solution of the projector equation and we show that, after inverse Wick-rotation, its time profile has the desired localized time dependence. We study it in detail in the low energy regime (field theory limit) and in the extreme high energy regime (tensionless limit) and show its similarities with the rolling tachyon solution.

  20. Algebraic Stacks

    Indian Academy of Sciences (India)

    Tomás L Gómez

    2001-02-01

    This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.

  1. Fuzzy Scalar Field Theories: Numerical and Analytical Investigations

    CERN Document Server

    Medina, Julieta

    2006-01-01

    This thesis is devoted to the study of Quantum Field Theories (QFT) on fuzzy spaces. Fuzzy spaces are approximations to the algebra of functions of a continuous space by a finite matrix algebra. In the limit of infinitely large matrices the formulation is exact. An attractive feature of this approach is that it transparently shows how the geometrical properties of the continuous space are preserved. In the study of the non-perturbative regime of QFT, fuzzy spaces provide a possible alternative to the lattice as a regularisation method. The thesis is divided into two parts. We perform Monte Carlo simulations of a $\\lambda \\phi^4$ theory on a 3-dimensional Euclidean space. We identify the phase diagram of this model. In addition to the usual disordered and uniform ordered phases we find a third phase of non-uniform ordering. This indicates the existence of the phenomenon called UV-IR mixing in the strong coupling regime. Second we present a geometrical analysis of the scalar field theory on a 4-dimensional fuzz...

  2. Towards Noncommutative Topological Quantum Field Theory - Hodge theory for cyclic cohomology

    Science.gov (United States)

    Zois, I. P.

    2014-03-01

    Some years ago we initiated a program to define Noncommutative Topological Quantum Field Theory (see [1]). The motivation came both from physics and mathematics: On the one hand, as far as physics is concerned, following the well-known holography principle of 't Hooft (which in turn appears essentially as a generalisation of the Hawking formula for black hole entropy), quantum gravity should be a topological quantum field theory. On the other hand as far as mathematics is concerned, the motivation came from the idea to replace the moduli space of flat connections with the Gabai moduli space of codim-1 taut foliations for 3 dim manifolds. In most cases the later is finite and much better behaved and one might use it to define some version of Donaldson-Floer homology which, hopefully, would be easier to compute. The use of foliations brings noncommutative geometry techniques immediately into the game. The basic tools are two: Cyclic cohomology of the corresponding foliation C*-algebra and the so called "tangential cohomology" of the foliation. A necessary step towards this goal is to develop some sort of Hodge theory both for cyclic (and Hochschild) cohomology and for tangential cohomology. Here we present a method to develop a Hodge theory for cyclic and Hochschild cohomology for the corresponding C*-algebra of a foliation.

  3. On the existence of dimension zero divisors in algebraic function fields defined over F_q

    CERN Document Server

    Ballet, Stephane; Rolland, Robert

    2009-01-01

    Let F/F_q be an algebraic function field of genus g defined over a finite field F_q. We obtain new results on the existence, the number and the density of dimension zero divisors of degree g-k in F where k is a positive integer. In particular, for q=2,3 we prove that there always exists a dimension zero divisor of degree \\gamma-1 where \\gamma is the q-rank of F. We also give a necessary and sufficient condition for the existence of a dimension zero divisor of degree g-k for a hyperelliptic field F in terms of its Zeta function.

  4. W(1+infinity) algebra as a symmetry behind AGT relation

    CERN Document Server

    Kanno, Shoichi; Shiba, Shotaro

    2011-01-01

    We give some evidences which imply that W(1+infinity) algebra describes the symmetry behind AGT(-W) conjecture: a correspondence between the partition function of N=2 supersymmetric quiver gauge theories and the correlators of Liouville (Toda) field theory.

  5. Lie algebras

    CERN Document Server

    Jacobson, Nathan

    1979-01-01

    Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its

  6. Bethe ansatz matrix elements as non-relativistic limits of form factors of quantum field theory

    NARCIS (Netherlands)

    Kormos, M.; Mussardo, G.; Pozsgay, B.

    2010-01-01

    We show that the matrix elements of integrable models computed by the algebraic Bethe ansatz (BA) can be put in direct correspondence with the form factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe ansatz model can be regarded as a suitable non-relativistic

  7. Zitterbewegung in quantum field theory

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Yong; Xiong Cai-Dong

    2008-01-01

    Traditionally,the zitterbewegung (ZB) of the Dirac electron has just been studied at the level of quantum mechanics.Seeing the fact that an old interest in ZB has recently been rekindled by the investigations on spintronic,graphene,and superconducting systems,etc.,this paper presents a quantum-field-theory investigation on ZB and obtains the con clusion that,the ZB of an electron arises from the influence of virtual electron-positron pairs (or vacuum fluctuations)on the electron.

  8. Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for Polynomial Transforms Based on Induction

    CERN Document Server

    Sandryhaila, Aliaksei; Pueschel, Markus

    2010-01-01

    A polynomial transform is the multiplication of an input vector $x\\in\\C^n$ by a matrix $\\PT_{b,\\alpha}\\in\\C^{n\\times n},$ whose $(k,\\ell)$-th element is defined as $p_\\ell(\\alpha_k)$ for polynomials $p_\\ell(x)\\in\\C[x]$ from a list $b=\\{p_0(x),\\dots,p_{n-1}(x)\\}$ and sample points $\\alpha_k\\in\\C$ from a list $\\alpha=\\{\\alpha_0,\\dots,\\alpha_{n-1}\\}$. Such transforms find applications in the areas of signal processing, data compression, and function interpolation. Important examples include the discrete Fourier and cosine transforms. In this paper we introduce a novel technique to derive fast algorithms for polynomial transforms. The technique uses the relationship between polynomial transforms and the representation theory of polynomial algebras. Specifically, we derive algorithms by decomposing the regular modules of these algebras as a stepwise induction. As an application, we derive novel $O(n\\log{n})$ general-radix algorithms for the discrete Fourier transform and the discrete cosine transform of type 4.

  9. Magnetic translation algebra with or without magnetic field in the continuum or on arbitrary Bravais lattices in any dimension

    Science.gov (United States)

    Chamon, Claudio; Mudry, Christopher

    2012-11-01

    The magnetic translation algebra plays an important role in the quantum Hall effect. Murthy and Shankar, arXiv:1207.2133, have shown how to realize this algebra using fermionic bilinears defined on a two-dimensional square lattice. We show that, in any dimension d, it is always possible to close the magnetic translation algebra using fermionic bilinears, whether in the continuum or on the lattice. We also show that these generators are complete in even, but not odd, dimensions, in the sense that any fermionic Hamiltonian in even dimensions that conserves particle number can be represented in terms of the generators of this algebra, whether or not time-reversal symmetry is broken. As an example, we reproduce the f-sum rule of interacting electrons at vanishing magnetic field using this representation. We also show that interactions can significantly change the bare bandwidth of lattice Hamiltonians when represented in terms of the generators of the magnetic translation algebra.

  10. Flavour-mixing gauge field theory of massive Majorana neutrinos

    CERN Document Server

    Marsch, Eckart

    2012-01-01

    A gauge-field theory for massive neutral particles is developed on the basis of the real four-component Majorana equation. By use of its spin operator, a purely imaginary representation of the SU(2) algebra can be defined, which gives a covariant derivative that is real. Such a coupling to the gauge field preserves the real nature of the Majorana equation even when including interactions. As the associated isospin is four-dimensional, this procedure introduces four intrinsic degrees of freedom to the Majorana field, which may be related to four flavours. The main aim is to describe here the mathematical possibility for coupling Majorana particles with a gauge field which resembles that of the weak interaction. By adding a fourth member to the family, flavour could become a dynamic trait of the neutral Majorana particles, and thus lead to a dynamic understanding of mixing.

  11. Hopf and Frobenius algebras in conformal field theory

    Science.gov (United States)

    Singh, Sukreet

    With the current rapid depletion of non-renewable resources to generate power, energy conservation and on site generation have become the most critical aspects of the equation. Buildings should be so designed or retrofitted in order to generate its own electricity and cater to its own demand. This thesis looks as the ways in which we can do a post occupancy analysis of an existing institutional building of about 95,000 square feet that was built in 1960's in order to reduce usage and approach a Zero Net Energy goal. This case study building is Von Kleinsmid Centre (VKC) which is located at the heart of USC (University of Southern California). It is challenging to retrofit an existing institutional building because of its complexity and make it achieve a 'Zero Net Energy' goal. All the roadblocks, real life delays, software limitations that had to be overcome to achieve this result are explained in this thesis. The Zero Net Energy goal was achieved by calibrating energy model to the utility data of the building, providing various energy efficiency measures and generating on-site electricity.

  12. Cluster-like coordinates in supersymmetric quantum field theory.

    Science.gov (United States)

    Neitzke, Andrew

    2014-07-08

    Recently it has become apparent that N = 2 supersymmetric quantum field theory has something to do with cluster algebras. I review one aspect of the connection: supersymmetric quantum field theories have associated hyperkähler moduli spaces, and these moduli spaces carry a structure that looks like an extension of the notion of cluster variety. In particular, one encounters the usual variables and mutations of the cluster story, along with more exotic extra variables and generalized mutations. I focus on a class of examples where the underlying cluster varieties are moduli spaces of flat connections on surfaces, as considered by Fock and Goncharov [Fock V, Goncharov A (2006) Publ Math Inst Hautes Études Sci 103:1-211]. The work reviewed here is largely joint with Davide Gaiotto and Greg Moore.

  13. Introduction to a Quantum Theory over a Galois Field

    Directory of Open Access Journals (Sweden)

    Felix M. Lev

    2010-11-01

    Full Text Available We consider a quantum theory based on a Galois field. In this approach infinities cannot exist, the cosmological constant problem does not arise, and one irreducible representation (IR of the symmetry algebra splits into independent IRs describing a particle an its antiparticle only in the approximation when de Sitter energies are much less than the characteristic of the field. As a consequence, the very notions of particles and antiparticles are only approximate and such additive quantum numbers as the electric, baryon and lepton charges are conserved only in this approximation. There can be no neutral elementary particles and the spin-statistics theorem can be treated simply as a requirement that standard quantum theory should be based on complex numbers.

  14. Spinning particle approach to higher spin field theory

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Olindo, E-mail: Olindo.Corradini@bo.infn.it [Centro de Estudios en Fisica y Matematicas Basicas y Aplicadas Universidad Autonoma de Chiapas, Tuxtla Gutierrez, Chiapas (Mexico); Dipartimento di Fisica, Universita di Bologna via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna via Irnerio 46, I-40126 Bologna (Italy)

    2011-04-01

    We shortly review on the connection between higher-spin gauge field theories and supersymmetric spinning particle models. In such approach the higher spin equations of motion are linked to the first-class constraint algebra associated with the quantization of particle models. Here we consider a class of spinning particle models characterized by local O(N)-extended supersymmetry since these models are known to provide an alternative approach to the geometric formulation of higher spin field theory. We describe the canonical quantization of the models in curved target space and discuss the obstructions that appear in presence of an arbitrarily curved background. We then point out the special role that conformally flat spaces appear to have in such models and present a derivation of the higher-spin curvatures for maximally symmetric spaces.

  15. Number theory arising from finite fields analytic and probabilistic theory

    CERN Document Server

    Knopfmacher, John

    2001-01-01

    ""Number Theory Arising from Finite Fields: Analytic and Probabilistic Theory"" offers a discussion of the advances and developments in the field of number theory arising from finite fields. It emphasizes mean-value theorems of multiplicative functions, the theory of additive formulations, and the normal distribution of values from additive functions. The work explores calculations from classical stages to emerging discoveries in alternative abstract prime number theorems.

  16. Diffeomorphism algebra of two dimensional free massless scalar field with signature change

    CERN Document Server

    Darabi, F; Rezaei-Aghdam, A

    1999-01-01

    We study a model of free massless scalar fields on a two dimensional cylinder with metric that admits a change of signature between Lorentzian and Euclidean type (ET), across the two timelike hypersurfaces (with respect to Lorentzian region). Considering a long strip-shaped region of the cylinder, denoted by an angle \\theta, as the signature changed region it is shown that the energy spectrum depends on the angle \\theta and in a sense differs from ordinary one for low energies. Morever diffeomorphism algebra of corresponding infinite conserved charges is different from '' Virasoro'' algebra and approaches to it at higher energies. The central term is also modified but does not approach to the ordinary one at higher energies.

  17. College algebra

    CERN Document Server

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  18. A Naturally Renormalized Quantum Field Theory

    OpenAIRE

    2006-01-01

    It was shown that quantum metric fluctuations smear out the singularities of Green's functions on the light cone [1], but it does not remove other ultraviolet divergences of quantum field theory. We have proved that the quantum field theory in Krein space, {\\it i.e.} indefinite metric quantization, removes all divergences of quantum field theory with exception of the light cone singularity [2,3]. In this paper, it is discussed that the combination of quantum field theory in Krein space togeth...

  19. Quantum field theory on locally noncommutative spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Gandalf [Univ. Leipzig (Germany). Inst. fuer Theoretische Physik; Waldmann, Stefan [Leuven Univ. (Belgium)

    2012-07-01

    A class of spacetimes which are noncommutative only in a prescribed region is presented. These spacetimes are obtained by a generalization of Rieffel's deformation procedure to deformations of locally convex algebras and modules by smooth polynomially bounded R{sup n}-actions with compact support. Extending previous results of Bahns and Waldmann, it is shown how to perform such deformations in a strict sense. Some results on quantum fields propagating on locally noncommutative spacetimes are also given.

  20. Inflation from string field theory

    CERN Document Server

    Koshelev, Alexey S; Moniz, Paulo Vargas

    2016-01-01

    In the framework of string field theory (SFT) a setting where the closed string dilaton is coupled to the open string tachyon at the final stage of an unstable brane or brane-anti-brane pair decay is considered. We show that this configuration can lead to viable inflation by means of the dilaton becoming a non-local (infinite-derivative) inflaton. The structure of non-locality leads to interesting inflationary scenarios. We obtain (i) a class of single field inflation with universal attractor predictions at $n_{s}\\sim0.967$ with any value of $r<0.1$, where the tensor to scalar ratio $r$ can be solely regulated by parameters of the SFT; (ii) a new class of two field conformally invariant models with a peculiar quadratic cross-product of scalar fields. We analyze a specific case where a spontaneously broken conformal invariance leads to Starobinsky like inflation plus creating an uplifted potential minimum which accounts to vacuum energy after inflation.