Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
Introduction to algebraic quantum field theory
International Nuclear Information System (INIS)
Horuzhy, S.S.
1990-01-01
This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs
Factorization algebras in quantum field theory
Costello, Kevin
2017-01-01
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.
Operator algebras and conformal field theory
International Nuclear Information System (INIS)
Gabbiani, F.; Froehlich, J.
1993-01-01
We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)
Lectures on algebraic quantum field theory and operator algebras
International Nuclear Information System (INIS)
Schroer, Bert
2001-04-01
In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)
Vertex operator algebras and conformal field theory
International Nuclear Information System (INIS)
Huang, Y.Z.
1992-01-01
This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics
Algebraic quantum field theory, perturbation theory, and the loop expansion
International Nuclear Information System (INIS)
Duetsch, M.; Fredenhagen, K.
2001-01-01
The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)
Clifford algebra in finite quantum field theories
International Nuclear Information System (INIS)
Moser, M.
1997-12-01
We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)
Local algebras in Euclidean quantum field theory
International Nuclear Information System (INIS)
Guerra, Francesco.
1975-06-01
The general structure of the local observable algebras of Euclidean quantum field theory is described, considering the very simple examples of the free scalar field, the vector meson field, and the electromagnetic field. The role of Markov properties, and the relations between Euclidean theory and Hamiltonian theory in Minkowski space-time are especially emphasized. No conflict appears between covariance (in the Euclidean sense) and locality (in the Markov sense) on one hand and positive definiteness of the metric on the other hand [fr
Scaling algebras and renormalization group in algebraic quantum field theory
International Nuclear Information System (INIS)
Buchholz, D.; Verch, R.
1995-01-01
For any given algebra of local observables in Minkowski space an associated scaling algebra is constructed on which renormalization group (scaling) transformations act in a canonical manner. The method can be carried over to arbitrary spacetime manifolds and provides a framework for the systematic analysis of the short distance properties of local quantum field theories. It is shown that every theory has a (possibly non-unique) scaling limit which can be classified according to its classical or quantum nature. Dilation invariant theories are stable under the action of the renormalization group. Within this framework the problem of wedge (Bisognano-Wichmann) duality in the scaling limit is discussed and some of its physical implications are outlined. (orig.)
L{sub ∞} algebras and field theory
Energy Technology Data Exchange (ETDEWEB)
Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY (United States); Zwiebach, Barton [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States)
2017-03-15
We review and develop the general properties of L{sub ∞} algebras focusing on the gauge structure of the associated field theories. Motivated by the L{sub ∞} homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L{sub ∞} structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L{sub ∞} algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L{sub ∞} algebra for the interacting theory. The analysis suggests that L{sub ∞} algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
String field theory. Algebraic structure, deformation properties and superstrings
International Nuclear Information System (INIS)
Muenster, Korbinian
2013-01-01
This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the
Towers of algebras in rational conformal field theories
International Nuclear Information System (INIS)
Gomez, C.; Sierra, G.
1991-01-01
This paper reports on Jones fundamental construction applied to rational conformal field theories. The Jones algebra which emerges in this application is realized in terms of duality operations. The generators of the algebra are an open version of Verlinde's operators. The polynomial equations appear in this context as sufficient conditions for the existence of Jones algebra. The ADE classification of modular invariant partition functions is put in correspondence with Jones classification of subfactors
Constraint algebra of open string field theory in midpoint coordinates
International Nuclear Information System (INIS)
Potting, R.; Taylor, C.; Velikson, B.
1987-01-01
We study the canonical structure of string field theory in midpoint coordinates. We find the constraint algebra, which consists of second class constraints, together with dependent first class constraints. Exploiting properties of the relevant operators, we show that the constraint algebra is the same in the interacting theory as in the free theory, at least on Fock-space states. We discuss the gauge transformations generated by the first class constraints, and show that they can be used to gauge away unphysical fields. (orig.)
Differential algebras in field theory and their anomalies: two examples
International Nuclear Information System (INIS)
Stora, R.
1986-06-01
The expression of gauge symmetries in local field theory proceeds via the construction of some differential algebras as was remarked some ten years ago. The construction relevant to Yang Mills theories is recalled. As another popular example, we have chosen to describe the covariant quantization of the free bosonic string in the metric background gauge
Path operator algebras in conformal quantum field theories
International Nuclear Information System (INIS)
Roesgen, M.
2000-10-01
Two different kinds of path algebras and methods from noncommutative geometry are applied to conformal field theory: Fusion rings and modular invariants of extended chiral algebras are analyzed in terms of essential paths which are a path description of intertwiners. As an example, the ADE classification of modular invariants for minimal models is reproduced. The analysis of two-step extensions is included. Path algebras based on a path space interpretation of character identities can be applied to the analysis of fusion rings as well. In particular, factorization properties of character identities and therefore of the corresponding path spaces are - by means of K-theory - related to the factorization of the fusion ring of Virasoro- and W-algebras. Examples from nonsupersymmetric as well as N=2 supersymmetric minimal models are discussed. (orig.)
Yang-Baxter algebra - Integrable systems - Conformal quantum field theories
International Nuclear Information System (INIS)
Karowski, M.
1989-01-01
This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)
Loop Homotopy Algebras in Closed String Field Theory
Czech Academy of Sciences Publication Activity Database
Markl, Martin
2001-01-01
Roč. 221, - (2001), s. 367-384 ISSN 0010-3616 R&D Projects: GA ČR GA201/99/0675 Keywords : homotopy algebras% string field theory Subject RIV: BA - General Mathematics Impact factor: 1.729, year: 2001
Cosmological applications of algebraic quantum field theory in curved spacetimes
Hack, Thomas-Paul
2016-01-01
This book provides a largely self-contained and broadly accessible exposition on two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology; and a fundamental study of the perturbations in inflation. The two central sections of the book dealing with these applications are preceded by sections providing a pedagogical introduction to the subject. Introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation is also given. The reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but no background in QFT on curved spacetimes or the algebraic approach to QFT is required.
Quantum Conformal Algebras and Closed Conformal Field Theory
Anselmi, D
1999-01-01
We investigate the quantum conformal algebras of N=2 and N=1 supersymmetric gauge theories. Phenomena occurring at strong coupling are analysed using the Nachtmann theorem and very general, model-independent, arguments. The results lead us to introduce a novel class of conformal field theories, identified by a closed quantum conformal algebra. We conjecture that they are the exact solution to the strongly coupled large-N_c limit of the open conformal field theories. We study the basic properties of closed conformal field theory and work out the operator product expansion of the conserved current multiplet T. The OPE structure is uniquely determined by two central charges, c and a. The multiplet T does not contain just the stress-tensor, but also R-currents and finite mass operators. For this reason, the ratio c/a is different from 1. On the other hand, an open algebra contains an infinite tower of non-conserved currents, organized in pairs and singlets with respect to renormalization mixing. T mixes with a se...
Perturbative algebraic quantum field theory at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Lindner, Falk
2013-08-15
We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
The current algebra on the circle as a germ of local field theories
International Nuclear Information System (INIS)
Buchholz, D.; Mack, G.; Todorov, I.; Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika)
1988-01-01
Methods of algebraic quantum field theory are used to classify all field- and observable algebras, whose common germ is the U(1)-current algebra. An elementary way is described to compute characters of such algebras. It exploits the Kubo-Martin-Schwinger condition for Gibbs states. (orig.)
Generating loop graphs via Hopf algebra in quantum field theory
International Nuclear Information System (INIS)
Mestre, Angela; Oeckl, Robert
2006-01-01
We use the Hopf algebra structure of the time-ordered algebra of field operators to generate all connected weighted Feynman graphs in a recursive and efficient manner. The algebraic representation of the graphs is such that they can be evaluated directly as contributions to the connected n-point functions. The recursion proceeds by loop order and vertex number
Algebraic construction of interacting higher spin field theories
International Nuclear Information System (INIS)
Fougere, F.
1991-10-01
We develop a general framework which we believe may provide some insights into the structure of interacting 'high spin' field theories. A finite or infinite set of classical spin fields is described by means of a field defined on an enlarged spacetime manifold. The free action and its gauge symmetries are gathered into a nilpotent differential operator on this manifold. In particular, the choice of Grassmann-valued extra coordinates leads to theories involving only a finite set of fields, the possible contents (spin multiplicities, degree of reducibility, etc.) of which are classified according to the representations of a unitary algebra. The interacting theory is characterized by a functional of the field on the enlarged manifold. We show that there is among these functionals a natural graded Lie algebra structure allowing one to rewrite the gauge invariance condition of the action in a concise form which is a nonlinear generalization of the nilpotency condition of the free theory. We obtain the general solution of this 'classical master equation' , which can be built recurrently starting form the cubic vertex, and we study its symmetries. Our formalism lends itself to a systematic introduction of additional conditions, such as locality, polynomiality, etc. We write down the general form of the solutions exhibiting a scale invariance. The case of a spin 1 field yields, as a unique solution, Yang-Mills theory. In view of quantization, we show that the solution of the classical master equation straightforwardly provides a solution of the (quantum) Batalin-Vilkoviski master equation. One may then obtain a gauge fixed action in the usual way
gl( N, N) current algebras and topological field theories
Isidro, J. M.; Ramallo, A. V.
1994-02-01
The conformal field theory for the gl( N, N) affine Lie superalgebra in two space-time dimensions is studied. The energy-momentum tensor of the model, with vanishing Virasoro anomaly, is constructed. This theory has a topological symmetry generated by operators of dimensions 1, 2 and 3, which are represented as normal-ordered products of gl( N, N) currents. The topological algebra they satisfy is linear and differs from the one obtained by twisting the N = 2 superconformal models. It closes with a set of gl( N) bosonic and fermionic currents. The Wess-Zumino-Witten model for the supergroup GL( N, N) provides an explicit realization of this symmetry and can be used to obtain a free-field representation of the different generators. In this free-field representation, the theory decomposes into two uncoupled components with sl( N) and U(1) symmetries. The non-abelian component is responsible for the extended character of the topological algebra, and it is shown to be equivalent to an SL( N)/SL( N) coset model. In the light of these results, the G/G coset models are interpreted as topological sigma models for the group manifold of G.
gl(N, N) current algebras and topological field theories
International Nuclear Information System (INIS)
Isidro, J.M.; Ramallo, A.V.
1994-01-01
The conformal field theory for the gl(N, N) affine Lie superalgebra in two space-time dimensions is studied. The energy-momentum tensor of the model, with vanishing Virasoro anomaly, is constructed. This theory has a topological symmetry generated by operators of dimensions 1, 2 and 3, which are represented as normal-ordered products of gl(N, N) currents. The topological algebra they satisfy is linear and differs from the one obtained by twisting the N = 2 superconformal models. It closes with a set of gl(N) bosonic and fermionic currents. The Wess-Zumino-Witten model for the supergroup GL(N, N) provides an explicit realization of this symmetry and can be used to obtain a free-field representation of the different generators. In this free-field representation, the theory decomposes into two uncoupled components with sl(N) and U(1) symmetries. The non-abelian component is responsible for the extended character of the topological algebra, and it is shown to be equivalent to an SL(N)/SL(N) coset model. In the light of these results, the G/G coset models are interpreted as topological sigma models for the group manifold of G. (orig.)
Perturbative algebraic quantum field theory an introduction for mathematicians
Rejzner, Kasia
2016-01-01
Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities. We discuss in detail the examples of scalar fields and gauge theories and generalize them to QFT on curved spacetimes. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses QFT on curved spacetimes and effective quantum gravity. The book aims to be accessible researchers and graduate students interested in the mathematical foundations of pQFT are th...
Two Comments on the Vacuum in Algebraic Quantum Field Theory
Rédei, Miklós
Two features of the vacuum state in algebraic quantum field theory (AQFT) are reviewed: local faithfulness (Reeh-Schlieder theorem) and the spacelike correlations it predicts. The standard interpretation of the Reeh-Schlieder Theorem, endorsed in this comment, is that it renders meaningless any talk about particles as strictly localized (in spacetime) entities. This interpretation is further supported by Malament's 1996 result (also reviewed in the paper) asserting that there exists no non-trivial, covariant position observable on any spacelike hypersurface. The second comment points out that it is still an open problem whether the correlations predicted by the vacuum state between projections in spacelike related local algebras can be explained by a Reichenbachian common cause located in the intersection of the backward light cones of the regions with which the algebras containing the correlated projections are associated. All we know is that the typical superluminal correlations AQFT predicts possess Reichenbachian common causes located in the union of the backward light cones in question.
An invitation to algebraic number theory and class field theory
Ruíz Duarte, Eduardo
2017-01-01
This informal document was motivated by a question here at my university by a bachelor student. I will try to expose something that personally I think is impressive. The aim is to do it in such a way that is understandable with a basic knowledge of algebra. \\\\We will examine without any rigor the
An Algebraic Construction of Boundary Quantum Field Theory
Longo, Roberto; Witten, Edward
2011-04-01
We build up local, time translation covariant Boundary Quantum Field Theory nets of von Neumann algebras {mathcal A_V} on the Minkowski half-plane M + starting with a local conformal net {mathcal A} of von Neumann algebras on {mathbb R} and an element V of a unitary semigroup {mathcal E(mathcal A)} associated with {mathcal A}. The case V = 1 reduces to the net {mathcal A_+} considered by Rehren and one of the authors; if the vacuum character of {mathcal A} is summable, {mathcal A_V} is locally isomorphic to {mathcal A_+}. We discuss the structure of the semigroup {mathcal E(mathcal A)}. By using a one-particle version of Borchers theorem and standard subspace analysis, we provide an abstract analog of the Beurling-Lax theorem that allows us to describe, in particular, all unitaries on the one-particle Hilbert space whose second quantization promotion belongs to {mathcal E(mathcal A^{(0)})} with {mathcal A^{(0)}} the U(1)-current net. Each such unitary is attached to a scattering function or, more generally, to a symmetric inner function. We then obtain families of models via any Buchholz-Mack-Todorov extension of {mathcal A^{(0)}}. A further family of models comes from the Ising model.
Quantum-field theories as representations of a single $^\\ast$-algebra
Raab, Andreas
2013-01-01
We show that many well-known quantum field theories emerge as representations of a single $^\\ast$-algebra. These include free quantum field theories in flat and curved space-times, lattice quantum field theories, Wightman quantum field theories, and string theories. We prove that such theories can be approximated on lattices, and we give a rigorous definition of the continuum limit of lattice quantum field theories.
Open and Closed String field theory interpreted in classical Algebraic Topology
Sullivan, Dennis
2003-01-01
There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.
Jarvis, Frazer
2014-01-01
The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the fi...
Automorphisms of W-algebras and extended rational conformal field theories
International Nuclear Information System (INIS)
Honecker, A.
1992-11-01
Many extended conformal algebras with one generator in addition to the Virasoro field as well as Casimir algebras have non-trivial outer automorphisms which enables one to impose 'twisted' boundary conditions on the chiral fields. We study their effect on the highest weight representations. We give formulae for the enlarged rational conformal field theories in both series of W-algebras with two generators and conjecture a general formula for the additional models in the minimal series of Casimir algebras. A third series of W-algebras with two generators which includes the spin three algebra at c = -2 also has finitely many additional fields in the twisted sector although the model itself is apparently not rational. The additional fields in the twisted sector have applications in statistical mechanics as we demonstrate for Z n -quantum spin chains with a particular type of boundary conditions. (orig.)
Iachello, F
1995-01-01
1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters
Algebraic characterization of vector supersymmetry in topological field theories
International Nuclear Information System (INIS)
Vilar, L.C.Q.; Ventura, O.S.; Sasaki, C.A.G.; Sorella, S.P.
1997-01-01
An algebraic cohomological characterization of a class of linearly broken Ward identities is provided. The examples of the topological vector supersymmetry and of the Landau ghost equation are discussed in detail. The existence of such a linearly broken Ward identities turns out to be related to BRST exact anti-field dependent cocycles with negative ghost number, according to the cohomological reformulation of the Noether theorem given by M. Henneaux et al. (author)
Extended KN algebras and extended conformal field theories over higher genus Riemann surfaces
International Nuclear Information System (INIS)
Ceresole, A.; Huang Chaoshang
1990-01-01
A global operator formalism for extended conformal field theories over higher genus Riemann surfaces is introduced and extended KN algebra are obtained by means of the KN bases. The BBSS construction of the spin-3 operator is carried out for Kac-Moody algebra A 2 over a Riemann surface of arbitrary genus. (orig.)
Algebraic structure of cohomological field theory models and equivariant cohomology
International Nuclear Information System (INIS)
Stora, R.; Thuillier, F.; Wallet, J.Ch.
1994-01-01
The definition of observables within conventional gauge theories is settled by general consensus. Within cohomological theories considered as gauge theories of an exotic type, that question has a much less obvious answer. It is shown here that in most cases these theories are best defined in terms of equivariant cohomologies both at the field level and at the level of observables. (author). 21 refs
Infinite-dimensional Lie algebras in 4D conformal quantum field theory
International Nuclear Information System (INIS)
Bakalov, Bojko; Nikolov, Nikolay M; Rehren, Karl-Henning; Todorov, Ivan
2008-01-01
The concept of global conformal invariance (GCI) opens the way of applying algebraic techniques, developed in the context of two-dimensional chiral conformal field theory, to a higher (even) dimensional spacetime. In particular, a system of GCI scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal fields, V M (x, y), where the M span a finite dimensional real matrix algebra M closed under transposition. The associative algebra M is irreducible iff its commutant M' coincides with one of the three real division rings. The Lie algebra of (the modes of) the bilocal fields is in each case an infinite-dimensional Lie algebra: a central extension of sp(∞,R) corresponding to the field R of reals, of u(∞, ∞) associated with the field C of complex numbers, and of so*(4∞) related to the algebra H of quaternions. They give rise to quantum field theory models with superselection sectors governed by the (global) gauge groups O(N), U(N) and U(N,H)=Sp(2N), respectively
Infinite-dimensional Lie algebras in 4D conformal quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Bakalov, Bojko [Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695 (United States); Nikolov, Nikolay M; Rehren, Karl-Henning; Todorov, Ivan [Institute for Nuclear Research and Nuclear Energy, Tsarigradsko Chaussee 72, BG-1784 Sofia (Bulgaria)], E-mail: bojko_bakalov@ncsu.edu, E-mail: mitov@inrne.bas.bg, E-mail: rehren@theorie.physik.uni-goe.de, E-mail: todorov@inrne.bas.bg
2008-05-16
The concept of global conformal invariance (GCI) opens the way of applying algebraic techniques, developed in the context of two-dimensional chiral conformal field theory, to a higher (even) dimensional spacetime. In particular, a system of GCI scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal fields, V{sub M}(x, y), where the M span a finite dimensional real matrix algebra M closed under transposition. The associative algebra M is irreducible iff its commutant M' coincides with one of the three real division rings. The Lie algebra of (the modes of) the bilocal fields is in each case an infinite-dimensional Lie algebra: a central extension of sp({infinity},R) corresponding to the field R of reals, of u({infinity}, {infinity}) associated with the field C of complex numbers, and of so*(4{infinity}) related to the algebra H of quaternions. They give rise to quantum field theory models with superselection sectors governed by the (global) gauge groups O(N), U(N) and U(N,H)=Sp(2N), respectively.
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
The algebraic versus geometric approach to quantum field theory
International Nuclear Information System (INIS)
Schroer, B.
1990-06-01
Some recent developments in algebraic QFT are reviewed and confronted with results obtained by geometric methods. In particular a critical evaluation of the present status of the quantum symmetry discussion is given and the possible relation of the (Gepner-Witten) modularity in conformal QFT 2 and the Tomita modularity (existence of quantum reflections) of the algebraic approach is commented on. (author) 34 refs
Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.
Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper
2002-08-01
A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.
Domain wall solitons and Hopf algebraic translational symmetries in noncommutative field theories
International Nuclear Information System (INIS)
Sasai, Yuya; Sasakura, Naoki
2008-01-01
Domain wall solitons are the simplest topological objects in field theories. The conventional translational symmetry in a field theory is the generator of a one-parameter family of domain wall solutions, and induces a massless moduli field which propagates along a domain wall. We study similar issues in braided noncommutative field theories possessing Hopf algebraic translational symmetries. As a concrete example, we discuss a domain wall soliton in the scalar φ 4 braided noncommutative field theory in Lie-algebraic noncommutative space-time, [x i ,x j ]=2iκε ijk x k (i,j,k=1,2,3), which has a Hopf algebraic translational symmetry. We first discuss the existence of a domain wall soliton in view of Derrick's theorem, and construct explicitly a one-parameter family of solutions in perturbation of the noncommutativity parameter κ. We then find the massless moduli field which propagates on the domain wall soliton. We further extend our analysis to the general Hopf algebraic translational symmetry
Informal introduction to extended algebras and conformal field theories with c ≥ 1
International Nuclear Information System (INIS)
Ravanini, F.
1989-01-01
We review some of the topics of Conformal Field Theory, like extended algebras, parafermions, coset constructions and generalized Feigin-Fuchs construction, modular invariant partition functions on the torus and the help they give in classification of CFTs. Some recent issues in RCFT are also discussed. (orig.)
Quantum double actions on operator algebras and orbifold quantum field theories
International Nuclear Information System (INIS)
Mueger, M.
1996-06-01
Starting from a local quantum field theory with an unbroken compact symmetry group G in 1+1 dimensional spacetime we construct disorder fields implementing gauge transformations on the fields (order variables) localized in a wedge region. Enlarging the local algebras by these disorder fields we obtain a nonlocal field theory, the fixpoint algebras of which under the appropriately extended action of the group G are shown to satisfy Haag duality in every simple sector. The specifically 1+1 dimensional phenomenon of violation of Haag duality of fixpoint nets is thereby clarified. In the case of a finite group G the extended theory is acted upon in a completely canonical way by the quantum double D(G) and satisfies R-matrix commutation relations as well as a Verlinde algebra. Furthermore, our methods are suitable for a concise and transparent approach to bosonization. The main technical ingredient is a strengthened version of the split property which should hold in all reasonable massive theories. In the appendices (part of) the results are extended to arbitary locally compact groups and our methods are adapted to chiral theories on the circle. (orig.)
Classical theory of algebraic numbers
Ribenboim, Paulo
2001-01-01
Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...
The algebra of space-time as basis of a quantum field theory of all fermions and interactions
International Nuclear Information System (INIS)
Wolf, A.K.
2005-01-01
In this thesis a construction of a grand unified theory on the base of algebras of vector fields on a Riemannian space-time is described. Hereby from the vector and covector fields a Clifford-geometrical algebra is generated. (HSI)
The Casimir Effect from the Point of View of Algebraic Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, Claudio, E-mail: claudio.dappiaggi@unipv.it; Nosari, Gabriele [Università degli Studi di Pavia, Dipartimento di Fisica (Italy); Pinamonti, Nicola [Università di Genova, Dipartimento di Matematica (Italy)
2016-06-15
We consider a region of Minkowski spacetime bounded either by one or by two parallel, infinitely extended plates orthogonal to a spatial direction and a real Klein-Gordon field satisfying Dirichlet boundary conditions. We quantize these two systems within the algebraic approach to quantum field theory using the so-called functional formalism. As a first step we construct a suitable unital ∗-algebra of observables whose generating functionals are characterized by a labelling space which is at the same time optimal and separating and fulfils the F-locality property. Subsequently we give a definition for these systems of Hadamard states and we investigate explicit examples. In the case of a single plate, it turns out that one can build algebraic states via a pull-back of those on the whole Minkowski spacetime, moreover inheriting from them the Hadamard property. When we consider instead two plates, algebraic states can be put in correspondence with those on flat spacetime via the so-called method of images, which we translate to the algebraic setting. For a massless scalar field we show that this procedure works perfectly for a large class of quasi-free states including the Poincaré vacuum and KMS states. Eventually Wick polynomials are introduced. Contrary to the Minkowski case, the extended algebras, built in globally hyperbolic subregions can be collected in a global counterpart only after a suitable deformation which is expressed locally in terms of a *-isomorphism. As a last step, we construct explicitly the two-point function and the regularized energy density, showing, moreover, that the outcome is consistent with the standard results of the Casimir effect.
Classical open-string field theory: A∞-algebra, renormalization group and boundary states
International Nuclear Information System (INIS)
Nakatsu, Toshio
2002-01-01
We investigate classical bosonic open-string field theory from the perspective of the Wilson renormalization group of world-sheet theory. The microscopic action is identified with Witten's covariant cubic action and the short-distance cut-off scale is introduced by length of open-string strip which appears in the Schwinger representation of open-string propagator. Classical open-string field theory in the title means open-string field theory governed by a classical part of the low energy action. It is obtained by integrating out suitable tree interactions of open-strings and is of non-polynomial type. We study this theory by using the BV formalism. It turns out to be deeply related with deformation theory of A ∞ -algebra. We introduce renormalization group equation of this theory and discuss it from several aspects. It is also discussed that this theory is interpreted as a boundary open-string field theory. Closed-string BRST charge and boundary states of closed-string field theory in the presence of open-string field play important roles
Computer algebra in quantum field theory integration, summation and special functions
Schneider, Carsten
2013-01-01
The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including
On the algebra of deformed differential operators, and induced integrable Toda field theory
International Nuclear Information System (INIS)
Hssaini, M.; Kessabi, M.; Maroufi, B.; Sedra, M.B.
2000-07-01
We build in this paper the algebra of q-deformed pseudo-differential operators shown to be an essential step towards setting a q-deformed integrability program. In fact, using the results of this q-deformed algebra, we derive the q-analogues of the generalised KdV hierarchy. We focus in particular the first leading orders of this q-deformed hierarchy namely the q-KdV and q-Boussinesq integrable systems. We also present the q-generalisation of the conformal transformations of the currents u n , n ≥ 2 and discuss the primary condition of the fields w n , n ≥ 2 by using the Volterra gauge group transformations for the q-covariant Lax operators. An induced su(n)-Toda(su(2)-Liouville) field theory construction is discussed and other important features are presented. (author)
Algebraic and analyticity properties of the n-point function in quantum field theory
International Nuclear Information System (INIS)
Bros, Jacques
1970-01-01
The general theory of quantized fields (axiomatic approach) is investigated. A systematic study of the algebraic properties of all the Green functions of a local field, which generalize the ordinary retarded and advanced functions, is presented. The notion emerges of a primitive analyticity domain of the n-point function, and of the existence of auxiliary analytic functions into which the various Green functions can be decomposed. Certain processes of analytic completion are described, and then applied to enlarging the primitive domain, particularly for the case n = 4; among the results the crossing property for all scattering amplitudes which involve two incoming and two outgoing particles is proved. (author) [fr
Distribution theory of algebraic numbers
Yang, Chung-Chun
2008-01-01
The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.
Homological methods, representation theory, and cluster algebras
Trepode, Sonia
2018-01-01
This text presents six mini-courses, all devoted to interactions between representation theory of algebras, homological algebra, and the new ever-expanding theory of cluster algebras. The interplay between the topics discussed in this text will continue to grow and this collection of courses stands as a partial testimony to this new development. The courses are useful for any mathematician who would like to learn more about this rapidly developing field; the primary aim is to engage graduate students and young researchers. Prerequisites include knowledge of some noncommutative algebra or homological algebra. Homological algebra has always been considered as one of the main tools in the study of finite-dimensional algebras. The strong relationship with cluster algebras is more recent and has quickly established itself as one of the important highlights of today’s mathematical landscape. This connection has been fruitful to both areas—representation theory provides a categorification of cluster algebras, wh...
Artin, Emil
2007-01-01
The present text was first published in 1947 by the Courant Institute of Mathematical Sciences of New York University. Published under the title Modern Higher Algebra. Galois Theory, it was based on lectures by Emil Artin and written by Albert A. Blank. This volume became one of the most popular in the series of lecture notes published by Courant. Many instructors used the book as a textbook, and it was popular among students as a supplementary text as well as a primary textbook. Because of its popularity, Courant has republished the volume under the new title Algebra with Galois Theory.
Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories
Alazzawi, Sabina; Lechner, Gandalf
2017-09-01
We present a solution method for the inverse scattering problem for integrable two-dimensional relativistic quantum field theories, specified in terms of a given massive single particle spectrum and a factorizing S-matrix. An arbitrary number of massive particles transforming under an arbitrary compact global gauge group is allowed, thereby generalizing previous constructions of scalar theories. The two-particle S-matrix S is assumed to be an analytic solution of the Yang-Baxter equation with standard properties, including unitarity, TCP invariance, and crossing symmetry. Using methods from operator algebras and complex analysis, we identify sufficient criteria on S that imply the solution of the inverse scattering problem. These conditions are shown to be satisfied in particular by so-called diagonal S-matrices, but presumably also in other cases such as the O( N)-invariant nonlinear {σ}-models.
Current algebra from Chern-Simons theories
International Nuclear Information System (INIS)
Dunne, G.V.; Trugenberger, C.A.; Massachusetts Inst. of Tech., Cambridge
1990-01-01
We analyze odd-dimensional gauge field theories with action including both a Chern-Simons and a Yang-Mills term. When space-time has a spatial boundary the commutator algebra of Gauss law constraints acquires a boundary-valued anomaly which is related to anomalous chiral fermionic current algebra. We further study the limit in which the Yang-Mills term is removed and compute the corresponding anomalous boundary current algebras of pure Chern-Simons theories. (orig.)
Chiral algebras for trinion theories
International Nuclear Information System (INIS)
Lemos, Madalena; Peelaers, Wolfger
2015-01-01
It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.
Energy Technology Data Exchange (ETDEWEB)
Bongaarts, P.J.M.
1977-07-01
An approach to the investigation of the Maxwell field in the framework of axiomatic quantum field theory is presented which employs Borchers' algebraic reformulation of Wightman theory in a modified form adapted to the special features of the electromagnetic field. This makes it possible to clarify the relation between tensor and potential field operators, the meaning and properties of different gauges, the sense in which field equations hold and the properties of state spaces with their special subspaces.
Algebraic and stochastic coding theory
Kythe, Dave K
2012-01-01
Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.
Algebraic Geometry and Number Theory Summer School
Sarıoğlu, Celal; Soulé, Christophe; Zeytin, Ayberk
2017-01-01
This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.
Algebraic complexities and algebraic curves over finite fields.
Chudnovsky, D V; Chudnovsky, G V
1987-04-01
We consider the problem of minimal (multiplicative) complexity of polynomial multiplication and multiplication in finite extensions of fields. For infinite fields minimal complexities are known [Winograd, S. (1977) Math. Syst. Theory 10, 169-180]. We prove lower and upper bounds on minimal complexities over finite fields, both linear in the number of inputs, using the relationship with linear coding theory and algebraic curves over finite fields.
Kac-Moody algebras and string theory
International Nuclear Information System (INIS)
Cleaver, G.B.
1993-01-01
The focus of this thesis is on (1) the role of Kac-Moody algebras in string theory and the development of techniques for systematically building string theory models based on a higher level (K ≥ 2) KM algebras and (2) fractional superstrings, a new class of solutions based on SU(2) K /U(1) conformal field theories. The content of this thesis is as follows. In chapter two they review KM algebras and their role in string theory. In the next chapter they present two results concerning the construction of modular invariant partition functions for conformal field theories build by tensoring together other conformal field theories. First they show how the possible modular invariants for the tensor product theory are constrained if the allowed modular invariants of the individuals conformal field theory factors have been classified. They illustrate the use of these constraints for theories of the type SU(2) KA direct-product SU(2) KB , finding all consistent theories for K A and K B odd. Second they show how known diagonal modular invariants can be used to construct inherently asymmetric invariants where the holomorphic and anti-holomorphic theories do not share the same chiral algebra. Explicit examples are given. Next, in chapter four they investigate some issues relating to recently proposed fractional superstring theories with D critical K/4 K/4 , as source of spacetime fermions, is demonstrated
Refined algebraic quantization and quantum field theory in a curved space-time
International Nuclear Information System (INIS)
Rumpf, H.
1998-01-01
Application of the so-called refined algebraic quantization scheme for constrained systems to relativistic particles provides an inner product that defines a unique Fock representation for a scalar field in a curved space-time. The construction can be made rigorous for a general globally hyperbolic space-time, but the quasifree state so obtained turns out to be unphysical in general. We exhibit a closely related pair of Fock representations that is also defined generically and conforms to the notion of in- and outgoing states in those situations where particle creation by an external field is expected
Introduction to algebraic independence theory
Philippon, Patrice
2001-01-01
In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.
Foliation theory in algebraic geometry
McKernan, James; Pereira, Jorge
2016-01-01
Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry and ge...
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry...
Homology theory on algebraic varieties
Wallace, Andrew H
1958-01-01
Homology Theory on Algebraic Varieties, Volume 6 deals with the principles of homology theory in algebraic geometry and includes the main theorems first formulated by Lefschetz, one of which is interpreted in terms of relative homology and another concerns the Poincaré formula. The actual details of the proofs of these theorems are introduced by geometrical descriptions, sometimes aided with diagrams. This book is comprised of eight chapters and begins with a discussion on linear sections of an algebraic variety, with emphasis on the fibring of a variety defined over the complex numbers. The n
C*-algebras and operator theory
Murphy, Gerald J
1990-01-01
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Higher algebraic K-theory an overview
Lluis-Puebla, Emilio; Gillet, Henri; Soulé, Christophe; Snaith, Victor
1992-01-01
This book is a general introduction to Higher Algebraic K-groups of rings and algebraic varieties, which were first defined by Quillen at the beginning of the 70's. These K-groups happen to be useful in many different fields, including topology, algebraic geometry, algebra and number theory. The goal of this volume is to provide graduate students, teachers and researchers with basic definitions, concepts and results, and to give a sampling of current directions of research. Written by five specialists of different parts of the subject, each set of lectures reflects the particular perspective ofits author. As such, this volume can serve as a primer (if not as a technical basic textbook) for mathematicians from many different fields of interest.
The Universal C*-Algebra of the Electromagnetic Field
Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio
2016-02-01
A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of the field such as Maxwell's equations, Poincaré covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.
Algebraic solutions in open string field theory – a lightning review
Czech Academy of Sciences Publication Activity Database
Schnabl, Martin
2010-01-01
Roč. 50, č. 3 (2010), s. 102-108 ISSN 1210-2709 Grant - others:EUROHORC(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : string field theory * tachyon condensation Subject RIV: BF - Elementary Particles and High Energy Physics https://ojs.cvut.cz/ojs/index.php/ap/article/download/1213/1045
International Workshop on Coding Theory and Algebraic Geometry
Tsfasman, Michael
1992-01-01
About ten years ago, V.D. Goppa found a surprising connection between the theory of algebraic curves over a finite field and error-correcting codes. The aim of the meeting "Algebraic Geometry and Coding Theory" was to give a survey on the present state of research in this field and related topics. The proceedings contain research papers on several aspects of the theory, among them: Codes constructed from special curves and from higher-dimensional varieties, Decoding of algebraic geometric codes, Trace codes, Exponen- tial sums, Fast multiplication in finite fields, Asymptotic number of points on algebraic curves, Sphere packings.
International Nuclear Information System (INIS)
Dadashyan, K.Yu.; Khoruzhii, S.S.
1987-01-01
The construction of a modular theory for weakly closed J-involutive algebras of bounded operators on Pontryagin spaces is continued. The spectrum of the modular operator Δ of such an algebra is investigated, the existence of a strongly continuous J-unitary group is established and, under the condition that the spectrum lies in the right half-plane, Tomita's fundamental theorem is proved
The universal C*-algebra of the electromagnetic field
Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio
2015-01-01
A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of this field such as Maxwell's equations, Poincar\\'e covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with f...
Algebraic and structural automata theory
Mikolajczak, B
1991-01-01
Automata Theory is part of computability theory which covers problems in computer systems, software, activity of nervous systems (neural networks), and processes of live organisms development.The result of over ten years of research, this book presents work in the following areas of Automata Theory: automata morphisms, time-varying automata, automata realizations and relationships between automata and semigroups.Aimed at those working in discrete mathematics and computer science, parts of the book are suitable for use in graduate courses in computer science, electronics, telecommunications, and control engineering. It is assumed that the reader is familiar with the basic concepts of algebra and graph theory.
Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras
Put, Marius van der
1999-01-01
The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.
Krichever-Novikov type algebras theory and applications
Schlichenmaier, Martin
2014-01-01
Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are
Algebraic coding theory over finite commutative rings
Dougherty, Steven T
2017-01-01
This book provides a self-contained introduction to algebraic coding theory over finite Frobenius rings. It is the first to offer a comprehensive account on the subject. Coding theory has its origins in the engineering problem of effective electronic communication where the alphabet is generally the binary field. Since its inception, it has grown as a branch of mathematics, and has since been expanded to consider any finite field, and later also Frobenius rings, as its alphabet. This book presents a broad view of the subject as a branch of pure mathematics and relates major results to other fields, including combinatorics, number theory and ring theory. Suitable for graduate students, the book will be of interest to anyone working in the field of coding theory, as well as algebraists and number theorists looking to apply coding theory to their own work.
A conversational introduction to algebraic number theory
Pollack, Paul
2017-01-01
Gauss famously referred to mathematics as the "queen of the sciences" and to number theory as the "queen of mathematics". This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field \\mathbb{Q}. Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three "fundamental theorems": unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise w...
Nonassociativity, Malcev algebras and string theory
Energy Technology Data Exchange (ETDEWEB)
Guenaydin, M. [Institute for Gravitation and the Cosmos and Physics Department, Penn State University, University Park, PA (United States); Minic, D. [Department of Physics, Virginia Tech, Blacksburg, VA (United States)
2013-10-15
Nonassociative structures have appeared in the study of D-branes in curved backgrounds. In recent work, string theory backgrounds involving three-form fluxes, where such structures show up, have been studied in more detail. We point out that under certain assumptions these nonassociative structures coincide with nonassociative Malcev algebras which had appeared in the quantum mechanics of systems with non-vanishing three-cocycles, such as a point particle moving in the field of a magnetic charge. We generalize the corresponding Malcev algebras to include electric as well as magnetic charges. These structures find their classical counterpart in the theory of Poisson-Malcev algebras and their generalizations. We also study their connection to Stueckelberg's generalized Poisson brackets that do not obey the Jacobi identity and point out that nonassociative string theory with a fundamental length corresponds to a realization of his goal to find a non-linear extension of quantum mechanics with a fundamental length. Similar nonassociative structures are also known to appear in the cubic formulation of closed string field theory in terms of open string fields, leading us to conjecture a natural string-field theoretic generalization of the AdS/CFT-like (holographic) duality. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Nonassociativity, Malcev algebras and string theory
International Nuclear Information System (INIS)
Guenaydin, M.; Minic, D.
2013-01-01
Nonassociative structures have appeared in the study of D-branes in curved backgrounds. In recent work, string theory backgrounds involving three-form fluxes, where such structures show up, have been studied in more detail. We point out that under certain assumptions these nonassociative structures coincide with nonassociative Malcev algebras which had appeared in the quantum mechanics of systems with non-vanishing three-cocycles, such as a point particle moving in the field of a magnetic charge. We generalize the corresponding Malcev algebras to include electric as well as magnetic charges. These structures find their classical counterpart in the theory of Poisson-Malcev algebras and their generalizations. We also study their connection to Stueckelberg's generalized Poisson brackets that do not obey the Jacobi identity and point out that nonassociative string theory with a fundamental length corresponds to a realization of his goal to find a non-linear extension of quantum mechanics with a fundamental length. Similar nonassociative structures are also known to appear in the cubic formulation of closed string field theory in terms of open string fields, leading us to conjecture a natural string-field theoretic generalization of the AdS/CFT-like (holographic) duality. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Conference on Semigroups, Algebras and Operator Theory
Meakin, John; Rajan, A
2015-01-01
This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will f...
Algebraic scattering theory and heavy ion scattering
International Nuclear Information System (INIS)
Allen, L.J.; Amos, K.; Berge, L.; Fiedeldey, H.
1993-01-01
Algebraic scattering theory is used to analyze elastic scattering cross-sections from heavy ion collisions. Collisions epitomized by strong absorption lead to algebraic potentials that can be described by simple exponential forms. But for collisions that are 'transparent', while asymptotically the algebraic potentials are exponential, their actual form (for low 1-values) is quite complex. 7 refs., 4 figs
Topology, ergodic theory, real algebraic geometry Rokhlin's memorial
Turaev, V
2001-01-01
This book is dedicated to the memory of the outstanding Russian mathematician, V. A. Rokhlin (1919-1984). It is a collection of research papers written by his former students and followers, who are now experts in their fields. The topics in this volume include topology (the Morse-Novikov theory, spin bordisms in dimension 6, and skein modules of links), real algebraic geometry (real algebraic curves, plane algebraic surfaces, algebraic links, and complex orientations), dynamics (ergodicity, amenability, and random bundle transformations), geometry of Riemannian manifolds, theory of Teichmüller
Algebraic formulation of higher gauge theory
Zucchini, Roberto
2017-06-01
In this paper, we present a purely algebraic formulation of higher gauge theory and gauged sigma models based on the abstract theory of graded commutative algebras and their morphisms. The formulation incorporates naturally Becchi - Rouet -Stora - Tyutin (BRST) symmetry and is also suitable for Alexandrov - Kontsevich - Schwartz-Zaboronsky (AKSZ) type constructions. It is also shown that for a full-fledged Batalin-Vilkovisky formulation including ghost degrees of freedom, higher gauge and gauged sigma model fields must be viewed as internal smooth functions on the shifted tangent bundle of a space-time manifold valued in a shifted L∞-algebroid encoding symmetry. The relationship to other formulations where the L∞-algebroid arises from a higher Lie groupoid by Lie differentiation is highlighted.
The algebraic and geometric theory of quadratic forms
Elman, Richard; Merkurjev, Alexander
2008-01-01
This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages
Operator theory, operator algebras and applications
Lebre, Amarino; Samko, Stefan; Spitkovsky, Ilya
2014-01-01
This book consists of research papers that cover the scientific areas of the International Workshop on Operator Theory, Operator Algebras and Applications, held in Lisbon in September 2012. The volume particularly focuses on (i) operator theory and harmonic analysis (singular integral operators with shifts; pseudodifferential operators, factorization of almost periodic matrix functions; inequalities; Cauchy type integrals; maximal and singular operators on generalized Orlicz-Morrey spaces; the Riesz potential operator; modification of Hadamard fractional integro-differentiation), (ii) operator algebras (invertibility in groupoid C*-algebras; inner endomorphisms of some semi group, crossed products; C*-algebras generated by mappings which have finite orbits; Folner sequences in operator algebras; arithmetic aspect of C*_r SL(2); C*-algebras of singular integral operators; algebras of operator sequences) and (iii) mathematical physics (operator approach to diffraction from polygonal-conical screens; Poisson geo...
Fredholm theory in ordered Banach algebras | Benjamin ...
African Journals Online (AJOL)
This paper illustrates some initial steps taken in the effort of unifying the theory of positivity in ordered Banach algebas (OBAs) with the general Fred-holm theory in Banach algebras. We introduce here upper Weyl and upper Browder elements in an OBA relative to an arbitrary Banach algebra homomorphism and investigate ...
Finite-dimensional division algebras over fields
Jacobson, Nathan
2009-01-01
Finite-Dimensional Division Algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts; they arose first in the study of the so-called 'multiplication algebras of Riemann matrices'. The largest part of the book is the fifth chapter, dealing with involutorial simple algebras of finite dimension over a field. Of parti
Derivations of the Moyal Algebra and Noncommutative Gauge Theories
Directory of Open Access Journals (Sweden)
Jean-Christophe Wallet
2009-01-01
Full Text Available The differential calculus based on the derivations of an associative algebra underlies most of the noncommutative field theories considered so far. We review the essential properties of this framework and the main features of noncommutative connections in the case of non graded associative unital algebras with involution. We extend this framework to the case of Z2-graded unital involutive algebras. We show, in the case of the Moyal algebra or some related Z2-graded version of it, that the derivation based differential calculus is a suitable framework to construct Yang-Mills-Higgs type models on Moyal (or related algebras, the covariant coordinates having in particular a natural interpretation as Higgs fields. We also exhibit, in one situation, a link between the renormalisable NC φ4-model with harmonic term and a gauge theory model. Some possible consequences of this are briefly discussed.
Low-dimensional filiform Lie algebras over finite fields
Falcón Ganfornina, Óscar Jesús; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vasek, Vladimir (Coordinador); Shmaliy, Yuriy S. (Coordinador); Trcek, Denis (Coordinador); Kobayashi, Nobuhiko P. (Coordinador); Choras, Ryszard S. (Coordinador); Klos, Zbigniew (Coordinador)
2011-01-01
In this paper we use some objects of Graph Theory to classify low-dimensional filiform Lie algebras over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As results, which can be applied in several branches of Physics or Engineering, for instance, we find out that there exist, up to isomorphism, six 6-dimensional filiform Lie algebras over Z/pZ, for p = 2, 3, 5. Pl...
Symmetric linear systems - An application of algebraic systems theory
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
Nevanlinna theory, normal families, and algebraic differential equations
Steinmetz, Norbert
2017-01-01
This book offers a modern introduction to Nevanlinna theory and its intricate relation to the theory of normal families, algebraic functions, asymptotic series, and algebraic differential equations. Following a comprehensive treatment of Nevanlinna’s theory of value distribution, the author presents advances made since Hayman’s work on the value distribution of differential polynomials and illustrates how value- and pair-sharing problems are linked to algebraic curves and Briot–Bouquet differential equations. In addition to discussing classical applications of Nevanlinna theory, the book outlines state-of-the-art research, such as the effect of the Yosida and Zalcman–Pang method of re-scaling to algebraic differential equations, and presents the Painlevé–Yosida theorem, which relates Painlevé transcendents and solutions to selected 2D Hamiltonian systems to certain Yosida classes of meromorphic functions. Aimed at graduate students interested in recent developments in the field and researchers wor...
Dynamical theory of subconstituents based on ternary algebras
International Nuclear Information System (INIS)
Bars, I.; Guenaydin, M.
1980-01-01
We propose a dynamical theory of possible fundamental constituents of matter. Our scheme is based on (super) ternary algebras which are building blocks of Lie (super) algebras. Elementary fields, called ''ternons,'' are associated with the elements of a (super) ternary algebra. Effective gauge bosons, ''quarks,'' and ''leptons'' are constructed as composite fields from ternons. We propose two- and four-dimensional (super) ternon theories whose structures are closely related to CP/sub N/ and Yang-Mills theories and their supersymmetric extensions. We conjecture that at large distances (low energies) the ternon theories dynamically produce effective gauge theories and thus may be capable of explaining the present particle-physics phenomenology. Such a scenario is valid in two dimensions
K-theory for group C*-algebras and semigroup C*-algebras
Cuntz, Joachim; Li, Xin; Yu, Guoliang
2017-01-01
This book gives an account of the necessary background for group algebras and crossed products for actions of a group or a semigroup on a space and reports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as diverse as the theory of unitary group representations, index theory, the topology of manifolds or ergodic theory of group actions.
Geometric approach to the (BRS-) differential algebras of supersymmetric YM-theories
International Nuclear Information System (INIS)
Gieres, F.
1987-01-01
The (BRS-) differential algebra of susy YM-theories is defined in terms of superfields and forms on rigid U(N)-superspace. For d = 4 and N = 1.2 we show that it projects to the ''BRS-component field algebra in the WZ-gauge'' without any supergauge fixing. In this process the supergeometry is destroyed with the result that the final algebra becomes a prototype for a differential algebra which cannot be associated with an ordinary Lie algebra
Explicit field realizations of W algebras
International Nuclear Information System (INIS)
Wei Shaowen; Liu Yuxiao; Ren Jirong; Zhang Lijie
2009-01-01
The fact that certain nonlinear W 2,s algebras can be linearized by the inclusion of a spin-1 current can provide a simple way to realize W 2,s algebras from linear W 1,2,s algebras. In this paper, we first construct the explicit field realizations of linear W 1,2,s algebras with double scalar and double spinor, respectively. Then, after a change of basis, the realizations of W 2,s algebras are presented. The results show that all these realizations are Romans-type realizations.
Developments and retrospectives in Lie theory algebraic methods
Penkov, Ivan; Wolf, Joseph
2014-01-01
This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics. Many of the contributors have had leading roles in both the classical and modern developments of Lie theory and its applications. This Work, entitled Developments and Retrospectives in Lie Theory, and comprising 26 articles, is organized in two volumes: Algebraic Methods and Geometric and Analytic Methods. This is the Algebraic Methods volume. The Lie Theory Workshop series, founded by Joe Wolf and Ivan Penkov and joined shortly thereafter by Geoff Mason, has been running for over two decades. Travel to the workshops has usually been supported by the NSF, and local universities have provided hospitality. The workshop talks have been seminal in describing new perspectives in the field covering broad areas of current research. Mos...
Numerical linear algebra theory and applications
Beilina, Larisa; Karchevskii, Mikhail
2017-01-01
This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigen problems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.
International Nuclear Information System (INIS)
Cadavid, A.C.
1989-01-01
The author constructs a non-Abelian field theory by gauging a Kac-Moody algebra, obtaining an infinite tower of interacting vector fields and associated ghosts, that obey slightly modified Feynman rules. She discusses the spontaneous symmetry breaking of such theory via the Higgs mechanism. If the Higgs particle lies in the Cartan subalgebra of the Kac-Moody algebra, the previously massless vectors acquire a mass spectrum that is linear in the Kac-Moody index and has additional fine structure depending on the associated Lie algebra. She proceeds to show that there is no obstacle in implementing the affine extension of supersymmetric Yang-Mills theories. The result is valid in four, six and ten space-time dimensions. Then the affine extension of supergravity is investigated. She discusses only the loop algebra since the affine extension of the super-Poincare algebra appears inconsistent. The construction of the affine supergravity theory is carried out by the group manifold method and leads to an action describing infinite towers of spin 2 and spin 3/2 fields that interact subject to the symmetries of the loop algebra. The equations of motion satisfy the usual consistency check. Finally, she postulates a theory in which both the vector and scalar fields lie in the loop algebra of SO(3). This theory has an expanded soliton sector, and corresponding to the original 't Hooft-Polyakov solitonic solutions she now finds an infinite family of exact, special solutions of the new equations. She also proposes a perturbation method for obtaining an arbitrary solution of those equations for each level of the affine index
Conference on Algebraic Geometry for Coding Theory and Cryptography
Lauter, Kristin; Walker, Judy
2017-01-01
Covering topics in algebraic geometry, coding theory, and cryptography, this volume presents interdisciplinary group research completed for the February 2016 conference at the Institute for Pure and Applied Mathematics (IPAM) in cooperation with the Association for Women in Mathematics (AWM). The conference gathered research communities across disciplines to share ideas and problems in their fields and formed small research groups made up of graduate students, postdoctoral researchers, junior faculty, and group leaders who designed and led the projects. Peer reviewed and revised, each of this volume's five papers achieves the conference’s goal of using algebraic geometry to address a problem in either coding theory or cryptography. Proposed variants of the McEliece cryptosystem based on different constructions of codes, constructions of locally recoverable codes from algebraic curves and surfaces, and algebraic approaches to the multicast network coding problem are only some of the topics covered in this vo...
Quantum group gauge theories and covariant quantum algebras
International Nuclear Information System (INIS)
Isaev, A.P.
1993-01-01
The algebraic formulation of the quantum group gauge models in the framework of the R-matrix approach to the theory of quantum groups is given. Gauge groups taking values in the quantum groups and noncommutative gauge fields transformed as comodules under the coaction of the gauge quantum group G q are considered. Using this approach the quantum deformations of the topological Chern-Simons models, non-Abelian gauge theories and the Einstein gravity are constructed. The noncommutative fields in these models generate G q -covariant quantum algebras. 24 refs
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
Beilinson, Alexander
2004-01-01
Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch
An introduction to conformal field theory
International Nuclear Information System (INIS)
Zuber, J.B.
1995-01-01
The aim of these lectures is to present an introduction at a fairly elementary level to recent developments in two dimensional field theory, namely in conformal field theory. We shall see the importance of new structures related to infinite dimensional algebras: current algebras and Virasoro algebra. These topics will find physically relevant applications in the lectures by Shankar and Ian Affeck. (author)
Axiomatic conformal field theory
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Goddard, P.
2000-01-01
A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)
Linear algebra and group theory for physicists
Rao, K N Srinivasa
2006-01-01
Professor Srinivasa Rao's text on Linear Algebra and Group Theory is directed to undergraduate and graduate students who wish to acquire a solid theoretical foundation in these mathematical topics which find extensive use in physics. Based on courses delivered during Professor Srinivasa Rao's long career at the University of Mysore, this text is remarkable for its clear exposition of the subject. Advanced students will find a range of topics such as the Representation theory of Linear Associative Algebras, a complete analysis of Dirac and Kemmer algebras, Representations of the Symmetric group via Young Tableaux, a systematic derivation of the Crystallographic point groups, a comprehensive and unified discussion of the Rotation and Lorentz groups and their representations, and an introduction to Dynkin diagrams in the classification of Lie groups. In addition, the first few chapters on Elementary Group Theory and Vector Spaces also provide useful instructional material even at an introductory level. An author...
Algebraic theory of locally nilpotent derivations
Freudenburg, Gene
2017-01-01
This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations. The author provides a unified treatment of the subject, beginning with 16 First Principles on which the theory is based. These are used to establish classical results, such as Rentschler's Theorem for the plane and the Cancellation Theorem for Curves. More recent results, such as Makar-Limanov's theorem for locally nilpotent derivations of polynomial rings, are also discussed. Topics of special interest include progress in classifying additive actions on three-dimensional affine space, finiteness questions (Hilbert's 14th Problem), algorithms, the Makar-Limanov invariant, and connections to the Cancellation Problem and the Embedding Problem. A lot of new material is included in this expanded second edition, such as canonical factoriza...
Understanding geometric algebra for electromagnetic theory
Arthur, John W
2011-01-01
"This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison"--Provided by publisher.
The Work of Lagrange in Number Theory and Algebra
Indian Academy of Sciences (India)
GENERAL I ARTICLE. The Work of Lagrange in Number Theory and Algebra. D P Patil, C R Pranesachar and Renuka RafJindran. (left) D P Patil got his Ph.D from the School of Math- ematics, TIFR and joined. IISc in 1992. His interests are commutative algebra, algebraic geometry and algebraic number theory. (right) C R ...
The Work of Lagrange in Number Theory and Algebra
Indian Academy of Sciences (India)
and Algebra. D P Patil, C R Pranesachar and Renuka RafJindran. (left) D P Patil got his Ph.D from the School of Math- ematics, TIFR and joined. IISc in 1992. His interests are commutative algebra, algebraic geometry and algebraic number theory. (right) C R ..... elementary group theory which is generally attributed to.
Spectral theory and quotients in Von Neumann algebras | West ...
African Journals Online (AJOL)
In this note we consider to what extent the functional calculus and the spectral theory in von Neumann algebras are preserved by the taking of quotients relative to two-sided ideals of the von Neumann algebra. Keywords:von Neumann algebra, functional calculus, spectral theory, quotient algebras. Quaestiones ...
Algebra 1 groups, rings, fields and arithmetic
Lal, Ramji
2017-01-01
This is the first in a series of three volumes dealing with important topics in algebra. It offers an introduction to the foundations of mathematics together with the fundamental algebraic structures, namely groups, rings, fields, and arithmetic. Intended as a text for undergraduate and graduate students of mathematics, it discusses all major topics in algebra with numerous motivating illustrations and exercises to enable readers to acquire a good understanding of the basic algebraic structures, which they can then use to find the exact or the most realistic solutions to their problems.
Methods of algebraic geometry in control theory
Falb, Peter
1999-01-01
"Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...
Linear algebra and group theory
Smirnov, VI
2011-01-01
This accessible text by a Soviet mathematician features material not otherwise available to English-language readers. Its three-part treatment covers determinants and systems of equations, matrix theory, and group theory. 1961 edition.
Towards a structure theory for Lie-admissible algebras
International Nuclear Information System (INIS)
Wene, G.P.
1981-01-01
The concepts of radical and decomposition of algebras are presented. Following a discussion of the theory for associative algebras, examples are presented that illuminate the difficulties encountered in choosing a structure theory for nonassociative algebras. Suitable restrictions, based upon observed phenomenon, are given that reduce the class of Lie-admissible algebras to a manageable size. The concepts developed in the first part of the paper are then reexamined in the context of this smaller class of Lie-admissible algebras
Bagger-Lambert Theory for General Lie Algebras
Gomis, Jaume; Milanesi, Giuseppe; Russo, Jorge G.
2008-01-01
We construct the totally antisymmetric structure constants f^{ABCD} of a 3-algebra with a Lorentzian bi-invariant metric starting from an arbitrary semi-simple Lie algebra. The structure constants f^{ABCD} can be used to write down a maximally superconformal 3d theory that incorporates the expected degrees of freedom of multiple M2 branes, including the "center-of-mass" mode described by free scalar and fermion fields. The gauge field sector reduces to a three dimensional BF term, which under...
Surface charge algebra in gauge theories and thermodynamic integrability
International Nuclear Information System (INIS)
Barnich, Glenn; Compere, Geoffrey
2008-01-01
Surface charges and their algebra in interacting Lagrangian gauge field theories are constructed out of the underlying linearized theory using techniques from the variational calculus. In the case of exact solutions and symmetries, the surface charges are interpreted as a Pfaff system. Integrability is governed by Frobenius' theorem and the charges associated with the derived symmetry algebra are shown to vanish. In the asymptotic context, we provide a generalized covariant derivation of the result that the representation of the asymptotic symmetry algebra through charges may be centrally extended. Comparison with Hamiltonian and covariant phase space methods is made. All approaches are shown to agree for exact solutions and symmetries while there are differences in the asymptotic context
Introduction to the theory of abstract algebras
Pierce, Richard S
2014-01-01
Intended for beginning graduate-level courses, this text introduces various aspects of the theory of abstract algebra. The book is also suitable as independent reading for interested students at that level as well as a primary source for a one-semester course that an instructor may supplement to expand to a full year. Author Richard S. Pierce, a Professor of Mathematics at Seattle's University of Washington, places considerable emphasis on applications of the theory and focuses particularly on lattice theory.After a preliminary review of set theory, the treatment presents the basic definitions
Algebras for causal external electromagnetic interaction in higher-spin theories
International Nuclear Information System (INIS)
Cox, W.
1976-01-01
Using the theory of Young symmetrizers it is shown how to obtain algebras which are sufficient for causal propagation of higher-spin particles interacting with an external minimal electromagnetic field. The commutation relations of the algebra are derived already expressed in irreducible Young symmetrizer form. An example is given which is not equivalent to any known causal theory and it is shown that the algebra is infinite. Thus, the requirement of causal electromagnetic interaction is not sufficient to generate a finite algebra and non-trivial sub-algebras may exist which are causal. (author)
Applications of inverse and algebraic scattering theories
International Nuclear Information System (INIS)
Amos, K.
1997-01-01
Inverse scattering theories, algebraic scattering theory and exactly solvable scattering potentials are diverse ways by which scattering potentials can be defined from S-functions specified by fits to fixed energy, quantal scattering data. Applications have been made in nuclear (heavy ion and nucleon-nucleus scattering), atomic and molecular (electron scattering from simple molecules) systems. Three inverse scattering approaches are considered in detail; the semiclassical WKB and fully quantal Lipperheide-Fiedeldey method, than algebraic scattering theory is applied to heavy ion scattering and finally the exactly solvable Ginocchio potentials. Some nuclear results are ambiguous but the atomic and molecular inversion potentials are in good agreement with postulated forms. 21 refs., 12 figs
Naturality in conformal field theory
International Nuclear Information System (INIS)
Moore, G.; Seiberg, N.
1989-01-01
We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)
Braided quantum field theories and their symmetries
International Nuclear Information System (INIS)
Sasai, Yuya; Sasakura, Naoki
2007-01-01
Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)
Introduction to the representation theory of algebras
Barot, Michael
2015-01-01
This book gives a general introduction to the theory of representations of algebras. It starts with examples of classification problems of matrices under linear transformations and explains the three common setups: representation of quivers, modules over algebras and additive functors over certain categories. The main part is devoted to (i) module categories, presenting the unicity of the decomposition into indecomposable modules, the Auslander–Reiten theory and the technique of knitting; (ii) the use of combinatorial tools such as dimension vectors and integral quadratic forms; and (iii) deeper theorems such as Gabriel‘s Theorem, the trichotomy and the Theorem of Kac – all accompanied by further examples. Each section includes exercises to facilitate understanding. By keeping the proofs as basic and comprehensible as possible and introducing the three languages at the beginning, this book is suitable for readers from the advanced undergraduate level onwards and enables them to consult related, specifi...
Non-unique factorizations algebraic, combinatorial and analytic theory
Geroldinger, Alfred
2006-01-01
From its origins in algebraic number theory, the theory of non-unique factorizations has emerged as an independent branch of algebra and number theory. Focused efforts over the past few decades have wrought a great number and variety of results. However, these remain dispersed throughout the vast literature. For the first time, Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory offers a look at the present state of the theory in a single, unified resource.Taking a broad look at the algebraic, combinatorial, and analytic fundamentals, this book derives factorization results and applies them in concrete arithmetical situations using appropriate transfer principles. It begins with a basic introduction that can be understood with knowledge of standard basic algebra. The authors then move to the algebraic theory of monoids, arithmetic theory of monoids, the structure of sets of lengths, additive group theory, arithmetical invariants, and the arithmetic of Krull monoids. They also provide a s...
Modulo 2 periodicity of complex Clifford algebras and electromagnetic field
Varlamov, Vadim V.
1997-01-01
Electromagnetic field is considered in the framework of Clifford algebra $\\C_2$ over a field of complex numbers. It is shown here that a modulo 2 periodicity of complex Clifford algebras may be connected with electromagnetic field.
Underlying theory based on quaternions for Alder's algebraic chromodynamics
International Nuclear Information System (INIS)
Horwitz, L.P.; Biedenharn, L.C.
1981-01-01
It is shown that the complex-linear tensor product for quantum quaternionic Hilbert (module) spaces provides an algebraic structure for the non-local gauge field in Adler's algebraic chromodynamics for U
Elementary number theory an algebraic approach
Bolker, Ethan D
2007-01-01
This text uses the concepts usually taught in the first semester of a modern abstract algebra course to illuminate classical number theory: theorems on primitive roots, quadratic Diophantine equations, and the Fermat conjecture for exponents three and four. The text contains abundant numerical examples and a particularly helpful collection of exercises, many of which are small research problems requiring substantial study or outside reading. Some problems call for new proofs for theorems already covered or for inductive explorations and proofs of theorems found in later chapters.Ethan D. Bolke
Reconstructing Bohr's Reply to EPR in Algebraic Quantum Theory
Ozawa, Masanao; Kitajima, Yuichiro
2012-04-01
Halvorson and Clifton have given a mathematical reconstruction of Bohr's reply to Einstein, Podolsky and Rosen (EPR), and argued that this reply is dictated by the two requirements of classicality and objectivity for the description of experimental data, by proving consistency between their objectivity requirement and a contextualized version of the EPR reality criterion which had been introduced by Howard in his earlier analysis of Bohr's reply. In the present paper, we generalize the above consistency theorem, with a rather elementary proof, to a general formulation of EPR states applicable to both non-relativistic quantum mechanics and algebraic quantum field theory; and we clarify the elements of reality in EPR states in terms of Bohr's requirements of classicality and objectivity, in a general formulation of algebraic quantum theory.
1999-11-08
In these lectures I will build up the concept of field theory using the language of Feynman diagrams. As a starting point, field theory in zero spacetime dimensions is used as a vehicle to develop all the necessary techniques: path integral, Feynman diagrams, Schwinger-Dyson equations, asymptotic series, effective action, renormalization etc. The theory is then extended to more dimensions, with emphasis on the combinatorial aspects of the diagrams rather than their particular mathematical structure. The concept of unitarity is used to, finally, arrive at the various Feynman rules in an actual, four-dimensional theory. The concept of gauge-invariance is developed, and the structure of a non-abelian gauge theory is discussed, again on the level of Feynman diagrams and Feynman rules.
Bagger-Lambert theory for general Lie algebras
International Nuclear Information System (INIS)
Gomis, Jaume; Milanesi, Giuseppe; Russo, Jorge G.
2008-01-01
We construct the totally antisymmetric structure constants f ABCD of a 3-algebra with a Lorentzian bi-invariant metric starting from an arbitrary semi-simple Lie algebra. The structure constants f ABCD can be used to write down a maximally superconformal 3d theory that incorporates the expected degrees of freedom of multiple M2 branes, including the 'center-of-mass' mode described by free scalar and fermion fields. The gauge field sector reduces to a three dimensional BF term, which underlies the gauge symmetry of the theory. We comment on the issue of unitarity of the quantum theory, which is problematic, despite the fact that the specific form of the interactions prevent the ghost fields from running in the internal lines of any Feynman diagram. Giving an expectation value to one of the scalar fields leads to the maximally supersymmetric 3d Yang-Mills Lagrangian with the addition of two U(1) multiplets, one of them ghost-like, which is decoupled at large g YM .
Decomposition Theory in the Teaching of Elementary Linear Algebra.
London, R. R.; Rogosinski, H. P.
1990-01-01
Described is a decomposition theory from which the Cayley-Hamilton theorem, the diagonalizability of complex square matrices, and functional calculus can be developed. The theory and its applications are based on elementary polynomial algebra. (KR)
Matrix algebra theory, computations and applications in statistics
Gentle, James E
2017-01-01
This textbook for graduate and advanced undergraduate students presents the theory of matrix algebra for statistical applications, explores various types of matrices encountered in statistics, and covers numerical linear algebra. Matrix algebra is one of the most important areas of mathematics in data science and in statistical theory, and the second edition of this very popular textbook provides essential updates and comprehensive coverage on critical topics in mathematics in data science and in statistical theory. Part I offers a self-contained description of relevant aspects of the theory of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices in solutions of linear systems and in eigenanalysis. Part II considers various types of matrices encountered in statistics, such as...
Algebraic K-theory of crystallographic groups the three-dimensional splitting case
Farley, Daniel Scott
2014-01-01
The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field.
An algebraic description of perturbation theory in quantum electrodynamics
International Nuclear Information System (INIS)
Wright, J.D.
1982-01-01
An algebraic formulation of the electromagnetic field, in which various quantization procedures can be described, is used to discuss perturbation calculations. The Feynman rules and the second order calculation of the self-energy of the electron can be developed on the basis of the Fermi method of quantization. The algebraic approach clarifies the problems in defining the vacuum and other states, which are associated with calculations in terms of field algebra operators. The vacuum state defined on the field algebra by Schwinger leads to incorrect results in the self-energy calculation
The relaxed three-algebras: their matrix representation and implications for multi M2-brane theory
International Nuclear Information System (INIS)
Ali-Akbari, M.; Sheikh-Jabbari, M.M.; Simon, J.
2008-01-01
We argue that one can relax the requirements of the non-associative three-algebras recently used in constructing D = 3, N = 8 superconformal field theories, and introduce the notion of 'relaxed three-algebras'. We present a specific realization of the relaxed three-algebras in terms of classical Lie algebras with a matrix representation, endowed with a non-associative four-bracket structure which is prescribed to replace the three-brackets of the three-algebras. We show that both the so(4)-based solutions as well as the cases with non-positive definite metric find a uniform description in our setting. We discuss the implications of our four-bracket representation for the D = 3, N = 8 and multi M2-brane theory and show that our setup can shed light on the problem of negative kinetic energy degrees of freedom of the Lorentzian case.
Space-time algebra for the generalization of gravitational field ...
Indian Academy of Sciences (India)
Abstract. The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravit- omagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of ...
Space-time algebra for the generalization of gravitational field ...
Indian Academy of Sciences (India)
The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravitomagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of ...
Artin, Emil
2009-01-01
This classic book, originally published in 1968, is based on notes of a year-long seminar the authors ran at Princeton University. The primary goal of the book was to give a rather complete presentation of algebraic aspects of global class field theory, and the authors accomplished this goal spectacularly: for more than 40 years since its first publication, the book has served as an ultimate source for many generations of mathematicians. In this revised edition, two mathematical additions complementing the exposition in the original text are made. The new edition also contains several new foot
Verifying Process Algebra Proofs in Type Theory
Sellink, M.P.A.
In this paper we study automatic verification of proofs in process algebra. Formulas of process algebra are represented by types in typed λ-calculus. Inhabitants (terms) of these types represent proofs. The specific typed λ-calculus we use is the Calculus of Inductive Constructions as implemented
Singularity Theory for W-Algebra Potentials
Gaite, J
1994-01-01
The Landau potentials of W3-algebra models are analyzed with algebraic-geometric methods. The number of ground states and the number of independent perturbations of every potential coincide and can be computed. This number agrees with the structure of ground states obtained in a previous paper,
Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio
2017-02-01
Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.
Classification of filiform Lie algebras up to dimension 7 over finite fields
Falcón Ganfornina, Óscar Jesús; Falcón Ganfornina, Raúl Manuel; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad
2016-01-01
This paper tries to develop a recent research which consists in using Discrete Mathematics as a tool in the study of the problem of the classification of Lie algebras in general, dealing in this case with filiform Lie algebras up to dimension 7 over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As main results, we find out that there exist, up to isomor...
Algebraic and Dirac-Hestenes spinors and spinor fields
International Nuclear Information System (INIS)
Rodrigues, Waldyr A. Jr.
2004-01-01
Almost all presentations of Dirac theory in first or second quantization in physics (and mathematics) textbooks make use of covariant Dirac spinor fields. An exception is the presentation of that theory (first quantization) offered originally by Hestenes and now used by many authors. There, a new concept of spinor field (as a sum of nonhomogeneous even multivectors fields) is used. However, a careful analysis (detailed below) shows that the original Hestenes definition cannot be correct since it conflicts with the meaning of the Fierz identities. In this paper we start a program dedicated to the examination of the mathematical and physical basis for a comprehensive definition of the objects used by Hestenes. In order to do that we give a preliminary definition of algebraic spinor fields (ASF) and Dirac-Hestenes spinor fields (DHSF) on Minkowski space-time as some equivalence classes of pairs (Ξ u ,ψ Ξ u ), where Ξ u is a spinorial frame field and ψ Ξ u is an appropriate sum of multivectors fields (to be specified below). The necessity of our definitions are shown by a careful analysis of possible formulations of Dirac theory and the meaning of the set of Fierz identities associated with the bilinear covariants (on Minkowski space-time) made with ASF or DHSF. We believe that the present paper clarifies some misunderstandings (past and recent) appearing on the literature of the subject. It will be followed by a sequel paper where definitive definitions of ASF and DHSF are given as appropriate sections of a vector bundle called the left spin-Clifford bundle. The bundle formulation is essential in order to be possible to produce a coherent theory for the covariant derivatives of these fields on arbitrary Riemann-Cartan space-times. The present paper contains also Appendixes A-E which exhibits a truly useful collection of results concerning the theory of Clifford algebras (including many tricks of the trade) necessary for the intelligibility of the text
Selected papers on number theory and algebraic geometry
Nomizu, Katsumi
1996-01-01
This book presents papers that originally appeared in the Japanese journal Sugaku from the Mathematical Society of Japan. The papers explore the relationship between number theory and algebraic geometry.
Frobenius theory for positive maps of von Neumann algebras
International Nuclear Information System (INIS)
Albeverio, S.; Hoegh-Krohn, R.
1978-01-01
Frobenius theory about the cyclic structure of eigenvalues of irreducible non negative matrices is extended to the case of positive linear maps of von Neumann algebras. Semigroups of such maps and ergodic properties are also considered. (orig.) [de
Evolution algebras and their applications
Tian, Jianjun Paul
2008-01-01
Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.
The quantum symmetry of rational field theories
International Nuclear Information System (INIS)
Fuchs, J.
1993-12-01
The quantum symmetry of a rational quantum field theory is a finite-dimensional multi-matrix algebra. Its representation category, which determines the fusion rules and braid group representations of superselection sectors, is a braided monoidal C*-category. Various properties of such algebraic structures are described, and some ideas concerning the classification programme are outlined. (orig.)
Miyanishi, Masayoshi
2000-01-01
Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...
Algebraic partial Boolean algebras
Smith, D
2003-01-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial...
Introduction to modern algebra and matrix theory
Schreier, O; David, Martin
2011-01-01
This unique text provides students with a basic course in both calculus and analytic geometry. It promotes an intuitive approach to calculus and emphasizes algebraic concepts. Minimal prerequisites. Numerous exercises. 1951 edition.
Sepanski, Mark R
2010-01-01
Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems
String field representation of the Virasoro algebra
Czech Academy of Sciences Publication Activity Database
Mertes, N.; Schnabl, Martin
2016-01-01
Roč. 2016, č. 12 (2016), 1-14, č. článku 151. ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : String Held Theory * Conformal Field Models in String Theory Subject RIV: BE - Theoretical Physics Impact factor: 6.063, year: 2016
Theory and applications of differential algebra
International Nuclear Information System (INIS)
Pusch, G.D.
1992-01-01
Differential algebra (DA) is a new method of automatic differentiation. DA can rapidly and efficiently calculate the values of derivatives of arbitrarily complicated functions, in arbitrarily many variables, to arbitrary order, via its definition of multiplication. I provide a brief introduction to DA, and enumerate some of its recent applications. (author). 6 refs
A Workshop on Algebraic Design Theory and Hadamard Matrices
2015-01-01
This volume develops the depth and breadth of the mathematics underlying the construction and analysis of Hadamard matrices and their use in the construction of combinatorial designs. At the same time, it pursues current research in their numerous applications in security and cryptography, quantum information, and communications. Bridges among diverse mathematical threads and extensive applications make this an invaluable source for understanding both the current state of the art and future directions. The existence of Hadamard matrices remains one of the most challenging open questions in combinatorics. Substantial progress on their existence has resulted from advances in algebraic design theory using deep connections with linear algebra, abstract algebra, finite geometry, number theory, and combinatorics. Hadamard matrices arise in a very diverse set of applications. Starting with applications in experimental design theory and the theory of error-correcting codes, they have found unexpected and important ap...
Introduction to conformal field theory. With applications to string theory
International Nuclear Information System (INIS)
Blumenhagen, Ralph; Plauschinn, Erik
2009-01-01
Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields. (orig.)
Linear {GLP}-algebras and their elementary theories
Pakhomov, F. N.
2016-12-01
The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.
Class field theory from theory to practice
Gras, Georges
2003-01-01
Global class field theory is a major achievement of algebraic number theory, based on the functorial properties of the reciprocity map and the existence theorem. The author works out the consequences and the practical use of these results by giving detailed studies and illustrations of classical subjects (classes, idèles, ray class fields, symbols, reciprocity laws, Hasse's principles, the Grunwald-Wang theorem, Hilbert's towers,...). He also proves some new or less-known results (reflection theorem, structure of the abelian closure of a number field) and lays emphasis on the invariant (/cal T) p, of abelian p-ramification, which is related to important Galois cohomology properties and p-adic conjectures. This book, intermediary between the classical literature published in the sixties and the recent computational literature, gives much material in an elementary way, and is suitable for students, researchers, and all who are fascinated by this theory. In the corrected 2nd printing 2005, the author improves s...
Kac--Moody current algebras of D = 2 massless gauge theories, their representations and applications
International Nuclear Information System (INIS)
Craigie, N.S.; Nahm, W.; Narain, K.S.
1987-01-01
We give a classification of the Kac--Moody current algebras of all the possible massless fermion-gauge theories in two dimensions. It is shown that only Kac--Moody algebras based on A/sub N/, B/sub N/, C/sub N/, and D/sub N/ in the Cartan classification with all possible central charge occur.The representation of local fermion fields and simply laced Kac--Moody algebras with minimal central charge in terms of free boson fields on a compactified space is discussed in detail, where stress is laid on the role played by the boundary conditions on the various collective modes. Fractional solitons and the possible soliton representation of certain nonsimply laced algebras is also analysed. We briefly discuss the relationship between the massless bound state sector of these two-dimensional gauge theories and the critically coupled two-dimensional nonlinear sigma model, which share the same current algebra. Finally we briefly discuss the relevance of Sp(n) Kac--Moody algebras to the physics of monopole-fermion systems. copyright 1987 Academic Press, Inc
International Nuclear Information System (INIS)
Green, M.B.
1984-01-01
Superstring field theories are formulated in terms of light-cone-gauge superfields that are functionals of string coordinates chi(sigma) and theta(sigma). The formalism used preserves only the manifest SU(4) symmetry that corresponds to rotations among six of the eight transverse directions. In type I theories, which have one ten-dimensional supersymmetry and describe both open and closed strings, there are five interaction terms of two basic kinds. One kind is a breaking or joining interaction, which is a string generalization of a cubic Yang-Mills coupling. It is relevant to both the three open-string vertex and the open-string to closed-string transition vertex. The other kind is an exchange or crossing-over interaction, which is a string generalization of a cubic gravitational coupling. All the interactions can be uniquely determined by requiring continuity of the coordinates chi(sigma) and theta(sigma) (which implies local conservation of the conjugate momenta) and by imposing the global supersymmetry algebra. Specific local operators are identified for each of the two kinds of interactions. In type II theories, which have two ten-dimensional supersymmetries and contain closed strings only, the entire interaction hamiltonian consists of a single cubic vertex. The higher-order contact terms of the N=8 supergravity theory that arises in the low-energy limit give an effective description of the exchange of massive string modes. (orig.)
Fields and forms on ρ-algebras
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
It is known [1] that the ρ-commutator of two ρ-derivations is again a ρ-derivation and the linear space of all ρ-derivations is a ρ-Lie algebra, denoted by ρ-Der A. One verifies immediately that for such an algebra A, ρ-Der A is not only a ρ-Lie algebra but also a left A-module with the action of A on ρ-Der A defined by. (f X)g = f ...
Algebraic partial Boolean algebras
Smith, Derek
2003-04-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space Script H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E8.
Algebraic partial Boolean algebras
Energy Technology Data Exchange (ETDEWEB)
Smith, Derek [Math Department, Lafayette College, Easton, PA 18042 (United States)
2003-04-04
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A{sub 5} sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E{sub 8}.
Spin structures on algebraic curves and their applications in string theories
International Nuclear Information System (INIS)
Ferrari, F.
1990-01-01
The free fields on a Riemann surface carrying spin structures live on an unramified r-covering of the surface itself. When the surface is represented as an algebraic curve related to the vanishing of the Weierstrass polynomial, its r-coverings are algebraic curves as well. We construct explicitly the Weierstrass polynomial associated to the r-coverings of an algebraic curve. Using standard techniques of algebraic geometry it is then possible to solve the inverse Jacobi problem for the odd spin structures. As an application we derive the partition functions of bosonic string theories in many examples, including two general curves of genus three and four. The partition functions are explicitly expressed in terms of branch points apart from a factor which is essentially a theta constant. 53 refs., 4 figs. (Author)
Foundations of quantum theory from classical concepts to operator algebras
Landsman, Klaas
2017-01-01
This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This book is Open Access under a CC BY licence.
Free fields and new cosets of current algebra
Energy Technology Data Exchange (ETDEWEB)
Bars, I. (University of Southern California, Los Angeles (USA). Dept. of Physics)
1991-02-14
We introduce a new free field representation of current algebras by considering the affine compact and non-compact groups G{sub k}=SU(N+M){sub k}, SU(N, M){sub k} and supergroups SU(N/M){sub k} using cosets of the form G{sub k}/(SU(N){sub k+etaM}xSU(M){sub etak+etaN}), where eta=+- for group/supergroup respectively. The subgroup H=SU(N)xSU(M) does not include a U(1) factor. Because of the subgroup levels k+etaM, (k+N)eta these cosets differ from GKO cosets of the type G{sub k}/H{sub k}. We discuss simultaneously compact, non-compact and supergroup current algebras all in the same formalism. Borrowing ideas from induced representation theory of Lie groups we puerovide a basis in which we split the currents into 'orbital' and 'intrinsic spin' parts. The 'orbital' part is constructed from NM canonical pairs of complex free fields (analogous to position and momentum) classified in G/(HxU(1)). These provide a new generalization of Wakimoto's SU(2){beta}-{gamma} system. There is also a single free scalar field phi in a background charge which is associated with the remaining (twisted) U(1). The 'intrinsic spin' part corresponds to currents in H=SU(N)xSU(M). The resulting expressions for the currents are simple and elegant and they are reminiscent of Wigner's constructiion of the Poincare group generators in terms of orbital and intrinsic spin variables. The Sugawara stress tensor splits into four commuting parts T{sub G}=T{sub (G/HxU(1))}+T{sub U(1)}+T{sub H} where the first two terms are constructed only from the free fields ({beta}-{gamma}), phi respectively, while T{sub H}=T{sub SU(N)}+T{sub SU(M)} is the Sugawara stress tensor for the 'intrinsic spin' currents belonging to H. By iterating our G/H method, the 'intrinsic spin' part H may, in turn, be written in terms of new free fields, thus reducing the entire current algebra of G to a free field theory. (orig.).
On generally covariant quantum field theory and generalized causal and dynamical structures
International Nuclear Information System (INIS)
Bannier, U.
1988-01-01
We give an example of a generally covariant quasilocal algebra associated with the massive free field. Maximal, two-sided ideals of this algebra are algebraic representatives of external metric fields. In some sense, this algebra may be regarded as a concrete realization of Ekstein's ideas of presymmetry in quantum field theory. Using ideas from our example and from usual algebraic quantum field theory, we discuss a generalized scheme, in which maximal ideals are viewed as algebraic representatives of dynamical equations or Lagrangians. The considered frame is no quantum gravity, but may lead to further insight into the relation between quantum theory and space-time geometry. (orig.)
Field theory and particle physics
International Nuclear Information System (INIS)
Eboli, O.J.P.; Gomes, M.; Santoro, A.
1990-01-01
This book contains the proceedings of the topics covered during the fifth Jorge Andre Swieca Summer School. The first part of the book collects the material devoted to quantum field theory. There were four courses on methods in Field Theory; H. O. Girotti lectured on constrained dynamics, R. Jackiw on the Schrodinger representation in Field Theory, S.-Y. Pi on the application of this representation to quantum fields in a Robertson-Walker spacetime, and L. Vinet on Berry Connections. There were three courses on Conformal Field Theory: I. Todorov focused on the problem of construction and classification of conformal field theories. Lattice models, two-dimensional S matrices and conformal field theory were looked from the unifying perspective of the Yang-Baxter algebras in the lectures given by M. Karowski. Parasupersymmetric quantum mechanics was discussed in the lectures by L. Vinet. Besides those courses, there was an introduction to string field theory given by G. Horowitz. There were also three seminars: F. Schaposnik reported on recent applications of topological methods in field theory, P. Gerbert gave a seminar on three dimensional gravity and V. Kurak talked on two dimensional parafermionic models. The second part of this proceedings is devoted to phenomenology. There were three courses on Particle Physics: Dan Green lectured on collider physics, E. Predrazzi on strong interactions and G. Cohen-Tanoudji on the use of strings in strong interactions
Bounding the number of Fq-rational places in algebraic function fields using Weierstrass semigroups
DEFF Research Database (Denmark)
Geil, Hans Olav; Matsumoto, Ryutaroh
2009-01-01
We present a new bound on the number of Fq -rational places in an algebraic function field. It uses information about the generators of the Weierstrass semigroup related to a rational place. As we demonstrate, the bound has implications to the theory of towers of function fields....
Partial Fractions in Calculus, Number Theory, and Algebra
Yackel, C. A.; Denny, J. K.
2007-01-01
This paper explores the development of the method of partial fraction decomposition from elementary number theory through calculus to its abstraction in modern algebra. This unusual perspective makes the topic accessible and relevant to readers from high school through seasoned calculus instructors.
The Work of Lagrange in Number Theory and Algebra
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 4. The Work of Lagrange in Number Theory and Algebra. Dilip P Patil C R Pranesachar Renuka Ravindran. General Article Volume 11 Issue 4 April 2006 pp 10-25 ...
General algebraic theory of identical particle scattering
International Nuclear Information System (INIS)
Bencze, G.; Redish, E.F.
1978-01-01
We consider the nonrelativistic N-body scattering problem for a system of particles in which some subsets of the particles are identical. We demonstrate how the particle identity can be included in a general class of linear integral equations for scattering operators or components of scattering operators. The Yakubovskii, Yakubovskii--Narodestkii, Rosenberg, and Bencze--Redish--Sloan equations are included in this class. Algebraic methods are used which rely on the properties of the symmetry group of the system. Operators depending only on physically distinguishable labels are introduced and linear integral equations for them are derived. This procedure maximally reduces the number of coupled equations while retaining the connectivity properties of the original equations
Coadjoint orbits and conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Taylor, IV, Washington [Univ. of California, Berkeley, CA (United States)
1993-08-01
This thesis is primarily a study of certain aspects of the geometric and algebraic structure of coadjoint orbit representations of infinite-dimensional Lie groups. The goal of this work is to use coadjoint orbit representations to construct conformal field theories, in a fashion analogous to the free-field constructions of conformal field theories. The new results which are presented in this thesis are as follows: First, an explicit set of formulae are derived giving an algebraic realization of coadjoint orbit representations in terms of differential operators acting on a polynomial Fock space. These representations are equivalent to dual Verma module representations. Next, intertwiners are explicitly constructed which allow the construction of resolutions for irreducible representations using these Fock space realizations. Finally, vertex operators between these irreducible representations are explicitly constructed as chain maps between the resolutions; these vertex operators allow the construction of rational conformal field theories according to an algebraic prescription.
Algorithmic and experimental methods in algebra, geometry, and number theory
Decker, Wolfram; Malle, Gunter
2017-01-01
This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 “Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory”, which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved. The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It off...
Current algebra for chiral gauge theories
Energy Technology Data Exchange (ETDEWEB)
Manias, M.V.; von Reichenbach, M.C.; Schaposnik, F.A.; Trobo, M.
1987-07-01
Chiral gauge theories are studied with a special emphasis on the treatment of gauge degrees of freedom so as to obtain a gauge-invariant effective action from which current commutators can be evaluated. It is explicitly shown in a simple example that these commutators are those to be expected in a gauge-invariant theory.
Quantization of gauge theories with open algebra in the representation with the third ghost
International Nuclear Information System (INIS)
Batalin, I.A.; Kallosh, R.E.
1983-01-01
We suggest a modified representation of the general BRS construction, which gives in a closed form the quantization of gauge theories with open algebra. Instead of gauging the Lagrange multiplier in this representation, we have the third ghost πsup(α) which appears in the quantization procedure on equal footing with the Faddeev-Popov ghosts anti Csup(α), Csup(α). This new representation is especially convenient in the non-singular gauges of the form 1/2#betta#sub(α#betta#chi)sup(#betta#)sub(chi)sup(α), where both sub(chi)sup(α) and #betta#sub(α#betta#) may arbitrarily depend on quantum fields. In the closed algebra case, we recover the result of Nielsen, whereas for the theories with open algebra we find new ghost couplings of the form anti Csup(n)Csup(n)πsup(m), n = 1, ...; m = 0, 1, ..., n. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado
1997-10-01
The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.
Algebra with polynomial commutation relations for Zeeman effect in Coulomb-Dirac field
International Nuclear Information System (INIS)
Karasev, M.V.; Novikova, E.M.
2005-01-01
One studies a model of a particle motion in the field of electromagnetic monopole (the Coulomb-Dirac field) disturbed by homogeneous magnetic and inhomogeneous electric fields. The quantum averaging is followed by occurrence of the integrated system the Hamiltonian of which is represented by the algebra elements with polynomial commutation relations. One forms irreducible representations of the mentioned algebra and its hypergeometric coherent states. One obtains the representation of the eigenfunction of the assumption problem and specifies the asymptotics of eigenvalues in the first order of perturbation theory [ru
Vortex lattice theory: A linear algebra approach
Chamoun, George C.
Vortex lattices are prevalent in a large class of physical settings that are characterized by different mathematical models. We present a coherent and generalized Hamiltonian fluid mechanics-based formulation that reduces all vortex lattices into a classic problem in linear algebra for a non-normal matrix A. Via Singular Value Decomposition (SVD), the solution lies in the null space of the matrix (i.e., we require nullity( A) > 0) as well as the distribution of its singular values. We demonstrate that this approach provides a good model for various types of vortex lattices, and makes it possible to extract a rich amount of information on them. The contributions of this thesis can be classified into four main points. The first is asymmetric equilibria. A 'Brownian ratchet' construct was used which converged to asymmetric equilibria via a random walk scheme that utilized the smallest singular value of A. Distances between configurations and equilibria were measured using the Frobenius norm ||·||F and 2-norm ||·||2, and conclusions were made on the density of equilibria within the general configuration space. The second contribution used Shannon Entropy, which we interpret as a scalar measure of the robustness, or likelihood of lattices to occur in a physical setting. Third, an analytic model was produced for vortex street patterns on the sphere by using SVD in conjunction with expressions for the center of vorticity vector and angular velocity. Equilibrium curves within the configuration space were presented as a function of the geometry, and pole vortices were shown to have a critical role in the formation and destruction of vortex streets. The fourth contribution entailed a more complete perspective of the streamline topology of vortex streets, linking the bifurcations to critical points on the equilibrium curves.
Algebra of Complex Vectors and Applications in Electromagnetic Theory and Quantum Mechanics
Directory of Open Access Journals (Sweden)
Kundeti Muralidhar
2015-08-01
Full Text Available A complex vector is a sum of a vector and a bivector and forms a natural extension of a vector. The complex vectors have certain special geometric properties and considered as algebraic entities. These represent rotations along with specified orientation and direction in space. It has been shown that the association of complex vector with its conjugate generates complex vector space and the corresponding basis elements defined from the complex vector and its conjugate form a closed complex four dimensional linear space. The complexification process in complex vector space allows the generation of higher n-dimensional geometric algebra from (n — 1-dimensional algebra by considering the unit pseudoscalar identification with square root of minus one. The spacetime algebra can be generated from the geometric algebra by considering a vector equal to square root of plus one. The applications of complex vector algebra are discussed mainly in the electromagnetic theory and in the dynamics of an elementary particle with extended structure. Complex vector formalism simplifies the expressions and elucidates geometrical understanding of the basic concepts. The analysis shows that the existence of spin transforms a classical oscillator into a quantum oscillator. In conclusion the classical mechanics combined with zeropoint field leads to quantum mechanics.
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, A.V.
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru
Conformal field theory with gauge symmetry
Ueno, Kenji
2008-01-01
This book presents a systematic approach to conformal field theory with gauge symmetry from the point of view of complex algebraic geometry. After presenting the basic facts of the theory of compact Riemann surfaces and the representation theory of affine Lie algebras in Chapters 1 and 2, conformal blocks for pointed Riemann surfaces with coordinates are constructed in Chapter 3. In Chapter 4 the sheaf of conformal blocks associated to a family of pointed Riemann surfaces with coordinates is constructed, and in Chapter 5 it is shown that this sheaf supports a projective flat connection-one of
Riemann surfaces and algebraic curves a first course in Hurwitz theory
Cavalieri, Renzo
2016-01-01
Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.
K-theory for certain extension algebras of purely infinite simple C ...
Indian Academy of Sciences (India)
London/Singapore/Hong Kong/Bangalore: World Scientific) (2001). [6] Lin H, On the classification of C∗. -algebras of real rank zero with zero K1, J. Operator. Theory 35 (1996) 147–178. [7] Lin H, A classification theorem for infinite Toeplitz algebras, in Operator algebras and operator theory (Shanghai) (1997), vol. 228 of ...
K-theory for certain extension algebras of purely infinite simple C ...
Indian Academy of Sciences (India)
Introduction and preliminaries. In the 1960s, Atiyah and Hirzebruch developed the K-theory which is based on the work of Grothendieck in algebraic geometry. It was introduced as a tool in C∗. -algebras theory in the early 1970s through some specific important applications. One is the classification of AF-algebras given by ...
Modular structure of local algebras associated with massless free quantum fields
International Nuclear Information System (INIS)
Hislop, P.D.
1984-01-01
The Tomita modular operators and the duality property for the local von Neumann algebras in quantum field models describing free massless particles with arbitrary helicity are studied. It is proved that the representation of the Poincare group in each model extends to a unitary representation SU(2,2), a covering group of the conformal group. An irreducible set of standard linear fields is shown to be covariant with respect to this representation. The von Neumann algebras associated with wedge, double-cone, and lightcone regions generated by these fields are proved to be unitarily equivalent. Using the results of Bisognano and Wichmann, the modular operators for these algebras are obtained in explicit form as conformal transformations and the duality property is proved. In the bose case, it is shown that the double-cone algebras constructed from any irreducible set of linear fields not including the standard fields do not satisfy duality and that any non-standard linear fields are not conformally covariant. A simple proof of duality, independent of the Tomita-Takesaki theory, for the double-cone algebras in the scalar case is also presented
Quantum field theory in gravitational background
International Nuclear Information System (INIS)
Narnhofer, H.
1986-01-01
The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space
On logical, algebraic, and probabilistic aspects of fuzzy set theory
Mesiar, Radko
2016-01-01
The book is a collection of contributions by leading experts, developed around traditional themes discussed at the annual Linz Seminars on Fuzzy Set Theory. The different chapters have been written by former PhD students, colleagues, co-authors and friends of Peter Klement, a leading researcher and the organizer of the Linz Seminars on Fuzzy Set Theory. The book also includes advanced findings on topics inspired by Klement’s research activities, concerning copulas, measures and integrals, as well as aggregation problems. Some of the chapters reflect personal views and controversial aspects of traditional topics, while others deal with deep mathematical theories, such as the algebraic and logical foundations of fuzzy set theory and fuzzy logic. Originally thought as an homage to Peter Klement, the book also represents an advanced reference guide to the mathematical theories related to fuzzy logic and fuzzy set theory with the potential to stimulate important discussions on new research directions in the fiel...
A complexity theory based on Boolean algebra
DEFF Research Database (Denmark)
Skyum, Sven; Valiant, Leslie
1985-01-01
A projection of a Boolean function is a function obtained by substituting for each of its variables a variable, the negation of a variable, or a constant. Reducibilities among computational problems under this relation of projection are considered. It is shown that much of what is of everyday rel...... relevance in Turing-machine-based complexity theory can be replicated easily and naturally in this elementary framework. Finer distinctions about the computational relationships among natural problems can be made than in previous formulations and some negative results are proved....
Bilinear covariants and spinor fields duality in quantum Clifford algebras
Energy Technology Data Exchange (ETDEWEB)
Abłamowicz, Rafał, E-mail: rablamowicz@tntech.edu [Department of Mathematics, Box 5054, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Gonçalves, Icaro, E-mail: icaro.goncalves@ufabc.edu.br [Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, 05508-090, São Paulo, SP (Brazil); Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy)
2014-10-15
Classification of quantum spinor fields according to quantum bilinear covariants is introduced in a context of quantum Clifford algebras on Minkowski spacetime. Once the bilinear covariants are expressed in terms of algebraic spinor fields, the duality between spinor and quantum spinor fields can be discussed. Thus, by endowing the underlying spacetime with an arbitrary bilinear form with an antisymmetric part in addition to a symmetric spacetime metric, quantum algebraic spinor fields and deformed bilinear covariants can be constructed. They are thus compared to the classical (non quantum) ones. Classes of quantum spinor fields classes are introduced and compared with Lounesto's spinor field classification. A physical interpretation of the deformed parts and the underlying Z-grading is proposed. The existence of an arbitrary bilinear form endowing the spacetime already has been explored in the literature in the context of quantum gravity [S. W. Hawking, “The unpredictability of quantum gravity,” Commun. Math. Phys. 87, 395 (1982)]. Here, it is shown further to play a prominent role in the structure of Dirac, Weyl, and Majorana spinor fields, besides the most general flagpoles and flag-dipoles. We introduce a new duality between the standard and the quantum spinor fields, by showing that when Clifford algebras over vector spaces endowed with an arbitrary bilinear form are taken into account, a mixture among the classes does occur. Consequently, novel features regarding the spinor fields can be derived.
Walker, Christine
2008-01-01
The purpose of this grounded theory study was to discover the factors that contribute to the success or failure of college algebra for students taking college algebra by distance education Internet, and then generate a theory of success or failure of the group of College Algebra Internet students at one Utah college. Qualitative data were collected and analyzed on students’ perceptions and perspectives of a College Algebra Internet course that they took during the spring or summer 2006 semest...
K theoretical approach to the fusion rules of conformal quantum field theories
International Nuclear Information System (INIS)
Recknagel, A.
1993-09-01
Conformally invariant quantum field theories are investigated using concepts of the algebraic approach to quantum field theory as well as techniques from the theory of operator algebras. Arguments from the study of statistical lattice models in one and two dimensions, from recent developments in algebraic quantum field theory, and from other sources suggest that there exists and intimate connection between conformal field theories and a special class of C*-algebras, the so-called AF-algebras. For a series of Virasoro minimal models, this correspondence is made explicit by constructing path representations of the irreducible highest weight modules. We then focus on the K 0 -invariant of these path AF-algebras and show how its functorial properties allow to exploit the abstract theory of superselection sectors in order to derive the fusion rules of the W-algebras hidden in the Virasoro minimal models. (orig.)
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, Andrei V
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)
Quantum field theory in topology changing spacetimes
International Nuclear Information System (INIS)
Bauer, W.
2007-03-01
The goal of this diploma thesis is to present an overview of how to reduce the problem of topology change of general spacetimes to the investigation of elementary cobordisms. In the following we investigate the possibility to construct quantum fields on elementary cobordisms, in particular we discuss the trousers topology. Trying to avoid the problems occuring at spacetimes with instant topology change we use a model for simulating topology change. We construct the algebra of observables for a free scalar field with the algebraic approach to quantum field theory. Therefore we determine a fundamental solution of the eld equation. (orig.)
Why two local BRS algebras in bosonic string theory
International Nuclear Information System (INIS)
Bouda, A.
1993-01-01
This paper is the first of a set of two articles in which a local Becchi-Rouet-Stora (BRS) operator for string and superstring theories is constructed by using a new procedure in which the nil potency is automatically guaranteed. In this article, it is shown that in bosonic string theory, there are two different methods of dilating the ghost which give rise to two different local BRS algebras. The first method leads to well-known results, already obtained by another procedure. The second method has been applied previously by the author. (author). 8 refs
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory
Molina, Mercedes
2016-01-01
Presenting the collaborations of over thirty international experts in the latest developments in pure and applied mathematics, this volume serves as an anthology of research with a common basis in algebra, functional analysis and their applications. Special attention is devoted to non-commutative algebras, non-associative algebras, operator theory and ring and module theory. These themes are relevant in research and development in coding theory, cryptography and quantum mechanics. The topics in this volume were presented at the Workshop on Non-Associative & Non-Commutative Algebra and Operator Theory, held May 23—25, 2014 at Cheikh Anta Diop University in Dakar, Senegal in honor of Professor Amin Kaidi. The workshop was hosted by the university's Laboratory of Algebra, Cryptology, Algebraic Geometry and Applications, in cooperation with the University of Almería and the University of Málaga. Dr. Kaidi's work focuses on non-associative rings and algebras, operator theory and functional analysis, and he...
On the classical origins of yangian symmetry in integrable field theory
International Nuclear Information System (INIS)
MacKay, N.J.
1992-01-01
We show that Drinfeld's yangian algebra, studied recently as the algebra of conserved charges in certain two-dimensional integrable quantum field theories, is also present in the classical theory as a Poisson-Hopf algebra, and exhibit explicitly the Serre relations, coproduct and antipode. (orig.)
Algebra in action a course in groups, rings, and fields
Shahriari, Shahriar
2017-01-01
This text-based on the author's popular courses at Pomona College-provides a readable, student-friendly, and somewhat sophisticated introduction to abstract algebra. It is aimed at sophomore or junior undergraduates who are seeing the material for the first time. In addition to the usual definitions and theorems, there is ample discussion to help students build intuition and learn how to think about the abstract concepts. The book has over 1300 exercises and mini-projects of varying degrees of difficulty, and, to facilitate active learning and self-study, hints and short answers for many of the problems are provided. There are full solutions to over 100 problems in order to augment the text and to model the writing of solutions. Lattice diagrams are used throughout to visually demonstrate results and proof techniques. The book covers groups, rings, and fields. In group theory, group actions are the unifying theme and are introduced early. Ring theory is motivated by what is needed for solving Diophantine equa...
Foundations of algebraic geometry
Weil, A
1946-01-01
This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.
Gravitational descendants in symplectic field theory
Fabert, O.
2011-01-01
It was pointed out by Y. Eliashberg in his ICM 2006 plenary talk that the rich algebraic formalism of symplectic field theory leads to a natural appearance of quantum and classical integrable systems, at least in the case when the contact manifold is the prequantization space of a symplectic
Fusion rules in conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.
1993-06-01
Several aspects of fusion rings and fusion rule algebras, and of their manifestations in two-dimensional (conformal) field theory, are described: diagonalization and the connection with modular invariance; the presentation in terms of quotients of polynomial rings; fusion graphs; various strategies that allow for a partial classification; and the role of the fusion rules in the conformal bootstrap programme. (orig.)
General relativity invariance and string field theory
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Volovich, I.V.
1987-04-01
The general covariance principle in the string field theory is considered. The algebraic properties of the string Lie derivative are discussed. The string vielbein and spin connection are introduced and an action invariant under general co-ordinate transformation is proposed. (author). 18 refs
Abrams, Gene; Siles Molina, Mercedes
2017-01-01
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...
Proceedings of quantum field theory, quantum mechanics, and quantum optics
International Nuclear Information System (INIS)
Dodonov, V.V.; Man; ko, V.I.
1991-01-01
This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups
An instrumentation theory view on students’ use of an applet for algebraic substitution
Jupri, A.; Drijvers, P.H.M.; Van den Heuvel-Panhuizen, M.
2016-01-01
In this paper we investigated the relationship between the use of a digital tool for algebra and students’ algebraic understanding from an instrumentation theory perspective. In particular, we considered the schemes that students developed for algebraic substitution using an applet called Cover-up.
Field theories with subcanonical fields
International Nuclear Information System (INIS)
Bigi, I.I.Y.
1976-01-01
The properties of quantum field theories with spinor fields of dimension less than the canonical value of 3/2 are studied. As a starting point for the application of common perturbation theory we look for the linear version of these theories. A gange-interaction is introduced and with the aid of power counting the renormalizability of the theory is shown. It follows that in the case of a spinor-field with negative dimension renormalization can only be attained if the interaction has a further symmetry. By this symmetry the theory is determined in an unequivocal way. The gange-interaction introduced in the theory leads to a spontaneous breakdown of scale invariance whereby masses are produced. At the same time the spinor-field operators can now be separated in two orthogonal sections with opposite norm. It is proposed to use the section with negative (positive) norm to describe hadrons (leptons) respectively. (orig./WL) [de
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
New set of auxiliary fields for supergravity theories
International Nuclear Information System (INIS)
Oliveira Rivelles, V. de.
1983-02-01
A brief introduction on supersymmetry is given. The problems with the obtainment of the auxiliary fields in supergravity theories are discussed, after a short presentation of the supersymmetry algebra representations. (L.C.) [pt
Zero Divisors in Associative Algebras over Infinite Fields
Schweitzer, Michael; Finch, Steven
1999-01-01
Let F be an infinite field. We prove that the right zero divisors of a three-dimensional associative F-algebra A must form the union of at most finitely many linear subspaces of A. The proof is elementary and written with students as the intended audience.
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
Osborn, J
1989-01-01
During the academic year 1987-1988 the University of Wisconsin in Madison hosted a Special Year of Lie Algebras. A Workshop on Lie Algebras, of which these are the proceedings, inaugurated the special year. The principal focus of the year and of the workshop was the long-standing problem of classifying the simple finite-dimensional Lie algebras over algebraically closed field of prime characteristic. However, other lectures at the workshop dealt with the related areas of algebraic groups, representation theory, and Kac-Moody Lie algebras. Fourteen papers were presented and nine of these (eight research articles and one expository article) make up this volume.
Linear response theory an analytic-algebraic approach
De Nittis, Giuseppe
2017-01-01
This book presents a modern and systematic approach to Linear Response Theory (LRT) by combining analytic and algebraic ideas. LRT is a tool to study systems that are driven out of equilibrium by external perturbations. In particular the reader is provided with a new and robust tool to implement LRT for a wide array of systems. The proposed formalism in fact applies to periodic and random systems in the discrete and the continuum. After a short introduction describing the structure of the book, its aim and motivation, the basic elements of the theory are presented in chapter 2. The mathematical framework of the theory is outlined in chapters 3–5: the relevant von Neumann algebras, noncommutative $L^p$- and Sobolev spaces are introduced; their construction is then made explicit for common physical systems; the notion of isopectral perturbations and the associated dynamics are studied. Chapter 6 is dedicated to the main results, proofs of the Kubo and Kubo-Streda formulas. The book closes with a chapter about...
Won, Chang-Hee; Michel, Anthony N
2008-01-01
This volume - dedicated to Michael K. Sain on the occasion of his seventieth birthday - is a collection of chapters covering recent advances in stochastic optimal control theory and algebraic systems theory. Written by experts in their respective fields, the chapters are thematically organized into four parts: Part I focuses on statistical control theory, where the cost function is viewed as a random variable and performance is shaped through cost cumulants. In this respect, statistical control generalizes linear-quadratic-Gaussian and H-infinity control. Part II addresses algebraic systems th
Algebraic structure of general electromagnetic fields and energy flow
International Nuclear Information System (INIS)
Hacyan, Shahen
2011-01-01
Highlights: → Algebraic structure of general electromagnetic fields in stationary spacetime. → Eigenvalues and eigenvectors of the electomagnetic field tensor. → Energy-momentum in terms of eigenvectors and Killing vector. → Explicit form of reference frame with vanishing Poynting vector. → Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.
algebra of a smooth Frechet algebra crossed product by R, K-theory ...
Indian Academy of Sciences (India)
-topology τ ([14], Appendix I). The fol- lowing theorem shows that for a smooth action, the eveloping algebra of smooth crossed product is the continuous crossed product of the enveloping algebra. Theorem 1. Let α be an m-tempered strongly continuous action of R by continuous. ∗. -automorphisms of a Frechet. ∗. -algebra ...
Quantum field theory in generalised Snyder spaces
International Nuclear Information System (INIS)
Meljanac, S.; Meljanac, D.; Mignemi, S.; Štrajn, R.
2017-01-01
We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.
Staircase Models from Affine Toda Field Theory
Dorey, P; Dorey, Patrick; Ravanini, Francesco
1993-01-01
We propose a class of purely elastic scattering theories generalising the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g=A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, we give analytic arguments in support of a conjectured renormalisation group flow visiting the neighbourhood of each W_g minimal model in turn.
Quantum field theory in generalised Snyder spaces
Energy Technology Data Exchange (ETDEWEB)
Meljanac, S.; Meljanac, D. [Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb (Croatia); Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)
2017-05-10
We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.
Algebraic renormalization of supersymmetric gauge theories with dimensionful parameters
International Nuclear Information System (INIS)
Golterman, Maarten; Shamir, Yigal
2010-01-01
It is usually believed that there are no perturbative anomalies in supersymmetric gauge theories beyond the well-known chiral anomaly. In this paper we revisit this issue, because previously given arguments are incomplete. Specifically, we rule out the existence of soft anomalies, i.e., quantum violations of supersymmetric Ward identities proportional to a mass parameter in a classically supersymmetric theory. We do this by combining a previously proven theorem on the absence of hard anomalies with a spurion analysis, using the methods of algebraic renormalization. We work in the on-shell component formalism throughout. In order to deal with the nonlinearity of on-shell supersymmetry transformations, we take the spurions to be dynamical, and show how they nevertheless can be decoupled.
International Nuclear Information System (INIS)
Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.
1987-01-01
It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper
Mathematical aspects of quantum field theories
Strobl, Thomas
2015-01-01
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...
Octonionic methods in field theory
International Nuclear Information System (INIS)
Duendarer, A.R.
1987-01-01
Some applications of octonion algebra and octonionic analysis to group theory and higher dimensional field theories are presented. To this end an eight dimensional covariant treatment of the octonion algebra is needed. The existing formulations which are covariant only in seven dimensions are reviewed. In this work the eight dimensional formulation is developed through the introduction of fourth rank tensors f abcd and f' abcd in eight dimensions that generalize the octonionic structure constants. The seven octonion units e α are generalized to an 8-vector e a and two second rank tensors e ab and e' ab . Higher rank tensors associated with e α are also introduced. Chirality and duality properties of the structure tensors, f,f' and the octonionic tensors e a , e ab , etc. are discussed and various new identities relating these quantities are derived. New vector products for two, three and four octonions are introduced and their duality properties with respect to the eight-dimensional Levi-Civita tensor as well as their orthogonality properties are studied
Albert, A A
1939-01-01
The first three chapters of this work contain an exposition of the Wedderburn structure theorems. Chapter IV contains the theory of the commutator subalgebra of a simple subalgebra of a normal simple algebra, the study of automorphisms of a simple algebra, splitting fields, and the index reduction factor theory. The fifth chapter contains the foundation of the theory of crossed products and of their special case, cyclic algebras. The theory of exponents is derived there as well as the consequent factorization of normal division algebras into direct factors of prime-power degree. Chapter VI con
Fine, Henry Burchard
2005-01-01
At the beginning of the twentieth century, college algebra was taught differently than it is nowadays. There are many topics that are now part of calculus or analysis classes. Other topics are covered only in abstract form in a modern algebra class on field theory. Fine's College Algebra offers the reader a chance to learn the origins of a variety of topics taught in today's curriculum, while also learning valuable techniques that, in some cases, are almost forgotten. In the early 1900s, methods were often emphasized, rather than abstract principles. In this book, Fine includes detailed discus
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
International Nuclear Information System (INIS)
Ryder, L.H.
1985-01-01
This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity
A covariant open bosonic string field theory including the endpoint and middlepoint interaction
International Nuclear Information System (INIS)
Liu, B.G.; Northwest Univ., Xian; Chen, Y.X.
1988-01-01
Extending the usual endpoint and midpoint interactions, we introduce numerous kinds of interactions, labelled by a parameter λ and obtain a non-commutative and associative string field algebra by adding up all interactions. With this algebra we develop a covariant open bosonic string field theory, which reduces to Witten's open bosonic string field theory under a special string length choice. (orig.)
International Nuclear Information System (INIS)
Kaku, M.
1987-01-01
In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory
Categorical Algebra and its Applications
1988-01-01
Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.
Perez, Uzziel; Ang, Angeleene S.; Sugon Jr., Quirino M.; McNamara, Daniel J.; Yoshikawa, Akimasa
2015-01-01
We studied the orbit of an electron revolving around an infinitely massive nucleus of a large classical Hydrogen atom subject to an AC electric field oscillating perpendicular to the electron's circular orbit. Using perturbation theory in geometric algebra, we show that the equation of motion of the electron perpendicular to the unperturbed orbital plane satisfies a forced simple harmonic oscillator equation found in Lorentz dispersion law in Optics. We show that even though we did not introd...
Conformal field theories and tensor categories. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics
2014-08-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Large $N$ QCD and $q$-Deformed Quantum Field Theories
Aref'eva, I. Ya.
1996-01-01
A construction of master field describing multicolour QCD is presented. The master fields for large N matrix theories satisfy to standard equations of relativistic field theory but fields are quantized according $q$-deformed commutation relations with $q=0$. These commutation relations are realized in the Boltzmannian Fock space. The master field for gauge theory does not take values in a finite-dimensional Lie algebra, however, there is a non-Abelian gauge symmetry and BRST-invariance.
The Poisson algebra of the invariant charges of the Nambu-Goto theory: Casimir elements
International Nuclear Information System (INIS)
Pohlmeyer, K.
1988-01-01
The reparametrization invariant ''non-local'' conserved charges of the Nambu-Goto theory form an algebra under Poisson bracket operation. The center of the formal closure of this algebra is determined. The relation of the central elements to the constraints of the Nambu-Goto theory is clarified. (orig.)
Three-dimensional spin-3 theories based on general kinematical algebras
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, Eric [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Grumiller, Daniel; Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria); Rosseel, Jan [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria)
2017-01-25
We initiate the study of non- and ultra-relativistic higher spin theories. For sake of simplicity we focus on the spin-3 case in three dimensions. We classify all kinematical algebras that can be obtained by all possible Inönü-Wigner contraction procedures of the kinematical algebra of spin-3 theory in three dimensional (anti-) de Sitter space-time. We demonstrate how to construct associated actions of Chern-Simons type, directly in the ultra-relativistic case and by suitable algebraic extensions in the non-relativistic case. We show how to give these kinematical algebras an infinite-dimensional lift by imposing suitable boundary conditions in a theory we call “Carroll Gravity”, whose asymptotic symmetry algebra turns out to be an infinite-dimensional extension of the Carroll algebra.
Ketov, Sergei V
1995-01-01
Conformal field theory is an elegant and powerful theory in the field of high energy physics and statistics. In fact, it can be said to be one of the greatest achievements in the development of this field. Presented in two dimensions, this book is designed for students who already have a basic knowledge of quantum mechanics, field theory and general relativity. The main idea used throughout the book is that conformal symmetry causes both classical and quantum integrability. Instead of concentrating on the numerous applications of the theory, the author puts forward a discussion of the general
Hecke algebras with unequal parameters
Lusztig, G
2003-01-01
Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...
International Nuclear Information System (INIS)
Souza, Manoelito M. de
1997-01-01
We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)
International Nuclear Information System (INIS)
Eloranta, E.
2003-11-01
The geophysical field theory includes the basic principles of electromagnetism, continuum mechanics, and potential theory upon which the computational modelling of geophysical phenomena is based on. Vector analysis is the main mathematical tool in the field analyses. Electrostatics, stationary electric current, magnetostatics, and electrodynamics form a central part of electromagnetism in geophysical field theory. Potential theory concerns especially gravity, but also electrostatics and magnetostatics. Solid state mechanics and fluid mechanics are central parts in continuum mechanics. Also the theories of elastic waves and rock mechanics belong to geophysical solid state mechanics. The theories of geohydrology and mass transport form one central field theory in geophysical fluid mechanics. Also heat transfer is included in continuum mechanics. (orig.)
New topological invariants for non-abelian antisymmetric tensor fields from extended BRS algebra
International Nuclear Information System (INIS)
Boukraa, S.; Maillet, J.M.; Nijhoff, F.
1988-09-01
Extended non-linear BRS and Gauge transformations containing Lie algebra cocycles, and acting on non-abelian antisymmetric tensor fields are constructed in the context of free differential algebras. New topological invariants are given in this framework. 6 refs
Geometric Methods in the Algebraic Theory of Quadratic Forms : Summer School
2004-01-01
The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the renewal of the theory by Pfister in the 1960's. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes - an introduction to motives of quadrics by Alexander Vishik, with various applications, notably to the splitting patterns of quadratic forms under base field extensions; - papers by Oleg Izhboldin and Nikita Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields which carry anisotropic quadratic forms of dimension 9, but none of higher dimension; - a contribution in French by Bruno Kahn which lays out a general fra...
Quantum curves and conformal field theory
Manabe, Masahide; Sułkowski, Piotr
2017-06-01
To a given algebraic curve we assign an infinite family of quantum curves (Schrödinger equations), which are in one-to-one correspondence with, and have the structure of, Virasoro singular vectors. For a spectral curve of a matrix model we build such quantum curves out of an appropriate representation of the Virasoro algebra, encoded in the structure of the α /β -deformed matrix integral and its loop equation. We generalize this construction to a large class of algebraic curves by means of a refined topological recursion. We also specialize this construction to various specific matrix models with polynomial and logarithmic potentials, and among other results, show that various ingredients familiar in the study of conformal field theory (Ward identities, correlation functions and a representation of Virasoro operators acting thereon, Belavin-Polyakov-Zamolodchikov equations) arise upon specialization of our formalism to the multi-Penner matrix model.
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Jorgensen, Palle E T
1987-01-01
Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e
Light-front quantization of field theory
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1996-07-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs.
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
Superspace conformal field theory
International Nuclear Information System (INIS)
Quella, Thomas
2013-07-01
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Superspace conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Sensitivity theory for general non-linear algebraic equations with constraints
International Nuclear Information System (INIS)
Oblow, E.M.
1977-04-01
Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems
Hyperfunction quantum field theory
International Nuclear Information System (INIS)
Nagamachi, S.; Mugibayashi, N.
1976-01-01
The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de
Nazarov, Anton
2012-11-01
In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent
Yang-Mills and some related algebras
Connes, Alain; Dubois-Violette, Michel
2004-01-01
15 pages. Contribution to the Proceedings of Rigorous Quantum Field Theory in the honour of Jacques Bros.; International audience; After a short introduction on the theory of homogeneous algebras we describe the application of this theory to the analysis of the cubic Yang-Mills algebra, the quadratic self-duality algebras, their \\"super\\" versions as well as to some generalization.
Introduction to relation algebras relation algebras
Givant, Steven
2017-01-01
The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...
Algebraic equations an introduction to the theories of Lagrange and Galois
Dehn, Edgar
2004-01-01
Meticulous and complete, this presentation of Galois' theory of algebraic equations is geared toward upper-level undergraduate and graduate students. The theories of both Lagrange and Galois are developed in logical rather than historical form. And they are given a more thorough exposition than is customary. For this reason, and also because the author concentrates on concrete applications of algebraic theory, Algebraic Equations is an excellent supplementary text, offering students a concrete introduction to the abstract principles of Galois theory. Of further value are the many numerical ex
Baden Fuller, A J
2014-01-01
Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation
International Nuclear Information System (INIS)
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
International Nuclear Information System (INIS)
Thierry-Mieg, Jean
2006-01-01
In Yang-Mills theory, the charges of the left and right massless Fermions are independent of each other. We propose a new paradigm where we remove this freedom and densify the algebraic structure of Yang-Mills theory by integrating the scalar Higgs field into a new gauge-chiral 1-form which connects Fermions of opposite chiralities. Using the Bianchi identity, we prove that the corresponding covariant differential is associative if and only if we gauge a Lie-Kac super-algebra. In this model, spontaneous symmetry breakdown naturally occurs along an odd generator of the super-algebra and induces a representation of the Connes-Lott non commutative differential geometry of the 2-point finite space
The C*-algebra of a vector bundle and fields of Cuntz algebras
Vasselli, Ezio
2004-01-01
We study the Pimsner algebra associated with the module of continuous sections of a Hilbert bundle, and prove that it is a continuous bundle of Cuntz algebras. We discuss the role of such Pimsner algebras w.r.t. the notion of inner endomorphism. Furthermore, we study bundles of Cuntz algebras carrying a global circle action, and assign to them a class in the representable KK-group of the zero-grade bundle. We compute such class for the Pimsner algebra of a vector bundle.
Strings - Links between conformal field theory, gauge theory and gravity
International Nuclear Information System (INIS)
Troost, J.
2009-05-01
String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity
Type II Superstring Field Theory: Geometric Approach and Operadic Description
Jurco, Branislav
2013-01-01
We outline the construction of type II superstring field theory leading to a geometric and algebraic BV master equation, analogous to Zwiebach's construction for the bosonic string. The construction uses the small Hilbert space. Elementary vertices of the non-polynomial action are described with the help of a properly formulated minimal area problem. They give rise to an infinite tower of superstring field products defining a $\\mathcal{N}=1$ generalization of a loop homotopy Lie algebra, the genus zero part generalizing a homotopy Lie algebra. Finally, we give an operadic interpretation of the construction.
Forward error correction based on algebraic-geometric theory
A Alzubi, Jafar; M Chen, Thomas
2014-01-01
This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
A geometric formulation of exceptional field theory
Energy Technology Data Exchange (ETDEWEB)
Bosque, Pascal du [Arnold Sommerfeld Center for Theoretical Physics,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 München (Germany); Hassler, Falk [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 E. Cameron Ave., Chapel Hill, NC 27599-3255 (United States); City University of New York, The Graduate Center, 365 Fifth Avenue, New York, NY 10016 (United States); Department of Physics, Columbia University, Pupin Hall, 550 West 120th St., New York, NY 10027 (United States); Lüst, Dieter [Arnold Sommerfeld Center for Theoretical Physics,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 München (Germany); Malek, Emanuel [Arnold Sommerfeld Center for Theoretical Physics,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany)
2017-03-01
We formulate the full bosonic SL(5) exceptional field theory in a coordinate-invariant manner. Thereby we interpret the 10-dimensional extended space as a manifold with SL(5)×ℝ{sup +}-structure. We show that the algebra of generalised diffeomorphisms closes subject to a set of closure constraints which are reminiscent of the quadratic and linear constraints of maximal seven-dimensional gauged supergravities, as well as the section condition. We construct an action for the full bosonic SL(5) exceptional field theory, even when the SL(5)×ℝ{sup +}-structure is not locally flat.
Pure field theories and MACSYMA algorithms
Ament, W. S.
1977-01-01
A pure field theory attempts to describe physical phenomena through singularity-free solutions of field equations resulting from an action principle. The physics goes into forming the action principle and interpreting specific results. Algorithms for the intervening mathematical steps are sketched. Vacuum general relativity is a pure field theory, serving as model and providing checks for generalizations. The fields of general relativity are the 10 components of a symmetric Riemannian metric tensor; those of the Einstein-Straus generalization are the 16 components of a nonsymmetric. Algebraic properties are exploited in top level MACSYMA commands toward performing some of the algorithms of that generalization. The light cone for the theory as left by Einstein and Straus is found and simplifications of that theory are discussed.
Filtrated K-theory for real rank zero C*-algebras
DEFF Research Database (Denmark)
Arklint, Sara Esther; Restorff, Gunnar; Ruiz, Efren
2012-01-01
The smallest primitive ideal spaces for which there exist counterexamples to the classification of non-simple, purely infinite, nuclear, separable C*-algebras using filtrated K-theory, are four-point spaces. In this article, we therefore restrict to real rank zero C*-algebras with four-point prim......The smallest primitive ideal spaces for which there exist counterexamples to the classification of non-simple, purely infinite, nuclear, separable C*-algebras using filtrated K-theory, are four-point spaces. In this article, we therefore restrict to real rank zero C*-algebras with four......-point primitive ideal spaces. Up to homeomorphism, there are ten different connected T0-spaces with exactly four points. We show that filtrated K-theory classifies real rank zero, tight, stable, purely infinite, nuclear, separable C*-algebras that satisfy that all simple subquotients are in the bootstrap class...
Time-evolution operators for (coupled) time-dependent oscillators and Lie algebraic structure theory
Wolf, F.; Korsch, H. J.
1988-03-01
This paper deals with the application of Lie algebraic structure theory to time-dependent quantum systems making use of the Levi-Malcev decomposition of the Lie algebra generated by the Hamiltonian and the Wei-Norman representation of the time-evolution operator. In particular, (coupled) harmonic-oscillator systems are studied. Explicit formulas for expectation values and transition probabilities are derived.
Logarithmic conformal field theory: beyond an introduction
Creutzig, Thomas; Ridout, David
2013-12-01
This article aims to review a selection of central topics and examples in logarithmic conformal field theory. It begins with the remarkable observation of Cardy that the horizontal crossing probability of critical percolation may be computed analytically within the formalism of boundary conformal field theory. Cardy’s derivation relies on certain implicit assumptions which are shown to lead inexorably to indecomposable modules and logarithmic singularities in correlators. For this, a short introduction to the fusion algorithm of Nahm, Gaberdiel and Kausch is provided. While the percolation logarithmic conformal field theory is still not completely understood, there are several examples for which the formalism familiar from rational conformal field theory, including bulk partition functions, correlation functions, modular transformations, fusion rules and the Verlinde formula, has been successfully generalized. This is illustrated for three examples: the singlet model \\mathfrak {M} (1,2), related to the triplet model \\mathfrak {W} (1,2), symplectic fermions and the fermionic bc ghost system; the fractional level Wess-Zumino-Witten model based on \\widehat{\\mathfrak {sl}} \\left( 2 \\right) at k=-\\frac{1}{2}, related to the bosonic βγ ghost system; and the Wess-Zumino-Witten model for the Lie supergroup \\mathsf {GL} \\left( 1 {\\mid} 1 \\right), related to \\mathsf {SL} \\left( 2 {\\mid} 1 \\right) at k=-\\frac{1}{2} and 1, the Bershadsky-Polyakov algebra W_3^{(2)} and the Feigin-Semikhatov algebras W_n^{(2)}. These examples have been chosen because they represent the most accessible, and most useful, members of the three best-understood families of logarithmic conformal field theories. The logarithmic minimal models \\mathfrak {W} (q,p), the fractional level Wess-Zumino-Witten models, and the Wess-Zumino-Witten models on Lie supergroups (excluding \\mathsf {OSP} \\left( 1 {\\mid} 2n \\right)). In this review, the emphasis lies on the representation theory
International Nuclear Information System (INIS)
Ramond, P.
1987-01-01
We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 -anti L 0 =0 should not be imposed on all the fields of the closed string in the gauge invariant formalism; we show that it can be incorporated in the gauge invariant formalism at the price of being unable to extract the equations of motion from a Langrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. (orig.)
International Nuclear Information System (INIS)
Ramond, P.
1986-01-01
We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 - L 0 -bar = 0 should not be imposed on all the fields of the closed string in the gauge invariant formalism: we show that it can be incorporated in the invariant formalism at the price of being unable to extract the equations of motion from a Lagrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. 20 refs
Renormalization and Interaction in Quantum Field Theory
International Nuclear Information System (INIS)
RATSIMBARISON, H.M.
2008-01-01
This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr
International Nuclear Information System (INIS)
Strominger, A.
1987-01-01
A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)
Lattice Ising model in a field: E8 scattering theory
Bazhanov, V.V.; Nienhuis, B.; Warnaar, S.O.
1994-01-01
Zamolodchikov found an integrable field theory related to the Lie algebra E8, which describes the scaling limit of the Ising model in a magnetic field. He conjectured that there also exist solvable lattice models based on E8 in the universality class of the Ising model in a field. The dilute A3
On the algebraic scattering theory for heavy ions
International Nuclear Information System (INIS)
Amos, K.; Kiedeldey, H.; Morrison, I.; Allen, L.J.
1989-01-01
Algebraic potentials from SO(3,1) and SO(3,2) representations of scattering functions are deduced by matching to scattering functions obtained by fitting 12 C- 12 C elastic scattering differential cross-sections. Their variations with energy suggest a simple mapping between algebraic and coordinate space interactions. 13 refs., 5 figs., 2 tabs
Austerity and geometric structure of field theories
International Nuclear Information System (INIS)
Kheyfets, A.
1986-01-01
The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories
Interpolating string field theories
International Nuclear Information System (INIS)
Zwiebach, B.
1992-01-01
This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles
Hopf algebra structures in particle physics
International Nuclear Information System (INIS)
Weinzierl, Stefan
2004-01-01
In the recent years, Hopf algebras have been introduced to describe certain combinatorial properties of quantum field theories. I give a basic introduction to these algebras and review some occurrences in particle physics. (orig.)
Rosita, N. T.
2018-03-01
The purpose of this study is to analyse algebraic reasoning ability using the SOLO model as a theoretical framework to assess students’ algebraic reasoning abilities of Field Dependent cognitive (FD), Field Independent (FI) and Gender perspectives. The method of this study is a qualitative research. The instrument of this study is the researcher himself assisted with algebraic reasoning tests, the problems have been designed based on NCTM indicators and algebraic reasoning according to SOLO model. While the cognitive style of students is determined using Group Embedded Figure Test (GEFT), as well as interviews on the subject as triangulation. The subjects are 15 female and 15 males of the sixth semester students of mathematics education, STKIP Sebelas April. The results of the qualitative data analysis is that most subjects are at the level of unistructural and multi-structural, subjects at the relational level have difficulty in forming a new linear pattern. While the subjects at the extended abstract level are able to meet all the indicators of algebraic reasoning ability even though some of the answers are not perfect yet. Subjects of FI tend to have higher algebraic reasoning abilities than of the subject of FD.
Petrov, Alexey A
2016-01-01
This book is a broad-based text intended to help the growing student body interested in topics such as gravitational effective theories, supersymmetric effective theories, applications of effective theory techniques to problems in condensed matter physics (superconductivity) and quantum chromodynamics (such as soft-collinear effective theory). It begins with a review of the use of symmetries to identify the relevant degrees of freedom in a problem, and then presents a variety of methods that can be used to solve physical problems. A detailed discussion of canonical examples of effective field theories with increasing complexity is then conducted. Special cases such as supersymmetry and lattice EFT are discussed, as well as recently-found applications to problems in gravitation and cosmology. An appendix includes various factoids from group theory and other topics that are used throughout the text, in an attempt to make the book self-contained.
Space-Time Coding Using Algebraic Number Theory for Broadband Wireless Communications
National Research Council Canada - National Science Library
Xia, Xiang-Gen
2008-01-01
.... The main achievements include new space-time/frequency code designs based on algebraic number theory, new space-time code designs with a new design criterion that achieve full spatial diversity...
Perturbative quantization of Yang-Mills theory with classical double as gauge algebra
Ruiz Ruiz, F.
2016-02-01
Perturbative quantization of Yang-Mills theory with a gauge algebra given by the classical double of a semisimple Lie algebra is considered. The classical double of a real Lie algebra is a nonsemisimple real Lie algebra that admits a nonpositive definite invariant metric, the indefiniteness of the metric suggesting an apparent lack of unitarity. It is shown that the theory is UV divergent at one loop and that there are no radiative corrections at higher loops. One-loop UV divergences are removed through renormalization of the coupling constant, thus introducing a renormalization scale. The terms in the classical action that would spoil unitarity are proved to be cohomologically trivial with respect to the Slavnov-Taylor operator that controls gauge invariance for the quantum theory. Hence they do not contribute gauge invariant radiative corrections to the quantum effective action and the theory is unitary.
Perturbative quantization of Yang-Mills theory with classical double as gauge algebra
Energy Technology Data Exchange (ETDEWEB)
Ruiz Ruiz, F. [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)
2016-02-15
Perturbative quantization of Yang-Mills theory with a gauge algebra given by the classical double of a semisimple Lie algebra is considered. The classical double of a real Lie algebra is a nonsemisimple real Lie algebra that admits a nonpositive definite invariant metric, the indefiniteness of the metric suggesting an apparent lack of unitarity. It is shown that the theory is UV divergent at one loop and that there are no radiative corrections at higher loops. One-loop UV divergences are removed through renormalization of the coupling constant, thus introducing a renormalization scale. The terms in the classical action that would spoil unitarity are proved to be cohomologically trivial with respect to the Slavnov-Taylor operator that controls gauge invariance for the quantum theory. Hence they do not contribute gauge invariant radiative corrections to the quantum effective action and the theory is unitary. (orig.)
Wentzel, Gregor
1949-01-01
A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Theoretical physics. Field theory
International Nuclear Information System (INIS)
Landau, L.; Lifchitz, E.
2004-01-01
This book is the fifth French edition of the famous course written by Landau/Lifchitz and devoted to both the theory of electromagnetic fields and the gravity theory. The talk of the theory of electromagnetic fields is based on special relativity and relates to only the electrodynamics in vacuum and that of pointwise electric charges. On the basis of the fundamental notions of the principle of relativity and of relativistic mechanics, and by using variational principles, the authors develop the fundamental equations of the electromagnetic field, the wave equation and the processes of emission and propagation of light. The theory of gravitational fields, i.e. the general theory of relativity, is exposed in the last five chapters. The fundamentals of the tensor calculus and all that is related to it are progressively introduced just when needed (electromagnetic field tensor, energy-impulse tensor, or curve tensor...). The worldwide reputation of this book is generally allotted to clearness, to the simplicity and the rigorous logic of the demonstrations. (A.C.)
Extensions of conformal symmetry in two-dimensional quantum field theory
International Nuclear Information System (INIS)
Schoutens, C.J.M.
1989-01-01
Conformal symmetry extensions in a two-dimensional quantum field theory are the main theme of the work presented in this thesis. After a brief exposition of the formalism for conformal field theory, the motivation for studying extended symmetries in conformal field theory is presented in some detail. Supersymmetric extensions of conformal symmetry are introduced. An overview of the algebraic superconformal symmetry is given. The relevance of higher-spin bosonic extensions of the Virasoro algebra in relation to the classification program for so-called rational conformal theories is explained. The construction of a large class of bosonic extended algebras, the so-called Casimir algebras, are presented. The representation theory of these algebras is discussed and a large class of new unitary models is identified. The superspace formalism for O(N)-extended superconformal quantum field theory is presented. It is shown that such theories exist for N ≤ 4. Special attention is paid to the case N = 4 and it is shown that the allowed central charges are c(n + ,n - ) = 6n + n - /(n + ,n - ), where n + and n - are positive integers. A different class of so(N)-extended superconformal algebras is analyzed. The representation theory is studied and it is established that certain free field theories provide realizations of the algebras with level S = 1. Finally the so-called BRST construction for extended conformal algebras is considered. A nilpotent BRST charge is constructed for a large class of algebras, which contains quadratically nonlinear algebras that fall outside the traditional class if finitely generated Lie (super)algebras. The results are especially relevant for the construction of string models based on extended conformal symmetry. (author). 118 refs.; 7 tabs
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, David; Love, Alexander
1986-01-01
The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)
Field theory amplitudes in a space with SU(2) fuzziness
Komaie-Moghaddam, H.; Fatollahi, A. H.; Khorrami, M.
2008-02-01
The structure of transition amplitudes in field theory in a three-dimensional space whose spatial coordinates are noncommutative and satisfy the SU(2) Lie algebra commutation relations is examined. In particular, the basic notions for constructing the observables of the theory as well as subtleties related to the proper treatment of δ distributions (corresponding to conservation laws) are introduced. Explicit examples are given for scalar field theory amplitudes in the lowest order of perturbation.
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Slavnov, A.A.
1981-01-01
This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru
Rational first integrals for polynomial vector fields on algebraic hypersurfaces of R^N 1
Llibre, Jaume
2012-01-01
Using sophisticated techniques of Algebraic Geometry Jouanolou in 1979 showed that if the number of invariant algebraic hypersurfaces of a polynomial vector field in Rn of degree m is at least n+m−1 n+ n, then the vector field has a rational first integral. Llibre and Zhang used only Linear Algebra provided a shorter and easier proof of the result given by Jouanolou. We use ideas of Llibre and Zhang to extend the Jouanolou result to polynomial vector fields defined on algebraic regular hypers...
Theory of electromagnetic fields
Wolski, Andrzej
2011-01-01
We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.
Euclidean quantum field theory
International Nuclear Information System (INIS)
Jaffe, A.
1985-01-01
In four seminal papers, written from 1963 to 1968, Kurt Symanzik laid the foundations for his euclidean quantum field theory program (EQFT). His original goal was to use EQFT as a tool to approach the existence question for interacting quantum fields. In 1968, when other methods appeared better suited for the existence question, Symanzik abandoned this heroic attempt and redirected his research toward different questions. (orig./HSI)
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Eringen, A Cemal
1999-01-01
Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...
Lie-algebra expansions, Chern Simons theories and the Einstein Hilbert Lagrangian
Edelstein, José D.; Hassaïne, Mokhtar; Troncoso, Ricardo; Zanelli, Jorge
2006-09-01
Starting from gravity as a Chern-Simons action for the AdS algebra in five dimensions, it is possible to modify the theory through an expansion of the Lie algebra that leads to a system consisting of the Einstein-Hilbert action plus non-minimally coupled matter. The modified system is gauge invariant under the Poincaré group enlarged by an Abelian ideal. Although the resulting action naively looks like general relativity plus corrections due to matter sources, it is shown that the non-minimal couplings produce a radical departure from GR. Indeed, the dynamics is not continuously connected to the one obtained from Einstein-Hilbert action. In a matter-free configuration and in the torsionless sector, the field equations are too strong a restriction on the geometry as the metric must satisfy both the Einstein and pure Gauss-Bonnet equations. In particular, the five-dimensional Schwarzschild geometry fails to be a solution; however, configurations corresponding to a brane-world with positive cosmological constant on the worldsheet are admissible when one of the matter fields is switched on. These results can be extended to higher odd dimensions.
On the general theory of quantized fields
International Nuclear Information System (INIS)
Fredenhagen, K.
1991-10-01
In my lecture I describe the present stage of the general theory of quantized fields on the example of 5 subjects. They are ordered in the direction from large to small distances. The first one is the by now classical problem of the structure of superselection sectors. It involves the behavior of the theory at spacelike infinity and is directly connected with particle statistics and internal symmetries. It has become popular in recent years by the discovery of a lot of nontrivial models in 2d conformal-field theory, by connections to integrable models and critical behavior in statistical mechanics and by the relations to the Jones' theory of subfactors in von Neumann algebras and to the corresponding geometrical objects (braids, knots, 3d manifolds, ...). At large timelike distances the by far most important feature of quantum field theory is the particle structure. This will be the second subject of my lecture. It follows the technically most involved part which is concerned with the behavior at finite distances. Two aspets, nuclearity which emphasizes the finite density of states in phase space, and the modular structure which relies on the infinite number of degrees of freedom present even locally, and their mutual relations will be treated. The next point, involving the structure at infinitesimal distances, is the connection between the Haag-Kastler framework of algebras of local and the framework of Wightman fields. Finally, problems in approaches to quantum gravity will be discussed, as far as they are accessible by the methods of the general theory of quantized fields. (orig.)
Generalized space-time supersymmetries, division algebras and octonionic M-theory
Energy Technology Data Exchange (ETDEWEB)
Lukierski, Jerzy [University of Wroclaw (Poland). Inst. for Theoretical Physics]. E-mail: lukier@ift.uni.wroc.pl; Toppan, Francesco [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: toppan@cbpf.br
2002-03-01
We describe the set of generalized Poincare and conformal superalgebras in D= 4,5 and 7 dimensions as two sequences of superalgebraic structures, taking values in the division algebras R, C and H. The generalized conformal superalgebras are described for D = 4 by OSp(1;8|R), for D = 5 by SU(4,4;1) and for D = 7 by U{sub {alpha}}U (8;1|H). The relation with other schemes, in particular the framework of conformal spin (super) algebras and Jordan (super) algebras is discussed. By extending the division-algebra-valued super-algebras to octonions we get in D= 11 an octonionic generalized Poincare superalgebra, which we call octonionic M-algebra, describing the octonionic M-theory. It contains 32 real supercharges but, due to the octonionic structure only 52 real bosonic generators remain independent in place of the 528 bosonic charges of standard M-algebra. In octonionic M-theory there is a sort of equivalence between the octonionic M2 (supermembrane) and the octonionic M5 (super-5-brane) sectors. We also define the octonionic generalized conformal M-superalgebra with 239 bosonic generators. (author)
Flux algebra, Bianchi identities and Freed-Witten anomalies in F-theory compactifications
International Nuclear Information System (INIS)
Aldazabal, G.; Camara, P.G.; Rosabal, J.A.
2009-01-01
We discuss the structure of 4D gauged supergravity algebras corresponding to globally non-geometric compactifications of F-theory, admitting a local geometric description in terms of 10D supergravity. By starting with the well-known algebra of gauge generators associated to non-geometric type IIB fluxes, we derive a full algebra containing all, closed RR and NSNS, geometric and non-geometric dual fluxes. We achieve this generalization by a systematic application of SL(2,Z) duality transformations and by taking care of the spinorial structure of the fluxes. The resulting algebra encodes much information about the higher dimensional theory. In particular, tadpole equations and Bianchi identities are obtainable as Jacobi identities of the algebra. When a sector of magnetized (p,q) 7-branes is included, certain closed axions are gauged by the U(1) transformations on the branes. We indicate how the diagonal gauge generators of the branes can be incorporated into the full algebra, and show that Freed-Witten constraints and tadpole cancellation conditions for (p,q) 7-branes can be described as Jacobi identities satisfied by the algebra mixing bulk and brane gauge generators
Directory of Open Access Journals (Sweden)
M.R. Setare
2017-01-01
Full Text Available In this paper we study the near horizon symmetry algebra of the non-extremal black hole solutions of the Chern–Simons-like theories of gravity, which are stationary but are not necessarily spherically symmetric. We define the extended off-shell ADT current which is an extension of the generalized ADT current. We use the extended off-shell ADT current to define quasi-local conserved charges such that they are conserved for Killing vectors and asymptotically Killing vectors which depend on dynamical fields of the considered theory. We apply this formalism to the Generalized Minimal Massive Gravity (GMMG and obtain conserved charges of a spacetime which describes near horizon geometry of non-extremal black holes. Eventually, we find the algebra of conserved charges in Fourier modes. It is interesting that, similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model also we obtain the Heisenberg algebra as the near horizon symmetry algebra of the black flower solutions. Also the vacuum state and all descendants of the vacuum have the same energy. Thus these zero energy excitations on the horizon appear as soft hairs on the black hole.
Space-time algebra for the generalization of gravitational field ...
Indian Academy of Sciences (India)
Similarly, according to general relativity, the mass current produces the gravitomagnetic field just as the electric current produces the magnetic field [1]. Although Maxwell [2] himself has noticed the possibility of formulating the theory of gravitation in a form corresponding to the electromagnetic equations, the theoretical.
Quantum groups, quantum categories and quantum field theory
Fröhlich, Jürg
1993-01-01
This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.
Conditional independence in probability theory on MV-algebras
Czech Academy of Sciences Publication Activity Database
Kroupa, Tomáš
2004-01-01
Roč. 8, č. 8 (2004), s. 534-538 ISSN 1432-7643 Institutional research plan: CEZ:AV0Z1075907 Keywords : conditional independence * MV-algebra * observable Subject RIV: BA - General Mathematics Impact factor: 0.333, year: 2002
Generalized Poincaré algebras and Lovelock–Cartan gravity theory
Directory of Open Access Journals (Sweden)
P.K. Concha
2015-03-01
Full Text Available We show that the Lagrangian for Lovelock–Cartan gravity theory can be reformulated as an action which leads to General Relativity in a certain limit. In odd dimensions the Lagrangian leads to a Chern–Simons theory invariant under the generalized Poincaré algebra B2n+1, while in even dimensions the Lagrangian leads to a Born–Infeld theory invariant under a subalgebra of the B2n+1 algebra. It is also shown that torsion may occur explicitly in the Lagrangian leading to new torsional Lagrangians, which are related to the Chern–Pontryagin character for the B2n+1 group.
Equivalences from tilting theory and commutative algebra from the adjoint functor point of view
DEFF Research Database (Denmark)
Celikbas, Olgur; Holm, Henrik
2017-01-01
We give a category theoretic approach to several known equivalences from (classic) tilting theory and commutative algebra. Furthermore, we apply our main results to establish a duality theory for relative Cohen Macaulay modules in the sense of Hellus, Schenzel, and Z argar....
Introduction to string field theory
International Nuclear Information System (INIS)
Horowitz, G.T.
1989-01-01
A light cone gauge superstring field theory is constructed. The BRST approach is described discussing generalizations to yield gauge invariant free superstring field theory and interacting theory for superstrings. The interaction term is explicitly expressed in terms of first quantized oscillators. A purily cubic action for superstring field theory is also derived. (author)
Point splitting regularization of classical string field theory
International Nuclear Information System (INIS)
Strominger, A.
1987-01-01
We regulate Witten's star algebra using point splitting and conformal field theory techniques. Certain products of nonassociative operators and states are defined. This involves a refinement of star that exists in cases where Witten's star is ill-defined. A simple derivation of a recently discovered associativity anomaly is given. It is shown that there is no anomaly obstructing the equivalence of Witten's string theory action and the cubic action for string fields in the open string Fock space. (orig.)
International Nuclear Information System (INIS)
Perez, A.; Simon, P.
1996-01-01
A 2D fractional supersymmetry theory is algebraically constructed. The Lagrangian is derived using an adapted superspace including, in addition to a scalar field, two fields with spins 1/3,2/3. This theory turns out to be a rational conformal field theory. The symmetry of this model goes beyond the super-Virasoro algebra and connects these third-integer spin states. Besides the stress-momentum tensor, we obtain a supercurrent of spin 4/3. Cubic relations are involved in order to close the algebra; the basic algebra is no longer a Lie or a super-Lie algebra. The central charge of this model is found to be 5/3. Finally, we analyze the form that a local invariant action should take. (orig.)
Knots, topology and quantum field theories
International Nuclear Information System (INIS)
Lusanna, L.
1989-01-01
The title of the workshop, Knots, Topology and Quantum Field Theory, accurate reflected the topics discussed. There have been important developments in mathematical and quantum field theory in the past few years, which had a large impact on physicist thinking. It is historically unusual and pleasing that these developments are taking place as a result of an intense interaction between mathematical physicists and mathematician. On the one hand, topological concepts and methods are playing an increasingly important lead to novel mathematical concepts: for instance, the study of quantum groups open a new chapter in the deformation theory of Lie algebras. These developments at present will lead to new insights into the theory of elementary particles and their interactions. In essence, the talks dealt with three, broadly defined areas of theoretical physics. One was topological quantum field theories, the other the problem of quantum groups and the third one certain aspects of more traditional field theories, such as, for instance, quantum gravity. These topics, however, are interrelated and the general theme of the workshop defies rigid classification; this was evident from the cross references to be found in almo all the talks
Particle-like structure of Lie algebras
Vinogradov, A. M.
2017-07-01
If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.
Spectral theory of linear operators and spectral systems in Banach algebras
Müller, Vladimir
2003-01-01
This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. The theory is presented in a unified, axiomatic and elementary way. Many results appear here for the first time in a monograph. The material is self-contained. Only a basic knowledge of functional analysis, topology, and complex analysis is assumed. The monograph should appeal both to students who would like to learn about spectral theory and to experts in the field. It can also serve as a reference book. The present second edition contains a number of new results, in particular, concerning orbits and their relations to the invariant subspace problem. This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach alg...
International Nuclear Information System (INIS)
Waldron, A.K.; Joshi, G.C.
1992-01-01
By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs
Algebraic Meta-Theory of Processes with Data
Directory of Open Access Journals (Sweden)
Daniel Gebler
2013-07-01
Full Text Available There exists a rich literature of rule formats guaranteeing different algebraic properties for formalisms with a Structural Operational Semantics. Moreover, there exist a few approaches for automatically deriving axiomatizations characterizing strong bisimilarity of processes. To our knowledge, this literature has never been extended to the setting with data (e.g. to model storage and memory. We show how the rule formats for algebraic properties can be exploited in a generic manner in the setting with data. Moreover, we introduce a new approach for deriving sound and ground-complete axiom schemata for a notion of bisimilarity with data, called stateless bisimilarity, based on intuitive auxiliary function symbols for handling the store component. We do restrict, however, the axiomatization to the setting where the store component is only given in terms of constants.
Beyond mean field theory: statistical field theory for neural networks.
Buice, Michael A; Chow, Carson C
2013-03-01
Mean field theories have been a stalwart for studying the dynamics of networks of coupled neurons. They are convenient because they are relatively simple and possible to analyze. However, classical mean field theory neglects the effects of fluctuations and correlations due to single neuron effects. Here, we consider various possible approaches for going beyond mean field theory and incorporating correlation effects. Statistical field theory methods, in particular the Doi-Peliti-Janssen formalism, are particularly useful in this regard.
International Nuclear Information System (INIS)
Guenaydin, M.; Sierra, G.; Townsend, P.K.
1985-01-01
In this talk we give a review of our work on the construction and classification of N = 2 Maxwell-Einstein Supergravity theories (MESGT), study of the underlying algebraical and geometrical structure of these theories, and their compact and non-compact gaugings. We begin by summarizing our construction of the N = 2 MESGT's in five dimensions and give a geometrical interpretation to various scalar dependent quantities in the Lagrangian, based on the constraiants implied by supersymmetry. This is followed by a complete classification of the N = 2 MESGT's whose target manifolds parametrized by the scalar fields are symmetric spaces. 39 refs
Toward the classification of differential calculi on κ-Minkowski space and related field theories
Energy Technology Data Exchange (ETDEWEB)
Jurić, Tajron; Meljanac, Stjepan; Pikutić, Danijel [Ruđer Bošković Institute, Theoretical Physics Division,Bijenička c.54, HR-10002 Zagreb (Croatia); Štrajn, Rina [Dipartimento di Matematica e Informatica, Università di Cagliari,viale Merello 92, I-09123 Cagliari (Italy); INFN, Sezione di Cagliari,Cagliari (Italy)
2015-07-13
Classification of differential forms on κ-Minkowski space, particularly, the classification of all bicovariant differential calculi of classical dimension is presented. By imposing super-Jacobi identities we derive all possible differential algebras compatible with the κ-Minkowski algebra for time-like, space-like and light-like deformations. Embedding into the super-Heisenberg algebra is constructed using non-commutative (NC) coordinates and one-forms. Particularly, a class of differential calculi with an undeformed exterior derivative and one-forms is considered. Corresponding NC differential calculi are elaborated. Related class of new Drinfeld twists is proposed. It contains twist leading to κ-Poincaré Hopf algebra for light-like deformation. Corresponding super-algebra and deformed super-Hopf algebras, as well as the symmetries of differential algebras are presented and elaborated. Using the NC differential calculus, we analyze NC field theory, modified dispersion relations, and discuss further physical applications.
Sums of residues on algebraic surfaces and application to coding theory
Couvreur , Alain
2009-01-01
International audience; In this paper, we study residues of differential 2-forms on a smooth algebraic surface over an arbitrary field and give several statements about sums of residues. Afterwards, using these results we give a new construction of algebraic-geometric codes which can be regarded as an extension to surfaces of the well-known construction of differential codes on curves. We also study some properties of these codes and extend to them some known properties for codes on curves.; ...
Thermal Field Theory in Equilibrium
Andersen, Jens O.
2000-01-01
In this talk, I review recent developments in equilibrium thermal field theory. Screened perturbation theory and hard-thermal-loop perturbation theory are discussed. A self-consistent $\\Phi$-derivable approach is also briefly reviewed.
Higgs Effective Field Theories
2016-01-01
The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.
Geometry of Spin: Clifford Algebraic Approach
Indian Academy of Sciences (India)
of Pauli matrices follow from the underlying algebra. Clif- ford algebraic approach provides a geometrical and hence intuitive way to understand quantum theory of spin, and is a natural formalism to study spin. Clifford algebraic formal- ism has lot of applications in every field where spin plays an important role. Introduction.
Studies in quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Mandula, J.E.; Shrauner, J.E.
1982-01-01
Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD
International Nuclear Information System (INIS)
Mancini, F.
1986-01-01
Theoretical physicists, coming from different countries, working on different areas, gathered at Positano: the Proceedings contain all the lectures delivered as well as contributed papers. Many areas of physics are represented, elementary particles in high energy physics, quantum relativity, quantum geometry, condensed matter physics, statistical mechanics; but all works are concerned with the use of the methods of quantum field theory. The first motivation of the meeting was to pay homage to a great physicist and a great friend; it was also an occasion in which theoretical physicists got together to discuss and to compare results in different fields. The meeting was very intimate; the relaxed atmosphere allowed constructive discussions and contributed to a positive exchange of ideas. (orig.)
Digestible quantum field theory
Smilga, Andrei
2017-01-01
This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven‐course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious “extras” in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrées ‐ the central par t of the book where the...
KK -theory and spectral flow in von Neumann algebras
DEFF Research Database (Denmark)
Kaad, Jens; Nest, Ryszard; Rennie, Adam
2012-01-01
We present a definition of spectral flow for any norm closed ideal J in any von Neumann algebra N. Given a path of selfadjoint operators in N which are invertible in N/J, the spectral flow produces a class in Ko (J). Given a semifinite spectral triple (A, H, D) relative to (N, t) with A separable......, we construct a class [D] ¿ KK1 (A, K(N)). For a unitary u ¿ A, the von Neumann spectral flow between D and u*Du is equal to the Kasparov product [u] A[D], and is simply related to the numerical spectral flow, and a refined C* -spectral flow....
Second quantization of classical nonlinear relativistic field theory. Pt. 2
International Nuclear Information System (INIS)
Balaban, T.
1976-01-01
The construction of a relativistic interacting local quantum field is given in two steps: first the classical nonlinear relativistic field theory is written down in terms of Poisson brackets, with initial conditions as canonical variables: next a representation of Poisson bracket Lie algebra by means of linear operators in the topological vector space is given and an explicit form of a local interacting relativistic quantum field PHI is obtained. (orig./BJ) [de
Ford, Timothy J
2017-01-01
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
Warner, Seth
1990-01-01
Standard text provides an exceptionally comprehensive treatment of every aspect of modern algebra. Explores algebraic structures, rings and fields, vector spaces, polynomials, linear operators, much more. Over 1,300 exercises. 1965 edition.
Flat holography: aspects of the dual field theory
Energy Technology Data Exchange (ETDEWEB)
Bagchi, Arjun [Indian Institute of Technology Kanpur,Kalyanpur, Kanpur 208016 (India); Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Basu, Rudranil [Saha Institute of Nuclear Physics,Block AF, Sector 1, Bidhannagar, Kolkata 700068 (India); Kakkar, Ashish [Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan, Pune 411008 (India); Mehra, Aditya [Indian Institute of Technology Kanpur,Kalyanpur, Kanpur 208016 (India); Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan, Pune 411008 (India)
2016-12-29
Assuming the existence of a field theory in D dimensions dual to (D+1)-dimensional flat space, governed by the asymptotic symmetries of flat space, we make some preliminary remarks about the properties of this field theory. We review briefly some successes of the 3d bulk – 2d boundary case and then focus on the 4d bulk – 3d boundary example, where the symmetry in question is the infinite dimensional BMS{sub 4} algebra. We look at the constraints imposed by this symmetry on a 3d field theory by constructing highest weight representations of this algebra. We construct two and three point functions of BMS primary fields and surprisingly find that symmetries constrain these correlators to be identical to those of a 2d relativistic conformal field theory. We then go one dimension higher and construct prototypical examples of 4d field theories which are putative duals of 5d Minkowski spacetimes. These field theories are ultra-relativistic limits of electrodynamics and Yang-Mills theories which exhibit invariance under the conformal Carroll group in D=4. We explore the different sectors within these Carrollian gauge theories and investigate the symmetries of the equations of motion to find that an infinite ultra-relativistic conformal structure arises in each case.
Integrable structures in quantum field theory
International Nuclear Information System (INIS)
Negro, Stefano
2016-01-01
This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)
International Nuclear Information System (INIS)
Chen Famin; Wu Yongshi
2010-01-01
We present a superspace formulation of the D=3, N=4, 5 superconformal Chern-Simons Matter theories, with matter supermultiplets valued in a symplectic 3-algebra. We first construct an N=1 superconformal action and then generalize a method used by Gaitto and Witten to enhance the supersymmetry from N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra properly and proposing a new superpotential term, we construct the N=4 superconformal Chern-Simons matter theories in terms of two sets of generators of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by requiring that the supersymmetry transformations are closed on-shell. The relationship between the 3-algebras, Lie superalgebras, Lie algebras, and embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also clarified. The general N=4, 5 superconformal Chern-Simons matter theories in terms of ordinary Lie algebras can be re-derived in our 3-algebra approach. All known N=4, 5 superconformal Chern-Simons matter theories can be recovered in the present superspace formulation for super-Lie algebra realization of symplectic 3-algebras.
Theory of interacting quantum fields
International Nuclear Information System (INIS)
Rebenko, Alexei L.
2012-01-01
This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.
Topics in quantum field theory
International Nuclear Information System (INIS)
Svaiter, N.F.
2006-11-01
This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method
Fractional Stochastic Field Theory
Honkonen, Juha
2018-02-01
Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.
Moretti, Valter
2017-01-01
This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing ...
International Nuclear Information System (INIS)
Khoury, Justin
2013-01-01
Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. In this paper, we review two recent results on chameleon phenomenology. The first result a pair of no-go theorems limiting the cosmological impact of chameleons and their generalizations: (i) the range of the chameleon force at cosmological density today can be at most ∼Mpc; (ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time. These theorems imply that chameleons have negligible effect on the linear growth of structure, and cannot account for the observed cosmic acceleration except as some form of dark energy. The second result pertains to the quantum stability of chameleon theories. We show how requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound of m −3 ) 1/3 eV for gravitational strength coupling, whereas fifth force experiments place a lower bound of m > 0.0042 eV. An improvement of less than a factor of 2 in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well-controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential. (paper)
National Research Council Canada - National Science Library
Hartshorne, Robin
1977-01-01
.... 141 BECKERIWEISPFENNINGIKREDEL. Grabner Bases. A Computational Approach to Commutative Algebra. 142 LANG. Real and Functional Analysis. 3rd ed. 143 DOOB. Measure Theory. 144 DENNIS/FARB. Noncommutat...
Arnold, Vladimir I; Khesin, Boris; Marsden, Jerrold E; Varchenko, AN; Vassiliev, Victor A; Viro, Oleg Yanovich; Zakalyukin, Vladimir
2013-01-01
Vladimir Arnold was one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors. This second volume of his ""Collected Works"" focuses on hydrodynamics, bifurcation theory, and algebraic geometry.
International Nuclear Information System (INIS)
Borges, J. Sa; Barbosa, J. Soares; Tonasse, M.D.
1998-01-01
In this work we compare two loop Chiral Perturbation Theory calculation of pion-pion scattering with the unitary second order correction to the current algebra soft-pion theorem. It is shown that both methods lead to the same analytic structure for the scattering amplitude. (author)
Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter
Cong, Iris; Cheng, Meng; Wang, Zhenghan
2017-10-01
We present an exactly solvable lattice Hamiltonian to realize gapped boundaries of Kitaev's quantum double models for Dijkgraaf-Witten theories. We classify the elementary excitations on the boundary, and systematically describe the bulk-to-boundary condensation procedure. We also present the parallel algebraic/categorical structure of gapped boundaries.
Algebra, Volume-I.: Groups A Good Text Book on Group Theory for ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 9. Algebra, Volume-I.: Groups A Good Text Book on Group Theory for Post Graduates. K N Rajeswari. Book Review Volume 2 Issue 9 September 1997 pp 81-82. Fulltext. Click here to view fulltext PDF. Permanent link:
Descartes on the Unification of Arithmetic, Algebra and Geometry Via the Theory of Proportions
Czech Academy of Sciences Publication Activity Database
Crippa, Davide
2017-01-01
Roč. 73, č. 3/4 (2017), s. 1239-1258 ISSN 0870-5283 Institutional support: RVO:67985955 Keywords : algebra * Descartes * Euclid * geometry * multiplication * proportion theory * structure Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology
The Jordan structure of lie and Kac-Moody algebras
International Nuclear Information System (INIS)
Ferreira, L.A.; Gomes, J.F.; Teotonio Sobrinho, P.; Zimerman, A.H.
1989-01-01
A precise relation between the structures of Lie and Jordan algebras by presenting a method of constructing one type of algebra from the other is established. The method differs in some aspects of the Tits construction and Jordan pairs. The examples of the Lie algebras associated to simple Jordan algebras M m (n ) and Clifford algebras are discussed in detail. This approach will shed light on the role of the realizations of Jordan algebras through some types of Fermi fields used in the construction of Kac-Moodey and Virasoro algebras as well as its relevance in the study of some aspects of conformal fields theories. (author)
Hierarchy structure in integrable systems of gauge fields and underlying Lie algebras
Takasaki, K.
1990-02-01
An improved version of Nakamura's self-dual Yang-Mills hierarchy is presentd and its symmetry contents are studied. The new hierarchy as well as the previous one represents a set of commuting dynamical flows in an infinite dimensional manifolds of “loop type”, but includes a large set of dependent variables. Because of new degrees of freedom the theory acquires a more symmetric form with richer structures. For example it allows a large symmetry algebra of Riemann-Hilbert type, which is actually a direct sum of two subalgebras (“left” and “right”). This phenomenon is basically the same as observed recently by Avan and Bellon on the case of principal chiral models. In addition to these rather familiar symmeties, a new type of symmetries referred to as “coordinate transformation type” are also introduced. Generators of the above dynamical flows are all included therein. These two types of symmetries altogether form a big Lie algebra, which lead to more satisfactory understanding of symmetry properties of integrable systems of guage fields.
Super-Galilei invariant field theories in 2+1 dimensions
International Nuclear Information System (INIS)
Bergman, O.; Thorn, C.B.
1995-01-01
The authors extend the Galilei group of space-time transformations by gradation, construct interacting field-theoretic representations of this algebra, and show that non-relativistic Super-Chern-Simons theory is a special case. They also study the generalization to matrix valued fields, which are relevant to the formulation of superstring theory as a 1/N c expansion of a field theory. The authors find that in the matrix case, the field theory is much more restricted by the supersymmetry
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
Algebraic decoder specification: coupling formal-language theory and statistical machine translation
Büchse, Matthias
2015-01-01
The specification of a decoder, i.e., a program that translates sentences from one natural language into another, is an intricate process, driven by the application and lacking a canonical methodology. The practical nature of decoder development inhibits the transfer of knowledge between theory and application, which is unfortunate because many contemporary decoders are in fact related to formal-language theory. This thesis proposes an algebraic framework where a decoder is specified by an ex...
Bitopological spaces theory, relations with generalized algebraic structures and applications
Dvalishvili, Badri
2005-01-01
This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, a
Gauge theories of Yang-Mills vector fields coupled to antisymmetric tensor fields
International Nuclear Information System (INIS)
Anco, Stephen C.
2003-01-01
A non-Abelian class of massless/massive nonlinear gauge theories of Yang-Mills vector potentials coupled to Freedman-Townsend antisymmetric tensor potentials is constructed in four space-time dimensions. These theories involve an extended Freedman-Townsend-type coupling between the vector and tensor fields, and a Chern-Simons mass term with the addition of a Higgs-type coupling of the tensor fields to the vector fields in the massive case. Geometrical, field theoretic, and algebraic aspects of the theories are discussed in detail. In particular, the geometrical structure mixes and unifies features of Yang-Mills theory and Freedman-Townsend theory formulated in terms of Lie algebra valued curvatures and connections associated to the fields and nonlinear field strengths. The theories arise from a general determination of all possible geometrical nonlinear deformations of linear Abelian gauge theory for one-form fields and two-form fields with an Abelian Chern-Simons mass term in four dimensions. For this type of deformation (with typical assumptions on the allowed form considered for terms in the gauge symmetries and field equations), an explicit classification of deformation terms at first-order is obtained, and uniqueness of deformation terms at all higher orders is proven. This leads to a uniqueness result for the non-Abelian class of theories constructed here
Topological field theory: zero-modes and renormalization
International Nuclear Information System (INIS)
Ouvry, S.; Thompson, G.
1989-09-01
We address the issue of the non-triviality of the observables in various Topological Field Theories by means of the explicit introduction of the zero-modes into the BRST algebra. Supersymmetric quantum mechanics and Topological Yang-Mills theory are dealt with in detail. It is shown that due to the presence of fermionic zero-modes the BRST algebra may be dynamically broken leading to non trivial observables albeit the local cohomology being trivial. However the metric and coupling constant independence of the observables are still valid. A renormalization procedure is given that correctly incorporates the zero-modes. Particular attention is given to the conventional gauge fixing in Topological Yang-Mills theories, with emphasis on the geometrical character of the fields and their role in the non-triviality of the observables
The foundational origin of integrability in quantum field theory
International Nuclear Information System (INIS)
Schroer, Bert; FU-Berlin
2012-02-01
There are two foundational model-independent concepts of integrability in QFT. One is 'dynamical' and generalizes the solvability in closed analytic form of the dynamical aspects as known from the Kepler two-body problem and its quantum mechanical counterpart. The other, referred to as 'kinematical' integrability, has no classical nor even quantum mechanical counterpart; it describes the relation between so called eld algebra and its local observable subalgebras and their discrete inequivalent representation classes (the DHR theory of superselection sectors). In the standard case of QFTs with mass gaps it contains the information about the representation of the (necessary compact) internal symmetry group and statistics in form of a tracial state on a 'dual group'. In Lagrangian or functional quantization one deals with the eld algebra and the division into observable /eld algebras does presently not play a role in constructive approaches to QFT. 'Kinematical' integrability is however of particular interest in conformal theories where the observable algebra fulfils the Huygens principle (light like propagation) and lives on the compactified Minkowski spacetime whereas the eld algebra, whose spacetime symmetry group is the universal covering of the conformal group lives on the universal covering of the compactified Minkowski spacetime. Since the (anomalous) dimensions of fields show up in the spectrum of the unitary representative of the center of this group , the kinematical structure contained in the relation fields/Huygens observables valuable information which in the usual terminology would be called 'dynamical'. The dynamical integrability is defined in terms of properties of 'wedge localization' and uses the fact that modular localization theory allows to 'emulate' interaction-free wedge-localized operators in a objective manner with the wedge localized interacting algebra. Emulation can be viewed as a generalization of the functorial relation between localized
Proceedings of the 5. Jorge Andre Swieca Summer School Field Theory and Particle Physics
International Nuclear Information System (INIS)
Eboli, O.J.P.; Gomes, M.; Santoro, A.
1989-01-01
Lectures on quantum field theories and particle physics are presented. The part of quantum field theories contains: constrained dynamics; Schroedinger representation in field theory; application of this representation to quantum fields in a Robertson-Walker space-time; Berry connection; problem of construction and classification of conformal field theories; lattice models; two-dimensional S matrices and conformal field theory for unifying perspective of Yang-Baxter algebras; parasupersymmetric quantum mechanics; introduction to string field theory; three dimensional gravity and two-dimensional parafermionic model. The part of particle physics contains: collider physics; strong interactions and use of strings in strong interactions. (M.C.K.)
Covariant representation theory of the Poincaré algebra and some of its extensions
Boels, Rutger
2010-01-01
There has been substantial calculational progress in the last few years for gauge theory amplitudes which involve massless four dimensional particles. One of the central ingredients in this has been the ability to keep precise track of the Poincaré algebra quantum numbers of the particles involved. Technically, this is most easily done using the well-known four dimensional spinor helicity method. In this article a natural generalization to all dimensions higher than four is obtained based on a covariant version of the representation theory of the Poincaré algebra. Covariant expressions for all possible polarization states, both bosonic and fermionic, are constructed. For the fermionic states the analysis leads directly to pure spinors. The natural extension to the representation theory of the on-shell supersymmetry algebra results in an elementary derivation of the supersymmetry Ward identities for scattering amplitudes with massless or massive legs in any integer dimension from four onwards. As a proof-of-concept application a higher dimensional analog of the vanishing helicity-equal amplitudes in four dimensions is presented in (super) Yang-Mills theory, Einstein (super-)gravity and superstring theory in a flat background.
Kinematic analysis of parallel manipulators by algebraic screw theory
Gallardo-Alvarado, Jaime
2016-01-01
This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators. Stands as the only book devoted to the acceleration, jerk and hyper-jerk (snap) analyses of rigid-body by means of screw theory; Provides new strategies to simplify the forward kinematic...
Massless conformal fields, AdS(d+1/CFTd higher spin algebras and their deformations
Directory of Open Access Journals (Sweden)
Sudarshan Fernando
2016-03-01
Full Text Available We extend our earlier work on the minimal unitary representation of SO(d,2 and its deformations for d=4,5 and 6 to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO(d,2 and its deformations and massless conformal fields in Minkowskian spacetimes in d dimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS(d+1/CFTd higher spin algebra. For deformed minreps the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO(d−2 for massless representations.
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Conformal quantum field theory: From Haag-Kastler nets to Wightman fields
International Nuclear Information System (INIS)
Joerss, M.
1996-07-01
Starting from a chiral conformal Haag-Kastler net of local observables on two-dimensional Minkowski space-time, we construct associated pointlike localizable charged fields which intertwine between the superselection sectors with finite statistics of the theory. This amounts to a proof of the spin-statistics theorem, the PCT theorem, the Bisognano-Wichmann identification of modular operators, Haag duality in the vacuum sector, and the existence of operator product expansions. Our method consists of the explicit use of the representation theory of the universal covering group of SL(2,R). A central role is played by a ''conformal cluster theorem'' for conformal two-point functions in algebraic quantum field theory. Generalizing this ''conformal cluster theorem'' to the n-point functions of Haag-Kastler theories, we can finally construct from a chiral conformal net of algebras a compelte set of conformal n-point functions fulfilling the Wightman axioms. (orig.)
Quantum field theory in curved spacetime and black hole thermodynamics
Wald, Robert M
1994-01-01
In this book, Robert Wald provides a coherent, pedagogical introduction to the formulation of quantum field theory in curved spacetime. He begins with a treatment of the ordinary one-dimensional quantum harmonic oscillator, progresses through the construction of quantum field theory in flat spacetime to possible constructions of quantum field theory in curved spacetime, and, ultimately, to an algebraic formulation of the theory. In his presentation, Wald disentangles essential features of the theory from inessential ones (such as a particle interpretation) and clarifies relationships between various approaches to the formulation of the theory. He also provides a comprehensive, up-to-date account of the Unruh effect, the Hawking effect, and some of its ramifications. In particular, the subject of black hole thermodynamics, which remains an active area of research, is treated in depth. This book will be accessible to students and researchers who have had introductory courses in general relativity and quantum f...
Building bridges between algebra and topology
Pitsch, Wolfgang; Zarzuela, Santiago
2018-01-01
This volume presents an elaborated version of lecture notes for two advanced courses: (Re)Emerging Methods in Commutative Algebra and Representation Theory and Building Bridges Between Algebra and Topology, held at the CRM in the spring of 2015. Homological algebra is a rich and ubiquitous subject; it is both an active field of research and a widespread toolbox for many mathematicians. Together, these notes introduce recent applications and interactions of homological methods in commutative algebra, representation theory and topology, narrowing the gap between specialists from different areas wishing to acquaint themselves with a rapidly growing field. The covered topics range from a fresh introduction to the growing area of support theory for triangulated categories to the striking consequences of the formulation in the homotopy theory of classical concepts in commutative algebra. Moreover, they also include a higher categories view of Hall algebras and an introduction to the use of idempotent functors in al...
Lutfiyya, Lutfi A
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.
Finite automata, their algebras and grammars towards a theory of formal expressions
Büchi, J Richard
1989-01-01
The author, who died in 1984, is well-known both as a person and through his research in mathematical logic and theoretical computer science. In the first part of the book he presents the new classical theory of finite automata as unary algebras which he himself invented about 30 years ago. Many results, like his work on structure lattices or his characterization of regular sets by generalized regular rules, are unknown to a wider audience. In the second part of the book he extends the theory to general (non-unary, many-sorted) algebras, term rewriting systems, tree automata, and pushdown automata. Essentially Büchi worked independent of other rersearch, following a novel and stimulating approach. He aimed for a mathematical theory of terms, but could not finish the book. Many of the results are known by now, but to work further along this line presents a challenging research program on the borderline between universal algebra, term rewriting systems, and automata theory. For the whole book and aga...
Broken symmetries in field theory
Kok, Mark Okker de
2008-01-01
The thesis discusses the role of symmetries in Quantum Field Theory. Quantum Field Theory is the mathematical framework to describe the physics of elementary particles. A symmetry here means a transformation under which the model at hand is invariant. Three types of symmetry are distinguished: 1.
Introduction to applied algebraic systems
Reilly, Norman R
2009-01-01
This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as
Applications of Computer Algebra Conference
Martínez-Moro, Edgar
2017-01-01
The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.
Quantum group structure and local fields in the algebraic approach to 2D gravity
Schnittger, Jens
1994-01-01
This review contains a summary of work by J.-L. Gervais and the author on the operator approach to 2d gravity. Special emphasis is placed on the construction of local observables -the Liouville exponentials and the Liouville field itself - and the underlying algebra of chiral vertex operators. The double quantum group structure arising from the presence of two screening charges is discussed and the generalized algebra and field operators are derived. In the last part, we show that our construction gives rise to a natural definition of a quantum tau function, which is a noncommutative version of the classical group-theoretic representation of the Liouville fields by Leznov and Saveliev.
Field theory approach to gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1978-01-01
A number of authors considered the possibility of formulating a field-theory approach to gravitation with the claim that such an approach would uniquely lead to Einstein's theory of general relativity. In this article it is shown that the field theory approach is more generally applicable and uniqueness cannot be claimed. Theoretical and experimental reasons are given showing that the Einsteinian limit appears to be unviable
Lattice models and conformal field theories
International Nuclear Information System (INIS)
Saleur, H.
1988-01-01
Theoretical studies concerning the connection between critical physical systems and the conformal theories are reviewed. The conformal theory associated to a critical (integrable) lattice model is derived. The obtention of the central charge, critical exponents and torus partition function, using renormalization group arguments, is shown. The quantum group structure, in the integrable lattice models, and the theory of Visaro algebra representations are discussed. The relations between off-critical integrable models and conformal theories, in finite geometries, are studied
Renormalization and effective field theory
Costello, Kevin
2011-01-01
This book tells mathematicians about an amazing subject invented by physicists and it tells physicists how a master mathematician must proceed in order to understand it. Physicists who know quantum field theory can learn the powerful methodology of mathematical structure, while mathematicians can position themselves to use the magical ideas of quantum field theory in "mathematics" itself. The retelling of the tale mathematically by Kevin Costello is a beautiful tour de force. --Dennis Sullivan This book is quite a remarkable contribution. It should make perturbative quantum field theory accessible to mathematicians. There is a lot of insight in the way the author uses the renormalization group and effective field theory to analyze perturbative renormalization; this may serve as a springboard to a wider use of those topics, hopefully to an eventual nonperturbative understanding. --Edward Witten Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorio...
Algebraic description of G-flux in F-theory: new techniques for F-theory phenomenology
Energy Technology Data Exchange (ETDEWEB)
Braun, A.P. [Institute for Theoretical Physics, Vienna University (Austria); Collinucci, A. [Theory Group, Physics Department, CERN 1211 Geneva 23 (Switzerland); Physique Theorique et Mathematique Universite Libre de Bruxelles, C.P. 231, 1050 Bruxelles (Belgium); Valandro, R. [II Institute for Theoretical Physics, Hamburg University (Germany)
2012-07-15
We give a global algebraic description of the four-form flux in F-theory. We present how to compute its D3-tadpole and how to calculate the number of four-dimensional chiral states at the intersection of 7-branes directly in F-theory. We check that, in the weak coupling limit, we obtain the same results as using perturbative type IIB string theory. We develop these techniques in full generality. However, these can be readily applied to concrete models, as we show in an explicit example. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
New applications of graded Lie algebras to Lie algebras, generalized Lie algebras and cohomology
Pinczon, Georges; Ushirobira, Rosane
2005-01-01
We give new applications of graded Lie algebras to: identities of standard polynomials, deformation theory of quadratic Lie algebras, cyclic cohomology of quadratic Lie algebras, $2k$-Lie algebras, generalized Poisson brackets and so on.
Mattson Solomon transform and algebra codes
DEFF Research Database (Denmark)
Martínez-Moro, E.; Benito, Diego Ruano
2009-01-01
In this note we review some results of the first author on the structure of codes defined as subalgebras of a commutative semisimple algebra over a finite field (see Martínez-Moro in Algebra Discrete Math. 3:99-112, 2007). Generator theory and those aspects related to the theory of Gröbner bases ...
Semiclassical methods in field theories
International Nuclear Information System (INIS)
Ventura, I.
1978-10-01
A new scheme is proposed for semi-classical quantization in field theory - the expansion about the charge (EAC) - which is developed within the canonical formalism. This method is suitable for quantizing theories that are invariant under global gauge transformations. It is used in the treatment of the non relativistic logarithmic theory that was proposed by Bialynicki-Birula and Mycielski - a theory we can formulate in any number of spatial dimensions. The non linear Schroedinger equation is also quantized by means of the EAC. The classical logarithmic theories - both, the non relativistic and the relativistic one - are studied in detail. It is shown that the Bohr-Sommerfeld quantization rule(BSQR) in field theory is, in many cases, equivalent to charge quantization. This rule is then applied to the massive Thirring Model and the logarithmic theories. The BSQR can be see as a simplified and non local version of the EAC [pt
The Global Approach to Quantum Field Theory
International Nuclear Information System (INIS)
Folacci, Antoine; Jensen, Bruce
2003-01-01
theory. This is the so-called global approach to quantum field theory where time does not play any particular role, and quantization is then naturally realized covariantly using tools such as the Peierls bracket (a covariant generalization of Poisson bracket), the Schwinger variational principle and Feynman sums over histories. However, it should be noted that the boycott of canonical methods by DeWitt is not total: when he judges they genuinely illuminate the physics of a problem, he does not hesitate to descend from the global point of view and to use them. In a few words, we have in fact described the research program initiated by DeWitt forty years ago, which has progressively evolved in order to take into account the latest development of gauge theories. While the Les Houches Lectures of 1963 were mainly concentrated on the formal structure and the quantization of Yang--Mills and gravitational fields, the present book also deals with more general gauge theories including those with open gauge algebras and structure functions, and therefore supergravity theories. More precisely, the book, more than a thousand pages in length, consists of eight parts and is completed by six appendices where certain technical aspects are singled out. An enormous variety of topics is covered, including the invariance transformations of the action functional, the Batalin-Vilkovisky formalism, Green's functions, the Peierls bracket, conservation laws, the theory of measurement, the Everett (or many worlds) interpretation of quantum mechanics, decoherence, the Schwinger variational principle and Feynm an functional integrals, the heat kernel, aspects of quantization for linear systems in stationary and non-stationary backgrounds, the S-matrix, the background field method, the effective action and the Vilkovisky-DeWitt formalism, the quantization of gauge theories without ghosts, anomalies, black holes and Hawking radiation, renormalization, and more. It should be noted that DeWitt's book
Relating the archetypes of logarithmic conformal field theory
International Nuclear Information System (INIS)
Creutzig, Thomas; Ridout, David
2013-01-01
Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=−2 triplet model, the Wess–Zumino–Witten model on SL(2;R) at level k=−1/2 , and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and −1/2 . The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought
Relating the archetypes of logarithmic conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Creutzig, Thomas, E-mail: tcreutzig@mathematik.tu-darmstadt.de [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB 3255, Chapel Hill, NC 27599-3255 (United States); Fachbereich Mathematik, Technische Universität Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt (Germany); Ridout, David, E-mail: david.ridout@anu.edu.au [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200 (Australia)
2013-07-21
Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=−2 triplet model, the Wess–Zumino–Witten model on SL(2;R) at level k=−1/2 , and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and −1/2 . The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought.
Algebras with convergent star products and their representations in Hilbert spaces
International Nuclear Information System (INIS)
Soloviev, M. A.
2013-01-01
We study star product algebras of analytic functions for which the power series defining the products converge absolutely. Such algebras arise naturally in deformation quantization theory and in noncommutative quantum field theory. We consider different star products in a unifying way and present results on the structure and basic properties of these algebras, which are useful for applications. Special attention is given to the Hilbert space representation of the algebras and to the exact description of their corresponding operator algebras
Lectures on quantum field theory
Das, Ashok
2008-01-01
This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactio
Introduction to quantum field theory
International Nuclear Information System (INIS)
Kazakov, D.I.
1988-01-01
The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs
Black Hole Entropy from Conformal Field Theory in Any Dimension
International Nuclear Information System (INIS)
Carlip, S.
1999-01-01
Restricted to a black hole horizon, the open-quotes gaugeclose quotes algebra of surface deformations in general relativity contains a Virasoro subalgebra with a calculable central charge. The fields in any quantum theory of gravity must transform accordingly, i.e., they must admit a conformal field theory description. Applying Cardy close-quote s formula for the asymptotic density of states, I use this result to derive the Bekenstein-Hawking entropy. This method is universal it holds for any black hole, and requires no details of quantum gravity but it is also explicitly statistical mechanical, based on counting microscopic states. copyright 1999 The American Physical Society
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
International Nuclear Information System (INIS)
Schenkel, Alexander
2011-01-01
The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the noncommutative
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
Energy Technology Data Exchange (ETDEWEB)
Schenkel, Alexander
2011-10-24
The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the
Fusion rules of chiral algebras
International Nuclear Information System (INIS)
Gaberdiel, M.
1994-01-01
Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)
Nekrasov and Argyres–Douglas theories in spherical Hecke algebra representation
Energy Technology Data Exchange (ETDEWEB)
Rim, Chaiho, E-mail: rimpine@sogang.ac.kr; Zhang, Hong, E-mail: kilar@itp.ac.cn
2017-06-15
AGT conjecture connects Nekrasov instanton partition function of 4D quiver gauge theory with 2D Liouville conformal blocks. We re-investigate this connection using the central extension of spherical Hecke algebra in q-coordinate representation, q being the instanton expansion parameter. Based on AFLT basis together with intertwiners we construct gauge conformal state and demonstrate its equivalence to the Liouville conformal state, with careful attention to the proper scaling behavior of the state. Using the colliding limit of regular states, we obtain the formal expression of irregular conformal states corresponding to Argyres–Douglas theory, which involves summation of functions over Young diagrams.
A master identity for homotopy Gerstenhaber algebras
Energy Technology Data Exchange (ETDEWEB)
Akman, F. [Coastal Carolina Univ., Conway, SC (United States). Dept. of Math.
2000-01-01
We produce a master identity {l_brace}m{r_brace}{l_brace}m,m,..{r_brace}=0 for a certain type of homotopy Gerstenhaber algebras, in particular suitable for the prototype, namely the Hochschild complex of an associative algebra. This algebraic master identity was inspired by the work of Getzler-Jones and Kimura-Voronov-Zuckerman in the context of topological conformal field theories. To this end, we introduce the notion of a ''partitioned multilinear map'' and explain the mechanics of composing such maps. In addition, many new examples of pre-Lie algebras and homotopy Gerstenhaber algebras are given. (orig.)
A master identity for homotopy Gerstenhaber algebras
International Nuclear Information System (INIS)
Akman, F.
2000-01-01
We produce a master identity {m}{m,m,..}=0 for a certain type of homotopy Gerstenhaber algebras, in particular suitable for the prototype, namely the Hochschild complex of an associative algebra. This algebraic master identity was inspired by the work of Getzler-Jones and Kimura-Voronov-Zuckerman in the context of topological conformal field theories. To this end, we introduce the notion of a ''partitioned multilinear map'' and explain the mechanics of composing such maps. In addition, many new examples of pre-Lie algebras and homotopy Gerstenhaber algebras are given. (orig.)
Algebras of Complete Hörmander Vector Fields, and Lie-Group Construction
Directory of Open Access Journals (Sweden)
Andrea Bonfiglioli
2014-12-01
Full Text Available The aim of this note is to characterize the Lie algebras g of the analytic vector fields in RN which coincide with the Lie algebras of the (analytic Lie groups defined on RN (with its usual differentiable structure. We show that such a characterization amounts to asking that: (i g is N-dimensional; (ii g admits a set of Lie generators which are complete vector fields; (iii g satisfies Hörmander’s rank condition. These conditions are necessary, sufficient and mutually independent. Our approach is constructive, in that for any such g we show how to construct a Lie group G = (RN, * whose Lie algebra is g. We do not make use of Lie’s Third Theorem, but we only exploit the Campbell-Baker-Hausdorff-Dynkin Theorem for ODE’s.
Lectures on matrix field theory
Ydri, Badis
2017-01-01
These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Travis [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States); Robbins, Daniel [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)
2016-11-28
Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.
Embedding classical fields in quantum field theories
International Nuclear Information System (INIS)
Blaha, S.
1978-01-01
We describe a procedure for quantizing a classical field theory which is the field-theoretica analog of Sudarshan's method for embedding a classical-mechanical system in a quantum-mechanical system. The essence of the difference between our quantization procedure and Fock-space quantization lies in the choice of vacuum states. The key to our choice of vacuum is the procedure we outline for constructing Lagrangians which have gradient terms linear in the field varialbes from classical Lagrangians which have gradient terms which are quadratic in field variables. We apply this procedure to model electrodynamic field theories, Yang-Mills theories, and a vierbein model of gravity. In the case of electrodynamics models we find a formalism with a close similarity to the coherent-soft-photon-state formalism of QED. In addition, photons propagate to t = + infinity via retarded propagators. We also show how to construct a quantum field for action-at-a-distance electrodynamics. In the Yang-Mills case we show that a previously suggested model for quark confinement necessarily has gluons with principle-value propagation which allows the model to be unitary despite the presence of higher-order-derivative field equations. In the vierbein-gravity model we show that our quantization procedure allows us to treat the classical and quantum parts of the metric field in a unified manner. We find a new perturbation scheme for quantum gravity as a result
Topological field theories and duality
International Nuclear Information System (INIS)
Stephany, J.; Universidad Simon Bolivar, Caracas
1996-05-01
Topologically non trivial effects appearing in the discussion of duality transformations in higher genus manifold are discussed in a simple example, and their relation with the properties of Topological Field Theories is established. (author). 16 refs
Renormalization in classical field theory
International Nuclear Information System (INIS)
Corbo, Guido
2010-01-01
We discuss simple examples in which renormalization is required in classical field theory. The presentation is accessible to undergraduate students with a knowledge of the basic notions of classical electromagnetism. (letters and comments)
Finite-temperature field theory
International Nuclear Information System (INIS)
Kapusta, J.I.; Landshoff, P.V.
1989-01-01
Particle number is not conserved in relativistic theories although both lepton and baryon number are. Therefore when discussing the thermodynamics of a quantum field theory one uses the grand canonical formalism. The entropy S is maximised, keeping fixed the ensemble averages E and N of energy and lepton number. Two lagrange multipliers are introduced. (author)
Histories and observables in covariant field theory
Paugam, Frédéric
2011-09-01
Motivated by DeWitt's viewpoint of covariant field theory, we define a general notion of a non-local classical observable that applies to many physical Lagrangian systems (with bosonic and fermionic variables), by using methods that are now standard in algebraic geometry. We review the methods of local functional calculus, as they are presented by Beilinson and Drinfeld, and relate them to our construction. We partially explain the relation of these with Vinogradov's secondary calculus. The methods present here are all necessary to understand mathematically properly, and with simple notions, the full renormalization of the standard model, based on functional integral methods. Our approach is close in spirit to non-perturbative methods since we work with actual functions on spaces of fields, and not only formal power series. This article can be seen as an introduction to well-grounded classical physical mathematics, and as a good starting point to study quantum physical mathematics, which make frequent use of non-local functionals, like for example in the computation of Wilson's effective action. We finish by describing briefly a coordinate-free approach to the classical Batalin-Vilkovisky formalism for general gauge theories, in the language of homotopical geometry.
Supersymmetric field theories and generalized cohomology
Teichner, Peter; Stolz, Stephan
2011-01-01
This survey discusses our results and conjectures concerning supersymmetric field theories and their relationship to cohomology theories. A careful definition of supersymmetric Euclidean field theories is given, refining Segal's axioms for conformal field theories. We state and give an outline of the proof of various results relating field theories to cohomology theories.
Quantum processes: A Whiteheadian interpretation of quantum field theory
Bain, Jonathan
Quantum processes: A Whiteheadian interpretation of quantum field theory is an ambitious and thought-provoking exercise in physics and metaphysics, combining an erudite study of the very complex metaphysics of A.N. Whitehead with a well-informed discussion of contemporary issues in the philosophy of algebraic quantum field theory. Hättich's overall goal is to construct an interpretation of quantum field theory. He does this by translating key concepts in Whitehead's metaphysics into the language of algebraic quantum field theory. In brief, this Hättich-Whitehead (H-W, hereafter) interpretation takes "actual occasions" as the fundamental ontological entities of quantum field theory. An actual occasion is the result of two types of processes: a "transition process" in which a set of initial possibly-possessed properties for the occasion (in the form of "eternal objects") is localized to a space-time region; and a "concrescence process" in which a subset of these initial possibly-possessed properties is selected and actualized to produce the occasion. Essential to these processes is the "underlying activity", which conditions the way in which properties are initially selected and subsequently actualized. In short, under the H-W interpretation of quantum field theory, an initial set of possibly-possessed eternal objects is represented by a Boolean sublattice of the lattice of projection operators determined by a von Neumann algebra R (O) associated with a region O of Minkowski space-time, and the underlying activity is represented by a state on R (O) obtained by conditionalizing off of the vacuum state. The details associated with the H-W interpretation involve imposing constraints on these representations motivated by principles found in Whitehead's metaphysics. These details are spelled out in the three sections of the book. The first section is a summary and critique of Whitehead's metaphysics, the second section introduces the formalism of algebraic quantum field
Neural fields theory and applications
Graben, Peter; Potthast, Roland; Wright, James
2014-01-01
With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...
S-duality and the prepotential in N=2⋆ theories (I): the ADE algebras
International Nuclear Information System (INIS)
Billó, M.; Frau, M.; Fucito, F.; Lerda, A.; Morales, J.F.
2015-01-01
The prepotential of N=2 ⋆ supersymmetric theories with unitary gauge groups in an Ω background satisfies a modular anomaly equation that can be recursively solved order by order in an expansion for small mass. By requiring that S-duality acts on the prepotential as a Fourier transform we generalise this result to N=2 ⋆ theories with gauge algebras of the D and E type and show that their prepotentials can be written in terms of quasi-modular forms of SL(2,ℤ). The results are checked against microscopic multi-instanton calculus based on localization for the A and D series and reproduce the known 1-instanton prepotential of the pure N=2 theories for any gauge group of ADE type. Our results can also be used to obtain the multi-instanton terms in the exceptional theories for which the microscopic instanton calculus and the ADHM construction are not available.
S-duality and the prepotential in N={2}^{star } theories (I): the ADE algebras
Billó, M.; Frau, M.; Fucito, F.; Lerda, A.; Morales, J. F.
2015-11-01
The prepotential of N={2}^{star } supersymmetric theories with unitary gauge groups in an Ω background satisfies a modular anomaly equation that can be recursively solved order by order in an expansion for small mass. By requiring that S-duality acts on the prepotential as a Fourier transform we generalise this result to N={2}^{star } theories with gauge algebras of the D and E type and show that their prepotentials can be written in terms of quasi-modular forms of SL(2, {Z}) . The results are checked against microscopic multi-instanton calculus based on localization for the A and D series and reproduce the known 1-instanton prepotential of the pure N=2 theories for any gauge group of ADE type. Our results can also be used to obtain the multi-instanton terms in the exceptional theories for which the microscopic instanton calculus and the ADHM construction are not available.
From current algebras for p-branes to topological M-theory
Energy Technology Data Exchange (ETDEWEB)
Bonelli, Giulio [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy); Zabzine, Maxim [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom)
2005-09-01
In this note we generalize a result by Alekseev and Strobl for the case of p-branes. We show that there is a relation between anomalous free current algebras and 'isotropic' involutive subbundles of T and {sup p}T* with the Vinogradov bracket, that is a generalization of the Courant bracket. As an application of this construction we go through some interesting examples: topological strings on symplectic manifolds, topological membrane on G{sub 2}-manifolds and topological 3-brane on Spin(7) manifolds. We show that these peculiar topological theories are related to the physical (i.e., Nambu-Goto) brane theories in a specific way. These topological brane theories are proposed as microscopic description of topological M/F-theories.
Relativistic local quantum field theory for m=0 particles
International Nuclear Information System (INIS)
Morales Villasevil, A.
1965-01-01
A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs
Deo, Satya
2018-01-01
This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...
Dimensional continuation in field theory
International Nuclear Information System (INIS)
Lee, T.
1988-01-01
The continuation of space-time dimension to an arbitrary complex number is discussed. The ultra-violet and infra-red divergences are simply regularized by analytically continuing to some proper dimension n. Combined with functional integral quantization, it provides a simple and elegant description of quantum field theory. Two well known field theories are discussed. Scalar field theory and quantum electrodynamics. In the scalar theory, the focus is on the operator product expansion. It is showed that a renormalization scheme (minimal subtraction) clearly defines the operator product expansion. In the quantum electrodynamics, it is shown that BRS symmetry can simplify the renormalization process. Composite operators are the renormalized and renormalized stress-energy tensor is formed
[Studies in quantum field theory
International Nuclear Information System (INIS)
1990-01-01
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity
Classical field theory with fermions
International Nuclear Information System (INIS)
Borsanyi, Sz.; Hindmarsh, M.
2009-01-01
Classical field theory simulations have been essential for our understanding of non-equilibrium phenomena in particle physics. In this talk we discuss the possible extension of the bosonic classical field theory simulations to include fermions. In principle we use the inhomogeneous mean field approximation as introduced by Aarts and Smit. But in practice we turn from their deterministic technique to a stochastic approach. We represent the fermion field as an ensemble of pairs of spinor fields, dubbed male and female. These c-number fields solve the classical Dirac equation. Our improved algorithm enables the extension of the originally 1+1 dimensional analyses and is suitable for large-scale inhomogeneous settings, like defect networks.
The Global Approach to Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)
2003-12-12
formalism of quantum field theory. This is the so-called global approach to quantum field theory where time does not play any particular role, and quantization is then naturally realized covariantly using tools such as the Peierls bracket (a covariant generalization of Poisson bracket), the Schwinger variational principle and Feynman sums over histories. However, it should be noted that the boycott of canonical methods by DeWitt is not total: when he judges they genuinely illuminate the physics of a problem, he does not hesitate to descend from the global point of view and to use them. In a few words, we have in fact described the research program initiated by DeWitt forty years ago, which has progressively evolved in order to take into account the latest development of gauge theories. While the Les Houches Lectures of 1963 were mainly concentrated on the formal structure and the quantization of Yang--Mills and gravitational fields, the present book also deals with more general gauge theories including those with open gauge algebras and structure functions, and therefore supergravity theories. More precisely, the book, more than a thousand pages in length, consists of eight parts and is completed by six appendices where certain technical aspects are singled out. An enormous variety of topics is covered, including the invariance transformations of the action functional, the Batalin-Vilkovisky formalism, Green's functions, the Peierls bracket, conservation laws, the theory of measurement, the Everett (or many worlds) interpretation of quantum mechanics, decoherence, the Schwinger variational principle and Feynm an functional integrals, the heat kernel, aspects of quantization for linear systems in stationary and non-stationary backgrounds, the S-matrix, the background field method, the effective action and the Vilkovisky-DeWitt formalism, the quantization of gauge theories without ghosts, anomalies, black holes and Hawking radiation, renormalization, and more. It should
Algebra I textbook for students of mathematics
Gorodentsev, Alexey L
2016-01-01
This book is the first volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
Algebra II textbook for students of mathematics
Gorodentsev, Alexey L
2017-01-01
This book is the second volume of an intensive “Russian-style” two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry – topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
The quantum harmonic oscillator on a circle and a deformed quantum field theory
International Nuclear Information System (INIS)
Rego-Monteiro, M.A.
2001-05-01
We construct a deformed free quantum field theory with an standard Hilbert space based on a deformed Heisenberg algebra. This deformed algebra is a Heisenberg-type algebra describing the first levels of the quantum harmonic oscillator on a circle of large length L. The successive energy levels of this quantum harmonic oscillator on a circle of large length L are interpreted, similarly to the standard quantum one-dimensional harmonic oscillator on an infinite line, as being obtained by the creation of a quantum particle of frequency w at very high energies. (author)
Algebraic monoids, group embeddings, and algebraic combinatorics
Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang
2014-01-01
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: v structure and representation theory of reductive algebraic monoids v monoid schemes and applications of monoids v monoids related to Lie theory v equivariant embeddings of algebraic groups v constructions and properties of monoids from algebraic combinatorics v endomorphism monoids induced from vector bundles v Hodge–Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular. Graduate students as well a...
Elements of algebraic coding systems
Cardoso da Rocha, Jr, Valdemar
2014-01-01
Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...
International Nuclear Information System (INIS)
Fucito, F.; Tanzini, A.; Sorella, S.P.
1997-07-01
The aim of these notes is to provide a simple and pedagogical (as much as possible) introduction to what is nowadays commonly called Algebraic Renormalization. As the same itself let it understand, the Algebraic Renormalization gives a systematic set up in order to analyse the quantum extension of a given set of classical symmetries. The framework is purely algebraic, yielding a complete characterization of all possible anomalies and invariant counterterms without making use of any explicit computation of the Feynman diagrams. This goal is achieved by collecting, with the introduction of suitable ghost fields, all the symmetries into a unique operation summarized by a generalized Slavnov-Taylor (or master equation) identity which is the starting point for the quantum analysis. The Slavnov-Taylor identity allows to define a nilpotent operator whose cohomology classes in the space of the integrated local polynomials in the fields and their derivatives with dimensions bounded by power counting give all nontrivial anomalies and counterterms. I other words, the proof of the renormalizability is reduced to the computation of some cohomology classes. (author)
Energy Technology Data Exchange (ETDEWEB)
Fucito, F.; Tanzini, A. [Rome Univ. 2 (Italy). Dipt. di Fisica; Vilar, L.C.Q.; Ventura, O.S.; Sasaki, C.A.G. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, S.P. [Universidade do Estado (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica
1997-07-01
The aim of these notes is to provide a simple and pedagogical (as much as possible) introduction to what is nowadays commonly called Algebraic Renormalization. As the same itself let it understand, the Algebraic Renormalization gives a systematic set up in order to analyse the quantum extension of a given set of classical symmetries. The framework is purely algebraic, yielding a complete characterization of all possible anomalies and invariant counterterms without making use of any explicit computation of the Feynman diagrams. This goal is achieved by collecting, with the introduction of suitable ghost fields, all the symmetries into a unique operation summarized by a generalized Slavnov-Taylor (or master equation) identity which is the starting point for the quantum analysis. The Slavnov-Taylor identity allows to define a nilpotent operator whose cohomology classes in the space of the integrated local polynomials in the fields and their derivatives with dimensions bounded by power counting give all nontrivial anomalies and counterterms. I other words, the proof of the renormalizability is reduced to the computation of some cohomology classes. (author) 28 refs., 2 figs.
Electromagnetic field theories for engineering
Salam, Md Abdus
2014-01-01
A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.
Generalized field theory of gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1976-01-01
It is shown that if, on empirical grounds, one rules out the existence of cosmic fields of Dicke-Brans (scalar) and Will Nordvedt (vector, tensor) type, then the most general experimentally viable and theoretically reasonable theory of gravitation seems to be a LAMBDA-dependent generalization of Einstein and Yilmez theories, which reduces to the former for LAMBDA=0 and to the latter for LAMBDA=1
Generalized Hermitian Algebras
Foulis, David J.; Pulmannová, Sylvia
2009-05-01
We refer to the real Jordan Banach algebra of bounded Hermitian operators on a Hilbert space as a Hermitian algebra. In this paper we define and launch a study of a class of generalized Hermitian (GH) algebras. Among the examples of GH-algebras are ordered special Jordan algebras, JW-algebras, and AJW-algebras, but unlike these more restricted cases, a GH-algebra is not necessarily a Banach space and its lattice of projections is not necessarily complete. In this paper we develop the basic theory of GH-algebras, identify their unit intervals as effect algebras, and observe that their projection lattices are sigma-complete orthomodular lattices. We show that GH-algebras are spectral order-unit spaces and that they admit a substantial spectral theory.
Renormalization of topological field theory
International Nuclear Information System (INIS)
Birmingham, D.; Rakowski, M.; Thompson, G.
1988-11-01
One loop corrections to topological field theory in three and four dimensions are presented. By regularizing determinants, we compute the effective action and β-function in four dimensional topological Yang-Mills theory and find that the BRST symmetry is preserved. Moreover, the minima of the effective action still correspond to instanton configurations. In three dimensions, an analysis of the Chern-Simons theory shows that the topological nature of the theory is also preserved to this order. In addition, we find that this theory possesses an extra supersymmetry when quantized in the Landau gauge. Using dimensional regularization, we then study the Ward identities of the extended BRST symmetry in the three dimensional topological Yang-Mills-Higgs model. (author). 22 refs
Gauge and supergauge field theories
International Nuclear Information System (INIS)
Slavnov, A.
1977-01-01
The most actual problems concerning gauge fields are reviwed. Theoretical investigations conducted since as early as 1954 are enclosed. Present status of gauge theories is summarized, including intermediate vector mesons, heavy leptons, weak interactions of hadrons, V-A structure, universal interaction, infrared divergences in perturbation theory, particle-like solutions in gauge theories, spontaneous symmetry breaking. Special emphasis is placed on strong interactions, or more precisely, on the alleged unobservability of ''color'' objects (quark confinement). Problems dealing with the supersymmetric theories invariant under gauge transformations and spontaneous breaking of supersymmetry are also discussed. Gauge theories are concluded to provide self-consistent apparatus for weak and electromagnetic interactions. As to strong interactions such models are still to be discovered
Ghost field realizations of the spinor W2,s strings based on the linear W1,2,s algebras
International Nuclear Information System (INIS)
Liu Yuxiao; Ren Jirong; Zhang Lijie
2005-01-01
It has been shown that certain W algebras can be linearized by the inclusion of a spin-1 current. This provides a way of obtaining new realizations of the W algebras. In this paper, we investigate the new ghost field realizations of the W 2,s (s=3,4) algebras, making use of the fact that these two algebras can be linearized. We then construct the nilpotent BRST charges of the spinor non-critical W 2,s strings with these new realizations. (author)
Fornace, Mark E; Lee, Joonho; Miyamoto, Kaito; Manby, Frederick R; Miller, Thomas F
2015-02-10
We introduce embedded mean-field theory (EMFT), an approach that flexibly allows for the embedding of one mean-field theory in another without the need to specify or fix the number of particles in each subsystem. EMFT is simple, is well-defined without recourse to parameters, and inherits the simple gradient theory of the parent mean-field theories. In this paper, we report extensive benchmarking of EMFT for the case where the subsystems are treated using different levels of Kohn-Sham theory, using PBE or B3LYP/6-31G* in the high-level subsystem and LDA/STO-3G in the low-level subsystem; we also investigate different levels of density fitting in the two subsystems. Over a wide range of chemical problems, we find EMFT to perform accurately and stably, smoothly converging to the high-level of theory as the active subsystem becomes larger. In most cases, the performance is at least as good as that of ONIOM, but the advantages of EMFT are highlighted by examples that involve partitions across multiple bonds or through aromatic systems and by examples that involve more complicated electronic structure. EMFT is simple and parameter free, and based on the tests provided here, it offers an appealing new approach to a multiscale electronic structure.
Schwarz maps of algebraic linear ordinary differential equations
Sanabria Malagón, Camilo
2017-12-01
A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.
Off-shell renormalization in Higgs effective field theories
Binosi, Daniele; Quadri, Andrea
2018-04-01
The off-shell one-loop renormalization of a Higgs effective field theory possessing a scalar potential ˜ {({Φ}^{\\dagger}Φ -υ^2/2)}^N with N arbitrary is presented. This is achieved by renormalizing the theory once reformulated in terms of two auxiliary fields X 1,2, which, due to the invariance under an extended Becchi-Rouet-Stora-Tyutin symmetry, are tightly constrained by functional identities. The latter allow in turn the explicit derivation of the mapping onto the original theory, through which the (divergent) multi-Higgs amplitude are generated in a purely algebraic fashion. We show that, contrary to naive expectations based on the loss of power counting renormalizability, the Higgs field undergoes a linear Standard Model like redefinition, and evaluate the renormalization of the complete set of Higgs self-coupling in the N → ∞ case.
The foliation operator in history quantum field theory
International Nuclear Information System (INIS)
Isham, C.J.; Savvidou, K.
2002-01-01
As a preliminary to discussing the quantization of the foliation in a history form of general relativity, we show how the discussion in an earlier work [J. Math. Phys. 43, 3053 (2002)] of a history version of free, scalar quantum field theory can be augmented in such a way as to include the quantization of the unit-length, timelike vector that determines a Lorentzian foliation of Minkowski space-time. We employ a Hilbert bundle construction that is motivated by (i) discussing the role of the external Lorentz group in the existing history quantum field theory [J. Math. Phys. 43, 3053 (2002)] and (ii) considering a specific representation of the extended history algebra obtained from the multi-symplectic representation of scalar field theory
Alternative approaches to maximally supersymmetric field theories
International Nuclear Information System (INIS)
Broedel, Johannes
2010-01-01
The central objective of this work is the exploration and application of alternative possibilities to describe maximally supersymmetric field theories in four dimensions: N=4 super Yang-Mills theory and N=8 supergravity. While twistor string theory has been proven very useful in the context of N=4 SYM, no analogous formulation for N=8 supergravity is available. In addition to the part describing N=4 SYM theory, twistor string theory contains vertex operators corresponding to the states of N=4 conformal supergravity. Those vertex operators have to be altered in order to describe (non-conformal) Einstein supergravity. A modified version of the known open twistor string theory, including a term which breaks the conformal symmetry for the gravitational vertex operators, has been proposed recently. In a first part of the thesis structural aspects and consistency of the modified theory are discussed. Unfortunately, the majority of amplitudes can not be constructed, which can be traced back to the fact that the dimension of the moduli space of algebraic curves in twistor space is reduced in an inconsistent manner. The issue of a possible finiteness of N=8 supergravity is closely related to the question of the existence of valid counterterms in the perturbation expansion of the theory. In particular, the coefficient in front of the so-called R 4 counterterm candidate has been shown to vanish by explicit calculation. This behavior points into the direction of a symmetry not taken into account, for which the hidden on-shell E 7(7) symmetry is the prime candidate. The validity of the so-called double-soft scalar limit relation is a necessary condition for a theory exhibiting E 7(7) symmetry. By calculating the double-soft scalar limit for amplitudes derived from an N=8 supergravity action modified by an additional R 4 counterterm, one can test for possible constraints originating in the E 7(7) symmetry. In a second part of the thesis, the appropriate amplitudes are calculated
Localization of effective actions in open superstring field theory
Maccaferri, Carlo; Merlano, Alberto
2018-03-01
We consider the construction of the algebraic part of D-branes tree-level effective action from Berkovits open superstring field theory. Applying this construction to the quartic potential of massless fields carrying a specific worldsheet charge, we show that the full contribution to the potential localizes at the boundary of moduli space, reducing to elementary two-point functions. As examples of this general mechanism, we show how the Yang-Mills quartic potential and the instanton effective action of a Dp/D( p - 4) system are reproduced.
Locality in the gauge-covariant field theory of strings
Energy Technology Data Exchange (ETDEWEB)
Kaku, Michio
1985-11-07
Recently, we wrote down the gauge-covariant field theory of the free bosonic, super, and heterotic strings. These second quantized actions were derived from path integrals in the same way as Feynman derived the Schroedinger equation. These actions possess all the local gauge invariance of the super Virasoro algebra. These actions, however, are non-local. It has been conjectured that these actions can be made local by adding auxiliary fields. In this paper, we prove this conjecture to all orders, making our action explicitly local. (orig.).
Automorphism modular invariants of current algebras
International Nuclear Information System (INIS)
Gannon, T.; Walton, M.A.
1996-01-01
We consider those two-dimensional rational conformal field theories (RCFTs) whose chiral algebras, when maximally extended, are isomorphic to the current algebra formed from some untwisted affine Lie algebra at fixed level. In this case the partition function is specified by an automorphism of the fusion ring and corresponding symmetry of the Kac-Peterson modular matrices. We classify all such partition functions when the underlying finite-dimensional Lie algebra is simple. This gives all possible spectra for this class of RCFTs. While accomplishing this, we also find the primary fields with second smallest quantum dimension. (orig.). With 3 tabs
On the construction of classical superstring field theories
Energy Technology Data Exchange (ETDEWEB)
Konopka, Sebastian Johann Hermann
2016-07-01
This thesis describes the construction of classical superstring field theories based on the small Hilbert space. First we describe the traditional construction of perturbative superstring theory as an integral over the supermoduli space of type II world sheets. The geometry of supermoduli space dictates many algebraic properties of the string field theory action. In particular it allows for an algebraisation of the construction problem for classical superstring field theories in terms of homotopy algebras. Next, we solve the construction problem for open superstrings based on Witten's star product. The construction is recursive and involves a choice of homotopy operator for the zero mode of the η-ghost. It turns out that the solution can be extended to the Neveu-Schwarz subsectors of all superstring field theories. The recursive construction involves a hierarchy of string products at various picture deficits. The construction is not entirely natural, but it is argued that different choices give rise to solutions related by a field redefinition. Due to the presence of odd gluing parameters for Ramond states the extension to full superstring field theory is non-trivial. Instead, we construct gauge-invariant equations of motion for all superstring field theories. The realisation of spacetime supersymmetry in the open string sector is highly non-trivial and is described explicitly for the solution based on Witten's star product. After a field redefinition the non-polynomial equations of motion and the small Hilbert space constraint become polynomial. This polynomial system is shown to be supersymmetric. Quite interestingly, the supersymmetry algebra closes only up to gauge transformations. This indicates that only the physical phase space realizes N=1 supersymmetry. Apart from the algebraic constraints dictated by the geometry of supermoduli space the equations of motion or action should reproduce the traditional string S-matrix. The S-matrix of a field
On the construction of classical superstring field theories
International Nuclear Information System (INIS)
Konopka, Sebastian Johann Hermann
2016-01-01
This thesis describes the construction of classical superstring field theories based on the small Hilbert space. First we describe the traditional construction of perturbative superstring theory as an integral over the supermoduli space of type II world sheets. The geometry of supermoduli space dictates many algebraic properties of the string field theory action. In particular it allows for an algebraisation of the construction problem for classical superstring field theories in terms of homotopy algebras. Next, we solve the construction problem for open superstrings based on Witten's star product. The construction is recursive and involves a choice of homotopy operator for the zero mode of the η-ghost. It turns out that the solution can be extended to the Neveu-Schwarz subsectors of all superstring field theories. The recursive construction involves a hierarchy of string products at various picture deficits. The construction is not entirely natural, but it is argued that different choices give rise to solutions related by a field redefinition. Due to the presence of odd gluing parameters for Ramond states the extension to full superstring field theory is non-trivial. Instead, we construct gauge-invariant equations of motion for all superstring field theories. The realisation of spacetime supersymmetry in the open string sector is highly non-trivial and is described explicitly for the solution based on Witten's star product. After a field redefinition the non-polynomial equations of motion and the small Hilbert space constraint become polynomial. This polynomial system is shown to be supersymmetric. Quite interestingly, the supersymmetry algebra closes only up to gauge transformations. This indicates that only the physical phase space realizes N=1 supersymmetry. Apart from the algebraic constraints dictated by the geometry of supermoduli space the equations of motion or action should reproduce the traditional string S-matrix. The S-matrix of a field
Bosonic colored group field theory
Energy Technology Data Exchange (ETDEWEB)
Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)
2010-12-15
Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)
Gravitation and bilocal field theory
International Nuclear Information System (INIS)
Vollendorf, F.
1975-01-01
The starting point is the conjecture that a field theory of elementary particles can be constructed only in a bilocal version. Thus the 4-dimensional space time has to be replaced by the 8-dimensional manifold R 8 of all ordered pairs of space time events. With special reference to the Schwarzschild metric it is shown that the embedding of the time space into the manifold R 8 yields a description of the gravitational field. (orig.) [de
Structure constants in the N=1 super-Liouville field theory
International Nuclear Information System (INIS)
Poghossian, R.H.
1997-01-01
The symmetry algebra of N=1 super-Liouville field theory in two dimensions is the infinite-dimensional N=1 superconformal algebra, which allows one to prove that correlation functions containing degenerated fields obey some partial linear differential equations. In the special case of four-point function, including a primary field degenerated at the first level, these differential equations can be solved via hypergeometric functions. Taking into account mutual locality properties of fields and investigating s- and t-channel singularities we obtain some functional relations for three-point correlation functions. Solving this functional equations we obtain three-point functions in both Neveu-Schwarz and Ramond sectors. (orig.)
Geometry of Spin: Clifford Algebraic Approach
Indian Academy of Sciences (India)
... all the propertiesof Pauli matrices follow from the underlying algebra. Cliffordalgebraic approach provides a geometrical and henceintuitive way to understand quantum theory of spin, and isa natural formalism to study spin. Clifford algebraic formalismhas lot of applications in every field where spin plays animportant role.
Wadsworth, A R
2017-01-01
This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.
Boundedly controlled topology foundations of algebraic topology and simple homotopy theory
Anderson, Douglas R
1988-01-01
Several recent investigations have focused attention on spaces and manifolds which are non-compact but where the problems studied have some kind of "control near infinity". This monograph introduces the category of spaces that are "boundedly controlled" over the (usually non-compact) metric space Z. It sets out to develop the algebraic and geometric tools needed to formulate and to prove boundedly controlled analogues of many of the standard results of algebraic topology and simple homotopy theory. One of the themes of the book is to show that in many cases the proof of a standard result can be easily adapted to prove the boundedly controlled analogue and to provide the details, often omitted in other treatments, of this adaptation. For this reason, the book does not require of the reader an extensive background. In the last chapter it is shown that special cases of the boundedly controlled Whitehead group are strongly related to lower K-theoretic groups, and the boundedly controlled theory is compared to Sie...
Computers for lattice field theories
International Nuclear Information System (INIS)
Iwasaki, Y.
1994-01-01
Parallel computers dedicated to lattice field theories are reviewed with emphasis on the three recent projects, the Teraflops project in the US, the CP-PACS project in Japan and the 0.5-Teraflops project in the US. Some new commercial parallel computers are also discussed. Recent development of semiconductor technologies is briefly surveyed in relation to possible approaches toward Teraflops computers. (orig.)
Dimensional analysis in field theory
International Nuclear Information System (INIS)
Stevenson, P.M.
1981-01-01
Dimensional Transmutation (the breakdown of scale invariance in field theories) is reconciled with the commonsense notions of Dimensional Analysis. This makes possible a discussion of the meaning of the Renormalisation Group equations, completely divorced from the technicalities of renormalisation. As illustrations, I describe some very farmiliar QCD results in these terms
The algebras of large N matrix mechanics
Energy Technology Data Exchange (ETDEWEB)
Halpern, M.B.; Schwartz, C.
1999-09-16
Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.
CIME-CIRM course Rationality Problems in Algebraic Geometry
Pirola, Gian
2016-01-01
Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments. It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.
Bell, Eric T
1927-01-01
The central topic of this book is the presentation of the author's principle of arithmetical paraphrases, which won him the BÃ´cher Prize in 1924. This general principle served to unify and extend many isolated results in the theory of numbers. The author successfully provides a systematic attempt to find a unified theory for each of various classes of related important problems in the theory of numbers, including its interrelations with algebra and analysis. This book will be of interest to advanced students in various branches of mathematics, including number theory, abstract algebra, ellipti
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
International Nuclear Information System (INIS)
Vajskopf, V.F.
1982-01-01
The article deals with the history of the development of quantum electrodynamics since the date of publishing the work by P.A.M. Dirac ''The Quantum Theory of the Emission and Absorption of Radiation''. Classic ''before-Dirac'' electrodynamics related with the names of Maxwell, Lorenz, Hertz, is outlined. Work of Bohr and Rosenfeld is shown to clarify the physical sense of quantized field and to reveal the existence of uncertainties between the strengths of different fields. The article points to the significance of the article ''Quantum theory of radiation'' by E. Fermi which clearly describes the Dirac theory of radiation, relativistic wave equation and fundamentals of quantum electrodynamics. Shown is work on elimination of troubles related with the existence of states with negative kinetic energy or with negative mass. Hypothesis on the Dirac filled-in vacuum led to understanding of the existence of antiparticles and two unknown till then fundamental processes - pair production and annihilation. Ways of fighting against the infinite quantities in quantum electrodynamics are considered. Renormalization of the theory overcame all the infinities and gave a pattern for calculation of any processes of electron interactions with electromagnetic field to any desired accuracy
Exceptional field theory: SL(5)
International Nuclear Information System (INIS)
Musaev, Edvard T.
2016-01-01
In this work the exceptional field theory formulation of supergravity with SL(5) gauge group is considered. This group appears as a U-duality group of D=7 maximal supergravity. In the formalism presented the hidden global duality group is promoted into a gauge group of a theory in dimensions 7+number of extended directions. This work is a continuation of the series of works for E 8,7,6 ,SO(5,5) and SL(3)×SL(2) duality groups.
Perturbative coherence in field theory
International Nuclear Information System (INIS)
Aldrovandi, R.; Kraenkel, R.A.
1987-01-01
A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt
Einstein's theory of unified fields
Tonnelat, Marie Antoinette
2014-01-01
First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or 'didactic exposition' of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research whic
Baal, Pierre Van
2014-01-01
""… a pleasant novelty that manages the impossible: a full course in field theory from a derivation of the Dirac equation to the standard electroweak theory in less than 200 pages. Moreover, the final chapter consists of a careful selection of assorted problems, which are original and either anticipate or detail some of the topics discussed in the bulk of the chapters. Instead of building a treatise out of a collection of lecture notes, the author took the complementary approach and constructed a course out of a number of well-known and classic treatises. The result is fresh and useful. … the
Introduction to quantum field theory
Chang, Shau-Jin
1990-01-01
This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s
Duality-invariant class of two-dimensional field theories
Sfetsos, K
1999-01-01
We construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G/H-spaces. They arise naturally, when certain models, related by Poisson-Lie T-duality, develop a local gauge invariance at specific points of their classical moduli space. We show that canonical equivalences in this context can be formulated in loop space in terms of parafermionic-type algebras with a central extension. We find that the corresponding generating functionals are non-polynomial in the derivatives of the fields with respect to the space-like variable. After constructing models with three- and two-dimensional targets, we study renormalization group flows in this context. In the ultraviolet, in some cases, the target space of the theory reduces to a coset space or there is a fixed point where the theory becomes free.
Global integrability of field theories. Proceedings
International Nuclear Information System (INIS)
Calmet, J.; Seiler, W.M.; Tucker, R.W.
2006-01-01
The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very
Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag
2017-10-01
Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.
Conformal Field Theory, Automorphic Forms and Related Topics
Weissauer, Rainer; CFT 2011
2014-01-01
This book, part of the series Contributions in Mathematical and Computational Sciences, reviews recent developments in the theory of vertex operator algebras (VOAs) and their applications to mathematics and physics. The mathematical theory of VOAs originated from the famous monstrous moonshine conjectures of J.H. Conway and S.P. Norton, which predicted a deep relationship between the characters of the largest simple finite sporadic group, the Monster, and the theory of modular forms inspired by the observations of J. MacKay and J. Thompson. The contributions are based on lectures delivered at the 2011 conference on Conformal Field Theory, Automorphic Forms and Related Topics, organized by the editors as part of a special program offered at Heidelberg University that summer under the sponsorship of the MAThematics Center Heidelberg (MATCH).
Protected gates for topological quantum field theories
Beverland, Michael E.; Buerschaper, Oliver; Koenig, Robert; Pastawski, Fernando; Preskill, John; Sijher, Sumit
2016-02-01
We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.
Protected gates for topological quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Beverland, Michael E.; Pastawski, Fernando; Preskill, John [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States); Buerschaper, Oliver [Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin (Germany); Koenig, Robert [Institute for Advanced Study and Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Sijher, Sumit [Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)
2016-02-15
We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.
International Nuclear Information System (INIS)
Chang, P.; Lee, S.Y.; Yan, Y.T.
2006-01-01
A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders
International Nuclear Information System (INIS)
Chang, P
2004-01-01
A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders
Quantum field theory and coalgebraic logic in theoretical computer science.
Basti, Gianfranco; Capolupo, Antonio; Vitiello, Giuseppe
2017-11-01
We suggest that in the framework of the Category Theory it is possible to demonstrate the mathematical and logical dual equivalence between the category of the q-deformed Hopf Coalgebras and the category of the q-deformed Hopf Algebras in quantum field theory (QFT), interpreted as a thermal field theory. Each pair algebra-coalgebra characterizes a QFT system and its mirroring thermal bath, respectively, so to model dissipative quantum systems in far-from-equilibrium conditions, with an evident significance also for biological sciences. Our study is in fact inspired by applications to neuroscience where the brain memory capacity, for instance, has been modeled by using the QFT unitarily inequivalent representations. The q-deformed Hopf Coalgebras and the q-deformed Hopf Algebras constitute two dual categories because characterized by the same functor T, related with the Bogoliubov transform, and by its contravariant application T op , respectively. The q-deformation parameter is related to the Bogoliubov angle, and it is effectively a thermal parameter. Therefore, the different values of q identify univocally, and label the vacua appearing in the foliation process of the quantum vacuum. This means that, in the framework of Universal Coalgebra, as general theory of dynamic and computing systems ("labelled state-transition systems"), the so labelled infinitely many quantum vacua can be interpreted as the Final Coalgebra of an "Infinite State Black-Box Machine". All this opens the way to the possibility of designing a new class of universal quantum computing architectures based on this coalgebraic QFT formulation, as its ability of naturally generating a Fibonacci progression demonstrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transversity results and computations in symplectic field theory
Energy Technology Data Exchange (ETDEWEB)
Fabert, Oliver
2008-02-21
Although the definition of symplectic field theory suggests that one has to count holomorphic curves in cylindrical manifolds R x V equipped with a cylindrical almost complex structure J, it is already well-known from Gromov-Witten theory that, due to the presence of multiply-covered curves, we in general cannot achieve transversality for all moduli spaces even for generic choices of J. In this thesis we treat the transversality problem of symplectic field theory in two important cases. In the first part of this thesis we are concerned with the rational symplectic field theory of Hamiltonian mapping tori, which is also called the Floer case. For this observe that in the general geometric setup for symplectic field theory, the contact manifolds can be replaced by mapping tori M{sub {phi}} of symplectic manifolds (M,{omega}{sub M}) with symplectomorphisms {phi}. While the cylindrical contact homology of M{sub {phi}} is given by the Floer homologies of powers of {phi}, the other algebraic invariants of symplectic field theory for M{sub {phi}} provide natural generalizations of symplectic Floer homology. For symplectically aspherical M and Hamiltonian {phi} we study the moduli spaces of rational curves and prove a transversality result, which does not need the polyfold theory by Hofer, Wysocki and Zehnder and allows us to compute the full contact homology of M{sub {phi}} {approx_equal} S{sup 1} x M. The second part of this thesis is devoted to the branched covers of trivial cylinders over closed Reeb orbits, which are the trivial examples of punctured holomorphic curves studied in rational symplectic field theory. Since all moduli spaces of trivial curves with virtual dimension one cannot be regular, we use obstruction bundles in order to find compact perturbations making the Cauchy-Riemann operator transversal to the zero section and show that the algebraic count of elements in the resulting regular moduli spaces is zero. Once the analytical foundations of symplectic
Transversity results and computations in symplectic field theory
International Nuclear Information System (INIS)
Fabert, Oliver
2008-01-01
Although the definition of symplectic field theory suggests that one has to count holomorphic curves in cylindrical manifolds R x V equipped with a cylindrical almost complex structure J, it is already well-known from Gromov-Witten theory that, due to the presence of multiply-covered curves, we in general cannot achieve transversality for all moduli spaces even for generic choices of J. In this thesis we treat the transversality problem of symplectic field theory in two important cases. In the first part of this thesis we are concerned with the rational symplectic field theory of Hamiltonian mapping tori, which is also called the Floer case. For this observe that in the general geometric setup for symplectic field theory, the contact manifolds can be replaced by mapping tori M φ of symplectic manifolds (M,ω M ) with symplectomorphisms φ. While the cylindrical contact homology of M φ is given by the Floer homologies of powers of φ, the other algebraic invariants of symplectic field theory for M φ provide natural generalizations of symplectic Floer homology. For symplectically aspherical M and Hamiltonian φ we study the moduli spaces of rational curves and prove a transversality result, which does not need the polyfold theory by Hofer, Wysocki and Zehnder and allows us to compute the full contact homology of M φ ≅ S 1 x M. The second part of this thesis is devoted to the branched covers of trivial cylinders over closed Reeb orbits, which are the trivial examples of punctured holomorphic curves studied in rational symplectic field theory. Since all moduli spaces of trivial curves with virtual dimension one cannot be regular, we use obstruction bundles in order to find compact perturbations making the Cauchy-Riemann operator transversal to the zero section and show that the algebraic count of elements in the resulting regular moduli spaces is zero. Once the analytical foundations of symplectic field theory are established, our result implies that the
Energy Technology Data Exchange (ETDEWEB)
Bauer, W.
2007-03-15
The goal of this diploma thesis is to present an overview of how to reduce the problem of topology change of general spacetimes to the investigation of elementary cobordisms. In the following we investigate the possibility to construct quantum fields on elementary cobordisms, in particular we discuss the trousers topology. Trying to avoid the problems occuring at spacetimes with instant topology change we use a model for simulating topology change. We construct the algebra of observables for a free scalar field with the algebraic approach to quantum field theory. Therefore we determine a fundamental solution of the eld equation. (orig.)
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
Variational methods for field theories
International Nuclear Information System (INIS)
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions
Variational methods for field theories
Energy Technology Data Exchange (ETDEWEB)
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.
Theory of field reversed configurations
International Nuclear Information System (INIS)
Steinhauer, L.C.
1990-01-01
This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs
International Nuclear Information System (INIS)
Coman, Ioana; Teschner, Joerg
2015-05-01
Non-perturbative aspects of N=2 supersymmetric gauge theories of class S are deeply encoded in the algebra of functions on the moduli space M flat of at SL(N)-connections on Riemann surfaces. Expectation values of Wilson and 't Hooft line operators are related to holonomies of flat connections, and expectation values of line operators in the low-energy effective theory are related to Fock-Goncharov coordinates on M flat . Via the decomposition of UV line operators into IR line operators, we determine their noncommutative algebra from the quantization of Fock-Goncharov Laurent polynomials, and find that it coincides with the skein algebra studied in the context of Chern-Simons theory. Another realization of the skein algebra is generated by Verlinde network operators in Toda field theory. Comparing the spectra of these two realizations provides non-trivial support for their equivalence. Our results can be viewed as evidence for the generalization of the AGT correspondence to higher-rank class S theories.
QPFT operator algebras and commutative exterior differential calculus
International Nuclear Information System (INIS)
Yur'ev, D.V.
1993-01-01
The reduction of the structure theory of the operator algebras of quantum projective (sl(2, C)-invariant) field theory (QPFT operator algebras) to a commutative exterior differential calculus by means of the operation of renormalization of a pointwise product of operator fields is described. In the first section, the author introduces the concept of the operator algebra of quantum field theory and describes the operation of the renormalization of a pointwise product of operator fields. The second section is devoted to a brief exposition of the fundamentals of the structure theory of QPT operator algebras. The third section is devoted to commutative exterior differential calculus. In the fourth section, the author establishes the connection between the renormalized pointwise product of operator fields in QPFT operator algebras and the commutative exterior differential calculus. 5 refs
Polynomial deformations of oscillator algebras in quantum theories with internal symmetries
International Nuclear Information System (INIS)
Karassiov, V.P.
1992-01-01
This paper reports that for last years some new Lie-algebraic structures (quantum groups or algebras, W-algebras, Casimir algebras) have been introduced in different areas of modern physics. All these objects are non-linear generalizations (deformations) of usual (linear) Lie algebras which are generated by a set B = {T a } of their generators T a satisfying a commutation relations (CR) of the form [T a , T b ] = f ab ({T c }) where f ab (...) are some functions of the generators T c given by power series. From the mathematical viewpoint such objects called as nonlinear or deformed Lie algebras G d may be treated as universal algebras or algebraic systems G d = left-angle B; +, · , [,] right-angle generated by a basic set B and the usual operations of the addition (+) and the multiplication (·) together with the Lie product ([T a , T b ] = T a T b - T b T a )
On the construction of quantum field theories with factorizing S-matrices
Energy Technology Data Exchange (ETDEWEB)
Lechner, G.
2006-05-24
The subject of this thesis is a novel construction method for interacting relativistic quantum field theories on two-dimensional Minkowski space. Employing the algebraic framework of quantum field theory, it is shown under which conditions an algebra of observables localized in a wedge-shaped region of spacetime can be used to construct model theories. A crucial input in this context is the modular nuclearity condition for wedge algebras, which implies the existence of local observables. As an application of the new method, a rigorous construction of a large family of models with factorizing S-matrices is obtained. In an inverse scattering approach, a given factorizing scattering operator is used to define certain semi-localized Wightman fields associated to it. With the help of these fields, a wedge algebra can be defined, which determines the local observable content of a well-defined quantum field theory. In this approach, the modular nuclearity condition translates to certain analyticity and boundedness conditions on the formfactors of wedge-local observables. These conditions are shown to hold for a large class of underlying S-matrices, including the scattering operators of the Sinh-Gordon model and the scaling Ising model as special examples. The so constructed models are investigated with respect to their scattering properties. They are shown to solve the inverse scattering problem for the underlying S-matrices, and a proof of asymptotic completeness for these models is given. (orig.)
Exact time-localized solutions in vacuum string field theory
International Nuclear Information System (INIS)
Bonora, L.; Maccaferri, C.; Scherer Santos, R.J.; Tolla, D.D.
2005-01-01
We address the problem of finding star algebra projectors that exhibit localized time profiles. We use the double Wick rotation method, starting from a Euclidean (unconventional) lump solution, which is characterized by the Neumann matrix being the conventional one for the continuous spectrum, while the inverse of the conventional one for the discrete spectrum. This is still a solution of the projector equation and we show that, after inverse Wick-rotation, its time profile has the desired localized time dependence. We study it in detail in the low energy regime (field theory limit) and in the extreme high energy regime (tensionless limit) and show its similarities with the rolling tachyon solution
One loop tadpole in heterotic string field theory
Erler, Theodore; Konopka, Sebastian; Sachs, Ivo
2017-11-01
We compute the off-shell 1-loop tadpole amplitude in heterotic string field theory. With a special choice of cubic vertex, we show that this amplitude can be computed exactly. We obtain explicit and elementary expressions for the Feynman graph decomposition of the moduli space, the local coordinate map at the puncture as a function of the modulus, and the b-ghost insertions needed for the integration measure. Recently developed homotopy algebra methods provide a consistent configuration of picture changing operators. We discuss the consequences of spurious poles for the choice of picture changing operators.
On incompleteness of classical field theory
Sardanashvily, G.
2009-01-01
Classical field theory is adequately formulated as Lagrangian theory on fibre bundles and graded manifolds. One however observes that non-trivial higher stage Noether identities and gauge symmetries of a generic reducible degenerate Lagrangian field theory fail to be defined. Therefore, such a field theory can not be quantized.
International Nuclear Information System (INIS)
Baeuerle, G.G.A.; Kerf, E.A. de
1990-01-01
The structure of the laws in physics is largely based on symmetries. This book is on Lie algebras, the mathematics of symmetry. It gives a thorough mathematical treatment of finite dimensional Lie algebras and Kac-Moody algebras. Concepts such as Cartan matrix, root system, Serre's construction are carefully introduced. Although the book can be read by an undergraduate with only an elementary knowledge of linear algebra, the book will also be of use to the experienced researcher. Experience has shown that students who followed the lectures are well-prepared to take on research in the realms of string-theory, conformal field-theory and integrable systems. 48 refs.; 66 figs.; 3 tabs
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
Rota-Baxter algebras and the Hopf algebra of renormalization
International Nuclear Information System (INIS)
Ebrahimi-Fard, K.
2006-06-01
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Rota-Baxter algebras and the Hopf algebra of renormalization
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi-Fard, K.
2006-06-15
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
NATO Advanced Study Institute on Structural Theory of Automata, Semigroups and Universal Algebra
Rosenberg, Ivo; Goldstein, Martin
2005-01-01
Several of the contributions to this volume bring forward many mutually beneficial interactions and connections between the three domains of the title. Developing them was the main purpose of the NATO ASI summerschool held in Montreal in 2003. Although some connections, for example between semigroups and automata, were known for a long time, developing them and surveying them in one volume is novel and hopefully stimulating for the future. Another aspect is the emphasis on the structural theory of automata that studies ways to contstruct big automata from small ones. The volume also has contributions on top current research or surveys in the three domains. One contribution even links clones of universal algebra with the computational complexity of computer science. Three contributions introduce the reader to research in the former East block.
Towards Noncommutative Topological Quantum Field Theory – Hodge theory for cyclic cohomology
International Nuclear Information System (INIS)
Zois, I P
2014-01-01
Some years ago we initiated a program to define Noncommutative Topological Quantum Field Theory (see [1]). The motivation came both from physics and mathematics: On the one hand, as far as physics is concerned, following the well-known holography principle of 't Hooft (which in turn appears essentially as a generalisation of the Hawking formula for black hole entropy), quantum gravity should be a topological quantum field theory. On the other hand as far as mathematics is concerned, the motivation came from the idea to replace the moduli space of flat connections with the Gabai moduli space of codim-1 taut foliations for 3 dim manifolds. In most cases the later is finite and much better behaved and one might use it to define some version of Donaldson-Floer homology which, hopefully, would be easier to compute. The use of foliations brings noncommutative geometry techniques immediately into the game. The basic tools are two: Cyclic cohomology of the corresponding foliation C*-algebra and the so called ''tangential cohomology'' of the foliation. A necessary step towards this goal is to develop some sort of Hodge theory both for cyclic (and Hochschild) cohomology and for tangential cohomology. Here we present a method to develop a Hodge theory for cyclic and Hochschild cohomology for the corresponding C*-algebra of a foliation
On Associative Conformal Algebras of Linear Growth
Retakh, Alexander
2000-01-01
Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...
Inverse bootstrapping conformal field theories
Li, Wenliang
2018-01-01
We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.
Closed string field theory: Quantum action and the Batalin-Vilkovsky master equation
International Nuclear Information System (INIS)
Zwiebach, B.
1993-01-01
The complete quantum theory of covariant closed strings is constructed in detail. The nonpolynomial action is defined by elementary vertices satisfying recursion relations that give rise to Jacobi-like identities for an infinite chain of string field products. The genus zero string field algebra is the homotopy Lie algebra L ∞ encoding the gauge symmetry of the classical theory. The higher genus algebraic structure implies the Batalin-Vilkovisky (BV) master equation and thus consistent BRST quantization of the quantum action. From the L ∞ algebra, and the BV equation on the off-shell state space we derive the L ∞ algebra, and the BV equation on physical states that were recently constructed in d=2 string theory. The string diagrams are surfaces with minimal area metrics, foliated by closed geodesics of length 2π. These metrics generalize quadratic differentials in that foliation bands can cross. The string vertices are succinctly characterized; they include the surfaces whose foliation bands are all of height smaller than 2π. (orig.)
Free ◻{sup k} scalar conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Brust, Christopher [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario N2L 2Y5 (Canada); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)
2017-02-13
We consider the generalizations of the free U(N) and O(N) scalar conformal field theories to actions with higher powers of the Laplacian ◻{sup k}, in general dimension d. We study the spectra, Verma modules, anomalies and OPE of these theories. We argue that in certain d and k, the spectrum contains zero norm operators which are both primary and descendant, as well as extension operators which are neither primary nor descendant. In addition, we argue that in even dimensions d≤2k, there are well-defined operator algebras which are related to the ◻{sup k} theories and are novel in that they have a finite number of single-trace states.
APPLYING THE APOS THEORY TO IMPROVE STUDENTS ABILITY TO PROVE IN ELEMENTARY ABSTRACT ALGEBRA
Directory of Open Access Journals (Sweden)
I Made Arnawa
2007-04-01
Full Text Available This study is a quasi-experimental nonrandomized pretest-posttest control group design. The experiment group is treated by APOS theory instruction (APOS,that implements four characteristics of APOS theory, (1 mathematical knowledge was constructed through mental construction: actions, processes, objects, and organizing these in schemas, (2 using computer, (3 using cooperative learning groups, and (4 using ACE teaching cycle (activities, class discussion, and exercise. The control group is treated by conventional/traditional mathematics instruction (TRAD. The main purpose of this study is to analyze about achievement in proof. 180 students from two different universities (two classes at the Department of Mathematics UNAND and two classes atthe Department of Mathematics Education UNP PADANG were engaged as the research subjects. Based on the result of data analysis, the main result of this study is that the proof ability of students' in the APOS group is significantly better than student in TRAD group, so it is strongly suggested to apply APOS theory in Abstract Algebra course.
BRST Formalism in Self-Dual Chern-Simons Theory with Matter Fields
Dai, Jialiang; Fan, Engui
2018-03-01
We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.
BRST Formalism in Self-Dual Chern-Simons Theory with Matter Fields
Dai, Jialiang; Fan, Engui
2018-04-01
We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.
Spinning particle approach to higher spin field theory
International Nuclear Information System (INIS)
Corradini, Olindo
2011-01-01
We shortly review on the connection between higher-spin gauge field theories and supersymmetric spinning particle models. In such approach the higher spin equations of motion are linked to the first-class constraint algebra associated with the quantization of particle models. Here we consider a class of spinning particle models characterized by local O(N)-extended supersymmetry since these models are known to provide an alternative approach to the geometric formulation of higher spin field theory. We describe the canonical quantization of the models in curved target space and discuss the obstructions that appear in presence of an arbitrarily curved background. We then point out the special role that conformally flat spaces appear to have in such models and present a derivation of the higher-spin curvatures for maximally symmetric spaces.
Introduction to a Quantum Theory over a Galois Field
Directory of Open Access Journals (Sweden)
Felix M. Lev
2010-11-01
Full Text Available We consider a quantum theory based on a Galois field. In this approach infinities cannot exist, the cosmological constant problem does not arise, and one irreducible representation (IR of the symmetry algebra splits into independent IRs describing a particle an its antiparticle only in the approximation when de Sitter energies are much less than the characteristic of the field. As a consequence, the very notions of particles and antiparticles are only approximate and such additive quantum numbers as the electric, baryon and lepton charges are conserved only in this approximation. There can be no neutral elementary particles and the spin-statistics theorem can be treated simply as a requirement that standard quantum theory should be based on complex numbers.
Regularization of quantum field theories
International Nuclear Information System (INIS)
Rayski, J.
1985-01-01
General idea of regularization and renormalization in quantum field theory is presented. It is postulated that it is possible not to go to infinity with the auxiliary masses of regularization but to attach to them a certain physical meaning, but it is equivalent with a violation of unitarity of the operator of evolution in time. It may be achieved in two different ways: it might be simply assumed that only the direction but not the length of the state vector possesses a physical meaning and that not all possible physical events are predictable. 3 refs., 1 fig. (author)
International Nuclear Information System (INIS)
Hou Boyu; Zhao Liu
1993-01-01
As an example and application of the method of the previous work, the authors construct explicitly the W algebra W[p q p] 2 ] by the use of the canonical formalism of the corresponding generalized Toda theory, namely the (p q p) 2 Toda theory. Then the authors discuss various special limits of W[p q p) 2 ] and point out the isomorphism between W[(p q p) 2 ] and W[(p q + p) 1
Topics in low-dimensional field theory
Energy Technology Data Exchange (ETDEWEB)
Crescimanno, M.J.
1991-04-30
Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density.
Cluster algebras in mathematical physics
International Nuclear Information System (INIS)
Francesco, Philippe Di; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-01-01
This special issue of Journal of Physics A: Mathematical and Theoretical contains reviews and original research articles on cluster algebras and their applications to mathematical physics. Cluster algebras were introduced by S Fomin and A Zelevinsky around 2000 as a tool for studying total positivity and dual canonical bases in Lie theory. Since then the theory has found diverse applications in mathematics and mathematical physics. Cluster algebras are axiomatically defined commutative rings equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations. A cluster algebra of rank n can be viewed as a subring of the field of rational functions in n variables. Rather than being presented, at the outset, by a complete set of generators and relations, it is constructed from the initial seed via an iterative procedure called mutation producing new seeds successively to generate the whole algebra. A seed consists of an n-tuple of rational functions called cluster variables and an exchange matrix controlling the mutation. Relations of cluster algebra type can be observed in many areas of mathematics (Plücker and Ptolemy relations, Stokes curves and wall-crossing phenomena, Feynman integrals, Somos sequences and Hirota equations to name just a few examples). The cluster variables enjoy a remarkable combinatorial pattern; in particular, they exhibit the Laurent phenomenon: they are expressed as Laurent polynomials rather than more general rational functions in terms of the cluster variables in any seed. These characteristic features are often referred to as the cluster algebra structure. In the last decade, it became apparent that cluster structures are ubiquitous in mathematical physics. Examples include supersymmetric gauge theories, Poisson geometry, integrable systems, statistical mechanics, fusion products in infinite dimensional algebras, dilogarithm
An introduction to Clifford algebras and spinors
Vaz, Jayme
2016-01-01
This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and i...
Number theory arising from finite fields analytic and probabilistic theory
Knopfmacher, John
2001-01-01
""Number Theory Arising from Finite Fields: Analytic and Probabilistic Theory"" offers a discussion of the advances and developments in the field of number theory arising from finite fields. It emphasizes mean-value theorems of multiplicative functions, the theory of additive formulations, and the normal distribution of values from additive functions. The work explores calculations from classical stages to emerging discoveries in alternative abstract prime number theorems.
Elliptic genera and vertex operator super-algebras
Tamanoi, Hirotaka
1999-01-01
This monograph deals with two aspects of the theory of elliptic genus: its topological aspect involving elliptic functions, and its representation theoretic aspect involving vertex operator super-algebras. For the second aspect, elliptic genera are shown to have the structure of modules over certain vertex operator super-algebras. The vertex operators corresponding to parallel tensor fields on closed Riemannian Spin Kähler manifolds such as Riemannian tensors and Kähler forms are shown to give rise to Virasoro algebras and affine Lie algebras. This monograph is chiefly intended for topologists and it includes accounts on topics outside of topology such as vertex operator algebras.
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Conformal field theory between supersymmetry and indecomposable structures
International Nuclear Information System (INIS)
Eberle, H.
2006-07-01
This thesis considers conformal field theory in its supersymmetric extension as well as in its relaxation to logarithmic conformal field theory. This thesis is concerned with the subspace of K3 compactifications which is not well known yet. In particular, we inspect the intersection point of the Z 2 and Z 4 orbifold subvarieties within the K3 moduli space, explicitly identify the two corresponding points on the subvarieties geometrically, and give an explicit isomorphism of the three conformal field theory models located at that point, a specific Z 2 and Z 4 orbifold model as well as the Gepner model (2) 4 . We also prove the orthogonality of the two subvarieties at the intersection point. This is the starting point for the programme to investigate generic points in K3 moduli space. We use the coordinate identification at the intersection point in order to relate the coordinates of both subvarieties and to explicitly calculate a geometric geodesic between the two subvarieties as well as its generator. A generic point in K3 moduli space can be reached by such a geodesic originating at a known model. We also present advances on the conformal field theoretic side of deformations along such a geodesic using conformal deformation theory. Moreover, we regard a relaxation of conformal field theory to logarithmic conformal field theory. In particular, we study general augmented c p,q minimal models which generalise the well-known (augmented) c p,1 model series. We calculate logarithmic nullvectors in both types of models. But most importantly, we investigate the low lying Virasoro representation content and fusion algebra of two general augmented c p,q models, the augmented c 2,3 =0 model as well as the augmented Yang-Lee model at c 2,5 =-22/5. In particular, the true vacuum representation is rather given by a rank 1 indecomposable but not irreducible subrepresentation of a rank 2 representation. We generalise these generic examples to give the representation content and
Conformal field theory between supersymmetry and indecomposable structures
Energy Technology Data Exchange (ETDEWEB)
Eberle, H.
2006-07-15
This thesis considers conformal field theory in its supersymmetric extension as well as in its relaxation to logarithmic conformal field theory. This thesis is concerned with the subspace of K3 compactifications which is not well known yet. In particular, we inspect the intersection point of the Z{sub 2} and Z{sub 4} orbifold subvarieties within the K3 moduli space, explicitly identify the two corresponding points on the subvarieties geometrically, and give an explicit isomorphism of the three conformal field theory models located at that point, a specific Z{sub 2} and Z{sub 4} orbifold model as well as the Gepner model (2){sup 4}. We also prove the orthogonality of the two subvarieties at the intersection point. This is the starting point for the programme to investigate generic points in K3 moduli space. We use the coordinate identification at the intersection point in order to relate the coordinates of both subvarieties and to explicitly calculate a geometric geodesic between the two subvarieties as well as its generator. A generic point in K3 moduli space can be reached by such a geodesic originating at a known model. We also present advances on the conformal field theoretic side of deformations along such a geodesic using conformal deformation theory. Moreover, we regard a relaxation of conformal field theory to logarithmic conformal field theory. In particular, we study general augmented c{sub p,q} minimal models which generalise the well-known (augmented) c{sub p,1} model series. We calculate logarithmic nullvectors in both types of models. But most importantly, we investigate the low lying Virasoro representation content and fusion algebra of two general augmented c{sub p,q} models, the augmented c{sub 2,3}=0 model as well as the augmented Yang-Lee model at c{sub 2,5}=-22/5. In particular, the true vacuum representation is rather given by a rank 1 indecomposable but not irreducible subrepresentation of a rank 2 representation. We generalise these generic
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...
Superselection sectors in low dimensional quantum field theory
International Nuclear Information System (INIS)
Fredenhagen, K.
1992-09-01
The occurence of braid group statistics in low dimensions is reviewed, and an extension of the general theory to solitonic sectors is described where the DHR endomorphisms are replaced by homomorphisms between different extensions of the algebra of observables. (orig.)
Gaussian processes and constructive scalar field theory
International Nuclear Information System (INIS)
Benfatto, G.; Nicolo, F.
1981-01-01
The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)
Effective Field Theory on Manifolds with Boundary
Albert, Benjamin I.
In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.