Sample records for aldose reductase inhibitor


    NARCIS (Netherlands)



    The polyol pathway has long been associated with diabetic retinopathy. Glucose is converted to sorbitol with the aid of the enzyme aldose reductase. Aldose reductase inhibitors can prevent changes induced by diabetes. A total of 30 patients with minimal background retinopathy were randomly divided i

  2. [Progress in research of aldose reductase inhibitors in traditional medicinal herbs]. (United States)

    Feng, Chang-Gen; Zhang, Lin-Xia; Liu, Xia


    The traditional medicinal herbs are natural product, and have no obviously toxic action and side effect, and their resources are extensive. The adverse effects produced by aldose reductase inhibitors in traditional medicinal herbs are less than those from chemical synthesis and micro-organism, they can effectively prevent and delay diabetic complication, such as diabetic nephropathy, vasculopathy, retinopathy, peripheral neuropathy, and so on. They will have a wonderful respect. Flavonoid compounds and their derivates from traditional medicinal herbs are active inhibitors to aldose reductase, such as quercetin, silymarin, puerarin, baicalim, berberine and so on. In addition, some compound preparations show more strongly activity in inhibiting aldose reductase and degrading sorbitol contents, such as Shendan in traditional medicinal herbs being active inhibitors and Jianyi capsule, Jinmaitong composita, Liuwei Di-huang pill, et al. The progresses definite functions of treating diabetes complications have been reviewed.

  3. Cuminaldehyde: Aldose Reductase and alpha-Glucosidase Inhibitor Derived from Cuminum cyminum L. Seeds. (United States)

    Lee, Hoi-Seon


    The inhibitory activity of Cuminum cyminum seed-isolated component was evaluated against lens aldose reductase and alpha-glucosidase isolated from Sprague-Dawley male rats and compared to that of 11 commercially available components derived from C. cyminum seed oil, as well as quercitrin as an aldose reductase inhibitor and acarbose as an alpha-glucosidase inhibitor. The biologically active constituent of C. cyminum seed oil was characterized as cuminaldehyde by various spectral analyses. The IC(50) value of cuminaldehyde is 0.00085 mg/mL against aldose reductase and 0.5 mg/mL against alpha-glucosidase, respectively. Cuminaldehyde was about 1.8 and 1.6 times less in inhibitory activity than acarbose and quercitin, respectively. Nonetheless, cuminaldehyde may be useful as a lead compound and a new agent for antidiabetic therapeutics.

  4. Different effects of two aldose reductase inhibitors on nociception and prostaglandin E. (United States)

    Calcutt, N A; Li, L; Yaksh, T L; Malmberg, A B


    This study examined the effect of two structurally dissimilar aldose reductase inhibitors, N-[[5-(trifluoromethyl)-6-methoxy-1- napthalenyl]thioxomethyl]-N-methlyglycine (tolrestat) and 4-amino-2,6-dimethylphenyl-sulphonyl nitromethane (ICI 222155), on formalin-evoked behavioural responses in control and diabetic rats and on capsaicin-evoked release of prostaglandin E from spinal cord slices in vitro. Both compounds, given orally for 4 weeks, prevented hyperalgesia in diabetic rats 5-20 min after hindpaw formalin injection. ICI 222155 also prevented hyperalgesia in diabetic rats 21-60 min after formalin, whereas tolrestat suppressed activity in diabetic rats below controls and also suppressed activity in controls when given orally or intrathecally. Capsaicin-evoked release of prostaglandin E from spinal cord slices of control rats was significantly reduced by tolrestat, but not ICI 222155. These data suggest that hyperalgesia in diabetic rats is related to glucose metabolism by aldose reductase, whereas tolrestat has specific effects on formalin-evoked nociception associated with an ability to reduce spinal prostaglandin release.

  5. Synthesis of organic nitrates of luteolin as a novel class of potent aldose reductase inhibitors. (United States)

    Wang, Qi-Qin; Cheng, Ning; Zheng, Xiao-Wei; Peng, Sheng-Ming; Zou, Xiao-Qing


    Aldose reductase (AR) plays an important role in the design of drugs that prevent and treat diabetic complications. Aldose reductase inhibitors (ARIs) have received significant attentions as potent therapeutic drugs. Based on combination principles, three series of luteolin derivatives were synthesised and evaluated for their AR inhibitory activity and nitric oxide (NO)-releasing capacity in vitro. Eighteen compounds were found to be potent ARIs with IC50 values ranging from (0.099±0.008) μM to (2.833±0.102) μM. O(7)-Nitrooxyethyl-O(3'),O(4')-ethylidene luteolin (La1) showed the most potent AR inhibitory activity [IC50=(0.099±0.008) μM]. All organic nitrate derivatives released low concentrations of NO in the presence of l-cysteine. Structure-activity relationship studies suggested that introduction of an NO donor, protection of the catechol structure, and the ether chain of a 2-carbon spacer as a coupling chain on the luteolin scaffold all help increase the AR inhibitory activity of the resulting compound. This class of NO-donor luteolin derivatives as efficient ARIs offer a new concept for the development and design of new drug for preventive and therapeutic drugs for diabetic complications.

  6. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study. (United States)

    Antony, Priya; Vijayan, Ranjit


    Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR), the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger), Curcuma longa (turmeric) Allium sativum (garlic) and Trigonella foenum graecum (fenugreek). Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors.

  7. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study.

    Directory of Open Access Journals (Sweden)

    Priya Antony

    Full Text Available Hyperglycemia in diabetic patients results in a diverse range of complications such as diabetic retinopathy, neuropathy, nephropathy and cardiovascular diseases. The role of aldose reductase (AR, the key enzyme in the polyol pathway, in these complications is well established. Due to notable side-effects of several drugs, phytochemicals as an alternative has gained considerable importance for the treatment of several ailments. In order to evaluate the inhibitory effects of dietary spices on AR, a collection of phytochemicals were identified from Zingiber officinale (ginger, Curcuma longa (turmeric Allium sativum (garlic and Trigonella foenum graecum (fenugreek. Molecular docking was performed for lead identification and molecular dynamics simulations were performed to study the dynamic behaviour of these protein-ligand interactions. Gingerenones A, B and C, lariciresinol, quercetin and calebin A from these spices exhibited high docking score, binding affinity and sustained protein-ligand interactions. Rescoring of protein ligand interactions at the end of MD simulations produced binding scores that were better than the initially docked conformations. Docking results, ligand interactions and ADMET properties of these molecules were significantly better than commercially available AR inhibitors like epalrestat, sorbinil and ranirestat. Thus, these natural molecules could be potent AR inhibitors.

  8. Pharmacologically tested aldose reductase inhibitors isolated from plant sources—A concise report

    Institute of Scientific and Technical Information of China (English)

    D.K.Patel; R.Kumar; K.Sairam; S.Hemalatha


    Aldose reductase (AR),a cytosolic,monomeric oxidoreductase,is a key enzyme in the polyol pathway which controls the conversion of glucose to sorbitol.The accumulation of sorbitol by the activation of AR enzymes in lens,retina,and sciatic nerves leads to the cause of diabetic defects resulting in various secondary complications,viz.retinopathy,neuropathy,nephropathy and Alzheimer's disease.Thus,reduction of the polyol pathway flux by AR inhibitors could be a potential therapeutic opening in the treatment and prevention of diabetic complications.At present,the AR inhibitors belong to two different chemical classes.One is the hydantoin derivatives,such as Sorbinil,Dilantin,and Minalrestat,and the other is the carboxylic acid derivatives,such as Epalrestat,Alrestatin,and Tolrestat.However,it is known that most of these synthethic compounds have unacceptable side-effects.Well known medicinal plants like Chrysanthemum indicum,Chrysanthemum morifolium,Prunus mume,Myrcia multiflora,Centella asiatica,and Salacia reticulata,Salacia oblonga,and Salacia chinensis exhibited potent AR inhibitory activity.The present review summarizes the list of plant material,and their isolated phytoconstituents which have been tested for their AR inhibitory activity.This litreature review covers the period to 2011,and a total of 72 plants are listed.

  9. Structural and thermodynamic study on aldose reductase: nitro-substituted inhibitors with strong enthalpic binding contribution. (United States)

    Steuber, Holger; Heine, Andreas; Klebe, Gerhard


    To prevent diabetic complications derived from enhanced glucose flux via the polyol pathway the development of aldose reductase inhibitors (ARIs) has been established as a promising therapeutic concept. In order to identify novel lead compounds, a virtual screening (VS) was performed successfully suggesting carboxylate-type inhibitors of sub-micromolar to micromolar affinity. Here, we combine a structural characterization of the binding modes observed by X-ray crystallography with isothermal titration calorimetry (ITC) measurements providing insights into the driving forces of inhibitor binding, particularly of the first leads from VS. Characteristic features of this novel inhibitor type include a carboxylate head group connected via an alkyl spacer to a heteroaromatic moiety, which is linked to a further nitro-substituted aromatic portion. The crystal structures of two enzyme-inhibitor complexes have been determined at resolutions of 1.43 A and 1.55 A. Surprisingly, the carboxylic group of the most potent VS lead occupies the catalytic pocket differently compared to the interaction geometry observed in almost all other crystal structures with structurally related ligands and obtained under similar conditions, as an interstitial water molecule is picked up upon ligand binding. The nitro-aromatic moiety of both leads occupies the specificity pocket of the enzyme, however, adopting a different geometry compared to the docking prediction: unexpectedly, the nitro group binds to the bottom of the specificity pocket and provokes remarkable induced-fit adaptations. A peptide group located at the active site orients in such a way that H-bond formation to one nitro group oxygen atom is enabled, whereas a neighbouring tyrosine side-chain performs a slight rotation off from the binding cavity to accommodate the nitro group. Identically constituted ligands, lacking this nitro group, exhibit an affinity drop of one order of magnitude. In addition, thermodynamic data suggest a

  10. Structural analysis of sulindac as an inhibitor of aldose reductase and AKR1B10. (United States)

    Cousido-Siah, Alexandra; Ruiz, Francesc X; Crespo, Isidro; Porté, Sergio; Mitschler, André; Parés, Xavier; Podjarny, Alberto; Farrés, Jaume


    Aldose reductase (AR, AKR1B1) and AKR1B10 are enzymes implicated in important pathologies (diabetes and cancer) and therefore they have been proposed as suitable targets for drug development. Sulindac is the metabolic precursor of the potent non-steroidal anti-inflammatory drug (NSAID) sulindac sulfide, which suppresses prostaglandin production by inhibition of cyclooxygenases (COX). In addition, sulindac has been found to be one of the NSAIDs with higher antitumoral activity, presumably through COX inhibition. However, sulindac anticancer activity could be partially mediated through COX-independent mechanisms, including the participation of AR and AKR1B10. Previously, it had been shown that sulindac and sulindac sulfone were good AR inhibitors and the structure of the ternary complex with NADP(+) and sulindac was described (PDB ID 3U2C). In this work, we determined the three-dimensional structure of AKR1B10 with sulindac and established structure-activity relationships (SAR) of sulindac and their derivatives with AR and AKR1B10. The difference in the IC50 values for sulindac between AR (0.36 μM) and AKR1B10 (2.7 μM) might be explained by the different positioning and stacking interaction given by Phe122/Phe123, and by the presence of two buried and ordered water molecules in AKR1B10 but not in AR. Moreover, SAR analysis shows that the substitution of the sulfinyl group is structurally allowed in sulindac derivatives. Hence, sulindac and its derivatives emerge as lead compounds for the design of more potent and selective AR and AKR1B10 inhibitors.

  11. Coumarin-thiazole and -oxadiazole derivatives: Synthesis, bioactivity and docking studies for aldose/aldehyde reductase inhibitors. (United States)

    Ibrar, Aliya; Tehseen, Yildiz; Khan, Imtiaz; Hameed, Abdul; Saeed, Aamer; Furtmann, Norbert; Bajorath, Jürgen; Iqbal, Jamshed


    In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a-o) and coumarin-oxadiazole 11(a-h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16±0.06μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50=2.94±1.23μM for ARL1 and 0.12±0.05μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50=1.71±0.01μM for ARL1 and 0.11±0.001μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50=0.459±0.001μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.

  12. A novel zwitterionic inhibitor of aldose reductase interferes with polyol pathway in ex vivo and in vivo models of diabetic complications. (United States)

    Karasova, M Juskova; Prnova, M Soltesova; Stefek, M


    Recently a zwitterionic principle has been suggested as an alternative to bioisosteric replacement for increasing low bioavailability of aldose reductase inhibitors bearing an acidic function. In the present work we studied the effect of a novel zwitterionic inhibitor of aldose reductase [(2-benzyl-2,3,4,5-tetrahydro-1 H-pyrido[4,3-b]indole-8-yl)-acetic acid, compound 1] on sorbitol accumulation in ex vivo and in vivo models of diabetic complications. The effect of 1 on sorbitol accumulation in isolated rat eye lenses incubated with high glucose and in selected organs of streptozotocin-induced diabetic rats was evaluated. Significantly increased sorbitol levels were recorded in the lenses incubated with 50 mM glucose in comparison with controls. Sorbitol production was inhibited by 1 at concentrations of 25 and 100 μM. Under in vivo conditions in diabetic rats, significant elevation of sorbitol levels in selected organs was recorded. Compound 1 administered i.g. for five consecutive days (twice a day 25 mg/kg) inhibited sorbitol accumulation in erythrocytes and the sciatic nerve, yet it was without effect in eye lenses. A similar picture of inhibition was observed after i.p. administration of 1. To conclude, the results suggest that the zwitterionic principle may represent a practicable way of improving bioavailability of aldose reductase inhibitors bearing an acidic function.

  13. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ke-Wu [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Li, Jun [Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029 (China); Dong, Xin; Wang, Ying-Hong; Ma, Zhi-Zhong; Jiang, Yong; Jin, Hong-Wei [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Tu, Peng-Fei, E-mail: [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029 (China)


    Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators. Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.

  14. Administration of ascorbic acid and an aldose reductase inhibitor (tolrestat) in diabetes: effect on urinary albumin excretion. (United States)

    McAuliffe, A V; Brooks, B A; Fisher, E J; Molyneaux, L M; Yue, D K


    The important role of ascorbic acid (AA) as an anti-oxidant is particularly relevant in diabetes mellitus where plasma concentrations of AA are reduced. This study was conducted to evaluate the effects of treatment with AA or an aldose reductase inhibitor, tolrestat, on AA metabolism and urinary albumin excretion in diabetes. Blood and urine samples were collected at 0, 3, 6, 9, and 12 months from 20 diabetic subjects who were randomized into two groups to receive either oral AA 500 mg twice daily or placebo. Systolic and diastolic blood pressures, HbA1c, plasma lipids, urinary albumin, and total glycosaminoglycan excretion were measured at all time points, and heparan sulphate (glycosaminoglycan) was measured at 0 and 12 months. The same parameters, as well as urinary AA excretion, were determined at 0 and 3 months for 16 diabetes subjects receiving 200 mg tolrestat/day. AA treatment increased plasma AA (ANOVA, F ratio = 12.1, p = 0.004) and reduced albumin excretion rate (AER) after 9 months (ANOVA, F ratio = 3.2, p = 0.03), but did not change the other parameters measured. Tolrestat lowered plasma AA (Wilcoxon's signed-rank test, p benefits in attenuating the progression of diabetic complications.

  15. The isolation and characterization of β-glucogallin as a novel aldose reductase inhibitor from Emblica officinalis.

    Directory of Open Access Journals (Sweden)

    Muthenna Puppala

    Full Text Available Diabetes mellitus is recognized as a leading cause of new cases of blindness. The prevalence of diabetic eye disease is expected to continue to increase worldwide as a result of the dramatic increase in the number of people with diabetes. At present, there is no medical treatment to delay or prevent the onset and progression of cataract or retinopathy, the most common causes of vision loss in diabetics. The plant Emblica officinalis (gooseberry has been used for thousands of years as a traditional Indian Ayurvedic preparation for the treatment of diabetes in humans. Extracts from this plant have been shown to be efficacious against the progression of cataract in a diabetic rat model. Aldose reductase (ALR2 is implicated in the development of secondary complications of diabetes including cataract and, therefore, has been a major drug target for the development of therapies to treat diabetic disease. Herein, we present the bioassay-guided isolation and structure elucidation of 1-O-galloyl-β-D-glucose (β-glucogallin, a major component from the fruit of the gooseberry that displays selective as well as relatively potent inhibition (IC(50 = 17 µM of AKR1B1 in vitro. Molecular modeling demonstrates that this inhibitor is able to favorably bind in the active site. Further, we show that β-glucogallin effectively inhibits sorbitol accumulation by 73% at 30 µM under hyperglycemic conditions in an ex-vivo organ culture model of lenses excised from transgenic mice overexpressing human ALR2 in the lens. This study supports the continued development of natural products such as β-glucogallin as therapeutic leads in the development of novel therapies to treat diabetic complications such as cataract.

  16. Aldose reductase mediates retinal microglia activation. (United States)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J Mark


    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1(GFP) mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR(WT) background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy.

  17. Aldose reductase, oxidative stress and diabetic mellitus

    Directory of Open Access Journals (Sweden)

    Waiho eTang


    Full Text Available Diabetes mellitus (DM is a complex metabolic disorder arising from lack of insulin production or insulin resistance 1. DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR [ALR2; EC], a key enzyme in the polyol pathway, catalyzes NADPH-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS in various tissues of DM including the heart, vasculature, neurons, eyes and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis and myocardium (heart failure leading to severe morbidity and mortality (reviewed in 2. In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications.


    Institute of Scientific and Technical Information of China (English)


    In this paper the results of inhibition of the Aldose reductase(AR) activity on Wistar rat lens by Quercetagetin extracted from Tagetes erects Linn and by Patuletin extracted from Tagetes patula Linn are reported.Quercetagetin inhibited AR of the rat lens by 93.9% at 10~(-4)M, 76.0% at 10~(-5)M and 13.3% at 10~(-6)M. Patuletin inhibited AR of the rat lens by 100% at 10~(-1)M, 80% at 10~(-5)M and 22.7% at 10~(-6)M respectively. The results show that these two flavones are lens AR Inhibitors, but further ...

  19. Three-dimensional quantitative structure-activity relationships and docking studies of some structurally diverse flavonoids and design of new aldose reductase inhibitors

    Directory of Open Access Journals (Sweden)

    Utpal Chandra De


    Full Text Available Aldose reductase (AR plays an important role in the development of several long-term diabetic complications. Inhibition of AR activities is a strategy for controlling complications arising from chronic diabetes. Several AR inhibitors have been reported in the literature. Flavonoid type compounds are shown to have significant AR inhibition. The objective of this study was to perform a computational work to get an idea about structural insight of flavonoid type compounds for developing as well as for searching new flavonoid based AR inhibitors. The data-set comprising 68 flavones along with their pIC 50 values ranging from 0.44 to 4.59 have been collected from literature. Structure of all the flavonoids were drawn in Chembiodraw Ultra 11.0, converted into corresponding three-dimensional structure, saved as mole file and then imported to maestro project table. Imported ligands were prepared using LigPrep option of maestro 9.6 version. Three-dimensional quantitative structure-activity relationships and docking studies were performed with appropriate options of maestro 9.6 version installed in HP Z820 workstation with CentOS 6.3 (Linux. A model with partial least squares factor 5, standard deviation 0.2482, R 2 = 0.9502 and variance ratio of regression 122 has been found as the best statistical model.

  20. Effects of Long-Term Treatment with Ranirestat, a Potent Aldose Reductase Inhibitor, on Diabetic Cataract and Neuropathy in Spontaneously Diabetic Torii Rats

    Directory of Open Access Journals (Sweden)

    Ayumi Ota


    Full Text Available We evaluated ranirestat, an aldose reductase inhibitor, in diabetic cataract and neuropathy (DN in spontaneously diabetic Torii (SDT rats compared with epalrestat, the positive control. Animals were divided into groups and treated once daily with oral ranirestat (0.1, 1.0, 10 mg/kg or epalrestat (100 mg/kg for 40 weeks, normal Sprague-Dawley rats, and untreated SDT rats. Lens opacification was scored from 0 (normal to 3 (mature cataract. The combined scores (0–6 from both lenses represented the total for each animal. DN was assessed by measuring the motor nerve conduction velocity (MNCV in the sciatic nerve. Sorbitol and fructose levels were measured in the lens and sciatic nerve 40 weeks after diabetes onset. Cataracts developed more in untreated rats than normal rats (P<0.01. Ranirestat significantly (P<0.01 inhibited rapid cataract development; epalrestat did not. Ranirestat significantly reversed the MNCV decrease (40.7 ± 0.6 m/s in SDT rats dose-dependently (P<0.01. Epalrestat also reversed the prevented MNCV decrease (P<0.05. Sorbitol levels in the sciatic nerve increased significantly in SDT rats (2.05 ± 0.10 nmol/g, which ranirestat significantly suppressed dose-dependently, (P<0.05, <0.01, and <0.01; epalrestat did not. Ranirestat prevents DN and cataract; epalrestat prevents DN only.

  1. Relation of Na+, K(+)-ATPase to delayed motor nerve conduction velocity: effect of aldose reductase inhibitor, ADN-138, on Na+, K(+)-ATPase activity. (United States)

    Hirata, Y; Okada, K


    The role of sorbitol, myo-inositol, and Na+, K(+)-adenosine triphosphatase (ATPase) activity on motor nerve conduction velocity (MNCV) in streptozotocin (STZ)-diabetic rats was studied. Reduction of MNCV and Na+, K(+)-ATPase in caudal nerves appeared after 3 weeks of diabetes, and at this time treatment with aldose reductase inhibitor (ARI), ADN-138 and 1% myo-inositol supplement was begun. One percent myo-inositol supplement for 3 weeks resulted in a significant increase in myo-inositol levels in diabetic nerves, but left MNCV and sorbitol levels unchanged. In contrast, treatment with ADN-138 for 3 weeks reduced sorbitol levels in diabetic nerves and resulted in significant increases in MNCV and Na+, K(+)-ATPase in the nerves. Since ADN-138 did not restore myo-inositol levels, the increase in Na+, K(+)-ATPase levels by ADN-138 treatment was independent of myo-inositol levels. Also, nerve Na+ levels in ADN-138-treated rats were reduced and the ratio of K+ to Na+ was raised, while 1% myo-inositol supplement did not affect them. These results suggest that treatment with ADN-138 elevates MNCV through a series of processes: ARI----reduction of sorbitol level----increase in Na+, K(+)-ATPase activity----correction of K+, Na+ imbalance----increase in MNCV.

  2. Effects of the New Aldose Reductase Inhibitor Benzofuroxane Derivative BF-5m on High Glucose Induced Prolongation of Cardiac QT Interval and Increase of Coronary Perfusion Pressure

    Directory of Open Access Journals (Sweden)

    C. Di Filippo


    Full Text Available This study investigated the effects of the new aldose reductase inhibitor benzofuroxane derivative 5(6-(benzo[d]thiazol-2-ylmethoxybenzofuroxane (BF-5m on the prolongation of cardiac QT interval and increase of coronary perfusion pressure (CPP in isolated, high glucose (33.3 mM D-glucose perfused rat hearts. BF-5m was dissolved in the Krebs solution at a final concentration of 0.01 μM, 0.05 μM, and 0.1 μM. 33.3 mM D-glucose caused a prolongation of the QT interval and increase of CPP up to values of 190 ± 12 ms and 110 ± 8 mmHg with respect to the values of hearts perfused with standard Krebs solution (11.1 mM D-glucose. The QT prolongation was reduced by 10%, 32%, and 41%, respectively, for the concentration of BF-5m 0.01 μM, 0.05 μM, and 0.1 μM. Similarly, the CPP was reduced by 20% for BF-5m 0.05 μM and by 32% for BF-5m 0.1 μM. BF-5m also increased the expression levels of sirtuin 1, MnSOD, eNOS, and FOXO-1, into the heart. The beneficial actions of BF-5m were partly abolished by the pretreatment of the rats with the inhibitor of the sirtuin 1 activity EX527 (10 mg/kg/day/7 days i.p. prior to perfusion of the hearts with high glucose + BF-5m (0.1 μM. Therefore, BF-5m supplies cardioprotection from the high glucose induced QT prolongation and increase of CPP.

  3. Effects of aldose reductase inhibitor and vitamin B{sub 12} on myocardial uptake of iodine-123 metaiodobenzylguanidine in patients with non-insulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Utsunomiya, Keita; Narabayashi, Isamu [Department of Radiology, Osaka Medical College, Osaka (Japan); Tamura, Koji; Nakatani, Yuko; Saika, Yoshinori; Onishi, Satoshi; Kariyone, Shigeo [Department of Radiology, Internal Medicine and Surgery, Keihanna Hospital, Osaka (Japan)


    This study was undertaken to examine the effects of aldose reductase inhibitor (ARI) and vitamin B{sub 12} (VB12) on myocardial uptake of iodine-123 metaiodobenzylguanidine (MIBG) in patients with diabetic autonomic disorder. Myocardial scintigraphy using {sup 123}I-MIBG was performed on 20 healthy volunteers (controls) and 56 patients with non-insulin-dependent diabetes mellitus (NIDDM), in order to obtain the heart/mediastinum ratio in the initial (HMi) and the delayed images (HMd), and the washout rate (%WR). Thirty-four of the 56 NIDDM patients could be diagnosed as having diabetic autonomic disorder by evaluating their scintigraphic findings in comparison with the controls. Seventeen of these 34 patients received 150 mg/day of epalrestat (ARI group) in three divided doses before meals, and the other 17 received 1.5 mg/day of mecobalamin (VB12 group) in three divided doses after meals, for 3-5 months. According to the presence or absence of clinical symptoms of autonomic or peripheral somatic nerve disorder, the patients were subclassified into four groups. group 1=patients, with autonomic symptoms or somatosensory disorder in the ARI group; group 2=patients without autonomic symptoms or somatosensory disorder in the ARI group; group 3=patients with autonomic symptoms or somatosensory disorder in the VB12 group; and group 4=patients without autonomic symptoms or somatosensory disorder in the VB12 group. After completion of the treatment, myocardial scintigraphy was performed again. Comparing the results obtained before and after the treatment, it was seen that ARI improved only the HMi in group 1 (P=0.046), whereas VB12 significantly improved HMi in the group 3 (P=0.018) and HMi, HMd and %WR in group 4 (P=0.043, P=0.018 and P=0.043, respectively). We conclude that VB12 is more efficacious than ARI in the treatment of diabetic cardiovascular autonomic disorder. (orig.) With 2 figs., 3 tabs., 23 refs.

  4. In silico docking studies of aldose reductase inhibitory activity of commercially available flavonoids

    Directory of Open Access Journals (Sweden)

    Arumugam Madeswaran


    Full Text Available The primary objective of this study was to investigate the aldose reductase inhibitory activity of flavonoids using in silico docking studies. In this perspective, flavonoids like biochanin, butein, esculatin, fisetin and herbacetin were selected. Epalrestat, a known aldose reductase inhibitor was used as the standard. In silico docking studies were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. The results showed that all the selected flavonoids showed binding energy ranging between -9.33 kcal/mol to -7.23 kcal/mol when compared with that of the standard (-8.73 kcal/mol. Inhibition constant (144.13 µM to 4.98 µM and intermolecular energy (-11.42 kcal/mol to -7.83 kcal/mol of the flavonoids also coincide with the binding energy. All the selected flavonoids contributed aldose reductase inhibitory activity because of its structural properties. These molecular docking analyses could lead to the further development of potent aldose reductase inhibitors for the treatment of diabetes.

  5. Aldose reductases influence prostaglandin F2α levels and adipocyte differentiation in male mouse and human species. (United States)

    Pastel, Emilie; Pointud, Jean-Christophe; Loubeau, Gaëlle; Dani, Christian; Slim, Karem; Martin, Gwenaëlle; Volat, Fanny; Sahut-Barnola, Isabelle; Val, Pierre; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie


    Aldose reductases (AKR1B) are widely expressed oxidoreductases whose physiological function remains elusive. Some isoforms are genuine prostaglandin F2α (PGF2α) synthases, suggesting they might influence adipose homeostasis because PGF2α inhibits adipogenesis. This was shown by Akr1b7 gene ablation in the mouse, which resulted in increased adiposity related to a lower PGF2α content in fat. Yet humans have no ortholog gene for Akr1b7, so the role of aldose reductases in human adipose homeostasis remains to be explored. We analyzed expression of genes encoding human and mouse aldose reductase isoforms in adipose tissues and differentiating adipocytes to assess conserved mechanisms regulating PGF2α synthesis and adipogenesis. The Akr1b3 gene encoded the most abundant isoform in mouse adipose tissue, whereas Akr1b7 encoded the only isoform enriched in the stromal vascular fraction. Most mouse aldose reductase gene expression peaked in early adipogenesis of 3T3-L1 cells and diminished with differentiation. In contrast with its mouse ortholog Akr1b3, AKR1B1 expression increased throughout differentiation of human multipotent adipose-derived stem cells, paralleling PGF2α release, whereas PGF2α receptor (FP) levels collapsed in early differentiation. Pharmacological inhibition of aldose reductase using Statil altered PGF2α production and enhanced human multipotent adipose-derived stem adipocyte differentiation. As expected, the adipogenic effects of Statil were counteracted by an FP agonist (cloprostenol). Thus, in both species aldose reductase-dependent PGF2α production could be important in early differentiation to restrict adipogenesis. PGF2α antiadipogenic signaling could then be toned down through the FP receptor or aldose reductases down-regulation in human and mouse cells, respectively. Our data suggest that aldose reductase inhibitors could have obesogenic potential.

  6. Inhibition of Aldose Reductase by Gentiana lutea Extracts

    Directory of Open Access Journals (Sweden)

    Chandrasekhar Akileshwari


    Full Text Available Accumulation of intracellular sorbitol due to increased aldose reductase (ALR2 activity has been implicated in the development of various secondary complications of diabetes. Thus, ALR2 inhibition could be an effective strategy in the prevention or delay of certain diabetic complications. Gentiana lutea grows naturally in the central and southern areas of Europe. Its roots are commonly consumed as a beverage in some European countries and are also known to have medicinal properties. The water, ethanol, methanol, and ether extracts of the roots of G. lutea were subjected to in vitro bioassay to evaluate their inhibitory activity on the ALR2. While the ether and methanol extracts showed greater inhibitory activities against both rat lens and human ALR2, the water and ethanol extracts showed moderate inhibitory activities. Moreover, the ether and methanol extracts of G. lutea roots significantly and dose-dependently inhibited sorbitol accumulation in human erythrocytes under high glucose conditions. Molecular docking studies with the constituents commonly present in the roots of G. lutea indicate that a secoiridoid glycoside, amarogentin, may be a potential inhibitor of ALR2. This is the first paper that shows G. lutea extracts exhibit inhibitory activity towards ALR2 and these results suggest that Gentiana or its constituents might be useful to prevent or treat diabetic complications.

  7. Inhibitory effects of Zingiber officinale Roscoe derived components on aldose reductase activity in vitro and in vivo. (United States)

    Kato, Atsushi; Higuchi, Yasuko; Goto, Hirozo; Kizu, Haruhisa; Okamoto, Tadashi; Asano, Naoki; Hollinshead, Jackie; Nash, Robert J; Adachi, Isao


    Ginger (Zingiber officinale Roscoe) continues to be used as an important cooking spice and herbal medicine around the world. Scientific research has gradually verified the antidiabetic effects of ginger. Especially gingerols, which are the major components of ginger, are known to improve diabetes including the effect of enhancement against insulin-sensitivity. Aldose reductase inhibitors have considerable potential for the treatment of diabetes, without increased risk of hypoglycemia. The assay for aldose reductase inhibitors in ginger led to the isolation of five active compounds including 2-(4-hydroxy-3-methoxyphenyl)ethanol (2) and 2-(4-hydroxy-3-methoxyphenyl)ethanoic acid (3). Compounds 2 and 3 were good inhibitors of recombinant human aldose reductase, with IC50 values of 19.2 +/- 1.9 and 18.5 +/- 1.1 microM, respectively. Furthermore, these compounds significantly suppressed not only sorbitol accumulation in human erythrocytes but also lens galactitol accumulation in 30% of galactose-fed cataract rat model. A structure-activity relationship study revealed that the applicable side alkyl chain length and the presence of a C3 OCH3 group in the aromatic ring are essential features for enzyme recognition and binding. These results suggested that it would contribute to the protection against or improvement of diabetic complications for a dietary supplement of ginger or its extract containing aldose reductase inhibitors.


    Cunha, Joice M.; Jolivalt, Corinne G.; Ramos, Khara M.; Gregory, Joshua A.; Calcutt, Nigel A.; Mizisin, Andrew P.


    We investigated the effect of treatment with an aldose reductase inhibitor, insulin or select neurotrophic factors on the generation of oxidative damage in peripheral nerve. Rats were either treated with streptozotocin (STZ) to induce insulin-deficient diabetes or fed with a diet containing 40% D-galactose to promote hexose metabolism by aldose reductase. Initial time-course studies showed that lipid peroxidation and DNA oxidation were significantly elevated in sciatic nerve after 1 week or 2 weeks of STZ-induced diabetes, respectively, and that both remained elevated after 12 weeks of diabetes. The increase in nerve lipid peroxidation was completely prevented or reversed by treatment with the aldose reductase inhibitor, ICI 222155, or by insulin, but not by the neurotrophic factors, prosaptide TX14(A) or neurotrophin-3. The increase in nerve DNA oxidation was significantly prevented by insulin treatment. In contrast, up to 16 weeks of galactose feeding did not alter nerve lipid peroxidation or protein oxidation, despite evidence of ongoing nerve conduction deficits. These observations demonstrate that nerve oxidative damage develops early after the onset of insulin-deficient diabetes and that it is not induced by increased hexose metabolism by aldose reductase per se, but rather is a downstream consequence of flux through this enzyme. Furthermore, the beneficial effect of prosaptide TX14(A) and neurotrophin-3 on nerve function and structure in diabetic rats are not due to amelioration of increased lipid peroxidation. PMID:18555826

  9. The molecular basis for inhibition of sulindac and its metabolites towards human aldose reductase. (United States)

    Zheng, Xuehua; Zhang, Liping; Zhai, Jing; Chen, Yunyun; Luo, Haibin; Hu, Xiaopeng


    Sulindac (SLD) exhibits both the highest inhibitory activity towards human aldose reductase (AR) among popular non-steroidal anti-inflammatory drugs and clear beneficial clinical effects on Type 2 diabetes. However, the molecular basis for these properties is unclear. Here, we report that SLD and its pharmacologically active/inactive metabolites, SLD sulfide and SLD sulfone, are equally effective as un-competitive inhibitors of AR in vitro. Crystallographic analysis reveals that π-π stacking favored by the distinct scaffold of SLDs is pivotal to their high AR inhibitory activities. These results also suggest that SLD sulfone could be a potent lead compound for AR inhibition in vivo.

  10. Inhibition of aldose reductase by phenylethanoid glycoside isolated from the seeds of Paulownia coreana. (United States)

    Kim, Jin Kyu; Lee, Yeon Sil; Kim, Seon Ha; Bae, Young Soo; Lim, Soon Sung


    Aldose reductase (AR) inhibitors have considerable therapeutic potential against diabetic complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of the 70% acetone extract obtained from Paulownia coreana seeds, phenylpropanoid glycosides (compounds 1-4) and 5 phenolic compounds were isolated (compounds 5-9). Their structures were determined on the basis of spectroscopic analysis and comparison with reported data. All the isolates were subjected to in vitro bioassays to evaluate their inhibitory activities against recombinant human aldose reductase (rhAR) and sorbitol formation in human erythrocytes. Phenylethanoid glycosides showed more effective than the phenolic compounds in inhibiting rhAR. Among the compounds, isocampneoside II (3) was found to significantly inhibit rhAR with an IC(50) value of 9.72 µM. In kinetic analyses performed using Lineweaver-Burk plots of 1/velocity and 1/concentration of substrate, isocampneoside II (3) showed uncompetitive inhibition against rhAR. Furthermore, it inhibited sorbitol formation in a rat lens incubated with a high concentration of glucose; this finding indicated that isocampneoside II (3) may effectively prevent osmotic stress in hyperglycemia. Thus, the P. coreana-derived phenylethanoid glycoside isocampneoside II (3) may have a potential therapeutics against diabetic complications.

  11. Phytochemical analysis with the antioxidant and aldose reductase inhibitory capacities of Tephrosia humilis aerial parts' extracts. (United States)

    Plioukas, Michael; Gabrieli, Chrysi; Lazari, Diamanto; Kokkalou, Eugene


    The aerial parts of Tephrosia humilis were tested about their antioxidant potential, their ability to inhibit the aldose/aldehyde reductase enzymes and their phenolic content. The plant material was exhaustively extracted with petroleum ether, dichloromethane and methanol, consecutively. The concentrated methanol extract was re-extracted, successively, with diethyl ether, ethyl acetate and n-butanol. All extracts showed significant antioxidant capacity, but the most effective was the ethyl acetate extract. As about the aldose reductase inhibition, all fractions, except the aqueous, were strong inhibitors of the enzyme, with the n-butanolic and ethyl acetate fractions to inhibit the enzyme above 75%. These findings provide support to the ethnopharmacological usage of the plant as antioxidant and validate its potential to act against the long-term diabetic complications. The phytochemical analysis showed the presence of 1,4-dihydroxy-3,4-(epoxyethano)-5-cyclohexene(1), cleroindicin E(2), lupeol(3), methyl p-coumarate(4), methyl 4-hydroxybenzoate(5), prunin(6), 5,7,2',5'-tetrahydroxyflavanone 7-rutinoside(7), protocatechuic acid(8), luteolin 7-glucoside(9), apigenin(10), naringin(11), rhoifolin(12) and luteolin 7-glucuronate(13).

  12. NADPH-dependent D-aldose reductases and xylose fermentation in Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Christakopoulos, P.


    Two aldose (xylose) reductases (ARI and ARII) from Fusarium oxysporum were purified and characterized. The native ARI was a monomer with M-r 41000, pI 5.2 and showed a 52-fold preference for NADPH over NADH, while ARII was homodimeric with a subunit of M-r 37000, pI 3.6 and a 60-fold preference...

  13. Aldose reductase induced by hyperosmotic stress mediates cardiomyocyte apoptosis: differential effects of sorbitol and mannitol. (United States)

    Galvez, Anita S; Ulloa, Juan Alberto; Chiong, Mario; Criollo, Alfredo; Eisner, Verónica; Barros, Luis Felipe; Lavandero, Sergio


    Cells adapt to hyperosmotic conditions by several mechanisms, including accumulation of sorbitol via induction of the polyol pathway. Failure to adapt to osmotic stress can result in apoptotic cell death. In the present study, we assessed the role of aldose reductase, the key enzyme of the polyol pathway, in cardiac myocyte apoptosis. Hyperosmotic stress, elicited by exposure of cultured rat cardiac myocytes to the nonpermeant solutes sorbitol and mannitol, caused identical cell shrinkage and adaptive hexose uptake stimulation. In contrast, only sorbitol induced the polyol pathway and triggered stress pathways as well as apoptosis-related signaling events. Sorbitol resulted in activation of the extracellular signal-regulated kinase (ERK), p54 c-Jun N-terminal kinase (JNK), and protein kinase B. Furthermore, sorbitol treatment resulting in induction and activation of aldose reductase, decreased expression of the antiapoptotic protein Bcl-xL, increased DNA fragmentation, and glutathione depletion. Apoptosis was attenuated by aldose reductase inhibition with zopolrestat and also by glutathione replenishment with N-acetylcysteine. In conclusion, our data show that hypertonic shrinkage of cardiac myocytes alone is not sufficient to induce cardiac myocyte apoptosis. Hyperosmolarity-induced cell death is sensitive to the nature of the osmolyte and requires induction of aldose reductase as well as a decrease in intracellular glutathione levels.

  14. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    Energy Technology Data Exchange (ETDEWEB)

    Kiyota, Eduardo [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Sousa, Sylvia Morais de [Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Santos, Marcelo Leite dos; Costa Lima, Aline da [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Menossi, Marcelo [Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Yunes, José Andrés [Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas-SP (Brazil); Aparicio, Ricardo, E-mail: [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil)


    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  15. Chemical Constituents of Smilax china L. Stems and Their Inhibitory Activities against Glycation, Aldose Reductase, α-Glucosidase, and Lipase

    Directory of Open Access Journals (Sweden)

    Hee Eun Lee


    Full Text Available The search for natural inhibitors with anti-diabetes properties has gained increasing attention. Among four selected Smilacaceae family plants, Smilax china L. stems (SCS showed significant in vitro anti-glycation and rat lens aldose reductase inhibitory activities. Bioactivity-guided isolation was performed with SCS and four solvent fractions were obtained, which in turn yielded 10 compounds, including one phenolic acid, three chlorogenic acids, four flavonoids, one stilbene, and one phenylpropanoid glycoside; their structures were elucidated using nuclear magnetic resonance and mass spectrometry. All solvent fractions, isolated compounds, and stem extracts from plants sourced from six different provinces of South Korea were next tested for their inhibitory effects against advanced glycation end products, as well as aldose reductase. α-Glucosidase, and lipase assays were also performed on the fractions and compounds. Since compounds 3, 4, 6, and 8 appeared to be the superior inhibitors among the tested compounds, a comparative study was performed via high-performance liquid chromatography with photodiode array detection using a self-developed analysis method to confirm the relationship between the quantity and bioactivity of the compounds in each extract. The findings of this study demonstrate the potent therapeutic efficacy of SCS and its potential use as a cost-effective natural alternative medicine against type 2 diabetes and its complications.

  16. Inhibitory effects of Colocasia esculenta (L.) Schott constituents on aldose reductase. (United States)

    Li, Hong Mei; Hwang, Seung Hwan; Kang, Beom Goo; Hong, Jae Seung; Lim, Soon Sung


    The goal of this study was to determine the rat lens aldose reductase-inhibitory effects of 95% ethanol extracts from the leaves of C. esculenta and, its organic solvent soluble fractions, including the dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (BuOH) and water (H2O) layers, using dl-glyceraldehyde as a substrate. Ten compounds, namely tryptophan (1), orientin (2), isoorientin (3), vitexin (4), isovitexin (5), luteolin-7-O-glucoside (6), luteolin-7-O-rutinoside (7), rosmarinic acid (8), 1-O-feruloyl-d-glucoside (9) and 1-O-caffeoyl-d-glucoside (10) were isolated from the EtOAc and BuOH fractions of C. esculenta. The structures of compounds 1-10 were elucidated by spectroscopic methods and comparison with previous reports. All the isolates were subjected to an in vitro bioassay to evaluate their inhibitory activity against rat lens aldose reductase. Among tested compounds, compounds 2 and 3 significantly inhibited rat lens aldose reductase, with IC50 values of 1.65 and 1.92 μM, respectively. Notably, the inhibitory activity of orientin was 3.9 times greater than that of the positive control, quercetin (4.12 μM). However, the isolated compounds showed only moderate ABTS+ [2,29-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] activity. These results suggest that flavonoid derivatives from Colocasia esculenta (L.) Schott represent potential compounds for the prevention and/or treatment of diabetic complications.

  17. Relationship between Aldose reductase and superoxide dismutase inhibition capacities of indole-based analogs of melatonin derivatives

    Directory of Open Access Journals (Sweden)

    Daş-Evcimen N.


    Full Text Available Aldose reductase (AR has been implicated in the etiology of diabetic complications. Under diabetic conditions, the elevated vascular glucose level causes an increased flux through the polyol pathway, which induces functional and morphological changes associated with secondary diabetic complications such as cataract, neuropathy, and nephrop­athy. Oxidative stress, antioxidants, and the polyol pathway have recently been found to be linked in pathological states. A large number of structurally different compounds have been studied as potent in vitro AR inhibitors (ARIs. However, with few exceptions, these compounds did not show clinical benefit, and some even produced serious side effects. In view of the ARI activity of certain indole derivative compounds and antioxidant properties of melatonin, we investigated some indole-based analogs of melatonin derivatives. Antioxidant and ARI activity tests were applied to nine indole derivatives that are substituted at the third and fifth positions. Also, the relationship between ARI and antioxidant enzyme activity is discussed.

  18. Inhibition of aldose reductase prevents experimental allergic airway inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    Full Text Available BACKGROUND: The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR, contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma. METHODS AND FINDINGS: Primary Human Small Airway Epithelial Cells (SAEC were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS, cycloxygenase (COX-2, Prostaglandin (PG E(2, IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and

  19. Aldose reductase inhibitory potential of different fractions ofHouttuynia cordata Thunb

    Institute of Scientific and Technical Information of China (English)

    Manish Kumar; Damiki Laloo; Satyendra K. Prasad; Siva Hemalatha


    Objective:To evaluate the aldose reductase(AR) inhibitory activity of different fractions from Houttuynia cordata(H. cordata) which used as a medicinal salad for lowering of blood sugar level. Methods:AR inhibitory activity along with protein content was evaluatedin vitro in rat lens. Total phenol and flavonoid contents were also determined in all the fractions.Results:All the four fractions were found to inhibit lensAR activity, but to differentextent.From dose response curve(DRC), aqueous fraction(AQ) was found to be the most effectiveAR inhibitor followed by ethyl acetate(EA), chloroform(CL) and hexane fraction(HEX).TheIC50 values ofAQ,EA,CL and HEX were calculated to be(64.62±3.90),(90.69±7.50),(134.59±4.90) and(151.58±3.30) μg/mL respectively.Quercetin was taken as positive control which exhibitedAR inhibition withanIC50 value of(3.21±0.60) μg/mL in a non-competitive manner.Conclusion:These findings indicated that,AQ fraction ofH. cordata exhibited significant inhibitory effect onAR in a non-competitive manner, which may be attributed to the presence of high phenolic and flavonoid contents.Thus, the plantH. cordata may act as a promising source in the treatment of secondary complications like cataract associated with diabetes.

  20. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells. (United States)

    Yadav, Umesh C S; Ramana, K V; Srivastava, Satish K


    Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5-10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells.

  1. Inhibition of aldose reductase and anti-cataract action of trans-anethole isolated from Foeniculum vulgare Mill. fruits. (United States)

    Dongare, Vandana; Kulkarni, Chaitanya; Kondawar, Manish; Magdum, Chandrakant; Haldavnekar, Vivek; Arvindekar, Akalpita


    Foeniculum vulgare fruits are routinely consumed for their carminative and mouth freshening effect. The plant was evaluated for aldose reductase inhibition and anti-diabetic action. Bioguided fractionation using silica gel column chromatography, HPLC, and GC-MS analysis revealed trans-anethole as the bioactive constituent possessing potent aldose reductase inhibitory action, with an IC50 value of 3.8μg/ml. Prolonged treatment with the pet ether fraction of the F. vulgare distillate demonstrated improvement in blood glucose, lipid profile, glycated haemoglobin and other parameters in streptozotocin-induced diabetic rats. Trans-anethole could effectively show anti-cataract activity through the increase in soluble lens protein, reduced glutathione, catalase and SOD activity on in vitro incubation of the eye lens with 55mM glucose. Trans-anethole demonstrated noncompetitive to mixed type of inhibition of lens aldose reductase using Lineweaver Burk plot.

  2. Inhibitory Effects of Colocasia esculenta (L. Schott Constituents on Aldose Reductase

    Directory of Open Access Journals (Sweden)

    Hong Mei Li


    Full Text Available The goal of this study was to determine the rat lens aldose reductase-inhibitory effects of 95% ethanol extracts from the leaves of C. esculenta and, its organic solvent soluble fractions, including the dichloromethane (CH2Cl2, ethyl acetate (EtOAc, n-butanol (BuOH and water (H2O layers, using dl-glyceraldehyde as a substrate. Ten compounds, namely tryptophan (1, orientin (2, isoorientin (3, vitexin (4, isovitexin (5, luteolin-7-O-glucoside (6, luteolin-7-O-rutinoside (7, rosmarinic acid (8, 1-O-feruloyl-d-glucoside (9 and 1-O-caffeoyl-d-glucoside (10 were isolated from the EtOAc and BuOH fractions of C. esculenta. The structures of compounds 1–10 were elucidated by spectroscopic methods and comparison with previous reports. All the isolates were subjected to an in vitro bioassay to evaluate their inhibitory activity against rat lens aldose reductase. Among tested compounds, compounds 2 and 3 significantly inhibited rat lens aldose reductase, with IC50 values of 1.65 and 1.92 μM, respectively. Notably, the inhibitory activity of orientin was 3.9 times greater than that of the positive control, quercetin (4.12 μM. However, the isolated compounds showed only moderate ABTS+ [2,29-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid] activity. These results suggest that flavonoid derivatives from Colocasia esculenta (L. Schott represent potential compounds for the prevention and/or treatment of diabetic complications.

  3. Aldose reductase deficiency in mice protects from ragweed pollen extract (RWE-induced allergic asthma

    Directory of Open Access Journals (Sweden)

    Yadav Umesh CS


    Full Text Available Abstract Background Childhood hospitalization related to asthma remains at historically high levels, and its incidence is on the rise world-wide. Previously, we have demonstrated that aldose reductase (AR, a regulatory enzyme of polyol pathway, is a major mediator of allergen-induced asthma pathogenesis in mouse models. Here, using AR null (AR-/- mice we have investigated the effect of AR deficiency on the pathogenesis of ragweed pollen extract (RWE-induced allergic asthma in mice and also examined the efficacy of enteral administration of highly specific AR inhibitor, fidarestat. Methods The wild type (WT and AR-/- mice were sensitized and challenged with RWE to induce allergic asthma. AR inhibitor, fidarestat was administered orally. Airway hyper-responsiveness was measured in unrestrained animals using whole body plethysmography. Mucin levels and Th2 cytokine in broncho-alveolar lavage (BAL were determined using mouse anti-Muc5A/C ELISA kit and multiplex cytokine array, respectively. Eosinophils infiltration and goblet cells were assessed by H&E and periodic acid Schiff (PAS-staining of formalin-fixed, paraffin-embedded lung sections. T regulatory cells were assessed in spleen derived CD4+CD25+ T cells population. Results Deficiency of AR in mice led to significantly decreased PENH, a marker of airway hyper-responsiveness, metaplasia of airway epithelial cells and mucus hyper-secretion following RWE-challenge. This was accompanied by a dramatic decrease in infiltration of eosinophils into sub-epithelium of lung as well as in BAL and release of Th2 cytokines in response to RWE-challenge of AR-/- mice. Further, enteral administration of fidarestat significantly prevented eosinophils infiltration, airway hyper-responsiveness and also markedly increased population of T regulatory (CD4+CD25+FoxP3+ cells as compared to RWE-sensitized and challenged mice not treated with fidarestat. Conclusion Our results using AR-/- mice strongly suggest the role

  4. Protective Role of Aldose Reductase Deletion in an Animal Model of Oxygen-Induced Retinopathy

    Directory of Open Access Journals (Sweden)

    Zhongjie Fu


    Full Text Available Retinopathy of prematurity (ROP is a common disease occurred in premature babies. Both vascular abnormality and neural dysfunction of the retina were reported, and oxidative stress was involved. Previously, it has been showed that deficiency of aldose reductase (AR, the rate-limiting enzyme in polyol pathway, lowered oxidative stress. Here, the effect of AR deletion on neonatal retinal injury was investigated by using a mouse model of ROP (oxygen-induced retinopathy, OIR. Seven-day-old pups were exposed to 75% oxygen for 5 days and then returned to room air. The vascular changes and neuronal/glial responses were examined and compared between wild-type and AR-deficient OIR mice. Significantly reduced vaso-obliterated area, blood vessel leakage, and early revascularization were observed in AR-deficient OIR mice. Moreover, reduced amacrine cells and less distorted strata were observed in AR-deficient OIR mice. Less astrocytic immunoreactivity and reduced Müller cell gliosis were also observed in AR-deficient mice. After OIR, nitrotyrosine immunoreactivity and poly (ADP-ribose (PAR translocation, which are two oxidative stress markers, were decreased in AR-deficient mice. Significant decrease in VEGF, pho-Erk1/2, pho-Akt, and pho-I?B expression was found in AR-deficient OIR retinae. Thus, these observations suggest that the deficiency of aldose reductase may protect the retina in the OIR model.

  5. Effect of a new aldose reductase inhibitor, 8'-chloro-2',3'-dihydrospiro [pyrrolidine-3,6'(5'H)-pyrrolo[1,2,3-de] [1,4]benzoxazine]-2,5,5'- trione (ADN-138), on delayed motor nerve conduction velocity in streptozotocin-diabetic rats. (United States)

    Hirata, Y; Fujimori, S; Okada, K


    The effects of a chemically new type of aldose reductase inhibitor, ADN-138, on delayed motor nerve conduction velocity (MNCV) and sciatic nerve sorbitol, fructose and myo-inositol levels were studied in streptozotocin-diabetic rats. MNCV in rats was significantly delayed after 3 weeks of diabetes and ADN-138 treatment was started at this point. Treatment of diabetics with ADN-138 at 5 and 20 but not 1 mg/kg/d for 3 weeks resulted in a significant increase in MNCV and reduced sorbitol levels to or below those of nondiabetic controls. However, fructose, though decreased in a dose-dependent manner, was not normalized. The reference drug, Sorbinil, showed similar effects on them. After the 3 weeks of ADN-138(20 mg/kg/d) treatment, diabetics were left on ADN-138 or continued further to be treated with it for 3 weeks. The withdrawal of ADN-138 prevented a further increase in MNCV and restored sorbitol and fructose to nontreated diabetic levels, and myo-inositol levels declined. In contrast, the ADN-138-continued group kept improving its MNCV and normalized sorbitol and myo-inositol. These results suggest that polyol accumulation is responsible for delayed MNCV and that the action of ADN-138 on MNCV reflected reversibility of metabolic function in diabetics.

  6. Aldose Reductase as a Drug Target for Treatment of Diabetic Nephropathy: Promises and Challenges. (United States)

    El Gamal, Heba; Munusamy, Shankar


    Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes mellitus and the leading cause of end stage renal disease. One of the key pathways activated in DN is the polyol pathway, in which glucose is converted to sorbitol (a relatively non-metabolizable sugar) by the enzyme aldose reductase (AR). Shunting of glucose into this pathway causes disruption to glucose metabolism and subsequently damages the tissues via increased oxidative stress, protein kinase c activation and production of advanced glycation end products (AGE) in the kidney. This review aims to provide a comprehensive overview of the AR enzyme structure, substrate specificity and topology in normal physiology; to elaborate on the deleterious effects of AR activation in DN; and to summarize the potential therapeutic benefits and major challenges associated with AR inhibition in patients with DN.

  7. Triple aldose reductase/α-glucosidase/radical scavenging high-resolution profiling combined with high-performance liquid chromatography – high-resolution mass spectrometry – solid-phase extraction – nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude

    DEFF Research Database (Denmark)

    Tahtah, Yousof; Kongstad, Kenneth Thermann; Wubshet, Sileshi Gizachew


    high-performance liquid chromatography – high-resolution mass spectrometry – solid-phase extraction – nuclear magnetic resonance spectroscopy. The only α-glucosidase inhibitor was baicalein, whereas main aldose reductase inhibitors in the crude extract were baicalein and skullcapflavone II, and main...

  8. Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: effects of insulin, aldose reductase inhibition and lidocaine. (United States)

    Calcutt, N A; Jorge, M C; Yaksh, T L; Chaplan, S R


    Rats developed tactile allodynia within days of the onset of diabetes and which persisted for up to 8 weeks. Allodynia was prevented by insulin therapy that maintained normoglycemia while established allodynia was reversed by insulin therapy and normoglycemia of days but not hours duration. Tactile allodynia persisted in diabetic rats that received enough insulin to maintain normal body and foot weights but remained hyperglycemic, whereas this therapy was sufficient to correct other nerve disorders in diabetic rats, including deficits of sensory and motor nerve conduction velocity, nerve blood flow and hyperalgesia during the formalin test. Treating diabetic rats with the aldose reductase inhibitor ICI 222155 did not prevent tactile allodynia. Tactile allodynia was of similar magnitude in diabetic rats and nerve injured control rats and diabetes did not alter the magnitude or time course of nerve injury-induced allodynia. Systemic lidocaine treatment alleviated tactile allodynia in nerve injured control rats and both sham-operated and nerve injured diabetic rats. The streptozotocin-diabetic rat develops tactile allodynia that appears to be related to prolonged periods of insulin deficiency or hyperglycemia and which is amenable to treatment with lidocaine. The model may be of use in investigating the efficacy of other potential therapeutic agents for treating painful diabetic neuropathy.

  9. Self-organizing maps and VolSurf approach to predict aldose reductase inhibition by flavonoid compounds

    Directory of Open Access Journals (Sweden)

    Luciana Scotti


    Full Text Available Aldose Reductase (AR is the polyol pathway key enzyme which converts glucose to sorbitol. High glucose availability in insulin resistant tissues in diabetes leads into an accumulation of sorbitol, which has been associated with typical chronic complications of this disease, such as neuropathy, nephropathy and retinopathy. In this study, 71 flavonoids AR inhibitors were subjected to two methods of SAR to verify crucial substituents. The first method used the PCA (Principal Component Analysis to elucidate physical and chemical characteristics in the molecules that would be essential for the activity, employing VolSurf descriptors. The rate obtained explained 53% of the system total variance and revealed that a hydrophobic-hydrophilic balance in the molecules is required, since very polar or nonpolar substituents decrease the activity. Artificial Neural Networks (ANNs was also employed to determine key substituents by evaluating substitution patterns, using NMR data. This study had a high success rate (85% accuracy in the training set and 88% accuracy in the test set and showed polihydroxilations are essential for high activity and methoxylations and glicosilations primarily at positions C7, C3' and C4' decrease the activity.

  10. Phytochemical Analysis of Agrimonia pilosa Ledeb, Its Antioxidant Activity and Aldose Reductase Inhibitory Potential (United States)

    Kim, Set Byeol; Hwang, Seung Hwan; Suh, Hong-Won; Lim, Soon Sung


    The aim of this study was to determine aldose reductase (AR) inhibitory activity and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of compounds from Agrimonia pilosa Ledeb (AP). We isolated agrimoniin (AM), four flavonoid glucosides and two flavonoid glucuronides from the n-butanol fraction of AP 50% methanol extract. In addition to isolated compounds, the AR-inhibitory activity and the DPPH free radical scavenging activity of catechin, 5-flavonoids, and 4-flavonoid glucosides (known components of AP) against rat lens AR (RLAR) and DPPH assay were measured. AM showed IC50 values of 1.6 and 13.0 μM against RLAR and DPPH scavenging activity, respectively. Additionally, AM, luteolin-7-O-glucuronide (LGN), quercitrin (QU), luteolin (LT) and afzelin (AZ) showed high inhibitory activity against AR and were first observed to decrease sorbitol accumulation in the rat lens under high-sorbitol conditions ex vivo with inhibitory values of 47.6%, 91.8%, 76.9%, 91.8% and 93.2%, respectively. Inhibition of recombinant human AR by AM, LGN and AZ exhibited a noncompetitive inhibition pattern. Based on our results, AP and its constituents may play partial roles in RLAR and oxidative radical inhibition. Our results suggest that AM, LGN, QU, LT and AZ may potentially be used as natural drugs for treating diabetic complications. PMID:28208627

  11. Inhibitory effect of two Indian medicinal plants on aldose reductase of rat lensin vitro

    Institute of Scientific and Technical Information of China (English)

    Rajesh Kumar; Dinesh Kumar Patel; Damiki Laloo; Krishnamurthy Sairam; Siva Hemalatha


    Objective:To assesse the inhibitory effect of alcoholic extract of two Indian medicinal plants namelyCeasalpinia digyna Rottler and, Alangium lamarckii Thwaits on aldose reductase(AR) of rat lens.Methods: Rats lens were enucleated through posterior approach and their homogenate was prepared and centrifuged to obtain a clear supernatant for the determination ofAR activity and protein content.Results:The alcoholic extract of Ceasalpinia digyna andAlangium lamarckii had a potent inhibitory effect on the lensAR enzyme. TheIC50 values of alcoholic extract of the selected plants were calculated and were (46.29±11.17)and(106.00±5.11) μg/mL, respectively. Quercetin was used as a positive control and itsIC50value was (2.95±1.53)μg/mL.Conclusions:Thus, it is concluded that alcoholic extracts of the selected plant exhibit significant inhibitory effects on AR in the rat lensin vitro.

  12. Diallyl sulfide protects against N-nitrosodiethylamine-induced liver tumorigenesis: Role of aldose reductase

    Institute of Scientific and Technical Information of China (English)

    Safinaz S Ibrahim; Noha N Nassar


    AIM: To evaluate the protective effect of diallyl sulfide (DAS) against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis. METHODS: Male Wistar rats received either NDEA or NDEA together with DAS as protection. Liver energy metabolism was assessed in terms of lactate, pyruvate, lactate/pyruvate, ATP levels, lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD) activities. In addition, membrane disintegration of the liver cells was evaluated by measuring lipid-peroxidation products, measured as malondialdehyde (MDA); nitric oxide (NO) levels; glucose-6-phosphatase (G6Pase), catalase (CAT) and superoxide dismutase (SOD) activities. Uver DNA level, glutathione-S-transferase (GST) and cytochrome c oxidase activities were used as DNA fragmentation indices. Aldose reductase (AR) activity was measured as an index for cancer cells resistant to chemotherapy and histopathological examination was performed on liver sections from different groups. RESULTS: NDEA significantly disturbed liver functions and most of the aforementioned indices. Treatment with DAS significantly restored liver functions and hepatocellular integrity; improved parameters of energy metabolism and suppressed free-radical generation. CONCLUSION: We provide evidence that DAS exerts a protective role on liver functions and tissue integrity in face of enhanced tumorigenesis caused by NDEA, as well as improving cancer-cell sensitivity to chemotherapy. This is mediated through combating oxidative stress of free radicals, improving the energy metabolic state of the cell, and enhancing the activity of G6Pase, GST and AR enzymes.

  13. Aldose Reductase Acts as a Selective Derepressor of PPARγ and the Retinoic Acid Receptor

    Directory of Open Access Journals (Sweden)

    Devi Thiagarajan


    Full Text Available Histone deacetylase 3 (HDAC3, a chromatin-modifying enzyme, requires association with the deacetylase-containing domain (DAD of the nuclear receptor corepressors NCOR1 and SMRT for its stability and activity. Here, we show that aldose reductase (AR, the rate-limiting enzyme of the polyol pathway, competes with HDAC3 to bind the NCOR1/SMRT DAD. Increased AR expression leads to HDAC3 degradation followed by increased PPARγ signaling, resulting in lipid accumulation in the heart. AR also downregulates expression of nuclear corepressor complex cofactors including Gps2 and Tblr1, thus affecting activity of the nuclear corepressor complex itself. Though AR reduces HDAC3-corepressor complex formation, it specifically derepresses the retinoic acid receptor (RAR, but not other nuclear receptors such as the thyroid receptor (TR and liver X receptor (LXR. In summary, this work defines a distinct role for AR in lipid and retinoid metabolism through HDAC3 regulation and consequent derepression of PPARγ and RAR.

  14. Cardiomyocyte aldose reductase causes heart failure and impairs recovery from ischemia.

    Directory of Open Access Journals (Sweden)

    Ni-Huiping Son

    Full Text Available Aldose reductase (AR, an enzyme mediating the first step in the polyol pathway of glucose metabolism, is associated with complications of diabetes mellitus and increased cardiac ischemic injury. We investigated whether deleterious effects of AR are due to its actions specifically in cardiomyocytes. We created mice with cardiac specific expression of human AR (hAR using the α-myosin heavy chain (MHC promoter and studied these animals during aging and with reduced fatty acid (FA oxidation. hAR transgenic expression did not alter cardiac function or glucose and FA oxidation gene expression in young mice. However, cardiac overexpression of hAR caused cardiac dysfunction in older mice. We then assessed whether hAR altered heart function during ischemia reperfusion. hAR transgenic mice had greater infarct area and reduced functional recovery than non-transgenic littermates. When the hAR transgene was crossed onto the PPAR alpha knockout background, another example of greater heart glucose oxidation, hAR expressing mice had increased heart fructose content, cardiac fibrosis, ROS, and apoptosis. In conclusion, overexpression of hAR in cardiomyocytes leads to cardiac dysfunction with aging and in the setting of reduced FA and increased glucose metabolism. These results suggest that pharmacological inhibition of AR will be beneficial during ischemia and in some forms of heart failure.

  15. The Xerophyta viscosa aldose reductase (ALDRXV4) confers enhanced drought and salinity tolerance to transgenic tobacco plants by scavenging methylglyoxal and reducing the membrane damage. (United States)

    Kumar, Deepak; Singh, Preeti; Yusuf, Mohd Aslam; Upadhyaya, Chandrama Prakash; Roy, Suchandra Deb; Hohn, Thomas; Sarin, Neera Bhalla


    We report the efficacy of an aldose reductase (ALDRXV4) enzyme from Xerophyta viscosa Baker in enhancing the prospects of plant's survival under abiotic stress. Transgenic tobacco plants overexpressing ALDRXV4 cDNA showed alleviation of NaCl and mannitol-induced abiotic stress. The transgenic plants survived longer periods of water deficiency and salinity stress and exhibited improved recovery after rehydration as compared to the wild type plants. The increased synthesis of aldose reductase in transgenic plants correlated with reduced methylglyoxal and malondialdehyde accumulation and an elevated level of sorbitol under stress conditions. In addition, the transgenic lines showed better photosynthetic efficiency, less electrolyte damage, greater water retention, higher proline accumulation, and favorable ionic balance under stress conditions. Together, these findings suggest the potential of engineering aldose reductase levels for better performance of crop plants growing under drought and salt stress conditions.

  16. Melatonin Reduces Cataract Formation and Aldose Reductase Activity in Lenses of Streptozotocin-induced Diabetic Rat

    Directory of Open Access Journals (Sweden)

    Marjan Khorsand


    Full Text Available Background: The relationship between the high activity of aldose reductase (AR and diabetic cataract formation has been previously investigated. The purpose of the present study was to determine the preventing effect of melatonin on streptozotocin (STZ-induced diabetic cataract in rats. Methods: 34 adult healthy male Sprague-Dawely rats were divided into four groups. Diabetic control and diabetic+melatonin received a single dose of STZ (50 mg/kg, intraperitoneally, whereas the normal control and normal+melatonin received vehicle. The melatonin groups were gavaged with melatonin (5 mg/kg daily for a period of 8 weeks, whereas the rats in the normal control and diabetic control groups received only the vehicle. The rats’ eyes were examined every week and cataract formation scores (0-4 were determined by slit-lamp microscope. At the end of the eighth week, the rats were sacrificed and markers of the polyol pathway and antioxidative (Glutathione, GSH in their lens were determined. The levels of blood glucose, HbA1c and plasma malondialdhyde (MDA, as a marker of lipid peroxidation, were also measured. Results: Melatonin prevented STZ-induced hyperglycemia by decreased blood glucose and HbA1c levels. Slit lamp examination indicated that melatonin delayed cataract progression in diabetic rats. The results revealed that melatonin feeding increased the GSH levels, decreased the activities of AR and sorbitol dehydrogenase (SDH and sorbitol formation in catractous lenses as well as plasma MDA content. Conclusion: In summary, for the first time we demonstrated that melatonin delayed the formation and progression of cataract in diabetic rat lenses.

  17. Synthesis and docking analysis of new heterocyclic system of tetrazolo[5',1':2,3][1,3,4]thiadiazepino [7,6-b]quinolines as aldose reductase inhibitors

    Directory of Open Access Journals (Sweden)

    Mohammad Saadatmandzadeh


    Conclusion: All of the best models formed strong hydrogen bonds with Trp 111 and Tyr 209 via tetrazole moiety. It was found that pi-pi interaction between Tyr 209, Trp 20 and His 110 side chain and quinolin moiety was one of the common factors in enzyme-inhibitor junction. It was found that both hydrogen bonding and hydrophobic interactions are important in the structure and function of biological molecules, especially for inhibition in a complex.

  18. The prostaglandin F synthase activity of the human aldose reductase AKR1B1 brings new lenses to look at pathologic conditions.

    Directory of Open Access Journals (Sweden)

    Eva eBresson


    Full Text Available Prostaglandins are important regulators of female reproductive functions to which aldose reductases exhibiting hydroxysteroid dehydrogenase activity also contribute. Our work on the regulation of reproductive function by prostaglandins (PGs, lead us to the discovery that AKR1B5 and later AKR1B1 were highly efficient and physiologically relevant PGF synthases. PGE2 and PGF2α are the main prostanoids produced in the human endometrium and proper balance in their relative production is important for normal menstruation and optimal fertility. Recent evidence suggests that PGE2 and PGF2α may constitute a functional dyad with physiological relevance at least as important as the prostacyclin-thromboxane dyad in the vascular system. We have recently reported that AKR1B1 was expressed and modulated in association with PGF2α production in response to IL-1β in the human endometrium. In the present study, we show that the human AKR1B1 (gene ID: 231 also known as ALDR1 or ALR2 is a functional PGF2α synthase in different models of living cells and tissues. Using human endometrial cells, prostate and vascular smooth muscle cells, cardiomyocytes and endothelial cells we demonstrate that IL-1β is able to up regulate COX-2 and AKR1B1 proteins as well as PGF2α production under normal glucose concentrations. We show that the promoter activity of AKR1B1 gene is increased by IL-1β particularly around the multiple stress response region (MSRR containing two putative antioxidant response elements (ARE adjacent to TonE and AP1.We also show that AKR1B1 is able to regulate PGE2 production through PGF2α acting on its FP receptor and that aldose reductase inhibitors (ARIs like alrestatin, statil (ponalrestat and EBPC exhibit distinct and characteristic inhibition of PGF2α production in different cell models. The PGF synthase activity of AKR1B1 represents a new and important target to regulate ischemic and inflammatory responses associated with several human

  19. Aldose reductase inhibition counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells


    Drel, Viktor R.; Pacher, Pal; Stevens, Martin J; Obrosova, Irina G.


    Both increased aldose reductase (AR) activity and oxidative/nitrosative stress have been implicated in the pathogenesis of diabetic nephropathy, but the relation between the two factors remains a subject of debate. This study evaluated the effects of AR inhibition on nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. In animal experiments, control (C) and streptozotocin-diabetic (D) rats were treated with...

  20. Kinetic and molecular docking studies of loganin and 7-O-galloyl-D-sedoheptulose from Corni Fructus as therapeutic agents for diabetic complications through inhibition of aldose reductase. (United States)

    Lee, Chan Mee; Jung, Hyun Ah; Oh, Sang Ho; Park, Chan Hum; Tanaka, Takashi; Yokozawa, Takako; Choi, Jae Sue


    Aldose reductase (AR) is a key enzyme in the polyol pathway that is strongly implicated in the pathogenesis of diabetic complications. AR inhibitors have been proposed as therapeutic agents for diabetic complications through suppression of sorbitol formation and accumulation. In this study, we evaluated whether two major compounds of Corni Fructus, loganin and 7-O-galloyl-D-sedoheptulose, had an inhibitory effect on diabetic complications through AR inhibition. Because the iridoid glycoside loganin and the low-molecular-weight polyphenol 7-O-galloyl-D-sedoheptulose showed marginal inhibitory activities against rat lens AR (RLAR) and human recombinant AR (HRAR) in inhibition assays, we performed enzyme kinetic analyses and molecular simulation of the interaction of these two compounds with AR to further investigate their potential as inhibitors of diabetic complications. In kinetic analysis using Lineweaver-Burk plots and Dixon plots, loganin and 7-O-galloyl-D-sedoheptulose were both mixed inhibitors of RLAR with inhibition constants (K i) of 27.99 and 128.68 μΜ, respectively. Moreover, molecular docking simulation of both compounds demonstrated negative binding energies (Autodock 4.0 = -6.7; -7.5 kcal/mol; Fred 2.0 = -59.4; -63.2 kcal/mol) indicating a high affinity and tight binding capacity for the active site of the enzyme. Iridoid nucleus and aromatic ring systems and glycoside and sedoheptulose moieties were found to bind tightly to the specificity pocket and the anion binding pocket in RLAR through Phe123, His111, Trp21, Tyr49, His111, and Trp112 residues. Our results clearly indicate that loganin and 7-O-galloyl-D-sedoheptulose have great promise for the treatment of diabetic complications through inhibition of AR.

  1. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianwei [Center for Optics and Optoelectronics Research, College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023 (China); State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062 (China); Zhang, John Z. H.; He, Xiao, E-mail: [State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062 (China); NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 (China)


    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  2. Scopoletin from the flower buds of Magnolia fargesii inhibits protein glycation, aldose reductase, and cataractogenesis ex vivo. (United States)

    Lee, Jun; Kim, Nan Hee; Nam, Joo Won; Lee, Yun Mi; Jang, Dae Sik; Kim, Young Sook; Nam, Sang Hae; Seo, Eun-Kyoung; Yang, Min Suk; Kim, Jin Sook


    Five compounds previously known structures, scopoletin (1), northalifoline (2), stigmast-4-en-3-one (3), tiliroside (4), and oplopanone (5) were obtained from the flower buds of Magnolia fargesii using chromatographic separation methods. The structures of 1-5 were identified by the interpretation of their spectroscopic data including 1D- and 2D-NMR as well as by comparison with reported values. Three compounds 1-3 were found from M. fargesii for the first time in this study. All the isolates (1-5) were subjected to in vitro bioassays to evaluate the inhibitory activity on advanced glycation end products formation and rat lens aldose reductase (RLAR). Compound 1 showed a remarkable inhibitory activity on advanced glycation end products formation with IC(50) value of 2.93 μM (aminoguanidine: 961 μM), and showed a significant RLAR inhibitory activity with IC(50) value of 22.5 μM (3.3-tetramethyleneglutaric acid: 28.7 μM). Compound 4 exhibited potent inhibitory activity against RLAR (IC(50) = 14.9 μM). In the further experiment ex vivo, cataractogenesis of rat lenses induced with xylose was significantly inhibited by compound 1 treatment.

  3. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase. (United States)

    Wang, Xianwei; Zhang, John Z H; He, Xiao


    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  4. Aldose Reductase Regulates Microglia/Macrophages Polarization Through the cAMP Response Element-Binding Protein After Spinal Cord Injury in Mice. (United States)

    Zhang, Qian; Bian, Ganlan; Chen, Peng; Liu, Ling; Yu, Caiyong; Liu, Fangfang; Xue, Qian; Chung, Sookja K; Song, Bing; Ju, Gong; Wang, Jian


    Inflammatory reactions are the most critical pathological processes occurring after spinal cord injury (SCI). Activated microglia/macrophages have either detrimental or beneficial effects on neural regeneration based on their functional polarized M1/M2 subsets. However, the mechanism of microglia/macrophage polarization to M1/M2 at the injured spinal cord environment remains unknown. In this study, wild-type (WT) or aldose reductase (AR)-knockout (KO) mice were subjected to SCI by a spinal crush injury model. The expression pattern of AR, behavior tests for locomotor activity, and lesion size were assessed at between 4 h and 28 days after SCI. We found that the expression of AR is upregulated in microglia/macrophages after SCI in WT mice. In AR KO mice, SCI led to smaller injury lesion areas compared to WT. AR deficiency-induced microglia/macrophages induce the M2 rather than the M1 response and promote locomotion recovery after SCI in mice. In the in vitro experiments, microglia cell lines (N9 or BV2) were treated with the AR inhibitor (ARI) fidarestat. AR inhibition caused 4-hydroxynonenal (HNE) accumulation, which induced the phosphorylation of the cAMP response element-binding protein (CREB) to promote Arg1 expression. KG501, the specific inhibitor of phosphorylated CREB, could cancel the upregulation of Arg1 by ARI or HNE stimulation. Our results suggest that AR works as a switch which can regulate microglia by polarizing cells to either the M1 or the M2 phenotype under M1 stimulation based on its states of activity. We suggest that inhibiting AR may be a promising therapeutic method for SCI in the future.

  5. Aldose reductase inhibition counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. (United States)

    Drel, Viktor R; Pacher, Pal; Stevens, Martin J; Obrosova, Irina G


    Both increased aldose reductase (AR) activity and oxidative/nitrosative stress have been implicated in the pathogenesis of diabetic nephropathy, but the relation between the two factors remains a subject of debate. This study evaluated the effects of AR inhibition on nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. In animal experiments, control (C) and streptozotocin-diabetic (D) rats were treated with/without the AR inhibitor fidarestat (F, 16 mg kg(-1) day(-1)) for 6 weeks starting from induction of diabetes. Glucose, sorbitol, and fructose concentrations were significantly increased in the renal cortex of D vs C (p diabetes-induced increase in kidney weight as well as nitrotyrosine (NT, a marker of peroxynitrite-induced injury and nitrosative stress), and poly(ADP-ribose) (a marker of PARP activation) accumulation, assessed by both immunohistochemistry and Western blot analysis, in glomerular and tubular compartments of the renal cortex. In vitro studies revealed the presence of both AR and PARP-1 in human mesangial cells, and none of these two variables were affected by high glucose or F treatment. Nitrosylated and poly(ADP-ribosyl)ated proteins (Western blot analysis) accumulated in cells cultured in 30 mM D-glucose (vs 5.55 mM glucose, p diabetic renal cortex and high-glucose-exposed human mesangial cells. These findings reveal new beneficial properties of the AR inhibitor F and provide the rationale for detailed studies of F on diabetic nephropathy.

  6. Caffeoylated phenylpropanoid glycosides from Brandisia hancei inhibit advanced glycation end product formation and aldose reductase in vitro and vessel dilation in larval zebrafish in vivo. (United States)

    Yu, Song Yi; Lee, Ik-Soo; Jung, Seung-Hyun; Lee, Yun Mi; Lee, Yu-Ri; Kim, Joo-Hwan; Sun, Hang; Kim, Jin Sook


    In our continuing efforts to identify effective naturally sourced agents for diabetic complications, five caffeoylated phenylpropanoid glycosides, acteoside (1), isoacteoside (2), poliumoside (3), brandioside (4), and pheliposide (5) were isolated from the 80% EtOH extract of Brandisia hancei stems and leaves. These isolates (1-5) were subjected to an in vitro bioassay evaluating their inhibitory activity on advanced glycation end product formation and rat lens aldose reductase activity. All tested compounds exhibited significant inhibition of advanced glycation end product formation with IC50 values of 4.6-25.7 µM, compared with those of aminoguanidine (IC50=1,056 µM) and quercetin (IC50=28.4 µM) as positive controls. In the rat lens aldose reductase assay, acteoside, isoacteoside, and poliumoside exhibited greater inhibitory effects on rat lens aldose reductase with IC50 values of 0.83, 0.83, and 0.85 µM, respectively, than those of the positive controls, 3,3-tetramethyleneglutaric acid (IC50=4.03 µM) and quercetin (IC50=7.2 µM). In addition, the effect of acteoside on the dilation of hyaloid-retinal vessels induced by high glucose in larval zebrafish was investigated. Acteoside reduced the diameters of high glucose-induced hyaloid-retinal vessels by 69% at 10 µM and 81% at 20 µM, compared to the high glucose-treated control group. These results suggest that B. hancei and its active components might be beneficial in the treatment and prevention of diabetic vascular complications.

  7. Berberine ameliorates renal injury in streptozotocin-induced diabetic rats by suppression of both oxidative stress and aldose reductase

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-hua; HUANG Wen-ge; CHEN Feng-ying; LIU Pei-qing; HEI Zi-qing; NIE Hong; TANG Fu-tian; HUANG He-qing; LI Xue-juan; DENG Yan-hui; CHEN Shao-rui; GUO Fen-fen


    Background Berberine is one of the main constituents of Coptidis rhizoma (CR) and Cortex phellodendri, In this study, we investigated the beneficial effects of berberine on renal function and its possible mechanisms in rats with diabetic nephropathy(DN). Methods Male Wistar rats were divided into three groups: normal, diabetic model, and berberine treatment groups. Rats in the diabetic model and berberine treatment groups were induced to diabetes by intraperitonal injection with streptozotocin(STZ). Glomerular area, glomerular volume, fasting blood glucose(FBG), blood urea nitrogen(BUN), serum creatinine (Cr)and urine protein for 24 hours(UP24h) were measured using commercially available kits. Meanwhile, the activity of superoxide dismutase (SOD), content of malondialdehyde (MDA) in serum, activity of aldose reductase (AR)and the expression of AR mRNA and protein in kidney were detected by different methods. Results The result showed that oral administration of berberine (200mg·kg-1·d-1) significantly ameliorated the ratio of kidney weight to body weight. Glomerular area, glomerular volume, FBG, BUN, Cr and UP24h were significantly decreased in the berberine treatment group compared with the diabetic model group(P<0.05). Berberine treatment significantly increased serum SOD activity and decreased the content of MDA compared with diabetic model group(P<0.05). AR activity as well as the expression of AR mRNA and protein in the kidney was markedly decreased in the berberine treatment group compared with diabetic model group (P<0.05). Conclusion These results suggested that berberine could ameliorate renal dysfunction in DN rats through controlling blood glucose, reduction of oxidative stress and inhibition of the activation of the polyol pathway.

  8. Evaluation of in vitro aldose reductase inhibitory potential of different fraction of Hybanthus enneaspermus Linn F. Muell

    Institute of Scientific and Technical Information of China (English)

    Patel DK; Kumar R; Kumar M; Sairam K; Hemalatha S


    Objective:To evaluate the aldose reductase inhibitory (ARI) activity of different fractions of Hybanthus enneaspermus for potential use in diabetic cataract. Methods: Total phenol and flavonoid content of different fractions was determined. ARI activity of different fractions in rat lens was investigated in vitro. Results: The results showed significant level of phenolic and flavonoid content in ethyl acetate fraction [total phenol (212.15±0.79 mg/g), total flavonoid (39.11±2.27 mg/g)] and aqueous fraction [total phenol (140.62±0.57 mg/g), total flavonoid (26.07±1.49 mg/g)] as compared with the chloroform fraction [total phenol (68.56±0.51 mg/g), total flavonoid (13.41±0.82 mg/g)] and petrolium ether fraction [total phenol (36.68±0.43 mg/g), total flavonoid (11.55±1.06 mg/g)]. There was a significant difference in the ARI activity of each fraction, and it was found to be the highest in ethyl acetate fraction [IC50 (49.26±1.76μg/mL)] followed by aqueous extract [IC50 (70.83±2.82 μg/mL)] and it was least in the petroleum ether fraction [IC50 (118.89±0.71 μg/mL)]. Chloroform fraction showed moderate activity [IC50 (98.52±1.80 μg/mL)]. Conclusions:Different fractions showed significanct amount of ARI activity, where in ethyl acetate fraction it was found to be maximum which may be due to its high phenolic and flavonoid content. The extract after further evaluation may be used in the treatment of diabetic cataract.

  9. Identification and Quantification of Aldose Reductase Inhibitory Flavonoids in Herbal Formulation and Extract of Gymnema sylvestre Using HPLC-PDA and LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Nanjappan Satheeshkumar


    Full Text Available Adulteration of herbal supplements is a major issue for many countries. A simple and reliable HPLC-PDA method was developed for quantification of aldose reductase inhibitory flavonoids rutin, quercetin, and kaempferol. The chromatographic separation was performed on a Fortis C18 column in gradient mode with detection at 267 nm. The presence of these markers was confirmed through the accurate m/z values and MS/MS data obtained using quadruple time of flight mass spectrometry (QTOF-MS. The proposed method was successfully applied to examine the amount of these active constituents in antiobese polyherbal formulation and plant extract of Gymnema sylvestre.

  10. Quantum Model of Catalysis Based on a Mobile Proton Revealed by Subatomic X-ray and Neutron Diffraction Studies of h-aldose Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Blakeley, M. P. [European Molecular Biology Laboratory (EMBL), France; Ruiz, Fredrico [Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS, ULP, INSER; Cachau, Raul [SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD; Hazemann, I. [Institut Laue-Langevin (ILL); Meilleur, Flora [Institut Laue-Langevin (ILL); Mitschler, A. [IGBMC; Ginell, Stephan [Argonne National Laboratory (ANL); Afonine, Pavel [Lawrence Berkeley National Laboratory (LBNL); Ventura, Oscar [Computational Chemical Physics Group, DETEMA, Facultad de Quimica, UdelaR, C.C.1; Cousido-Siah, Alexandra [Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS, ULP, INSER; Haertlein, M. [Institut Laue-Langevin (ILL); Joachimiak, Andrzej [Argonne National Laboratory (ANL); Myles, Dean A A [ORNL; Podjarny, A. [IGBMC


    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 Angstroms, 100K; 0.80 Angstroms, 15K; 1.75 Angstroms, 293K), neutron Laue data (2.2 Angstroms, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.

  11. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design. (United States)

    Cousido-Siah, Alexandra; Ruiz, Francesc X; Mitschler, André; Porté, Sergio; de Lera, Ángel R; Martín, María J; Manzanaro, Sonia; de la Fuente, Jesús A; Terwesten, Felix; Betz, Michael; Klebe, Gerhard; Farrés, Jaume; Parés, Xavier; Podjarny, Alberto


    Aldo-keto reductases (AKRs) are mostly monomeric enzymes which fold into a highly conserved (α/β)8 barrel, while their substrate specificity and inhibitor selectivity are determined by interaction with residues located in three highly variable external loops. The closely related human enzymes aldose reductase (AR or AKR1B1) and AKR1B10 are of biomedical interest because of their involvement in secondary diabetic complications (AR) and in cancer, e.g. hepatocellular carcinoma and smoking-related lung cancer (AKR1B10). After characterization of the IC50 values of both AKRs with a series of polyhalogenated compounds, 2,2',3,3',5,5',6,6'-octafluoro-4,4'-biphenyldiol (JF0064) was identified as a lead inhibitor of both enzymes with a new scaffold (a 1,1'-biphenyl-4,4'-diol). An ultrahigh-resolution X-ray structure of the AR-NADP(+)-JF0064 complex has been determined at 0.85 Å resolution, allowing it to be observed that JF0064 interacts with the catalytic residue Tyr48 through a negatively charged hydroxyl group (i.e. the acidic phenol). The non-competitive inhibition pattern observed for JF0064 with both enzymes suggests that this acidic hydroxyl group is also present in the case of AKR1B10. Moreover, the combination of surface lysine methylation and the introduction of K125R and V301L mutations enabled the determination of the X-ray crystallographic structure of the corresponding AKR1B10-NADP(+)-JF0064 complex. Comparison of the two structures has unveiled some important hints for subsequent structure-based drug-design efforts.

  12. Detoxifying Enzymes at the Cross-Roads of Inflammation, Oxidative Stress, and Drug Hypersensitivity: Role of Glutathione Transferase P1-1 and Aldose Reductase (United States)

    Sánchez-Gómez, Francisco J.; Díez-Dacal, Beatriz; García-Martín, Elena; Agúndez, José A. G.; Pajares, María A.; Pérez-Sala, Dolores


    Phase I and II enzymes are involved in the metabolism of endogenous reactive compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies have established several drug metabolizing enzymes as markers for risk of drug hypersensitivity. However, other candidates are emerging that are involved in drug metabolism but also in the generation of danger or costimulatory signals. Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. In addition, their metabolic activity can have important consequences for the cellular redox status, and impacts the inflammatory response as well as the balance of inflammatory mediators, which can modulate epigenetic factors and cooperate or interfere with drug-adduct formation. These enzymes are, in turn, targets for covalent modification and regulation by oxidative stress, inflammatory mediators, and drugs. Therefore, they constitute a platform for a complex set of interactions involving drug metabolism, protein haptenation, modulation of the inflammatory response, and/or generation of danger signals with implications in drug hypersensitivity reactions. Moreover, increasing evidence supports their involvement in allergic processes. Here, we will focus on GSTP1-1 and aldose reductase (AKR1B1) and provide a perspective for their involvement in drug hypersensitivity. PMID:27540362



    El Gamal, Heba


    Diabetic nephropathy (DN) is the leading cause of end stage renal disease, and one of the most serious microvascular complications of diabetes mellitus. Increase in the shift of glucose into the aldose reductase pathway during diabetes leads to accumulation of sorbitol and fructose in the cells, and causes an imbalance in the associated cofactors, which in turn cause deleterious events such as oxidative stress, endoplasmic reticulum (ER) stress and cell death in the kidney. The objective of t...

  14. 醛糖还原酶cDNA的克隆和表达%Cloning and Expression cDNA of Aldose Reductase

    Institute of Scientific and Technical Information of China (English)

    项军强; 蒋红亮; 张虹; 丁明; 赵辅昆


    Aldose reductase(AR), the rate-limiting enzyme of the polyol pathway of sugar metabolism, has been implicated in the pathogenesis of diabetic complications, in particular D-glucose reduction to sorbitol. Aldose reductase cDNA is amplified by reverse transcription-PCR (RT-PCR) from the isolated SMMC7721 total RNA. The PCR product is cloned and inserted into E. coli expression vector pET22b(+) to create a recombinant plasmid with 6× His Tag, which is named pET22b(+)-AR. The AR-(His)6 fusion protein is expressed in E. coli BL21(DE3) by IPTG. And AR-(His)6 is purified by Ni-NTA affinity chromotagraphy. Finally the purified AR-(His)6 activity enzyme is measured by AR assay with ultraviolet spectrophotometry. The results of this study may represent a basis for development of potential drug in preventing diabetic complications.%醛糖还原酶能促使葡萄糖转化成山梨醇,是多元醇代谢通路的限速酶,与糖尿病并发症的发生和发展有密切关系.用RT-PCR扩增醛糖还原酶基因,将扩增产物克隆到大肠杆菌表达载体pET22b(+),构建重组表达载体pET22b(+)-AR.经PCR、双酶切和序列测定鉴定后,转化E.coli BL21(DE3),经IPTG诱导表达,SDS-PAGE和Western blotting对重组蛋白进行分析和鉴定后,利用Ni-NTA琼脂糖亲和层析纯化获得重组蛋白AR-(His)6.紫外分光光度法对AR-(His)6进行酶活检测,其比活力为0.45 U/mg,为下一步筛选具有抑制醛糖还原酶活性的化合物及开发有临床应用价值的醛糖还原酶抑制剂提供参考.

  15. Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia. Relationship to pentosidine cross-links. (United States)

    Richard, S; Tamas, C; Sell, D R; Monnier, V M


    Chronic experimental hyperglycemia mediated by galactose has been shown to induce browning and cross-linking of rat tail tendon collagen that could be duplicated in vitro by nonenzymatic galactosylation. To investigate the nature of these changes, Sprague-Dawley rats were placed on a 33% galactose diet without and with sorbinil for 6 and 12 mo. Collagen-linked fluorescence and pentosidine cross-links increased with age and galactosemia in tail tendons (P less than 0.001) and skin but were essentially unresponsive to aldose reductase inhibition (ARI). In contrast, tendon breaking time in urea, a likely parameter of cross-linking, was markedly improved (P less than 0.001) by ARI. Fluorescence that was inhibited by sorbinil treatment was increased in pepsin and proteinase K digest of aortic tissue from galactosemic rats (P less than 0.001), but impaired enzymatic digestibility was not observed. Systolic blood pressure as potential consequence of aortic stiffening was not increased in galactosemia. These data suggest that fluorescence in skin and tendon might be in part due to advanced glycosylation and pentosidine formation because these were not decreased by ARI. However, they also suggest that nonfluorescent cross-links may also be forming because, in contrast to fluorescence, tail tendon breaking time was partly corrected by ARI. Thus, it appears that extracellular matrix changes in chronic galactosemia are complex, being partly attributable to advanced glycosylation and partly to polyol-pathway activation.

  16. Aldose reductase (AKR1B3) regulates the accumulation of advanced glycosylation end products (AGEs) and the expression of AGE receptor (RAGE). (United States)

    Baba, Shahid P; Hellmann, Jason; Srivastava, Sanjay; Bhatnagar, Aruni


    Diabetes results in enhanced chemical modification of proteins by advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) precursors. These modifications have been linked to the development of several secondary diabetic complications. Our previous studies showed that aldose reductase (AR; AKR1B3) catalyzes the reduction of ALEs and AGEs precursors; however, the in vivo significance of this metabolic pathway during diabetes and obesity has not been fully assessed. Therefore we examined the role of AR in regulating ALEs and AGEs formation in murine models of diet-induced obesity and streptozotocin-induced diabetes. In comparison with wild-type (WT) and AR-null mice fed normal chow, mice fed a high-fat (HF) diet (42% kcal fat) showed increased accumulation of AGEs and protein-acrolein adducts in the plasma. AGEs and acrolein adducts were also increased in the epididymal fat of WT and AR-null mice fed a HF diet. Deletion of AR increased the accumulation of 4-hydroxy-trans-2-nonenal (HNE) protein adduct in the plasma and increased the expression of the AGE receptor (RAGE) in HF fed mice. No change in AGEs formation was observed in the kidneys of HF-fed mice. In comparison, renal tissue from AR-null mice treated with streptozotocin showed greater AGE accumulation than streptozotocin-treated WT mice. These data indicated that AR regulated the accumulation of lipid peroxidation derived aldehydes and AGEs under conditions of severe, but not mild, hyperglycemia and that deletion of AR increased RAGE-induction via mechanisms that were independent of AGEs accumulation.

  17. 荞麦芽的抗氧化作用及醛糖还原酶抑制作用的研究%Study on effects of antioxidant and aldose reductase inhibition of buckwheat sprouts

    Institute of Scientific and Technical Information of China (English)

    孙国娟; 李红梅; 李善姬; 林顺成; 崔承弼


    以萌发期为4,6,8,9,10 d的甜荞麦芽和苦荞麦芽(黑丰一号,坝上苦荞)为原料,采用高效液相色谱法(HPLC),探明荞麦芽在萌发过程中芦丁的变化趋势,同时观察荞麦芽的ABTS自由基的清除作用以及对大鼠晶状体醛糖还原酶(rAR)的抑制作用.结果表明:无论是甜荞还是苦荞,芦丁的含量都随发芽时间的延长而有所增加,同时黑丰一号苦荞对ABTS自由基的清除作用在萌发的第10天时达最大值(IC50=12.18 μg/mL),作用效果高于芦丁标准品(IC50=21.10 μg/mL), 但是低于对照物Trolox(IC 50 =3.89 μg/mL).坝上苦荞在萌发的第10天时对rAR抑制活性最大(IC 50=2.09 μg/mL),作用效果明显高于槲皮素(IC50=2.57 μg/mL)、芦丁标准品(IC50=4.90 μg/mL).所以萌发的荞麦芽均有一定的抗氧化作用,且对rAR有明显的抑制作用,可以作为醛糖还原酶抑制剂的良好来源.%The contents of rutin in the powders of buckwheat sprouts and tartary buckwheat sprouts ( Heifeng NO. 1, Bashang tartary buckwheat) germinated for 4, 6, 8, 9, 10 days were determined u-sing High-performance liquid chromatography (HPLC). Meanwhile, observed the scavenging effects of ABTS free radical and the inhibi-tive effects of aldose reductase on rat lens (rAR). The results indicated that regardless of buckwheat sprouts and tartary buckwheat sprouts, the contents of rutin were increased with increasing the germination time. When Heifeng NO. 1 germination l0thd reaches the maximum value (IC50 = 12. 18 μg/mL) to the ABTS free radical scavenging action, the function effects is higher than rutin (IC50 = 21. 10 μg/mL) , but less than Trolox ( IC50 = 3. 89 μg/mL). When Bashang tartary buckwheat germination lOthd reaches the maximum value (IC50 = 2.09 μg/mL) on rAR inhibitory activity, the reduction energy is higher than quercetin ( IC50 = 2. 57 μg/mL) and rutin (/C50 = 4. 90 μg/mL). Therefore the germination of buckwheat sprouts has certain antioxidant effects, and

  18. Gedunin abrogates aldose reductase, PI3K/Akt/mToR, and NF-κB signaling pathways to inhibit angiogenesis in a hamster model of oral carcinogenesis. (United States)

    Kishore T, Kranthi Kiran; Ganugula, Raghu; Gade, Deepak Reddy; Reddy, Geereddy Bhanuprakash; Nagini, Siddavaram


    Aberrant activation of oncogenic signaling pathways plays a central role in tumor development and progression. The aim of this present study was to investigate the chemopreventive effects of the neem limonoid gedunin in the hamster model of oral cancer based on its ability to modulate aldose reductase (AR), phosphatidyl inositol-3-kinase (PI3K)/Akt, and nuclear factor kappa B (NF-κB) pathways to block angiogenesis. Administration of gedunin suppressed the development of HBP carcinomas by inhibiting PI3K/Akt and NF-κB pathways through the inactivation of Akt and inhibitory kappa B kinase (IKK), respectively. Immunoblot and molecular docking interactions revealed that inhibition of these signaling pathways may be mediated via inactivation of AR by gedunin. Gedunin blocked angiogenesis by downregulating the expression of miR-21 and the pro-angiogenic factors vascular endothelial growth factor and hypoxia inducible factor-1 alpha (HIF-1α). In conclusion, the results of the present study provide compelling evidence that gedunin prevents progression of hamster buccal pouch (HBP) carcinomas via inhibition of the kinases Akt, IKK, and AR, and the oncogenic transcription factors NF-κB and HIF-1α to block angiogenesis.

  19. Positive pleiotropic effects of HMG-CoA reductase inhibitor on vitiligo



    Abstract Background HMG-CoA reductase inhibitors (statins) are commonly used in medicine to control blood lipid disorder. Large clinical trials have demonstrated that statins greatly reduces cardiovascular-related morbidity and mortality in patients with and without coronary artery disease. Also, the use of HMG-CoA reductase inhibitors has been reported to have immunosuppressive effects. Case presentation We describe an unusual case of regression of vitiligo in a patient treated with high dos...

  20. Drug-drug interactions between HMG-CoA reductase inhibitors (statins) and antiviral protease inhibitors. (United States)

    Chauvin, Benoit; Drouot, Sylvain; Barrail-Tran, Aurélie; Taburet, Anne-Marie


    The HMG-CoA reductase inhibitors are a class of drugs also known as statins. These drugs are effective and widely prescribed for the treatment of hypercholesterolemia and prevention of cardiovascular morbidity and mortality. Seven statins are currently available: atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin and simvastatin. Although these drugs are generally well tolerated, skeletal muscle abnormalities from myalgia to severe lethal rhabdomyolysis can occur. Factors that increase statin concentrations such as drug-drug interactions can increase the risk of these adverse events. Drug-drug interactions are dependent on statins' pharmacokinetic profile: simvastatin, lovastatin and atorvastatin are metabolized through cytochrome P450 (CYP) 3A, while the metabolism of the other statins is independent of this CYP. All statins are substrate of organic anion transporter polypeptide 1B1, an uptake transporter expressed in hepatocyte membrane that may also explain some drug-drug interactions. Many HIV-infected patients have dyslipidemia and comorbidities that may require statin treatment. HIV-protease inhibitors (HIV PIs) are part of recommended antiretroviral treatment in combination with two reverse transcriptase inhibitors. All HIV PIs except nelfinavir are coadministered with a low dose of ritonavir, a potent CYP3A inhibitor to improve their pharmacokinetic properties. Cobicistat is a new potent CYP3A inhibitor that is combined with elvitegravir and will be combined with HIV-PIs in the future. The HCV-PIs boceprevir and telaprevir are both, to different extents, inhibitors of CYP3A. This review summarizes the pharmacokinetic properties of statins and PIs with emphasis on their metabolic pathways explaining clinically important drug-drug interactions. Simvastatin and lovastatin metabolized through CYP3A have the highest potency for drug-drug interaction with potent CYP3A inhibitors such as ritonavir- or cobicistat-boosted HIV-PI or the

  1. Adverse Effects and Safety of 5-alpha Reductase Inhibitors (Finasteride, Dutasteride): A Systematic Review (United States)

    Hirshburg, Jason M.; Kelsey, Petra A.; Therrien, Chelsea A.; Gavino, A. Carlo; Reichenberg, Jason S.


    Finasteride and dutasteride, both 5-alpha reductase inhibitors, are considered first-line treatment for androgenetic hair loss in men and used increasingly in women. In each case, patients are expected to take the medications indefinitely despite the lack of research regarding long-term adverse effects. Concerns regarding the adverse effects of these medications has led the United States National Institutes of Health to add a link for post-finasteride syndrome to its Genetic and Rare Disease Information Center. Herein, the authors report the results of a literature search reviewing adverse events of 5-alpha reductase inhibitors as they relate to prostate cancer, psychological effects, sexual health, and use in women. Several large studies found no increase in incidence of prostate cancer, a possible increase of high-grade cancer when detected, and no change in survival rate with 5-alpha reductase inhibitor use. Currently, there is no direct link between 5-alpha reductase inhibitor use and depression; however, several small studies have led to depression being listed as a side effect on the medication packaging. Sexual effects including erectile dysfunction and decreased libido and ejaculate were reported in as many as 3.4 to 15.8 percent of men. To date, there are very few studies evaluating 5-alpha reductase inhibitor use in women. Risks include birth defects in male fetuses if used in pregnancy, decreased libido, headache, gastrointestinal discomfort, and isolated reports of changes in menstruation, acne, and dizziness. Overall, 5-alpha reductase inhibitors were well-tolerated in both men and women, but not without risk, highlighting the importance of patient education prior to treatment. PMID:27672412

  2. Detoxifying enzymes at the cross-roads of inflammation, oxidative stress and drug hypersensitivity: role of glutathione transferase P1-1 and aldose reductase

    Directory of Open Access Journals (Sweden)

    Francisco J Sánchez-Gómez


    Full Text Available Phase I and II enzymes are involved in the metabolism of endogenous reactive compounds as well as xenobiotics, including toxicants and drugs. Genotyping studies have established several drug metabolizing enzymes as markers for risk of drug hypersensitivity. However, other candidates are emerging that are involved in drug metabolism but also in the generation of danger or costimulatory signals. Enzymes such as aldo-keto reductases (AKR and glutathione transferases (GST metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. In addition, their metabolic activity can have important consequences for the cellular redox status, and impacts the inflammatory response as well as the balance of inflammatory mediators, which can modulate epigenetic factors and cooperate or interfere with drug-adduct formation. These enzymes are, in turn, targets for covalent modification and regulation by oxidative stress, inflammatory mediators and drugs. Therefore, they constitute a platform for a complex set of interactions involving drug metabolism, protein haptenation, modulation of the inflammatory response and/or generation of danger signals with implications in drug hypersensitivity reactions. Moreover, increasing evidence supports their involvement in allergic processes. Here, we will focus on GSTP1-1 and AKR1B1 and provide a perspective for their involvement in drug hypersensitivity.

  3. Alpha 1-blockers vs 5 alpha-reductase inhibitors in benign prostatic hyperplasia. A comparative review

    DEFF Research Database (Denmark)

    Andersen, J T


    During recent years, pharmacological treatment of symptomatic benign prostatic hyperplasia (BPH) has become the primary treatment choice for an increasing number of patients. The 2 principal drug classes employed are alpha 1-blockers and 5 alpha-reductase inhibitors. Current information from...... of patients who will respond well to alpha 1-blockers have yet to be identified, and data concerning the long term effects of these drugs are not yet available. 5 alpha-Reductase inhibitors have a slow onset of effect, but treatment leads to improvement in symptoms, reduction of the size of the prostate gland...... or unwilling to undergo surgical resection of the prostate will benefit from such therapy....

  4. Dual-color immunofluorescent labeling with quantum dots of the diabetes-associated proteins aldose reductase and Toll-like receptor 4 in the kidneys of diabetic rats

    Directory of Open Access Journals (Sweden)

    Liu XM


    Full Text Available Xiaomin Liu,1,* Rui Hu,2,* Hongwei Lian,1,3 Yang Liu,4 Jing Liu,1 Jianwei Liu,1 Guimiao Lin,5 Liwei Liu,6 Xiaojian Duan,1 Ken-Tye Yong,2 Ling Ye1 1Institute of Gerontology and Geriatrics, Chinese PLA General Hospital, Beijing Key Lab of Aging and Geriatrics, Beijing, People’s Republic of China; 2School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore; 3Department of Emergency Medicine, Peking University Third Hospital, Beijing, 4Department of Geriatric Nephrology, Chinese PLA General Hospital, Beijing, 5Key Lab of Biomedical Engineering, School of Medical Sciences, Shenzhen University, Shenzhen, 6School of Science, Changchun University of Science and Technology, Changchun, People’s Republic of China *These authors contributed equally to this work Abstract: Diabetes is one of the major chronic diseases diagnosed worldwide with a common complication of diabetic nephropathy (DN. There are multiple possible mechanisms associated with DN. Aldose reductase (AR and Toll-like receptor 4 (TLR4 may be involved in the occurrence and development of DN. Here, we describe the distribution of AR and TLR4 in cells and renal tissues of diabetic rats through a quantum dot (QD-based immunofluorescence technique and conventional immunohistochemistry. As a new type of nanosized fluorophore, QDs have been recognized in imaging applications and have broad prospects in biomedical research. The results of the reported study demonstrate that both the AR and the TLR4 proteins were upregulated in the renal tissues of diabetic rats. Further, to explore the relationship between AR and TLR4 in the pathogenesis of DN, a dual-color immunofluorescent labeling technique based on QDs was applied, where the expressions of AR and TLR4 in the renal tissues of diabetic rats were simultaneously observed – for the first time, as far as we are aware. The optimized QD-based immunofluorescence technique has not only shown a satisfying

  5. Positive pleiotropic effects of HMG-CoA reductase inhibitor on vitiligo

    Directory of Open Access Journals (Sweden)

    Jobin Jean


    Full Text Available Abstract Background HMG-CoA reductase inhibitors (statins are commonly used in medicine to control blood lipid disorder. Large clinical trials have demonstrated that statins greatly reduces cardiovascular-related morbidity and mortality in patients with and without coronary artery disease. Also, the use of HMG-CoA reductase inhibitors has been reported to have immunosuppressive effects. Case presentation We describe an unusual case of regression of vitiligo in a patient treated with high dose simvastatin. The relation between simvastatin and regression of vitiligo in this case report may be related to the autoimmune pathophysiology of the disease. Conclusion This unexpected beneficial impact provides another scientific credence to the hypothesis that immune mechanisms play a role in the development of vitiligo and that the use of statins as immuno-modulator could be of use not only for treatment relative to organ transplant but in other pathologies such as vitiligo.

  6. Screening for inhibitors of dihydrofolate reductase using pulsed ultrafiltration mass spectrometry. (United States)

    Nikolic, D; van Breemen, R B


    A method of screening combinatorial libraries for inhibitors of eukaryotic dihydrofolate reductase has been developed using pulsed ultra-filtration electrospray mass spectrometry, which is a continuous-flow affinity separation system for extracting and identifying high affinity ligands in combinatorial libraries. In this application, pulsed ultrafiltration conditions were optimized for the isolation and identification of inhibitors of dihydrofolate reductase from a 22 compound library containing six known inhibitors of the enzyme including trimethoprim, aminopterin, methotrexate, pyrimethamine, folic acid, and folinic acid, and 16 compounds without known affinity. In order to optimize the screening method, sources of non-specific binding were identified and minimized. A significant source of non-specific binding for this set of library compounds was hydrophobic interaction with the surfaces of the ultrafiltration chamber. After affinity separation of bound (high affinity) versus free (low affinity) library compounds during pulsed ultrafiltration, receptor-bound ligands were released and eluted using either organic solvent or acidified mobile phase. Although 80% methanol easily disrupted the receptor-ligand complexes, organic solvent had the undesirable effect of releasing non-specifically bound compounds from the chamber and thereby increasing the background noise. Interference from non-specific binding was minimized by releasing bound ligands using a low pH mobile phase eluent instead of organic solvent. Under the conditions used, pulsed ultrafiltration mass spectrometry selectively identified the two library compounds with the highest affinity for dihydrofolate reductase, methotrexate and aminopterin.

  7. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, Norbert; Velu, Sadanandan E.; Murugesan, Srinivasan; Senkovich, Olga; Walker, Kiera; Chenna, Bala C.; Shinkre, Bidhan; Desai, Amar; Chattopadhyay, Debasish (UAB)


    Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.

  8. Selective non-steroidal inhibitors of 5 alpha-reductase type 1. (United States)

    Occhiato, Ernesto G; Guarna, Antonio; Danza, Giovanna; Serio, Mario


    The enzyme 5 alpha-reductase (5 alpha R) catalyses the reduction of testosterone (T) into the more potent androgen dihydrotestosterone (DHT). The abnormal production of DHT is associated to pathologies of the main target organs of this hormone: the prostate and the skin. Benign prostatic hyperplasia (BPH), prostate cancer, acne, androgenetic alopecia in men, and hirsutism in women appear related to the DHT production. Two isozymes of 5 alpha-reductase have been cloned, expressed and characterized (5 alpha R-1 and 5 alpha R-2). They share a poor homology, have different chromosomal localization, enzyme kinetic parameters, and tissue expression patterns. Since 5 alpha R-1 and 5 alpha R-2 are differently distributed in the androgen target organs, a different involvement of the two isozymes in the pathogenesis of prostate and skin disorders can be hypothesized. High interest has been paid to the synthesis of inhibitors of 5 alpha-reductase for the treatment of DHT related pathologies, and the selective inhibition of any single isozyme represents a great challenge for medical and pharmaceutical research in order to have more specific drugs. At present, no 5 alpha R-1 inhibitor is marketed for the treatment of 5 alpha R-1 related pathologies but pharmaceutical research is very active in this field. This paper will review the major classes of 5 alpha R inhibitors focusing in particular on non-steroidal inhibitors and on structural features that enhance the selectivity versus the type 1 isozyme. Biological tests to assess the inhibitory activity towards the two 5 alpha R isozymes will be also discussed.

  9. Role of 5α-reductase inhibitors in androgen-stimulated skin disorders. (United States)

    Azzouni, Faris; Zeitouni, Nathalie; Mohler, James


    5α-reductase (5α-R) isozymes are ubiquitously expressed in human tissues. This enzyme family is composed of 3 members that perform several important biologic functions. 5α-R isozymes play an important role in benign prostate hyperplasia, prostate cancer, and androgen-stimulated skin disorders, which include androgenic alopecia, acne, and hirsutism. Discovery of 5α-R type 2 deficiency in 1974 sparked interest in development of pharmaceutical agents to inhibit 5α-R isozymes, and 2 such inhibitors are currently available for clinical use: finasteride and dutasteride. 5α-R inhibitors are US Food and Drug Administration (FDA)-approved for the treatment of benign prostate hyperplasia. Only finasteride is FDA-approved for treatment of male androgenic alopecia. This article reviews the pathophysiology of androgen-stimulated skin disorders and the key clinical trials using 5α-R inhibitors in the treatment of androgen-stimulated skin disorders.

  10. Biological evaluation of some uracil derivatives as potent glutathione reductase inhibitors (United States)

    Güney, Murat; Ekinci, Deniz; Ćavdar, Huseyin; Şentürk, Murat; Zilbeyaz, Kani


    Discovery of glutathione reductase (GR) inhibitors has become very popular recently due to antimalarial and anticancer activities. In this study, GR inhibitory capacities of some uracil derivatives (UDCs) (1-4) were reported. Some commercially available molecules (5-6) were also tested for comparison reasons. The novel UDCs were obtained in high yields using simple chemical procedures and exhibited much potent inhibitory activities against GR at low nanomolar concentrations with IC50 values ranging from 2.68 to 166.6 nM as compared with well-known agents.

  11. Aspects of Antithrombotic Effect of HMG-CoA Reductase Inhibitors

    Institute of Scientific and Technical Information of China (English)



    @@ Statins, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are widely used for the treatment of hypercholesteremia and have showed remarkable activity in preventing cardiovascular morbidity and mortality. Recent studies demonstrated that statins have significant antithrombotic effect in addition to cholesterollowering action. Although the efficacy of statins for reducing cardiovascular events has historically been ascribed to their inhibitory activity on cholesterol synthesis, the degree of low-density lipoprotein cholesterol reduction by statins generally does not correlate with the magnitude of coronary risk reduction.

  12. A structural account of substrate and inhibitor specificity differences between two Naphthol reductases

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Thompson, J.E.; Fahnestock, S.; Valent, B.; Jordan, D.B. (DuPont)


    Two short chain dehydrogenase/reductases mediate naphthol reduction reactions in fungal melanin biosynthesis. An X-ray structure of 1,3,6,8-tetrahydroxynaphthalene reductase (4HNR) complexed with NADPH and pyroquilon was determined for examining substrate and inhibitor specificities that differ from those of 1,3,8-trihydroxynaphthalene reductase (3HNR). The 1.5 {angstrom} resolution structure allows for comparisons with the 1.7 {angstrom} resolution structure of 3HNR complexed with the same ligands. The sequences of the two proteins are 46% identical, and they have the same fold. The 30-fold lower affinity of the 4HNR-NADPH complex for pyroquilon (a commercial fungicide that targets 3HNR) in comparison to that of the 3HNR-NADPH complex can be explained by unfavorable interactions between the anionic carboxyl group of the C-terminal Ile282 of 4HNR and CH and CH{sub 2} groups of the inhibitor that are countered by favorable inhibitor interactions with 3HNR. 1,3,8-Trihydroxynaphthalene (3HN) and 1,3,6,8-tetrahydroxynaphthalene (4HN) were modeled onto the cyclic structure of pyroquilon in the 4HNR-NADPH-pyroquilon complex to examine the 300-fold preference of the enzyme for 4HN over 3HN. The models suggest that the C-terminal carboxyl group of Ile282 has a favorable hydrogen bonding interaction with the C6 hydroxyl group of 4HN and an unfavorable interaction with the C6 CH group of 3HN. Models of 3HN and 4HN in the 3HNR active site suggest a favorable interaction of the sulfur atom of the C-terminal Met283 with the C6 CH group of 3HN and an unfavorable one with the C6 hydroxyl group of 4HN, accounting for the 4-fold difference in substrate specificities. Thus, the C-terminal residues of the two naphthol reductase are determinants of inhibitor and substrate specificities.

  13. 醛糖还原酶遗传缺失可显著减缓C57BL/6小鼠糖尿病肾病进程%Aldose reductase deficiency significantly ameoliorates development of diabetic nephropathy in C57BL/6 mice

    Institute of Scientific and Technical Information of China (English)

    刘慧丽; 袁立; 杨云青


    目的 研究醛糖还原酶在糖尿病肾病发生、发展中的作用.方法 健康雄性8周龄野生型C57BL/6小鼠(WT,n=6)、醛糖还原酶基因敲除型C57BL/6小鼠(KO,n=6)和醛糖还原酶双转基因型C57BL/6小鼠(BT,n=6)腹腔注射40μg/g链脲佐菌素,诱导糖尿病模型.另18只小鼠(每种品系各6只)注射枸橼酸盐缓冲液,作为对照.17周后测定体重、肾重、血糖、血清甘油三酯、胆固醇、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇、尿素氮、肌酐、肾小球滤过率、尿白蛋白等指标.采用过碘酸雪夫染色观察肾小球组织形态学变化,应用Western blot和免疫组织化学法检测肾皮质中胶原蛋白Ⅳ和转化生长因子-β1蛋白表达量,选用Pep Tag非放射性蛋白激酶C检测方法检测肾皮质细胞质和细胞膜中蛋白激酶C活性.多组间数据比较采用单因素方差分析.结果 醛糖还原酶基因敲除显著改善了糖尿病小鼠的生理生化指标、肾皮质、肾小球组织形态以及肾功能.糖尿病KO小鼠和糖尿病BT小鼠尿白蛋白分别较WT小鼠下降了43%[分别为(1.49±0.26)和(2.62±0.34)mg/g肌酐,F=20.8,P<0.01]和48%[分别为(1.36±0.12)和(2.62±0.34)mg/g肌酐,F=20.8,P<0.01].同时,醛糖还原酶基因缺失亦抑制了高糖对肾皮质蛋白激酶C和转化生长因子-β1的激活.结论 醛糖还原酶基因缺失显著改变了糖尿病肾病的进程,抑制醛糖还原酶可能有助于糖尿病肾病的防治.%Objective To study the roles of aldose reductase in the development of diabetic nephropathy using mouse models which were deficient for aldose reductase (AR). Methods Eight-weekold homozygous male AR-knockout (KO), bitransgenic (BT) and wild-type (WT) background C57BL/6 mice were treated with or without 40 μg/g streptozotocin by intraperitoneal injection. After 2 weeks, blood glucose was measured and hyperglycemia was confirmed. Diabetic and control mice were further maintained for 17

  14. In silico screening for Plasmodium falciparum enoyl-ACP reductase inhibitors (United States)

    Lindert, Steffen; Tallorin, Lorillee; Nguyen, Quynh G.; Burkart, Michael D.; McCammon, J. Andrew


    The need for novel therapeutics against Plasmodium falciparum is urgent due to recent emergence of multi-drug resistant malaria parasites. Since fatty acids are essential for both the liver and blood stages of the malarial parasite, targeting fatty acid biosynthesis is a promising strategy for combatting P. falciparum. We present a combined computational and experimental study to identify novel inhibitors of enoyl-acyl carrier protein reductase ( PfENR) in the fatty acid biosynthesis pathway. A small-molecule database from ChemBridge was docked into three distinct PfENR crystal structures that provide multiple receptor conformations. Two different docking algorithms were used to generate a consensus score in order to rank possible small molecule hits. Our studies led to the identification of five low-micromolar pyrimidine dione inhibitors of PfENR.

  15. Identification of thioredoxin glutathione reductase inhibitors that kill cestode and trematode parasites. (United States)

    Ross, Fabiana; Hernández, Paola; Porcal, Williams; López, Gloria V; Cerecetto, Hugo; González, Mercedes; Basika, Tatiana; Carmona, Carlos; Fló, Martín; Maggioli, Gabriela; Bonilla, Mariana; Gladyshev, Vadim N; Boiani, Mariana; Salinas, Gustavo


    Parasitic flatworms are responsible for serious infectious diseases that affect humans as well as livestock animals in vast regions of the world. Yet, the drug armamentarium available for treatment of these infections is limited: praziquantel is the single drug currently available for 200 million people infected with Schistosoma spp. and there is justified concern about emergence of drug resistance. Thioredoxin glutathione reductase (TGR) is an essential core enzyme for redox homeostasis in flatworm parasites. In this work, we searched for flatworm TGR inhibitors testing compounds belonging to various families known to inhibit thioredoxin reductase or TGR and also additional electrophilic compounds. Several furoxans and one thiadiazole potently inhibited TGRs from both classes of parasitic flatworms: cestoda (tapeworms) and trematoda (flukes), while several benzofuroxans and a quinoxaline moderately inhibited TGRs. Remarkably, five active compounds from diverse families possessed a phenylsulfonyl group, strongly suggesting that this moiety is a new pharmacophore. The most active inhibitors were further characterized and displayed slow and nearly irreversible binding to TGR. These compounds efficiently killed Echinococcus granulosus larval worms and Fasciola hepatica newly excysted juveniles in vitro at a 20 µM concentration. Our results support the concept that the redox metabolism of flatworm parasites is precarious and particularly susceptible to destabilization, show that furoxans can be used to target both flukes and tapeworms, and identified phenylsulfonyl as a new drug-hit moiety for both classes of flatworm parasites.

  16. Identification of thioredoxin glutathione reductase inhibitors that kill cestode and trematode parasites.

    Directory of Open Access Journals (Sweden)

    Fabiana Ross

    Full Text Available Parasitic flatworms are responsible for serious infectious diseases that affect humans as well as livestock animals in vast regions of the world. Yet, the drug armamentarium available for treatment of these infections is limited: praziquantel is the single drug currently available for 200 million people infected with Schistosoma spp. and there is justified concern about emergence of drug resistance. Thioredoxin glutathione reductase (TGR is an essential core enzyme for redox homeostasis in flatworm parasites. In this work, we searched for flatworm TGR inhibitors testing compounds belonging to various families known to inhibit thioredoxin reductase or TGR and also additional electrophilic compounds. Several furoxans and one thiadiazole potently inhibited TGRs from both classes of parasitic flatworms: cestoda (tapeworms and trematoda (flukes, while several benzofuroxans and a quinoxaline moderately inhibited TGRs. Remarkably, five active compounds from diverse families possessed a phenylsulfonyl group, strongly suggesting that this moiety is a new pharmacophore. The most active inhibitors were further characterized and displayed slow and nearly irreversible binding to TGR. These compounds efficiently killed Echinococcus granulosus larval worms and Fasciola hepatica newly excysted juveniles in vitro at a 20 µM concentration. Our results support the concept that the redox metabolism of flatworm parasites is precarious and particularly susceptible to destabilization, show that furoxans can be used to target both flukes and tapeworms, and identified phenylsulfonyl as a new drug-hit moiety for both classes of flatworm parasites.

  17. One statin, two statins, three statins, more: similarities and differences of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. (United States)

    Turkoski, Beatrice B


    Statin drugs (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) are one of the most widely prescribed drugs today. They are considered first-line therapy to lower blood serum cholesterol levels in conjunction with therapeutic lifestyle changes for both primary and secondary prevention of cardiovascular events. In the following discussion, a brief explanation of the background of statins will explain why they are deemed so important today. The similarities and differences between the different statins will be addressed, including a look at dosage, side effects, and cautions for the seven 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors currently available.

  18. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. (United States)

    Nagai, Ryoji; Murray, David B; Metz, Thomas O; Baynes, John W


    This article outlines evidence that advanced glycation end product (AGE) inhibitors and breakers act primarily as chelators, inhibiting metal-catalyzed oxidation reactions that catalyze AGE formation. We then present evidence that chelation is the most likely mechanism by which ACE inhibitors, angiotensin receptor blockers, and aldose reductase inhibitors inhibit AGE formation in diabetes. Finally, we note several recent studies demonstrating therapeutic benefits of chelators for diabetic cardiovascular and renal disease. We conclude that chronic, low-dose chelation therapy deserves serious consideration as a clinical tool for prevention and treatment of diabetes complications.

  19. New small-molecule inhibitors of dihydrofolate reductase inhibit Streptococcus mutans. (United States)

    Zhang, Qiong; Nguyen, Thao; McMichael, Megan; Velu, Sadanandan E; Zou, Jing; Zhou, Xuedong; Wu, Hui


    Streptococcus mutans is a major aetiological agent of dental caries. Formation of biofilms is a key virulence factor of S. mutans. Drugs that inhibit S. mutans biofilms may have therapeutic potential. Dihydrofolate reductase (DHFR) plays a critical role in regulating the metabolism of folate. DHFR inhibitors are thus potent drugs and have been explored as anticancer and antimicrobial agents. In this study, a library of analogues based on a DHFR inhibitor, trimetrexate (TMQ), an FDA-approved drug, was screened and three new analogues that selectively inhibited S. mutans were identified. The most potent inhibitor had a 50% inhibitory concentration (IC50) of 454.0±10.2nM for the biofilm and 8.7±1.9nM for DHFR of S. mutans. In contrast, the IC50 of this compound for human DHFR was ca. 1000nM, a >100-fold decrease in its potency, demonstrating the high selectivity of the analogue. An analogue that exhibited the least potency for the S. mutans biofilm also had the lowest activity towards inhibiting S. mutans DHFR, further indicating that inhibition of biofilms is related to reduced DHFR activity. These data, along with docking of the most potent analogue to the modelled DHFR structure, suggested that the TMQ analogues indeed selectively inhibited S. mutans through targeting DHFR. These potent and selective small molecules are thus promising lead compounds to develop new effective therapeutics to prevent and treat dental caries.

  20. Long-term Use of 5α-Reductase Inhibitors and the Risk of Male Breast Cancer.

    NARCIS (Netherlands)

    Duijnhoven, R.G.; Straus, S.M.J.M.; Souverein, P.C.; de Boer, A.; Bosch, J.L.H.R.; Hoes, A.W.; De Bruin, M.L.; Sub Pharmacoepidemiology; Dep Farmaceutische wetenschappen; Sub Pharmacotherapy, Theoretical


    Background The 5α-reductase inhibitors (5-ARI) finasteride and dutasteride are indicated for the treatment of lower urinary tract symptoms caused by benign prostatic hyperplasia. Case reports have suggested that 5-ARIs increase the risk for male breast cancer, with no conclusive evidence. The object

  1. HMG-CoA reductase inhibitors, other lipid-lowering medication, antiplatelet therapy, and the risk of venous thrombosis

    NARCIS (Netherlands)

    Ramcharan, A.S.; Stralen, van K.J.; Snoep, J.D.; Mantel-Teeuwisse, A.K.; Doggen, C.J.M.


    Background: Statins [3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors] and antiplatelet therapy reduce the risk of atherosclerotic disease. Besides a reduction of lipid levels, statins might also have antithrombotic and anti-inflammatory properties, and anti-platelet therap

  2. Long-term use of 5α-reductase inhibitors and the risk of male breast cancer

    DEFF Research Database (Denmark)

    Duijnhoven, Ruben G; Straus, Sabine M J M; Souverein, Patrick C;


    BACKGROUND: The 5α-reductase inhibitors (5-ARI) finasteride and dutasteride are indicated for the treatment of lower urinary tract symptoms caused by benign prostatic hyperplasia. Case reports have suggested that 5-ARIs increase the risk for male breast cancer, with no conclusive evidence...

  3. Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents. (United States)

    Fritz, Gerhard; Henninger, Christian; Huelsenbeck, Johannes


    HMG-CoA reductase inhibitors (statins) are widely used in the therapy of hypercholesterolemia. Apart from their lipid-lowering activity, they have pleiotropic effects that are attributed to the inhibition of regulatory proteins, including Ras-homologous (Rho) GTPases. Here, we discuss the potential usefulness of statins to prevent normal tissue damage provoked by radiotherapy. Statins reduce the mRNA expression of pro-inflammatory and pro-fibrotic cytokines stimulated by ionizing radiation in vitro and alleviate IR-induced inflammation and fibrosis in vivo. The currently available data indicate that statins accelerate the rapid repair of DNA double-strand breaks and, moreover, mitigate the DNA damage response induced by IR. Furthermore, statins increase the mRNA expression of DNA repair factors in vivo. Thus, although the molecular mechanisms involved are still ambiguous, preclinical data concordantly show a promising radioprotective capacity of statins.

  4. Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents

    Directory of Open Access Journals (Sweden)

    Søren Molin


    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen which is responsible for a wide range of infections. Production of virulence factors and biofilm formation by P. aeruginosa are partly regulated by cell-to-cell communication quorum-sensing systems. Identification of quorum-quenching reagents which block the quorum-sensing process can facilitate development of novel treatment strategies for P. aeruginosa infections. We have used molecular dynamics simulation and experimental studies to elucidate the efficiencies of two potential quorum-quenching reagents, triclosan and green tea epigallocatechin gallate (EGCG, which both function as inhibitors of the enoyl-acyl carrier protein (ACP reductase (ENR from the bacterial type II fatty acid synthesis pathway. Our studies suggest that EGCG has a higher binding affinity towards ENR of P. aeruginosa and is an efficient quorum-quenching reagent. EGCG treatment was further shown to be able to attenuate the production of virulence factors and biofilm formation of P. aeruginosa.

  5. LC-MS-MS Characterization of Forced Degradation Products of Fidarestat, a Novel Aldose Reductase Inhibitor: Development and Validation of a Stability-Indicating RP-HPLC Method. (United States)

    Talluri, M V N Kumar; Khatoon, Lubna; Kalariya, Pradipbhai D; Chavan, Balasaheb B; Ragampeta, Srinivas


    An accurate, precise, robust and selective stability-indicating liquid chromatographic (LC) method has been developed for the monitoring of fidarestat in the presence of its forced degradants. The drug was subjected to hydrolysis (acid, alkali and neutral degradation), oxidation, photolysis and thermal stress conditions. The drug degraded significantly under hydrolytic (basic, acidic and neutral) and oxidative stress conditions, whereas it was found to be stable in photolytic and thermal conditions. The chromatographic separation was achieved on a Grace C18, (250 mm × 4.6 mm × 5 μm) column using gradient mobile phase system consisting of 10 mM of ammonium acetate buffer at pH 4 and acetonitrile at a flow rate of 1 mL/min with UV detection at 283 nm. The developed method was extended to liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS-MS) for characterization of all the degradation products. A total of five new degradation products were identified and characterized by LC-QTOF-MS-MS. The developed LC method was validated as per ICH guideline Q2 (R1). The proposed method was found to be successively applied for the quality control of fidarestat in bulk drug analysis.

  6. Aldo-keto reductase 1B10 and its role in proliferation capacity of drug-resistant cancers

    Directory of Open Access Journals (Sweden)

    Toshiyuki eMatsunaga


    Full Text Available The human aldo-keto reductase AKR1B10, originally identified as an aldose reductase-like protein and human small intestine aldose reductase, is a cytosolic NADPH-dependent reductase that metabolizes a variety of endogenous compounds, such as aromatic and aliphatic aldehydes and dicarbonyl compounds, and some drug ketones. The enzyme is highly expressed in solid tumors of several tissues including lung and liver, and as such has received considerable interest as a relevant biomarker for the development of those tumors. In addition, AKR1B10 has been recently reported to be significantly up-regulated in some cancer cell lines (medulloblastoma D341 and colon cancer HT29 acquiring resistance towards chemotherapeutic agents (cyclophosphamide and mitomycin c, suggesting the validity of the enzyme as a chemoresistance marker. Although the detailed information on the AKR1B10-mediated mechanisms leading to the drug resistance process is not well understood so far, the enzyme has been proposed to be involved in functional regulations of cell proliferation and metabolism of drugs and endogenous lipids during the development of chemoresistance. This article reviews the current literature focusing mainly on expression profile and roles of AKR1B10 in the drug resistance of cancer cells. Recent developments of AKR1B10 inhibitors and their usefulness in restoring sensitivity to anticancer drugs are also reviewed.

  7. Effects of HMG-CoA reductase inhibitors (statins) on progression of kidney disease. (United States)

    Fried, Linda F


    Chronic kidney disease, especially in the setting of proteinuria, is characterized by hyperlipidemia. In animal models, hyperlipidemia causes glomerular foam cells and glomerulosclerosis. Treatment with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) ameliorates kidney disease in these models. The data of the role of hyperlipidemia in progression of human kidney disease are less clear. Data from small studies in glomerular disease suggest that statins decrease proteinuria. Data mainly from cardiovascular studies suggest that statins decrease the loss of glomerular filtration. The benefit of statins may derive from their lipid lowering effects. More recently, data suggest that the benefit of statins is greater than lipid lowering alone. The pleiotropic effects of statins may derive from inhibition of other downstream targets (isoprenoids) of the mevalonic acid pathway that are separate from cholesterol synthesis. Statins inhibits isoprenylation of Ras and Rho GTPases. These effects may lead to decreased monocyte/macrophage infiltration in the glomerulus, decreased mesangial proliferation and decreased accumulation of extracellular matrix and fibrosis. In addition, inhibition of RhoA and Ras may decrease inflammation and increase eNOS activity. These effects could lead to improvement in the progression of kidney disease.

  8. Arsenic and cadmium are inhibitors of cyanobacterial dinitrogenase reductase (nifH1) gene. (United States)

    Singh, Shilpi; Shrivastava, A K; Singh, V K


    The enzyme nitrogenase complex is a key component conferring nitrogen fixation in all known diazotrophs. This study for the first time examines the impact of As, Na, Cd, Cu and butachlor on component II (dinitrogenase reductase, nifH1) of nitrogenase from diazotrophic cyanobacterium Anabaena sp. PCC7120 using in silico and wet lab approaches. The nifH1 of Anabaena is a glycine-rich stable protein having DNA-binding properties and shows close similarity with free living compared with symbiotic diazotrophs. Phylogenetic tree revealed an adverse effect of the selected stresses on close homologs across the diazotroph community. The protein interaction network demonstrated the presence of nirA, glnA, glnB, alr4255 and alr2485 proteins besides nif proteins, suggesting their involvement in nitrogen fixation along with nifH1. Homology modelling and docking under As, Na, Cd, Cu and butachlor revealed an interaction between stressors and nifH1 protein which was further validated by a transcript of the gene through quantitative real-time PCR (qRT-PCR). Presence of binding sites for As, Na, Cd and Cu on oxyR promoter attested their adverse affects on nifH1. Maximum down-regulation of nifH1 in Cd and As followed by salt, copper and butachlor revealed that arsenic and cadmium were most potential inhibitors of nitrogenase of diazotrophic community, which might negatively affect crop yield.

  9. The nitrate reductase inhibitor, tungsten, disrupts actin microfilaments in Zea mays L. (United States)

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P


    Tungsten is a widely used inhibitor of nitrate reductase, applied to diminish the nitric oxide levels in plants. It was recently shown that tungsten also has heavy metal attributes. Since information about the toxic effects of tungsten on actin is limited, and considering that actin microfilaments are involved in the entry of tungsten inside plant cells, the effects of tungsten on them were studied in Zea mays seedlings. Treatments with sodium tungstate for 3, 6, 12 or 24 h were performed on intact seedlings and seedlings with truncated roots. Afterwards, actin microfilaments in meristematic root and leaf tissues were stained with fluorescent phalloidin, and the specimens were examined by confocal laser scanning microscopy. While the actin microfilament network was well organized in untreated seedlings, in tungstate-treated ones it was disrupted in a time-dependent manner. In protodermal root cells, the effects of tungsten were stronger as cortical microfilaments were almost completely depolymerized and the intracellular ones appeared highly bundled. Fluorescence intensity measurements confirmed the above results. In the meristematic leaf tissue of intact seedlings, no depolymerization of actin microfilaments was noticed. However, when root tips were severed prior to tungstate application, both cortical and endoplasmic actin networks of leaf cells were disrupted and bundled after 24 h of treatment. The differential response of root and leaf tissues to tungsten toxicity may be due to differential penetration and absorption, while the effects on actin microfilaments could not be attributed to the nitric oxide depletion by tungsten.

  10. Synthesis and activity of 8-substituted benzo[c]quinolizin-3-ones as dual inhibitors of human 5alpha-reductases 1 and 2. (United States)

    Ferrali, Alessandro; Menchi, Gloria; Occhiato, Ernesto G; Danza, Giovanna; Mancina, Rosa; Serio, Mario; Guarna, Antonio


    Some potent dual inhibitors of 5alpha-reductases 1 and 2, based on the benzo[c]quinolizin-3-one structure and with IC(50) values ranging between 93 and 166nM for both isozymes, were found. The presence of the F atom on the ester moiety at the position 8 was crucial. This result can help in the design of other potent, dual inhibitors to be developed as drugs in the treatment of 5alpha-reductase related diseases.

  11. Structure and function of Caulobacter crescentus aldose-aldose oxidoreductase. (United States)

    Taberman, Helena; Andberg, Martina; Koivula, Anu; Hakulinen, Nina; Penttilä, Merja; Rouvinen, Juha; Parkkinen, Tarja


    Aldose-aldose oxidoreductase (Cc AAOR) is a recently characterized enzyme from the bacterial strain Caulobacter crescentus CB15 belonging to the glucose-fructose oxidoreductase/inositol dehydrogenase/rhizopine catabolism protein (Gfo/Idh/MocA) family. Cc AAOR catalyses the oxidation and reduction of a panel of aldose monosaccharides using a tightly bound NADP(H) cofactor that is regenerated in the catalytic cycle. Furthermore, Cc AAOR can also oxidize 1,4-linked oligosaccharides. In the present study, we present novel crystal structures of the dimeric Cc AAOR in complex with the cofactor and glycerol, D-xylose, D-glucose, maltotriose and D-sorbitol determined to resolutions of 2.0, 1.8, 1.7, 1.9 and 1.8 Å (1 Å=0.1 nm), respectively. These complex structures allowed for a detailed analysis of the ligand-binding interactions. The structures showed that the C1 carbon of a substrate, which is either reduced or oxidized, is close to the reactive C4 carbon of the nicotinamide ring of NADP(H). In addition, the O1 hydroxy group of the substrate, which is either protonated or deprotonated, is unexpectedly close to both Lys(104) and Tyr(189), which may both act as a proton donor or acceptor. This led us to hypothesize that this intriguing feature could be beneficial for Cc AAOR to catalyse the reduction of a linear form of a monosaccharide substrate and the oxidation of a pyranose form of the same substrate in a reaction cycle, during which the bound cofactor is regenerated.

  12. 5-Alpha reductase inhibitor use and prostate cancer survival in the Finnish Prostate Cancer Screening Trial. (United States)

    Murtola, Teemu J; Karppa, Elina K; Taari, Kimmo; Talala, Kirsi; Tammela, Teuvo L J; Auvinen, Anssi


    Randomized clinical trials have shown that use of 5α-reductase inhibitors (5-ARIs) lowers overall prostate cancer (PCa) risk compared to placebo, while the proportion of Gleason 8-10 tumors is elevated. It is unknown whether this affects PCa-specific survival. We studied disease-specific survival by 5-ARI usage in a cohort of 6,537 prostate cancer cases diagnosed in the Finnish Prostate Cancer Screening Trial and linked to the national prescription database for information on medication use. Cox proportional hazards regression was used to estimate hazard ratios and 95% confidence intervals for prostate cancer-specific deaths. For comparison, survival among alpha-blocker users was also evaluated. During the median follow-up of 7.5 years after diagnosis a total of 2,478 men died; 617 due to prostate cancer and 1,861 due to other causes. The risk of prostate cancer death did not differ between 5-ARI users and nonusers (multivariable adjusted HR 0.94, 95% CI 0.72-1.24 and HR 0.98, 95% CI 0.69-1.41 for usage before and after the diagnosis, respectively). Alpha-blocker usage both before and after diagnosis was associated with increased risk of prostate cancer death (HR 1.29, 95% CI 1.08-1.54 and HR 1.56, 95% CI 1.30-1.86, respectively). The risk increase vanished in long-term alpha-blocker usage. Use of 5-ARIs does not appear to affect prostate cancer mortality when used in management of benign prostatic hyperplasia. Increased risk associated with alpha-blocker usage should prompt further exploration on the prognostic role of lower urinary tract symptoms.

  13. Effects of HMG-CoA Reductase Inhibitors (Statins On Bone Mineral Density and Metabolism

    Directory of Open Access Journals (Sweden)

    Nehir Samancı


    Full Text Available Hydroxy methylglutaryl coenzyme A reductase inhibitors (statins have been shown to have effects on bone metabolism in laboratory studies. While early clinic studies have showed lower risk for osteoporotic fractures among statin users than nonusers, subsequent studies have found mixed results. The purpose of this study was to investigate the effects of statins on bone mineral density (BMD and bone metabolism. Thirty-five consecutive postmenopausal hypercholesterolemic women who were treated for at least last 6 months with statins were included in the study. Seventy-five normocholesterolemic age-matched postmenopausal women were in the control group. Subjects with a history of any diseases and used drugs that may affect calcium or bone metabolism were excluded from the study. Age, associated illness, years since menopause, and body mass index (BMI were obtained from all the patients including the control group. Besides, serum calcium, phosphate, alkaline phosphates, parathyroid hormone, 25 hydroxy D3, osteocalcin, and urinary calcium excretion were measured. BMD was measured by using dual-energy x-ray absorptiometry (DEXA at femoral neck and 3rd lomber spine. Mean duration of statin use was 28.17±21.17 months. BMI was found to be statistically higher in statin users than nonusers (27.47±3.67kg/m2 and 25.46±3.91 kg/m2, respectively. The markers of bone metabolism used in the study were found to be similar between the groups. BMD was not different in statin users and nonusers at femoral neck and lomber spine. As conclusion, statin use did not affect BMD and bone metabolism in this study. In our opinion large randomised, controlled, prospective clinical trials are needed to accurately determine the role of statins in the treatment of osteoporosis.

  14. Determination of triapine, a ribonucleotide reductase inhibitor, in human plasma by liquid chromatography tandem mass spectrometry. (United States)

    Feng, Ye; Kunos, Charles A; Xu, Yan


    Triapine is an inhibitor of ribonucleotide reductase (RNR). Studies have shown that triapine significantly decreases the activity of RNR and enhanced the radiation-mediated cytotoxicity in cervical and colon cancer. In this work, we have developed and validated a selective and sensitive LC-MS/MS method for the determination of triapine in human plasma. In this method, 2-[(3-fluoro-2-pyridinyl)methylene] hydrazinecarbothioamide (NSC 266749) was used as the internal standard (IS); plasma samples were prepared by deproteinization with acetonitrile; tripaine and the IS were separated on a Waters Xbridge Shield RP18 column (3.5 µm; 2.1 × 50 mm) using a mobile phase containing 25.0% methanol and 75.0% ammonium bicarbonate buffer (10.0 mM, pH 8.50; v/v); column eluate was monitored by positive turbo-ionspray tandem mass spectrometry; and quantitation of triapine was carried out in multiple-reaction-monitoring mode. The method developed had a linear calibration range of 0.250-50.0 ng/mL with correlation coefficient of 0.999 for triapine in human plasma. The IS-normalized recovery and the IS-normalized matrix factor of triapine were 101-104% and 0.89-1.05, respectively. The accuracy expressed as percentage error and precision expressed as coefficient of variation were ≤±6 and ≤8%, respectively. The validated LC-MS/MS method was applied to the measurement of triapine in patient samples from a phase I clinical trial.

  15. Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics. (United States)

    Neuvonen, Pertti J


    HMG-CoA reductase inhibitors (statins) can cause skeletal muscle toxicity; the risk of toxicity is elevated by drug interactions and pharmacogenetic factors that increase the concentration of statins in the plasma. Statins are substrates for several membrane transporters that may mediate drug interactions. Inhibitors of the organic anion transporting polypeptide 1B1 can decrease the hepatic uptake of many statins, as well as the therapeutic index of these agents. Potent inhibitors of cytochrome P450 (CYP)3A4 can significantly increase the plasma concentrations of the active forms of simvastatin, lovastatin and atorvastatin. Fluvastatin, which is metabolized by CYP2C9, is less prone to pharmacokinetic interactions, while pravastatin, rosuvastatin and pitavastatin are not susceptible to any CYP inhibition. An understanding of the mechanisms of statin interactions will help to minimize drug interactions and to develop statins that are less prone to adverse interactions.

  16. Structural studies provide clues for analog design of specific inhibitors of Cryptosporidium hominis thymidylate synthase-dihydrofolate reductase. (United States)

    Kumar, Vidya P; Cisneros, Jose A; Frey, Kathleen M; Castellanos-Gonzalez, Alejandro; Wang, Yiqiang; Gangjee, Aleem; White, A Clinton; Jorgensen, William L; Anderson, Karen S


    Cryptosporidium is the causative agent of a gastrointestinal disease, cryptosporidiosis, which is often fatal in immunocompromised individuals and children. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer, bacterial infections, and malaria. Cryptosporidium hominis has a bifunctional thymidylate synthase and dihydrofolate reductase enzyme, compared to separate enzymes in the host. We evaluated lead compound 1 from a novel series of antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines as an inhibitor of Cryptosporidium hominis thymidylate synthase with selectivity over the human enzyme. Complementing the enzyme inhibition compound 1 also has anti-cryptosporidial activity in cell culture. A crystal structure with compound 1 bound to the TS active site is discussed in terms of several van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate (TS), cofactor NADPH and inhibitor methotrexate (DHFR). Another crystal structure in complex with compound 1 bound in both the TS and DHFR active sites is also reported here. The crystal structures provide clues for analog design and for the design of ChTS-DHFR specific inhibitors.

  17. Effect of cytochrome P450 and aldo-keto reductase inhibitors on progesterone inactivation in primary bovine hepatic cell cultures. (United States)

    Lemley, C O; Wilson, M E


    Progesterone is required for maintenance of pregnancy, and peripheral concentrations of progesterone are affected by both production and inactivation. Hepatic cytochrome P450 (EC and aldo-keto reductase (EC enzymes play a pivotal role in the first step of steroid inactivation, which involves the addition of hydroxyl groups to various sites of the cyclopentanoperhydrophenanthrene nucleus. The current objective was to discern the proportional involvement of hepatic progesterone inactivating enzymes on progesterone decay using specific enzyme inhibitors. Ticlopidine, diltiazem, curcumin, dicumarol, and naproxen were used because of their selective inhibition of cytochrome P450s, aldo-keto reductases, and glucuronosyltransferases. Liver biopsies were collected from 6 lactating Holstein dairy cows, and cells were dissociated using a nonperfusion technique. Confluent wells were preincubated for 4 h with enzyme inhibitor and then challenged with progesterone for 1 h. Cell viability was unaffected by inhibitor treatment and averaged 84±1%. In control wells, 50% of the progesterone had been inactivated after a 1-h challenge with 5 ng/mL of progesterone. Preincubation with curcumin, ticlopidine, or naproxen caused the greatest reduction in progesterone inactivation compared with controls and averaged 77, 39, or 37%, respectively. Hydroxylation of 4-nitrophenol to 4-nitrocatechol in intact cells was inhibited by approximately 65% after treatment with curcumin or ticlopidine. Glucuronidation of phenol red or 4-nitrocatechol in intact cells was inhibited by treatment with curcumin, dicumarol, or naproxen. In cytoplasmic preparations, aldo-keto reductase 1C activity was inhibited by curcumin, dicumarol, or naproxen treatment. Microsomal cytochrome P450 2C activity was inhibited by treatment with curcumin or ticlopidine, whereas cytochrome P450 3A activity was inhibited by treatment with curcumin or diltiazem. The contribution of cytochrome P450 2C and

  18. Developmental toxicity of the HMG-CoA reductase inhibitor (PPD10558) in rats and rabbits. (United States)

    Faqi, Ali S; Prohaska, David; Lopez, Rocio; McIntyre, Gail


    PPD10558 is an orally active, lipid-lowering 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor (statin) being developed as a treatment for hypercholesterolemia in patients who have not been able to tolerate statins because of statin-associated myalgia. We have studied the potential developmental toxicity effects of PPD10558 in pregnant rats and rabbits given daily oral doses during the period of organogenesis. Rats were dosed with 0, 20, 80, or 320 mg/kg/day from Gestation Day (GD) 6 to 17 and rabbits received dose levels of 0, 12.5, 25, or 50 mg/kg/day from GD 6 to 18. Additional groups in both studies served as toxicokinetic animals and received the PPD10558 in the same manner as the main study groups at the same dose levels. Blood samples were collected from toxicokinetic animals at designated time points on GD 6 and 17 in rats and GD 6 and 18 in rabbits. Fetal exposure in rats was assessed on GD 20. Maternal and developmental parameters were evaluated in rats and rabbits on GD 20 and GD 29, respectively. No maternal and developmental toxicity was observed at any of the dose levels used in the rat study. Evidence of fetal exposure was determined in fetal plasma with mean fetal concentrations of PPD10558 and the metabolite (PPD11901) found to be between 1 and 6% of the mean maternal concentrations. In rabbits, marked maternal toxicity including mortality (eight deaths; 1 dose at 25 and 7 at 50 mg/kg/day), abortions (2 at 25 mg/kg/day and 6 at 50 mg/kg/day) and reduction in gestation body weight, gestation body weight changes and decreased food consumption were observed. In addition, fetal body weights of the combined sexes were significantly reduced at 50 mg/kg/day in comparison with the controls. Mean peak exposure (Cmax) and total exposure (AUC(0-24)) of PPD11901 in both rats and rabbits were higher than that of PPD10558 on GD 6 and GD 17 at each of the three dose levels.. Based on the results of these studies, the no observed adverse effect

  19. HMG-CoA reductase inhibitor rosuvastatin improves abnormal brain electrical activity via mechanisms involving eNOS. (United States)

    Seker, F B; Kilic, U; Caglayan, B; Ethemoglu, M S; Caglayan, A B; Ekimci, N; Demirci, S; Dogan, A; Oztezcan, S; Sahin, F; Yilmaz, B; Kilic, E


    Apart from its repressing effect on plasma lipid levels, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors exert neuroprotective functions in animal models of neurodegenerative disorders. In view of these promising observations, we were interested in whether HMG-CoA reductase inhibition would affect epileptiform activity in the brain. To elucidate this issue, atorvastatin, simvastatin and rosuvastatin were administered orally at a dose of 20 mg/kg each for 3 days and their anti-epileptic activities were tested and compared in rats. Epileptiform activity in the brain was induced by an intracortical penicillin G injection. Among HMG-CoA reductase inhibitors, simvastatin-treatment was less effective in terms of spike frequency as compared with atorvastatin- and rosuvastatin-treated animals. Atorvastatin treatment reduced spike frequencies and amplitudes significantly throughout the experiment. However, the most pronounced anti-epileptic effect was observed in rosuvastatin-treated animals, which was associated with improved blood-brain barrier (BBB) integrity, increased expression of endothelial nitric oxide synthase (eNOS) mRNA and decreased expressions of pro-apoptotic p53, Bax and caspase-3 mRNAs. Inhibition of eNOS activity with L-NG-Nitroarginine Methyl Ester (L-NAME) reversed the anti-epileptic effect of rosuvastatin significantly. However, L-NAME did not alter the effect of rosuvastatin on the levels of p53, Bax and caspase-3 mRNA expression. Here, we provide evidence that among HMG-CoA reductase inhibitors, rosuvastatin was the most effective statin on the reduction of epileptiform activity, which was associated with improved BBB permeability, increased expression of eNOS and decreased expressions of pro-apoptotic p53, Bax and caspase-3. Our observation also revealed that the anti-epileptic effect of rosuvastatin was dependent on the increased expression level of eNOS. The robust anti-epileptic effect encourages proof-of-concept studies with

  20. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site. (United States)

    Hardwicke, Mary Ann; Rendina, Alan R; Williams, Shawn P; Moore, Michael L; Wang, Liping; Krueger, Julie A; Plant, Ramona N; Totoritis, Rachel D; Zhang, Guofeng; Briand, Jacques; Burkhart, William A; Brown, Kristin K; Parrish, Cynthia A


    Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the β-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor.

  1. Thermodynamic and Structure Guided Design of Statin Based Inhibitors of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Sarver, Ronald W.; Bills, Elizabeth; Bolton, Gary; Bratton, Larry D.; Caspers, Nicole L.; Dunbar, James B.; Harris, Melissa S.; Hutchings, Richard H.; Kennedy, Robert M.; Larsen, Scott D.; Pavlovsky, Alexander; Pfefferkorn, Jeffrey A.; Bainbridge, Graeme (Pfizer)


    Clinical studies have demonstrated that statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) inhibitors, are effective at lowering mortality levels associated with cardiovascular disease; however, 2--7% of patients may experience statin-induced myalgia that limits compliance with a treatment regimen. High resolution crystal structures, thermodynamic binding parameters, and biochemical data were used to design statin inhibitors with improved HMGR affinity and therapeutic index relative to statin-induced myalgia. These studies facilitated the identification of imidazole 1 as a potent (IC{sub 50} = 7.9 nM) inhibitor with excellent hepatoselectivity (>1000-fold) and good in vivo efficacy. The binding of 1 to HMGR was found to be enthalpically driven with a {Delta}H of -17.7 kcal/M. Additionally, a second novel series of bicyclic pyrrole-based inhibitors was identified that induced order in a protein flap of HMGR. Similar ordering was detected in a substrate complex, but has not been reported in previous statin inhibitor complexes with HMGR.

  2. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening

    Directory of Open Access Journals (Sweden)

    Lin SH


    Full Text Available Shih-Hung Lin,1 Kao-Jean Huang,1,2 Ching-Feng Weng,1 David Shiuan1 1Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, Republic of China; 2Development Center of Biotechnology, Taipei, Taiwan, Republic of China Abstract: Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR. The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening. Keywords: HMG-CoA reductase, virtual screening, curcumin, salvianolic acid C

  3. Statins: 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors demonstrate anti-atherosclerotic character due to their antioxidant capacity. (United States)

    Puttananjaiah, Mohan-Kumari H; Dhale, Mohan Appasaheb; Gaonkar, Vaishali; Keni, Shradha


    Atherosclerosis is a chronic inflammatory disease of multiple etiologies. It is associated with the accumulation of oxidized lipids in arterial lesions leading to coronary heart disease. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (commonly known as statins) are widely used in cardiovascular disease prevention to lower the cholesterol. The antioxidant activity of HMG-CoA reductase inhibitors was studied by lipid peroxidation inhibition assay, DPPH, and hydroxyl radical scavenging-activity methods. The lovastatin (93%) and simvastatin (96%) showed significant action of lipid peroxidation inhibition compared to other HMG-CoA reductase inhibitors. The DPPH radical and hydroxyl radical scavenging activity of simvastatin was 38% and 33%, respectively. The oxidative modification of serum lipid due to reactive oxygen species causes atherosclerosis. This study revealed the importance of lovastatin and simvastatin to prevent oxidative stress-related cardiovascular diseases.

  4. Phellinstatin, a new inhibitor of enoyl-ACP reductase produced by the medicinal fungus Phellinus linteus. (United States)

    Cho, Jun-Young; Kwon, Yun-Ju; Sohn, Mi-Jin; Seok, Soon-Ja; Kim, Won-Gon


    A new trimeric hispidin derivative, phellinstatin, was isolated from a culture broth of the medicinal fungus Phellinus linteus and its structure was established by various spectral analysis. Phellinstatin strongly inhibited Staphylococcus aureus enoyl-ACP reductase with an IC(50) of 6 μM and also showed antibacterial activity against S. aureus and MRSA.

  5. 5α-reductase Inhibitors and Risk of High-grade or Lethal Prostate Cancer (United States)

    Preston, Mark A.; Wilson, Kathryn; Markt, Sarah C.; Ge, Rongbin; Morash, Christopher; Stampfer, Meir J.; Loda, Massimo F.; Giovannucci, Edward; Mucci, Lorelei A.; Olumi, Aria F.


    Importance 5α-reductase inhibitors (5ARIs) are widely used for benign prostatic hyperplasia despite controversy regarding potential risk of high-grade prostate cancer with use. Furthermore, the effect of 5ARIs on progression and prostate cancer death remains unclear. Objective To determine the association between 5ARI use and development of high-grade or lethal prostate cancer. Design, Setting, and Participants Prospective observational study of 38,058 men followed for prostate cancer diagnosis and outcomes between 1996–2010 in the Health Professionals Follow-up Study. Exposure Use of 5ARIs between 1996–2010. Main Outcome Measures Cox proportional hazards models were used to estimate risk of prostate cancer diagnosis or development of lethal disease with 5ARI use, adjusting for possible confounders including prostate specific antigen testing. Results During 448,803 person-years of follow-up, we ascertained 3681 incident prostate cancer cases. Of these, 289 were lethal (metastatic or fatal), 456 were high-grade (Gleason 8–10), 1238 were Gleason grade 7, and 1600 were low-grade (Gleason 2–6). A total of 2878 (7.6%) men reported use of 5ARIs between 1996 and 2010. After adjusting for confounders, men who reported ever using 5ARIs over the study period had a reduced risk of overall prostate cancer (HR 0.77; 95% CI, 0.65–0.91). 5ARI users had a reduced risk of Gleason 7 (HR 0.67; 95% CI, 0.49–0.91) and low-grade (Gleason 2–6) prostate cancer (HR 0.74; 95% CI, 0.57–0.95). 5ARI use was not associated with risk of high-grade (Gleason 8–10, HR 0.97; 95% CI, 0.64–1.46) or lethal disease (HR 0.99; 95% CI, 0.58–1.69). Increased duration of use was associated with significantly lower risk of overall prostate cancer (HR for 1 year of additional use 0.95; 95% CI, 0.92–0.99), localized (HR 0.95; 95% CI, 0.90–1.00), and low-grade disease (HR 0.92; 95% CI, 0.85–0.99). There was no association for lethal, high-grade, or grade 7 disease. Conclusions and

  6. Molecular modeling toward selective inhibitors of dihydrofolate reductase from the biological warfare agent Bacillus anthracis. (United States)

    Giacoppo, Juliana O S; Mancini, Daiana T; Guimarães, Ana P; Gonçalves, Arlan S; da Cunha, Elaine F F; França, Tanos C C; Ramalho, Teodorico C


    In the present work, we applied docking and molecular dynamics techniques to study 11 compounds inside the enzymes dihydrofolate reductase (DHFR) from the biological warfare agent Bacillus anthracis (BaDHFR) and Homo sapiens sapiens (HssDHFR). Six of these compounds were selected for a study with the mutant BaF96IDHFR. Our results corroborated with experimental data and allowed the proposition of a new molecule with potential activity and better selectivity for BaDHFR.

  7. HMG-CoA Reductase Inhibitors from Monascus-Fermented Rice

    Directory of Open Access Journals (Sweden)

    Xuemei Li


    Full Text Available Seven compounds were isolated from Monascus-fermented rice by column chromatography with silica gel and semiprep HPLC. Their structures were elucidated by extensive spectroscopic methods. All compounds displayed HMG-CoA reductase inhibitory potential, among them compound 7 exhibited strong inhibition with IC50 value comparable with lovastatin. In this study, two compounds (1 and 2 were obtained from natural source for the first time.

  8. Charaterization of bumarsin, a 3-hydroxy-3-methylglutaryl-coenzyme reductase inhibitor from Mesobuthus martensii Karsch venom. (United States)

    Chai, S C; Armugam, A; Strong, P N; Jeyaseelan, K


    Scorpion venoms are rich sources of bioactive peptides and are widely known for their ion channel inhibiting properties. We have isolated, cloned and characterized a venom protein (Bumarsin) from the Chinese scorpion, Mesobuthus martensii Karsch. Bumarsin cDNA encodes a 8132 Da, 72 amino acid mature protein that most probably exists in its native form as a Cys-bridged homodimer. We have identified this novel protein to be an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity. 0.6 μM of Bumarsin inhibits 32% of the HMG-CoA reductase activity, in comparison to 10 μM simvastatin which only inhibits 35% of the activity. RT-PCR and SELDI-TOF mass spectrometric studies demonstrate that bumarsin regulates the expression of both genes and proteins involved in cholesterol homeostasis. Our results suggest that bumarsin may provide a model for the design of novel drugs that can be used to modulate cholesterol homeostasis.

  9. Design, synthesis, and biological evaluation of resveratrol analogues as aromatase and quinone reductase 2 inhibitors for chemoprevention of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bin; Hoshino, Juma; Jermihov, Katie; Marler, Laura; Pezzuto, John M.; Mesecar, Andrew D.; Cushman, Mark (Hawaii); (Purdue); (UIC)


    A series of new resveratrol analogues were designed and synthesized and their inhibitory activities against aromatase were evaluated. The crystal structure of human aromatase (PDB 3eqm) was used to rationalize the mechanism of action of the aromatase inhibitor 32 (IC{sub 50} 0.59 {mu}M) through docking, molecular mechanics energy minimization, and computer graphics molecular modeling, and the information was utilized to design several very potent inhibitors, including compounds 82 (IC{sub 50} 70 nM) and 84 (IC{sub 50} 36 nM). The aromatase inhibitory activities of these compounds are much more potent than that for the lead compound resveratrol, which has an IC{sub 50} of 80 {mu}M. In addition to aromatase inhibitory activity, compounds 32 and 44 also displayed potent QR2 inhibitory activity (IC{sub 50} 1.7 {mu}M and 0.27 {mu}M, respectively) and the high-resolution X-ray structures of QR2 in complex with these two compounds provide insight into their mechanism of QR2 inhibition. The aromatase and quinone reductase inhibitors resulting from these studies have potential value in the treatment and prevention of cancer.

  10. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor. (United States)

    Schiebel, Johannes; Chang, Andrew; Shah, Sonam; Lu, Yang; Liu, Li; Pan, Pan; Hirschbeck, Maria W; Tareilus, Mona; Eltschkner, Sandra; Yu, Weixuan; Cummings, Jason E; Knudson, Susan E; Bommineni, Gopal R; Walker, Stephen G; Slayden, Richard A; Sotriffer, Christoph A; Tonge, Peter J; Kisker, Caroline


    Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms.

  11. 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) induce hepatic expression of the phospholipid translocase mdr2 in rats

    NARCIS (Netherlands)

    Hooiveld, GJEJ; Vos, TA; Scheffer, GL; Van Goor, H; Bloks, Vincent; Loot, AE; Meijer, DKF; Jansen, PLM; Kuipers, F; Muller, M


    Background & Aims: Biliary cholesterol secretion is coupled to that of phospholipids in a process controlled by mdr2 P-glycoprotein activity and bile salt secretion. Statins, the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, have been shown to affect hepatobiliary lipid secre

  12. [Drug therapy of benign prostatic hyperplasia. Is combination therapy with 5 alpha-reductase inhibitors and alpha-receptor blockers effective?]. (United States)

    Horninger, W; Bartsch, G


    5 alpha-reductase inhibitors and alpha 1-receptor blockers are the two main drug therapies used in the management of symptomatic benign prostatic hyperplasia. As alpha-reductase inhibitors and alpha 1-receptor blockers act through different mechanisms, a combination of the two agents might be promising. The potential benefits of combination therapy with selective alpha 1-receptor blockers and finasteride, a 5 alpha-reductase inhibitor, are currently being evaluated in several placebo-controlled prospective multicenter studies (VA Study, ALFIN Study, PREDICT Study, and MTOPS Study). The data from these studies available so far demonstrate a statistically significant benefit for the study groups receiving alpha 1-receptor blockers and combination therapy vs placebo and finasteride monotherapy in terms of symptom scores and peak urine flow rates. However, none of the studies yielded a statistically significant advantage of combination therapy over treatment with alpha 1-receptor blockers. These results should be interpreted with reference to the prostatic volume, which in the studies mentioned above was relatively low. From the results of all these studies, it can be concluded that in symptomatic patients with prostate volumes of up to 40-45 ml a combination of 5 alpha-reductase inhibitors with alpha 1-receptor blockers does not appear to provide any benefit. Yet, it can be assumed that in symptomatic patients with prostate volumes of more than 60 ml combination therapy may indeed prove more effective.

  13. Adverse reactions of HMG—CoA reductase inhibitors as a consequence of drug—drug interaction

    Institute of Scientific and Technical Information of China (English)



    Use of HMG-CoA reductase inhibitors in treating hypercholesterolemia is a well-established therapy.Presently,atorvastatin,fluvastatin,lovastatin,simvastatin and pravastatin are used clinically.Cerivastatin was pulled from the market in 2001 due to its higher risk of inducing rhabdomyolysis than all other drugs.Hepatotoxicity and rhabdomyolysis are the known adverse reactions by these drugs.However,the hepatotoxicity has been regarded to be mild,and is now referred to as transaminitis.Rhadomyolysis occurs in rare instances but is sometimes life threatening as a result of renal failure caused by myoglobinemia.The mechanism leading to rhabdomyolysis is unknown but in many of the reported cases,increased plasma concentratinos of thes drugs have been observed,most likely as a consequence of drug interaction.Inhibition of CYP 3A4 and UGT is believed to be the reason for this interaction.

  14. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pegan, Scott D.; Sturdy, Megan; Ferry, Gilles; Delagrange, Philippe; Boutin, Jean A.; Mesecar, Andrew D. (IdRS); (Purdue); (Colorado); (UIC)


    Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co-substrate, QR2 utilizes a rare group of hydride donors, N-methyl or N-ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X-ray structures of human QR2 (hQR2) in complex with melatonin and 2-iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC{sub 50} values were determined for a representative set of MT3 ligands (MCA-NAT, 2-I-MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X-ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.

  15. Effect of MK-906, a specific 5 alpha-reductase inhibitor, on serum androgens and androgen conjugates in normal men. (United States)

    Rittmaster, R S; Stoner, E; Thompson, D L; Nance, D; Lasseter, K C


    To determine the hormonal effects of MK-906, an orally active 5 alpha-reductase inhibitor, on serum androgens and androgen conjugates, 12 healthy men were given 10, 20, 50, and 100 mg MK-906 2 weeks apart in randomized order in a 4-period crossover design. Serum testosterone (T), dihydrotestosterone (DHT), androstanediol glucuronide, and androsterone glucuronide were measured before and 24 hours after each dose. The effect of MK-906 on glucuronyl transferase activity, the enzyme responsible for androstanediol glucuronide and androsterone glucuronide formation, was assessed in vitro using rat prostate tissue. Serum T levels were unchanged after all doses. Serum DHT, androstanediol glucuronide, and androsterone glucuronide were suppressed by 70, 40, and 56%, respectively, after the 10-mg dose, and by 82, 52, and 66% after the 100-mg dose (P less than 0.02 for the comparison between the 10 and 100-mg doses for all three steroids), respectively. Baseline serum T and DHT levels were strongly correlated (R = 0.89, P = 0.0002), as were androstanediol glucuronide and androsterone glucuronide levels (R = 0.78, P = 0.003), but there was no correlation between DHT levels and the levels of either conjugated steroid. MK-906 had no effect on glucuronyl transferase activity in vitro. It was concluded that single doses of MK-906 suppress both conjugated and unconjugated 5 alpha-reduced androgens. While all three steroids appeared to be good markers of systemic 5 alpha-reductase inhibition, further research will be needed to determine which steroid best reflects tissue DHT levels in patients receiving these inhibitors.

  16. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass. (United States)

    Wang, Xu; Ma, Menggen; Liu, Z Lewis; Xiang, Quanju; Li, Xi; Liu, Na; Zhang, Xiaoping


    Scheffersomyces (Pichia) stipitis is one of the most promising yeasts for industrial bioethanol production from lignocellulosic biomass. S. stipitis is able to in situ detoxify aldehyde inhibitors (such as furfural and 5-hydroxymethylfurfural (HMF)) to less toxic corresponding alcohols. However, the reduction enzymes involved in this reaction remain largely unknown. In this study, we reported that an uncharacterized open reading frame PICST_72153 (putative GRE2) from S. stipitis was highly induced in response to furfural and HMF stresses. Overexpression of this gene in Saccharomyces cerevisiae improved yeast tolerance to furfural and HMF. GRE2 was identified as an aldehyde reductase which can reduce furfural to FM with either NADH or NADPH as the co-factor and reduce HMF to FDM with NADPH as the co-factor. This enzyme can also reduce multiple aldehydes to their corresponding alcohols. Amino acid sequence analysis indicated that it is a member of the subclass "intermediate" of the short-chain dehydrogenase/reductase (SDR) superfamily. Although GRE2 from S. stipitis is similar to GRE2 from S. cerevisiae in a three-dimensional structure, some differences were predicted. GRE2 from S. stipitis forms loops at D133-E137 and T143-N145 locations with two α-helices at E154-K157 and E252-A254 locations, different GRE2 from S. cerevisiae with an α-helix at D133-E137 and a β-sheet at T143-N145 locations, and two loops at E154-K157 and E252-A254 locations. This research provided guidelines for the study of other SDR enzymes from S. stipitis and other yeasts on tolerant mechanisms to aldehyde inhibitors derived from lignocellulosic biomass.

  17. Exploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Minky Son

    Full Text Available 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR is a rate-controlling enzyme in the mevalonate pathway which involved in biosynthesis of cholesterol and other isoprenoids. This enzyme catalyzes the conversion of HMG-CoA to mevalonate and is regarded as a drug target to treat hypercholesterolemia. In this study, ten qualitative pharmacophore models were generated based on chemical features in active inhibitors of HMGR. The generated models were validated using a test set. In a validation process, the best hypothesis was selected based on the statistical parameters and used for virtual screening of chemical databases to find novel lead candidates. The screened compounds were sorted by applying drug-like properties. The compounds that satisfied all drug-like properties were used for molecular docking study to identify their binding conformations at active site of HMGR. The final hit compounds were selected based on docking score and binding orientation. The HMGR structures in complex with the hit compounds were subjected to 10 ns molecular dynamics simulations to refine the binding orientation as well as to check the stability of the hits. After simulation, binding modes including hydrogen bonding patterns and molecular interactions with the active site residues were analyzed. In conclusion, four hit compounds with new structural scaffold were suggested as novel and potent HMGR inhibitors.

  18. Short-term effect of the HMG-CoA reductase inhibitor rosuvastatin on erythrocyte nitric oxide synthase activity

    Directory of Open Access Journals (Sweden)

    Barbara Ludolph


    Full Text Available Barbara Ludolph1, Wilhelm Bloch2, Malte Kelm1, Rainer Schulz3, Petra Kleinbongard11Department of Medicine, Medical Clinic I, University Hospital RTWH Aachen, Germany; 2Department of Molecular and Cellular Sport Medicine, Sport University Cologne, Germany; 3Institute of Pathophysiology, Medical School, University of Essen, GermanyAbstract: Prevention and treatment of cardiovascular disorders by HMG-CoA reductase inhibitors (or statins, beyond their lipid-lowering properties, have been demonstrated including activation of the endothelial nitric oxide synthase (eNOS. Beside endothelial cells, red blood cells (RBCs possess NOS and produce nitric oxide (NO, which contributes to RBC deformability. The present study tested the capacity of statins to activate NOS in RBCs and subsequently to modulate RBC deformability in vitro. Blood samples of healthy young volunteers were incubated with or without rosuvastatin. Afterwards RBC-NOS activity and RBC deformability were determined. Rosuvastatin incubation significantly increased NOS phosphorylation, NOS dependent NO-formation, and RBC deformability. The NOS inhibitor NG- monomethyl-L-arginine reversed the stimulatory effect of rosuvastatin on RBC-NOS activity. This NO dependent effect of rosuvastatin might have an important influence on microcirculation and may offer new perspectives for the therapeutic use of statins.Keywords: red blood cell, nitric oxide synthase, red blood cell deformability, statin

  19. Rhodium-Catalyzed Decarbonylation of Aldoses

    DEFF Research Database (Denmark)

    Monrad, Rune; Madsen, Robert


    A catalytic procedure is described for decarbonylation of unprotected aldoses to afford alditols with one less carbon atom. The reaction is performed with the rhodium complex Rh(dppp)2Cl in a refluxing diglyme - DMA solution. A slightly improved catalyst turnover is observed when a catalytic amou...

  20. Novel dehydroepiandrosterone benzimidazolyl derivatives as 5α-reductase isozymes inhibitors. (United States)

    Arellano, Yazmín; Bratoeff, Eugene; Segura, Tania; Mendoza, Maria Eugenia; Sánchez-Márquez, Araceli; Medina, Yesica; Heuze, Yvonne; Soriano, Juan; Cabeza, Marisa


    5α-R isozymes (types 1 and 2) play an important role in prostate gland development because they are responsible for intraprostatic dihydrotestosterone (DHT) levels when the physiological serum testosterone (T) concentration is low. In this study, we synthesized seven novel dehydroepiandrosterone derivatives with benzimidazol moiety at C-17, and determined their effect on the activity of 5α-reductase types 1 and 2. The derivatives with an aliphatic ester at C-3 of the dehydroepiandrosterone scaffold induced specific inhibition of 5α-R1 activity, whereas those with a cycloaliphatic ester (cyclopropyl, cyclobutyl, or cyclopentyl ring) or an alcohol group at C-3 inhibited the activity of both isozymes. Derivatives with a cyclohexyl or cycloheptyl ester at C-3 showed no inhibitory activity. In pharmacological experiments, derivatives with esters having an alcohol or the aliphatic group or one of the three smaller cycloaliphatic rings at C-3 decreased the diameter of male hamster flank organs, with the cyclobutyl and cyclopentyl esters exhibiting higher effect. With exception of the cyclobutyl and cyclopentyl esters, these compounds reduced the weight of the prostate and seminal vesicles.

  1. Synthesis of xanthohumol analogues and discovery of potent thioredoxin reductase inhibitor as potential anticancer agent. (United States)

    Zhang, Baoxin; Duan, Dongzhu; Ge, Chunpo; Yao, Juan; Liu, Yaping; Li, Xinming; Fang, Jianguo


    The selenoprotein thioredoxin reductases (TrxRs) are attractive targets for anticancer drugs development. Xanthohumol (Xn), a naturally occurring polyphenol chalcone from hops, has received increasing attention because of its multiple pharmacological activities. We synthesized Xn and its 43 analogues and discovered that compound 13n displayed the highest cytotoxicity toward HeLa cells (IC50 = 1.4 μM). Structure-activity relationship study indicates that the prenyl group is not necessary for cytotoxicity, and introducing electron-withdrawing group, especially on the meta-position, is favored. In addition, methylation of the phenoxyl groups generally improves the potency. Mechanistic study revealed that 13n selectively inhibits TrxR and induces reactive oxygen species and apoptosis in HeLa cells. Cells overexpressing TrxR are resistant to 13n insult, while knockdown of TrxR sensitizes cells to 13n treatment, highlighting the physiological significance of targeting TrxR by 13n. The clarification of the structural determinants for the potency would guide the design of novel potent molecules for future development.

  2. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation. (United States)

    Pandey, Rajan Kumar; Kumbhar, Bajarang Vasant; Srivastava, Shubham; Malik, Ruchi; Sundar, Shyam; Kunwar, Ambarish; Prajapati, Vijay Kumar


    Visceral leishmaniasis affects people from 70 countries worldwide, mostly from Indian, African and south American continent. The increasing resistance to antimonial, miltefosine and frequent toxicity of amphotericin B drives an urgent need to develop an antileishmanial drug with excellent efficacy and safety profile. In this study we have docked series of febrifugine analogues (n = 8813) against trypanothione reductase in three sequential docking modes. Extra precision docking resulted into 108 ligands showing better docking score as compared to two reference ligand. Furthermore, 108 febrifugine analogues and reference inhibitor clomipramine were subjected to ADMET, QikProp and molecular mechanics, the generalized born model and solvent accessibility study to ensure the toxicity caused by compounds and binding-free energy, respectively. Two best ligands (FFG7 and FFG2) qualifying above screening parameters were further subjected to molecular dynamics simulation. Conducting these studies, here we confirmed that 6-chloro-3-[3-(3-hydroxy-2-piperidyl)-2-oxo-propyl]-7-(4-pyridyl) quinazolin-4-one can be potential drug candidate to fight against Leishmania donovani parasites.

  3. Developing imidazole analogues as potential inhibitor for Leishmania donovani trypanothione reductase: virtual screening, molecular docking, dynamics and ADMET approach. (United States)

    Pandey, Rajan Kumar; Sharma, Drista; Bhatt, Tarun Kumar; Sundar, Shyam; Prajapati, Vijay Kumar


    Visceral leishmaniasis (VL) affects Indian subcontinent, African and South American continent, and it covers 70 countries worldwide. Visceral form of leishmaniasis is caused by Leishmania donovani in Indian subcontinent which is lethal if left untreated. Extensive resistance to antileishmanial drugs such as sodium stibogluconate, pentamidine and miltefosine and their decreased efficacy has been reported in the endemic region. Amphotericin B drug has shown good antileishmanial activity with significant toxicity, but its cost of treatment has limited the outreach of this treatment to affected people living in endemic zone. So, there is an urgent need to identify new antileishmanial drugs with excellent activity and minimal toxicity issues. Trypanothione reductase, a component of antioxidant system, is necessary for parasite growth and survival to raise infection. To develop potential inhibitor, we docked nine hundred and eighty-four 5-nitroimidazole analogues along with clomipramine which is a well-known inhibitor for TR. Total one hundred and forty-seven 5-nitroimidazole analogues with better docking score than clomipramine were chosen for ADMET and QikProp studies. Among these imidazole analogues, total twenty-four imidazole analogues and clomipramine were chosen on the basis of their ADMET, QikProp, and prime MM-GBSA study. Later on, two analogues with best MM-GBSA dG bind were undergone molecular dynamic simulation to ensure protein-ligand interactions. Using above approach, we confirm that ethyl 2-acetyl-5-[4-butyl-2-(3-hydroxypentyl)-5-nitro-1H-imidazol-1-yl]pent-2-enoate can be a drug candidate against L. donovani for the treatment of VL in the Indian subcontinent.

  4. Use of 5-alpha-reductase inhibitors did not increase the risk of cardiovascular diseases in patients with benign prostate hyperplasia: a five-year follow-up study.

    Directory of Open Access Journals (Sweden)

    Teng-Fu Hsieh

    Full Text Available This nationwide population-based study investigated the risk of cardiovascular diseases after 5-alpha-reductase inhibitor therapy for benign prostate hyperplasia (BPH using the National Health Insurance Research Database (NHIRD in Taiwan.In total, 1,486 adult patients newly diagnosed with BPH and who used 5-alpha-reductase inhibitors were recruited as the study cohort, along with 9,995 subjects who did not use 5-alpha-reductase inhibitors as a comparison cohort from 2003 to 2008. Each patient was monitored for 5 years, and those who subsequently had cardiovascular diseases were identified. A Cox proportional hazards model was used to compare the risk of cardiovascular diseases between the study and comparison cohorts after adjusting for possible confounding risk factors.The patients who received 5-alpha-reductase inhibitor therapy had a lower cumulative rate of cardiovascular diseases than those who did not receive 5-alpha-reductase inhibitor therapy during the 5-year follow-up period (8.4% vs. 11.2%, P=0.003. In subgroup analysis, the 5-year cardiovascular event hazard ratio (HR was lower among the patients older than 65 years with 91 to 365 cumulative defined daily dose (cDDD 5-alpha-reductase inhibitor use (HR=0.63, 95% confidence interval (CI 0.42 to 0.92; P=0.018, however there was no difference among the patients with 28 to 90 and more than 365 cDDD 5-alpha-reductase inhibitor use (HR=1.14, 95% CI 0.77 to 1.68; P=0.518 and HR=0.83, 95% CI 0.57 to 1.20; P=0.310, respectively.5-alpha-reductase inhibitor therapy did not increase the risk of cardiovascular events in the BPH patients in 5 years of follow-up. Further mechanistic research is needed.

  5. Effect of extract of Floson Chrysanthemi indici on hyperglycemia, hyperipidemia and blood aldose reductase in diabetic KKAy mice%野菊花提取物对KKAy糖尿病小鼠高血糖、高血脂和血醛糖还原酶的影响

    Institute of Scientific and Technical Information of China (English)

    陈雁虹; 张娟; 艾志鹏; 陈婷


    OBJECTIVE To investigate the inhibitory effects of extracts of Flos Chrysanthemi indici (FCI) on hyperglycemia,hyperipidemia and aldose reductase (AR) in diabetic KKAy mice. METHODS Twenty-eight male KKAy mice of 8 weeks old were randomly divided into four groups according to the initial fasting glucose:KKAy model group,extract of FCI 20,100 mg · kg-1 groups and glimepiride 0.4 mg · kg-1 group. C57BL/6J mice were taken as the normal control group. These mice were given ig once daily for 7 weeks. The body mass and food intake were recorded weekly. The fasting glucose and OGTT were measured in the last week of the experiment. Mice were sacrificed 1 d after the last admin⁃istration. The indexes of blood biochemistry were determined. Serum insulin,leptin and AR levels were analyzed by immunoassay using ELISA kits. The weights and pathological changes the in the liver,kidney, spleen,including epididymal and perirenal adipose,were measured. The expression of AR mRNA in the kidney was detected by real time-PCR. RESULTS Compared with model control group,the food intake,fasting glucose and AUC in OGTT significantly decreased(P<0.01),the serum glutamic-pyruvic transaminase,glucose,triglycerides,total cholesterol,low-density lipoprotein cholesterol,insulin, leptin and AR levels were markedly reduced(P<0.05),and the organ indexes of the liver and kidney sig⁃nificantly decreased(P<0.05)in extracts of FCI 100 mg · kg-1 group. The histopathological changes in model group included tubular epithelial cell degeneration,hepatic steatosis,islet β-cell degeneration, spleen white pulp atrophy and hypertrophy of the adipocyte. Symptoms listed above were attenuated by extracts of FCI and glimepiride treatment. The inhibitory effects of FCI also inhibited the expression of AR mRNA in the kidney. CONCLUSION The extract of FCI has hypoglycemic and hypolipidemic effect and can inhibit AR in KKAy mice,which may protect the kidney,liver,adipose,pancrea and spleen from the damage of

  6. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim

    Energy Technology Data Exchange (ETDEWEB)

    Heaslet, Holly; Harris, Melissa; Fahnoe, Kelly; Sarver, Ronald; Putz, Henry; Chang, Jeanne; Subramanyam, Chakrapani; Barreiro, Gabriela; Miller, J. Richard; Pfizer


    Dihydrofolate reductase (DHFR) is the enzyme responsible for the NADPH-dependent reduction of 5,6-dihydrofolate to 5,6,7,8-tetrahydrofolate, an essential cofactor in the synthesis of purines, thymidylate, methionine, and other key metabolites. Because of its importance in multiple cellular functions, DHFR has been the subject of much research targeting the enzyme with anticancer, antibacterial, and antimicrobial agents. Clinically used compounds targeting DHFR include methotrexate for the treatment of cancer and diaminopyrimidines (DAPs) such as trimethoprim (TMP) for the treatment of bacterial infections. DAP inhibitors of DHFR have been used clinically for >30 years and resistance to these agents has become widespread. Methicillin-resistant Staphylococcus aureus (MRSA), the causative agent of many serious nosocomial and community acquired infections, and other gram-positive organisms can show resistance to DAPs through mutation of the chromosomal gene or acquisition of an alternative DHFR termed 'S1 DHFR.' To develop new therapies for health threats such as MRSA, it is important to understand the molecular basis of DAP resistance. Here, we report the crystal structure of the wild-type chromosomal DHFR from S. aureus in complex with NADPH and TMP. We have also solved the structure of the exogenous, TMP resistant S1 DHFR, apo and in complex with TMP. The structural and thermodynamic data point to important molecular differences between the two enzymes that lead to dramatically reduced affinity of DAPs to S1 DHFR. These differences in enzyme binding affinity translate into reduced antibacterial activity against strains of S. aureus that express S1 DHFR.

  7. Effects of a purported aromatase and 5α-reductase inhibitor on hormone profiles in college-age men. (United States)

    Wilborn, Colin; Taylor, Lem; Poole, Chris; Foster, Cliffa; Willoughby, Darryn; Kreider, Richard


    The purpose of this study was to determine the effects of an alleged aromatase and 5-α reductase inhibitor (AI) on strength, body composition, and hormonal profiles in resistance-trained men. Thirty resistance-trained men were randomly assigned in a double-blind manner to ingest 500 mg of either a placebo (PL) or AI once per day for 8 wk. Participants participated in a 4-d/wk resistance-training program for 8 wk. At Weeks 0, 4, and 8, body composition, 1-repetition-maximum (1RM) bench press and leg press, muscle endurance, anaerobic power, and hormonal profiles were assessed. Statistical analyses used a 2-way ANOVA with repeated measures for all criterion variables (p ≤ .05). Significant Group × Time interaction effects occurred over the 8-wk period for percent body fat (AI: -1.77% ± 1.52%, PL: -0.55% ± 1.72%; p = .048), total testosterone (AI: 0.97 ± 2.67 ng/ml, PL: -2.10 ± 3.75 ng/ml; p = .018), and bioavailable testosterone (AI: 1.32 ± 3.45 ng/ml, PL: -1.69 ± 3.94 ng/ml; p = .049). Significant main effects for time (p ≤ .05) were noted for bench- and leg-press 1RM, lean body mass, and estradiol. No significant changes were detected among groups for Wingate peak or mean power, total body weight, dihydrotestosterone, hemodynamic variables, or clinical safety data (p > .05). The authors concluded that 500 mg of dailyAI supplementation significantly affected percent body fat, total testosterone, and bioavailable testosterone compared with a placebo in a double-blind fashion.

  8. Use of hydroxy-methyl-glutaryl coenzyme A reductase inhibitors is associated with risk of lymphoid malignancies. (United States)

    Iwata, Hiroshi; Matsuo, Keitaro; Hara, Shigeo; Takeuchi, Kengo; Aoyama, Tomonori; Murashige, Naoko; Kanda, Yoshinobu; Mori, Shin-Ichiro; Suzuki, Risturo; Tachibana, Shintaro; Yamane, Masaaki; Odawara, Masato; Mutou, Yoshitomo; Kami, Masahiro


    It has been speculated that the use of hydroxy-methyl-glutaryl coenzyme A reductase inhibitors (statins) is associated with the risk of malignant diseases. Considering their immunosuppressive activities, malignant diseases that are associated with an immunosuppressive status seem feasible to examine the association. We therefore examined the association between statin use and development of lymphoid malignancies in a case-control study. Cases were 221 consecutive incident cases with histopathologically proven lymphoid malignancies (lymphoma and myeloma), hospitalized in the Department of Hematology of Toranomon Hospital (Tokyo, Japan) between 1995 and 2001. Two independent control groups, comprising 442 and 437 inpatients without malignancies from the Departments of Orthopedics and Otorhinolaryngology of the same hospital, were selected to test for consistency of association. Controls were matched individually with cases for age, sex and year of admission. Subject information, including statin use, was abstracted from medical records at the time of hospitalization. Strength of association was evaluated as an adjusted odds ratios (aOR) using a conditional logistic regression model. A higher frequency of statin use was found among patients with lymphoid malignancies in comparison with both orthopedic (aOR 2.11, 95% CI 1.20-3.69, P = 0.009) and otorhinolaryngology patients (aOR 2.59, 95% CI 1.45-4.65, P = 0.001), the significance being maintained when the two control groups were combined (aOR 2.24, 95% CI 1.37-3.66, P = 0.001). In conclusion, we observed an elevated risk of lymphoid malignancy with statin use among Japanese patients. Further evaluations in different populations are required to draw conclusions as to the carcinogenicity of lymphoid malignancies with statin use.

  9. The aldo-keto reductase superfamily homepage. (United States)

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M


    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  10. HMG-CoA reductase inhibitors decrease angiotensin II-induced vascular fibrosis: role of RhoA/ROCK and MAPK pathways. (United States)

    Rupérez, Mónica; Rodrigues-Díez, Raquel; Blanco-Colio, Luis Miguel; Sánchez-López, Elsa; Rodríguez-Vita, Juan; Esteban, Vanesa; Carvajal, Gisselle; Plaza, Juan José; Egido, Jesús; Ruiz-Ortega, Marta


    3-Hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors (statins) present beneficial effects in cardiovascular diseases. Angiotensin II (Ang II) contributes to cardiovascular damage through the production of profibrotic factors, such as connective tissue growth factor (CTGF). Our aim was to investigate whether HMG-CoA reductase inhibitors could modulate Ang II responses, evaluating CTGF expression and the mechanisms underlying this process. In cultured vascular smooth muscle cells (VSMCs) atorvastatin and simvastatin inhibited Ang II-induced CTGF production. The inhibitory effect of statins on CTGF upregulation was reversed by mevalonate and geranylgeranylpyrophosphate, suggesting that RhoA inhibition could be involved in this process. In VSMCs, statins inhibited Ang II-induced Rho membrane localization and activation. In these cells Ang II regulated CTGF via RhoA/Rho kinase activation, as shown by inhibition of Rho with C3 exoenzyme, RhoA dominant-negative overexpression, and Rho kinase inhibition. Furthermore, activation of p38MAPK and JNK, and redox process were also involved in Ang II-mediated CTGF upregulation, and were downregulated by statins. In rats infused with Ang II (100 ng/kg per minute) for 2 weeks, treatment with atorvastatin (5 mg/kg per day) diminished aortic CTGF and Rho activation without blood pressure modification. Rho kinase inhibition decreased CTGF upregulation in rat aorta, mimicking statin effect. CTGF is a vascular fibrosis mediator. Statins diminished extracellular matrix (ECM) overexpression caused by Ang II in vivo and in vitro. In summary, HMG-CoA reductase inhibitors inhibit several intracellular signaling systems activated by Ang II (RhoA/Rho kinase and MAPK pathways and redox process) involved in the regulation of CTGF. Our results may explain, at least in part, some beneficial effects of statins in cardiovascular diseases.

  11. 2,4-Diaminothieno[2,3-d]pyrimidine lipophilic antifolates as inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. (United States)

    Rosowsky, A; Papoulis, A T; Queener, S F


    Ten previously unreported 2,4-diaminothieno[2,3-d]pyrimidine lipophilic dihydrofolate reductase inhibitors were synthesized as potential inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. Pivaloylation of 2,4-diamino-5-methylthieno[2,3-d]pyrimidine followed by dibromination with N-bromosuccinimide in the presence of benzoyl peroxide gave 2,4-bis(pivaloylamino)-6-bromo-5-(bromomethyl)thieno[2,3-d]pyrimid ine, which after condensation with substituted anilines or N-methylanilines and deprotection with base yielded 2,4-diamino-6-bromo-5-[(substituted anilino)methyl]thieno[2,3-d]pyrimidines. Removal of the 6-bromo substituent was accomplished with sodium borohydride and palladium chloride. The reaction yields were generally good to excellent. The products were tested as inhibitors of dihydrofolate reductase (DHFR) from P. carinii, T. gondii, and rat liver. Although the IC50 could not be reached for the 6-unsubstituted compounds because of their extremely poor solubility, three of the five 6-bromo derivatives were soluble enough to allow the IC50 to be determined against all three enzymes. 2,4-Diamino-5-[3,5-dichloro-4-(1-pyrrolo)anilino]methyl]- 6-bromothieno[2,3-d]pyrimidine was the most active of the 6-bromo derivatives, with an IC50 of 7.5 microM against P. carinii DHFR, but showed no selectivity for either P. carinii or T. gondii DHFR relative to the enzyme from rat liver.

  12. Effects of competitive and noncompetitive 5α-reductase inhibitors on serum and intra-prostatic androgens in beagle dogs

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-feng; YANG Yong; WANG Wei; QIU Zhi; ZHANG Peng; WANG Biao


    Background 5α-Reductase inhibitors (5α-RI) act by inhibiting the conversion of testosterone to dihydrotestosterone (DHT),thereby preventing DHT induced benign prostatic hyperplasia.The existing 5α-RIs can be classified into two types:competitive and noncompetitive.Currently,limited evidence is available concerning the effect differences between the two types of 5α-RI on androgens.The purpose of this study was to assess the effects of competitive and noncompetitive 5α-RIs on serum and intra-prostatic androgens in beagle dogs.Methods Twenty beagles with spontaneous benign prostatic hyperplasia were randomly allocated into two groups:epristeride group (n=10) in which beagles were treated with epristeride at 1 mg/kg once a day for 3 months,and finasteride group (n=10) in which beagles were treated with finasteride at 1 mg/kg once a day for 3 months.The levels of intra-prostatic testosterone and DHT were measured before treatment and on day one after three months medication.Serum levels of testosterone and DHT were measured at the same time points.Changes in androgen levels before and after treatment were analyzed,and comparisons were made within each treatment group and between treatment groups.Results After 3-month treatment,serum and intra-prostatic DHT levels all decreased significantly in both the epristeride and finasteride groups.The change of DHT in serum was significantly higher in the finasteride group (-14% and-43% in epristeride and finasteride groups respectively,with P<0.001); however there was no significant difference in the changes of intra-prostatic DHT between the two groups (-47% and-51% in epristeride and finasteride groups,respectively,P=0.304).The decreases in DHT levels were accompanied by reciprocal increases in serum and intra-prostatic testosterone levels.Changes of testosterone were significantly higher in finasteride group both in serum (20% and 42%in epristeride and finasteride groups,respectively,P<0.001) and in

  13. Risk of gynecomastia and breast cancer associated with the use of 5-alpha reductase inhibitors for benign prostatic hyperplasia

    Directory of Open Access Journals (Sweden)

    Hagberg KW


    Full Text Available Katrina Wilcox Hagberg,1 Hozefa A Divan,2 Shona C Fang,2 J Curtis Nickel,3 Susan S Jick1 1Boston Collaborative Drug Surveillance Program, Boston University School of Public Health, Lexington, 2New England Research Institutes, Inc., Watertown, MA, USA; 3Kingston General Hospital, Queen’s University, Kingston, ON, Canada Background: Clinical trial results suggest that 5-alpha reductase inhibitors (5ARIs for the treatment of benign prostatic hyperplasia (BPH may increase the risk of gynecomastia and male breast cancer, but epidemiological studies have been limited. Patients and methods: We conducted a cohort study with nested case–control analyses using the UK Clinical Practice Research Datalink. We identified men diagnosed with BPH who were free from Klinefelter syndrome, prostate, genital or urinary cancer, prostatectomy or orchiectomy, or evidence of gynecomastia or breast cancer. Patients entered the cohort at age ≥40 years and at least 3 years after the start of their electronic medical record. We classified exposure as 5ARIs (alone or in combination with alpha blockers [ABs], AB only, or unexposed to 5ARIs and ABs. Cases were men who had a first-time diagnosis of gynecomastia or breast cancer. Incidence rates and incidence rate ratios (IRRs with 95% confidence intervals (CIs in the gynecomastia analysis and crude and adjusted odds ratios (ORs with 95% CIs in both analyses were calculated. Results: Compared to no exposure, gynecomastia risk was elevated for users of 5ARIs (alone or in combination with ABs in both the cohort (IRR=3.55, 95% CI 3.05–4.14 and case–control analyses (OR=3.31, 95% CI 2.66–4.10, whereas the risk was null for users of AB only. The increased risk of gynecomastia with the use of 5ARIs persisted regardless of the number of prescriptions, exposure timing, and presence or absence of concomitant prescriptions for drugs known to be associated with gynecomastia. The risk was higher for dutasteride than for

  14. Risk of gynecomastia and breast cancer associated with the use of 5-alpha reductase inhibitors for benign prostatic hyperplasia (United States)

    Hagberg, Katrina Wilcox; Divan, Hozefa A; Fang, Shona C; Nickel, J Curtis; Jick, Susan S


    Background Clinical trial results suggest that 5-alpha reductase inhibitors (5ARIs) for the treatment of benign prostatic hyperplasia (BPH) may increase the risk of gynecomastia and male breast cancer, but epidemiological studies have been limited. Patients and methods We conducted a cohort study with nested case–control analyses using the UK Clinical Practice Research Datalink. We identified men diagnosed with BPH who were free from Klinefelter syndrome, prostate, genital or urinary cancer, prostatectomy or orchiectomy, or evidence of gynecomastia or breast cancer. Patients entered the cohort at age ≥40 years and at least 3 years after the start of their electronic medical record. We classified exposure as 5ARIs (alone or in combination with alpha blockers [ABs]), AB only, or unexposed to 5ARIs and ABs. Cases were men who had a first-time diagnosis of gynecomastia or breast cancer. Incidence rates and incidence rate ratios (IRRs) with 95% confidence intervals (CIs) in the gynecomastia analysis and crude and adjusted odds ratios (ORs) with 95% CIs in both analyses were calculated. Results Compared to no exposure, gynecomastia risk was elevated for users of 5ARIs (alone or in combination with ABs) in both the cohort (IRR=3.55, 95% CI 3.05–4.14) and case–control analyses (OR=3.31, 95% CI 2.66–4.10), whereas the risk was null for users of AB only. The increased risk of gynecomastia with the use of 5ARIs persisted regardless of the number of prescriptions, exposure timing, and presence or absence of concomitant prescriptions for drugs known to be associated with gynecomastia. The risk was higher for dutasteride than for finasteride. 5ARI users did not have an increased risk of breast cancer compared to unexposed men (OR=1.52, 95% CI 0.61–3.80). Conclusion In men with BPH, 5ARIs significantly increased the risk of gynecomastia, but not breast cancer, compared to AB use and no exposure. PMID:28228662

  15. Isomerisation of c4-c6 aldoses with zeolites

    DEFF Research Database (Denmark)


    The present invention relates to isomerization of C4-C6 aldoses to their corresponding C4-C6 ketoses. In particular, the invention concerns isomerization of C4-C6 aldoses over solid zeolite catalysts free of any metals other than aluminum, in the presence of suitable solvent(s) at suitable elevated...... temperatures. C6 and C5 aldose sugars such as glucose and xylose, which are available in large amounts from biomass precursors, are isomerized to fructose and xylulose respectively, in a one or two-step process over inexpensive commercially available zeolite catalysts, containing aluminum as the only metal...

  16. Characterization of a unique Caulobacter crescentus aldose-aldose oxidoreductase having dual activities. (United States)

    Andberg, Martina; Maaheimo, Hannu; Kumpula, Esa-Pekka; Boer, Harry; Toivari, Mervi; Penttilä, Merja; Koivula, Anu


    We describe here the characterization of a novel enzyme called aldose-aldose oxidoreductase (Cc AAOR; EC 1.1.99) from Caulobacter crescentus. The Cc AAOR exists in solution as a dimer, belongs to the Gfo/Idh/MocA family and shows homology with the glucose-fructose oxidoreductase from Zymomonas mobilis. However, unlike other known members of this protein family, Cc AAOR is specific for aldose sugars and can be in the same catalytic cycle both oxidise and reduce a panel of monosaccharides at the C1 position, producing in each case the corresponding aldonolactone and alditol, respectively. Cc AAOR contains a tightly-bound nicotinamide cofactor, which is regenerated in this oxidation-reduction cycle. The highest oxidation activity was detected on D-glucose but significant activity was also observed on D-xylose, L-arabinose and D-galactose, revealing that both hexose and pentose sugars are accepted as substrates by Cc AAOR. The configuration at the C2 and C3 positions of the saccharides was shown to be especially important for the substrate binding. Interestingly, besides monosaccharides, Cc AAOR can also oxidise a range of 1,4-linked oligosaccharides having aldose unit at the reducing end, such as lactose, malto- and cello-oligosaccharides as well as xylotetraose. (1)H NMR used to monitor the oxidation and reduction reaction simultaneously, demonstrated that although D-glucose has the highest affinity and is also oxidised most efficiently by Cc AAOR, the reduction of D-glucose is clearly not as efficient. For the overall reaction catalysed by Cc AAOR, the L-arabinose, D-xylose and D-galactose were the most potent substrates.

  17. Doping-control analysis of the 5alpha-reductase inhibitor finasteride: determination of its influence on urinary steroid profiles and detection of its major urinary metabolite. (United States)

    Thevis, Mario; Geyer, Hans; Mareck, Ute; Flenker, Ulrich; Schänzer, Wilhelm


    5alpha-Reductase inhibitors such as finasteride are prohibited in sports according to the World Anti-Doping Agency. This class of drugs is used therapeutically to treat benign prostatic hyperplasia, as well as male baldness, by decreasing 5alpha-reductase activity. Accordingly, metabolic pathways of endogenous as well as synthetic steroids are influenced, which complicates the evaluation of steroid profiles in sports drug testing. The possibility of manipulating steroid excretion profiles and, presumably, to mask steroid abuse was investigated in 5 administration studies with use of finasteride at different doses, with and without coadministration of 19-norandrostenedione. The evaluation of urinary steroid profiles demonstrated the intense effect of finasteride on numerous crucial analytical parameters, in particular the production of 5alpha-steroids such as androsterone and 5alpha-androstane-3alpha,17beta-diol, which was significantly reduced. In addition, the excretion of the main metabolite of norandrostenedione, norandrosterone, was significantly suppressed, by up to 84%, in elimination studies. For doping-control analysis the use of 5alpha-reductase inhibitors causes considerable problems because steroid profile parameters, which are commonly considered stable, are highly affected and complicate the detection of steroid abuse. In addition, the suppression of production and renal excretion of 5alpha-steroids such as 19-norandrosterone generated from anabolic agents such as 19-norandrostenedione may lead to false-negative doping-control results, because urine specimens are reported positive only when a threshold level of 2 ng/mL is exceeded. Finally, a method for the determination of the major urinary metabolite of finasteride (carboxy-finasteride) in routine doping-control screening with use of liquid chromatography-tandem mass spectrometry is described, allowing the detection of carboxy-finasteride for up to 94 hours in urine specimens collected after an oral

  18. In vivo assay for conversion of testosterone to dihydrotestosterone by rat prostatic steroid 5 alpha-reductase and comparison of two inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Toomey, R.E.; Goode, R.L.; Petrow, V.; Neubauer, B.L. (Endocrine Research, Lilly Research Labs, Indianapolis, IN (USA))


    An in vivo assay for steroid 5 alpha-reductase in rat ventral prostate has been developed and used to compare the inhibitory activity of N,N-diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide (4-MA) and 6-methylene-4-pregnene-3,20-dione (LY207320). Immature rats (70-80 g) received test compounds 30 min prior to s.c. injection of (3H)-T. The rats were sacrificed 30 min later and the ventral prostates were analyzed for (3H)-T metabolites. Intraprostatic (3H)-T and (3H)-DHT reached peak levels within 5 min after injection of (3H)-T and declined to about 25% of peak levels after 2 hr. 4-MA was a very potent inhibitor of (3H)-DHT formation with an estimated IC50 of 0.2 mg/kg. LY207320, an inhibitor of 5 alpha-reductase in vitro, was weakly active in vivo and did not achieve greater than 45% inhibition at high doses (greater than 200 mg/kg, s.c.). Tissue uptake of (3H)-T was also inhibited by LY207320, which may contribute to its inhibitory activity on accessory sex organ growth in the rat.

  19. Carotid intimal-media thickness as a surrogate for cardiovascular disease events in trials of HMG-CoA reductase inhibitors

    Directory of Open Access Journals (Sweden)

    Morgan Timothy


    Full Text Available Abstract Background Surrogate measures for cardiovascular disease events have the potential to increase greatly the efficiency of clinical trials. A leading candidate for such a surrogate is the progression of intima-media thickness (IMT of the carotid artery; much experience has been gained with this endpoint in trials of HMG-CoA reductase inhibitors (statins. Methods and Results We examine two separate systems of criteria that have been proposed to define surrogate endpoints, based on clinical and statistical arguments. We use published results and a formal meta-analysis to evaluate whether progression of carotid IMT meets these criteria for HMG-CoA reductase inhibitors (statins. IMT meets clinical-based criteria to serve as a surrogate endpoint for cardiovascular events in statin trials, based on relative efficiency, linkage to endpoints, and congruency of effects. Results from a meta-analysis and post-trial follow-up from a single published study suggest that IMT meets established statistical criteria by accounting for intervention effects in regression models. Conclusion Carotid IMT progression meets accepted definitions of a surrogate for cardiovascular disease endpoints in statin trials. This does not, however, establish that it may serve universally as a surrogate marker in trials of other agents.

  20. A 1,536-well-based kinetic HTS assay for inhibitors of Schistosoma mansoni thioredoxin glutathione reductase. (United States)

    Lea, Wendy A; Jadhav, Ajit; Rai, Ganesha; Sayed, Ahmed A; Cass, Cynthia L; Inglese, James; Williams, David L; Austin, Christopher P; Simeonov, Anton


    Abstract: Schistosomiasis is a major neglected tropical disease that currently affects over 200 million people and leads to over 200,000 annual deaths. Schistosoma mansoni parasites survive in humans in part because of a set of antioxidant enzymes that continuously degrade reactive oxygen species produced by the host. A principal component of this defense system has been recently identified as thioredoxin glutathione reductase (TGR), a parasite-specific enzyme that combines the functions of two human counterparts, glutathione reductase and thioredoxin reductase, and as such this enzyme presents an attractive new target for anti-schistosomiasis drug development. Herein, we present the development of a highly miniaturized and robust screening assay for TGR. The 5-mul final volume assay is based on the Ellman reagent [5,5'-dithiobis(2-nitrobenzoic acid) (DTNB)] and utilizes a high-speed absorbance kinetic read to minimize the effect of dust, absorbance interference, and meniscus variation. This assay is further applicable to the testing of other redox enzymes that utilize DTNB as a model substrate.

  1. Inhibition of Human Steroid 5-Reductase (AKR1D1) by Finasteride and Structure of the Enzyme-Inhibitor Complex

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.; Di Costanzo, L; Penning, T; Christianson, D


    The {Delta}{sup 4}-3-ketosteroid functionality is present in nearly all steroid hormones apart from estrogens. The first step in functionalization of the A-ring is mediated in humans by steroid 5{alpha}- or 5{beta}-reductase. Finasteride is a mechanism-based inactivator of 5{alpha}-reductase type 2 with subnanomolar affinity and is widely used as a therapeutic for the treatment of benign prostatic hyperplasia. It is also used for androgen deprivation in hormone-dependent prostate carcinoma, and it has been examined as a chemopreventive agent in prostate cancer. The effect of finasteride on steroid 5{beta}-reductase (AKR1D1) has not been previously reported. We show that finasteride competitively inhibits AKR1D1 with low micromolar affinity but does not act as a mechanism-based inactivator. The structure of the AKR1D1 {center_dot} NADP{sup +} {center_dot} finasteride complex determined at 1.7 {angstrom} resolution shows that it is not possible for NADPH to reduce the {Delta}{sup 1-2}-ene of finasteride because the cofactor and steroid are not proximal to each other. The C3-ketone of finasteride accepts hydrogen bonds from the catalytic residues Tyr-58 and Glu-120 in the active site of AKR1D1, providing an explanation for the competitive inhibition observed. This is the first reported structure of finasteride bound to an enzyme involved in steroid hormone metabolism.

  2. An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes.

    Directory of Open Access Journals (Sweden)

    Mahreen Arooj

    Full Text Available Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS and human dihydrofolate reductase (hDHFR. These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.

  3. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function

    Energy Technology Data Exchange (ETDEWEB)

    Schormann, N.; Senkovich, O.; Walker, K.; Wright, D.L.; Anderson, A.C.; Rosowsky, A.; Ananthan, S.; Shinkre, B.; Velu, S.; Chattopadhyay, D. (UAB); (Connecticut); (Southern Research); (DFCI)


    We have employed a structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) approach to predict the biochemical activity for inhibitors of T. cruzi dihydrofolate reductase-thymidylate synthase (DHFR-TS). Crystal structures of complexes of the enzyme with eight different inhibitors of the DHFR activity together with the structure in the substrate-free state (DHFR domain) were used to validate and refine docking poses of ligands that constitute likely active conformations. Structural information from these complexes formed the basis for the structure-based alignment used as input for the QSAR study. Contrary to indirect ligand-based approaches the strategy described here employs a direct receptor-based approach. The goal is to generate a library of selective lead inhibitors for further development as antiparasitic agents. 3D-QSAR models were obtained for T. cruzi DHFR-TS (30 inhibitors in learning set) and human DHFR (36 inhibitors in learning set) that show a very good agreement between experimental and predicted enzyme inhibition data. For crossvalidation of the QSAR model(s), we have used the 10% leave-one-out method. The derived 3D-QSAR models were tested against a few selected compounds (a small test set of six inhibitors for each enzyme) with known activity, which were not part of the learning set, and the quality of prediction of the initial 3D-QSAR models demonstrated that such studies are feasible. Further refinement of the models through integration of additional activity data and optimization of reliable docking poses is expected to lead to an improved predictive ability.

  4. Synthesis and biological evaluation of esters of 16-formyl-17-methoxy-dehydroepiandrosterone derivatives as inhibitors of 5α-reductase type 2. (United States)

    Sánchez-Márquez, Araceli; Arellano, Yazmín; Bratoeff, Eugene; Heuze, Yvonne; Córdova, Karen; Nieves, Gladys; Soriano, Juan; Cabeza, Marisa


    In this study, we investigated the in vitro effect of 16-formyl-17-methoxy dehydroepiandrosterone derivatives on the activity of 5α-reductase type 2 (5α-R2) obtained from human prostate. The activity of different concentrations of these derivatives was determined for the conversion of labelled testosterone to dihydrotestosterone. The results indicated that an aliphatic ester moiety at the C-3 position of these derivatives increases their in vitro potency as inhibitors of 5α-R2 activity compared to finasteride®, which is considered to be a potent inhibitor of 5α-R2. In this case, the augmentation of the lipophilicity of these dehydroepiandrosterone derivatives increased their potency as inhibitors of 5α-R2. However, the presence of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl rings as the cycloaliphatic ester moiety at C-3 of the formyl methoxy dehydroepiandrosterone scaffold did not inhibit the activity of this enzyme. This may be due to the presence of steric factors between the enzyme and the spatial structure of these derivatives.

  5. Discovery of (R)-2-(6-Methoxynaphthalen-2-yl)butanoic Acid as a Potent and Selective Aldo-keto Reductase 1C3 Inhibitor. (United States)

    Adeniji, Adegoke; Uddin, Md Jashim; Zang, Tianzhu; Tamae, Daniel; Wangtrakuldee, Phumvadee; Marnett, Lawrence J; Penning, Trevor M


    Type 5 17β-hydroxysteroid dehydrogenase, aldo-keto reductase 1C3 (AKR1C3) converts Δ(4)-androstene-3,17-dione and 5α-androstane-3,17-dione to testosterone (T) and 5α-dihydrotestosterone, respectively, in castration resistant prostate cancer (CRPC). In CRPC, AKR1C3 is implicated in drug resistance, and enzalutamide drug resistance can be surmounted by indomethacin a potent inhibitor of AKR1C3. We examined a series of naproxen analogues and find that (R)-2-(6-methoxynaphthalen-2-yl)butanoic acid (in which the methyl group of R-naproxen was replaced by an ethyl group) acts as a potent AKR1C3 inhibitor that displays selectivity for AKR1C3 over other AKR1C enzymes. This compound was devoid of inhibitory activity on COX isozymes and blocked AKR1C3 mediated production of T and induction of PSA in LNCaP-AKR1C3 cells as a model of a CRPC cell line. R-Profens are substrate selective COX-2 inhibitors and block the oxygenation of endocannabinoids and in the context of advanced prostate cancer R-profens could inhibit intratumoral androgen synthesis and act as analgesics for metastatic disease.

  6. On the inhibitor effects of bergamot juice flavonoids binding to the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme. (United States)

    Leopoldini, Monica; Malaj, Naim; Toscano, Marirosa; Sindona, Giovanni; Russo, Nino


    Density functional theory was applied to study the binding mode of new flavonoids as possible inhibitors of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), an enzyme that catalyzes the four-electron reduction of HMGCoA to mevalonate, the committed step in the biosynthesis of sterols. The investigated flavonoid conjugates brutieridin and melitidin were recently quantified in the bergamot fruit extracts and identified to be structural analogues of statins, lipids concentration lowering drugs that inhibit HMGR. Computations allowed us to perform a detailed analysis of the geometrical and electronic features affecting the binding of these compounds, as well as that of the excellent simvastatin drug, to the active site of the enzyme and to give better insight into the inhibition process.

  7. Synthesis of 17beta-N-substituted 19-Nor-10-azasteroids as inhibitors of human 5alpha-reductases I and II. (United States)

    Scarpi, Dina; Occhiato, Ernesto G; Danza, Giovanna; Serio, Mario; Guarna, Antonio


    The synthesis of 17beta-[N-(phenyl)methyl/phenyl-amido] substituted 10-azasteroids has been accomplished by either the TiCl4- or TMSOTf-catalysed reaction of carbamates 11 and 12 with Danishefsky's diene. The reaction provided 5alpha-H isomers 3a-5a and 5beta-H isomers 3b-5b depending on the reaction conditions. Both epimers of each compound were tested against human 5alpha-reductase types I and II. Unexpectedly, 5beta-H compounds were found more active than their 5alpha-H counterparts, the best inhibitors being 3b (IC50=279 and 2000 nM toward isoenzyme I and II, respectively) and 5b (IC50=913 and 247 nM toward isoenzymes I and II, respectively).

  8. 2,4-Diamino-6,7-dihydro-5H-cyclopenta[d]pyrimidine analogues of trimethoprim as inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. (United States)

    Rosowsky, A; Papoulis, A T; Queener, S F


    Three previously unreported (R,S)-2,4-diamino-5-[(3,4,5-trimethoxyphenyl) alkyl]-6,7-dihydro-5H-cyclopenta[d]pyrimidines 15a-c were synthesized as analogues of trimethoprim (TMP) and were tested as inhibitors of Pneumocystis carinii, Toxoplasma gondii, and rat liver dihydrofolate reductase (DHFR). The length of the alkyl bridge between the cyclopenta[d]pyrimidine and trimethoxyphenyl moiety ranged from one in 15a to three carbons in 15c. The products were tested as competitive inhibitors of the reduction of dihydrofolate by Pneumocystis carinii, Toxoplasma gondii, and rat liver DHFR. Compounds 15a-c had IC50 values of > 32, 1.8 and 1.3 microM, respectively, against P. carinii DHFR, as compared to 12 microM for TMP. Against the T. gondii enzyme, 15a-c had IC50 values of 21, 0.14 and 0.14 microM, respectively, as compared to 2.7 microM for TMP. Inhibitors 15b and 15c with two- and three-carbon bridges were significantly more potent than 15a against all three enzymes. Unlike TMP, 15b and 15c were better inhibitors of the rat liver enzyme than of the microbial enzymes. The potency of 15b and 15c against rat liver DHFR was less than has been reported for the corresponding 6,7-dihydro-5H-cyclopenta[d]pyrimidines with a classical p-aminobenzoyl-L-glutamate side chain as inhibitors of bovine, murine, and human DHFR.

  9. Aqueous Molecular Dynamics Simulations of the M. tuberculosis Enoyl-ACP Reductase-NADH System and Its Complex with a Substrate Mimic or Diphenyl Ethers Inhibitors

    Directory of Open Access Journals (Sweden)

    Camilo Henrique da Silva Lima


    Full Text Available Molecular dynamics (MD simulations of 12 aqueous systems of the NADH-dependent enoyl-ACP reductase from Mycobacterium tuberculosis (InhA were carried out for up to 20–40 ns using the GROMACS 4.5 package. Simulations of the holoenzyme, holoenzyme-substrate, and 10 holoenzyme-inhibitor complexes were conducted in order to gain more insight about the secondary structure motifs of the InhA substrate-binding pocket. We monitored the lifetime of the main intermolecular interactions: hydrogen bonds and hydrophobic contacts. Our MD simulations demonstrate the importance of evaluating the conformational changes that occur close to the active site of the enzyme-cofactor complex before and after binding of the ligand and the influence of the water molecules. Moreover, the protein-inhibitor total steric (ELJ and electrostatic (EC interaction energies, related to Gly96 and Tyr158, are able to explain 80% of the biological response variance according to the best linear equation, pKi = 7.772 − 0.1885 × Gly96 + 0.0517 × Tyr158 (R2 = 0.80; n = 10, where interactions with Gly96, mainly electrostatic, increase the biological response, while those with Tyr158 decrease. These results will help to understand the structure-activity relationships and to design new and more potent anti-TB drugs.

  10. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase. (United States)

    Pandey, Rajan Kumar; Kumbhar, Bajarang Vasant; Sundar, Shyam; Kunwar, Ambarish; Prajapati, Vijay Kumar


    Visceral leishmaniasis (VL) is the most fatal form of leishmaniasis and it affects 70 countries worldwide. Increasing drug resistant for antileishmanial drugs such as miltefosine, sodium stibogluconate and pentamidine has been reported in the VL endemic region. Amphotericin B has shown potential antileishmanial activity in different formulations but its cost of treatment and associated nephrotoxicity have limited its use by affected people living in the endemic zone. To control the VL infection in the affected countries, it is necessary to develop new antileishmanial compounds with high efficacy and negligible toxicity. Computer aided programs such as binding free energy estimation; ADMET prediction and molecular dynamics simulation can be used to investigate novel antileishmanial molecules in shorter duration. To develop antileishmanial lead molecule, we performed standard precision (SP) docking for 1160 benzoxaborole analogs along with reference inhibitors against trypanothione reductase of Leishmania parasite. Furthermore, extra precision (XP) docking, ADMET prediction, prime MM-GBSA was conducted over 115 ligands, showing better docking score than reference inhibitors to get potential antileishmanial compounds. Simultaneously, area under the curve (AUC) was estimated using ROC plot to validate the SP and XP docking protocol. Later on, two benzoxaborole analogs with best MM-GBSA ΔG-bind were subjected to molecular simulation and docking confirmation to ensure the ligand interaction with TR. The presented drug discovery based on computational study confirms that BOB27 can be used as a potential drug candidate and warrants further experimental investigation to fight against VL in endemic areas.

  11. Structure-based de novo design, molecular docking and molecular dynamics of primaquine analogues acting as quinone reductase II inhibitors. (United States)

    Murce, Erika; Cuya-Guizado, Teobaldo Ricardo; Padilla-Chavarria, Helmut Isaac; França, Tanos Celmar Costa; Pimentel, Andre Silva


    Primaquine is a traditional antimalarial drug with low parasitic resistance and generally good acceptance at higher doses, which has been used for over 60 years in malaria treatment. However, several limitations related to its hematotoxicity have been reported. It is believed that this toxicity comes from the hydroxylation of the C-5 and C-6 positions of its 8-aminoquinoline ring before binding to the molecular target: the quinone reductase II (NQO2) human protein. In this study we propose primaquine derivatives, with substitution at position C-6 of the 8-aminoquinoline ring, planned to have better binding to NQO2, compared to primaquine, but with a reduced toxicity related to the C-5 position being possible to be oxidized. On this sense the proposed analogues were suggested in order to reduce or inhibit hydroxylation and further oxidation to hemotoxic metabolites. Five C-6 substituted primaquine analogues were selected by de novo design and further submitted to docking and molecular dynamics simulations. Our results suggest that all analogues bind better to NQO2 than primaquine and may become better antimalarials. However, the analogues 3 and 4 are predicted to have a better activity/toxicity balance.

  12. In vivo and in vitro effect of androstene derivatives as 5α-reductase type 1 enzyme inhibitors. (United States)

    Bratoeff, Eugene; Sánchez, Araceli; Arellano, Yazmín; Heuze, Yvonne; Soriano, Juan; Cabeza, Marisa


    The aim of these studies was to synthesize twelve ester derivatives of dehydroepiandrosterone with therapeutic potential. The effect of 1-12 was demonstrated in the flank organs of gonadectomized hamsters treated with testosterone and the synthesized steroids. In vitro studies were carried out determining the IC50 values for the inhibition of the activity of 5α-reductase type 1 and 2, which are present in rat liver and human prostate respectively. The binding of 1-12 to the androgen receptors (AR) was determined using rat's prostate cytosol. Steroids 1-12 containing different substituents in the phenyl group of the ester moiety in C-3 reduced the flank organs and inhibited the activity of 5α-R type 1; however only steroids 1 and 2 inhibited 5α-R type 2. 1-12 did not bind to the AR. The modification of one atom of the substituents in the phenyl group of the ester moiety in C-3 changed their biological potency (IC50).

  13. Novel synthetic inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity that inhibit tumor cell proliferation and are structurally unrelated to existing statins. (United States)

    Perchellet, Jean-Pierre H; Perchellet, Elisabeth M; Crow, Kyle R; Buszek, Keith R; Brown, Neil; Ellappan, Sampathkumar; Gao, Ge; Luo, Diheng; Minatoya, Machiko; Lushington, Gerald H


    Pilot-scale libraries of eight-membered medium ring lactams (MRLs) and related tricyclic compounds (either seven-membered lactams, thiolactams or amines) were screened for their ability to inhibit the catalytic activity of human recombinant 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in vitro. A dozen of the synthetic compounds mimic the inhibition of purified HMG-CoA reductase activity caused by pravastatin, fluvastatin and sodium salts of lovastatin, mevastatin and simvastatin in this cell-free assay, suggesting direct interaction with the rate-limiting enzyme of cholesterol biosynthesis. Moreover, several MRLs inhibit the metabolic activity of L1210 tumor cells in vitro to a greater degree than fluvastatin, lovastatin, mevastatin and simvastatin, whereas pravastatin is inactive. Although the correlation between the concentration-dependent inhibitions of HMG-CoA reductase activity over 10 min in the cell-free assay and L1210 tumor cell proliferation over 4 days in culture is unclear, some bioactive MRLs elicit interesting combinations of statin-like (IC50: 7.4-8.0 microM) and anti-tumor (IC50: 1.4-2.3 microM) activities. The HMG-CoA reductase-inhibiting activities of pravastatin and an MRL persist in the presence of increasing concentrations of NADPH. But increasing concentrations of HMG-CoA block the HMG-CoA reductase-inhibiting activity of pravastatin without altering that of an MRL, suggesting that MRLs and existing statins may have different mechanisms of enzyme interaction and inhibition. When tested together, suboptimal concentrations of synthetic MRLs and existing statins have additive inhibitory effects on HMG-CoA reductase activity. Preliminary molecular docking studies with MRL-based inhibitors indicate that these ligands fit sterically well into the HMG-CoA reductase statin-binding receptor model and, in contrast to mevastatin, may occupy a narrow channel housing the pyridinium moiety on NADP+.

  14. Dehydration of Different Ketoses and Aldoses to 5-Hydroxymethylfurfural

    NARCIS (Netherlands)

    van Putten, Robert-Jan; Soetedjo, Jenny N. M.; Pidko, Evgeny A.; van der Waal, Jan C.; Hensen, Emiel J. M.; de Jong, Ed; Heeres, Hero J.


    5-Hydroxymethylfurfural (HMF) is considered an important building block for future bio-based chemicals. Here, we present an experimental study using different ketoses (fructose, sorbose, tagatose) and aldoses (glucose, mannose, galactose) under aqueous acidic conditions (65gL(-1) substrate, 100-160

  15. HMG-CoA reductase inhibitors, statins, induce phosphorylation of Mdm2 and attenuate the p53 response to DNA damage. (United States)

    Pääjärvi, Gerd; Roudier, Emilie; Crisby, Milita; Högberg, Johan; Stenius, Ulla


    3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors, statins, are widely used cholesterol-lowering drugs and have been shown to have anticancer effects in many models. We have investigated the effect of statins on Mdm2, a p53-specific ubiquitin ligase. It was found that pravastatin induced Mdm2 phosphorylation at Ser166 and at 2A10 antibody-specific epitopes in HepG2 cells, while mRNA levels were unchanged. Furthermore, pravastatin was found to induce phosphorylation of mTOR at Ser2448. Ser166 phosphorylation of Mdm2 was abrogated by an inhibitor of mTOR, rapamycin, but not by the PI3-kinase inhibitors LY294002 and wortmannin. Ser166 phosphorylation of Mdm2 has been associated to active Mdm2 and has been shown to increase its ubiquitin ligase activity and lead to increased p53 degradation. Our data show that statins attenuated the p53 response to DNA damage. Thus, in HepG2 cells pravastatin and simvastatin pretreatment attenuated the p53 response to DNA damage induced by 5-fluorouracil and benzo(a)pyrene. Similar attenuation was induced when p53 stabilization was induced by the inhibitor of nuclear export, leptomycin B. Furthermore, in the DNA-damaged cells, half-lives of Mdm2 and p53 were decreased by statins, indicating a more rapid formation of p53/Mdm2 complexes and facilitated p53 degradation. The induction of p53 responsive genes and apoptosis was attenuated. Mdm2 and p53 were also studied in vivo in rat liver employing immunohistochemistry, and it was found that constitutive Mdm2 expression was changed in livers of pravastatin-treated rats. We also show that the p53 response to a challenging dose of diethylnitrosamine was attenuated in hepatocytes in situ and in primary cultures of hepatocytes by pravastatin pretreatment. Taken together, these data indicate that statins induce an mTOR-dependent Ser166 phosphorylation of Mdm2, and this effect may attenuate the duration and intensity of the p53 response to DNA damage in hepatocytes.

  16. RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol-lowering agent: comparison with inhibitors of HMG-CoA reductase. (United States)

    Amin, D; Rutledge, R Z; Needle, S N; Galczenski, H F; Neuenschwander, K; Scotese, A C; Maguire, M P; Bush, R C; Hele, D J; Bilder, G E; Perrone, M H


    Squalene synthase catalyzes the reductive dimerization of two molecules of farnesyl pyrophosphate to form squalene and is the first committed step in sterol synthesis. A specific inhibitor of squalene synthase would inhibit cholesterol biosynthesis but not prevent the formation of other products of the isoprenoid pathway, such as dolichol and ubiquinone. RPR 107393 [3-hydroxy-3-[4-(quinolin-6-yl)phenyl]-1-azabicyclo[2-2-2]octane dihydrochloride] and its R and S enantiomers are potent inhibitors of rat liver microsomal squalene synthase, with IC50 values of 0.6 to 0.9 nM. One hour after oral administration to rats, RPR 107393 inhibited de novo [14C]cholesterol biosynthesis from [14C]mevalonate in the liver with an ED50 value of 5 mg/kg. Diacid metabolites of [14C]farnesyl pyrophosphate were identified after acid treatment of the livers of these animals. These results support in vitro data demonstrating that these compounds are inhibitors of squalene synthase. In rats, RPR 107393 (30 mg/kg p.o. b.i.d. for 2 days) reduced total serum cholesterol by RPR 107393 (20 mg/kg b.i.d.) reduced plasma cholesterol concentration by 50% after 1 week of administration; this was greater than the reduction observed with lovastatin or pravastatin, neither of which produced > 31% reduction in plasma cholesterol when administered for 1 week at a dose of 50 mg/kg b.i.d. The R and S enantiomers of RPR 107393 (20 mg/kg p.o. q.d. for 7 days) reduced plasma low density lipoprotein cholesterol by 50% and 43%, respectively, whereas high density lipoprotein cholesterol was unchanged. In summary, RPR 107393 is a potent inhibitor of squalene synthase. It is an orally effective hypocholesterolemic agent in rats and marmosets that has greater efficacy than lovastatin or pravastatin in the marmoset.

  17. HMG-CoA Reductase Inhibitors Bind to PPARα to Upregulate Neurotrophin Expression in the Brain and Improve Memory in Mice. (United States)

    Roy, Avik; Jana, Malabendu; Kundu, Madhuchhanda; Corbett, Grant T; Rangaswamy, Suresh B; Mishra, Rama K; Luan, Chi-Hao; Gonzalez, Frank J; Pahan, Kalipada


    Neurotrophins are important for neuronal health and function. Here, statins, inhibitors of HMG-CoA reductase and cholesterol lowering drugs, were found to stimulate expression of neurotrophins in brain cells independent of the mevalonate pathway. Time-resolved fluorescence resonance energy transfer (FRET) analyses, computer-derived simulation, site-directed mutagenesis, thermal shift assay, and de novo binding followed by electrospray ionization tandem mass spectrometry (ESI-MS) demonstrates that statins serve as ligands of PPARα and that Leu331 and Tyr 334 residues of PPARα are important for statin binding. Upon binding, statins upregulate neurotrophins via PPARα-mediated transcriptional activation of cAMP-response element binding protein (CREB). Accordingly, simvastatin increases CREB and brain-derived neurotrophic factor (BDNF) in the hippocampus of Ppara null mice receiving full-length lentiviral PPARα, but not L331M/Y334D statin-binding domain-mutated lentiviral PPARα. This study identifies statins as ligands of PPARα, describes neurotrophic function of statins via the PPARα-CREB pathway, and analyzes the importance of PPARα in the therapeutic success of simvastatin in an animal model of Alzheimer's disease.

  18. In Silico Screening, Synthesis and In Vitro Evaluation of Some Quinazolinone and Pyridine Derivatives as Dihydrofolate Reductase Inhibitors for Anticancer Activity

    Directory of Open Access Journals (Sweden)

    A. G. Nerkar


    Full Text Available Dihydrofolate reductase (DHFR is the important target for anticancer drugs belonging to the class of antimetabolites as the enzyme plays important role in the de novo purine synthesis. We here report the in silico screening to obtain best fit molecules as DHFR inhibitors, synthesis of some ʻbest fitʼ quinazolinone from 2-phenyl-3-(substituted-benzilidine-amino quinazolinones (Quinazolinone Shiff's bases QSB1-5 and pyridine-4-carbohydrazide Shiff's bases (ISB1-5 derivatives and their in vitro anticancer assay. Synthesis of the molecules was performed using microwave assisted synthesis. The structures of these molecules were elucidated by IR and 1H-NMR. These compounds were then subjected for in vitro anticancer evaluation against five human cancer cell-lines for anticancer cyto-toxicity assay. Methotrexate (MTX was used as standard for this evaluation to give a comparable inhibition of the cell proliferation by DHFR inhibition. Placlitaxel, adriamycin and 5-fluoro-uracil were also used as standard to give a comparable activity of these compounds with other mechanism of anticancer activity. ISB3 (4-(N, N-dimethyl-amino-phenyl Schiff''s base derivative of pyridine carbohydrazide showed equipotent activity with the standards used in in vitro anticancer assay as per the NCI (National Cancer Institute guidelines.

  19. A systematic review of the effects and mechanisms of preoperative 5α-reductase inhibitors on intraoperative haemorrhage during surgery for benign prostatic hyperplasia

    Institute of Scientific and Technical Information of China (English)

    Huan-Tao Zong; Xiao-Xia Peng; Chen-Chen Yang; Yong Zhang


    5α-reductase inhibitors (5α-RIs),including finasteride and dutasteride,are commonly used medical therapies for benign prostatic hyperplasia (BPH).Many studies reported that preoperative 5α-RI had impact on intraoperative haemorrhage during surgery for BPH,but it was still in controversial.So,we conducted a systematic review of the effects and mechanisms of 5α-RIs on intraoperative bleeding for BPH.MEDLINE,EMBASE,the Cochrane Controlled Trail Register of Controlled Trials and the reference lists of retrieved studies were searched in the analysis.Sixteen publications involving 15 different randomized controlled trials (RCTs) and a total of 1156 patients were used in the analysis,including 10 RCTs for finasteride and five RCTs for dutasteride.We found that preoperative finasteride treatment decreases microvessel density (MVD) in resected prostate specimens.Total blood loss,blood loss per gram of resected prostate tissue and decreases in haemoglobin were all greatly reduced in the finasteride group as compared to controls.Dutasteride appeared to have no effect on bleeding.This meta-analysis shows that preoperative finasteride treatment could decrease intraoperative haemorrhage during surgery for BPH.Preoperative dutasteride had no effect on intraoperative haemorrhage,but further high-quality prospective studies are still needed to confirm this observation.

  20. Computer-Aided Design of Orally Bioavailable Pyrrolidine Carboxamide Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Pharmacokinetic Profiles (United States)

    Kouassi, Affiba Florance; Kone, Mawa; Keita, Melalie; Esmel, Akori; Megnassan, Eugene; N’Guessan, Yao Thomas; Frecer, Vladimir; Miertus, Stanislav


    We have carried out a computational structure-based design of new potent pyrrolidine carboxamide (PCAMs) inhibitors of enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis (MTb). Three-dimensional (3D) models of InhA-PCAMx complexes were prepared by in situ modification of the crystal structure of InhA-PCAM1 (Protein Data Bank (PDB) entry code: 4U0J), the reference compound of a training set of 20 PCAMs with known experimental inhibitory potencies (IC50exp). First, we built a gas phase quantitative structure-activity relationships (QSAR) model, linearly correlating the computed enthalpy of the InhA-PCAM complex formation and the IC50exp. Further, taking into account the solvent effect and loss of inhibitor entropy upon enzyme binding led to a QSAR model with a superior linear correlation between computed Gibbs free energies (ΔΔGcom) of InhA-PCAM complex formation and IC50exp (pIC50exp = −0.1552·ΔΔGcom + 5.0448, R2 = 0.94), which was further validated with a 3D-QSAR pharmacophore model generation (PH4). Structural information from the models guided us in designing of a virtual combinatorial library (VL) of more than 17 million PCAMs. The VL was adsorption, distribution, metabolism and excretion (ADME) focused and reduced down to 1.6 million drug like orally bioavailable analogues and PH4 in silico screened to identify new potent PCAMs with predicted IC50pre reaching up to 5 nM. Combining molecular modeling and PH4 in silico screening of the VL resulted in the proposed novel potent antituberculotic agent candidates with favorable pharmacokinetic profiles. PMID:26703572

  1. Computer-Aided Design of Orally Bioavailable Pyrrolidine Carboxamide Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Pharmacokinetic Profiles

    Directory of Open Access Journals (Sweden)

    Affiba Florance Kouassi


    Full Text Available We have carried out a computational structure-based design of new potent pyrrolidine carboxamide (PCAMs inhibitors of enoyl-acyl carrier protein reductase (InhA of Mycobacterium tuberculosis (MTb. Three-dimensional (3D models of InhA-PCAMx complexes were prepared by in situ modification of the crystal structure of InhA-PCAM1 (Protein Data Bank (PDB entry code: 4U0J, the reference compound of a training set of 20 PCAMs with known experimental inhibitory potencies (IC50exp. First, we built a gas phase quantitative structure-activity relationships (QSAR model, linearly correlating the computed enthalpy of the InhA-PCAM complex formation and the IC50exp. Further, taking into account the solvent effect and loss of inhibitor entropy upon enzyme binding led to a QSAR model with a superior linear correlation between computed Gibbs free energies (ΔΔGcom of InhA-PCAM complex formation and IC50exp (pIC50exp = −0.1552·ΔΔGcom + 5.0448, R2 = 0.94, which was further validated with a 3D-QSAR pharmacophore model generation (PH4. Structural information from the models guided us in designing of a virtual combinatorial library (VL of more than 17 million PCAMs. The VL was adsorption, distribution, metabolism and excretion (ADME focused and reduced down to 1.6 million drug like orally bioavailable analogues and PH4 in silico screened to identify new potent PCAMs with predicted IC50pre reaching up to 5 nM. Combining molecular modeling and PH4 in silico screening of the VL resulted in the proposed novel potent antituberculotic agent candidates with favorable pharmacokinetic profiles.

  2. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae. (United States)

    Wiebe, Marilyn G; Nygård, Yvonne; Oja, Merja; Andberg, Martina; Ruohonen, Laura; Koivula, Anu; Penttilä, Merja; Toivari, Mervi


    An open reading frame CC1225 from the Caulobacter crescentus CB15 genome sequence belongs to the Gfo/Idh/MocA protein family and has 47 % amino acid sequence identity with the glucose-fructose oxidoreductase from Zymomonas mobilis (Zm GFOR). We expressed the ORF CC1225 in the yeast Saccharomyces cerevisiae and used a yeast strain expressing the gene coding for Zm GFOR as a reference. Cell extracts of strains overexpressing CC1225 (renamed as Cc aaor) showed some Zm GFOR type of activity, producing D-gluconate and D-sorbitol when a mixture of D-glucose and D-fructose was used as substrate. However, the activity in Cc aaor expressing strain was >100-fold lower compared to strains expressing Zm gfor. Interestingly, C. crescentus AAOR was clearly more efficient than the Zm GFOR in converting in vitro a single sugar substrate D-xylose (10 mM) to xylitol without an added cofactor, whereas this type of activity was very low with Zm GFOR. Furthermore, when cultured in the presence of D-xylose, the S. cerevisiae strain expressing Cc aaor produced nearly equal concentrations of D-xylonate and xylitol (12.5 g D-xylonate l(-1) and 11.5 g D-xylitol l(-1) from 26 g D-xylose l(-1)), whereas the control strain and strain expressing Zm gfor produced only D-xylitol (5 g l(-1)). Deletion of the gene encoding the major aldose reductase, Gre3p, did not affect xylitol production in the strain expressing Cc aaor, but decreased xylitol production in the strain expressing Zm gfor. In addition, expression of Cc aaor together with the D-xylonolactone lactonase encoding the gene xylC from C. crescentus slightly increased the final concentration and initial volumetric production rate of both D-xylonate and D-xylitol. These results suggest that C. crescentus AAOR is a novel type of oxidoreductase able to convert the single aldose substrate D-xylose to both its oxidized and reduced product.

  3. Effect of long-term cholesterol-lowering treatment with HMG-CoA reductase inhibitor (Simvastatin) of myocardial perfusion evaluated by thallium-201 single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Ryohei; Nohara, Ryuji; Linxue, Li; Sasayama, Shigetake [Kyoto Univ. (Japan). Graduate School of Medicine; Tamaki, Shunichi; Hashimoto, Tetsuo; Tanaka, Masahiro; Miki, Shinji


    Fifteen patients with either angina pectoris or old myocardial infarction, who had positive {sup 201}Tl single photon emission computed tomography (SPECT) imaging and coronary sclerosis of more than 50%, were treated with an HMG-CoA reductase inhibitor (simvastatin) for more than 1 year. They were compared with an untreated control group (n=25). Total cholesterol decreased 22% and high-density lipoprotein (HDL) increased 9% with simvastatin; both changes were significantly different from those in controls. Long-term simvastatin induced improvement of myocardial perfusion on {sup 201}Tl SPECT images both during exercise and at rest, which was also significantly different from controls. In addition, the improvement of myocardial perfusion on {sup 201}Tl SPECT images was clearly related to the improvements in cholesterol values, especially nonHDL cholesterol. Thus, the greater the decrease in nonHDL cholesterol, the greater the improvement in myocardial perfusion at rest or during exercise with long-term treatment using an HMG-CoA reductase inhibitor. These findings indicate that the improvements in cholesterol values caused by HMG-CoA reductase inhibitor therapy are related to improvements of myocardial perfusion seen on {sup 201}Tl SPECT images. (author)

  4. Aldose-ketose interconversion in pyridine in the presence of aluminium oxide. (United States)

    Ekeberg, Dag; Morgenlie, Svein; Stenstrøm, Yngve


    The reaction rate of the Lobry de Bruyn-Alberda van Ekenstein transformation of aldoses to ketoses in boiling pyridine was strongly increased by the addition of aluminium oxide. In addition to aldose-ketose transformation, 2-epimers of the starting aldoses and 3-epimers of the primarily produced ketoses were formed to some extent, as reported also when these reactions are carried out without aluminium oxide. The relative amounts of the primary ketose and the starting aldose in the reaction mixtures may be explained on the basis of their stability, predicted from reported free energy calculations. Isomerisation of ketoses to aldoses was much slower than the reverse reaction. The relative free energies are also in these cases important, the very stable xylo-2-hexulose gave only 7% and 6% of the aldoses gulose and idose, respectively, after boiling for 7h in pyridine in the presence of aluminium oxide.

  5. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology. (United States)

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A Marie


    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions.

  6. Synthesis of new derivatives of 21-imidazolyl-16-dehydropregnenolone as inhibitors of 5α-reductase 2 and with cytotoxic activity in cancer cells. (United States)

    Silva-Ortiz, Aylin Viviana; Bratoeff, Eugene; Ramírez-Apan, Teresa; Heuze, Yvonne; Soriano, Juan; Moreno, Isabel; Bravo, Marisol; Bautista, Lucero; Cabeza, Marisa


    The aim of this study was to synthesize several 16-dehydropregnenolone derivatives containing an imidazole ring at C-21 and a different ester moiety at C-3 as inhibitors of 5α-reductase 1 and 2 isoenzymes. Their binding capacity to the androgen receptor (AR) was also studied. Additionally, we evaluated their pharmacological effect in a castrated hamster model and their cytotoxic activity on a panel of cancer cells (PC-3, MCF7, SK-LU-1). The results showed that only the derivatives with an alicyclic ester at C-3 showed 5α-R2 enzyme inhibition activity, the most potent of them being 21-(1H-imidazol-1-yl)-20-oxopregna-5,16-dien-3β-yl-cyclohexanecarboxylate with an IC50 of 29nM. This is important because prostatic benign hyperplasia is directly associated with the presence of 5α-R2. However, all the derivatives failed to inhibit 5α-R1 or bind to the AR. These alicyclic ester derivatives decreased the weight and size of androgen-dependent glands in the hamster, indicating they are very active in vivo and are not toxic. In addition, the 21-(1H-imidazol-1-yl)-20-oxopregna-5,16-dien-3β-yl-acetate derivative showed the highest cytotoxic activity on the three cancer cell lines studied. It is therefore important in the synthesis of steroidal compounds to consider the size of the ester moiety at C-3 of the steroid skeleton, which is key in obtaining biological activity, as observed in this experiment.

  7. Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans. (United States)

    Watanabe, Takao; Kusuhara, Hiroyuki; Maeda, Kazuya; Kanamaru, Hiroshi; Saito, Yoshikazu; Hu, Zhuohan; Sugiyama, Yuichi


    Elucidation of the rate-determining process in the overall hepatic elimination of drugs is critical for predicting their intrinsic hepatic clearance and the impact of variation of sequestration clearance on their systemic concentration. The present study investigated the rate-determining process in the overall hepatic elimination of the HMG-CoA reductase inhibitors pravastatin, pitavastatin, atorvastatin, and fluvastatin both in rats and humans. The uptake of these statins was saturable in both rat and human hepatocytes. Intrinsic hepatic clearance obtained by in vivo pharmacokinetic analysis in rats was close to the uptake clearance determined by the multiple indicator dilution method but much greater than the intrinsic metabolic clearance extrapolated from an in vitro model using liver microsomes. In vivo uptake clearance of the statins in humans (pravastatin, 1.44; pitavastatin, 30.6; atorvastatin, 12.7; and fluvastatin, 62.9 ml/min/g liver), which was obtained by multiplying in vitro uptake clearance determined in cryopreserved human hepatocytes by rat scaling factors, was within the range of overall in vivo intrinsic hepatic clearance (pravastatin, 0.84-1.2; pitavastatin, 14-35; atorvastatin, 11-19; and fluvastatin, 123-185 ml/min/g liver), whereas the intrinsic metabolic clearance of atorvastatin and fluvastatin was considerably low compared with their intrinsic hepatic clearance. Their uptake is the rate-determining process in the overall hepatic elimination of the statins in rats, and this activity likely holds true for humans. In vitro-in vivo extrapolation of the uptake clearance using a cryopreserved human hepatocytes model and rat scaling factors will be effective for predicting in vivo intrinsic hepatic clearance involving active uptake.

  8. Statins, HMG-CoA Reductase Inhibitors, Improve Neovascularization by Increasing the Expression Density of CXCR4 in Endothelial Progenitor Cells. (United States)

    Chiang, Kuang-Hsing; Cheng, Wan-Li; Shih, Chun-Ming; Lin, Yi-Wen; Tsao, Nai-Wen; Kao, Yung-Ta; Lin, Chih-Ting; Wu, Shinn-Chih; Huang, Chun-Yao; Lin, Feng-Yen


    Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, are used to reduce cholesterol biosynthesis in the liver. Accordingly, statins regulate nitric oxide (NO) and glutamate metabolism, inflammation, angiogenesis, immunity and endothelial progenitor cells (EPCs) functions. The function of EPCs are regulated by stromal cell-derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β), etc. Even though the pharmacologic mechanisms by which statins affect the neovasculogenesis of circulating EPCs, it is still unknown whether statins affect the EPCs function through the regulation of CXCR4, a SDF-1 receptor expression. Therefore, we desired to explore the effects of statins on CXCR4 expression in EPC-mediated neovascularization by in vitro and in vivo analyses. In animal studies, we analyzed the effects of atorvastatin or rosuvastatin treatments in recovery of capillary density and blood flow, the expression of vWF and CXCR4 at ischemia sites in hindlimb ischemia ICR mice. Additionally, we analyzed whether the atorvastatin or rosuvastatin treatments increased the mobilization, homing, and CXCR4 expression of EPCs in hindlimb ischemia ICR mice that underwent bone marrow transplantation. The results indicated that statins treatment led to significantly more CXCR4-positive endothelial progenitor cells incorporated into ischemic sites and in the blood compared with control mice. In vivo, we isolated human EPCs and analyzed the effect of statins treatment on the vasculogenic ability of EPCs and the expression of CXCR4. Compared with the control groups, the neovascularization ability of EPCs was significantly improved in the atorvastatin or rosuvastatin group; this improvement was dependent on CXCR4 up-regulation. The efficacy of statins on improving EPC neovascularization was related to the SDF-1α/CXCR4 axis and might be regulated by the NO. In conclusion, atorvastatin and rosuvastatin improved

  9. X-ray structure of the ternary MTX·NADPH complex of the anthrax dihydrofolate reductase: A pharmacophore for dual-site inhibitor design

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Brad C.; Wan, Qun; Ahmad, Md Faiz; Langan, Paul; Dealwis, Chris G.; (Case Western); (LANL)


    For reasons of bioterrorism and drug resistance, it is imperative to identify and develop new molecular points of intervention against anthrax. Dihydrofolate reductase (DHFR) is a highly conserved enzyme and an established target in a number of species for a variety of chemotherapeutic programs. Recently, the crystal structure of B. anthracis DHFR (baDHFR) in complex with methotrexate (MTX) was determined and, based on the structure, proposals were made for drug design strategies directed against the substrate binding site. However, little is gleaned about the binding site for NADPH, the cofactor responsible for hydride transfer in the catalytic mechanism. In the present study, X-ray crystallography at 100 K was used to determine the structure of baDHFR in complex with MTX and NADPH. Although the NADPH binding mode is nearly identical to that seen in other DHFR ternary complex structures, the adenine moiety adopts an off-plane tilt of nearly 90 deg. and this orientation is stabilized by hydrogen bonds to functionally conserved Arg residues. A comparison of the binding site, focusing on this region, between baDHFR and the human enzyme is discussed, with an aim at designing species-selective therapeutics. Indeed, the ternary model, refined to 2.3{angstrom} resolution, provides an accurate template for testing the feasibility of identifying dual-site inhibitors, compounds that target both the substrate and cofactor binding site. With the ternary model in hand, using in silico methods, several compounds were identified which could potentially form key bonding contacts in the substrate and cofactor binding sites. Ultimately, two structurally distinct compounds were verified that inhibit baDHFR at low {mu}M concentrations. The apparent K{sub d} for one of these, (2-(3-(2-(hydroxyimino)-2-(pyridine-4-yl)-6,7-dimethylquinoxalin-2-yl)-1-(pyridine-4-yl)ethanone oxime), was measured by fluorescence spectroscopy to be 5.3 {mu}M.

  10. Statins: 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors demonstrate anti-atherosclerotic character due to their antioxidant capacity

    Digital Repository Service at National Institute of Oceanography (India)

    Puttananjaiah, M.H.; Dhale, M.A.; Gaonkar, V.; Keni, S.

    Atherosclerosis is a chronic inflammatory disease of multiple etiologies. It is associated with the accumulation of oxidized lipids in arterial lesions leading to coronary heart disease. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase...

  11. Progesterone-induced stimulation of mammary tumorigenesis is due to the progesterone metabolite, 5α-dihydroprogesterone (5αP) and can be suppressed by the 5α-reductase inhibitor, finasteride. (United States)

    Wiebe, John P; Rivas, Martin A; Mercogliano, Maria F; Elizalde, Patricia V; Schillaci, Roxana


    Progesterone has long been linked to breast cancer but its actual role as a cancer promoter has remained in dispute. Previous in vitro studies have shown that progesterone is converted to 5α-dihydroprogesterone (5αP) in breast tissue and human breast cell lines by the action of 5α-reductase, and that 5αP acts as a cancer-promoter hormone. Also studies with human breast cell lines in which the conversion of progesterone to 5αP is blocked by a 5α-reductase inhibitor, have shown that the in vitro stimulation in cell proliferation with progesterone treatments are not due to progesterone itself but to the metabolite 5αP. No similar in vivo study has been previously reported. The objective of the current studies was to determine in an in vivo mouse model if the presumptive progesterone-induced mammary tumorigenesis is due to the progesterone metabolite, 5αP. BALB/c mice were challenged with C4HD murine mammary cells, which have been shown to form tumors when treated with progesterone or the progestin, medroxyprogesterone acetate. Cells and mice were treated with various doses and combinations of progesterone, 5αP and/or the 5α-reductase inhibitor, finasteride, and the effects on cell proliferation and induction and growth of tumors were monitored. Hormone levels in serum and tumors were measured by specific RIA and ELISA tests. Proliferation of C4HD cells and induction and growth of tumors was stimulated by treatment with either progesterone or 5αP. The progesterone-induced stimulation was blocked by finasteride and reinstated by concomitant treatment with 5αP. The 5αP-induced tumors expressed high levels of ER, PR and ErbB-2. Hormone measurements showed significantly higher levels of 5αP in serum from mice with tumors than from mice without tumors, regardless of treatments, and 5αP levels were significantly higher (about 4-fold) in tumors than in respective sera, while progesterone levels did not differ between the compartments. The results indicate that

  12. Síntese, avaliação biológica e modelagem molecular de arilfuranos como inibidores da enzima tripanotiona redutase Synthesis, biological evaluation and molecular modeling of arylfurans as potential trypanothione reductase inhibitors

    Directory of Open Access Journals (Sweden)

    Renata B. de Oliveira


    Full Text Available Trypanosoma cruzi is a protozoan parasite that causes a severe disease (Chagas'disease in Central and South America. The currently available chemotherapeutic agents against this disease are still inadequate. The enzyme trypanothione reductase (TR is considered a validated molecular target for the development of new drugs against this parasite. In this regard, a series of arylfurans based on 2,5-bis-(4-acetamidophenylfuran was synthesized and tested for their in vitro inhibitory activity against TR. Molecular modeling studies of putative enzyme-inhibitor complexes revealed a possible mechanism of interaction. From synthesized compounds, a benzylaminofuran derivative was found to be more active than the lead compound.

  13. Structure-based design of selective inhibitors of dihydrofolate reductase: synthesis and antiparasitic activity of 2, 4-diaminopteridine analogues with a bridged diarylamine side chain. (United States)

    Rosowsky, A; Cody, V; Galitsky, N; Fu, H; Papoulis, A T; Queener, S F


    As part of a larger search for potent as well as selective inhibitors of dihydrofolate reductase (DHFR) enzymes from opportunistic pathogens found in patients with AIDS and other immune disorders, N-[(2,4-diaminopteridin-6-yl)methyl]dibenz[b,f]azepine (4a) and the corresponding dihydrodibenz[b,f]azepine, dihydroacridine, phenoxazine, phenothiazine, carbazole, and diphenylamine analogues were synthesized from 2, 4-diamino-6-(bromomethyl)pteridine in 50-75% yield by reaction with the sodium salts of the amines in dry tetrahydrofuran at room temperature. The products were tested for the ability to inhibit DHFR from Pneumocystis carinii (pcDHFR), Toxoplasma gondii (tgDHFR), Mycobacterium avium (maDHFR), and rat liver (rlDHFR). The member of the series with the best combination of potency and species selectivity was 4a, with IC(50) values against the four enzymes of 0. 21, 0.043, 0.012, and 4.4 microM, respectively. The dihydroacridine, phenothiazine, and carbazole analogues were also potent, but nonselective. Of the compounds tested, 4a was the only one to successfully combine the potency of trimetrexate with the selectivity of trimethoprim. Molecular docking simulations using published 3D structural coordinates for the crystalline ternary complexes of pcDHFR and hDHFR suggested a possible structural interpretation for the binding selectivity of 4a and the lack of selectivity of the other compounds. According to this model, 4a is selective because of a unique propensity of the seven-membered ring in the dibenz[b,f]azepine moiety to adopt a puckered orientation that allows it to fit more comfortably into the active site of the P. carinii enzyme than into the active site of the human enzyme. Compound 4a was also evaluated for the ability to be taken up into, and retard the growth of, P. carinii and T. gondii in culture. The IC(50) of 4a against P. carinii trophozoites after 7 days of continuous drug treatment was 1.9 microM as compared with previously observed IC(50

  14. NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts

    NARCIS (Netherlands)

    Bruinenberg, P.M.; De Bot, P.H.M.; Van Dijken, J.P.; Scheffers, W.A.


    The kinetics and enzymology of o-xylose utilization were studied in aerobic and anaerobic batch cultures of the facultatively fermentative yeasts Candida utilis, Pachysolen tannophilus, and Pichia stipitis. These yeasts did not produce ethanol under aerobic conditions. When shifted to anaerobiosis c

  15. Synthesis, biological activity, and three-dimensional quantitative structure-activity relationship model for a series of benzo[c]quinolizin-3-ones, nonsteroidal inhibitors of human steroid 5alpha-reductase 1. (United States)

    Occhiato, Ernesto G; Ferrali, Alessandro; Menchi, Gloria; Guarna, Antonio; Danza, Giovanna; Comerci, Alessandra; Mancina, Rosa; Serio, Mario; Garotta, Gianni; Cavalli, Andrea; De Vivo, Marco; Recanatini, Maurizio


    New 5alpha-reductase 1 (5alphaR-1) inhibitors were designed to complete a consistent set of analogues suitable for a 3D QSAR study. These compounds were synthesized by a modification of the aza-Robinson annulation, further functionalized by Pd-catalyzed cross-coupling processes, and were tested with human 5alphaR-1 expressed in Chinese hamster ovary 1827 cells. It turned out that the potency of the resulting inhibitors was strongly dependent on the type of substitution at the 8 position, with the IC(50) values ranging from 8.1 to 1050 nM. The construction of this homogeneous set of molecules allowed a 3D QSAR study. In particular, comparative molecular field analysis (CoMFA) was used to correlate the potency of the inhibitors with their physicochemical features. Highly accurate evaluations of the atomic point charges were carried out by means of quantum chemical calculations at the DFT/B3LYP level of theory followed by the RESP fitting procedure. It turned out that increasing the reliability of electrostatic parameters greatly affected the statistical results of the QSAR analysis. The 3D QSAR model proposed could be very useful in the further development of 5alphaR-1 inhibitors, which are suitable candidates to be evaluated as drugs in the treatment of 5alphaR-1 related diseases such as acne and alopecia in men and hirsutism in women.

  16. 8-Methoxy-naphtho[2,3-b]thiophen-4,9-quinone, a non-competitive inhibitor of trypanothione reductase

    Directory of Open Access Journals (Sweden)

    Zani Carlos L


    Full Text Available The enzyme trypanothione reductase is a recognised drug target in trypanosomatids and has been used in the search of new compounds with potential activity against diseases such as leishmaniasis, Chagas disease and African trypanosomiasis. 8-Methoxy-naphtho [2,3-b] thiophen-4,9-quinone was selected in a screening of natural and synthetic compounds using an in vitro assay with the recombinant enzyme from Trypanosoma cruzi. Its mode of inhibition fits a non-competitive model with respect to the substrate (trypanothione and to the co-factor (NADPH, with Ki-values of 5 and 3.6 µM, respectively. When tested against human glutathione reductase, this compound did not display any significant inhibition at 100 µM, indicating a good selectivity against the parasite enzyme.

  17. Drug: D03807 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D03807 Drug Zenarestat (USAN/INN) C17H11BrClFN2O4 439.9575 441.6356 D03807.gif Treatment of diabetic neuropa...thy [aldose reductase inhibitor] [DS:H00408 H00409] aldose reductase inhibitor [HSA

  18. Aldo-keto reductases 1B in adrenal cortex physiology

    Directory of Open Access Journals (Sweden)

    Emilie PASTEL


    Full Text Available Aldose reductase proteins are cytosolic monomeric enzymes, belonging to the aldo-keto reductase (AKR superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates such as aliphatic and aromatic aldehydes or ketones. The Aldose reductase subgroup (AKR1B is one of the most characterized because of its involvement in human diseases such as diabetic complications resulting from the ability of its human archetype AKR1B1 to reduce glucose into sorbitol. However the issue of AKR1B function in non pathologic condition remains poorly resolved. Adrenal steroidogenesis is strongly associated with high production of endogenous harmful lipid aldehyde by-products including isocaproaldehyde (4-methylpentanal derived from cholesterol side chain cleavage (the first step of steroid synthesis and 4-hydroxynonenal (4- HNE that can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase activity, suggesting that in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, previous studies have established that the adrenal gland is one of the major site for human and murine AKR1B expression suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms.This review presents the molecular mechanisms accounting for the adrenal specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions.

  19. A Novel NADPH-Dependent Aldehyde Reductase Gene from Saccharomyces cerevisiae NRRL Y-12632 Involved in the Detoxification of Aldehyde Inhibitors Derived from Lignocellulosic Biomass Conversion (United States)

    Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...

  20. Synthesis and highly potent hypolipidemic activity of alpha-asarone- and fibrate-based 2-acyl and 2-alkyl phenols as HMG-CoA reductase inhibitors. (United States)

    Mendieta, Aarón; Jiménez, Fabiola; Garduño-Siciliano, Leticia; Mojica-Villegas, Angélica; Rosales-Acosta, Blanca; Villa-Tanaca, Lourdes; Chamorro-Cevallos, Germán; Medina-Franco, José L; Meurice, Nathalie; Gutiérrez, Rsuini U; Montiel, Luisa E; Cruz, María Del Carmen; Tamariz, Joaquín


    In the search for new potential hypolipidemic agents, the present study focused on the synthesis of 2-acyl phenols (6a-c and 7a-c) and their saturated side-chain alkyl phenols (4a-c and 5a-c), and on the evaluation of their hypolipidemic activity using a murine Tyloxapol-induced hyperlipidemic protocol. The whole series of compounds 4-7 greatly and significantly reduced elevated serum levels of total cholesterol, LDL-cholesterol, and triglycerides, with series 6 and 7 showing the greatest potency ever found in our laboratory. At the minimum dose (25mg/kg/day), the latter compounds lowered cholesterol by 68-81%, LDL by 72-86%, and triglycerides by 59-80%. This represents a comparable performance than that shown by simvastatin. Experimental evidence and docking studies suggest that the activity of these derivatives is associated with the inhibition of HMG-CoA reductase.

  1. Mode of action of human pharmaceuticals in fish: the effects of the 5-alpha-reductase inhibitor, dutasteride, on reproduction as a case study. (United States)

    Margiotta-Casaluci, Luigi; Hannah, Robert E; Sumpter, John P


    In recent years, a growing number of human pharmaceuticals have been detected in the aquatic environment, generally at low concentrations (sub-ng/L-low μg/L). In most cases, these compounds are characterised by highly specific modes of action, and the evolutionary conservation of drug targets in wildlife species suggests the possibility that pharmaceuticals present in the environment may cause toxicological effects by acting through the same targets as they do in humans. Our research addressed the question of whether or not dutasteride, a pharmaceutical used to treat benign prostatic hyperplasia, may cause adverse effects in a teleost fish, the fathead minnow (Pimephales promelas), by inhibiting the activity of both isoforms of 5α-reductase (5αR), the enzyme that converts testosterone into dihydrotestosterone (DHT). Mammalian pharmacological and toxicological information were used to guide the experimental design and the selection of relevant endpoints, according to the so-called "read-across approach", suggesting that dutasteride may affect male fertility and steroid hormone dynamics. Therefore, a 21-day reproduction study was conducted to determine the effects of dutasteride (10, 32 and 100 μg/L) on fish reproduction. Exposure to dutasteride significantly reduced fecundity of fish and affected several aspects of reproductive endocrine functions in both males and females. However, none of the observed adverse effects occurred at concentrations of exposure lower than 32 μg/L; this, together with the low volume of drug prescribed every year (10.34 kg in the UK in 2011), and the extremely low predicted environmental concentration (0.03 ng/L), suggest that, at present, the potential presence of dutasteride in the environment does not represent a threat to wild fish populations.

  2. Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors. (United States)

    Fatmawati, Sri; Kondo, Ryuichiro; Shimizu, Kuniyoshi


    A series of lanostane-type triterpenoids, identified as ganoderma alcohols and ganoderma acids, were isolated from the fruiting body of Ganoderma lingzhi. Some of these compounds were confirmed as active inhibitors of the in vitro human recombinant aldose reductase. This paper aims to explain the structural requirement for α-glucosidase inhibition. Our structure-activity studies of ganoderma alcohols showed that the OH substituent at C-3 and the double-bond moiety at C-24 and C-25 are necessary to increase α-glucosidase inhibitory activity. The structure-activity relationships of ganoderma acids revealed that the OH substituent at C-11 is an important feature and that the carboxylic group in the side chain is essential for the recognition of α-glucosidase inhibitory activity. Moreover, the double-bond moiety at C-20 and C-22 in the side chain and the OH substituent at C-3 of ganoderma acids improve α-glucosidase inhibitory activity. These results provide an approach with which to consider the structural requirements of lanostane-type triterpenoids from G. lingzhi. An understanding of these requirements is considered necessary in order to improve a new type of α-glucosidase inhibitor.

  3. Thioredoxin reductase inhibitor ethaselen increases the drug sensitivity of the colon cancer cell line LoVo towards cisplatin via regulation of G1 phase and reversal of G2/M phase arrest. (United States)

    Fu, Jia-Ning; Li, Jing; Tan, Qiang; Yin, Han-Wei; Xiong, Kun; Wang, Tian-Yu; Ren, Xiao-Yuan; Zeng, Hui-Hui


    We evaluated the combination treatment of ethaselen (BBSKE) as a thioredoxin reductase (TrxR) inhibitor plus cisplatin (CDDP) on the human colon adenocarcinoma cell line LoVo. Therapeutic effects ranging from nearly additive to clearly synergistic demonstrated an effective combination, i.e., the cytostatic dose of CDDP could be reduced without a loss in efficacy. To further investigate the cellular response mechanisms of these favorable outcomes, we analyzed the cell-cycle profiles, mRNA expression patterns, and protein levels of several key genes after incubation with BBSKE or CDDP separately and in combination. In appropriate conditions, CDDP induced arrest at the G2/M phase accompanied by the enhanced inhibitory phosphorylation of Cdk1 and the elevated protein expression of cyclin B1. BBSKE downregulated expression of cyclin D1 by increasing mRNA and protein levels of p21, and thus induced G1 phase arrest. BBSKE returned Cdk1 to an activated state, and reduced the protein level of cyclin B1 after incubation in combination with CDDP, which was consistent with the reduction in the percentage of cells in G2/M identified by flow cytometry. By regulating the G1 phase and reversing CDDP-induced G2/M phase arrest, BBSKE increases drug sensitivity of LoVo cells toward CDDP, and probably provides a meaningful anticancer strategy for further clinical studies.

  4. Chain Elongation of Aldoses by Indium-Mediated Coupling with 3-Bromopropenyl Esters

    DEFF Research Database (Denmark)

    Palmelund, Anders; Madsen, Robert


    A procedure is described for acyloxyallylation of unprotected aldoses with two functionalized reagents: 3-bromopropenyl acetate and 3-bromopropenyl benzoate. The reaction is performed in ethanol or a dioxane/water mixture in the presence of indium metal. The products are deesterified in the worku...

  5. The reversibility of the ketoamine linkages of aldoses with proteins. (United States)

    Acharya, A S; Sussman, L G


    The reaction of glyceraldehyde (aldotriose) with hemoglobin A is analogous to the nonenzymic glycosylation of the protein with glucose in that the initial reversible Schiff base adduct (aldimine) of aldotriose undergoes Amadori rearrangement as does that of aldohexose to form the more stable ketoamine adduct. The modification of the alpha-amino group on Val-1(beta) of hemoglobin A as a ketoamine (2-oxo-3-hydroxypropyl group) apparently lowers the pKa of the alpha-amino group of the protein, since this derivative of hemoglobin elutes earlier on carboxymethylcellulose columns than the derivatives containing 2-oxo-3-hydroxypropyl groups on the epsilon-amino groups, and unmodified hemoglobin A. Similar chromatographic behavior has been reported for hemoglobin A1c which contains glucose at its Val-1(beta) as the ketoamine adduct. This suggests the similarity in the chemical consequences of having the ketoamine adduct of an aldose at Val-1(beta) of hemoglobin A under physiological conditions. The formation of the 2-oxo-3-hydroxypropyl groups on Val-1(beta) is nearly irreversible as has been suggested for similar adducts of glucose. On the other hand, the 2-oxo-3-hydroxypropyl groups on the epsilon-amino groups appear to be labile. The buffer conditions considerably influence the reversibility of the ketoamine adducts of aldotriose on the epsilon-amino groups; the reversibility is significantly higher in Tris buffers as compared with that in phosphate buffers. It is suggested that under physiological conditions the ketoamine adducts of aldotriose on the epsilon-amino groups exist in equilibrium with the aldimine, the equilibrium being favored toward the ketoamine. The enhanced release of the 2-oxo-3-hydroxypropyl groups in Tris buffers is probably a reflection of the trans-Schiff base reaction of aldimine with Tris. In support of this hypothesis, sodium cyanoborohydride, a reagent selective for the reduction of the aldimine linkages, inhibited the labilizing influence of

  6. Up-regulation of hepatic low-density lipoprotein receptor-related protein 1: a possible novel mechanism of antiatherogenic activity of hydroxymethylglutaryl-coenzyme A reductase inhibitor Atorvastatin and hepatic LRP1 expression. (United States)

    Moon, Jae Hoon; Kang, Saet Byol; Park, Jong Suk; Lee, Byung Wan; Kang, Eun Seok; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo


    Low-density lipoprotein receptor-related protein 1 (LRP1) binds to apolipoprotein E and serves as a receptor for remnant lipoproteins in the liver, thus playing an important role in clearing these atherogenic particles. In this study, we investigated the effect of atorvastatin, a hydroxymethylglutaryl-coenzyme A reductase inhibitor, on hepatic LRP1 expression. We used HepG2 and Hep3B cells for in vitro study, and Otsuka Long-Evans Tokushima fatty and Sprague-Dawley rats for in vivo study. We used relatively high pharmacologic dose of atorvastatin in this study (in vitro, 0.5 μmol/L in culture media, for 48 hours; in vivo, 20 mg/[kg d], for 6 weeks). Atorvastatin increased LRP1 and low-density lipoprotein (LDL) receptor expression in HepG2 and Hep3B cells and induced hepatic LRP1 and LDL receptor expression in chow diet-fed Sprague-Dawley rats and high-fat diet-fed Otsuka Long-Evans Tokushima fatty rats. Atorvastatin decreased intracellular sterol level and increased the amount of the nuclear form of sterol response element-binding protein-2 (SREBP-2) in both HepG2 and Hep3B cells as well as in two animal models. Treatment of HepG2 cells with LDL increased intracellular sterol level and reduced LRP1, LDL receptor, and SREBP-2. When SREBP-2 in HepG2 cells was knocked down by small interfering RNA, the induction of LRP1 expression by atorvastatin did not take place. In conclusion, up-regulation of hepatic LRP1 might be a novel mechanism by which statin treatment decreases remnant lipoproteins. In addition, SREBP-2 acts as a mediator of atorvastatin-induced up-regulation of hepatic LRP1. Future studies using standard doses of atorvastatin in humans are needed to elucidate clinical relevance of these findings.

  7. 硝酸还原酶抑制剂钨酸钠对油菜硝态氮积累的影响%Effects of Nitrate Reductase Inhibitor Na2WO4 on Nitrate Accumulation in Oilseed Rape

    Institute of Scientific and Technical Information of China (English)

    杨荣; 邱炜红; 王朝辉; 王小英


    采用溶液培养方法,选取硝酸盐积累差异明显的两个油菜品种(低硝态氮积累品种‘红油3号’和高硝态氮积累品种‘中双6号’,研究苗期根系硝酸还原酶(NR)活性被抑制以后两个油菜品种叶片、叶柄和根系中NR活性和硝态氮含量的变化.结果表明:1.0 mmol·L-1的NR活性抑制剂Na2WO4对两个油菜品种的根系NR活性抑制效果最佳;根系NR活性被抑制以后,两个油菜品种的根系NR活性、硝态氮吸收速率均显著下降,而硝态氮含量却显著上升;且Na2WO4对‘中双6号’硝态氮吸收的抑制程度强于其对‘红油3号’的抑制.叶片和叶柄的NR活性变化不显著,但叶柄硝态氮含量显著下降,叶片硝态氮含量稳定,且这一趋势在低积累品种‘红油3号’中表现得更为明显.%A soilless culture (nutrient solution) experiment was conducted to study the effects of nitrate re-ductase inhibitor Na2WO4 on nitrate reductase (NR) activity and NO3"-N content in some organs (including root, leaf, petiole) of two different cultivars (high nitrate-N accumulation type 'Zhongshuang 6' and low nitrate-N accumulation type 'Hongyou 3') oilseed rape (Brassica napus L.) at seedling stage. Results showed that the most appropriate concentration of Na2WO4 was 1.0 mmol-L-1 Na2WO4 significantly decreased NR activity and NO3-N absorption rate in the root of oilseed rape comparing with the control (CK), however, significantly increasing in NO3-N content. High nitrate accumulation type 'Zhongshuang 6' had higher inhibiter efficiency comparing with low nitrate accumulation type 'Hongyou 3'. There were no significant difference on NR activity in leaf and petiole with or without Na2WO4, in contrast, Na2WO4 significantly decreased NO3 -N content in the petiole of oilseed rape, and NO3 -N content in the leaf was almost stable under it treatment, especially in 'Hongyou 3'.

  8. Quinone Reductase 2 Is a Catechol Quinone Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao (NYMEDCO)


    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  9. Active site fingerprinting and pharmacophore screening strategies for the identification of dual inhibitors of protein kinase C [Formula: see text] and poly (ADP-ribose) polymerase-1 (PARP-1). (United States)

    Chadha, Navriti; Silakari, Om


    Current clinical studies have revealed that diabetic complications are multifactorial disorders that target two or more pathways. The majority of drugs in clinical trial target aldose reductase and protein kinase C ([Formula: see text]), while recent studies disclosed a significant role played by poly (ADP-ribose) polymerase-1 (PARP-1). In light of this, the current study was aimed to identify novel dual inhibitors of [Formula: see text] and PARP-1 using a pharmaco-informatics methodology. Pharmacophore-based 3D QSAR models for these two targets were generated using HypoGen and used to screen three commercially available chemical databases to identify dual inhibitors of [Formula: see text] and PARP-1. Overall, 18 hits were obtained from the screening process; the hits were filtered based on their drug-like properties and predicted binding affinities (docking analysis). Important amino acid residues were predicted by developing a fingerprint of the active site using alanine-scanning mutagenesis and molecular dynamics. The stability of the complexes (18 hits with both proteins) and their final binding orientations were investigated using molecular dynamics simulations. Thus, novel hits have been predicted to have good binding affinities for [Formula: see text] and PARP-1 proteins, which could be further investigated for in vitro/in vivo activity.

  10. [Response of N transformation related soil enzyme activities to inhibitor applications]. (United States)

    Chen, Lijun; Wu, Zhijie; Jiang, Yong; Zhou, Likai


    With an aerobic incubation test, this paper studied the response of soil urease, nitrate reductase, nitrite reductase, and hydroxylamine reductase to urease inhibitor hydroquinone (HQ) applied in combination with nitrification inhibitor encapsulated calcium carbide (HQ + ECC) or dicyandiamide (HQ + DCD). The results showed that HQ + DCD could inhibit urease activity and increase activities of nitrate reductase, nitrite reductase, and hydroxylamine reductase significantly in comparison with CK, HQ and HQ + ECC. Under the condition of our test, there existed a significant relationship between soil urease, nitrate reductase, nitrite reductase, and hydroxylamine reductase activities and soil NH4+ and NO3- contents, NH3 volatilization and N2O emission rate, and regression analysis indicated that there were significantly positive relationships between soil urease, nitrite reductase and hydroxylamine reductase activities.

  11. Increased resistance to 14α-demethylase inhibitors (DMIs) in Aspergillus niger by coexpression of the Penicillium italicum eburicol 14α-demethylase (cyp51) and the A. Niger cytochrome P450 reductase (cprA) genes

    NARCIS (Netherlands)

    Brink, H.J.M. van den; Nistelrooy, H.J.G.M. van; Waard, M.A. de; Hondel, C.A.M.J.J. van den; Gorcom, R.F.M. van


    In this paper we describe the effects of over-expression of the Penicillium italicum gene encoding eburicol 14α-demethylase (cyp51), in Aspergillus niger strains with one or multiple copies of the gene encoding cytochrome P450 reductase (cpr A), on the eburicol 14α-demethylase activity. Eburicol 14α

  12. Isomerisation of aldoses in pyridine in the presence of aluminium oxide. (United States)

    Ekeberg, Dag; Morgenlie, Svein; Stenstrøm, Yngve


    Addition of aluminium oxide to boiling pyridine solutions of D-xylose, L-arabinose, D-mannose and D-glucose strongly increased the reaction rate of the aldose-ketose transformation. The maximum content of 2-ketose was reached after less than 2h for the aldopentoses and 3h for the aldohexoses. D-Threo-2-pentulose (xylulose) was prepared from D-xylose, and isolated as its O-isopropylidene derivative, the yield was nearly twice that compared to that usually obtained in the classical Lobry de Bruyn-Alberda van Ekenstein transformation in pyridine.

  13. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers. (United States)

    Reddy, K Ashok; Kumar, P Uday; Srinivasulu, M; Triveni, B; Sharada, K; Ismail, Ayesha; Reddy, G Bhanuprakash


    The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors.

  14. Carbohydrate Utilization in Streptococcus thermophilus : Characterization of the Genes for Aldose 1-Epimerase (Mutarotase) and UDPglucose 4-Epimerase

    NARCIS (Netherlands)

    Poolman, Bert; Royer, Theresa J.; Mainzer, Stanley E.; Schmidt, Brian F.


    The complete nucleotide sequences of the genes encoding aldose 1-epimerase (mutarotase) (galM) and UDPglucose 4-epimerase (galE) and flanking regions of Streptococcus thermophilus have been determined. Both genes are located immediately upstream of the S. thermophilus lac operon. To facilitate the i

  15. Aldose-ketose transformation for separation and/or chemical conversion of C6 and C5 sugars from biomass materials

    Energy Technology Data Exchange (ETDEWEB)

    Varanasi, Sasidhar; Relue, Patricia; Li, Bin


    Systems for converting aldose sugars to ketose sugars and separating and/or concentrating these sugars using differences in the sugars' abilities to bind to specific affinity ligands are described.

  16. Establishment of an in vitro screening model for steroid 5 alpha-reductase inhibitors with the microplate reader%酶标仪法5α-还原酶抑制剂体外筛选模型的建立

    Institute of Scientific and Technical Information of China (English)

    吴建辉; 孙祖越


    Objective:To establish an in vitro screening model for steroid 5 alpha-reductase inhibitors using the microplate reader.Methods:Steroid 5 alpha-reductase was obtained from the liver of female rats,an in vitro screening model for steroid 5 alphareductase inhibitors established using the 96-well plate and microplate reader after determination of the enzymatic activity,and the reliability of the model verified with the known 5 alpha-reductase inhibitors epristeride and finasteride.Added to the 96-well plate were the final concentrations of testosterone (0-40 μmol/L),NADPH (22 μmol/L),epristeride (0-60 nmol/L) or finasteride (0-60 nmol/L) and steroid 5 alpha-reductase (20 μl),the total volume of each well adjusted to 200 μl with Tris-Hcl buffer.The 96-well plate was placed in the microplate reader,mixed and incubated at 37 ℃,followed by detection of the A340nm value at 0 and 10 min and analysis of the data.Results:The Km value of steroid 5 alpha-reductase was 3.794 μmol/L,with a Vmax of 0.271 μmol/(L.min).The Ki of epristeride was 148.2 nmol/L,with an IC50 of 31.5 nmol/L,and the enzymatic reaction kinetic curve suggested that epristeride was an uncompetitive enzyme inhibitor.The Ki of finasteride was 158.8 nmol/L,with an IC50 of 13.6 nmol/L.The enzymatic reaction kinetic curve showed that both epristeride and finasteride were competitive enzyme inhibitors,similar to those reported in the published literature.Conclusion:A screening model was successfully established,which could rapidly and effectively screen steroid 5 alpha-reductase inhibitors in vitro.Natl J Androl,2013,19 (6):483-486%目的:建立酶标仪法5α-还原酶抑制剂体外筛选模型. 方法:取6只雌性SD大鼠肝脏制备5α-还原酶,检测酶活性后,利用96孔板、酶标仪及酶标仪法分析软件建立5α-还原酶抑制剂体外筛选模型,并通过已知5α-还原酶抑制剂爱普列特及非那甾胺验证模型的可靠性.实验分别设置0、30、60 nmol

  17. Aldo-Keto Reductases 1B in Endocrinology and Metabolism. (United States)

    Pastel, Emilie; Pointud, Jean-Christophe; Volat, Fanny; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie


    The aldose reductase (AR; human AKR1B1/mouse Akr1b3) has been the focus of many research because of its role in diabetic complications. The starting point of these alterations is the massive entry of glucose in polyol pathway where it is converted into sorbitol by this enzyme. However, the issue of AR function in non-diabetic condition remains unresolved. AR-like enzymes (AKR1B10, Akr1b7, and Akr1b8) are highly related isoforms often co-expressed with bona fide AR, making functional analysis of one or the other isoform a challenging task. AKR1B/Akr1b members share at least 65% protein identity and the general ability to reduce many redundant substrates such as aldehydes provided from lipid peroxidation, steroids and their by-products, and xenobiotics in vitro. Based on these properties, AKR1B/Akr1b are generally considered as detoxifying enzymes. Considering that divergences should be more informative than similarities to help understanding their physiological functions, we chose to review specific hallmarks of each human/mouse isoforms by focusing on tissue distribution and specific mechanisms of gene regulation. Indeed, although the AR shows ubiquitous expression, AR-like proteins exhibit tissue-specific patterns of expression. We focused on three organs where certain isoforms are enriched, the adrenal gland, enterohepatic, and adipose tissues and tried to connect recent enzymatic and regulation data with endocrine and metabolic functions of these organs. We presented recent mouse models showing unsuspected physiological functions in the regulation of glucido-lipidic metabolism and adipose tissue homeostasis. Beyond the widely accepted idea that AKR1B/Akr1b are detoxification enzymes, these recent reports provide growing evidences that they are able to modify or generate signal molecules. This conceptually shifts this class of enzymes from unenviable status of scavenger to upper class of messengers.

  18. Molecular distribution and degradation status of combined aldoses in sinking particulate organic matter (United States)

    Panagiotopoulos, C.; Sempéré, R.


    Particulate samples were collected by using floating sediment traps (50--300 m) and in situ pumps (30 and 200 m) in the Southern Indian Ocean (Polar Front Zone (PFZ) and Sub-Tropical Zone (STZ)), Mediterranean Sea (Ligurian and Ionian Seas) and Atlantic Ocean (Upwelling (UPW) of Agadir-Morocco). They were studied for monosaccharide composition after acid hydrolysis (HCl 0.09 M, 20 h, 100^oC) by using High Performance Anion Exchange Chromatography followed by Pulsed Amperometric Detection (HPAEC-PAD). Our results indicated that higher PCHO yields (calculated as PCHO-C/POC ratios) were associated to higher C:N ratios (Med. Sea sample, PCHO yields = 12.7 ± 7.7%; C:N ratios = 8.3 ± 1.6; n = 12) whether the opposite trend was found for Southern Ocean samples (PCHO yields = 3.3 ± 0.75%; C:N ratios = 5.7 ± 0.59, n = 5) indicating significant variability in the sugar content of particles which might be due to the degradation degree of the particles as well as to the initial chemical composition of plankton. Alternatively, other processes such as high production of extracellular polysaccharides (type transparent exopolymer polysaccharides (TEP)) due to phosphorus limitation of some phytoplanktonic species may increase the sugar content in Mediterranean particles and the C/N ratio. In any case, glucose appeared to be the most abundant monosaccharide in Mediterranean Sea or UPW samples (range 23--59 wt% of the total aldoses) whereas ribose (17--39 wt%) and galactose (range 10--28 wt%) were the predominant aldoses in Southern Indian Ocean. These sugars (glucose + ribose) exhibited a strong negative relationship with C:N (r = -0.53, p >0.01; n = 30) in sediment traps (data from this study) and sediment (data from literature) particulate material which further indicates that these two monosaccharides are selectively extracted from the carbohydrate pool in sediment. In vitro biodegradation experiments performed with large particles (>60 μm) sampled using in situ pumps in

  19. A DFT-based QSAR study on inhibition of human dihydrofolate reductase. (United States)

    Karabulut, Sedat; Sizochenko, Natalia; Orhan, Adnan; Leszczynski, Jerzy


    Diaminopyrimidine derivatives are frequently used as inhibitors of human dihydrofolate reductase, for example in treatment of patients whose immune system are affected by human immunodeficiency virus. Forty-seven dicyclic and tricyclic potential inhibitors of human dihydrofolate reductase were analyzed using the quantitative structure-activity analysis supported by DFT-based and DRAGON-based descriptors. The developed model yielded an RMSE deviation of 1.1 a correlation coefficient of 0.81. The prediction set was characterized by R(2)=0.60 and RMSE=3.59. Factors responsible for inhibition process were identified and discussed. The resulting model was validated via cross validation and Y-scrambling procedure. From the best model, we found several mass-related descriptors and Sanderson electronegativity-related descriptors that have the best correlations with the investigated inhibitory concentration. These descriptors reflect results from QSAR studies based on characteristics of human dihydrofolate reductase inhibitors.

  20. Isolated menthone reductase and nucleic acid molecules encoding same (United States)

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L


    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  1. 5{alpha}-reductase expression by prostate cancer cell lines and benign prostatic hyperplasia in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.M.; Masters, J.R.W. [Univ. College of London (United Kingdom)]|[Pfizer Central Research, Kent (United Kingdom); Ballard, S.A.; Worman, N. [Pfizer Central Research, Sandwich (United Kingdom)


    5{alpha}-Reductase (5{alpha}R) activity in two human prostate cancer cell lines was compared to that in benign prostatic hyperplasia (BPH) tissue and COS cells transfected with and expressing the human genes for 5{alpha}-reductase type 1 (5{alpha}R1) and type 2 (5{alpha}R2). Comparisons were based on pH profiles and sensitivities to selective inhibitors of 5{alpha}-reductase. In the cancer lines, activity was greatest over the pH range 7-8, compared to a sharp peak of activity between pH 5-5.5 in BPH tissue and COS cells expressing 5{alpha}R2. Finasteride and SKF105,657 were potent inhibitors of 5{alpha}-reductase activity in BPH tissue and COS cells expressing 5{alpha}R2, but weak inhibitors in the cancer lines and in COS cells expressing 5{alpha}R1. In contrast, LTK1 17,026 was a more potent inhibitor of 5{alpha}-reductase activity in the prostate cancer cell lines and in COS cells expressing 5{alpha}R1. These data indicate that human prostate cancer cell lines express 5{alpha}-reductase activity similar to that in COS cells transfected with 5{alpha}R1, but different from that in BPH tissue. This may be a consequence of in vitro culture. Alternatively, it may reflect a change occurring as a result of neoplastic transformation, in which case it will be important to select appropriate inhibitors in the clinic. 29 refs., 3 figs., 2 tabs.

  2. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules

    Directory of Open Access Journals (Sweden)

    Das Undurti N


    Full Text Available Abstract Lowering plasma low density lipoprotein-cholesterol (LDL-C, blood pressure, homocysteine, and preventing platelet aggregation using a combination of a statin, three blood pressure lowering drugs such as a thiazide, a β blocker, and an angiotensin converting enzyme (ACE inhibitor each at half standard dose; folic acid; and aspirin-called as polypill- was estimated to reduce cardiovascular events by ~80%. Essential fatty acids (EFAs and their long-chain metabolites: γ-linolenic acid (GLA, dihomo-GLA (DGLA, arachidonic acid, eicosapentaenoic acid (EPA, and docosahexaenoic acid (DHA and other products such as prostaglandins E1 (PGE1, prostacyclin (PGI2, PGI3, lipoxins (LXs, resolvins, protectins including neuroprotectin D1 (NPD1 prevent platelet aggregation, lower blood pressure, have anti-arrhythmic action, reduce LDL-C, ameliorate the adverse actions of homocysteine, show anti-inflammatory actions, activate telomerase, and have cytoprotective properties. Thus, EFAs and their metabolites show all the classic actions expected of the "polypill". Unlike the proposed "polypill", EFAs are endogenous molecules present in almost all tissues, have no significant or few side effects, can be taken orally for long periods of time even by pregnant women, lactating mothers, and infants, children, and adults; and have been known to reduce the incidence cardiovascular diseases including stroke. In addition, various EFAs and their long-chain metabolites not only enhance nitric oxide generation but also react with nitric oxide to yield their respective nitroalkene derivatives that produce vascular relaxation, inhibit neutrophil degranulation and superoxide formation, inhibit platelet activation, and possess PPAR-γ ligand activity and release NO, thus prevent platelet aggregation, thrombus formation, atherosclerosis, and cardiovascular diseases. Based on these evidences, I propose that a rational combination of ω-3 and ω-6 fatty acids and the co

  3. Trametes versicolor carboxylate reductase uncovered


    Winkler, Margit; Winkler, Christoph K.


    Abstract The first carboxylate reductase from Trametes versicolor was identified, cloned, and expressed in Escherichia coli. The enzyme reduces aromatic acids such as benzoic acid and derivatives, cinnamic acid, and 3-phenylpropanoic acid, but also aliphatic acids such as octanoic acid are reduced. Graphical abstract

  4. Inhibition Activities of Tanshinones on Aldose Reductase%丹参酮类化合物对醛糖还原酶抑制作用的研究

    Institute of Scientific and Technical Information of China (English)

    杜志云; 覃江克; 乔薇; 马林; 古练权


    从西藏灵芝丹参的脂溶性提取物中分离出了12个丹参酮类化合物,并对这些化合物对牛晶状体醛糖还原酶的抑制作用进行了研究,结果表明丹参酮类化合物对醛糖还原酶均具有较强的抑制作用,其中带有半醌结构的丹参酮类化合物化合物S6、S7、S8、及S9对醛糖还原酶的抑制作用活性最强,IC50值分别为32.9 μmol/L、36.5 μmol/L、34.9 μmol/L 和 39.6 μmol/L.

  5. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. (United States)

    Wang, Jing-Fang; Wei, Dong-Qing; Lin, Ying; Wang, Yong-Hua; Du, Hong-Li; Li, Yi-Xve; Chou, Kuo-Chen


    NAD(P)H-dependent d-xylose reductase is a homodimeric oxidoreductase that belongs to the aldo-keto reductase superfamily. The enzyme has the special function to catalyze the first step in the assimilation of xylose into yeast metabolic pathways. Performing this function via reducing the open chain xylose to xylitol, the xylose reductase of Pichia stipitis is one of the most important enzymes that can be used to construct recombinant Saccharomyces cerevisiae strain for utilizing xylose and producing alcohol. To investigate into the interaction mechanism of the enzyme with its ligand NAD and NADP, the 3D structure was developed for the NAD(P)H-dependent d-xylose reductase from P. stipitis. With the 3D structure, the molecular docking operations were conducted to find the most stable bindings of the enzyme with NAD and NADP, respectively. Based on these results, the binding pockets of the enzyme for NAD and NADP have been explicitly defined. It has been found that the residues in forming the binding pockets for both NAD and NADP are almost the same and mainly hydrophilic. These findings may be used to guide mutagenesis studies, providing useful clues to modify the enzyme to improve the utilization of xylose for producing alcohol. Also, because human aldose reductases have the function to reduce the open chain form of glucose to sorbitol, a process physiologically significant for diabetic patients at the time that their blood glucose levels are elevated, the information gained through this study may also stimulate the development of new strategies for therapeutic treatment of diabetes.

  6. Nitrate Reductase: Properties and Regulation

    Institute of Scientific and Technical Information of China (English)


    Nitrate Reductase (NR) is a rating-limit and key enzyme of nitrate assimilation in plants ,so ,NR activity is important for growth,development and the dry matter accumulation of plants. The regulation of NR activity appears to be rather complex and many studies have been devoted to the description of regulation and properties,but in this paper we focus on the properties and regulation of NR in higher plants.

  7. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2. 4- angstrom resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyan, J.; Xiangpeng Kong; Krishna, T.S.R.; Murgolo, N.J.; Field, H.; Cerami, A.; Henderson, G.B. (Rockefeller Univ., New York, NY (United States)); Sweet, R.M. (Brookhaven National Lab., Upton, NY (United States))


    Trypanosomes and related protozoan parasites lack glutathione reductase and possess instead a closely related enzyme that serves as the reductant of a bis(glutathione)-spermidien conjugate, trypanothione. The human and parasite enzymes have mutually exclusive substrate specificities, providing a route for the design of therapeutic agents by specific inhibition of the parasite enzyme. The authors report here the three-dimensional structure of trypanothione reductase from Crithidia fasciculata and show that it closely resembles the structure of human glutathione reductase. In particular, the core structure surrounding the catalytic machinery is almost identical in the two enzymes. However, significant differences are found at the substrate binding sites. A cluster of basic residues in glutathione reductase is replaced by neutral, hydrophobic, or acidic residues in trypanothione reductase, consistent with the nature of the spermidine linkage and the change in overall charge of the substrate from {minus}2 to +1, respectively. The binding site is more open in trypanothione reductase due to rotations of about 4{degree} in the domains that form in site, with relative shifts of as much as 2-3 {angstrom} in residues that can interact with potential inhibitors and complement previous modeling and mutagenesis studies on the two enzymes.

  8. Fatty acyl-CoA reductase

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Steven E.; Somerville, Chris R.


    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  9. Properties of the arsenate reductase of plasmid R773. (United States)

    Gladysheva, T B; Oden, K L; Rosen, B P


    Resistance to toxic oxyanions in Escherichia coli is conferred by the ars operon carried on plasmid R773. The gene products of this operon catalyze extrusion of antimonials and arsenicals from cells of E. coli, thus providing resistance to those toxic oxyanions. In addition, resistance to arsenate is conferred by the product of the arsC gene. In this report, purified ArsC protein was shown to catalyze reduction of arsenate to arsenite. The enzymatic activity of the ArsC protein required glutaredoxin as a source of reducing equivalents. Other reductants, including glutathione and thioredoxin, were not effective electron donors. A spectrophotometric assay was devised in which arsenate reduction was coupled to NADPH oxidation. The results obtained with the coupled assay corresponded to those found by direct reduction of radioactive arsenate to arsenite. The only substrate of the reaction was arsenate (Km = 8 mM); other oxyanions including phosphate, sulfate, and antimonate were not reduced. Phosphate and sulfate were weak inhibitors, while the product, arsenite, was a stronger inhibitor (Ki = 0.1 mM). Arsenate reductase activity exhibited a pH optimum of 6.3-6.8. These results indicate that the ArsC protein is a novel reductase, and elucidation of its enzymatic mechanism should be of interest.

  10. Implication of Crystal Water Molecules in Inhibitor Binding at ALR2 Active Site

    Directory of Open Access Journals (Sweden)



    Full Text Available Water molecules play a crucial role in mediating the interaction between a ligand and a macromolecule. The solvent environment around such biomolecule controls their structure and plays important role in protein-ligand interactions. An understanding of the nature and role of these water molecules in the active site of a protein could greatly increase the efficiency of rational drug design approaches. We have performed the comparative crystal structure analysis of aldose reductase to understand the role of crystal water in protein-ligand interaction. Molecular dynamics simulation has shown the versatile nature of water molecules in bridge H bonding during interaction. Occupancy and life time of water molecules depend on the type of cocrystallized ligand present in the structure. The information may be useful in rational approach to customize the ligand, and thereby longer occupancy and life time for bridge H-bonding.

  11. 5 Alpha-reductase inhibitory and antiandrogenic activities of novel steroids in hamster seminal vesicles. (United States)

    Cabeza, Marisa; Bratoeff, Eugene; Flores, Eugenio; Ramírez, Elena; Calleros, Jorge; Montes, Diana; Quiroz, Alexandra; Heuze, Ivonne


    The pharmacological activity of several 16-bromosubstituted trienediones 4 and 5, 16-methyl substituted dienediones 6 and 7 and the 16-methyl substituted trienedione 8 was determined on gonadectomized hamster seminal vesicles by measuring the in vitro conversion of testosterone (T) to dihydrotestosterone (DHT) as 5alpha-reductase inhibitors and also the ability of these steroids to bind to the androgen receptor. Steroids 6 and 7 when injected together with T decreased the weight of the seminal vesicles thus showing an antiandrogenic effect. Compounds 5 and 6 reduced substantially the conversion of T to DHT and therefore can be considered good inhibitors for the enzyme 5alpha-reductase; however both steroids failed to form a complex with the androgen receptor. On the other hand compound 7 which showed a very small inhibitory activity for the enzyme 5alpha-reductase, exhibited a very high affinity for the androgen receptor and thus can be considered an effective antiandrogen. This compound also reduced substantially the weight of the seminal vesicles. Steroids 4 and 8 did not reduce the weight of the seminal vesicles and exhibited a low affinity for the androgen receptor; 8 showed a weak 5alpha-reductase inhibitory activity, whereas 4 exhibited a weak androgenic effect.

  12. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel


    Full Text Available Abstract Background Two heterologous pathways have been used to construct recombinant xylose-fermenting Saccharomyces cerevisiae strains: i the xylose reductase (XR and xylitol dehydrogenase (XDH pathway and ii the xylose isomerase (XI pathway. In the present study, the Pichia stipitis XR-XDH pathway and the Piromyces XI pathway were compared in an isogenic strain background, using a laboratory host strain with genetic modifications known to improve xylose fermentation (overexpressed xylulokinase, overexpressed non-oxidative pentose phosphate pathway and deletion of the aldose reductase gene GRE3. The two isogenic strains and the industrial xylose-fermenting strain TMB 3400 were studied regarding their xylose fermentation capacity in defined mineral medium and in undetoxified lignocellulosic hydrolysate. Results In defined mineral medium, the xylose consumption rate, the specific ethanol productivity, and the final ethanol concentration were significantly higher in the XR- and XDH-carrying strain, whereas the highest ethanol yield was achieved with the strain carrying XI. While the laboratory strains only fermented a minor fraction of glucose in the undetoxified lignocellulose hydrolysate, the industrial strain TMB 3400 fermented nearly all the sugar available. Xylitol was formed by the XR-XDH-carrying strains only in mineral medium, whereas in lignocellulose hydrolysate no xylitol formation was detected. Conclusion Despite by-product formation, the XR-XDH xylose utilization pathway resulted in faster ethanol production than using the best presently reported XI pathway in the strain background investigated. The need for robust industrial yeast strains for fermentation of undetoxified spruce hydrolysates was also confirmed.


    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  14. Changes in aortic endothelium ultrastructure in male rats following castration, replacement with testosterone and administration of 5α-reductase inhibitor%去势或用5α-还原酶抑制剂后雄性大鼠血管内皮超微结构改变的研究

    Institute of Scientific and Technical Information of China (English)

    Y. L. Lu; L. Kuang; H. Zhu; H. Wu; X. F. Wang; Y. P. Pang; N. J. Wang; D. L. Yu


    Aim: To investigate the relationship between low androgen level and ultrastructure of vascular endothelium. Methods:Forty-eight male Sprague-Dawley rats were randomly divided into four groups: group A, normal rats with sham castration; group B, castrated rats; group C, castrated rats given testosterone (T) undecanoate; and group D, intact rats treated with 5α-reductase inhibitor. After 10 weeks of treatment or castration, rats in different groups were killed and serum T, free T (FT) and dihydrotestosterone (DHT) were measured. The aortic endothelia were scanned under electron microcopy and the Vascular Endothelium Structure Score (VESS) was computed. Results: Serum T and FT concentrations of rats in group B were significantly lower than those of the other three groups (P < 0.01);DHT concentrations of group D rats were significantly decreased (P < 0.01) when compared with those of groups A and C. Rats in groups B and D rats (with low androgen levels) had obvious damage to their endothelial surfaces,which appeared crimpled, rough, adhesive and ruptured, and had high destruction of VESS. Conclusion: These results suggest that low concentrations of T and DHT are associated with ultrastructural damage of the aortic endothelia in male rats.%目的:研究低雄性激素水平对雄性大鼠血管内皮超微结构改变的影响.方法:将48只雄性SD大鼠随机分成四组:A组为正常大鼠作为对照组,B组为雄性大鼠去势组,C组为去势后用十一酸睾酮(T)替代治疗大鼠组,D组为正常大鼠用5α-还原酶抑制剂治疗组,每组均为12只大鼠.10周后用放射免疫法测定血清睾酮,游离睾酮(Free Testosterone,FT)和双氢睾酮(Dihydrotestosterone,DHT)水平,用扫描电镜观察大鼠腹主动脉内皮的超微结构并给予血管内皮结构评分(VESS).结果:B组的血清睾酮和游离睾酮的水平与A、C、D组相比较有显著地降低(P<0.01);D组的双氢睾酮水平与A组和C组比较显著地降低(P<0.01);

  15. Regulation of HMG-CoA reductase in MCF-7 cells by genistein, EPA, and DHA, alone and in combination with mevastatin. (United States)

    Duncan, Robin E; El-Sohemy, Ahmed; Archer, Michael C


    We investigated the regulation of HMG-CoA reductase in MCF-7 human breast cancer cells by genistein, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). All three compounds down-regulated reductase activity, primarily through post-transcriptional effects. In mevastatin-treated cells, only genistein and DHA abrogated the induction of reductase activity caused by this competitive inhibitor. Diets rich in soy isoflavones and fish oils, therefore, may exert anti-cancer effects through the inhibition of mevalonate synthesis in the breast. Genistein and DHA, in particular, may augment the efficacy of statins, increasing the potential for use of these drugs in adjuvant therapy for breast cancer.

  16. I2-Catalyzed Oxidative Condensation of Aldoses with Diamines: Synthesis of Aldo-Naphthimidazoles for Carbohydrate Analysis

    Directory of Open Access Journals (Sweden)

    Chunchi Lin


    Full Text Available A novel method for the conversion of unprotected and unmodified aldoses to aldo-imidazoles has been developed. Using iodine as a catalyst in acetic acid solution, a series of mono- and oligosaccharides, including those containing carboxyl and acetamido groups, undergo an oxidative condensation reaction with aromatic vicinal diamines at room temperature to give the corresponding aldo-imidazole products in high yields. No cleavage of the glycosidic bond occurs under the mild reaction conditions. The compositional analysis of saccharides is commonly realized by capillary electropheresis of the corresponding aldo-imidazole derivatives, which are easily synthesized by the reported iodine-promoted oxidative condensation. In addition, a series of aldo-imidazoles were determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS to analyze molecular weight and ion intensity. The diamine-labeled saccharides showed enhanced signals in MALDI–TOF MS. The combined use of aldoimidazole derivatization and mass spectrometric analysis thus provides a rapid method for identification of saccharides, even when less than 1 pmol of saccharide is present in the sample. These results can be further applied to facilitate the isolation and analysis of novel saccharides.

  17. The Characteristics and Regulatory Mechanisms of Superoxide Generation from eNOS Reductase Domain.

    Directory of Open Access Journals (Sweden)

    Hu Peng

    Full Text Available In addition to superoxide (O2.- generation from nitric oxide synthase (NOS oxygenase domain, a new O2.- generation site has been identified in the reductase domain of inducible NOS (iNOS and neuronal NOS (nNOS. Cysteine S-glutathionylation in eNOS reductase domain also induces O2.- generation from eNOS reductase domain. However, the characteristics and regulatory mechanism of the O2.- generation from NOS reductase domain remain unclear. We cloned and purified the wild type bovine eNOS (WT eNOS, a mutant of Serine 1179 replaced with aspartic acid eNOS (S1179D eNOS, which mimics the negative charge caused by phosphorylationand truncated eNOS reductase domain (eNOS RD. Both WT eNOS and S1179D eNOS generated significant amount of O2.- in the absence of BH4 and L-arginine. The capacity of O2.- generation from S1179D eNOS was significantly higher than that of WT eNOS (1.74:1. O2.- generation from both WT eNOS and S1179D eNOS were not completely inhibited by 100nM tetrahydrobiopterin(BH4. This BH4 un-inhibited O2.- generation from eNOS was blocked by 10mM flavoprotein inhibitor, diphenyleneiodonium (DPI. Purified eNOS reductase domain protein confirmed that this BH4 un-inhibited O2.- generation originates at the FMN or FAD/NADPH binding site of eNOS reductase domain. DEPMPO-OOH adduct EPR signals and NADPH consumptions analyses showed that O2.- generation from eNOS reductase domain was regulated by Serine 1179 phosphorylation and DPI, but not by L-arginine, BH4 or calmodulin (CaM. In addition to the heme center of eNOS oxygenase domain, we confirmed another O2.- generation site in the eNOS reductase domain and characterized its regulatory properties.

  18. Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110

    Directory of Open Access Journals (Sweden)

    Ryu Yeon-Woo


    Full Text Available Abstract Background Erythrose reductase (ER catalyzes the final step of erythritol production, which is reducing erythrose to erythritol using NAD(PH as a cofactor. ER has gained interest because of its importance in the production of erythritol, which has extremely low digestibility and approved safety for diabetics. Although ERs were purified and characterized from microbial sources, the entire primary structure and the corresponding DNA for ER still remain unknown in most of erythritol-producing yeasts. Candida magnoliae JH110 isolated from honeycombs produces a significant amount of erythritol, suggesting the presence of erythrose metabolizing enzymes. Here we provide the genetic sequence and functional characteristics of a novel NADPH-dependent ER from C. magnoliae JH110. Results The gene encoding a novel ER was isolated from an osmophilic yeast C. magnoliae JH110. The ER gene composed of 849 nucleotides encodes a polypeptide with a calculated molecular mass of 31.4 kDa. The deduced amino acid sequence of ER showed a high degree of similarity to other members of the aldo-keto reductase superfamily including three ER isozymes from Trichosporonoides megachiliensis SNG-42. The intact coding region of ER from C. magnoliae JH110 was cloned, functionally expressed in Escherichia coli using a combined approach of gene fusion and molecular chaperone co-expression, and subsequently purified to homogeneity. The enzyme displayed a temperature and pH optimum at 42°C and 5.5, respectively. Among various aldoses, the C. magnoliae JH110 ER showed high specific activity for reduction of erythrose to the corresponding alcohol, erythritol. To explore the molecular basis of the catalysis of erythrose reduction with NADPH, homology structural modeling was performed. The result suggested that NADPH binding partners are completely conserved in the C. magnoliae JH110 ER. Furthermore, NADPH interacts with the side chains Lys252, Thr255, and Arg258, which could

  19. Binding of Natural and Synthetic Polyphenols to Human Dihydrofolate Reductase

    Directory of Open Access Journals (Sweden)

    José Neptuno Rodríguez-López


    Full Text Available Dihydrofolate reductase (DHFR is the subject of intensive investigation since it appears to be the primary target enzyme for antifolate drugs. Fluorescence quenching experiments show that the ester bond-containing tea polyphenols (--epigallocatechin gallate (EGCG and (--epicatechin gallate (ECG are potent inhibitors of DHFR with dissociation constants (KD of 0.9 and 1.8 μM, respectively, while polyphenols lacking the ester bound gallate moiety [e.g., (--epigallocatechin (EGC and (--epicatechin (EC] did not bind to this enzyme. To avoid stability and bioavailability problems associated with tea catechins we synthesized a methylated derivative of ECG (3-O-(3,4,5-trimethoxybenzoyl-(--epicatechin; TMECG, which effectively binds to DHFR (KD = 2.1 μM. In alkaline solution, TMECG generates a stable quinone methide product that strongly binds to the enzyme with a KD of 8.2 nM. Quercetin glucuronides also bind to DHFR but its effective binding was highly dependent of the sugar residue, with quercetin-3-xyloside being the stronger inhibitor of the enzyme with a KD of 0.6 μM. The finding that natural polyphenols are good inhibitors of human DHFR could explain the epidemiological data on their prophylactic effects for certain forms of cancer and open a possibility for the use of natural and synthetic polyphenols in cancer chemotherapy.

  20. Drug: D06403 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D06403 Drug Ranirestat (JAN/INN) C17H11BrFN3O4 418.9917 420.1893 D06403.gif aldose ...reductase inhibitor [HSA:231] [KO:K00011] CAS: 147254-64-6 PubChem: 47208060 LigandBox: D06403 ATOM 26 1 N4y

  1. Drug: D02323 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available (ATC) classification [BR:br08303] A ALIMENTARY TRACT AND METABOLISM A10 DRUGS USED IN DIABETES... A10X OTHER DRUGS USED IN DIABETES A10XA Aldose reductase inhibitors A10XA01 Tolrestat D02323 T

  2. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part II: Fatty acids and aldoses (United States)

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.


    The activities of sediment-dwelling fauna are known to influence the rates of and pathways through which organic matter is cycled in marine sediments, and thus to influence eventual organic carbon burial or decay. However, due to methodological constraints, the role of faunal gut passage in determining the subsequent composition and thus degradability of organic matter is relatively little studied. Previous studies of organic matter digestion by benthic fauna have been unable to detect uptake and retention of specific biochemicals in faunal tissues, and have been of durations too short to fit digestion into the context of longer-term sedimentary degradation processes. Therefore this study aimed to investigate the aldose and fatty acid compositional alterations occurring to organic matter during gut passage by the abundant and ubiquitous polychaetes Hediste diversicolor and Arenicola marina, and to link these to longer-term changes typically observed during organic matter decay. This aim was approached through microcosm experiments in which selected polychaetes were fed with 13C-labelled algal detritus, and organisms, sediments, and faecal pellets were sampled at three timepoints over ∼6 weeks. Samples were analysed for their 13C-labelled aldose and fatty acid contents using GC-MS and GC-IRMS. Compound-selective net accumulation of biochemicals in polychaete tissues was observed for both aldoses and fatty acids, and the patterns of this were taxon-specific. The dominant patterns included an overall loss of glucose and polyunsaturated fatty acids; and preferential preservation or production of arabinose, microbial compounds (rhamnose, fucose and microbial fatty acids), and animal-synthesised fatty acids. These patterns may have been driven by fatty acid essentiality, preferential metabolism of glucose, and A. marina grazing on bacteria. Fatty acid suites in sediments from faunated microcosms showed greater proportions of saturated fatty acids and bacterial markers

  3. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci. (United States)

    Plancarte, Agustin; Nava, Gabriela


    Thioredoxin glutathione reductases (TGRs) (EC were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  4. Respiratory arsenate reductase as a bidirectional enzyme (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.


    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  5. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. (United States)

    Gang, D R; Kasahara, H; Xia, Z Q; Vander Mijnsbrugge, K; Bauw, G; Boerjan, W; Van Montagu, M; Davin, L B; Lewis, N G


    Pinoresinol-lariciresinol and isoflavone reductase classes are phylogenetically related, as is a third, the so-called "isoflavone reductase homologs." This study establishes the first known catalytic function for the latter, as being able to engender the NADPH-dependent reduction of phenylcoumaran benzylic ethers. Accordingly, all three reductase classes are involved in the biosynthesis of important and related phenylpropanoid-derived plant defense compounds. In this investigation, the phenylcoumaran benzylic ether reductase from the gymnosperm, Pinus taeda, was cloned, with the recombinant protein heterologously expressed in Escherichia coli. The purified enzyme reduces the benzylic ether functionalities of both dehydrodiconiferyl alcohol and dihydrodehydrodiconiferyl alcohol, with a higher affinity for the former, as measured by apparent Km and Vmax values and observed kinetic 3H-isotope effects. It abstracts the 4R-hydride of the required NADPH cofactor in a manner analogous to that of the pinoresinol-lariciresinol reductases and isoflavone reductases. A similar catalytic function was observed for the corresponding recombinant reductase whose gene was cloned from the angiosperm, Populus trichocarpa. Interestingly, both pinoresinol-lariciresinol reductases and isoflavone reductases catalyze enantiospecific conversions, whereas the phenylcoumaran benzylic ether reductase only shows regiospecific discrimination. A possible evolutionary relationship among the three reductase classes is proposed, based on the supposition that phenylcoumaran benzylic ether reductases represent the progenitors of pinoresinol-lariciresinol and isoflavone reductases.

  6. Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. (United States)

    Horchani, Faouzi; Prévot, Marianne; Boscari, Alexandre; Evangelisti, Edouard; Meilhoc, Eliane; Bruand, Claude; Raymond, Philippe; Boncompagni, Eric; Aschi-Smiti, Samira; Puppo, Alain; Brouquisse, Renaud


    Nitric oxide (NO) is a signaling and defense molecule of major importance in living organisms. In the model legume Medicago truncatula, NO production has been detected in the nitrogen fixation zone of the nodule, but the systems responsible for its synthesis are yet unknown and its role in symbiosis is far from being elucidated. In this work, using pharmacological and genetic approaches, we explored the enzymatic source of NO production in M. truncatula-Sinorhizobium meliloti nodules under normoxic and hypoxic conditions. When transferred from normoxia to hypoxia, nodule NO production was rapidly increased, indicating that NO production capacity is present in functioning nodules and may be promptly up-regulated in response to decreased oxygen availability. Contrary to roots and leaves, nodule NO production was stimulated by nitrate and nitrite and inhibited by tungstate, a nitrate reductase inhibitor. Nodules obtained with either plant nitrate reductase RNA interference double knockdown (MtNR1/2) or bacterial nitrate reductase-deficient (napA) and nitrite reductase-deficient (nirK) mutants, or both, exhibited reduced nitrate or nitrite reductase activities and NO production levels. Moreover, NO production in nodules was found to be inhibited by electron transfer chain inhibitors, and nodule energy state (ATP-ADP ratio) was significantly reduced when nodules were incubated in the presence of tungstate. Our data indicate that both plant and bacterial nitrate reductase and electron transfer chains are involved in NO synthesis. We propose the existence of a nitrate-NO respiration process in nodules that could play a role in the maintenance of the energy status required for nitrogen fixation under oxygen-limiting conditions.

  7. New roles of flavoproteins in molecular cell biology: an unexpected role for quinone reductases as regulators of proteasomal degradation. (United States)

    Sollner, Sonja; Macheroux, Peter


    Quinone reductases are ubiquitous soluble enzymes found in bacteria, fungi, plants and animals. These enzymes utilize a reduced nicotinamide such as NADH or NADPH to reduce the flavin cofactor (either FMN or FAD), which then affords two-electron reduction of cellular quinones. Although the chemical nature of the quinone substrate is still a matter of debate, the reaction appears to play a pivotal role in quinone detoxification by preventing the generation of potentially harmful semiquinones. In recent years, an additional role of quinone reductases as regulators of proteasomal degradation of transcription factors and possibly intrinsically unstructured protein has emerged. To fulfil this role, quinone reductase binds to the core particle of the proteasome and recruits certain transcription factors such as p53 and p73alpha to the complex. The latter process appears to be governed by the redox state of the flavin cofactor of the quinone reductase, thus linking the stability of transcription factors to cellular events such as oxidative stress. Here, we review the current evidence for protein complex formation between quinone reductase and the 20S proteasome in eukaryotic cells and describe the regulatory role of this complex in stabilizing transcription factors by acting as inhibitors of their proteasomal degradation.

  8. Identification of a 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid Reductase, FlRed, in an Alginolytic Bacterium Flavobacterium sp. Strain UMI-01

    Directory of Open Access Journals (Sweden)

    Akira Inoue


    Full Text Available In alginate-assimilating bacteria, alginate is depolymerized to unsaturated monosaccharide by the actions of endolytic and exolytic alginate lyases (EC and EC The monosaccharide is non-enzymatically converted to 4-deoxy-l-ery thro-5-hexoseulose uronic acid (DEH, then reduced to 2-keto-3-deoxy-d-gluconate (KDG by a specific reductase, and metabolized through the Entner–Doudoroff pathway. Recently, the NADPH-dependent reductase A1-R that belongs to short-chain dehydrogenases/reductases (SDR superfamily was identified as the DEH-reductase in Sphingomonas sp. A1. We have subsequently noticed that an SDR-like enzyme gene, flred, occurred in the genome of an alginolytic bacterium Flavobacterium sp. strain UMI-01. In the present study, we report on the deduced amino-acid sequence of flred and DEH-reducing activity of recombinant FlRed. The deduced amino-acid sequence of flred comprised 254 residues and showed 34% amino-acid identities to that of A1-R from Sphingomonas sp. A1 and 80%–88% to those of SDR-like enzymes from several alginolytic bacteria. Common sequence motifs of SDR-superfamily enzymes, e.g., the catalytic tetrad Asn-Lys-Tyr-Ser and the cofactor-binding sequence Thr-Gly-x-x-x-Gly-x-Gly in Rossmann fold, were completely conserved in FlRed. On the other hand, an Arg residue that determined the NADPH-specificity of Sphingomonas A1-R was replaced by Glu in FlRed. Thus, we investigated cofactor-preference of FlRed using a recombinant enzyme. As a result, the recombinant FlRed (recFlRed was found to show high specificity to NADH. recFlRed exhibited practically no activity toward variety of aldehyde, ketone, keto ester, keto acid and aldose substrates except for DEH. On the basis of these results, we conclude that FlRed is the NADH-dependent DEH-specific SDR of Flavobacterium sp. strain UMI-01.

  9. Synthesis of 3-[(N-carboalkoxy)ethylamino]-indazole-dione derivatives and their biological activities on human liver carbonyl reductase. (United States)

    Berhe, Solomon; Slupe, Andrew; Luster, Choice; Charlier, Henry A; Warner, Don L; Zalkow, Leon H; Burgess, Edward M; Enwerem, Nkechi M; Bakare, Oladapo


    A series of indazole-dione derivatives were synthesized by the 1,3-dipolar cycloaddition reaction of appropriate substituted benzoquinones or naphthoquinones and N-carboalkoxyamino diazopropane derivatives. These compounds were evaluated for their effects on human carbonyl reductase. Several of the analogs were found to serve as substrates for carbonyl reductase with a wide range of catalytic efficiencies, while four analogs display inhibitory activities with IC(50) values ranging from 3-5 microM. Two of the inhibitors were studied in greater detail and were found to be noncompetitive inhibitors against both NADPH and menadione with K(I) values ranging between 2 and 11 microM. Computational studies suggest that conformation of the compounds may determine whether the indazole-diones bind productively to yield product or nonproductively to inhibit the enzyme.

  10. Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate. (United States)

    Dawson, Alice; Gibellini, Federica; Sienkiewicz, Natasha; Tulloch, Lindsay B; Fyfe, Paul K; McLuskey, Karen; Fairlamb, Alan H; Hunter, William N


    The protozoan Trypanosoma brucei has a functional pteridine reductase (TbPTR1), an NADPH-dependent short-chain reductase that participates in the salvage of pterins, which are essential for parasite growth. PTR1 displays broad-spectrum activity with pterins and folates, provides a metabolic bypass for inhibition of the trypanosomatid dihydrofolate reductase and therefore compromises the use of antifolates for treatment of trypanosomiasis. Catalytic properties of recombinant TbPTR1 and inhibition by the archetypal antifolate methotrexate have been characterized and the crystal structure of the ternary complex with cofactor NADP+ and the inhibitor determined at 2.2 A resolution. This enzyme shares 50% amino acid sequence identity with Leishmania major PTR1 (LmPTR1) and comparisons show that the architecture of the cofactor binding site, and the catalytic centre are highly conserved, as are most interactions with the inhibitor. However, specific amino acid differences, in particular the placement of Trp221 at the side of the active site, and adjustment of the beta6-alpha6 loop and alpha6 helix at one side of the substrate-binding cleft significantly reduce the size of the substrate binding site of TbPTR1 and alter the chemical properties compared with LmPTR1. A reactive Cys168, within the active site cleft, in conjunction with the C-terminus carboxyl group and His267 of a partner subunit forms a triad similar to the catalytic component of cysteine proteases. TbPTR1 therefore offers novel structural features to exploit in the search for inhibitors of therapeutic value against African trypanosomiasis.

  11. Discovery of pinoresinol reductase genes in sphingomonads. (United States)

    Fukuhara, Y; Kamimura, N; Nakajima, M; Hishiyama, S; Hara, H; Kasai, D; Tsuji, Y; Narita-Yamada, S; Nakamura, S; Katano, Y; Fujita, N; Katayama, Y; Fukuda, M; Kajita, S; Masai, E


    Bacterial genes for the degradation of major dilignols produced in lignifying xylem are expected to be useful tools for the structural modification of lignin in plants. For this purpose, we isolated pinZ involved in the conversion of pinoresinol from Sphingobium sp. strain SYK-6. pinZ showed 43-77% identity at amino acid level with bacterial NmrA-like proteins of unknown function, a subgroup of atypical short chain dehydrogenases/reductases, but revealed only 15-21% identity with plant pinoresinol/lariciresinol reductases. PinZ completely converted racemic pinoresinol to lariciresinol, showing a specific activity of 46±3 U/mg in the presence of NADPH at 30°C. In contrast, the activity for lariciresinol was negligible. This substrate preference is similar to a pinoresinol reductase, AtPrR1, of Arabidopsis thaliana; however, the specific activity of PinZ toward (±)-pinoresinol was significantly higher than that of AtPrR1. The role of pinZ and a pinZ ortholog of Novosphingobium aromaticivorans DSM 12444 were also characterized.

  12. Structural basis for target protein recognition by the protein disulfide reductase thioredoxin

    DEFF Research Database (Denmark)

    Maeda, Kenji; Hägglund, Per; Finnie, Christine;


    Thioredoxin is ubiquitous and regulates various target proteins through disulfide bond reduction. We report the structure of thioredoxin (HvTrxh2 from barley) in a reaction intermediate complex with a protein substrate, barley alpha-amylase/subtilisin inhibitor (BASI). The crystal structure...... a major role in the specificity and protein disulfide reductase activity of thioredoxin. This novel insight into the function of thioredoxin constitutes a basis for comprehensive understanding of its biological role. Moreover, comparison with structurally related proteins shows that thioredoxin shares...

  13. Differential expression of 5-alpha reductase isozymes in the prostate and its clinical implications

    Directory of Open Access Journals (Sweden)

    Kai Wang


    Full Text Available The development of human benign or malignant prostatic diseases is closely associated with androgens, primarily testosterone (T and dihydrotestosterone (DHT. T is converted to DHT by 5-alpha reductase (5-AR isozymes. Differential expression of 5-AR isozymes is observed in both human benign and malignant prostatic tissues. 5-AR inhibitors (5-ARI are commonly used for the treatment of benign prostatic hyperplasia (BPH and were once promoted as chemopreventive agents for prostate cancer (PCa. This review discusses the role of the differential expression of 5-AR in the normal development of the human prostate and in the pathogenesis and progression of BPH and PCa.

  14. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as a Potential Treatment for Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Shamala Salvamani


    Full Text Available Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH, nitric oxide (NO, and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase.

  15. A second target of benzamide riboside: dihydrofolate reductase. (United States)

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R


    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth.

  16. Two mutations of dihydropteridine reductase deficiency. (United States)

    Ponzone, A; Guardamagna, O; Ferraris, S; Bracco, G; Niederwieser, A; Cotton, R G


    Two patients with dihydropteridine reductase (DHPR) deficiency, in one case due to the absence of any enzyme protein (DHPR- cross reactive material (CRM)-) and in the other case due to the production of a mutant type devoid of catalytic activity (DHPR- CRM+) were examined. This latter form of malignant phenylketonuria, whose relative frequency seems to be higher in the Italian population, possibly has a worse prognosis. The earlier onset and the greater severity of clinical symptoms are associated with a more pronounced hydroxylation defect, as shown by higher degree of neonatal hyperphenylalaninaemia, unresponsiveness to an oral tetrahydrobiopterin load, lower concentrations of neurotransmitter metabolites, and reduced tyrosine production after an oral phenylalanine load.

  17. Glutathione Reductase of Vacuole. Comparison of Glutathione Reductase Activity of Vacuole and Tissue Extract of Red Beet Root (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    E.V. Pradedova


    Full Text Available Glutathione reductase (GR, EC is the enzyme that reduces oxidized glutathione (GSSG and thus regulates the redox state of glutathione (GSH/GSSG. GR has been studied in most plants. This enzyme has been identified in chloroplasts and cytosol, so these cellular compartments are considered to be the main place of the enzyme localization. In the same time, just a little is known about GR vacuoles. There are no conclusive evidences to prove the presence or absence of this enzyme in the vacuoles. GR activity was found in the vacuoles of red beet root cells (Beta vulgaris L.. The level of activity, the optimum pH and isoenzyme composition of GR were compared in the vacuoles and tissue extract of beet root. Vacuolar GR activity was quite high, it was 1.5-2 times higher than the activity of the tissue extract. Enzyme pH optimum of all the objects were identical. pH-optimum depend on the pyridine nucleotide nature: pH 7.0-8.0 was an optimal range with NADPH; pH 5.0 – with NADH. GR activity of the vacuoles and tissue extracts decreased in the presence of a noncompetitive inhibitor 1-chloro-2.4-dinitrobenzene (CDNB, indicating the specificity of this enzymatic reaction. Two bands with glutathione reductase activity have been identified in the vacuoles and tissue extracts using zymography method to determine the enzymatic activity in PAAG after electrophoresis of proteins. Belonging to the GR isoforms of these bands was confirmed by enzyme immunoassay (Western blotting. The electric mobility of isoforms of the study objects did not differ significantly. It is concluded that the biochemical characteristics of vacuolar glutathione reductase were substantially identical to the biochemical characteristics of other localization GR.

  18. Biliverdin Reductase: a Target for Cancer Therapy?

    Directory of Open Access Journals (Sweden)

    Peter eGibbs


    Full Text Available Biliverdin reductase (BVR is a multifunctional protein that is the primary source of the potent antioxidant, bilirubin. BVR regulates activities/functions in the insulin/IGF-1/IRK/PI3K/MAPK pathways. Activation of certain kinases in these pathways is/are hallmark(s of cancerous cells. The protein is a scaffold/bridge and intracellular transporter of kinases that regulate growth and proliferation of cells, including PKCs, ERK and Akt, and their targets including NF-κB, Elk1, HO-1 and iNOS. The scaffold and transport functions enable activated BVR to relocate from the cytosol to the nucleus or to the plasma membrane, depending on the activating stimulus. This enables the reductase to function in diverse signaling pathways. And, its expression at the transcript and protein levels are increased in human tumors and the infiltrating T-cells, monocytes and circulating lymphocytes, as well as the circulating and infiltrating macrophages. These functions suggest that the cytoprotective role of BVR may be permissive for cancer/tumor growth. In this review, we summarize the recent developments that define the pro-growth activities of BVR, particularly with respect to its input into the MAPK signaling pathway and present evidence that BVR-based peptides inhibit activation of protein kinases, including MEK, PKCδ and ERK as well as downstream targets including Elk1 and iNOS, and thus offers a credible novel approach to reduce cancer cell proliferation.

  19. Iron-mediated effects on nitrate reductase in marine phytoplankton

    NARCIS (Netherlands)

    Timmermans, K.R.; Stolte, W.; Baar, H.J.W. de


    The potential activity of nitrate reductase was determined in uni-algal cultures in the laboratory and in natural marine phytoplankton assemblages. In the laboratory bioassays, distinct differences in nitrate reductase activity were observed in iron replete versus depleted cultures for Emiliania hux

  20. LDL Cholesterol, Statins And PCSK 9 Inhibitors (United States)

    Gupta, Sanjiv


    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20–30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through ‘Risk evaluation and Mitigation Strategy (REMS)’. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  1. Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/μ-Crystallin Under Physiological Conditions. (United States)

    Hallen, André; Cooper, Arthur J L; Jamie, Joanne F; Karuso, Peter


    Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioavailability. In this research we demonstrate potent sub-nanomolar inhibition of enzyme catalysis at neutral pH by the thyroid hormones L-thyroxine and 3,5,3'-triiodothyronine, whereas other thyroid hormone analogues were shown to be far weaker inhibitors. We also investigated (a) enzyme inhibition by the substrate analogues pyrrole-2-carboxylate, 4,5-dibromopyrrole-2-carboxylate and picolinate, and (b) enzyme catalysis at neutral pH of the cyclic ketimines S-(2-aminoethyl)-L-cysteine ketimine (owing to the complex nomenclature trivial names are used for the sulfur-containing cyclic ketimines as per the original authors' descriptions) (AECK), Δ(1)-piperideine-2-carboxylate (P2C), Δ(1)-pyrroline-2-carboxylate (Pyr2C) and Δ(2)-thiazoline-2-carboxylate. Kinetic data obtained at neutral pH suggests that ketimine reductase/CRYM plays a major role as a P2C/Pyr2C reductase and that AECK is not a major substrate at this pH. Thus, ketimine reductase is a key enzyme in the pipecolate pathway, which is the main lysine degradation pathway in the brain. In silico docking of various ligands into the active site of the X-ray structure of the enzyme suggests an unusual catalytic mechanism involving an arginine residue as a proton donor. Given the critical importance of thyroid hormones in brain function this research further expands on our knowledge of the connection between amino acid metabolism and regulation of thyroid hormone levels.

  2. Isolation of transcriptomal changes attributable to LHON mutations and the cybridization process. (United States)

    Danielson, Steven R; Carelli, Valerio; Tan, Guolin; Martinuzzi, Andrea; Schapira, Anthony H V; Savontaus, Marja-Liisa; Cortopassi, Gino A


    Leber's hereditary optic neuropathy (LHON) is thought to be the most common disease resulting from mitochondrial DNA (mtDNA) point mutations, and transmitochondrial cytoplasmic hybrid (cybrid) cell lines are the most frequently used model for understanding the pathogenesis of mitochondrial disorders. We have used oligonucleotide microarrays and a novel study design based on shared transcripts to allocate transcriptomal changes into rho-zero-dependent, cybridization-dependent and LHON-dependent categories in these cells. The analysis indicates that the rho-zero process has the largest transcriptomal impact, followed by the cybridization process, and finally the LHON mutations. The transcriptomal impacts of the rho-zero and cybridization processes preferentially and significantly affect the mitochondrial compartment, causing upregulation of many transcripts involved in oxidative phosphorylation, presumably in response to the mtDNA depletion that occurs at the rho-zero step. Nine LHON-specific transcriptional alterations were shared among osteosarcoma cybrids and lymphoblasts bearing LHON mutations. Notably, the aldose reductase transcript was overexpressed in LHON cybrids and lymphoblasts. Aldose reductase is also overexpressed in diabetic retinopathy, leading to optic nerve and retinal complications. The LHON-specific increase in transcript level was confirmed by quantitative reverse transcription-polymerase chain reaction (RT-PCR), and a western blot confirmed a higher level of aldose reductase in mutant mitochondria. One product of aldose reductase is sorbitol, which has been linked to osmotic stress, oxidative stress and optic neuropathy, and sorbitol levels were increased in LHON cybrids. If these results are confirmed in patient tissues, aldose reductase inhibitors could have some therapeutic value for LHON.

  3. Trypanothione reductase: a target protein for a combined in vitro and in silico screening approach.

    Directory of Open Access Journals (Sweden)

    Mathias Beig

    Full Text Available With the goal to identify novel trypanothione reductase (TR inhibitors, we performed a combination of in vitro and in silico screening approaches. Starting from a highly diverse compound set of 2,816 compounds, 21 novel TR inhibiting compounds could be identified in the initial in vitro screening campaign against T. cruzi TR. All 21 in vitro hits were used in a subsequent similarity search-based in silico screening on a database containing 200,000 physically available compounds. The similarity search resulted in a data set containing 1,204 potential TR inhibitors, which was subjected to a second in vitro screening campaign leading to 61 additional active compounds. This corresponds to an approximately 10-fold enrichment compared to the initial pure in vitro screening. In total, 82 novel TR inhibitors with activities down to the nM range could be identified proving the validity of our combined in vitro/in silico approach. Moreover, the four most active compounds, showing IC50 values of <1 μM, were selected for determining the inhibitor constant. In first on parasites assays, three compounds inhibited the proliferation of bloodstream T. brucei cell line 449 with EC50 values down to 2 μM.

  4. Resistance Mechanisms and the Future of Bacterial Enoyl-Acyl Carrier Protein Reductase (FabI) Antibiotics. (United States)

    Yao, Jiangwei; Rock, Charles O


    Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single-base-pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed pathogen-specific antibiotics have the potential to overcome this liability.

  5. Biochemical and structural characterization of quinoprotein aldose sugar dehydrogenase from Thermus thermophilus HJ6: Mutational analysis of Tyr156 in the substrate-binding site. (United States)

    Kim, Han-Woo; Wang, Ji-Yeon; Lee, Ji-Yeon; Park, Ae-Kyung; Park, Hyun; Jeon, Sung-Jong


    The gene encoding a quinoprotein aldose sugar dehydrogenase (ASD) from Thermus thermophilus HJ6 (Tt_ASD) was cloned and sequenced; it comprised 1059 nucleotides encoding a protein containing 352 amino acids that had a predicted molecular mass of 38.9 kDa. The deduced amino acid sequence showed 42.9% and 33.9% identities to the ASD proteins from Pyrobaculum aerophilum and Escherichia coli, respectively. The biochemical properties of Tt_ASD were characterized. The optimum pH for the oxidation of glucose was 7.0-7.5 and the optimum temperature was 70 °C. The half-life of heat inactivation for the apoenzyme was about 25 min at 85 °C. The enzyme was highly thermostable, and the activity of the pyrroloquinoline quinone-bound holoenzyme was not lost after incubation at 85 °C for 100 min. Tt_ASD could oxidize various sugars, including hexoses, pentoses, disaccharides, and polysaccharides, in addition to alcohols. Structural analysis suggested that Tyr156 would be the substrate-binding residue. Two mutants, Y156A and Y156K, had impaired activities and affinities for all substrates and completely lost their activities for alcohols. This structural and mutational analysis of Tt_ASD demonstrates the crucial role of Tyr156 in determining substrate specificity.

  6. Cyclic Voltammetric Responses of Nitrate Reductase on Chemical Modified Electrodes

    Institute of Scientific and Technical Information of China (English)

    YaRuSONG; HuiBoSHAO; 等


    Electrochemistry of nitrate reductases (NR) incorporated into 2-aminoethanethiol self-assembled on the gold electrode and polyacrylamide cast on the pyrolytic graphite electrode was examined. NR on chemical modified electrode showed electrochemical cyclic voltammetric responses in phosphate buffers.

  7. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms

    DEFF Research Database (Denmark)

    Nestoras, Konstantinos; Mohammed, Asma Hadi; Schreurs, Ann-Sofie


    The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and...

  8. Purification and characterization of assimilatory nitrite reductase from Candida utilis. (United States)

    Sengupta, S; Shaila, M S; Rao, G R


    Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC and nitrite reductase (EC They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems.

  9. Biomarkers of adverse response to mercury: histopathology versus thioredoxin reductase activity. (United States)

    Branco, Vasco; Ramos, Paula; Canário, João; Lu, Jun; Holmgren, Arne; Carvalho, Cristina


    Exposure to mercury is normally assessed by measuring its accumulation in hair, blood or urine. Currently, the biomarkers of effect that have been proposed for mercurials, such as coproporphyrines or oxidative stress markers, are not sensitive enough and lack specificity. Selenium and selenoproteins are important targets for mercury and thioredoxin reductase (TrxR) in particular was shown to be very sensitive to mercury compounds both in vitro and in vivo. In this study we looked into the relation between the inhibition of thioredoxin reductase (TrxR) activity and histopathological changes caused by exposure to mercurials. Juvenile zeabra-seabreams were exposed to Hg(2+) or MeHg for 28 days and histopathological changes were analyzed in the liver and kidney as well as TrxR activity. Both mercurials caused histopathological changes in liver and kidney, albeit Hg(2+) caused more extensive and severe lesions. Likewise, both mercurials decreased TrxR activity, being Hg(2+) a stronger inhibitor. Co-exposure to Hg(2+) and Se fully prevented TrxR inhibition in the liver and reduced the severity of lesions in the organ. These results show that upon exposure to mercurials, histopathological alterations correlate with the level of TrxR activity and point to the potential use of this enzyme as a biomarker of mercury toxicity.

  10. Calmodulin-mediated suppression of 2-ketoisovalerate reductase in Beauveria bassiana beauvericin biosynthetic pathway. (United States)

    Kim, Jiyoung; Yoon, Deok-Hyo; Oh, Junsang; Hyun, Min-Woo; Han, Jae-Gu; Sung, Gi-Ho


    Ketoisovalerate reductase (KIVR, E.C. mediates the specific reduction of 2-ketoisovalerate (2-Kiv) to d-hydroxyisovalerate (d-Hiv), a precursor for beauvericin biosynthesis. Beauvericin, a famous mycotoxin produced by many fungi, is a cyclooligomer depsipeptide, which has insecticidal, antimicrobial, antiviral, and cytotoxic activities. In this report, we demonstrated that Beauveria bassiana 2-ketoisovalerate reductase (BbKIVR) acts as a typical KIVR enzyme in the entomopathogenic fungus B. bassiana. In addition, we found that BbKIVR interacts with calmodulin (CaM) in vitro and in vivo. The functional role of CaM-binding to BbKIVR was to negatively regulate the BbKIVR activity in B. bassiana. Environmental stimuli such as light and salt stress suppressed BbKIVR activity in B. bassiana. Interestingly, this negative effect of BbKIVR activity by light and salt stress was recovered by CaM inhibitors, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbKIVR plays an important role in the beauvericin biosynthetic pathway mediated by environmental stimuli such as light and salt stress via the CaM signaling pathway.

  11. Distribution of Prx-linked hydroperoxide reductase activity among microorganisms. (United States)

    Takeda, Kouji; Nishiyama, Yoshitaka; Yoda, Koji; Watanabe, Toshihiro; Nimura-Matsune, Kaori; Mura, Kiyoshi; Tokue, Chiyoko; Katoh, Tetzuya; Kawasaki, Shinji; Niimura, Youichi


    Peroxiredoxin (Prx) constitutes a large family of enzymes found in microorganisms, animals, and plants, but the detection of the activities of Prx-linked hydroperoxide reductases (peroxiredoxin reductases) in cell extracts, and the purification based on peroxide reductase activity, have only been done in bacteria and Trypanosomatidae. A peroxiredoxin reductase (NADH oxidase) from a bacterium, Amphibacillus, displayed only poor activities in the presence of purified Prx from Saccharomyces or Synechocystis, while it is highly active in the presence of bacterial Prx. These results suggested that an enzyme system different from that in bacteria might exist for the reduction of Prx in yeast and cyanobacteria. Prx-linked hydroperoxide reductase activities were detected in cell extracts of Saccharomyces, Synechocystis, and Chlorella, and the enzyme activities of Saccharomyces and Chlorella were induced under vigorously aerated culture conditions and intensive light exposure conditions, respectively. Partial purification of Prx-linked peroxidase from the induced yeast cells indicated that the Prx-linked peroxidase system consists of two protein components, namely, thioredoxin and thioredoxin reductase. This finding is consistent with the previous report on its purification based on its protein protection activity against oxidation [Chae et al., J. Biol. Chem., 269, 27670-27678 (1994)]. In this study we have confirmed that Prx-linked peroxidase activity are widely distributed, not only in bacteria species and Trypanosomatidae, but also in yeast and photosynthetic microorganisms, and showed reconstitution of the activity from partially purified interspecies components.

  12. Methylenetetrahydrofolate Reductase Activity and Folate Metabolism

    Directory of Open Access Journals (Sweden)

    Nursen Keser


    Full Text Available Folate is a vital B vitamin which is easily water-soluble. It is a natural source which is found in the herbal and animal foods. Folate has important duties in the human metabolism, one of them is the adjustment of the level of plasma homocysteine. Reduction in MTHFR (methylenetetrahydrofolate reductase,which is in charge of the metabolism of homocysteine activity affects the level of homocysteine. Therefore MTHFR is an important enzyme in folate metabolism. Some of the mutations occurring in the MTHFR gene is a risk factor for various diseases and may be caused the hyperhomocysteinemia or the homocystinuria, and they also may lead to metabolic problems. MTHFR is effective in the important pathways such as DNA synthesis, methylation reactions and synthesis of RNA. C677T and A1298C are the most commonly occurring polymorphisms in the gene of MTHFR. The frequency of these polymorphisms show differences in the populations. MTHFR, folate distribution, metabolism of homocysteine and S-adenosylmethionine, by the MTHFR methylation the genetic defects have the potential of affecting the risk of disease in the negative or positive way.

  13. Effects of ascorbic acid supplementation in ileum myenteric neurons of streptozotocin-induced diabetic rats


    SILVERIO, Sonia M.; Mari,Renata B.; Clebis,Naianne K.; SCOZ, Juliana R.; Germano,Ricardo de M.; Major,José A.A.; Pedro P. Bombonato; Sandra R. Stabille


    The exacerbation of the oxidative stress and of the polyol pathway which impair damage myenteric plexus are metabolic characteristics of diabetes. The ascorbic acid (AA) is an antioxidant and an aldose reductase inhibitor, which may act as neuroprotector. The effects of AA supplementation on the density and cellular body profile area (CP) of myenteric neurons in STZ-induced diabetes in rats were assessed. Four groups with five animals each were formed: normoglycemic (C); diabetic (D); AA-trea...

  14. Lepidopteran HMG-CoA reductase is a potential selective target for pest control

    Directory of Open Access Journals (Sweden)

    Yuan-mei Li


    Full Text Available As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide  targets.

  15. Lepidopteran HMG-CoA reductase is a potential selective target for pest control (United States)

    Li, Yuan-mei; Huang, Juan; Tobe, Stephen S.


    As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide  targets. PMID:28133568

  16. Isolation and preliminary characterization of a respiratory nitrate reductase from hydrocarbon-degrading bacterium Gordonia alkanivorans S7. (United States)

    Romanowska, Irena; Kwapisz, Ewa; Mitka, Magdalena; Bielecki, Stanisław


    Gordonia alkanivorans S7 is an efficient degrader of fuel oil hydrocarbons that can simultaneously utilize oxygen and nitrate as electron acceptors. The respiratory nitrate reductase (Nar) from this organism has been isolated using ion exchange chromatography and gel filtration, and then preliminarily characterized. PAGE, SDS-PAGE and gel filtration chromatography revealed that Nar consisted of three subunits of 103, 53 and 25 kDa. The enzyme was optimally active at pH 7.9 and 40 degrees C. K(m) values for NO(3)(-) (110 microM) and for ClO(3)(-) (138 microM) were determined for a reduced viologen as an electron donor. The purified Nar did not use NADH as the electron donor to reduce nitrate or chlorate. Azide was a strong inhibitor of its activity. Our results imply that enzyme isolated from G. alkanivorans S7 is a respiratory membrane-bound nitrate reductase. This is the first report of purification of a nitrate reductase from Gordonia species.

  17. HMG-CoA Reductase Inhibition Promotes Neurological Recovery, Peri-Lesional Tissue Remodeling, and Contralesional Pyramidal Tract Plasticity after Focal Cerebral Ischemia (United States)

    Kilic, Ertugrul; Reitmeir, Raluca; Kilic, Ülkan; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Kelestemur, Taha; Ethemoglu, Muhsine Sinem; Ozturk, Gurkan; Hermann, Dirk M.


    3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are widely used for secondary stroke prevention. Besides their lipid-lowering activity, pleiotropic effects on neuronal survival, angiogenesis, and neurogenesis have been described. In view of these observations, we were interested whether HMG-CoA reductase inhibition in the post-acute stroke phase promotes neurological recovery, peri-lesional, and contralesional neuronal plasticity. We examined effects of the HMG-CoA reductase inhibitor rosuvastatin (0.2 or 2.0 mg/kg/day i.c.v.), administered starting 3 days after 30 min of middle cerebral artery occlusion for 30 days. Here, we show that rosuvastatin treatment significantly increased the grip strength and motor coordination of animals, promoted exploration behavior, and reduced anxiety. It was associated with structural remodeling of peri-lesional brain tissue, reflected by increased neuronal survival, enhanced capillary density, and reduced striatal and corpus callosum atrophy. Increased sprouting of contralesional pyramidal tract fibers crossing the midline in order to innervate the ipsilesional red nucleus was noticed in rosuvastatin compared with vehicle-treated mice, as shown by anterograde tract tracing experiments. Western blot analysis revealed that the abundance of HMG-CoA reductase was increased in the contralesional hemisphere at 14 and 28 days post-ischemia. Our data support the idea that HMG-CoA reductase inhibition promotes brain remodeling and plasticity far beyond the acute stroke phase, resulting in neurological recovery. PMID:25565957

  18. Effect of mercury, cadmium, nickel, chromium and zinc on kinetic properties of NADPH-cytochrome P450 reductase purified from leaping mullet (Liza saliens). (United States)

    Bozcaarmutlu, Azra; Arinç, Emel


    Information on the mechanism of metal ion inhibition of NADPH-cytochrome P450 reductase is limited. The purpose of the present paper was to elucidate in vitro effect of Hg(+2), Cd(+2), Ni(+2), Cr(+3) and Zn(+2) ions on the purified mullet NADPH-cytochrome P450 reductase. NADPH-cytochrome P450 reductase was purified from detergent-solubilized liver microsomes from leaping mullet (Liza saliens). All of the metal ions caused inhibition of the enzyme activity except Zn(+2). At 50 microM metal concentration, Hg(+2) inhibited the cytochrome P450 reductase activity completely (100%), while, at the same concentrations, Cd(+2), Cr(+3) and Ni(+2) caused 66%, 65% and 37% inhibition, respectively. At 50 microM metal concentration, Zn(+2) had no apparent effect on cytochrome P450 reductase activity. The IC(50) values of HgCl(2), CrCl(3), CdCl(2) and NiCl(2) were estimated to be 0.07 microM, 24 microM, 33 microM and 143 microM, respectively. Of the metal ions tested, Hg(+2) exhibited much higher inhibitory effect at lower concentrations, so it was evidently a more potent inhibitor than the others. All four metal ions displayed noncompetitive type of inhibition mechanism for the purified reductase as analyzed by Dixon plot. K(i) values of Hg(+2), Cr(+3), Cd(+2), and Ni(+2) were calculated from Dixon plots as 0.048 microM, 18 microM, 73 microM and 329 microM, respectively.

  19. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    Directory of Open Access Journals (Sweden)

    Yeon Bok Kim


    Full Text Available Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  20. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  1. Determination of the potency of a novel saw palmetto supercritical CO2 extract (SPSE for 5α-reductase isoform II inhibition using a cell-free in vitro test system

    Directory of Open Access Journals (Sweden)

    Pais P


    Full Text Available Pilar Pais, Agustí Villar, Santiago Rull Euromed, Barcelona, Spain Background: The nicotinamide adenine dinucleotide phosphate-dependent membrane protein 5α-reductase catalyses the conversion of testosterone to the most potent androgen – 5α-dihydrotestosterone. Two 5α-reductase isoenzymes are expressed in humans: type I and type II. The latter is found primarily in prostate tissue. Saw palmetto extract (SPE has been used extensively in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH. The pharmacological effects of SPE include the inhibition of 5α-reductase, as well as anti-inflammatory and antiproliferative effects. Clinical studies of SPE have been inconclusive – some have shown significant results, and others have not – possibly the result of varying bioactivities of the SPEs used in the studies. Purpose: To determine the in vitro potency in a cell-free test system of a novel SP supercritical CO2 extract (SPSE, an inhibitor of the 5α-reductase isoenzyme type II. Materials and methods: The inhibitory potency of SPSE was compared to that of finasteride, an approved 5α-reductase inhibitor, on the basis of the enzymatic conversion of the substrate androstenedione to the 5α-reduced product 5α-androstanedione. Results: By concentration-dependent inhibition of 5α-reductase type II in vitro (half-maximal inhibitory concentration 3.58±0.05 µg/mL, SPSE demonstrated competitive binding toward the active site of the enzyme. Finasteride, the approved 5α-reductase inhibitor tested as positive control, led to 63%–75% inhibition of 5α-reductase type II. Conclusion: SPSE effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is comparatively low. It can be confirmed from the results of this study that SPSE has bioactivity that promotes prostate health at a level that is superior to that of many other phytotherapeutic extracts. The

  2. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation (United States)

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T.; Mundell, Stuart J.; Coxon, Carmen H.


    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents. PMID:27716777

  3. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase. (United States)

    Quinn, G B; Trimboli, A J; Prosser, I M; Barber, M J


    The C-terminal 268 residues of the spinach assimilatory NADH:nitrate reductase amino acid sequence that correspond to the flavin-containing domain of the enzyme have been selectively amplified and expressed as a recombinant protein in Escherichia coli. The recombinant protein, which was produced in both soluble and insoluble forms, was purified to homogeneity using a combination of ammonium sulfate precipitation, affinity chromatography on 5'-ADP-agarose and FPLC gel filtration. The purified domain exhibited a molecular weight of approximately 30 kDa, estimated by polyacrylamide gel electrophoresis, and a molecular mass of 30,169 for the apoprotein determined by mass spectrometry, which also confirmed the presence of FAD. The UV/visible spectrum was typical of a flavoprotein, with maxima at 272, 386, and 461 nm in the oxidized form while CD spectroscopy yielded both positive and negative maxima at 313 and 382 nm and 461 and 484 nm, respectively. The purified domain showed immunological cross-reactivity with anti-spinach nitrate reductase polyclonal antibodies while both N-terminal and internal amino acid sequencing of isolated peptides confirmed the fidelity of the domain's primary sequence. The protein retained NADH-ferricyanide reductase activity (Vmax=84 micromol NADH consumer/min/nmol FAD) with Km's of 17 and 34 microM for NADH and ferricyanide, respectively, with a pH optimum of approximately 6.5 A variety of NADH-analogs could also function as electron donors, though with decreased efficiency, the most effective being reduced nicotinamide hypoxanthine dinucleotide (V(max) = 35 micromol NHDH consumer/min/nmol FAD) and Km = 22 microM). NAD+ was demonstrated to be a competitive inhibitor (Ki = 1.9 mM) while analysis of inhibition by a variety of NAD+-analogs indicated the most efficient inhibitor to be ADP (Ki = 0.2 mM), with analogs devoid of either the phosphate, ribose, or adenine moieties proving to be markedly less-efficient inhibitors. The isolated domain

  4. Proteasome inhibitor treatment in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Fawzia Bardag-Gorce


    Oxidative stress, generated by chronic ethanol consumption, is a major cause of hepatotoxicity and liver injury. Increased production of oxygen-derived free radicals due to ethanol metabolism by CYP2E1 is principally located in the cytoplasm and in the mitochondria, which does not only injure liver cells, but also other vital organs, such as the heart and the brain. Therefore, there is a need for better treatment to enhance the antioxidant response elements. To date, there is no established treatment to attenuate high levels of oxidative stress in the liver of alcoholic patients. To block this oxidative stress, proteasome inhibitor treatment has been found to significantly enhance the antioxidant response elements of hepatocytes exposed to ethanol. Recent studies have shown in an experimental model of alcoholic liver disease that proteasome inhibitor treatment at low dose has cytoprotective effects against ethanol-induced oxidative stress and liver steatosis. The beneficial effects of proteasome inhibitor treatment against oxidative stress occurred because antioxidant response elements (glutathione peroxidase 2, superoxide dismutase 2, glutathione synthetase, glutathione reductase, and GCLC) were upregulated when rats fed alcohol were treated with a low dose of PS-341 (Bortezomib, Velcade(r)). This is an important finding because proteasome inhibitor treatment up-regulated reactive oxygen species removal and glutathione recycling enzymes, while ethanol feeding alone down-regulated these antioxidant elements. For the first time, it was shown that proteasome inhibition by a highly specific and reversible inhibitor is different from the chronic ethanol feeding-induced proteasome inhibition. As previously shown by our group, chronic ethanol feeding causes a complex dysfunction in the ubiquitin proteasome pathway, which affects the proteasome system, as well as the ubiquitination system. The beneficial effects of proteasome inhibitor treatment in alcoholic liver disease

  5. Effect of Tinospora cordifolia on experimental diabetic neuropathy

    Directory of Open Access Journals (Sweden)

    Pratibha D Nadig


    Conclusions: Tinospora cordifolia prevents the hyperalgesia in experimental diabetic neuropathy. It has an aldose reductase inhibitory activity in-vitro which may contribute to the beneficial effects.

  6. Nitrate reductase-mediated NO production enhances Cd accumulation in Panax notoginseng roots by affecting root cell wall properties. (United States)

    Kan, Qi; Wu, Wenwei; Yu, Wenqian; Zhang, Jiarong; Xu, Jin; Rengel, Zed; Chen, Limei; Cui, Xiuming; Chen, Qi


    Panax notoginseng (Burk) F. H. Chen is a traditional medicinal herb in China. However, the high capacity of its roots to accumulate cadmium (Cd) poses a potential risk to human health. Although there is some evidence for the involvement of nitric oxide (NO) in mediating Cd toxicity, the origin of Cd-induced NO and its function in plant responses to Cd remain unknown. In this study, we examined NO synthesis and its role in Cd accumulation in P. notoginseng roots. Cd-induced NO production was significantly decreased by application of the nitrate reductase inhibitor tungstate but not the nitric oxide synthase inhibitor L-NAME (N(G)-methyl-l-arginine acetate), indicating that nitrate reductase is the major contributor to Cd-induced NO production in P. notoginseng roots. Under conditions of Cd stress, sodium nitroprusside (SNP, an NO donor) increased Cd accumulation in root cell walls but decreased Cd translocation to the shoot. In contrast, the NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and tungstate both significantly decreased NO-increased Cd retention in root cell walls. The amounts of hemicellulose 1 and pectin, together with pectin methylesterase activity, were increased with the addition of SNP but were decreased by cPTIO and tungstate. Furthermore, increases or decreases in hemicellulose 1 and pectin contents as well as pectin methylesterase activity fit well with the increased or decreased retention of Cd in the cell walls of P. notoginseng roots. The results suggest that nitrate reductase-mediated NO production enhances Cd retention in P. notoginseng roots by modulating the properties of the cell wall.

  7. The Nox/Ferric reductase/Ferric reductase-like families of Eumycetes. (United States)

    Grissa, Ibtissem; Bidard, Frédérique; Grognet, Pierre; Grossetete, Sandrine; Silar, Philippe


    Reactive Oxygen Species (ROS) are involved in plant biomass degradation by fungi and development of fungal structures. While the ROS-generating NADPH oxidases from filamentous fungi are under strong scrutiny, much less is known about the related integral Membrane (or Ferric) Reductases (IMRs). Here, we present a survey of these enzymes in 29 fungal genomes covering the entire available range of fungal diversity. IMRs are present in all fungal genomes. They can be classified into at least 24 families, underscoring the high diversity of these enzymes. Some are differentially regulated during colony or fruiting body development, as well as by the nature of the carbon source of the growth medium. Importantly, functional characterization of IMRs has been made on proteins belonging to only two families, while nothing or very little is known about the proteins of the other 22 families.

  8. 4-Dimethylaminoazobenzenes: carcinogenicities and reductive cleavage by microsomal azo reductase. (United States)

    Lambooy, J P; Koffman, B M


    Twenty-four 4-dimethylaminoazobenzenes (DABs) in which systematic structural modifications have been made in the prime ring have been studied for substrate specificity for microsomal azo reductase. The DABs were also evaluated for carcinogenicity and it was found that there was no correlation between carcinogenicity and extent of azo bond cleavage by azo reductase. While any substituent in the prime ring reduces the rate of cleavage of the azo bond relative to the unsubstituted dye, there is a correlation between substituent size and susceptibility to the enzyme. Substituent size was also found to be a significant factor in the induction of hepatomas by the dyes. Preliminary studies have shown that there appears to be a positive correlation between microsomal riboflavin content and the activity of the azo reductase.

  9. Mitochondrial Thioredoxin-Glutathione Reductase from Larval Taenia crassiceps (Cysticerci

    Directory of Open Access Journals (Sweden)

    Alberto Guevara-Flores


    Full Text Available Mitochondrial thioredoxin-glutathione reductase was purified from larval Taenia crassiceps (cysticerci. The preparation showed NADPH-dependent reductase activity with either thioredoxin or GSSG, and was able to perform thiol/disulfide exchange reactions. At 25∘C specific activities were 437  ±  27 mU mg-1 and 840  ±  49 mU mg-1 with thioredoxin and GSSG, respectively. Apparent Km values were 0.87  ±  0.04  μM, 41  ±  6  μM and 19  ±  10  μM for thioredoxin, GSSG and NADPH, respectively. Thioredoxin from eukaryotic sources was accepted as substrate. The enzyme reduced H2O2 in a NADPH-dependent manner, although with low catalytic efficiency. In the presence of thioredoxin, mitochondrial TGR showed a thioredoxin peroxidase-like activity. All disulfide reductase activities were inhibited by auranofin, suggesting mTGR is dependent on selenocysteine. The reductase activity with GSSG showed a higher dependence on temperature as compared with the DTNB reductase activity. The variation of the GSSG- and DTNB reductase activities on pH was dependent on the disulfide substrate. Like the cytosolic isoform, mTGR showed a hysteretic kinetic behavior at moderate or high GSSG concentrations, but it was less sensitive to calcium. The enzyme was able to protect glutamine synthetase from oxidative inactivation, suggesting that mTGR is competent to contend with oxidative stress.


    Directory of Open Access Journals (Sweden)

    Klimenko S.B.


    Full Text Available Nitrates are the basic source of nitrogen for the majority of plants. Absorption and transformation of nitrates in plants are determined by external conditions and, first of all, temperature and light intensity. The influence of the temperature increasing till +40 0С on activity of nitrate reductase was studied. It is shown, that the rise of temperature was accompanied by sharp decrease of activity nitrate reductase in leaves of winter wheat, what, apparently, occurred for the account deactivations of enzyme and due to its dissociation.

  11. Tolrestat treatment prevents modification of the formalin test model of prolonged pain in hyperglycemic rats. (United States)

    Calcutt, N A; Malmberg, A B; Yamamoto, T; Yaksh, T L


    This study examined the effects of hyperglycemia and treatment with the aldose reductase inhibitor, Tolrestat, on the pain behavior evoked by injection of formalin into the dorsum of a single hind paw. In control rats, injection of formalin (50 microliters of a 5% solution) evoked two phases of flinching of the injected paw (phases 1 and 2), separated by a quiescent period. Four weeks of streptozotocin-induced diabetes or galactose intoxication did not alter the frequency of flinching during either of the active phases but significantly (P hyperalgesia in a paradigm that is used to model persistent pain and suggest that exaggerated flux through aldose reductase may initiate changes in nociceptive pathways that could contribute to some of the pain states experienced by patients with diabetic neuropathy.

  12. Kinetic measurements of phosphoglucose isomerase and phosphomannose isomerase by direct analysis of phosphorylated aldose-ketose isomers using tandem mass spectrometry (United States)

    Gao, Hong; Chen, Ye; Leary, Julie A.


    A mass spectrometry based method for the direct determination of kinetic constants for phosphoglucose isomerase (PGI) and phosphomannose isomerase (PMI) is described. PGI catalyzes the interconversion between glucose-6-phosphate (Glc6P) and fructose-6-phosphate (Fru6P) and PMI performs the same function between mannose-6-phosphate (Man6P) and Fru6P. These two enzymes are essential in the pathways of glycolytic or oxidative metabolism of carbohydrates and have been considered as potential therapeutic targets. Traditionally, they are assayed either by spectrophotometric detection of Glc6P with one or more coupling enzymes or by a colorimetric detection of Fru6P. However, no suitable assay for Man6P has been developed yet to study the reaction of PMI in the direction from Fru6P to Man6P. In the work presented herein, a general assay for the isomeric substrate-product pair between Glc6P and Fru6P or between Man6P and Fru6P was developed, with the aim of directly studying the kinetics of PGI and PMI in both directions. The 6-phosphorylated aldose and ketose isomers were distinguished based on their corresponding tandem mass spectra (MS2) obtained on a quadrupole ion trap mass spectrometer, and a multicomponent quantification method was utilized to determine the composition of binary mixtures. Using this method, the conversion between Fru6P and Glc6P and that between Fru6P and Man6P are directly monitored. The equilibrium constants for the reversible reactions catalyzed by PGI and PMI are measured to be 0.3 and 1.1, respectively, and the kinetic parameters for both substrates of PGI and PMI are also determined. The values of KM and Vmax for Fru6P as substrate of PMI are reported to be 0.15 mM and 7.78 [mu]mol/(min mg), respectively. All other kinetic parameters measured correlate well with those obtained using traditional methods, demonstrating the accuracy and reliability of this assay.

  13. Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure-Activity Relationships

    Energy Technology Data Exchange (ETDEWEB)

    J Beierlein; N Karri; A Anderson


    Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure-activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization.

  14. Inhibition of Albendazole and Oxfendazole on the Activity of Fumaric Reductase in Cysticercus cellulosae

    Institute of Scientific and Technical Information of China (English)

    GAO Xue-jun; LI Qing-zhang; LI Xia


    The activity of fumaric reductase in Cysticercus cellulosae tissue homogenate with albendazole and oxfendazole individually was detected. Results showed that the two kinds of drugs both could inhabite the activity of fumaric reductase. The results indicate that the mechanism of action of benzimidazole carbamate drugs is probably inhabiting the complex of fumaric reductase noncompetently, thus lead to the exhaostion of energy and death.

  15. Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Sternberg, Claus;


    which block the quorum-sensing process can facilitate development of novel treatment strategies for P. aeruginosa infections. We have used molecular dynamics simulation and experimental studies to elucidate the efficiencies of two potential quorum-quenching reagents, triclosan and green tea...

  16. Chromatographic resolution of drug analogues: 3-hydroxy-3-methylglutarylcoenzyme A reductase inhibitors (statins). (United States)

    Tahir, Muhammad Saqlain; Adnan, Ahmad; Syed, Quratulain


    A high performance liquid chromatographic method for the simultaneous determination both qualitative and quantitative of cholesterol lowering statin drugs in pharmaceutical formulations has been developed. The most important advantage of developed method is that all seven statin drugs can be determined on a single chromatographic system without modification in detection wavelength. An organic modifier addition (25% v/v methanol) in the presence of buffer (20mM ammonium acetate; pH 4.0 adjusted with dilute acetic acid) played a key role in the resolution of statin drugs in gradient elution with acetonitrile. The drugs were separated on a Purospher Star 4.6mm × 25cm, 5μm, C18 column maintained at 25°C with 1mLmin(-1) flow rate using ultra violet detection at 240nm. Good separation (Rs > 2.5) was achieved in a short analysis allowing simultaneous determination of all seven statins. The effect of variation in flow rate, detection wavelength and column oven temperature was also studied. The proposed method was statistically validated in terms of precision, accuracy, linearity, specificity and robustness. The newly developed method proved to be specific, robust and accurate for the quantification of seven statins in commercial pharmaceutical formulations.

  17. Development of Clinical Data Mart of HMG-CoA Reductase Inhibitor for Varied Clinical Research (United States)

    Kim, Hyunah; Jeong, Yoo Jin; Kim, Tong Min; Yang, So Jung; Baik, Sun Jung; Lee, Seung-Hwan; Cho, Jae Hyoung


    Background The increasing use of electronic medical record (EMR) systems for documenting clinical medical data has led to EMR data being increasingly accessed for clinical trials. In this study, a database of patients who were prescribed statins for the first time was developed using EMR data. A clinical data mart (CDM) was developed for cohort study researchers. Methods Seoul St. Mary's Hospital implemented a clinical data warehouse (CDW) of data for ~2.8 million patients, 47 million prescription events, and laboratory results for 150 million cases. We developed a research database from a subset of the data on the basis of a study protocol. Data for patients who were prescribed a statin for the first time (between the period from January 1, 2009 to December 31, 2015), including personal data, laboratory data, diagnoses, and medications, were extracted. Results We extracted initial clinical data of statin from a CDW that was established to support clinical studies; the data was refined through a data quality management process. Data for 21,368 patients who were prescribed statins for the first time were extracted. We extracted data every 3 months for a period of 1 year. A total of 17 different statins were extracted. It was found that statins were first prescribed by the endocrinology department in most cases (69%, 14,865/21,368). Conclusion Study researchers can use our CDM for statins. Our EMR data for statins is useful for investigating the effectiveness of treatments and exploring new information on statins. Using EMR is advantageous for compiling an adequate study cohort in a short period. PMID:28256114

  18. Determination of HMG-CoA reductase inhibitors by micellar electrokinetic chromatography

    Directory of Open Access Journals (Sweden)

    Mircia Eleonora


    Full Text Available Objective: In this study we report the development of a simple, rapid and efficient capillary electrophoresis method for the simultaneous determination of atorvastatin, fluvastatin, lovastatin and simvastin.

  19. A new resistance source of aldehyde reductase functions from Scheffersomyces stipitis against biomass fermentation inhibitor furfural (United States)

    Aldehyde inhibitory compounds derived from lignocellulosic biomass pretreatment are a major class of toxic chemicals that interfere with microbial growth and subsequent fermentation for advanced biofuels production. This study identified five uncharacterized putative genes of Scheffersomyces stipiti...

  20. Direct Electrochemistry With Nitrate Reductase in Chitosan Films

    Institute of Scientific and Technical Information of China (English)

    Xiao Xia CHEN; Jing Bo HU; Hong WU; Hui Bo SHAO


    Stable films made from chitosan(CS)on pyrolytic graphite electrode(PGE)gave direct electrochemistry for incorporated enzyme nitrate reductase(NR).Cyclic voltammetry of CS/NR films showed a pair of well-defined and nearly reversible redox peaks at about-0.430 V vs.SCE at pH 7.0 phosphate buffers.

  1. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna;


    ) reductases reported previously. Downstream of the butA gene of L. pseudomesenteroides, but coding in the opposite orientation, a putative DNA recombinase was identified. A two-step PCR approach was used to construct FPR02, a butA mutant of the wild-type strain, CHCC2114. FPR02 had significantly reduced...

  2. Bidirectional catalysis by copper-containing nitrite reductase

    NARCIS (Netherlands)

    Wijma, HJ; Canters, GW; de Vries, S; Verbeet, MP


    The copper-containing nitrite reductase from Alcaligenes faecalis S-6 was found to catalyze the oxidation of nitric oxide to nitrite, the reverse of its physiological reaction. Thermodynamic and kinetic constants with the physiological electron donor pseudoazurin were determined for both directions

  3. Isolation and expression of the Pneumocystis carinii dihydrofolate reductase gene

    DEFF Research Database (Denmark)

    Edman, J C; Edman, U; Cao, Mi-Mi;


    Pneumocystis carinii dihydrofolate reductase (DHFR; 5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC cDNA sequences have been isolated by their ability to confer trimethoprim resistance to Escherichia coli. Consistent with the recent conclusion that P. carinii is a member of the Fungi...

  4. The effect of copper on human erythrocyte glutathione reductase

    NARCIS (Netherlands)

    Flikweert, J.P.; Hoorn, R.K.J.; Staal, Gerard E.J.


    1. 1. The influence of copper on purified human erythrocyte glutathione reductase (E.C. was studied. The holoenzyme was inhibited at low oxidized glutathione (GSSG) concentrations. At a glutathione concentration of 1 mM and higher no inhibition at all was found. The inhibition was independe

  5. The intramolecular electron transfer between copper sites of nitrite reductase

    DEFF Research Database (Denmark)

    Farver, O; Eady, R R; Abraham, Z H


    The intramolecular electron transfer (ET) between the type 1 Cu(I) and the type 2 Cu(II) sites of Alcaligenes xylosoxidans dissimilatory nitrite reductase (AxNiR) has been studied in order to compare it with the analogous process taking place in ascorbate oxidase (AO). This internal process...

  6. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells (United States)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.


    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC more effectively than fructose-1,6-bisphosphatase (EC NADP-thioredoxin reductase (EC was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  7. Molecular modeling, structural analysis and identification of ligand binding sites of trypanothione reductase from Leishmania mexicana

    Directory of Open Access Journals (Sweden)

    Ozal Mutlu


    Full Text Available Background & objectives: Trypanothione reductase (TR is a member of FAD-dependent NADPH oxidoreductase protein family and it is a key enzyme which connects the NADPH and the thiol-based redox system. Inhibition studies indicate that TR is an essential enzyme for parasite survival. Therefore, it is an attractive target enzyme for novel drug candidates. There is no structural model for TR of Leishmania mexicana (LmTR in the protein databases. In this work, 3D structure of TR from L. mexicana was identified by template-based in silico homology modeling method, resultant model was validated, structurally analyzed and possible ligand binding pockets were identified. Methods: For computational molecular modeling study, firstly, template was identified by BLAST search against PDB database. Multiple alignments were achieved by ClustalW2. Molecular modeling of LmTR was done and possible drug targeting sites were identified. Refinement of the model was done by performing local energy minimization for backbone, hydrogen and side chains. Model was validated by web-based servers. Results: A reliable 3D model for TR from L. mexicana was modeled by using L. infantum trypanothione reductase (LiTR as a template. RMSD results according to C-alpha, visible atoms and backbone were 0.809 Å, 0.732 Å and 0.728 Å respectively. Ramachandran plot indicates that model shows an acceptable stereochemistry. Conclusion: Modeled structure of LmTR shows high similarity with LiTR based on overall structural features like domains and folding patterns. Predicted structure will provide a source for the further docking studies of various peptide-based inhibitors.

  8. A transgenic Neospora caninum strain based on mutations of the dihydrofolate reductase-thymidylate synthase gene. (United States)

    Pereira, Luiz Miguel; Baroni, Luciana; Yatsuda, Ana Patrícia


    Neospora caninum is an Apicomplexa parasite related to abortion and losses of fertility in cattle. The amenability of Toxoplasma gondii and Plasmodium to genetic manipulation offers several tools to determine the invasion and replication processes, which support posterior strategies related to the combat of these diseases. For Plasmodium the use of pyrimethamine as an auxiliary drug on malaria treatment has been affected by the rise of resistant strains and the analyses on Dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene indicated several point mutations. In this work we developed a method for stable insertion of genes based on resistance to pyrimethamine. For that, the coding sequence of NcDHFR-TS (Dihydrofolate reductase-thymidylate synthase) was point mutated in two amino acids, generating DHFRM2M3. The DHFRM2M3 flanked by the promoter and 3'UTR of Ncdhfr-ts (Ncdhfr-DHFRM2M3) conferred resistance to pyrimethamine after transfection. For illustration of stability and expression, the cassette Ncdhfr-DHFRM2M3 was ligated to the reporter gene Lac-Z (β-galactosidase enzyme) controlled by the N. caninum tubulin promoter and was transfected and selected in N. caninum. The cassette was integrated into the genome and the selected tachyzoites expressed Lac-Z, allowing the detection of tachyzoites by the CPRG reaction and X-gal precipitation. The obtainment of transgenic N. caninum resistant to pyrimethamine confirms the effects on DHFR-TS among the Apicomplexa members and will support future approaches on pholate inhibitors for N. caninum prophylaxis. The construction of stable tachyzoites based on vectors with N. caninum promoters initiates the molecular manipulation of this parasite independently of T. gondii.

  9. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Pamela Lopert

    Full Text Available Mitochondria are considered major generators of cellular reactive oxygen species (ROS which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD. We have recently shown that isolated mitochondria consume hydrogen peroxide (H₂O₂ in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂ levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells resulted in a synergistic increase in H₂O₂ levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2 in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂, and cell death. Therefore, in addition to their role in the production of cellular H₂O₂ the mitochondrial Trx/Prx system serve as a major sink for cellular H₂O₂ and its disruption may contribute to dopaminergic pathology associated with PD.

  10. Slow-Onset Inhibition of the FabI Enoyl Reductase from Francisella tularensis: Residence Time and in Vivo Activity

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H.; England, K; Ende, C; Truglio, J; Luckner, S; Reddy, B; Marlenee, N; Knudson, S; Knudson, D; et. al.


    Francisella tularensis is a highly virulent and contagious Gram-negative intracellular bacterium that causes the disease tularemia in mammals. The high infectivity and the ability of the bacterium to survive for weeks in a cool, moist environment have raised the possibility that this organism could be exploited deliberately as a potential biological weapon. Fatty acid biosynthesis (FAS-II) is essential for bacterial viability and has been validated as a target for the discovery of novel antibacterials. The FAS-II enoyl reductase ftuFabI has been cloned and expressed, and a series of diphenyl ethers have been identified that are subnanomolar inhibitors of the enzyme with MIC90 values as low as 0.00018 ?g mL-1. The existence of a linear correlation between the Ki and MIC values strongly suggests that the antibacterial activity of the diphenyl ethers results from direct inhibition of ftuFabI within the cell. The compounds are slow-onset inhibitors of ftuFabI, and the residence time of the inhibitors on the enzyme correlates with their in vivo activity in a mouse model of tularemia infection. Significantly, the rate of breakdown of the enzyme-inhibitor complex is a better predictor of in vivo activity than the overall thermodynamic stability of the complex, a concept that has important implications for the discovery of novel chemotherapeutics that normally rely on equilibrium measurements of potency.

  11. Geometric restraint drives on- and off-pathway catalysis by the Escherichia coli menaquinol:fumarate reductase. (United States)

    Tomasiak, Thomas M; Archuleta, Tara L; Andréll, Juni; Luna-Chávez, César; Davis, Tyler A; Sarwar, Maruf; Ham, Amy J; McDonald, W Hayes; Yankovskaya, Victoria; Stern, Harry A; Johnston, Jeffrey N; Maklashina, Elena; Cecchini, Gary; Iverson, Tina M


    Complex II superfamily members catalyze the kinetically difficult interconversion of succinate and fumarate. Due to the relative simplicity of complex II substrates and their similarity to other biologically abundant small molecules, substrate specificity presents a challenge in this system. In order to identify determinants for on-pathway catalysis, off-pathway catalysis, and enzyme inhibition, crystal structures of Escherichia coli menaquinol:fumarate reductase (QFR), a complex II superfamily member, were determined bound to the substrate, fumarate, and the inhibitors oxaloacetate, glutarate, and 3-nitropropionate. Optical difference spectroscopy and computational modeling support a model where QFR twists the dicarboxylate, activating it for catalysis. Orientation of the C2-C3 double bond of activated fumarate parallel to the C(4a)-N5 bond of FAD allows orbital overlap between the substrate and the cofactor, priming the substrate for nucleophilic attack. Off-pathway catalysis, such as the conversion of malate to oxaloacetate or the activation of the toxin 3-nitropropionate may occur when inhibitors bind with a similarly activated bond in the same position. Conversely, inhibitors that do not orient an activatable bond in this manner, such as glutarate and citrate, are excluded from catalysis and act as inhibitors of substrate binding. These results support a model where electronic interactions via geometric constraint and orbital steering underlie catalysis by QFR.

  12. 3-Oxoacyl-[ACP] reductase from oilseed rape (Brassica napus). (United States)

    Sheldon, P S; Kekwick, R G; Smith, C G; Sidebottom, C; Slabas, A R


    3-Oxoacyl-[ACP] reductase (E.C., alternatively known as beta-ketoacyl-[ACP] reductase), a component of fatty acid synthetase has been purified from seeds of rape by ammonium sulphate fractionation, Procion Red H-E3B chromatography, FPLC gel filtration and high performance hydroxyapatite chromatography. The purified enzyme appears on SDS-PAGE as a number of 20-30 kDa components and has a strong tendency to exist in a dimeric form, particularly when dithiothreitol is not present to reduce disulphide bonds. Cleveland mapping and cross-reactivity with antiserum raised against avocado 3-oxoacyl-[ACP] reductase both indicate that the multiple components have similar primary structures. On gel filtration the enzyme appears to have a molecular mass of 120 kDa suggesting that the native structure is tetrameric. The enzyme has a strong preference for the acetoacetyl ester of acyl carrier protein (Km = 3 microM) over the corresponding esters of the model substrates N-acetyl cysteamine (Km = 35 mM) and CoA (Km = 261 microM). It is inactivated by dilution but this can be partly prevented by the inclusion of NADPH. Using an antiserum prepared against avocado 3-oxoacyl-[ACP] reductase, the enzyme has been visualised inside the plastids of rape embryo and leaf tissues by immunoelectron microscopy. Amino acid sequencing of two peptides prepared by digestion of the purified enzyme with trypsin showed strong similarities with 3-oxoacyl-[ACP] reductase from avocado pear and the Nod G gene product from Rhizobium meliloti.

  13. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases (United States)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; Lewis, Norman G.; Kang, ChulHee


    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  14. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. (United States)

    Dinkova-Kostova, A T; Gang, D R; Davin, L B; Bedgar, D L; Chu, A; Lewis, N G


    Lignans are a widely distributed class of natural products, whose functions and distribution suggest that they are one of the earliest forms of defense to have evolved in vascular plants; some, such as podophyllotoxin and enterodiol, have important roles in cancer chemotherapy and prevention, respectively. Entry into lignan enzymology has been gained by the approximately 3000-fold purification of two isoforms of (+)-pinoresinol/(+)-lariciresinol reductase, a pivotal branchpoint enzyme in lignan biosynthesis. Both have comparable ( approximately 34.9 kDa) molecular mass and kinetic (Vmax/Km) properties and catalyze sequential, NADPH-dependent, stereospecific, hydride transfers where the incoming hydride takes up the pro-R position. The gene encoding (+)-pinoresinol/(+)-lariciresinol reductase has been cloned and the recombinant protein heterologously expressed as a functional beta-galactosidase fusion protein. Its amino acid sequence reveals a strong homology to isoflavone reductase, a key branchpoint enzyme in isoflavonoid metabolism and primarily found in the Fabaceae (angiosperms). This is of great evolutionary significance since both lignans and isoflavonoids have comparable plant defense properties, as well as similar roles as phytoestrogens. Given that lignans are widespread from primitive plants onwards, whereas the isoflavone reductase-derived isoflavonoids are mainly restricted to the Fabaceae, it is tempting to speculate that this branch of the isoflavonoid pathway arose via evolutionary divergence from that giving the lignans.

  15. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. (United States)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L; Youn, Buhyun; Lawrence, Paulraj K; Gang, David R; Halls, Steven C; Park, HaJeung; Hilsenbeck, Jacqueline L; Davin, Laurence B; Lewis, Norman G; Kang, ChulHee


    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  16. Structures of trihydroxynaphthalene reductase-fungicide complexes: implications for structure-based design and catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Basarab, G.S.; Gatenby, A.A.; Valent, B.; Jordan, D.B. (DuPont)


    Trihydroxynaphthalene reductase catalyzes two intermediate steps in the fungal melanin biosynthetic pathway. The enzyme, a typical short-chain dehydrogenase, is the biochemical target of three commercial fungicides. The fungicides bind preferentially to the NADPH form of the enzyme. Three X-ray structures of the Magnaporthe grisea enzyme complexed with NADPH and two commercial and one experimental fungicide were determined at 1.7 {angstrom} (pyroquilon), 2.0 {angstrom} (2,3-dihydro-4-nitro-1H-inden-1-one, 1), and 2.1 {angstrom} (phthalide) resolutions. The chemically distinct inhibitors occupy similar space within the enzyme's active site. The three inhibitors share hydrogen bonds with the side chain hydroxyls of Ser-164 and Tyr-178 via a carbonyl oxygen (pyroquilon and 1) or via a carbonyl oxygen and a ring oxygen (phthalide). Active site residues occupy similar positions among the three structures. A buried water molecule that is hydrogen bonded to the NZ nitrogen of Lys-182 in each of the three structures likely serves to stabilize the cationic form of the residue for participation in catalysis. The pro S hydrogen of NADPH (which is transferred as a hydride to the enzyme's naphthol substrates) is directed toward the carbonyl carbon of the inhibitors that mimic an intermediate along the reaction coordinate. Modeling tetrahydroxynaphthalene and trihydroxynaphthalene in the active site shows steric and electrostatic repulsion between the extra hydroxyl oxygen of the former substrate and the sulfur atom of Met-283 (the C-terminal residue), which accounts, in part, for the 4-fold greater substrate specificity for trihydroxynaphthalene over tetrahydroxynaphthalene.

  17. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Norman G. (Pullman, WA); Davin, Laurence B. (Pullman, WA); Dinkova-Kostova, Albena T. (Baltimore, MD); Fujita, Masayuki (Kita-gun, JP), Gang; David R. (Ann Arbor, MI), Sarkanen; Simo (Minneapolis, MN), Ford; Joshua D. (Pullman, WA)


    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  18. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Norman G. (Pullman, WA); Davin, Laurence B. (Pullman, WA); Dinkova-Kostova, Albena T. (Baltimore, MD); Fujita, Masayuki (Kagawa, JP); Gang, David R. (Ann Arbor, MI); Sarkanen, Simo (S. Minneapolis, MN); Ford, Joshua D. (Pullman, WA)


    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  19. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10 (United States)

    Afkar, E.; Lisak, J.; Saltikov, C.; Basu, P.; Oremland, R.S.; Stolz, J.F.


    The respiratory arsenate reductase from the Gram-positive, haloalkaliphile, Bacillus selenitireducens strain MLS10 was purified and characterized. It is a membrane bound heterodimer (150 kDa) composed of two subunits ArrA (110 kDa) and ArrB (34 kDa), with an apparent Km for arsenate of 34 ??M and Vmax of 2.5 ??mol min-1 mg-1. Optimal activity occurred at pH 9.5 and 150 g l-1 of NaCl. Metal analysis (inductively coupled plasma mass spectrometry) of the holoenzyme and sequence analysis of the catalytic subunit (ArrA; the gene for which was cloned and sequenced) indicate it is a member of the DMSO reductase family of molybdoproteins. ?? 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  20. Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase

    Institute of Scientific and Technical Information of China (English)

    Rajib; Sengupta; Arne; Holmgren


    Ribonucleotide reductase(RNR), the rate-limitingenzyme in DNA synthesis, catalyzes reduction of thedifferent ribonucleotides to their corresponding deoxyri-bonucleotides. The crucial role of RNR in DNA synthesishas made it an important target for the development ofantiviral and anticancer drugs. Taking account of the re-cent developments in this field of research, this reviewfocuses on the role of thioredoxin and glutaredoxin sys-tems in the redox reactions of the RNR catalysis.

  1. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues. (United States)

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D


    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth.

  2. VC对土壤亚硝酸还原酶动力学参数的影响%Effect of VC on Soil Nitrite Reductase Kinetic Parameters

    Institute of Scientific and Technical Information of China (English)

    许明惠; 李昌满


    采用rpиcc试剂比色法,研究了VC对灰棕紫泥土亚硝酸还原酶动力学参数的影响.结果表明,VC的加入降低了V0、Km和Vmax值,表明VC对土壤亚硝酸还原酶的作用类型表现为反竞争性抑制作用,但低浓度VC会减弱亚硝酸还原酶与底物亲和力,而加快产物与酶的分离.由于VC具有抗氧化作用,对土壤具有良好作用,作为安全、有效的反硝化抑制剂使用.%The article researched the effect of Vc treatment on the nitrite reductase kinetic parameter of gray-brown purple clay soil by rpHCC reagent colorimetric method. The result showed that Vc treatment reduced the values of V0, Km and Vmax, the effect type of Vc on soil nitrite reductase was uncompetitive inhibition. Low concentration Vc reduced the affinity of nitrite reductase with substrate, and accelerated the separation of products and enzyme. Vc has antioxidant effect, and is good for to soil, it could be the safe and functional nitrification inhibitors.

  3. Cloning, expression, crystallization and preliminary structural studies of dihydrodipicolinate reductase from Acinetobacter baumannii (United States)

    Kaushik, Sanket; Singh, Avinash; Sinha, Mau; Kaur, Punit; Sharma, Sujata; Singh, Tej P.


    Acinetobacter baumannii is a virulent pathogenic bacterium that is resistant to most currently available antibiotics. Therefore, the design of drugs for the treatment of infections caused by A. baumannii is urgently required. Dihydrodipicolinate reductase (DHDPR) is an important enzyme which is involved in the biosynthetic pathway that leads to the production of l-lysine in bacteria. In order to design potent inhibitors against this enzyme, its detailed three-dimensional structure is required. DHDPR from A. baumannii (AbDHDPR) has been cloned, expressed, purified and crystallized. Here, the preliminary X-ray crystallographic data of AbDHDPR are reported. The crystals were grown using the hanging-drop vapour-diffusion method with PEG 3350 as the precipitating agent The crystals belonged to the orthorhombic space group P222, with unit-cell parameters a = 80.0, b = 100.8, c = 147.6 Å, and contained four molecules in the asymmetric unit. The complete structure determination of AbDHDPR is in progress. PMID:23722845

  4. A fluorimetric readout reporting the kinetics of nucleotide-induced human ribonucleotide reductase oligomerization. (United States)

    Fu, Yuan; Lin, Hong-Yu; Wisitpitthaya, Somsinee; Blessing, William A; Aye, Yimon


    Human ribonucleotide reductase (hRNR) is a target of nucleotide chemotherapeutics in clinical use. The nucleotide-induced oligomeric regulation of hRNR subunit α is increasingly being recognized as an innate and drug-relevant mechanism for enzyme activity modulation. In the presence of negative feedback inhibitor dATP and leukemia drug clofarabine nucleotides, hRNR-α assembles into catalytically inert hexameric complexes, whereas nucleotide effectors that govern substrate specificity typically trigger α-dimerization. Currently, both knowledge of and tools to interrogate the oligomeric assembly pathway of RNR in any species in real time are lacking. We therefore developed a fluorimetric assay that reliably reports on oligomeric state changes of α with high sensitivity. The oligomerization-directed fluorescence quenching of hRNR-α, covalently labeled with two fluorophores, allows for direct readout of hRNR dimeric and hexameric states. We applied the newly developed platform to reveal the timescales of α self-assembly, driven by the feedback regulator dATP. This information is currently unavailable, despite the pharmaceutical relevance of hRNR oligomeric regulation.

  5. dNTP deficiency induced by HU via inhibiting ribonucleotide reductase affects neural tube development. (United States)

    Guan, Zhen; Wang, Xiuwei; Dong, Yanting; Xu, Lin; Zhu, Zhiqiang; Wang, Jianhua; Zhang, Ting; Niu, Bo


    Exposure to environmental toxic chemicals in utero during the neural tube development period can cause developmental disorders. To evaluate the disruption of neural tube development programming, the murine neural tube defects (NTDs) model was induced by interrupting folate metabolism using methotrexate in our previous study. The present study aimed to examine the effects of dNTP deficiency induced by hydroxyurea (HU), a specific ribonucleotide reductase (RNR) inhibitor, during murine neural tube development. Pregnant C57BL/6J mice were intraperitoneally injected with various doses of HU on gestation day (GD) 7.5, and the embryos were checked on GD 11.5. RNR activity and deoxynucleoside triphosphate (dNTP) levels were measured in the optimal dose. Additionally, DNA damage was examined by comet analysis and terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling (TUNEL) assay. Cellular behaviors in NTDs embryos were evaluated with phosphorylation of histone H3 (PH-3) and caspase-3 using immunohistochemistry and western blot analysis. The results showed that NTDs were observed mostly with HU treatment at an optimal dose of 225 mg/kg b/w. RNR activity was inhibited and dNTP levels were decreased in HU-treated embryos with NTDs. Additionally, increased DNA damage, decreased proliferation, and increased caspase-3 were significant in NTDs embryos compared to the controls. Results indicated that HU induced murine NTDs model by disturbing dNTP metabolism and further led to the abnormal cell balance between proliferation and apoptosis.

  6. Flavin adenine dinucleotide content of quinone reductase 2: analysis and optimization for structure-function studies. (United States)

    Leung, Kevin Ka Ki; Litchfield, David W; Shilton, Brian H


    Quinone reductase 2 (NQO2) is a broadly expressed enzyme implicated in responses to a number of compounds, including protein kinase inhibitors, resveratrol, and antimalarial drugs. NQO2 includes a flavin adenine dinucleotide (FAD) cofactor, but X-ray crystallographic analysis of human NQO2 expressed in Escherichia coli showed that electron density for the isoalloxazine ring of FAD was weak and there was no electron density for the adenine mononucleotide moiety. Reversed-phase high-performance liquid chromatography (HPLC) of the NQO2 preparation indicated that FAD was not present and only 38% of the protomers contained flavin mononucleotide (FMN), explaining the weak electron density for FAD in the crystallographic analysis. A method for purifying NQO2 and reconstituting with FAD such that the final content approaches 100% occupancy with FAD is presented here. The enzyme prepared in this manner has a high specific activity, and there is strong electron density for the FAD cofactor in the crystal structure. Analysis of NQO2 crystal structures present in the Protein Data Bank indicates that many may have sub-stoichiometric cofactor content and/or contain FMN rather than FAD. This method of purification and reconstitution will help to optimize structural and functional studies of NQO2 and possibly other flavoproteins.

  7. Elucidating features that drive the design of selective antifolates using crystal structures of human dihydrofolate reductase. (United States)

    Lamb, Kristen M; G-Dayanandan, Narendran; Wright, Dennis L; Anderson, Amy C


    The pursuit of antimicrobial drugs that target dihydrofolate reductase (DHFR) exploits differences in sequence and dynamics between the pathogenic and human enzymes. Here, we present five crystal structures of human DHFR bound to a new class of antimicrobial agents, the propargyl-linked antifolates (PLAs), with a range of potency (IC50 values of 0.045-1.07 μM) for human DHFR. These structures reveal that interactions between the ligands and Asn 64, Phe 31, and Phe 34 are important for increased affinity for human DHFR and that loop residues 58-64 undergo ligand-induced conformational changes. The utility of these structural studies was demonstrated through the design of three new ligands that reduce the number of contacts with Asn 64, Phe 31, and Phe 34. Synthesis and evaluation show that one of the designed inhibitors exhibits the lowest affinity for human DHFR of any of the PLAs (2.64 μM). Comparisons of structures of human and Staphylococcus aureus DHFR bound to the same PLA reveal a conformational change in the ligand that enhances interactions with residues Phe 92 (Val 115 in huDHFR) and Ile 50 (Ile 60 in huDHFR) in S. aureus DHFR, yielding selectivity. Likewise, comparisons of human and Candida glabrata DHFR bound to the same ligand show that hydrophobic interactions with residues Ile 121 and Phe 66 (Val 115 and Asn 64 in human DHFR) yield selective inhibitors. The identification of residue substitutions that are important for selectivity and the observation of active site flexibility will help guide antimicrobial antifolate development for the inhibition of pathogenic species.

  8. Substrate pathways and mechanisms of inhibition in the sulfur oxygenase reductase of Acidianus ambivalens

    Directory of Open Access Journals (Sweden)

    Andreas eVeith


    Full Text Available Background: The sulfur oxygenase reductase (SOR is the initial enzyme of the sulfur oxidation pathway in the thermoacidophilic Archaeon Acidianus ambivalens. The SOR catalyzes an oxygen-dependent sulfur disproportionation to H2S, sulfite and thiosulfate. The spherical, hollow, cytoplasmic enzyme is composed of 24 identical subunits with an active site pocket each comprising a mononuclear non-heme iron site and a cysteine persulfide. Substrate access and product exit occur via apolar chimney-like protrusions at the four-fold symmetry axes, via narrow polar pores at the three-fold symmetry axes and via narrow apolar pores within in each subunit. In order to investigate the function of the pores we performed site-directed mutagenesis and inhibitor studies. Results: Truncation of the chimney-like protrusions resulted in an up to seven-fold increase in specific enzyme activity compared to the wild type. Replacement of the salt bridge-forming Arg99 residue by Ala at the three-fold symmetry axes doubled the activity and introduced a bias towards reduced reaction products. Replacement of Met296 and Met297, which form the active site pore, lowered the specific activities by 25-55 % with the exception of an M296V mutant. X-ray crystallography of SOR wild type crystals soaked with inhibitors showed that Hg2+ and iodoacetamide bind to cysteines within the active site, whereas Zn2+ binds to a histidine in a side channel of the enzyme. The Zn2+ inhibition was partially alleviated by mutation of the His residue. Conclusions: The expansion of the pores in the outer shell led to an increased enzyme activity while the integrity of the active site pore seems to be important. Hg2+ and iodoacetamide block cysteines in the active site pocket, while Zn2+ interferes over a distance, possibly by restriction of protein flexibility or substrate access or product exit.

  9. Proton pump inhibitors (United States)

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  10. Immunological comparison of the NADH:nitrate reductase from different cucumber tissues

    Directory of Open Access Journals (Sweden)

    Jolanta Marciniak


    Full Text Available Soluble nitrate reductase from cucumber roots (Cucumis sativus L. was isolated and purified with blue-Sepharose 4B. Specific antibodies against the NR protein were raised by immunization of a goat. Using polyclonal antibodies anti-NR properties of the nitrate reductase from various cucumber tissues were examined. Experiments showed difference in immuno-logical properties of nitrate reductase (NR from cotyledon roots and leaves.

  11. Comparative studies on the soluble and plasma membrane associated nitrate reductase from Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Grażyna Kłobus


    Full Text Available The biochemical comparison between two forms of nitrate reductase from cucumber roots: the soluble enzyme and the plasma membrane-associated one was made. Soluble nitrate reductase was purified on the blue-Sepharose 4B. The nitrate reductase bound with plasma membranes was isolated from cucumber roots by partition of microsomes in the 6.5% dextran-PEG two phase system. The molecular weight of native enzyme estimated with HPLC was 240 kDa and 114 kDa for the soluble and membrane bounded enzyme, respectively. Temperature induced phase separation in Triton X-114 indicated a huge difference in hydrophobicity of the plasma membrane associated nitrate reductase and soluble form of enzyme. Small differences were observed in partial activities of plasma membrane nitrate reductase and soluble nitrate reductase. Also experiments with polyclonal antiserum raised against the native nitrate reductase showed some differences in the immunological properties of both forms of the nitrate reductase. The above results indicated that in cucumber roots two different forms of the nitrate reductase are present.

  12. Histochemical Localization of Glutathione Dependent NBT-Reductase in Mouse Skin

    Institute of Scientific and Technical Information of China (English)


    Objective Localization of the glutathione dependent Nitroblue tetrazolium (NBT) reductase in fresh frozen sections of mouse skin and possible dependence of NBT reductase on tissue thiol levels has been investigated. Methods The fresh frozen tissue sections (8m thickness) were prepared and incubated in medium containing NBT, reduced glutathione (GSH) and phosphate buffer. The staining for GSH was performed with mercury orange. Results  The activity of the NBT-reductase in mouse skin has been found to be localized in the areas rich in glutathione and actively proliferating area of the skin. Conclusion The activity of the NBT-reductase seems to be dependent on the glutathione contents.

  13. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Asieh Hosseini


    Full Text Available Diabetic neuropathy (DN is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin, aldose reductase inhibitors (fidarestat, epalrestat, ranirestat, advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine, the hexosamine pathway inhibitor (benfotiamine, inhibitor of poly ADP-ribose polymerase (nicotinamide, and angiotensin-converting enzyme inhibitor (trandolapril. The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials.

  14. Identification of novel inhibitors of dietary lipid absorption using zebrafish.

    Directory of Open Access Journals (Sweden)

    Justin D Clifton

    Full Text Available Pharmacological inhibition of dietary lipid absorption induces favorable changes in serum lipoprotein levels in patients that are at risk for cardiovascular disease and is considered an adjuvant or alternative treatment with HMG-CoA reductase inhibitors (statins. Here we demonstrate the feasibility of identifying novel inhibitors of intestinal lipid absorption using the zebrafish system. A pilot screen of an unbiased chemical library identified novel compounds that inhibited processing of fluorescent lipid analogues in live zebrafish larvae. Secondary assays identified those compounds suitable for testing in mammals and provided insight into mechanism of action, which for several compounds could be distinguished from ezetimibe, a drug used to inhibit cholesterol absorption in humans that broadly inhibited lipid absorption in zebrafish larvae. These findings support the utility of zebrafish screening assays to identify novel compounds that target complex physiological processes.

  15. Terpenoids from Diplophyllum taxifolium with quinone reductase-inducing activity. (United States)

    Wang, Xiao; Zhang, Jiao-Zhen; Zhou, Jin-Chuan; Shen, Tao; Lou, Hong-Xiang


    Two new ent-prenylaromadendrane-type diterpenoids, diplotaxifols A (1) and B (2), a new ent-eudesmol, ent-eudesma-4(15),11(13)-dien-6α,12-diol (3), eight new eudesmanolides enantiomers (4-11) of the corresponding compounds from higher plants along with four known ent-eudesmanolides (12-15) were isolated from the 95% EtOH extract of Chinese liverwort Diplophyllum taxifolium. Their structures were elucidated on the basis of MS, NMR and IR spectral data, and confirmed by single-crystal X-ray diffraction analysis. The quinone reductase-inducing activity of the compounds was evaluated.

  16. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg


    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  17. Methylenetetrahydrofolate reductase (MTHFR) deficiency presenting as a rash.

    LENUS (Irish Health Repository)

    Crushell, Ellen


    We report on the case of a 2-year-old girl recently diagnosed with Methylenetetrahydrofolate reductase (MTHFR) deficiency who originally presented in the neonatal period with a distinctive rash. At 11 weeks of age she developed seizures, she had acquired microcephaly and developmental delay. The rash deteriorated dramatically following commencement of phenobarbitone; both rash and seizures abated following empiric introduction of pyridoxine and folinic acid as treatment of possible vitamin responsive seizures. We postulate that phenobarbitone in combination with MTHFR deficiency may have caused her rash to deteriorate and subsequent folinic acid was helpful in treating the rash and preventing further acute neurological decline as commonly associated with this condition.

  18. Functions of Flavin Reductase and Quinone Reductase in 2,4,6-Trichlorophenol Degradation by Cupriavidus necator JMP134▿


    Belchik, Sara Mae; Xun, Luying


    The tcpRXABCYD operon of Cupriavidus necator JMP134 is involved in the degradation of 2,4,6-trichlorophenol (2,4,6-TCP), a toxic pollutant. TcpA is a reduced flavin adenine dinucleotide (FADH2)-dependent monooxygenase that converts 2,4,6-TCP to 6-chlorohydroxyquinone. It has been implied via genetic analysis that TcpX acts as an FAD reductase to supply TcpA with FADH2, whereas the function of TcpB in 2,4,6-TCP degradation is still unclear. In order to provide direct biochemical evidence for t...

  19. Dimethyl Fumarate Induces Glutathione Recycling by Upregulation of Glutathione Reductase (United States)

    Hoffmann, Christina; Dietrich, Michael; Herrmann, Ann-Kathrin; Schacht, Teresa


    Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF) is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) leading to increased synthesis of the major cellular antioxidant glutathione (GSH) and prominent neuroprotection in vitro. We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR), a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase. PMID:28116039

  20. Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia. (United States)

    Chu, A; Dinkova, A; Davin, L B; Bedgar, D L; Lewis, N G


    Pinoresinol/lariciresinol reductase catalyzes the first known example of a highly unusual benzylic ether reduction in plants; its mechanism of hydride transfer is described. The enzyme was found in Forsythia intermedia and catalyzes the presumed regulatory branch-points in the pathway leading to benzylaryltetrahydrofuran, dibenzylbutane, dibenzylbutyrolactone, and aryltetrahydronaphthalene lignans. Using [7,7'-2H2]-pinoresinol and [7,7'-2H3]lariciresinol as substrates, the hydride transfers of the highly unusual reductase were demonstrated to be completely stereospecific (> 99%). The incoming hydrides were found to take up the pro-R position at C-7' (and/or C-7) in lariciresinol and secoisolariciresinol, thereby eliminating the possibility of random hydride delivery to a planar quinone methide intermediate. As might be expected, the mode of hydride abstraction from NADPH was also stereospecific: using [4R-3H] and [4S-3H]NADPH, it was found that only the 4 pro-R hydrogen was abstracted for enzymatic hydride transfer.

  1. Dimethyl Fumarate Induces Glutathione Recycling by Upregulation of Glutathione Reductase

    Directory of Open Access Journals (Sweden)

    Christina Hoffmann


    Full Text Available Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2 leading to increased synthesis of the major cellular antioxidant glutathione (GSH and prominent neuroprotection in vitro. We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR, a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase.

  2. Determination of potential N2O-reductase activity in soil

    NARCIS (Netherlands)

    Qin, S.P.; Yuan, H.J.; Hu, C.S.; Oenema, O.; Zhang, Y.M.; Li, X.X.


    Determination of N2O-reductase activity in soil is important for understanding the microbial regulation of nitrous oxide (N2O) concentrations in soil. Unfortunately, there are no easily applicable and accurate methods for determining N2O-reductase activity, which frustrates the understanding of the

  3. Separation and distribution of thiosulfate-oxidizing enzyme, tetrathionate reductase, and thiosulfate reductase in extracts of marine heterotroph strain 16B.


    Whited, G M; Tuttle, J.H.


    Thiosulfate-oxidizing enzyme (TSO), tetrathionate reductase (TTR), and thiosulfate reductase (TSR) were demonstrated in cell-free extracts of the marine heterotrophic thiosulfate-oxidizing bacterium strain 16B. Extracts prepared from cells cultured aerobically in the absence of thiosulfate or tetrathionate exhibited constitutive TSO and TTR activity which resided in the soluble fraction of ultracentrifuged crude extracts. Constitutive TSO and TTR cochromatographed on DEAE-Sephadex A-50, Celle...

  4. The effect of ionic and non-ionic surfactants on the growth, nitrate reductase and nitrite reductase activities of Spirodela polyrrhiza (L. Schleiden

    Directory of Open Access Journals (Sweden)

    Józef Buczek


    Full Text Available Inclusion into the medium of 5 mg•dm-3 of non-ionic (ENF or ionic (DBST surfactant caused 50-60% inhibition of nitrite reductase MR activity in S. polyrrhiza. At the same time, increased accumulation of NO2- in the plant tissues and lowering of the total and soluble protein contents were found. DBST also lowered the nitrate reductase (NR activity and the dry mass of the plants.

  5. Investigation of 7-dehydrocholesterol reductase pathway to elucidate off-target prenatal effects of pharmaceuticals: a systematic review (United States)

    Boland, M R; Tatonetti, N P


    Mendelian diseases contain important biological information regarding developmental effects of gene mutations that can guide drug discovery and toxicity efforts. In this review, we focus on Smith–Lemli–Opitz syndrome (SLOS), a rare Mendelian disease characterized by compound heterozygous mutations in 7-dehydrocholesterol reductase (DHCR7) resulting in severe fetal deformities. We present a compilation of SLOS-inducing DHCR7 mutations and the geographic distribution of those mutations in healthy and diseased populations. We observed that several mutations thought to be disease causing occur in healthy populations, indicating an incomplete understanding of the condition and highlighting new research opportunities. We describe the functional environment around DHCR7, including pharmacological DHCR7 inhibitors and cholesterol and vitamin D synthesis. Using PubMed, we investigated the fetal outcomes following prenatal exposure to DHCR7 modulators. First-trimester exposure to DHCR7 inhibitors resulted in outcomes similar to those of known teratogens (50 vs 48% born-healthy). DHCR7 activity should be considered during drug development and prenatal toxicity assessment. PMID:27401223

  6. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems. (United States)

    Ondarza, Raúl N; Hurtado, Gerardo; Tamayo, Elsa; Iturbe, Angélica; Hernández, Eva


    This paper presents definitive data showing that the thiol-bimane compound isolated and purified by HPLC from Naegleria fowleri trophozoites unequivocally corresponds by matrix assisted laser-desorption ionization-time-of-flight MS, to the characteristic monoprotonated ion of trypanothione-(bimane)(2) [M(+)H(+)] of m/z 1104.57 and to the trypanothione-(bimane) of m/z 914.46. The trypanothione disulfide T(S)(2) was also found to have a molecular ion of m/z 723.37. Additionally HPLC demonstrated that thiol-bimane compounds corresponding to cysteine and glutathione were present in Naegleria. The ion patterns of the thiol-bimane compounds prepared from commercial trypanothione standard, Entamoeba histolytica and Crithidia luciliae are identical to the Naegleria thiol-bimane compound. Partially purified extracts from N. fowleri showed the coexistence of glutathione and trypanothione reductases activities. There is not doubt that the thiol compound trypanothione, which was previously thought to occur only in Kinetoplastida, is also present in the human pathogens E. histolytica and N. fowleri, as well as in the non-pathogenic euglenozoan E. gracilis. The presence of the trypanothione/trypanothione reductase system in N. fowleri creates the possibility of using this enzyme as a new "drug target" for rationally designed drugs to eliminate the parasite, without affecting the human host.

  7. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase

    Directory of Open Access Journals (Sweden)

    Hui eZhou


    Full Text Available Proanthocyanidins (PAs are a group of natural phenolic compounds that have a great effect on both flavour and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5 via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants.

  8. Proximal FAD histidine residue influences interflavin electron transfer in cytochrome P450 reductase and methionine synthase reductase. (United States)

    Meints, Carla E; Parke, Sarah M; Wolthers, Kirsten R


    Cytochrome P450 reductase (CPR) and methionine synthase reductase (MSR) transfer reducing equivalents from NADPH to FAD to FMN. In CPR, hydride transfer and interflavin electron transfer are kinetically coupled steps, but in MSR the two catalytic steps are represented by two distinct kinetic phases leading to transient formation of the FAD hydroquinone. In human CPR, His(322) forms a hydrogen-bond with the highly conserved Asp(677), a member of the catalytic triad. The catalytic triad is present in MSR, but Ala(312) replaces the histidine residue. To examine if this structural variation accounts for differences in their kinetic behavior, reciprocal substitutions were created. Substitution of His(322) for Ala in CPR does not affect the rate of NADPH hydride transfer or the FAD redox potentials, but does impede interflavin electron transfer. For MSR, swapping Ala(312) for a histidine residue resulted in the kinetic coupling of hydride and interflavin electron transfer, and eliminated the formation of the FAD hydroquinone intermediate. For both enzymes, placement of the His residue in the active site weakens coenzyme binding affinity. The data suggest that the proximal FAD histidine residue accelerates proton-coupled electron transfer from FADH2 to the higher potential FMN; a mechanism for this catalytic role is discussed.

  9. Exploring the inhibitor binding pocket of respiratory complex I. (United States)

    Fendel, Uta; Tocilescu, Maja A; Kerscher, Stefan; Brandt, Ulrich


    Numerous hydrophobic and amphipathic compounds including several detergents are known to inhibit the ubiquinone reductase reaction of respiratory chain complex I (proton pumping NADH:ubiquinone oxidoreductase). Guided by the X-ray structure of the peripheral arm of complex I from Thermus thermophilus we have generated a large collection of site-directed mutants in the yeast Yarrowia lipolytica targeting the proposed ubiquinone and inhibitor binding pocket of this huge multiprotein complex at the interface of the 49-kDa and PSST subunits. We could identify a number of residues where mutations changed I(50) values for representatives from all three groups of hydrophobic inhibitors. Many mutations around the domain of the 49-kDa subunit that is homologous to the [NiFe] centre binding region of hydrogenase conferred resistance to DQA (class I/type A) and rotenone (class II/type B) indicating a wider overlap of the binding sites for these two types of inhibitors. In contrast, a region near iron-sulfur cluster N2, where the binding of the n-alkyl-polyoxyethylene-ether detergent C(12)E(8) (type C) was exclusively affected, appeared comparably well separated. Taken together, our data provide structure-based support for the presence of distinct but overlapping binding sites for hydrophobic inhibitors possibly extending into the ubiquinone reduction site of mitochondrial complex I.

  10. The aldo-keto reductase AKR1B7 coexpresses with renin without influencing renin production and secretion. (United States)

    Machura, Katharina; Iankilevitch, Elina; Neubauer, Björn; Theuring, Franz; Kurtz, Armin


    On the basis of evidence that within the adult kidney, the aldo-keto reductase AKR1B7 (aldo-keto reductase family 1, member 7, also known as mouse vas deferens protein, MVDP) is selectively expressed in renin-producing cells, we aimed to define a possible role of AKR1B7 for the regulation and function of renin cells in the kidney. We could confirm colocalization and corecruitment of renin and of AKR1B7 in wild-type kidneys. Renin cells in AKR1B7-deficient kidneys showed normal morphology, numbers, and intrarenal distribution. Plasma renin concentration (PRC) and renin mRNA levels of AKR1B7-deficient mice were normal at standard chow and were lowered by a high-salt diet directly comparable to wild-type mice. Treatment with a low-salt diet in combination with an angiotensin-converting enzyme inhibitor strongly increased PRC and renin mRNA in a similar fashion both in AKR1B7-deficient and wild-type mice. Under this condition, we also observed a strong retrograde recruitment of renin-expressing cell along the preglomerular vessels, however, without a difference between AKR1B7-deficient and wild-type mice. The isolated perfused mouse kidney model was used to study the acute regulation of renin secretion by ANG II and by perfusion pressure. Regarding these parameters, no differences were observed between AKR1B7-deficient and wild-type kidneys. In summary, our data suggest that AKR1B7 is not of major relevance for the regulation of renin production and secretion in spite of its striking coregulation with renin expression.

  11. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds. (United States)

    Renouard, Sullivan; Corbin, Cyrielle; Lopez, Tatiana; Montguillon, Josiane; Gutierrez, Laurent; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe


    Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.

  12. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Directory of Open Access Journals (Sweden)

    Kristan Katja


    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  13. Dynamic Changes of Nitrate Reductase Activity within 24 Hours

    Institute of Scientific and Technical Information of China (English)


    [Objective] The research aimed to study the circadian rhythm of nitrate re- ductase activity (NRA) in plant. [Method] The wheat plants at heading stage were used as the materials for the measurement of dynamic changes of nitrate reductase activity (NRA) within 24 h under the conditions of constant high temperature. [Resulti The fluctuation of NRA in wheat changed greatly from 20:00 pm to 11:00 am. The enzyme activity remained constant, but at 14:00 the enzyme activity was the high- est, higher than all the other time points except the enzyme activity measured at11:00. The enzyme activity was the lowest of 17:00, which was lower than all the other time points except the enzyme activity measured at 2:00. [Conclusion] There were autonomous rhythm changes of NRA in wheat in a certain degree.

  14. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.). (United States)

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A


    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  15. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Jönsson, Erik G; Larsson, Kristina; Vares, Maria


    disorder. In a replication attempt the MTHFR C677T and A1298C SNPs were analyzed in three Scandinavian schizophrenia case-control samples. In addition, Norwegian patients with bipolar disorder were investigated. There were no statistically significant allele or genotype case-control differences....... The present Scandinavian results do not verify previous associations between the putative functional MTHFR gene polymorphisms and schizophrenia or bipolar disorder. However, when combined with previous studies in meta-analyses there is still evidence for association between the MTHFR C677T polymorphism......Recent meta-analyses of the methylenetetrahydrofolate reductase gene (MTHFR) have suggested association between two of its functional single gene polymorphisms (SNPs; C677T and A1298C) and schizophrenia. Studies have also suggested association between MTHFR C677T and A1298C variation and bipolar...

  16. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Jönsson, Erik G; Larsson, Kristina; Vares, Maria;


    Recent meta-analyses of the methylenetetrahydrofolate reductase gene (MTHFR) have suggested association between two of its functional single gene polymorphisms (SNPs; C677T and A1298C) and schizophrenia. Studies have also suggested association between MTHFR C677T and A1298C variation and bipolar....... The present Scandinavian results do not verify previous associations between the putative functional MTHFR gene polymorphisms and schizophrenia or bipolar disorder. However, when combined with previous studies in meta-analyses there is still evidence for association between the MTHFR C677T polymorphism...... disorder. In a replication attempt the MTHFR C677T and A1298C SNPs were analyzed in three Scandinavian schizophrenia case-control samples. In addition, Norwegian patients with bipolar disorder were investigated. There were no statistically significant allele or genotype case-control differences...

  17. Go Green: The Antiinflammatory Effects of Biliverdin Reductase

    Directory of Open Access Journals (Sweden)

    Barbara eWegiel


    Full Text Available Biliverdin (BV has emerged as a cytoprotective and important anti-inflammatory molecule. Conversion of BV to bilirubin (BR is catalyzed by biliverdin reductase (BVR and is required for the downstream signaling and nuclear localization of BVR. Recent data by others and us make clear that BVR is a critical regulator of innate immune responses resulting from acute insult and injury and moreover, that a lack of BVR results in an enhanced pro-inflammatory phenotype. In macrophages, BVR is regulated by its substrate BV which leads to activation of the PI3K-Akt-IL10 axis and inhibition of TLR4 expression via direct binding of BVR to the TLR4 promoter. In this review, we will summarize recent findings on the role of BVR and the bile pigments in inflammation in context with its activity as an enzyme, receptor and transcriptional regulator.

  18. Pulse radiolysis studies on superoxide reductase from Treponema pallidum

    CERN Document Server

    Nivière, V; Fontecave, M; Houée-Levin, C


    Superoxide reductases (SORs) are small metalloenzymes, which catalyze reduction of O2*- to H2O2. The reaction of the enzyme from Treponema pallidum with superoxide was studied by pulse radiolysis methods. The first step is an extremely fast bi-molecular reaction of the ferrous center with O2, with a rate constant of 6 x 10 (8) M(-1) s(-1). A first intermediate is formed which is converted to a second one with a slower rate constant of 4800 s(-1). This latter value is 10 times higher than the corresponding one previously reported in the case of SOR from Desulfoarculus baarsii. The reconstituted spectra for the two intermediates are consistent with formation of transient iron-peroxide species.

  19. Structure of the Francisella tularensis enoyl-acyl carrier protein reductase (FabI) in complex with NAD[superscript +] and triclosan

    Energy Technology Data Exchange (ETDEWEB)

    Mehboob, Shahila; Truong, Kent; Santarsiero, Bernard D.; Johnson, Michael E. (UIC)


    Enoyl-acyl carrier protein reductase (FabI) catalyzes the last rate-limiting step in the elongation cycle of the fatty-acid biosynthesis pathway and has been validated as a potential antimicrobial drug target in Francisella tularensis. The development of new antibiotic therapies is important both to combat potential drug-resistant bioweapons and to address the broader societal problem of increasing antibiotic resistance among many pathogenic bacteria. The crystal structure of FabI from F. tularensis (FtuFabI) in complex with the inhibitor triclosan and the cofactor NAD{sup +} has been solved to a resolution of 2.1 {angstrom}. Triclosan is known to effectively inhibit FabI from different organisms. Precise characterization of the mode of triclosan binding is required to develop highly specific inhibitors. Comparison of our structure with the previously determined FtuFabI structure (PDB code 2jjy) which is bound to only NAD{sup +} reveals the conformation of the substrate-binding loop, electron density for which was missing in the earlier structure, and demonstrates a shift in the conformation of the NAD{sup +} cofactor. This shift in the position of the phosphate groups allows more room in the active site for substrate or inhibitor to bind and be better accommodated. This information will be crucial for virtual screening studies to identify novel scaffolds for development into new active inhibitors.

  20. Interaction Energy Analysis of Nonclassical Antifolates with Pneumocystis carinii Dihydrofolate Reductase

    Directory of Open Access Journals (Sweden)

    William M. Southerland


    Full Text Available Abstract: The x-ray structure of the Pneumocystis carinii dihydrofolate reductase (DHFR:trimethoprim:NADPH ternary complex obtained from the Protein Databank was used as a structural template to generate models for the following complexes: P. carinii DHFR:piritrexim:NADPH, P. carinii DHFR:epiroprim:NADPH, and P. carinii DHFR:trimetrexate:NADPH. Each of these complexes, including the original trimethoprim complex was then modeled in 60 angstrom cubes of explicit water and minimized to a rms gradient between 1.0 to 3.0 x 10-5 kcal/angstrom. Subsequently, each antifolate structure was subdivided into distinct substructural regions. The minimized complexes were used to calculate interaction energies for each intact antifolate and its corresponding substructural regions with the P. carinii DHFR binding site residues, the DHFR protein, the solvated complex ( which consists of P. carinii DHFR, NADPH, and solvent water, solvent water alone, and NADPH. Antifolate substructural regions which contained nitrogen and carbon atoms in an aromatic environment (i. e. the pteridyl, pyridopyrimidinyl, and diaminopyrimidinyl subregions contributed most to the stability of antifolate interactions, while interaction energies for the hydrocarbon aromatic rings, methoxy, and ethoxy groups were much less stable. Additionally, interaction energy analyses were calculated for carbon and nitrogen atoms of the pteridyl, pyridopyrimidinyl, and diaminopyrimidinyl subregions and for the carbon and oxygen atoms of methoxy and ethoxy subregions. The contributions of hydrogen atoms were included with those of the carbon, nitrogen and oxygen atoms to which they are attached. These analyses revealed that the carbon atoms of the pteridyl, pyridopyrimidinyl, and diaminopyrimidinyl subregions generally contributed most to the stability of those regions. Carbon atoms also contributed favorably to the stability of the methoxy group interactions. Those substructural regions which exhibit

  1. 9,10-Phenanthrenequinone promotes secretion of pulmonary aldo-keto reductases with surfactant. (United States)

    Matsunaga, Toshiyuki; Haga, Mariko; Watanabe, Gou; Shinoda, Yuhki; Endo, Satoshi; Kajiwara, Yu; Tanaka, Hiroyuki; Inagaki, Naoki; El-Kabbani, Ossama; Hara, Akira


    9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, induces apoptosis via the generation of reactive oxygen species (ROS) because of 9,10-PQ redox cycling. We have found that intratracheal infusion of 9,10-PQ facilitates the secretion of surfactant into rat alveolus. In the cultured rat lung, treatment with 9,10-PQ results in an increase in a lower-density surfactant by ROS generation through redox cycling of the quinone. The surfactant contains aldo-keto reductase (AKR) 1C15, which reduces 9,10-PQ and the enzyme level in the surfactant increases on treatment with 9,10-PQ suggesting an involvement of AKR1C15 in the redox cycling of the quinone. In six human cell types (A549, MKN45, Caco2, Hela, Molt4 and U937) only type II epithelial A549 cells secrete three human AKR1C subfamily members (AKR1C1, AKR1C2 and AKR1C3) with the surfactant into the medium; this secretion is highly increased by 9,10-PQ treatment. Using in vitro enzyme inhibition analysis, we have identified AKR1C3 as the most abundantly secreted AKR1C member. The AKR1C enzymes in the medium efficiently reduce 9,10-PQ and initiate its redox cycling accompanied by ROS production. The exposure of A549 cells to 9,10-PQ provokes viability loss, which is significantly protected by the addition of the AKR1C3 inhibitor and antioxidant enzyme and by the removal of the surfactants from the culture medium. Thus, the AKR1C enzymes secreted in pulmonary surfactants probably participate in the toxic mechanism triggered by 9,10-PQ.

  2. Structure determination and functional analysis of a chromate reductase from Gluconacetobacter hansenii.

    Directory of Open Access Journals (Sweden)

    Hongjun Jin

    Full Text Available Environmental protection through biological mechanisms that aid in the reductive immobilization of toxic metals (e.g., chromate and uranyl has been identified to involve specific NADH-dependent flavoproteins that promote cell viability. To understand the enzyme mechanisms responsible for metal reduction, the enzyme kinetics of a putative chromate reductase from Gluconacetobacter hansenii (Gh-ChrR was measured and the crystal structure of the protein determined at 2.25 Å resolution. Gh-ChrR catalyzes the NADH-dependent reduction of chromate, ferricyanide, and uranyl anions under aerobic conditions. Kinetic measurements indicate that NADH acts as a substrate inhibitor; catalysis requires chromate binding prior to NADH association. The crystal structure of Gh-ChrR shows the protein is a homotetramer with one bound flavin mononucleotide (FMN per subunit. A bound anion is visualized proximal to the FMN at the interface between adjacent subunits within a cationic pocket, which is positioned at an optimal distance for hydride transfer. Site-directed substitutions of residues proposed to involve in both NADH and metal anion binding (N85A or R101A result in 90-95% reductions in enzyme efficiencies for NADH-dependent chromate reduction. In comparison site-directed substitution of a residue (S118A participating in the coordination of FMN in the active site results in only modest (50% reductions in catalytic efficiencies, consistent with the presence of a multitude of side chains that position the FMN in the active site. The proposed proximity relationships between metal anion binding site and enzyme cofactors is discussed in terms of rational design principles for the use of enzymes in chromate and uranyl bioremediation.

  3. Comparison of inhibitory effects between acetaminophen-glutathione conjugate and reduced glutathione in human glutathione reductase. (United States)

    Nýdlová, Erika; Vrbová, Martina; Cesla, Petr; Jankovičová, Barbora; Ventura, Karel; Roušar, Tomáš


    Acetaminophen overdose is the most frequent cause of acute liver injury. The main mechanism of acetaminophen toxicity has been attributed to oxidation of acetaminophen. The oxidation product is very reactive and reacts with glutathione generating acetaminophen-glutathione conjugate (APAP-SG). Although this conjugate has been recognized to be generally nontoxic, we have found recently that APAP-SG could produce a toxic effect. Therefore, the aim of our study was to estimate the toxicity of purified APAP-SG by characterizing the inhibitory effect in human glutathione reductase (GR) and comparing that to the inhibitory effect of the natural inhibitor reduced glutathione. We used two types of human GR: recombinant and freshly purified from red blood cells. Our results show that GR was significantly inhibited in the presence of both APAP-SG and reduced glutathione. For example, the enzyme activity of recombinant and purified GR was reduced in the presence of 4 mm APAP-SG (with 0.5 mm glutathione disulfide) by 28% and 22%, respectively. The type of enzyme inhibition was observed to be competitive in the cases of both APAP-SG and glutathione. As glutathione inhibits GR activity in cells under physiological conditions, the rate of enzyme inhibition ought to be weaker in the case of glutathione depletion that is typical of acetaminophen overdose. Notably, however, enzyme activity likely remains inhibited due to the presence of APAP-SG, which might enhance the pro-oxidative status in the cell. We conclude that our finding could reflect some other pathological mechanism that may contribute to the toxicity of acetaminophen.

  4. Gibberellins negatively regulate light-induced nitrate reductase activity in Arabidopsis seedlings. (United States)

    Zhang, Yongqiang; Liu, Zhongjuan; Liu, Rongzhi; Wang, Liguang; Bi, Yurong


    In the present study, the role of phytohormone gibberellins (GAs) on regulating the nitrate reductase (NR) activity was tested in Arabidopsis seedlings. The NR activity in light-grown Col-0 seedlings was reduced by exogenous GA₃ (an active form of GAs), but enhanced by exogenous paclobutrazol (PAC, a gibberellin biosynthesis inhibitor), suggesting that GAs negatively regulate the NR activity in light-grown seedlings. Light is known to influence the NR activity through both photosynthesis and phytochromes. When etiolated seedlings were transferred to white or red light, both exogenously applied GA₃ and PAC were found to function on the NR activity only in the presence of sucrose, implying that GAs are not involved in light signaling-induced but negatively regulate photoproducts-induced NR activity. NR is regulated by light mainly at two levels: transcript level and post-translational level. Our reverse transcription (RT)-PCR assays showed that GAs did not affect the transcript levels of NIA1 and NIA2, two genes that encode NR proteins. But the divalent cations (especially Mg²⁺) were required for GAs negative regulation of NR activity, in view of the importance of divalent cations during the process of post-translational regulation of NR activity, which indicates that GAs very likely regulate the NR activity at the post-translational level. In the following dark-light shift analyses, GAs were found to accelerate dark-induced decrease, but retard light-induced increase of the NR activity. Furthermore, it was observed that application of G₃ or PAC could impair diurnal variation of the NR activity. These results collectively indicate that GAs play a negative role during light regulation of NR activity in nature.

  5. H-rev107 Regulates Cytochrome P450 Reductase Activity and Increases Lipid Accumulation.

    Directory of Open Access Journals (Sweden)

    Fu-Ming Tsai

    Full Text Available H-rev107 is a member of the HREV107 type II tumor suppressor gene family and acts as a phospholipase to catalyze the release of fatty acids from glycerophospholipid. H-rev107 has been shown to play an important role in fat metabolism in adipocytes through the PGE2/cAMP pathway, but the detailed molecular mechanism underlying H-rev107-mediated lipid degradation has not been studied. In this study, the interaction between H-rev107 and cytochrome P450 reductase (POR, which is involved in hepatic lipid content regulation, was determined by yeast two-hybrid screen and confirmed by using in vitro pull down assays and immunofluorescent staining. The expression of POR in H-rev107-expressing cells enhanced the H-rev107-mediated release of arachidonic acid. However, H-rev107 inhibited POR activity and relieved POR-mediated decreased triglyceride content in HtTA and HeLa cervical cells. The inhibitory effect of H-rev107 will be abolished when POR-expressing cells transfected with PLA2-lacking pH-rev107 or treated with PLA2 inhibitor. Silencing of H-rev107 using siRNA resulted in increased glycerol production and reversion of free fatty acid-mediated growth suppression in Huh7 hepatic cells. In summary, our results revealed that H-rev107 is also involved in lipid accumulation in liver cells through the POR pathway via its PLA2 activity.

  6. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine


    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  7. Steroid 5β-Reductase from Leaves of Vitis vinifera: Molecular Cloning, Expression, and Modeling. (United States)

    Ernst, Mona; Munkert, Jennifer; Campa, Manuela; Malnoy, Mickael; Martens, Stefan; Müller-Uri, Frieder


    A steroid 5β-reductase gene corresponding to the hypothetical protein LOC100247199 from leaves of Vitis vinifera (var. 'Chardonnay') was cloned and overexpressed in Escherichia coli. The recombinant protein showed 5β-reductase activity when progesterone was used as a substrate. The reaction was stereoselective, producing only 5β-products such as 5β-pregnane-3,20-dione. Other small substrates (terpenoids and enones) were also accepted as substrates, indicating the highly promiscuous character of the enzyme class. Our results show that the steroid 5β-reductase gene, encoding an orthologous enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in leaves of the cardenolide-free plant V. vinifera. We emphasize the fact that, on some occasions, different reductases (e.g., progesterone 5β-reductase and monoterpenoid reductase) can also use molecules that are similar to the final products as a substrate. Therefore, in planta, the different reductases may contribute to the immense number of diverse small natural products finally leading to the flavor of wine.

  8. Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots. (United States)

    Ozturk, Levent; Yazici, Atilla; Eker, Selim; Gokmen, Ozgur; Römheld, Volker; Cakmak, Ismail


    Iron (Fe) deficiency is increasingly being observed in cropping systems with frequent glyphosate applications. A likely reason for this is that glyphosate interferes with root uptake of Fe by inhibiting ferric reductase in roots required for Fe acquisition by dicot and nongrass species. This study investigated the role of drift rates of glyphosate (0.32, 0.95 or 1.89 mm glyphosate corresponding to 1, 3 and 6% of the recommended herbicidal dose, respectively) on ferric reductase activity of sunflower (Helianthus annuus) roots grown under Fe deficiency conditions. Application of 1.89 mm glyphosate resulted in almost 50% inhibition of ferric reductase within 6 h and complete inhibition 24 h after the treatment. Even at lower rates of glyphosate (e.g. 0.32 mm and 0.95 mm), ferric reductase was inhibited. Soluble sugar concentration and the NAD(P)H oxidizing capacity of apical roots were not decreased by the glyphosate applications. To our knowledge, this is the first study reporting the effects of glyphosate on ferric reductase activity. The nature of the inhibitory effect of glyphosate on ferric reductase could not be identified. Impaired ferric reductase could be a major reason for the increasingly observed Fe deficiency in cropping systems associated with widespread glyphosate usage.

  9. Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents

    Energy Technology Data Exchange (ETDEWEB)

    Muench, Stephen P. [The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN (United Kingdom); Prigge, Sean T. [Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States); McLeod, Rima [Department of Ophthalmology and Visual Sciences, Paediatrics (Infectious Diseases) and Pathology and the Committees on Molecular Medicine, Genetics, Immunology and The College, The University of Chicago, Chicago, IL 60637 (United States); Rafferty, John B. [The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN (United Kingdom); Kirisits, Michael J. [Department of Ophthalmology and Visual Sciences, Paediatrics (Infectious Diseases) and Pathology and the Committees on Molecular Medicine, Genetics, Immunology and The College, The University of Chicago, Chicago, IL 60637 (United States); Roberts, Craig W. [Department of Immunology, University of Strathclyde, Glasgow G4 0NR, Scotland (United Kingdom); Mui, Ernest J. [Department of Ophthalmology and Visual Sciences, Paediatrics (Infectious Diseases) and Pathology and the Committees on Molecular Medicine, Genetics, Immunology and The College, The University of Chicago, Chicago, IL 60637 (United States); Rice, David W., E-mail: [The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN (United Kingdom)


    The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have been solved to 2.6, 2.2 and 2.8 Å, respectively. Recent studies have demonstrated that submicromolar concentrations of the biocide triclosan arrest the growth of the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii and inhibit the activity of the apicomplexan enoyl acyl carrier protein reductase (ENR). The crystal structures of T. gondii and P. falciparum ENR in complex with NAD{sup +} and triclosan and of T. gondii ENR in an apo form have been solved to 2.6, 2.2 and 2.8 Å, respectively. The structures of T. gondii ENR have revealed that, as in its bacterial and plant homologues, a loop region which flanks the active site becomes ordered upon inhibitor binding, resulting in the slow tight binding of triclosan. In addition, the T. gondii ENR–triclosan complex reveals the folding of a hydrophilic insert common to the apicomplexan family that flanks the substrate-binding domain and is disordered in all other reported apicomplexan ENR structures. Structural comparison of the apicomplexan ENR structures with their bacterial and plant counterparts has revealed that although the active sites of the parasite enzymes are broadly similar to those of their bacterial counterparts, there are a number of important differences within the drug-binding pocket that reduce the packing interactions formed with several inhibitors in the apicomplexan ENR enzymes. Together with other significant structural differences, this provides a possible explanation of the lower affinity of the parasite ENR enzyme family for aminopyridine-based inhibitors, suggesting that an effective antiparasitic agent may well be distinct from equivalent antimicrobials.

  10. Clofarabine 5'-di and -triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit. (United States)

    Aye, Yimon; Stubbe, Joanne


    Human ribonucleotide reductases (hRNRs) catalyze the conversion of nucleotides to deoxynucleotides and are composed of α- and β-subunits that form active α(n)β(m) (n, m = 2 or 6) complexes. α binds NDP substrates (CDP, UDP, ADP, and GDP, C site) as well as ATP and dNTPs (dATP, dGTP, TTP) allosteric effectors that control enzyme activity (A site) and substrate specificity (S site). Clofarabine (ClF), an adenosine analog, is used in the treatment of refractory leukemias. Its mode of cytotoxicity is thought to be associated in part with the triphosphate functioning as an allosteric inhibitor of hRNR. Studies on the mechanism of inhibition of hRNR by ClF di- and triphosphates (ClFDP and ClFTP) are presented. ClFTP is a reversible inhibitor (K(i) = 40 nM) that rapidly inactivates hRNR. However, with time, 50% of the activity is recovered. D57N-α, a mutant with an altered A site, prevents inhibition by ClFTP, suggesting its A site binding. ClFDP is a slow-binding, reversible inhibitor ( K(i)*; t(1/2) = 23 min). CDP protects α from its inhibition. The altered off-rate of ClFDP from E•ClFDP* by ClFTP (A site) or dGTP (S site) and its inhibition of D57N-α together implicate its C site binding. Size exclusion chromatography of hRNR or α alone with ClFDP or ClFTP, ± ATP or dGTP, reveals in each case that α forms a kinetically stable hexameric state. This is the first example of hexamerization of α induced by an NDP analog that reversibly binds at the active site.

  11. NMR evaluation of total statin content and HMG-CoA reductase inhibition in red yeast rice (Monascus spp. food supplements

    Directory of Open Access Journals (Sweden)

    Lachenmeier Dirk W


    Full Text Available Abstract Background Red yeast rice (i.e., rice fermented with Monascus spp., as a food supplement, is claimed to be blood cholesterol-lowering. The red yeast rice constituent monacolin K, also known as lovastatin, is an inhibitor of the hydroxymethylglutaryl-CoA (HMG-CoA reductase. This article aims to develop a sensitive nuclear magnetic resonance (NMR method to determine the total statin content of red yeast rice products. Methods The total statin content was determined by a 400 MHz 1H NMR spectroscopic method, based on the integration of the multiplet at δ 5.37-5.32 ppm of a hydrogen at the hexahydronaphthalene moiety in comparison to an external calibration with lovastatin. The activity of HMG-CoA reductase was measured by a commercial spectrophotometric assay kit. Results The NMR detection limit for total statins was 6 mg/L (equivalent to 0.3 mg/capsule, if two capsules are dissolved in 50 mL ethanol. The relative standard deviations were consistently lower than 11%. The total statin concentrations of five red yeast rice supplements were between 1.5 and 25.2 mg per specified daily dose. A dose-dependent inhibition of the HMG-CoA reductase enzyme activity by the red yeast rice products was demonstrated. Conclusion A simple and direct NMR assay was developed to determine the total statin content in red yeast rice. The assay can be applied for the determination of statin content for the regulatory control of red yeast rice products.

  12. Comparative kinetics of Qi site inhibitors of cytochrome bc1 complex: picomolar antimycin and micromolar cyazofamid. (United States)

    Li, Hui; Zhu, Xiao-Lei; Yang, Wen-Chao; Yang, Guang-Fu


    Antimycin and cyazofamid are specific inhibitors of the mitochondrial respiratory chain and bind to the Qi site of the cytochrome bc1 complex. With the aim to understand the detailed molecular inhibition mechanism of Qi inhibitors, we performed a comparative investigation of the inhibitory kinetics of them against the porcine bc1 complex. The results showed that antimycin is a slow tight-binding inhibitor of succinate-cytochrome c reductase (SCR) with Ki  = 0.033 ± 0.00027 nm and non-competitive inhibition with respect to cytochrome c. Cyazofamid is a classical inhibitor of SCR with Ki  = 12.90 ± 0.91 μm and a non-competitive inhibitor with respect to cytochrome c. Both of them show competitive inhibition with respect to substrate DBH2 . Further molecular docking and quantum mechanics calculations were performed. The results showed that antimycin underwent significant conformational change upon the binding. The energy barrier between the conformations in the crystal and in the binding pocket is ~13.63 kcal/mol. Antimycin formed an H-bond with Asp228 and two water-bridged H-bonds with Lys227 and His201, whereas cyazofamid formed only one H-bond with Asp228. The conformational change and the different hydrogen bonding network might account for why antimycin is a slow tight-binding inhibitor, whereas cyazofamid is a classic inhibitor.

  13. Interactions between Barley a-Amylases, Substrates, Inhibitors and Regulatory Proteins

    DEFF Research Database (Denmark)

    Hachem, Maher Abou; Bozonnet, Sophie; Willemoës, Martin


    Barley a-amylase binds sugars at two sites on the enzyme surface in addition to the active site. Crystallography and site-directed mutagenesis highlight the importance of aromatic residues at these surface sites as demonstrated by Kd values determined for ß-cyclodextrin by surface plasmon resonance......, a fully hydrated calcium ion at the protein interface mediates contact between inhibitor residues and the enzyme catalytic groups in a manner that depends on calcium and which can be suppressed by site-directed mutagenesis of Glu168 in BASI. Finally certain inhibitors and enzymes are targets...... of the disulphide reductase thioredoxin h that attacks a specific disulphide bond in BASI and, remarkably, reduces two different disulphide bonds in the barley monomeric and dimeric amylase inhibitors that both belong to the CM-proteins and inhibit animal a-amylase....

  14. Enhancement of sterol synthesis by the monoterpene perillyl alcohol is unaffected by competitive 3-hydroxy-3-methylglutaryl-CoA reductase inhibition. (United States)

    Cerda, S R; Wilkinson, J; Branch, S K; Broitman, S A


    Monoterpenes such as limonene and perillyl alcohol (PA) are currently under investigation for their chemotherapeutic properties which have been tied to their ability to affect protein isoprenylation. Because PA affects the synthesis of isoprenoids, such as ubiquinone, and cholesterol is the end product of the synthetic pathway from which this isoprenoid pathway branches, we investigated the effects of this compound upon cholesterol metabolism in the colonic adenocarcinoma cell line SW480. PA (1 mM) inhibited incorporation of 14C-mevalonate into 21-26 kDa proteins by 25% in SW480 cells. Cholesterol (CH) biosynthesis was assessed by measuring the incorporation of 14C-acetate and 14C-mevalonate into 27-carbon-sterols. Cells treated with PA (1 mM) exhibited a fourfold increase in the incorporation of 14C-acetate but not 14C-mevalonate into cholesterol. Mevinolin (lovastatin), an inhibitor of 3-hydroxy-3-methylglutaryl-CoA(HMG-CoA) reductase, at 2 microM concentration, inhibited CH synthesis from 14C-acetate by 80%. Surprisingly, concurrent addition of mevinolin and PA did not significantly alter the stimulatory effects of PA. As observed differences in 14C-acetate and 14C-mevalonate precursor labeling could indicate PA affects early pathway events, the effects of this monoterpene on HMG-CoA reductase activity were evaluated. Unexpectedly, 1 mM PA did not stimulate activity of this enzyme. Consistent with its action as a reversibly bound inhibitor, in washed microsomes, 2 microM mevinolin pretreatment increased reductase protein expression causing a 12.7 (+/- 2.4)-fold compensatory HMG-CoA reductase activity increase; concurrent treatment with 1 mM PA attenuated this to a 5.3 (+/- 0.03)-fold increase. Gas chromatographic analysis confirmed CH was the major lipid present in the measured thin-layer chromatography spot. Since 14C-acetate incorporation into free fatty acid and phospholipid pools was not significantly affected by PA treatment, nonspecific changes in whole

  15. Survival and psychomotor development with early betaine treatment in patients with severe methylenetetrahydrofolate reductase deficiency

    NARCIS (Netherlands)

    Diekman, E.F.; Koning, T.J. de; Verhoeven-Duif, N.M.; Rovers, M.M.; Hasselt, P.M. van


    IMPORTANCE The impact of betaine treatment on outcome in patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency is presently unclear. OBJECTIVE To investigate the effect of betaine treatment on development and survival in patients with severe MTHFR deficiency. DATA SOURCES MEDLI

  16. Survival and Psychomotor Development With Early Betaine Treatment in Patients With Severe Methylenetetrahydrofolate Reductase Deficiency

    NARCIS (Netherlands)

    Diekman, Eugene F.; de Koning, Tom J.; Verhoeven-Duif, Nanda M.; Rovers, Maroeska M.; van Hasselt, Peter M.


    IMPORTANCE The impact of betaine treatment on outcome in patients with severe methylenetetrahydrofolate reductase (MTHFR) deficiency is presently unclear. OBJECTIVE To investigate the effect of betaine treatment on development and survival in patients with severe MTHFR deficiency. DATA SOURCES MEDLI

  17. Histochemical Localization of Glutathione Dependent NBT—Reductase in Mouse Skin

    Institute of Scientific and Technical Information of China (English)



    Objective:Localization of the glutathione dependent Nitroblue tetrazolium(NBT) reductase in fresh frozen sections of mouse skin and possible dependence of NBT reductase on tissue thiol levels has been investigated.Methods:The fresh frozen tissue sections(8m thickness)were prepared and incuated in medium containing NBT,reduced glutathione(GSH) and Phosphate uffer,The staining for GSH was performed with mercury orange.Results:The activity of the NBT-reductase in mouse skin has een found to be localized in the areas rich in glutatione and actively proliferating area of the skin.Conclusion:The activity of the NBT-reductase seems to be dependent on the glutatione contents.

  18. Measurement of nitrite reductase in leaf tissue of Vigna mungo : A new method. (United States)

    Srivastava, R C; Bose, B; Mukerji, D; Mathur, S N; Srivastava, H S


    The enzyme nitrite reductase (EC is generally assayed in terms of disappearance of nitrite from the assay medium. We describe a technique which allowed estimation of the enzyme level in leaf tissues of Vigna mungo (L). Hepper in terms of the release of the product (NH3) of the enzyme reaction. The technique is offered as an alternative, possibly more convenient method for assay of nitrite reductase in plant tissue in vivo.

  19. Localization and Solubilization of the Iron(III) Reductase of Geobacter sulfurreducens



    The iron(III) reductase activity of Geobacter sulfurreducens was determined with the electron donor NADH and the artificial electron donor horse heart cytochrome c. The highest reduction rates were obtained with Fe(III) complexed by nitrilotriacetic acid as an electron acceptor. Fractionation experiments indicated that no iron(III) reductase activity was present in the cytoplasm, that approximately one-third was found in the periplasmic fraction, and that two-thirds were associated with the m...

  20. Overview of the current attempts toward the medical treatment of cataract

    Energy Technology Data Exchange (ETDEWEB)

    Kador, P.F.


    A variety of agents are currently available that claim to either prevent, delay, or reverse cataracts associated with aging (senile cataracts), radiation, or diabetes and galactosemia (sugar cataracts). Senile cataract therapy includes formulation containing inorganic salts, nutritional supplements, natural product extracts, sulfhydryl, and sulfonic acid containing compounds and miscellaneous redox and nonsteroidal anti-inflammatory compounds. Agents associated with the treatment of radiation cataracts include antioxidants and free radial scavengers. Aldose reductase inhibitors have been effective in the prevention of sugar cataracts. A summary of these agents and their potential ocular effects are presented.

  1. Characterization of two alkyl hydroperoxide reductase C homologs alkyl hydroperoxide reductase C_H1 and alkyl hydroperoxide reductase C_H2 in Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    Mee-Kyung; Cha; Yoo-Jeen; Bae; Kyu-Jeong; Kim; Byung-Joon; Park; Il-Han; Kim


    AIM: To identify alkyl hydroperoxide reductase subunit C(AhpC) homologs in Bacillus subtilis(B. subtilis) and to characterize their structural and biochemical properties. AhpC is responsible for the detoxification of reactive oxygen species in bacteria.METHODS: Two AhpC homologs(AhpC_H1 and AhpC_H2) were identified by searching the B. subtilis database; these were then cloned and expressed in Escherichia coli. AhpC mutants carrying substitutions of catalytically important Cys residues(C37S, C47 S, C166 S, C37/47 S, C37/166 S, C47/166 S, and C37/47/166 S for AhpC_H1; C52 S, C169 S, and C52/169 S for AhpC_H2) were obtained by site-directed mutagenesis and purified, and their structure-function relationship was analyzed. The B. subtilis ahp C genes were disrupted by the short flanking homology method, and the phenotypes of the resulting AhpC-deficient bacteria were examined.RESULTS: Comparative characterization of AhpC homologs indicates that AhpC_H1 contains an extra C37, which forms a disulfide bond with the peroxidatic C47, and behaves like an atypical 2-Cys AhpC, while AhpC_H2 functions like a typical 2-Cys AhpC. Tryptic digestion analysis demonstrated the presence of intramolecular Cys37-Cys47 linkage, which could be reduced by thioredoxin, resulting in the association of the dimer into higher-molecular-mass complexes. Peroxidase activity analysis of Cys→Ser mutants indicated that three Cys residues were involved in the catalysis. AhpC_H1 was resistant to inactivation by peroxide substrates, but had lower activity at physiological H2O2 concentrations compared to AhpC_H2, suggesting that in B. subtilis, the enzymes may be physiologically functional at different substrate concentrations. The exposure to organic peroxides induced AhpC_H1 expression, while AhpC_H1-deficient mutants exhibited growth retardation in the stationary phase, suggesting the role of AhpC_H1 as an antioxidant scavenger of lipid hydroperoxides and a stress-response factor in B. subtilis

  2. Molecular effects of bioactive fraction of Curcuma mangga (DLBS4847 as a downregulator of 5α-reductase activity pathways in prostatic epithelial cells

    Directory of Open Access Journals (Sweden)

    Karsono AH


    Full Text Available Agung Heru Karsono, Olivia Mayasari Tandrasasmita, Raymond R TjandrawinataSection of Molecular Pharmacology, Research Innovation and Invention, Dexa Laboratories of Biomolecular Sciences, Dexa Medica, Cikarang, IndonesiaAbstract: DLBS4847 is a standardized bioactive fraction of Curcuma mangga. In this study, we used prostate cancer (PC-3 as the cell line to study the effects of DLBS4847 on prostatic cell viability, as well as related molecular changes associated with the decreased cell number. The observation revealed that DLBS4847 inhibited the growth of PC3 cells through downregulation of the 5α-reductase (5AR pathway. At the transcription level, 5AR1 and androgen-receptor gene expressions were downregulated in a dose-dependent manner. Furthermore, 5AR-1 and dihydrotestosterone expression were also downregulated at the protein level. A microarray study was also performed to see the effects of DLBS4847 on differential gene expressions in prostate cancer 3 cells. Among others, DLBS4847 downregulated genes related to prostate growth and hypertrophy. Our results suggested that DLBS4847 could potentially become an alternative treatment for prostate disorders, such as benign prostatic hyperplasia. In this regard, DLBS4847 exerts its growth inhibition partially through downregulation of the 5AR pathway.Keywords: DLBS4847, Curcuma mangga, 5α-reductase inhibitor, benign prostatic hyperplasia (BPH, prostate cancer

  3. Structural Basis for the Thermostability of Sulfur Oxygenase Reductases

    Institute of Scientific and Technical Information of China (English)

    尤晓颜; 孟珍; 陈栋炜; 郭旭; Josef Zeyer; 刘双江; 姜成英


    The thermostability of three sulfur oxygenase reductases (SORs) was investigated from thermoacidophilic achaea Acidianus tengchongensis (SORAT) and Sulfolobus tokodaii (SORsT) as well as the moderately thermophilic bacterium Acidithiobacillus sp. SM-1 (SORsB). The optimal temperatures for catalyzing sulfur oxidation were 80 ℃ (SORAT), 85 ℃ (SORsT), and 70 ℃ (SORsB), respectively. The half-lives of the three SORs at their optimal catalytic conditions were 100 min (SORAT), 58 min (SORsT), and 37 min (SORsB). In order to reveal the structural basis of the thermostability of these SORs, three-dimensional structural models of them were generated by homology modeling using the previously reported high-resolution X-ray structure of SORAA (from Acidianus ambivalens) as a template. The results suggest that thermostability was dependent on: (a) high number of the charged amino acid glutamic acid and the flexible amino acid proline, (b) low number of the therraolabile amino acid glutamine, (c) increased number of ion pairs, (d) decreased ratio of hydrophobie accessible solvent surface area (ASA) to charged ASA, and (e) increased volumes of the cavity. The number of cavities and the number of hydrogen bonds did not signifieantly affect the thermostability of SORs, whereas the cavity volumes increased as the thermal stability increased.

  4. Molecular Characterization of a Dehydroascorbate Reductase from Pinus bungeana

    Institute of Scientific and Technical Information of China (English)

    Hai-Ling Yang; Ying-Ru Zhao; Cai-Ling Wang; Zhi-Ling Yang; Qing-Yin Zeng; Hai Lu


    Dehydroascorbate reductase (DHAR) plays a critical role in the ascorbate-glutathione recycling reaction for most higher plants. To date, studies on DHAR in higher plants have focused largely on Arabidopsis and agricultural plants, and there is virtually no information on the molecular characteristics of DHAR in gymnosperms. The present study reports the cloning and characteristics of a DHAR (PbDHAR) from a pine, Pinus bungeana Zucc. ex Endl. The PbDHAR gene encodes a protein of 215 amino acid residues with a calculated molecular mass of 24.26 kDa. The predicted 3-D structure of PbDHAR showed a typical glutathione S-transferase fold. Reverse transcription-polymerase chain reaction revealed that the PbDHAR was a constitutive expression gene in P. bungeana. The expression level of PbDHAR mRNA in P. bungeana seedlings did not show significant change under high temperature stress. The recombinant PbDHAR was overexpressed in Escherichia coll following purification with affinity chromatography. The recombinant PbDHAR exhibited enzymatic activity (19.84μmol/min per mg) and high affinity (a K_m of 0.08 mM) towards the substrates dehydroascorbate (DHA). Moreover, the recombinant PbDHAR was a thermostable enzyme, and retained 77% of its initial activity at 55 ℃. The present study is the first to provide a detailed molecular characterization of the DHAR in P. bungeana.

  5. Methylenetetrahydrofolate Reductase Genotypes, Dietary Habits and Susceptibility to Stomach Cancer

    Institute of Scientific and Technical Information of China (English)

    ChangmingGao; TakezakiToshiro; JianzhongWu; JianhuoDing; YantingLiu; SupingLi; PingSu; XuHu; TianliongXu; HamajimaNobuyuki; TajimaKazuo


    OBJECTIVE To study the relation among methylenetetrahydrofolate reductase (MTHFR) C677T genotypes, dietary habits and the risk of stomach cancer (SC).METHODS A case-control study was conducted with 107 cases of SC and 200 population-based controls in Chuzhou district, Huaian, Jiangsu province, China. The epidemiological data were collected, and DNA of peripheral blood leukocytes was obtained from all of the subjects..MTHFR genotypes were detected by PCR-RFLP. RESULTS (1) The prevalence of the MTHFR C/T or T/T genotypes was found to be significantly different between controls (68.5%) and SC cases (79.4%,P=0.0416), the increased risk had an adjusted OR of 1.79 (95%C1:1.01-3.19). (2) Among subjects who had a low intake of garlic or Chinese onion, MTHFR C/T or T/T genotypes significantly increased the risk of developing SC. Among non-tea drinkers or among subjects who had a frequent intakeof meat, the carriers of the MTHFR C/T or T/T genotypes had a higher risk of SC than individuals with the C/C type MTHFR. CONCLUSION The polymorphism of MTHFR C677T was associated with increased risk of developing SC, and that individuals with differing genotypes may have different susceptibilities to SC, based on their exposure level to environmental factors.

  6. Solvent effects on catalysis by Escherichia coli dihydrofolate reductase. (United States)

    Loveridge, E Joel; Tey, Lai-Hock; Allemann, Rudolf K


    Hydride transfer catalyzed by dihydrofolate reductase (DHFR) has been described previously within an environmentally coupled model of hydrogen tunneling, where protein motions control binding of substrate and cofactor to generate a tunneling ready conformation and modulate the width of the activation barrier and hence the reaction rate. Changes to the composition of the reaction medium are known to perturb protein motions. We have measured kinetic parameters of the reaction catalyzed by DHFR from Escherichia coli in the presence of various cosolvents and cosolutes and show that the dielectric constant, but not the viscosity, of the reaction medium affects the rate of reaction. Neither the primary kinetic isotope effect on the reaction nor its temperature dependence were affected by changes to the bulk solvent properties. These results are in agreement with our previous report on the effect of solvent composition on catalysis by DHFR from the hyperthermophile Thermotoga maritima. However, the effect of solvent on the temperature dependence of the kinetic isotope effect on hydride transfer catalyzed by E. coli DHFR is difficult to explain within a model, in which long-range motions couple to the chemical step of the reaction, but may indicate the existence of a short-range promoting vibration or the presence of multiple nearly isoenergetic conformational substates of enzymes with similar but distinct catalytic properties.

  7. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis (United States)

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; De Proft, Frank; Huang, Jingjing; Van Breusegem, Frank; Messens, Joris


    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release. PMID:28195196

  8. Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp. (United States)

    Arias, Diego G; Cabeza, Matías S; Erben, Esteban D; Carranza, Pedro G; Lujan, Hugo D; Téllez Iñón, María T; Iglesias, Alberto A; Guerrero, Sergio A


    Methionine is an amino acid susceptible to being oxidized to methionine sulfoxide (MetSO). The reduction of MetSO to methionine is catalyzed by methionine sulfoxide reductase (MSR), an enzyme present in almost all organisms. In trypanosomatids, the study of antioxidant systems has been mainly focused on the involvement of trypanothione, a specific redox component in these organisms. However, no information is available concerning their mechanisms for repairing oxidized proteins, which would be relevant for the survival of these pathogens in the various stages of their life cycle. We report the molecular cloning of three genes encoding a putative A-type MSR in trypanosomatids. The genes were expressed in Escherichia coli, and the corresponding recombinant proteins were purified and functionally characterized. The enzymes were specific for L-Met(S)SO reduction, using Trypanosoma cruzi tryparedoxin I as the reducing substrate. Each enzyme migrated in electrophoresis with a particular profile reflecting the differences they exhibit in superficial charge. The in vivo presence of the enzymes was evidenced by immunological detection in replicative stages of T. cruzi and Trypanosoma brucei. The results support the occurrence of a metabolic pathway in Trypanosoma spp. involved in the critical function of repairing oxidized macromolecules.

  9. Opposing Effects of Cyclooxygenase-2 (COX-2) on Estrogen Receptor β (ERβ) Response to 5α-Reductase Inhibition in Prostate Epithelial Cells. (United States)

    Liu, Teresa T; Grubisha, Melanie J; Frahm, Krystle A; Wendell, Stacy G; Liu, Jiayan; Ricke, William A; Auchus, Richard J; DeFranco, Donald B


    Current pharmacotherapies for symptomatic benign prostatic hyperplasia (BPH), an androgen receptor-driven, inflammatory disorder affecting elderly men, include 5α-reductase (5AR) inhibitors (i.e. dutasteride and finasteride) to block the conversion of testosterone to the more potent androgen receptor ligand dihydrotestosterone. Because dihydrotestosterone is the precursor for estrogen receptor β (ERβ) ligands, 5AR inhibitors could potentially limit ERβ activation, which maintains prostate tissue homeostasis. We have uncovered signaling pathways in BPH-derived prostate epithelial cells (BPH-1) that are impacted by 5AR inhibition. The induction of apoptosis and repression of the cell adhesion protein E-cadherin by the 5AR inhibitor dutasteride requires both ERβ and TGFβ. Dutasteride also induces cyclooxygenase type 2 (COX-2), which functions in a negative feedback loop in TGFβ and ERβ signaling pathways as evidenced by the potentiation of apoptosis induced by dutasteride or finasteride upon pharmacological inhibition or shRNA-mediated ablation of COX-2. Concurrently, COX-2 positively impacts ERβ action through its effect on the expression of a number of steroidogenic enzymes in the ERβ ligand metabolic pathway. Therefore, effective combination pharmacotherapies, which have included non-steroidal anti-inflammatory drugs, must take into account biochemical pathways affected by 5AR inhibition and opposing effects of COX-2 on the tissue-protective action of ERβ.

  10. Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases from Malus domestica and Pyrus communis cultivars and the consequences for flavonoid metabolism. (United States)

    Fischer, Thilo C; Halbwirth, Heidrun; Meisel, Barbara; Stich, Karl; Forkmann, Gert


    Treatment with the dioxygenase inhibitor prohexadione-Ca leads to major changes in the flavonoid metabolism of apple (Malus domestica) and pear (Pyrus communis) leaves. Accumulation of unusual 3-deoxyflavonoids is observed, which have been linked to an enhanced resistance toward fire blight. The committed step in this pathway is the reduction of flavanones. Crude extracts from leaves are able to perform this reaction. There was previous evidence that DFR enzymes of certain plants possess additional flavanone 4-reductase (FNR) activity. Such an FNR activity of DFR enzymes is proved here by heterologous expression of the enzymes. The heterologously expressed DFR/FNR enzymes of Malus and Pyrus possess distinct differences in substrate specificities despite only minor differences of the amino acid sequences. Kinetic studies showed that dihydroflavonols generally are the preferred substrates. However, with the observed substrate specificities the occurrence of 3-deoxyflavonoids in vivo after application of prohexadione-Ca can be explained.

  11. Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase. (United States)

    Wentzinger, Laurent F; Bach, Thomas J; Hartmann, Marie-Andrée


    To get some insight into the regulatory mechanisms controlling the sterol branch of the mevalonate pathway, tobacco (Nicotiana tabacum cv Bright Yellow-2) cell suspensions were treated with squalestatin-1 and terbinafine, two specific inhibitors of squalene synthase (SQS) and squalene epoxidase, respectively. These two enzymes catalyze the first two steps involved in sterol biosynthesis. In highly dividing cells, SQS was actively expressed concomitantly with 3-hydroxy-3-methylglutaryl coenzyme A reductase and both sterol methyltransferases. At nanomolar concentrations, squalestatin was found to inhibit efficiently sterol biosynthesis as attested by the rapid decrease in SQS activity and [(14)C]radioactivity from acetate incorporated into sterols. A parallel dose-dependent accumulation of farnesol, the dephosphorylated form of the SQS substrate, was observed without affecting farnesyl diphosphate synthase steady-state mRNA levels. Treatment of tobacco cells with terbinafine is also shown to inhibit sterol synthesis. In addition, this inhibitor induced an impressive accumulation of squalene and a dose-dependent stimulation of the triacylglycerol content and synthesis, suggesting the occurrence of regulatory relationships between sterol and triacylglycerol biosynthetic pathways. We demonstrate that squalene was stored in cytosolic lipid particles, but could be redirected toward sterol synthesis if required. Inhibition of either SQS or squalene epoxidase was found to trigger a severalfold increase in enzyme activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase, giving first evidence for a positive feedback regulation of this key enzyme in response to a selective depletion of endogenous sterols. At the same time, no compensatory responses mediated by SQS were observed, in sharp contrast to the situation in mammalian cells.

  12. A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle. (United States)

    Harmer, Jeffrey; Finazzo, Cinzia; Piskorski, Rafal; Ebner, Sieglinde; Duin, Evert C; Goenrich, Meike; Thauer, Rudolf K; Reiher, Markus; Schweiger, Arthur; Hinderberger, Dariush; Jaun, Bernhard


    Methanogenic archaea utilize a specific pathway in their metabolism, converting C1 substrates (i.e., CO2) or acetate to methane and thereby providing energy for the cell. Methyl-coenzyme M reductase (MCR) catalyzes the key step in the process, namely methyl-coenzyme M (CH3-S-CoM) plus coenzyme B (HS-CoB) to methane and CoM-S-S-CoB. The active site of MCR contains the nickel porphinoid F430. We report here on the coordinated ligands of the two paramagnetic MCR red2 states, induced when HS-CoM (a reversible competitive inhibitor) and the second substrate HS-CoB or its analogue CH3-S-CoB are added to the enzyme in the active MCR red1 state (Ni(I)F430). Continuous wave and pulse EPR spectroscopy are used to show that the MCR red2a state exhibits a very large proton hyperfine interaction with principal values A((1)H) = [-43,-42,-5] MHz and thus represents formally a Ni(III)F430 hydride complex formed by oxidative addition to Ni(I). In view of the known ability of nickel hydrides to activate methane, and the growing body of evidence for the involvement of MCR in "reverse" methanogenesis (anaerobic oxidation of methane), we believe that the nickel hydride complex reported here could play a key role in helping to understand both the mechanism of "reverse" and "forward" methanogenesis.

  13. The membrane topology of vitamin K epoxide reductase is conserved between human isoforms and the bacterial enzyme. (United States)

    Cao, Zhenbo; van Lith, Marcel; Mitchell, Lorna J; Pringle, Marie Anne; Inaba, Kenji; Bulleid, Neil J


    The membrane topology of vitamin K epoxide reductase (VKOR) is controversial with data supporting both a three transmembrane and a four transmembrane model. The positioning of the transmembrane domains and the loops between these domains is critical if we are to understand the mechanism of vitamin K oxidation and its recycling by members of the thioredoxin family of proteins and the mechanism of action of warfarin, an inhibitor of VKOR. Here we show that both mammalian VKOR isoforms adopt the same topology, with the large loop between transmembrane one and two facing the lumen of the endoplasmic reticulum (ER). We used a redox sensitive green fluorescent protein (GFP) fused to the N- or C-terminus to show that these regions face the cytosol, and introduction of glycosylation sites along with mixed disulfide formation with thioredoxin-like transmembrane protein (TMX) to demonstrate ER localization of the major loop. The topology is identical with the bacterial homologue from Synechococcussp., for which the structure and mechanism of recycling has been characterized. Our results provide a resolution to the membrane topology controversy and support previous results suggesting a role for members of the ER protein disulfide isomerase (PDI) family in recycling VKOR.

  14. New evidence of similarity between human and plant steroid metabolism: 5alpha-reductase activity in Solanum malacoxylon. (United States)

    Rosati, Fabiana; Danza, Giovanna; Guarna, Antonio; Cini, Nicoletta; Racchi, Milvia Luisa; Serio, Mario


    The physiological role of steroid hormones in humans is well known, and the metabolic pathway and mechanisms of action are almost completely elucidated. The role of plant steroid hormones, brassinosteroids, is less known, but an increasing amount of data on brassinosteroid biosynthesis is showing unexpected similarities between human and plant steroid metabolic pathways. Here we focus our attention on the enzyme 5alpha-reductase (5alphaR) for which a plant ortholog of the mammalian system, DET2, was recently described in Arabidopsis thaliana. We demonstrate that campestenone, the natural substrate of DET2, is reduced to 5alpha-campestanone by both human 5alphaR isozymes but with different affinities. Solanum malacoxylon, which is a calcinogenic plant very active in the biosynthesis of vitamin D-like molecules and sterols, was used to study 5alphaR activity. Leaves and calli were chosen as examples of differentiated and undifferentiated tissues, respectively. Two separate 5alphaR activities were found in calli and leaves of Solanum using campestenone as substrate. The use of progesterone allowed the detection of both activities in calli. Support for the existence of two 5alphaR isozymes in S. malacoxylon was provided by the differential actions of inhibitors of the human 5alphaR in calli and leaves. The evidence for the presence of two isozymes in different plant tissues extends the analogies between plant and mammalian steroid metabolic pathways.

  15. Ultraviolet-B-induced flavonoid accumulation in Betula pendula leaves is dependent upon nitrate reductase-mediated nitric oxide signaling. (United States)

    Zhang, Ming; Dong, Ju-Fang; Jin, Hai-Hong; Sun, Li-Na; Xu, Mao-Jun


    Nitric oxide (NO) is an important signaling molecule involved in many physiological processes in plants. Nitric oxide generation and flavonoid accumulation are two early reactions of plants to ultraviolet-B (UV-B) irradiation. However, the source of UV-B-triggered NO generation and the role of NO in UV-B-induced flavonoid accumulation are not fully understood. In order to evaluate the origin of UV-B-triggered NO generation, we examined the responses of nitrate reductase (NR) activity and the expression levels of NIA1 and NIA2 genes in leaves of Betula pendula Roth (silver birch) seedlings to UV-B irradiation. The data show that UV-B irradiation stimulates NR activity and induces up-regulation of NIA1 but does not affect NIA2 expression during UV-B-triggered NO generation. Pretreatment of the leaves with NR inhibitors tungstate (TUN) and glutamine (Gln) abolishes not only UV-B-triggered NR activities but also UV-B-induced NO generation. Furthermore, application of TUN and Gln suppresses UV-B-induced flavonoid production in the leaves and the suppression of NR inhibitors on UV-B-induced flavonoid production can be reversed by NO via its donor sodium nitroprusside. Together, the data indicate that NIA1 in the leaves of silver birch seedlings is sensitive to UV-B and the UV-B-induced up-regulation of NIA1 may lead to enhancement of NR activity. Furthermore, our results demonstrate that NR is involved in UV-B-triggered NO generation and NR-mediated NO generation is essential for UV-B-induced flavonoid accumulation in silver birch leaves.

  16. Studies on NADPH-cytochrome c reductase. II. Steady-state kinetic properties of the crystalline enzyme from ale yeast. (United States)

    Tryon, E; Kuby, S A


    From a study of the steady-state kinetics (at pH 7.6, 30 degrees C) of the reduction of cytochrome c, a 'ping-pong' mechanism may be postulated for the crystalline NADPH-cytochrome c reductase from ale yeast, Saccharomyces cerevisiae [1], a result derivable from a three-substrate ordered system with a rapid equilibrium random sequence in substrates, NADPH and FAD, followed by reactions of the third substrate, Cyt C3+. On this basis, estimates for the kinetic parameters were made together with the inhibitor dissociation constants for NADP+ (competitive with respect to NADPH as variable substrate, but noncompetitive with respect to cytochrome c3+ as the variable substrate). A noncompetitive type of inhibition was also found for cytochrome c2+ with NADPH as variable substrate, in confirmation of the proposed mechanism. With 2,6-dichloroindophenol as the acceptor, in place of cytochrome c3+, a value for KNADPH could be estimated which agreed with that estimated above, with cytochrome c3+ as the acceptor, again, in confirmation of the postulated mechanism. The reactions with molecular O2 catalyzed by the enzyme with NADPH as the reductant have been studied polarographically, and its Km for O2 estimated to be about 0.15 mmol/l at pH 7.6, 25 degrees C. The product of the reaction appears to be H2O2, which acts as a noncompetitive inhibitor for NADPH (Ki = 0.5 mmol/l), and tentatively an enzyme ternary complex containing oxygen and FADoh (semiquinone of FAD) may be assumed to be the kinetically important intermediate, which may be postulated to be in quasi-equilibrium with an enzyme ternary complex containing Oo2 (superoxide) and FAD.

  17. Cholinesterase inhibitors from botanicals

    Directory of Open Access Journals (Sweden)

    Faiyaz Ahmed


    Full Text Available Alzheimer′s disease (AD is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh, appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE and butyrylcholinesterase (BChE. Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through are also presented and the scope for future research is discussed.

  18. Methylenetetrahydrofolate reductase gene polymorphism in Indian stroke patients

    Directory of Open Access Journals (Sweden)

    Kalita J


    Full Text Available Background and Aims: In view of the prevailing controversy about the role of Methylenetetrahydrofolate reductase (MTHFR C677T mutation in stroke and paucity of studies from India, this study has been undertaken to evaluate MTHFR C677T gene polymorphism in consecutive ischemic stroke patients and correlate these with folic acid, homocysteine (Hcy and conventional risk factors. Settings and Design: Ischemic stroke patients prospectively evaluated in a tertiary care teaching hospital. Materials and Methods: Computerized tomography proven ischemic stroke patients were prospectively evaluated including clinical, family history of stroke, dietary habits and addictions. Their fasting and postprandial blood sugar, lipid profile, vitamin B12, folic acid and MTHFR gene analysis were done. Statistical Analysis: MTHFR gene polymorphism was correlated with serum folic acid, Vitamin B12 and Hcy levels; family history of stroke in first-degree relatives; and dietary habits; employing Chi-square test. Results: There were 58 patients with ischemic stroke, whose mean age was 50 (4-79 years; among them, 10 were females. MTHFR gene polymorphism was present in 19 (32.8% patients, 3 were homozygous and 16 were heterozygous. Both serum folate and B12 levels were low in 29 (50% patients and Hcy in 48 (83%. Hypertension was present in 28 (48% patients, diabetes in 12 (21%, hyperlipidemia in 52 (90%, smoking in 17 (29%, obesity in 1 (1.7% and family history of stroke in first-degree relatives in 13 (22.4%. There was no significant relationship of MTHFR gene polymorphism with folic acid, B12, Hcy levels, dietary habits and number of risk factors. Vitamin B12 level was low in vegetarians ( P Conclusion: MTHFR gene polymorphism was found in one-third of patients with ischemic stroke and was insignificantly associated with higher frequency of elevated Hcy.

  19. Rational Design of a Structural and Functional Nitric Oxide Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, N.; Lin, Y; Gao, Y; Zhao, X; Russell, B; Lei, L; Miner, L; Robinson, H; Lu, Y


    Protein design provides a rigorous test of our knowledge about proteins and allows the creation of novel enzymes for biotechnological applications. Whereas progress has been made in designing proteins that mimic native proteins structurally, it is more difficult to design functional proteins. In comparison to recent successes in designing non-metalloproteins, it is even more challenging to rationally design metalloproteins that reproduce both the structure and function of native metalloenzymes. This is because protein metal-binding sites are much more varied than non-metal-containing sites, in terms of different metal ion oxidation states, preferred geometry and metal ion ligand donor sets. Because of their variability, it has been difficult to predict metal-binding site properties in silico, as many of the parameters, such as force fields, are ill-defined. Therefore, the successful design of a structural and functional metalloprotein would greatly advance the field of protein design and our understanding of enzymes. Here we report a successful, rational design of a structural and functional model of a metalloprotein, nitric oxide reductase (NOR), by introducing three histidines and one glutamate, predicted as ligands in the active site of NOR, into the distal pocket of myoglobin. A crystal structure of the designed protein confirms that the minimized computer model contains a haem/non-haem FeB centre that is remarkably similar to that in the crystal structure. This designed protein also exhibits NO reduction activity, and so models both the structure and function of NOR, offering insight that the active site glutamate is required for both iron binding and activity. These results show that structural and functional metalloproteins can be rationally designed in silico.

  20. Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells. (United States)

    Wu, Dan; Tao, Xuanyu; Wu, Gaofeng; Li, Xiangkai; Liu, Pu


    Arsenic is a well-known heavy metal toxicant in the environment. Bioremediation of heavy metals has been proposed as a low-cost and eco-friendly method. This article described some of recent patents on transgenic plants with enhanced heavy metal resistance. Further, to test whether genetic modification of mammalian cells could render higher arsenic resistance, a prokaryotic arsenic reductase gene arsC was transfected into human liver cancer cell HepG2. In the stably transfected cells, the expression level of arsC gene was determined by quantitative real-time PCR. Results showed that arsC was expressed in HepG2 cells and the expression was upregulated by 3 folds upon arsenate induction. To further test whether arsC has function in HepG2 cells, the viability of HepG2-pCI-ArsC cells exposed to arsenite or arsenate was compared to that of HepG2-pCI cells without arsC gene. The results indicated that arsC increased the viability of HepG2 cells by 25% in arsenate, but not in arsenite. And the test of reducing ability of stably transfected cells revealed that the concentration of accumulated trivalent arsenic increased by 25% in HepG2-pCI-ArsC cells. To determine the intracellular localization of ArsC, a fusion vector with fluorescent marker pEGFP-N1-ArsC was constructed and transfected into.HepG2. Laser confocal microscopy showed that EGFP-ArsC fusion protein was distributed throughout the cells. Taken together, these results demonstrated that prokaryotic arsenic resistant gene arsC integrated successfully into HepG2 genome and enhanced arsenate resistance of HepG2, which brought new insights of arsenic detoxification in mammalian cells.

  1. Short-chain dehydrogenases/reductases in cyanobacteria. (United States)

    Kramm, Anneke; Kisiela, Michael; Schulz, Rüdiger; Maser, Edmund


    The short-chain dehydrogenases/reductases (SDRs) represent a large superfamily of enzymes, most of which are NAD(H)-dependent or NADP(H)-dependent oxidoreductases. They display a wide substrate spectrum, including steroids, alcohols, sugars, aromatic compounds, and xenobiotics. On the basis of characteristic sequence motifs, the SDRs are subdivided into two main (classical and extended) and three smaller (divergent, intermediate, and complex) families. Despite low residue identities in pairwise comparisons, the three-dimensional structure among the SDRs is conserved and shows a typical Rossmann fold. Here, we used a bioinformatics approach to determine whether and which SDRs are present in cyanobacteria, microorganisms that played an important role in our ecosystem as the first oxygen producers. Cyanobacterial SDRs could indeed be identified, and were clustered according to the SDR classification system. Furthermore, because of the early availability of its genome sequence and the easy application of transformation methods, Synechocystis sp. PCC 6803, one of the most important cyanobacterial strains, was chosen as the model organism for this phylum. Synechocystis sp. SDRs were further analysed with bioinformatics tools, such as hidden Markov models (HMMs). It became evident that several cyanobacterial SDRs show remarkable sequence identities with SDRs in other organisms. These so-called 'homologous' proteins exist in plants, model organisms such as Drosophila melanogaster and Caenorhabditis  elegans, and even in humans. As sequence identities of up to 60% were found between Synechocystis and humans, it was concluded that SDRs seemed to have been well conserved during evolution, even after dramatic terrestrial changes such as the conversion of the early reducing atmosphere to an oxidizing one by cyanobacteria.

  2. Increased 5. cap alpha. -reductase activity in idiopathic hirsutism

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, P.; Lobo, R.A.


    In vitro, genital skin 5..cap alpha..-reductase activity (5..cap alpha..-RA) was measured in ten hirsute women with normal androgen levels (idiopathic hirsutism (IH)) and in ten hirsute women with elevated androgen levels (polycystic ovary syndrome (PCO)) in order to determine the influence of secreted androgens on 5..cap alpha..-RA. In vitro 5..cap alpha..-RA was assessed by incubations of skin with /sup 14/C-testosterone (T) for 2 hours, after which steroids were separated and the radioactivity of dihydrotestosterone (DHT) and 5..cap alpha..-androstane 3..cap alpha..-17..beta..-estradiol (3..cap alpha..-diol) in specific eluates were determined. All androgens were normal in IH with the exception of higher levels of 3..cap alpha..-diol glucuronide which were similar to the levels of PCO. The conversion ratio (CR) of T to DHT in IH and PCO were similar, yet significantly greater than the CR of control subjects. The CR of T to 3..cap alpha..-diol in IH and PCO were similar, yet higher than in control subjects. Serum androgens showed no correlation with 5..cap alpha..-RA, while the CR of T to DHT showed a significant positive correlation with the Ferriman and Gallwey score. The increased 5..cap alpha..-RA in IH appears to be independent of serum androgen levels and is, therefore, an inherent abnormality. The term idiopathic is a misnomer, because hirsutism in these patients may be explained on the basis of increased skin 5..cap alpha..-RA.

  3. Metabolism of bupropion by carbonyl reductases in liver and intestine. (United States)

    Connarn, Jamie N; Zhang, Xinyuan; Babiskin, Andrew; Sun, Duxin


    Bupropion's metabolism and the formation of hydroxybupropion in the liver by cytochrome P450 2B6 (CYP2B6) has been extensively studied; however, the metabolism and formation of erythro/threohydrobupropion in the liver and intestine by carbonyl reductases (CR) has not been well characterized. The purpose of this investigation was to compare the relative contribution of the two metabolism pathways of bupropion (by CYP2B6 and CR) in the subcellular fractions of liver and intestine and to identify the CRs responsible for erythro/threohydrobupropion formation in the liver and the intestine. The results showed that the liver microsome generated the highest amount of hydroxybupropion (Vmax = 131 pmol/min per milligram, Km = 87 μM). In addition, liver microsome and S9 fractions formed similar levels of threohydrobupropion by CR (Vmax = 98-99 pmol/min per milligram and Km = 186-265 μM). Interestingly, the liver has similar capability to form hydroxybupropion (by CYP2B6) and threohydrobupropion (by CR). In contrast, none of the intestinal fractions generate hydroxybupropion, suggesting that the intestine does not have CYP2B6 available for metabolism of bupropion. However, intestinal S9 fraction formed threohydrobupropion to the extent of 25% of the amount of threohydrobupropion formed by liver S9 fraction. Enzyme inhibition and Western blots identified that 11β-dehydrogenase isozyme 1 in the liver microsome fraction is mainly responsible for the formation of threohydrobupropion, and in the intestine AKR7 may be responsible for the same metabolite formation. These quantitative comparisons of bupropion metabolism by CR in the liver and intestine may provide new insight into its efficacy and side effects with respect to these metabolites.

  4. Comparison of the effect of two HMG CoA reductase inhibitors on LDL susceptibility to oxidation

    Directory of Open Access Journals (Sweden)

    Vera Lúcia Portal


    Full Text Available OBJECTIVE: To study the differences between fluvastatin and pravastatin regarding LDL susceptibility to oxidation, plasma levels of total cholesterol (TC, HDL-C, LDL-C and triglycerides (TG in hypercholesterolemic patients with established coronary heart disease (CHD. METHODS: A double-blind randomized parallel study was conducted that included 41 hypercholesterolemic outpatients with CHD treated at the Instituto de Cardiologia do Rio Grande do Sul. The inclusion criteria were LDL-C above 100 mg/dL and triglycerides below 400 mg/dL based on 2 measures. After 4 weeks on a low cholesterol diet, those patients that fullfilled the inclusion criteria were randomized into 2 groups: the fluvastatin group (fluvastatin 40 mg/day and the pravastatin group (pravastatin 20 mg/day, for 24 weeks of treatment. LDL susceptibility to oxidation was analyzed with copper-induced production of conjugated dienes (Cu2+ and water-soluble free radical initiator azo-bis (2'-2'amidinopropanil HCl (AAPH. Spectroscopy nuclear magnetic resonance was used for determination of lipids. RESULTS: After 24 weeks of drug therapy, fluvastatin and pravastatin significantly reduced LDL susceptibility to oxidation as demonstrated by the reduced rate of oxidation (azo and Cu and by prolonged azo-induced lag time (azo lag. The TC, LDL-C, and TG reduced significantly and HDL-C increased significantly. No differences between the drugs were observed. CONCLUSION: In hypercholesterolemic patients with CHD, both fluvastatin and pravastatin reduced LDL susceptibility to oxidation.

  5. Comparative evaluation of HMG CoA reductase inhibitors in experimentally-induced myocardial necrosis: Biochemical, morphological and histological studies. (United States)

    Variya, Bhavesh C; Patel, Snehal S; Trivedi, Jinal I; Gandhi, Hardik P; Rathod, S P


    The present study was carried out to evaluate the protective effect of different statins on isoproterenol (ISO) induced myocardial necrosis. Atorvastatin, rosuvastatin, fluvastatin, simvastatin and pravastatin (10 mg/kg/day) were administered for 12 weeks. After pretreatment of 12 weeks myocardial necrosis was induced by subsequent injection of ISO (85 mg/kg/day, s.c.) to wistar rats. Serum biochemical parameters like glucose, lipid profile, cardiac markers and transaminases were evaluated. Animals were killed and heart was excised for histopathology and antioxidant study. Statins pretreated rats showed significant protection against ISO induced elevation in serum biochemical parameters and serum level of cardiac marker enzymes and transaminase level as compared to ISO control group. Mild to moderate protection was observed in different statins treated heart in histopathology and TTC stained sections. Result from our study also revealed that statins could efficiently protect against ISO intoxicated myocardial necrosis by impairing membrane bound enzyme integrity and endogenous antioxidant enzyme levels. Amongst all statins used, rosuvastatin and pravastatin were found to have maximum cardio-protective activity against ISO induced myocardial necrosis as compared to other statins.

  6. HMG-CoA reductase inhibitors (statins), inflammation, and endothelial progenitor cells-New mechanistic insights of atherosclerosis. (United States)

    Blum, Arnon


    Statins have been shown to favorably affect the prognosis of patients with risk factors to atherosclerosis-both as a primary and a secondary prevention. The beneficial effects observed with statin therapy are not merely related to changes in lipid profile but also are due to a positive effect on vascular inflammation and on immune-modulation of T lymphocytes and endothelial progenitor stem cells (EPCs). This dual effect has been demonstrated mainly in clinical trials where a change in endothelial function was observed within hours, much earlier than the effects of statins on the lipid profile (weeks). Based on all the knowledge that we have today questions were raised as to the mechanistic pathways that may explain the process of atherosclerosis and through this pathway to find better solutions and therapies to prevent and fight atherosclerosis. Our review will focus on the new updates in the field of inflammation and stem cells in vascular biology-in relation with atherosclerosis.

  7. Pharmacological Characterization of a Novel Bifunctional Aldo-Keto Reductase 1C3 Inhibitor and Androgen Receptor Antagonist (United States)


    efficacious therapy for APC. References 1. Altekruse SF , K. C., Krapcho M, Neyman N, Aminou R, Waldron W, Ruhl J, Howlader N...cancer. Br J Cancer 2004, 90, 2317- 2325. 9. Reid, A. H.; Attard, G.; Danila, D. C.; Oommen, N. B.; Olmos, D.; Fong , P. C.; Molife, L. R.; Hunt, J

  8. Matrix metalloproteinase-2 mediates a mechanism of metabolic cardioprotection consisting of negative regulation of the sterol regulatory element-binding protein-2/3-hydroxy-3-methylglutaryl-CoA reductase pathway in the heart. (United States)

    Wang, Xiang; Berry, Evan; Hernandez-Anzaldo, Samuel; Takawale, Abhijit; Kassiri, Zamaneh; Fernandez-Patron, Carlos


    Previously, we reported that cardiac matrix metalloproteinase (MMP)-2 is upregulated in hypertensive mice. How MMP-2 affects the development of cardiac disease is unclear. Here, we report that MMP-2 protects from hypertensive cardiac disease. In mice infused with angiotensin II, the lack of MMP-2 (Mmp2(-/-)) did not affect the severity of the hypertension but caused cardiac hypertrophy to develop earlier and to a greater extent versus wild-type (Mmp2(+/+)) mice, as measured by heart weight:body weight ratio and upregulation of hypertrophy and fibrosis markers. We further found numerous metabolic and inflammatory gene expression abnormalities in the left ventricle of Mmp2(-/-) mice. Interestingly, Mmp2(-/-) mice expressed greater amounts of sterol regulatory element-binding protein-2 and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (a target of sterol regulatory element-binding protein-2-mediated transcription and rate limiting enzyme in cholesterol and isoprenoids biosynthesis) in addition to markers of inflammation including chemokines of the C-C motif ligand family. We focused on the functionally related genes for sterol regulatory binding protein-2 and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, lovastatin, attenuated angiotensin II-induced cardiac hypertrophy and fibrosis in Mmp2(-/-) and wild-type (Mmp2(+/+)) mice, with Mmp2(-/-) mice showing resistance to cardioprotection by lovastatin. MMP-2 deficiency predisposes to cardiac dysfunction as well as metabolic and inflammatory gene expression dysregulation. This complex phenotype is, at least in part, because of the cardiac sterol regulatory element-binding protein-2/3-hydroxy-3-methylglutaryl-coenzyme A reductase pathway being upregulated in MMP-2 deficiency.

  9. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase. (United States)

    Montalvetti, A; Peña-Díaz, J; Hurtado, R; Ruiz-Pérez, L M; González-Pacanowska, D


    In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from Leishmania lacks the membrane domain characteristic of eukaryotic cells but exhibits sequence similarity with eukaryotic reductases. Highly purified protein was achieved by ammonium sulphate precipitation followed by chromatography on hydroxyapatite. Kinetic parameters were determined for the protozoan reductase, obtaining K(m) values for the overall reaction of 40.3+/-5.8 microM for (R,S)-HMG-CoA and 81.4+/-5.3 microM for NADPH; V(max) was 33.55+/-1.8 units x mg(-1). Gel-filtration experiments suggested an apparent molecular mass of 184 kDa with subunits of 46 kDa. Finally, in order to achieve a better understanding of the role of this enzyme in trypanosomatids, the effect of possible regulators of isoprenoid biosynthesis in cultured promastigote cells was studied. Neither mevalonic acid nor serum sterols appear to modulate enzyme activity whereas incubation with lovastatin results in significant increases in the amount of reductase protein. Western- and Northern-blot analyses indicate that this activation is apparently performed via post-transcriptional control.

  10. Expression of 5α-Reductase Type 2 Gene in Human Testis, Epididymis and Vas Deferens

    Institute of Scientific and Technical Information of China (English)

    刘德瑜; 吴燕婉; 罗宏志; 张桂元


    Objectives To study the expression pattern of 5α-reductase type 2 gene in human malereproductive organsMethods The expression level of 5α-reductase type 2 gene inhuman testis, epididymisand vas deferens tissues was determined by in situ hybridization using Digoxin labeled5α-reductase type 2 cRNA probe.Results The brown granules of hybridizing signals distributed in the cytoplasm ofSertoli and Leydig cells of the testis, the principle cells of epididymis and the epithe-lial cells of vas deferens, but there was no positive signal in the nuclei of above-men-tioned cells. No positive signal was observed in germ cells, basement of the testis,interstium of epididymis and basement, as well as smooth muscle of vas deferens.Conclusion This study confirmed that the 5α-reductase type 2 gene expressed in Ser-toli, Leydig cells of the testis, and the principle cells of epididymis. The expressionpattern of the gene in these cells in human was similar to that of rat and monkey. Thepresence of 5a-reductase type 2 gene in epithelial cells of the vas deferens suggested itmight possess an important physiological role in human reproduction.

  11. Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. (United States)

    Fujita, M; Gang, D R; Davin, L B; Lewis, N G


    Although the heartwood of woody plants represents the main source of fiber and solid wood products, essentially nothing is known about how the biological processes leading to its formation are initiated and regulated. Accordingly, a reverse transcription-polymerase chain reaction-guided cloning strategy was employed to obtain genes encoding pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) as a means to initiate the study of its heartwood formation. (+)-Pinoresinol-(+)-lariciresinol reductase from Forsythia intermedia was used as a template for primer construction for reverse transcription-polymerase chain reaction amplifications, which, when followed by homologous hybridization cloning, resulted in the isolation of two distinct classes of putative pinoresinol-lariciresinol reductase cDNA clones from western red cedar. A representative of each class was expressed as a fusion protein with beta-galactosidase and assayed for enzymatic activity. Using both deuterated and radiolabeled (+/-)-pinoresinols as substrates, it was established that each class of cDNA encoded a pinoresinol-lariciresinol reductase of different (opposite) enantiospecificity. Significantly, the protein from one class converted (+)-pinoresinol into (-)-secoisolariciresinol, whereas the other utilized the opposite (-)-enantiomer to give the corresponding (+)-form. This differential substrate specificity raises important questions about the role of each of these individual reductases in heartwood formation, such as whether they are expressed in different cells/tissues or at different stages during heartwood development.

  12. Thrombin inhibitor design. (United States)

    Sanderson, P E; Naylor-Olsen, A M


    Recently, iv formulated direct thrombin inhibitors have been shown to be safe and efficacious alternatives to heparin. These results have fueled the hopes for an orally active compound. Such a compound could be a significant advance over warfarin if it had predictable pharmacokinetics and a duration of action sufficient for once or twice a day dosing. In order to develop an orally active compound which meets these criteria, the deficiencies of the prototype inhibitor efegatran have had to be addressed. First, using a combination of structure based design and empirical structure optimization, more selective compounds have been identified by modifying the P1 group or by incorporating different peptidomimetic P2/P3 scaffolds. Secondly, this optimization has resulted in the development of potent and selective non-covalent inhibitors, thus bypassing the liabilities of the serine trap. Thirdly, oral bioavailability has been achieved while maintaining selectivity and efficacy through the incorporation of progressively less basic P1 groups. The duration of action of these compounds remains to be optimized. Other advances in thrombin inhibitor design have included the development of uncharged P1 groups and the discovery of two non-peptide templates.

  13. ACE inhibitors and proteinuria

    NARCIS (Netherlands)

    Gansevoort, RT; deZeeuw, D; deJong, PE


    This review discusses the clinical consequences of urinary protein loss and the effects of inhibitors of the angiotensin converting enzyme (ACE) on this clinical finding. Proteinuria appears to be an important risk factor for renal function deterioration and for cardiovascular mortality. ACE inhibit

  14. Transglutaminase inhibitor from milk

    NARCIS (Netherlands)

    Jong, G.A.H. de; Wijngaards, G.; Koppelman, S.J.


    Cross-linking experiments of skimmed bovine milk with bacterial transglutaminase isolated from Streptoverticillium mobaraense showed only some degree of formation of high-molecular-weight casein polymers. Studies on the nature of this phenomenon revealed that bovine milk contains an inhibitor of tra

  15. Inhibitors of histone demethylases

    DEFF Research Database (Denmark)

    Lohse, Brian; Kristensen, Jesper L; Kristensen, Line H;


    Methylated lysines are important epigenetic marks. The enzymes involved in demethylation have recently been discovered and found to be involved in cancer development and progression. Despite the relative recent discovery of these enzymes a number of inhibitors have already appeared. Most of the i...

  16. Inhibitors of histone deacetylase

    DEFF Research Database (Denmark)


    The present invention relates to compounds of formula (I) or a pharmaceutically acceptable salt, hydrate, solvate, or prodrug thereof, wherein X1, X2, X3, X4, X5, W1, W2, W3, and W4 are as described. The present invention relates generally to inhibitors of histone deacetylase and to methods...

  17. Cloning of thioredoxin h reductase and characterization of the thioredoxin reductase-thioredoxin h system from wheat. (United States)

    Serrato, Antonio J; Pérez-Ruiz, Juan M; Cejudo, Francisco J


    Thioredoxins h are ubiquitous proteins reduced by NADPH- thioredoxin reductase (NTR). They are able to reduce disulphides in target proteins. In monocots, thioredoxins h accumulate at high level in seeds and show a predominant localization in the nucleus of seed cells. These results suggest that the NTR-thioredoxin h system probably plays an important role in seed physiology. To date, the study of this system in monocots is limited by the lack of information about NTR. In the present study, we describe the cloning of a full-length cDNA encoding NTR from wheat ( Triticum aestivum ). The polypeptide deduced from this cDNA shows close similarity to NTRs from Arabidopsis, contains FAD- and NADPH-binding domains and a disulphide probably interacting with the disulphide at the active site of thioredoxin h. Wheat NTR was expressed in Escherichia coli as a His-tagged protein. The absorption spectrum of the purified recombinant protein is typical of flavoenzymes. Furthermore, it showed NADPH-dependent thioredoxin h reduction activity, thus confirming that the cDNA clone reported in the present study encodes wheat NTR. Using the His-tagged NTR and TRXhA (wheat thioredoxin h ), we successfully reconstituted the wheat NTR-thioredoxin h system in vitro, as shown by the insulin reduction assay. A polyclonal antibody was raised against wheat NTR after immunization of rabbits with the purified His-tagged protein. This antibody efficiently detected a single polypeptide of the corresponding molecular mass in seed extracts and it allowed the analysis of the pattern of accumulation of NTR in different wheat organs and developmental stages. NTR shows a wide distribution in wheat, but, surprisingly, its accumulation in seeds is low, in contrast with the level of thioredoxins h.

  18. Side chain conformational averaging in human dihydrofolate reductase. (United States)

    Tuttle, Lisa M; Dyson, H Jane; Wright, Peter E


    The three-dimensional structures of the dihydrofolate reductase enzymes from Escherichia coli (ecDHFR or ecE) and Homo sapiens (hDHFR or hE) are very similar, despite a rather low level of sequence identity. Whereas the active site loops of ecDHFR undergo major conformational rearrangements during progression through the reaction cycle, hDHFR remains fixed in a closed loop conformation in all of its catalytic intermediates. To elucidate the structural and dynamic differences between the human and E. coli enzymes, we conducted a comprehensive analysis of side chain flexibility and dynamics in complexes of hDHFR that represent intermediates in the major catalytic cycle. Nuclear magnetic resonance relaxation dispersion experiments show that, in marked contrast to the functionally important motions that feature prominently in the catalytic intermediates of ecDHFR, millisecond time scale fluctuations cannot be detected for hDHFR side chains. Ligand flux in hDHFR is thought to be mediated by conformational changes between a hinge-open state when the substrate/product-binding pocket is vacant and a hinge-closed state when this pocket is occupied. Comparison of X-ray structures of hinge-open and hinge-closed states shows that helix αF changes position by sliding between the two states. Analysis of χ1 rotamer populations derived from measurements of (3)JCγCO and (3)JCγN couplings indicates that many of the side chains that contact helix αF exhibit rotamer averaging that may facilitate the conformational change. The χ1 rotamer adopted by the Phe31 side chain depends upon whether the active site contains the substrate or product. In the holoenzyme (the binary complex of hDHFR with reduced nicotinamide adenine dinucleotide phosphate), a combination of hinge opening and a change in the Phe31 χ1 rotamer opens the active site to facilitate entry of the substrate. Overall, the data suggest that, unlike ecDHFR, hDHFR requires minimal backbone conformational rearrangement as

  19. Circadian variation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in swine liver and ileum. (United States)

    Rogers, D H; Kim, D N; Lee, K T; Reiner, J M; Thomas, W A


    The temporal variation of HMG-CoA reductase activity in the liver and intestine of swine was investigated. The thin-layer chromatographic method widely used in the assay of the reductase was successfully applied to the porcine enzymes. Parallel circadian rhythms were demonstrated in both hepatic and ileal reductases from mash-fed animals. Peak activity occurred approximately 6 hr after feeding, 2.7-fold over the basal level in the liver, and 1.6-fold in the ileum. A milk-cholesterol diet caused a marked depression of both rhythms (90% in liver, 50% in ileum); however, the hourly variation in activity persisted in both organs. Cholestyramine was found to elevate hepatic activity (2.7-fold throughout the rhythm) without affecting that of the intestine. Clofibrate had no effect on either enzyme at any time during the cycle despite a 34% reduction in serum cholesterol concentrations.

  20. A soluble 3-hydroxy-3-methylglutaryl-CoA reductase in the protozoan Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, A; Camacho, A;


    We report the isolation and characterization of a genomic clone containing the open reading frame sequence for 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase from Trypanosoma cruzi, the causative agent of Chagas' disease. The protozoan gene encoded for a smaller polypeptide than the rest...... sensitive to proteolytic inactivation. Furthermore the enzyme can be efficiently overexpressed in a highly active form by using the expression vector pET-11c. Thus Trypanosoma cruzi HMG-CoA reductase is unique in the sense that it totally lacks the membrane-spanning sequences present in all eukaryotic HMG...... cellular distribution of enzymic activity was investigated after differential centrifugation of Trypanosoma cell extracts. Reductase activity was primarily associated with the cellular soluble fraction because 95% of the total cellular activity was recovered in the supernatant and was particularly...

  1. Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase. (United States)

    Eick, Manuela; Stöhr, Christine


    A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.

  2. Directed Molecular Evolution of Nitrite Oxido-reductase by DNA-shuffling

    Institute of Scientific and Technical Information of China (English)



    Objective To develtop directly molecular evolution of nitrite oxido-reductase using DNA-shuffling technique because nitrobacteria grow extremely slow and are unable to nitrify effectively inorganic nitrogen in wastewater treatment. Methods The norB gene coding the nitrite oxido-reductase in nitrobacteria was cloned and sequenced. Then, directed molecular evolution of nitrite oxido-reductase was developed by DNA-shuffling of 15 norB genes from different nitrobacteria. Results After DNA-shuffling with sexual PCR and staggered extension process PCR, the sequence was different from its parental DNA fragments and the homology ranged from 98% to 99%. The maximum nitrification rate of the modified bacterium of X16 by modified bacterium had the same characteristics of its parental bacteria of E. coli and could grow rapidly in normal cultures.Conclusion DNA-shuffling was successfully used to engineer E. coli, which had norB gene and could degrade inorganic nitrogen effectively.

  3. A substrate-bound structure of cyanobacterial biliverdin reductase identifies stacked substrates as critical for activity (United States)

    Takao, Haruna; Hirabayashi, Kei; Nishigaya, Yuki; Kouriki, Haruna; Nakaniwa, Tetsuko; Hagiwara, Yoshinori; Harada, Jiro; Sato, Hideaki; Yamazaki, Toshimasa; Sakakibara, Yoichi; Suiko, Masahito; Asada, Yujiro; Takahashi, Yasuhiro; Yamamoto, Ken; Fukuyama, Keiichi; Sugishima, Masakazu; Wada, Kei


    Biliverdin reductase catalyses the last step in haem degradation and produces the major lipophilic antioxidant bilirubin via reduction of biliverdin, using NAD(P)H as a cofactor. Despite the importance of biliverdin reductase in maintaining the redox balance, the molecular details of the reaction it catalyses remain unknown. Here we present the crystal structure of biliverdin reductase in complex with biliverdin and NADP+. Unexpectedly, two biliverdin molecules, which we designated the proximal and distal biliverdins, bind with stacked geometry in the active site. The nicotinamide ring of the NADP+ is located close to the reaction site on the proximal biliverdin, supporting that the hydride directly attacks this position of the proximal biliverdin. The results of mutagenesis studies suggest that a conserved Arg185 is essential for the catalysis. The distal biliverdin probably acts as a conduit to deliver the proton from Arg185 to the proximal biliverdin, thus yielding bilirubin. PMID:28169272

  4. Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternative Conformation of NADPH that may be Linked to Trimethoprim Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Frey, K.; Liu, J; Lombardo, M; Bolstad, D; Wright, D; Anderson, A


    Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and found that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH-binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance.

  5. Characterisation of a desmosterol reductase involved in phytosterol dealkylation in the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Leonora F Ciufo

    Full Text Available Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C(29 and C(28 yielding cholesterol (C(27. The final step of this dealkylation pathway involves desmosterol reductase (DHCR24-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735. Following PCR-based cloning of the cDNA (1.6 kb and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD-dependent reaction.Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250 kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation.

  6. Putative Role of the Aldo-Keto Reductase from Trypanosoma cruzi in Benznidazole Metabolism. (United States)

    Garavaglia, Patricia Andrea; Laverrière, Marc; Cannata, Joaquín J B; García, Gabriela Andrea


    Benznidazole (Bz), the drug used for treatment of Chagas' disease (caused by the protozoan Trypanosoma cruzi), is activated by a parasitic NADH-dependent type I nitroreductase (NTR I). However, several studies have shown that other enzymes are involved. The aim of this study was to evaluate whether the aldo-keto reductase from T. cruzi (TcAKR), a NADPH-dependent oxido-reductase previously described by our group, uses Bz as the substrate. We demonstrated that both recombinant and native TcAKR enzymes reduce Bz by using NADPH, but not NADH, as a cofactor. TcAKR-overexpressing epimastigotes showed higher NADPH-dependent Bz reductase activity and a 50% inhibitory concentration (IC50) value for Bz 1.8-fold higher than that of the controls, suggesting that TcAKR is involved in Bz detoxification instead of activation. To understand the role of TcAKR in Bz metabolism, we studied TcAKR expression and NADPH/NADH-dependent Bz reductase activities in two T. cruzi strains with differential susceptibility to Bz: CL Brener and Nicaragua. Taking into account the results obtained with TcAKR-overexpressing epimastigotes, we expected the more resistant strain, Nicaragua, to have higher TcAKR levels than CL Brener. However, the results were the opposite. CL Brener showed 2-fold higher TcAKR expression and 5.7-fold higher NADPH-Bz reduction than the Nicaragua strain. In addition, NADH-dependent Bz reductase activity, characteristic of NTR I, was also higher in CL Brener than in Nicaragua. We conclude that although TcAKR uses Bz as the substrate, TcAKR activity is not a determinant of Bz resistance in wild-type strains and may be overcome by other enzymes involved in Bz activation, such as NADPH- and NADH-dependent reductases.

  7. Structure of Hordeum vulgare NADPH-dependent thioredoxin reductase 2. Unwinding the reaction mechanism

    DEFF Research Database (Denmark)

    Kirkensgaard, Kristine Groth; Hägglund, Per; Finnie, Christine


    Thioredoxins (Trxs) are protein disulfide reductases that regulate the intracellular redox environment and are important for seed germination in plants. Trxs are in turn regulated by NADPH-dependent thioredoxin reductases (NTRs), which provide reducing equivalents to Trx using NADPH to recycle Trxs...... relative to the FAD domain in comparison with AtNTR-B. The structure may represent an intermediate between the two conformations described previously: the flavin-oxidizing (FO) and the flavin-reducing (FR) conformations. Here, analysis of interdomain contacts as well as phylogenetic studies lead...

  8. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Alessandro S.; Ferrarezi, Thiago [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil); Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A. [Facultad de Ciencias Bioquímicas y Farmacéuticas, Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario (Argentina); Polikarpov, Igor, E-mail: [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil)


    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP{sup +} reductase. Ferredoxin-NADP{sup +} reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source.

  9. Characterization of a periplasmic nitrate reductase in complex with its biosynthetic chaperone


    Dow, J. M.; Grahl, S.; Ward, R; Evans, R.; Byron, O; Norman, D. G.; Palmer, T; Sargent, F


    Escherichia coli is a Gram‐negative bacterium that can use nitrate during anaerobic respiration. The catalytic subunit of the periplasmic nitrate reductase NapA contains two types of redox cofactor and is exported across the cytoplasmic membrane by the twin‐arginine protein transport pathway. NapD is a small cytoplasmic protein that is essential for the activity of the periplasmic nitrate reductase and binds tightly to the twin‐arginine signal peptide of NapA. Here we show, using spin labelli...

  10. Feedback regulation of cholesterol synthesis:sterol-accelerated ubiquitination and degradation of HMG CoA reductase

    Institute of Scientific and Technical Information of China (English)

    Russell A DeBose-Boyd


    3Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate,an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids.The reductase is subject to an exorbitant amount of feedback control through multiple mechanisms that are mediated by sterol and nonsterol end-products of mevalonate metabolism.Here,Ⅰwill discuss recent advances that shed light on one mechanism for control of reductase,which involves rapid degradation of the enzyme.Accumulation of certain sterols triggers binding of reductase to endoplasmic reticulum (ER) membrane proteins called Insig-1 and Insig-2.Reductase-Insig binding results in recruitment of a membrane-associated ubiquitin ligase called gp78,which initiates ubiquitination of reductase.This ubiquitination is an obligatory reaction for recognition and degradation of reductase from ER membranes by cytosolic 26S proteasomes.Thus,sterol-accelerated degradation of reductase represents an example of how a general cellular process (ER-associated degradation) is used to control an important metabolic pathway (cholesterol synthesis).

  11. Studies on some characteristics of nitrate reductase from sugar beet (Beta vulgaris L.)leaves

    Institute of Scientific and Technical Information of China (English)

    LiWenhua; YanGuiping; 等


    Some characteristics of nitrate reductase from sugar beet leaves shown in this paper were as follows:The nitrate reductase from sugar beet leaves required NADH as an electron donor.Accordingly,the nitrate reductase was classified as NADH-dependent(E.C.1.6.61).The Km value of the nitrate reductase for NADH and NO3- were 0.86m mol and 0.18μ mol respectively.The optimum pH in reaction mixture solution for nitrate reduction activity was 7.5.The effect of variable concentrations of inorganic phosphorus in the reaction buffer on nitrate reductase activity was investigated.When the inorganic phosphorus concentration was below 35m mol,the nitrate reductase activity was increased with increase of inorganic phosphorus concentration.Conversely,when the inorganic phosphorus concentration was over 35m mol,the nitrate reductase activity was inhibited.The nitrate reductase activity assayed in vitro was 3.2 and 5.6times of that assayed in vivo under the condition of exogenous and endogenous ground substance respectively.

  12. NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp PCC7120

    NARCIS (Netherlands)

    Sanchez-Riego, Ana M.; Mata-Cabana, Alejandro; Galmozzi, CarlaV.; Florencio, Francisco J.


    NADPH-thioredoxin reductase C (NTRC) is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thiioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of t

  13. Rubredoxin Reductase of Pseudomonas oleovorans. Structural Relationship to Other Flavoprotein Oxidoreductases Based on One NAD and Two FAD Fingerprints

    NARCIS (Netherlands)

    Eggink, Gerrit; Engel, Henk; Vriend, Gert; Terpstra, Peter; Witholt, Bernard


    The oxidation of alkanes to alkanols by Pseudomonas oleovorans involves a three-component enzyme system: alkane hydroxylase, rubredoxin and rubredoxin reductase. Alkane hydroxylase and rubredoxin are encoded by the alkBPGHJKL operon, while previous studies indicated that rubredoxin reductase is most

  14. Benzoylurea Chitin Synthesis Inhibitors. (United States)

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin


    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs.

  15. Sequencing of aromatase inhibitors



    Since the development of the third-generation aromatase inhibitors (AIs), anastrozole, letrozole and exemestane, these agents have been the subject of intensive research to determine their optimal use in advanced breast cancer. Not only have they replaced progestins in second-line therapy and challenged the role of tamoxifen in first-line, but there is also evidence for a lack of cross-resistance between the steroidal and nonsteroidal AIs, meaning that they may be used in sequence to obtain p...

  16. Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor

    Directory of Open Access Journals (Sweden)

    María Martínez-Hoyos


    Full Text Available Despite being one of the first antitubercular agents identified, isoniazid (INH is still the most prescribed drug for prophylaxis and tuberculosis (TB treatment and, together with rifampicin, the pillars of current chemotherapy. A high percentage of isoniazid resistance is linked to mutations in the pro-drug activating enzyme KatG, so the discovery of direct inhibitors (DI of the enoyl-ACP reductase (InhA has been pursued by many groups leading to the identification of different enzyme inhibitors, active against Mycobacterium tuberculosis (Mtb, but with poor physicochemical properties to be considered as preclinical candidates. Here, we present a series of InhA DI active against multidrug (MDR and extensively (XDR drug-resistant clinical isolates as well as in TB murine models when orally dosed that can be a promising foundation for a future treatment.

  17. Update on Aromatase Inhibitors

    Directory of Open Access Journals (Sweden)

    Seifert-Klauss V


    Full Text Available Aromatase inhibitors (AI block the last phase of estrogen production in many types of tissues which express the enzym aromatase, among them muscle, liver, adrenal, brain and fat. The enzyme catalyzes the last step of the biosynthesis of the estrogens, i. e. the aromatisation of testosterone to estradiol and of androstendion to estrone. Aromatase is localized in the membrane of the endoplasmatic reticulum and is also produced in the placenta and the gonads. Mutations in the gene CYP19A1, which codes for aromatase, can lead either to lack or excess of aromatase. Gene polymorphisms also influence the amount of bioavailable estrogen and bone Indications: AI are approved for the treatment of postmenopausal women with hormone receptor positive breast cancer, both in the adjuvant setting as well as after recurrence and in progressive disease. In premenopausal and in perimenopausal women AI cause an increased sensitivity of the ovaries to follicle stimulating hormone (FSH and can thereby lead to a boosted estrogen answer – this effect is particularly pronounced in early perimenopausal women – so that these situations demand a combination with GnRH-analogue if AI treatment is to be initiated. Alternatively, tamoxifene may be used in premenopausal patients, with or without GnRH analogues. Treatment of premenopausal patients with hormone receptor positive breast cancer with aromatase inhibiting therapy alone constitutes an absolute contraindication. Aromatase inhibitors do not lead to estrogen receptor downregulation or block the receptor such as tamoxifene. An exceptional application is the application in reproductive medicine in women who do not have hormone receptor positive breast cancer: because of the higher sensitivity induced by AI-co-therapy, FSH-doses and -costs for assisted reproduction are reduced, and ovarian hyperstimulation syndrome (OHSS may be avoided. For premenopausal diseases which are said to be positively affected by

  18. Pinpointing a Mechanistic Switch Between Ketoreduction and “Ene” Reduction in Short‐Chain Dehydrogenases/Reductases (United States)

    Lygidakis, Antonios; Karuppiah, Vijaykumar; Hoeven, Robin; Ní Cheallaigh, Aisling; Leys, David; Gardiner, John M.; Toogood, Helen S.


    Abstract Three enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (−)‐menthone:(−)‐menthol reductase and (−)‐menthone:(+)‐neomenthol reductase, and the “ene” reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue‐swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction. This suggests the importance of a catalytic glutamate vs. tyrosine residue in determining the outcome of the reduction of α,β‐unsaturated alkenes, due to the substrate occupying different binding conformations, and possibly also to the relative acidities of the two residues. This simple switch in mechanism by a single amino acid substitution could potentially generate a large number of de novo ene reductases. PMID:27411040

  19. Structure-activity studies of the inhibition of FabI, the enoyl reductase from Escherichia coli, by triclosan: kinetic analysis of mutant FabIs. (United States)

    Sivaraman, Sharada; Zwahlen, Jacque; Bell, Alasdair F; Hedstrom, Lizbeth; Tonge, Peter J


    Triclosan, a common antibacterial additive used in consumer products, is an inhibitor of FabI, the enoyl reductase enzyme from type II bacterial fatty acid biosynthesis. In agreement with previous studies [Ward, W. H., Holdgate, G. A., Rowsell, S., McLean, E. G., Pauptit, R. A., Clayton, E., Nichols, W. W., Colls, J. G., Minshull, C. A., Jude, D. A., Mistry, A., Timms, D., Camble, R., Hales, N. J., Britton, C. J., and Taylor, I. W. (1999) Biochemistry 38, 12514-12525], we report here that triclosan is a slow, reversible, tight binding inhibitor of the FabI from Escherichia coli. Triclosan binds preferentially to the E.NAD(+) form of the wild-type enzyme with a K(1) value of 23 pM. In agreement with genetic selection experiments [McMurry, L. M., Oethinger, M., and Levy, S. B. (1998) Nature 394, 531-532], the affinity of triclosan for the FabI mutants G93V, M159T, and F203L is substantially reduced, binding preferentially to the E.NAD(+) forms of G93V, M159T, and F203L with K(1) values of 0.2 microM, 4 nM, and 0.9 nM, respectively. Triclosan binding to the E.NADH form of F203L can also be detected and is defined by a K(2) value of 51 nM. We have also characterized the Y156F and A197M mutants to compare and contrast the binding of triclosan to InhA, the homologous enoyl reductase from Mycobacterium tuberculosis. As observed for InhA, Y156F FabI has a decreased affinity for triclosan and the inhibitor binds to both E.NAD(+) and E.NADH forms of the enzyme with K(1) and K(2) values of 3 and 30 nM, respectively. The replacement of A197 with Met has no impact on triclosan affinity, indicating that differences in the sequence of the conserved active site loop cannot explain the 10000-fold difference in affinities of FabI and InhA for triclosan.

  20. Avicequinone C Isolated from Avicennia marina Exhibits 5α-Reductase-Type 1 Inhibitory Activity Using an Androgenic Alopecia Relevant Cell-Based Assay System

    Directory of Open Access Journals (Sweden)

    Ruchy Jain


    Full Text Available Avicennia marina (AM exhibits various biological activities and has been traditionally used in Egypt to cure skin diseases. In this study, the methanolic heartwood extract of AM was evaluated for inhibitory activity against 5α-reductase (5α-R [E.C.], the enzyme responsible for the over-production of 5α-dihydrotestosterone (5α-DHT causing androgenic alopecia (AGA. An AGA-relevant cell-based assay was developed using human hair dermal papilla cells (HHDPCs, the main regulator of hair growth and the only cells within the hair follicle that are the direct site of 5α-DHT action, combined with a non-radioactive thin layer chromatography (TLC detection technique. The results revealed that AM is a potent 5α-R type 1 (5α-R1 inhibitor, reducing the 5α-DHT production by 52% at the final concentration of 10 µg/mL. Activity-guided fractionation has led to the identification of avicequinone C, a furanonaphthaquinone, as a 5α-R1 inhibitor with an IC50 of 9.94 ± 0.33 µg/mL or 38.8 ± 1.29 µM. This paper is the first to report anti-androgenic activity through 5α-R1 inhibition of AM and avicequinone C.

  1. Reduction of nitrates in Cucumis sativus L. seedlings II. Influence of tungsten and vanadium on nitrate reductase and adenosine triphosphatase activities

    Directory of Open Access Journals (Sweden)

    Józef Buczek


    Full Text Available ATPases isolated from the roots of cucumber seedlings activated by Mg+2 ions in experiments in vitro, were fairly distinctly inhibited by Ca-2 ions, very slightly inhibited by fluorides and molybdenum ions while NO3- anions had no effect on the level of ATPase activity studied. Introduction into the nutrient of 10-4 M Na2WO4 or 10-3 M Na VO3 (inhibitors of nitrate reductase NR distinctly inhibited activity of the ATPase under study especially of fractions IIa and III, and inhibited NR activity and lowered uptake of NO3-. WO4-2 and VO3 inhibited to the same extent absorption and reduction of NO3- in the initial phase of NR induction, whereas at a later stage both inhibitors checked reduction to a greater degree than uptake of NO3-. The results indicate the possibility of certain ATPase participation in assimilating nitrates, and suggest that in the initial stage of biosynthesis of the NR enzyme system, activity of the enzyme is distinctly dependent upon NO3- transport and the level of NR activity limited by the amount of nitrate taken up. At a later an additional mechanism of NO3- transport probably functions, not connected with simultaneous reduction of nitrates. On the basis of results the Butz and Jackson (1977 hypothesis concerning a model for the absorption and reduction of NO3- by plant tissues is discussed.

  2. Antimicrobial effect by extracts of rhizome of Alpinia officinarum Hance may relate to its inhibition of beta-ketoacyl-ACP reductase. (United States)

    Huang, Hui; Wu, Dan; Tian, Wei-Xi; Ma, Xiao-Feng; Wu, Xiao-Dong


    Inhibitory effects on bacterial growth showed that 40% ethanol extract of galangal (rhizome of Alpinia officinarum Hance) can inhibit Staphylococcus aureus, alpha-Hemolytic streptococcus, beta-Hemolytic streptococcus and Streptococcus pneumoniae. beta-ketoacyl-ACP reductase (FabG, EC. is a key enzyme in type II fatty acid synthase system in bacteria and catalyzes beta-ketoacyl-ACP reduction. The galangal extracts inhibited FabG with an IC(50) value of only 4.47 +/- 0.10 microg/mL and is more potent than other previously published inhibitors. Kinetics studies showed that the inhibition consisted of both reversible and irreversible inhibition. The extracts of galangal inhibit FabG in a competitive pattern against NADPH. So far, no inhibitor has been reported to exhibit irreversible inhibition of FabG, whereas the galangal ethanol extract can inhibit FabG irreversibly. The irreversible inhibition presented two phases. It is probable that the galangal extract inhibit FabG, thereby displaying antibacterial ability.

  3. Triclosan Derivatives: Towards Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Freundlich, Joel S.; Wang, Feng; Vilchèze, Catherine; Gulten, Gulcin; Langley, Robert; Schiehser, Guy A.; Jacobus, David P.; Jacobs, Jr., William R.; Sacchettini, James C.; (Einstein); (TAM); (Jacobus)


    Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross-resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan-based inhibitors is reported, including their promising efficacy against INH-resistant strains of M. tuberculosis. Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design approach, a series of 5-substituted triclosan derivatives was developed. Two groups of derivatives with alkyl and aryl substituents, respectively, were identified with dramatically enhanced potency against purified InhA. The most efficacious inhibitor displayed an IC{sub 50} value of 21 nM, which was 50-fold more potent than triclosan. X-ray crystal structures of InhA in complex with four triclosan derivatives revealed the structural basis for the inhibitory activity. Six selected triclosan derivatives were tested against isoniazid-sensitive and resistant strains of M. tuberculosis. Among those, the best inhibitor had an MIC value of 4.7 {mu}g mL{sup -1} (13 {mu}M), which represents a tenfold improvement over the bacteriocidal activity of triclosan. A subset of these triclosan analogues was more potent than isoniazid against two isoniazid-resistant M. tuberculosis strains, demonstrating the significant potential for structure-based design in the development of next generation antitubercular drugs.

  4. Dipeptidylpeptidase-4 inhibitors (gliptins): focus on drug-drug interactions. (United States)

    Scheen, André J


    Patients with type 2 diabetes mellitus (T2DM) are generally treated with many pharmacological compounds and are exposed to a high risk of drug-drug interactions. Indeed, blood glucose control usually requires a combination of various glucose-lowering agents, and the recommended global approach to reduce overall cardiovascular risk generally implies administration of several protective compounds, including HMG-CoA reductase inhibitors (statins), antihypertensive compounds and antiplatelet agents. New compounds have been developed to improve glucose-induced beta-cell secretion and glucose control, without inducing hypoglycaemia or weight gain, in patients with T2DM. Dipeptidylpeptidase-4 (DPP-4) inhibitors are novel oral glucose-lowering agents, which may be used as monotherapy or in combination with other antidiabetic compounds, metformin, thiazolidinediones or even sulfonylureas. Sitagliptin, vildagliptin and saxagliptin are already on the market, either as single agents or in fixed-dose combined formulations with metformin. Other compounds, such as alogliptin and linagliptin, are in a late phase of development. This review summarizes the available data on drug-drug interactions reported in the literature for these five DDP-4 inhibitors: sitagliptin, vildagliptin, saxagliptin, alogliptin and linagliptin. Possible pharmacokinetic interferences have been investigated between each of these compounds and various pharmacological agents, which were selected because there are other glucose-lowering agents (metformin, glibenclamide [glyburide], pioglitazone/rosiglitazone) that may be prescribed in combination with DPP-4 inhibitors, other drugs that are currently used in patients with T2DM (statins, antihypertensive agents), compounds that are known to interfere with the cytochrome P450 (CYP) system (ketoconazole, diltiazem, rifampicin [rifampin]) or with P-glycoprotein transport (ciclosporin), or agents with a narrow therapeutic safety window (warfarin, digoxin). Generally

  5. Pathogenesis of spinally mediated hyperalgesia in diabetes. (United States)

    Ramos, Khara M; Jiang, Yun; Svensson, Camilla I; Calcutt, Nigel A


    Hyperalgesia to noxious stimuli is accompanied by increased spinal cyclooxygenase (COX)-2 protein in diabetic rats. The present studies were initiated to establish causality between increased spinal COX-2 activity and hyperalgesia during diabetes and to assess the potential involvement of polyol pathway activity in the pathogenesis of spinally mediated hyperalgesia. Rats with 1, 2, or 4 weeks of streptozotocin-induced diabetes exhibited significantly increased levels of spinal COX-2 protein and activity, along with exaggerated paw flinching in response to 0.5% paw formalin injection. Increased flinching of diabetic rats was attenuated by intrathecal pretreatment with a selective COX-2 inhibitor immediately before formalin injection, confirming the involvement of COX-2 activity in diabetic hyperalgesia. Chronic treatment with insulin or ICI222155, an aldose reductase inhibitor (ARI) previously shown to prevent spinal polyol accumulation and formalin-evoked hyperalgesia in diabetic rats, prevented elevated spinal COX-2 protein and activity in diabetic rats. In contrast, the ARI IDD676 had no effect on spinal polyol accumulation, elevated spinal COX-2, or hyperalgesia to paw formalin injection. In the spinal cord, aldose reductase immunoreactivity was present solely in oligodendrocytes, which also contained COX-2 immunoreactivity. Polyol pathway flux in spinal oligodendrocytes provides a pathogenic mechanism linking hyperglycemia to hyperalgesia in diabetic rats.

  6. Hyperglycemia Promotes Schwann Cell De-differentiation and De-myelination via Sorbitol Accumulation and Igf1 Protein Down-regulation. (United States)

    Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi


    Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition.

  7. Part of respiratory nitrate reductase of Klebsiella aerogenes is intimately associated with the peptidoglycan. (United States)

    Abraham, P R; Wientjes, F B; Nanninga, N; Van't Riet, J


    Lysozyme digestion and sonication of sodium dodecyl sulfate (SDS)-purified Klebsiella aerogenes murein sacculi resulted in the quantitative release of both subunits of nitrate reductase, as well as a number of other cytoplasmic membrane polypeptides (5.2%, by weight, of the total membrane proteins). Similar results were obtained after lysozyme digestion of SDS-prepared peptidoglycan fragments, which excluded the phenomenon of simple trapping of the polypeptides by the surrounding peptidoglycan matrix. About 28% of membrane-bound nitrate reductase appears to be tightly associated with the peptidoglycan. Additional evidence for this association was demonstrated by positive immunogold labeling of SDS-murein sacculi and thin sections of plasmolyzed bacteria. Qualitative amino acid analysis of trypsin-treated sacculi, a tryptic product of holo-nitrate reductase, and amino- and carboxypeptidase digests of both nitrate reductase subunits indicated the possible existence of a terminal anchoring peptide containing the following amino acids: (Gly)n, Trp, Ser, Pro, Ile, Leu, Phe, Cys, Tyr, Asp, and Lys.

  8. Primary △4-3-oxosteroid 5β-reductase deficiency: Two cases in China

    Institute of Scientific and Technical Information of China (English)

    Jing Zhao; Ling-Juan Fang; Kenneth DR Setchell; Rui Chen; Li-Ting Li; Jian-She Wang


    Aldo-keto reductase 1D1 (AKR1D1) deficiency,a rare but life-threatening form of bile acid deficiency,has not been previously described in China.Here,we describe the first two primary △4-3-oxosteroid 5β-reductase deficiency patients in Mainland China diagnosed by fast atom bombardment-mass spectroscopy of urinary bile acids and confirmed by genetic analysis.A high proportion of atypical 3-oxo-A4-bile acids in the urine indicated a deficiency in A4-3-oxosteroid 5β-reductase.All of the coding exons and adjacent intronic sequence of the AKR1D1 gene were sequenced using peripheral lymphocyte genomic DNA of two patients and one of the patient's parents.One patient exhibited compound heterozygous mutations:c.396C>A and c.722A>T,while the other was heterozygous for the mutation c.797G>A.Based on these mutations,a diagnosis of primary △4-3-oxosteroid 5β-reductase deficiency could be confirmed.With ursodeoxycholic acid treatment and fat-soluble vitamin supplements,liver function tests normalized rapidly,and the degree of hepatomegaly was markedly reduced in both patients.

  9. Sensing nitrite through a pseudoazurin-nitrite reductase electron transfer relay

    NARCIS (Netherlands)

    Astier, Y; Canters, GW; Davis, JJ; Hill, HAO; Verbeet, MP; Wijma, HJ


    Nitrite is converted to nitric oxide by haem or copper-containing enzymes in denitrifying bacteria during the process of denitrification. In designing an efficient biosensor, this enzymic turnover must be quantitatively assessed. The enzyme nitrite reductase from Alcaligenes faecalis contains a redo

  10. Structural and docking studies of Leucaena leucocephala Cinnamoyl CoA reductase. (United States)

    Prasad, Nirmal K; Vindal, Vaibhav; Kumar, Vikash; Kabra, Ashish; Phogat, Navneet; Kumar, Manoj


    Lignin, a major constituent of plant call wall, is a phenolic heteropolymer. It plays a major role in the development of plants and their defense mechanism against pathogens. Therefore Lignin biosynthesis is one of the critical metabolic pathways. In lignin biosynthesis, the Cinnamoyl CoA reductase is a key enzyme which catalyzes the first step in the pathway. Cinnamoyl CoA reductase provides the substrates which represent the main transitional molecules of lignin biosynthesis pathway, exhibits a high in vitro kinetic preference for feruloyl CoA. In present study, the three-dimensional model of cinnamoyl CoA reductase was constructed based on the crystal structure of Grape Dihydroflavonol 4-Reductase. Furthermore, the docking studies were performed to understand the substrate interactions to the active site of CCR. It showed that residues ARG51, ASN52, ASP54 and ASN58 were involved in substrate binding. We also suggest that residue ARG51 in CCR is the determinant residue in competitive inhibition of other substrates. This structural and docking information have prospective implications to understand the mechanism of CCR enzymatic reaction with feruloyl CoA, however the approach will be applicable in prediction of substrates and engineering 3D structures of other enzymes as well.

  11. Cloning, expression and antigenicity of the L. donovani reductase

    DEFF Research Database (Denmark)

    Jensen, A T; Kemp, K; Theander, T G


    (K). Only 2 of 22 plasma samples from patients with visceral leishmaniasis were found to have detectable anti-reductase antibodies and peripheral blood mononuclear cells (PBMC) from one of three individuals previously infected with visceral leishmaniasis proliferated in the presence of recombinant...

  12. Electrochemical Single‐Molecule AFM of the Redox Metalloenzyme Copper Nitrite Reductase in Action

    DEFF Research Database (Denmark)

    Hao, Xian; Zhang, Jingdong; Christensen, Hans Erik Mølager;


    We studied the electrochemical behavior of the redox metalloenzyme copper nitrite reductase (CNiR, Achromobacter xylosoxidans) immobilized on a Au(111)‐electrode surface modified by a self‐assembled cysteamine molecular monolayer (SAM) using a combination of cyclic voltammetry and electrochemical...

  13. Proximal hypospadias in a male patient with 5α-reductase deficiency: A case reports

    Directory of Open Access Journals (Sweden)

    Erol Basuguy


    Full Text Available Hypospadias is a congenital disorder of male external genital. The newborn showed penoscrotal hypospadias with chordee and microphallus. Endocrine data and a normal male karyotype were suggestive of 5α-reductase deficiency. Penoscrotalhypospadias repair of the patient was made.

  14. Low activity of superoxide dismutase and high activity of glutathione reductase in erythrocytes from centenarians

    DEFF Research Database (Denmark)

    Andersen, Helle Raun; Jeune, B; Nybo, H


    aged between 60 and 79 years. MEASUREMENTS: enzyme activities of superoxide dismutase (CuZn-SOD), glutathione peroxidase, catalase and glutathione reductase (GR) in erythrocytes. Functional capacity among the centenarians was evaluated by Katz' index of activities of daily living, the Physical...

  15. pH dependence of copper geometry, reduction potential, and nitrite affinity in nitrite reductase.

    NARCIS (Netherlands)

    Jacobson, F.; Pistorius, A.M.A.; Farkas, D.; Grip, W.J. de; Hansson, O.; Sjolin, L.; Neutze, R.


    Many properties of copper-containing nitrite reductase are pH-dependent, such as gene expression, enzyme activity, and substrate affinity. Here we use x-ray diffraction to investigate the structural basis for the pH dependence of activity and nitrite affinity by examining the type 2 copper site and

  16. Kinetic properties and inhibition of Trypanosoma cruzi 3-hydroxy-3-methylglutaryl CoA reductase

    DEFF Research Database (Denmark)

    Hurtado-Guerrrero, Ramón; Pena Diaz, Javier; Montalvetti, Andrea;


    A detailed kinetic analysis of the recombinant soluble enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) from Trypanosoma cruzi has been performed. The enzyme catalyzes the normal anabolic reaction and the reductant is NADPH. It also catalyzes the oxidation of mevalonate but at a lower propo...

  17. Monoterpene metabolism. Cloning, expression, and characterization of menthone reductases from peppermint. (United States)

    Davis, Edward M; Ringer, Kerry L; McConkey, Marie E; Croteau, Rodney


    (-)-Menthone is the predominant monoterpene produced in the essential oil of maturing peppermint (Mentha x piperita) leaves during the filling of epidermal oil glands. This early biosynthetic process is followed by a second, later oil maturation program (approximately coincident with flower initiation) in which the C3-carbonyl of menthone is reduced to yield (-)-(3R)-menthol and (+)-(3S)-neomenthol by two distinct NADPH-dependent ketoreductases. An activity-based in situ screen, by expression in Escherichia coli of 23 putative redox enzymes from an immature peppermint oil gland expressed sequence tag library, was used to isolate a cDNA encoding the latter menthone:(+)-(3S)-neomenthol reductase. Reverse transcription-PCR amplification and RACE were used to acquire the former menthone:(-)-(3R)-menthol reductase directly from mRNA isolated from the oil gland secretory cells of mature leaves. The deduced amino acid sequences of these two reductases share 73% identity, provide no apparent subcellular targeting information, and predict inclusion in the short-chain dehydrogenase/reductase family of enzymes. The menthone:(+)-(3S)-neomenthol reductase cDNA encodes a 35,722-D protein, and the recombinant enzyme yields 94% (+)-(3S)-neomenthol and 6% (-)-(3R)-menthol from (-)-menthone as substrate, and 86% (+)-(3S)-isomenthol and 14% (+)-(3R)-neoisomenthol from (+)-isomenthone as substrate, has a pH optimum of 9.3, and K(m) values of 674 mum, > 1 mm, and 10 mum for menthone, isomenthone, and NADPH, respectively, with a k(cat) of 0.06 s(-1). The recombinant menthone:(-)-(3R)-menthol reductase has a deduced size of 34,070 D and converts (-)-menthone to 95% (-)-(3R)-menthol and 5% (+)-(3S)-neomenthol, and (+)-isomenthone to 87% (+)-(3R)-neoisomenthol and 13% (+)-(3S)-isomenthol, displays optimum activity at neutral pH, and has K(m) values of 3.0 mum, 41 mum, and 0.12 mum for menthone, isomenthone, and NADPH, respectively, with a k(cat) of 0.6 s(-1). The respective activities of

  18. Biliverdin Reductase-A correlates with inducible nitric oxide synthasein in atorvastatin treated aged canine brain

    Institute of Scientific and Technical Information of China (English)

    Fabio Di Domenico; Marzia Perluigi; Eugenio Barone


    Alzheimer’s disease is a neurodegenerative disorder characterized by progressive cognitive impairment and neuropathology. Recent preclinical and epidemiological studies proposed statins as a possible therapeutic drug for Alzheimer’s disease, but the exact mechanisms of action are stil unknown. Biliverdin reductase-A is a pleiotropic enzyme involved in cel ular stress responses. It not only transforms biliverdin-IX alpha into the antioxidant bilirubin-IX alpha but its serine/threonine/tyrosine kinase activity is able to modulate cel signaling networks. We previously reported the beneficial effects of atorvastatin treatment on biliverdin reductase-A and heme oxygenase-1 in the brains of a well characterized pre-clinical model of Alzheimer’s disease, aged beagles, together with observed improvement in cognition. Here we extend our knowledge of the effects of atorvastatin on inducible nitric oxide synthase in parietal cortex, cerebel um and liver of the same animals. We demonstrated that atorvastatin treatment (80 mg/day for 14.5 months) to aged beagles selectively increased inducible nitric oxide synthase in the parietal cortex but not in the cerebel um. In contrast, inducible nitric oxide synthase protein levels were significantly decreased in the liver. Significant positive correlations were found between biliverdin reductase-A and inducible nitric oxide synthase as wel as heme oxygenase-1 protein levels in the parietal cortex. The opposite was observed in the liver. Inducible nitric oxide synthase up-regulation in the parietal cortex was positively associated with improved biliverdin reductase-A functions, whereas the oxidative-induced impairment of biliverdin reductase-A in the liver negatively affected inducible nitric oxide synthase expression, thus suggesting a role for biliverdin reductase-A in atorvastatin-dependent inducible nitric oxide synthase changes. Interestingly, increased inducible nitric oxide synthase levels in the parietal cortex were not

  19. HMG-CoA reductase inhibition aborts functional differentiation and triggers apoptosis in cultured primary human monocytes: a potential mechanism of statin-mediated vasculoprotection

    Directory of Open Access Journals (Sweden)

    Vamvakopoulos Joannis E


    Full Text Available Abstract Background Statins effectively lower blood cholesterol and the risk of cardiovascular death. Immunomodulatory actions, independent of their lipid-lowering effect, have also been ascribed to these compounds. Since macrophages participate in several vascular pathologies, we examined the effect of statin treatment on the survival and differentiation of primary human monocytes. Methods Peripheral blood mononuclear cells (PBMCs from healthy individuals were cultured in the presence or absence of mevastatin. Apoptosis was monitored by annexin V / PI staining and flow cytometry. In parallel experiments, cultures were stimulated with LPS in the presence or absence of mevastatin and the release of IL-1β and IL-1Ra was measured by ELISA. Results Among PBMCs, mevastatin-treated monocytes were particularly susceptible to apoptosis, which occurred at doses >1 microM and was already maximal at 5 microM. However, even at the highest mevastatin dose used (10 microM, apoptosis occurred only after 24 h of culture, possibly reflecting a requirement for cell commitment to differentiation. After 72 h of treatment the vast majority (>50% of monocytes were undergoing apoptosis. Stimulation with LPS revealed that mevastatin-treated monocytes retained the high IL-1β output characteristic of undifferentiated cells; conversely, IL-1Ra release was inhibited. Concurrent treatment with mevalonolactone prevented the induction of apoptosis and suppressed both IL-1β and IL-1Ra release in response to LPS, suggesting a rate-limiting role for HMG-CoA reductase in monocyte differentiation. Conclusions Our findings indicate that statins arrest the functional differentiation of monocytes into macrophages and steer these cells into apoptosis, suggesting a novel mechanism for the vasculoprotective properties of HMG-CoA reductase inhibitors.

  20. Camphene, a plant-derived monoterpene, reduces plasma cholesterol and triglycerides in hyperlipidemic rats independently of HMG-CoA reductase activity.

    Directory of Open Access Journals (Sweden)

    Ioanna Vallianou

    Full Text Available BACKGROUND: Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO. METHODOLOGY/PRINCIPAL FINDINGS: The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (p<0.001, 54% of Low Density Lipoprotein (LDL-cholesterol (p<0.001 and 34.5% of triglycerides (p<0.001. Treatment of HepG2 cells with camphene led to a decrease in cellular cholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. CONCLUSIONS: Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid

  1. Sequence diversity and enzyme activity of ferric-chelate reductase LeFRO1 in tomato. (United States)

    Kong, Danyu; Chen, Chunlin; Wu, Huilan; Li, Ye; Li, Junming; Ling, Hong-Qing


    Ferric-chelate reductase which functions in the reduction of ferric to ferrous iron on root surface is a critical protein for iron homeostasis in strategy I plants. LeFRO1 is a major ferric-chelate reductase involved in iron uptake in tomato. To identify the natural variations of LeFRO1 and to assess their effect on the ferric-chelate reductase activity, we cloned the coding sequences of LeFRO1 from 16 tomato varieties collected from different regions, and detected three types of LeFRO1 (LeFRO1(MM), LeFRO1(Ailsa) and LeFRO1(Monita)) with five amino acid variations at the positions 21, 24, 112, 195 and 582. Enzyme activity assay revealed that the three types of LeFRO1 possessed different ferric-chelate reductase activity (LeFRO1(Ailsa) > LeFRO1(MM) > LeFRO1(Monita)). The 112th amino acid residue Ala of LeFRO1 is critical for maintaining the high activity of ferric-chelate reductase, because modification of this amino acid resulted in a significant reduction of enzyme activity. Further, we showed that the combination of the amino acid residue Ile at the site 24 with Lys at the site 582 played a positive role in the enzyme activity of LeFRO1. In conclusion, the findings are helpful to understand the natural adaptation mechanisms of plants to iron-limiting stress, and may provide new knowledge to select and manipulate LeFRO1 for improving the iron deficiency tolerance in tomato.

  2. Protein method for investigating mercuric reductase gene expression in aquatic environments. (United States)

    Ogunseitan, O A


    A colorimetric assay for NADPH-dependent, mercuric ion-specific oxidoreductase activity was developed to facilitate the investigation of mercuric reductase gene expression in polluted aquatic ecosystems. Protein molecules extracted directly from unseeded freshwater and samples seeded with Pseudomonas aeruginosa PU21 (Rip64) were quantitatively assayed for mercuric reductase activity in microtiter plates by stoichiometric coupling of mercuric ion reduction to a colorimetric redox chain through NADPH oxidation. Residual NADPH was determined by titration with phenazine methosulfate-catalyzed reduction of methyl thiazolyl tetrazolium to produce visible formazan. Spectrophotometric determination of formazan concentration showed a positive correlation with the amount of NADPH remaining in the reaction mixture (r2 = 0.99). Mercuric reductase activity in the protein extracts was inversely related to the amount of NADPH remaining and to the amount of formazan produced. A qualitative nitrocellulose membrane-based version of the method was also developed, where regions of mercuric reductase activity remained colorless against a stained-membrane background. The assay detected induced mercuric reductase activity from 10(2) CFU, and up to threefold signal intensity was detected in seeded freshwater samples amended with mercury compared to that in mercury-free samples. The efficiency of extraction of bacterial proteins from the freshwater samples was (97 +/- 2)% over the range of population densities investigated (10(2) to 10(8) CFU/ml). The method was validated by detection of enzyme activity in protein extracts of water samples from a polluted site harboring naturally occurring mercury-resistant bacteria. The new method is proposed as a supplement to the repertoire of molecular techniques available for assessing specific gene expression in heterogeneous microbial communities impacted by mercury pollution.

  3. Phenotype-based high-content chemical library screening identifies statins as inhibitors of in vivo lymphangiogenesis. (United States)

    Schulz, Martin Michael Peter; Reisen, Felix; Zgraggen, Silvana; Fischer, Stephanie; Yuen, Don; Kang, Gyeong Jin; Chen, Lu; Schneider, Gisbert; Detmar, Michael


    Lymphangiogenesis plays an important role in promoting cancer metastasis to sentinel lymph nodes and beyond and also promotes organ transplant rejection. We used human lymphatic endothelial cells to establish a reliable three-dimensional lymphangiogenic sprouting assay with automated image acquisition and analysis for inhibitor screening. This high-content phenotype-based assay quantifies sprouts by automated fluorescence microscopy and newly developed analysis software. We identified signaling pathways involved in lymphangiogenic sprouting by screening the Library of Pharmacologically Active Compounds (LOPAC)(1280) collection of pharmacologically relevant compounds. Hit characterization revealed that mitogen-activated protein kinase kinase (MEK) 1/2 inhibitors substantially block lymphangiogenesis in vitro and in vivo. Importantly, the drug class of statins, for the first time, emerged as potent inhibitors of lymphangiogenic sprouting in vitro and of corneal and cutaneous lymphangiogenesis in vivo. This effect was mediated by inhibition of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and subsequently the isoprenylation of Rac1. Supplementation with the enzymatic products of HMG-CoA reductase functionally rescued lymphangiogenic sprouting and the recruitment of Rac1 to the plasma membrane.

  4. A comparison of the metabolism of midazolam in C57BL/6J and hepatic reductase null (HRN) mice. (United States)

    Grimsley, Aidan; Foster, Alison; Gallagher, Richard; Hutchison, Michael; Lundqvist, Anders; Pickup, Kathryn; Wilson, Ian D; Samuelsson, Kristin


    The hepatic cytochrome P450 reductase null (HRN) mouse, which has no functional hepatic Cyp P450s, may represent a useful model for examining extra-hepatic P450-related oxidative metabolism. Here the pharmacokinetics and metabolic fate of midazolam, a drug known to undergo such extra-hepatic metabolism, have been investigated in the HRN mouse and compared with a phenotypically normal strain (C57BL/6J). In addition, the effects of co-administration of the pan-P450 inhibitor 1'-aminobenzotriazole (ABT) on the metabolic profile have been compared in both strains. Significant pharmacokinetic differences for midazolam were observed between the two strains of mice with the HRN mice showing lower circulating concentrations of 1'-hydroxymidazolam but higher concentrations of 1'-hydroxymidazolam-O-glucuronide. A significant increase in midazolam exposure was seen upon ABT exposure for both strains of mice, but no differences in the area under the concentration time curves (AUC) for the monitored metabolites were observed. Although oxidative metabolism of midazolam was not abolished, significant decreases in 1'-hydroxymidazolam formation ratios were observed for both strains of mice exposed to ABT. Metabolite profiling of blood and bile showed a number of qualitative and quantitative differences between HRN and normal mice. These differences in midazolam metabolism between the two strains of mice clearly demonstrate the role that liver P450 enzymes play in the murine metabolism of midazolam. The fate of the compound in the HRN mice shows the importance of extrahepatic metabolism and also showed that these mice appear to be more capable of forming circulating phase II glucuronides than the normal strain.

  5. E2F4 and ribonucleotide reductase mediate S-phase arrest in colon cancer cells treated with chlorophyllin. (United States)

    Chimploy, Korakod; Díaz, G Dario; Li, Qingjie; Carter, Orianna; Dashwood, Wan-Mohaiza; Mathews, Christopher K; Williams, David E; Bailey, George S; Dashwood, Roderick H


    Chlorophyllin (CHL) is a water-soluble derivative of chlorophyll that exhibits cancer chemopreventive properties, but which also has been studied for its possible cancer therapeutic effects. We report here that human colon cancer cells treated with CHL accumulate in S-phase of the cell cycle, and this is associated with reduced expression levels of p53, p21, and other G(1)/S checkpoint controls. At the same time, E2F1 and E2F4 transcription factors become elevated and exhibit increased DNA binding activity. In CHL-treated colon cancer cells, bromodeoxyuridine pulse-chase experiments provided evidence for the inhibition of DNA synthesis. Ribonucleotide reductase (RR), a pivotal enzyme for DNA synthesis and repair, was reduced at the mRNA and protein level after CHL treatment, and the enzymatic activity was inhibited in a concentration-dependent manner both in vitro and in vivo. Immunoblotting revealed that expression levels of RR subunits R1, R2, and p53R2 were reduced by CHL treatment in HCT116 (p53(+/+)) and HCT116 (p53(-/-)) cells, supporting a p53-independent mechanism. Prior studies have shown that reduced levels of RR small subunits can increase the sensitivity of colon cancer cells to clinically used DNA-damaging agents and RR inhibitors. We conclude that by inhibiting R1, R2, and p53R2, CHL has the potential to be effective in the clinical setting, when used alone or in combination with currently available cancer therapeutic agents.

  6. Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2

    Energy Technology Data Exchange (ETDEWEB)

    Calamini, Barbara; Santarsiero, Bernard D.; Boutin, Jean A.; Mesecar, Andrew D. (IdRS); (UIC)


    Melatonin exerts its biological effects through at least two transmembrane G-protein-coupled receptors, MT1 and MT2, and a lower-affinity cytosolic binding site, designated MT3. MT3 has recently been identified as QR2 (quinone reductase 2) (EC which is of significance since it links the antioxidant effects of melatonin to a mechanism of action. Initially, QR2 was believed to function analogously to QR1 in protecting cells from highly reactive quinones. However, recent studies indicate that QR2 may actually transform certain quinone substrates into more highly reactive compounds capable of causing cellular damage. Therefore it is hypothesized that inhibition of QR2 in certain cases may lead to protection of cells against these highly reactive species. Since melatonin is known to inhibit QR2 activity, but its binding site and mode of inhibition are not known, we determined the mechanism of inhibition of QR2 by melatonin and a series of melatonin and 5-hydroxytryptamine (serotonin) analogues, and we determined the X-ray structures of melatonin and 2-iodomelatonin in complex with QR2 to between 1.5 and 1.8 {angstrom} (1 {angstrom} = 0.1 nm) resolution. Finally, the thermodynamic binding constants for melatonin and 2-iodomelatonin were determined by ITC (isothermal titration calorimetry). The kinetic results indicate that melatonin is a competitive inhibitor against N-methyldihydronicotinamide (K{sub i} = 7.2 {mu}M) and uncompetitive against menadione (K{sub i} = 92 {mu}M), and the X-ray structures shows that melatonin binds in multiple orientations within the active sites of the QR2 dimer as opposed to an allosteric site. These results provide new insights into the binding mechanisms of melatonin and analogues to QR2.

  7. Preparation of 2-deoxyaldoses from aldose phenylhydrazones

    DEFF Research Database (Denmark)

    Jørgensen, Christel Thea; Pedersen, Christian


    Acetylation of D-mannose phenylhydrazone gives acetylated D-arabino-1-phenyl-azo-1-(E)-hexene. Subsequent reduction with sodium borohydride produces 2-deoxy-D-arabino-hexose phenylhydrazone which, on hydrolysis, gives 2-deoxy-D-arabino-hexose. By a similar procedure 2-deoxy-D-lyxo-hexose, 2,6-did......,6-dideoxy-L-arabino-hexose, and 2-deoxy-D-erythropentose can be prepared from D-galactose, L-rhamnose, and D-arabinose, respectively....

  8. 5alpha-Reductase activity in Lycopersicon esculentum: cloning and functional characterization of LeDET2 and evidence of the presence of two isoenzymes. (United States)

    Rosati, Fabiana; Bardazzi, Irene; De Blasi, Paola; Simi, Lisa; Scarpi, Dina; Guarna, Antonio; Serio, Mario; Racchi, Milvia L; Danza, Giovanna


    The full-length cDNA (LeDET2) encoding a 257 amino acid protein homolog of Arabidopsis DET2 (AtDET2) was isolated in tomato (Lycopersicon esculentum). LeDET2 has 76% similarity with AtDET2 and structural characteristics conserved among plant and mammalian steroid 5alpha-reductases (5alphaRs). LeDET2 is ubiquitously expressed in tomato tissues with higher levels in leaf than in stem, root, seed and callus. When expressed in mammalian cells (COS-7), recombinant LeDET2 was active on substrates typical of mammalian 5alphaRs (progesterone, testosterone, androstenedione), but reduced at very low levels campestenone, the substrate described for AtDET2. Similar results were obtained with the expression in COS-7 of recombinant AtDET2 that showed 5alphaR activity for progesterone and not for campestenone. Recombinant LeDET2 was inhibited by several inhibitors of the human 5alphaRs and the application of an active inhibitor to tomato seedlings induced dwarfism and morphological changes similar to BR-deficient mutants. In tomato tissues, campestenone was 5alpha-reduced in leaf, stem and root homogenates, like progesterone and testosterone, while androstenedione was converted to testosterone, evidencing for the first time a 17beta-hydroxysteroid dehydrogenase activity in plants. Moreover, two separate 5alphaR activities with different kinetic characteristic and response to inhibitors were characterized in tomato tissues. The presence of two 5alphaR isoenzymes was demonstrated also in Arabidopsis using the det2-1 mutant, in which a residual 5alphaR activity for campestenone and progesterone was evidenced and characterized. Therefore, the existence of two isoenzymes of 5alphaR is probably characteristic of the whole plant kingdom highlighting the similarities between the animal and plant steroid biosynthetic pathways.

  9. Inhibitors of lysosomal cysteine proteases

    Directory of Open Access Journals (Sweden)

    Lyanna O. L.


    Full Text Available The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic analogs.

  10. Coordinated response of renal medullary enzymes regulating net sorbitol production in diuresis and antidiuresis. (United States)

    Sands, J M; Schrader, D C


    The renal response to changes in hydration includes variation in intracellular sorbitol, a major inner medullary osmolyte. To examine the mechanism for changes in net sorbitol production, we measured activities of enzymes regulating sorbitol production (aldose reductase) and degradation (sorbitol dehydrogenase) in untreated, water diuretic, and antidiuretic (water restriction and/or vasopressin administration) rats. Collecting duct segments dissected from collagenase-treated kidneys of Sprague-Dawley rats were divided into outer medullary and three distinct inner medullary regions. Aldose reductase activity increased during antidiuresis and decreased during diuresis. In contrast, sorbitol dehydrogenase activity was very low during antidiuresis and increased during diuresis. These changes in enzyme activity were found after 3 days, but not after 1 day, of water diuresis/antidiuresis. Enzyme activity changed only in the deepest 50% of the inner medullary collecting duct. Thus, there is coordinated regulation of aldose reductase and sorbitol dehydrogenase activities so that (a) during water diuresis, aldose reductase activity decreases while sorbitol dehydrogenase activity increases; and (b) during antidiuresis (water restriction and/or vasopressin administration), aldose reductase activity increases while sorbitol dehydrogenase activity remains low. We conclude that long-term osmoregulation in response to physiologic stimuli involves both aldose reductase and sorbitol dehydrogenase activities in rat terminal inner medullary collecting duct segments.


    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Arora* and Ashish Chauhan


    Full Text Available Hypertension is a chronic increase in blood pressure, characterized as primary and secondary hypertension. The disorder is associated with various risk factors like obesity, diabetes, age, lack of exercise etc. Hypertension is being treated since ancient times by Ayurvedic, Chinese and Unani medicine. Now various allopathic drugs are available which include diuretics, calcium channel blockers, α-blockers, β-blockers, vasodilators, central sympatholytics and ACE-inhibitors. Non-pharmacological treatments include weight reduction, dietary sodium reduction, increased potassium intake and reduction in alcohol consumption. ACE-inhibitors are widely used in the treatment of hypertension by inhibiting the angiotensin converting enzyme responsible for the conversion of angiotensin I to angiotensin II (responsible for vasoconstriction. Various structure activity relationship studies led to the synthesis of ACE-inhibitors, some are under clinical development. This comprehensive review gives various guidelines on classification of hypertension, hypertension therapy including ancient, pharmacological, non-pharmacological therapies, pharmacoeconomics, historical perspectives of ACE, renin, renin angiotensin system (circulating vs local RAS, mechanism of ACE inhibitors, and development of ACE inhibitors. Review also emphasizes on the recent advancements on ACE inhibitors including drugs in clinical trials, computational studies on ACE-inhibitors, peptidomimetics, dual, natural, multi-functional ACE inhibitors, and conformational requirements for ACE-inhibitors.

  12. Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II. (United States)

    Cingolani, Francesca; Casasampere, Mireia; Sanllehí, Pol; Casas, Josefina; Bujons, Jordi; Fabrias, Gemma


    Sphingosine kinase inhibitor (SKI) II has been reported as a dual inhibitor of sphingosine kinases (SKs) 1 and 2 and has been extensively used to prove the involvement of SKs and sphingosine-1-phosphate (S1P) in cellular processes. Dihydroceramide desaturase (Des1), the last enzyme in the de novo synthesis of ceramide (Cer), regulates the balance between dihydroceramides (dhCers) and Cers. Both SKs and Des1 have interest as therapeutic targets. Here we show that SKI II is a noncompetitive inhibitor (Ki = 0.3 μM) of Des1 activity with effect also in intact cells without modifying Des1 protein levels. Molecular modeling studies support that the SKI II-induced decrease in Des1 activity could result from inhibition of NADH-cytochrome b5 reductase. SKI II, but not the SK1-specific inhibitor PF-543, provoked a remarkable accumulation of dhCers and their metabolites, while both SKI II and PF-543 reduced S1P to almost undetectable levels. SKI II, but not PF543, reduced cell proliferation with accumulation of cells in the G0/G1 phase. SKI II, but not PF543, induced autophagy. These overall findings should be taken into account when using SKI II as a pharmacological tool, as some of the effects attributed to decreased S1P may actually be caused by augmented dhCers and/or their metabolites.

  13. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology


    Čolović, Mirjana B.; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M


    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are appl...

  14. Proteinaceous alpha-araylase inhibitors

    DEFF Research Database (Denmark)

    Svensson, Birte; Fukuda, Kenji; Nielsen, P.K.;


    Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous a-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase...... inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases...... in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological...

  15. Proteinase inhibitors in Brazilian leguminosae

    Directory of Open Access Journals (Sweden)

    C. A. M. Sampaio


    Full Text Available Serine proteinase inhitors, in the seeds of several Leguminosae from the Pantanal region (West Brazil, were studied using bovine trypsin, a digestive enzyme, Factor XIIa and human plasma Kallikrein, two blood clotting factors. The inhibitors were purified from Enterolobium contortisiliquum (Mr=23,000, Torresea cearensis (Mr = 13,000, Bauhinia pentandra (Mr = 20,000 and Bauhinia bauhinioides (Mr = 20,000. E. contortisiliquum inhibitor inactivates all three enzymes, whereas the T. cearensis inhibitor inactivates trypsin and Factor XSSa, but does nor affect plasma kallikrein; both Bauhinia inhibitors, on the other hand, inactivate trypsin and plasma kallikrein but only the Bpentandra inhibitor affects Factor XIIa. Ki values were calculated between 10 [raised to the power of] -7 and 10 [raised to the power of] -8 M.

  16. Induction of quinone reductase (QR) by withanolides isolated from Physalis pubescens L. (Solanaceae). (United States)

    Ji, Long; Yuan, Yonglei; Ma, Zhongjun; Chen, Zhe; Gan, Lishe; Ma, Xiaoqiong; Huang, Dongsheng


    In the present study, it was demonstrated that the dichloromethane extract of Physalis pubescens L. (DEPP) had weak potential quinone reductase (QR) inducing activity, but an UPLC-ESI-MS method with glutathione (GSH) as the substrate revealed that the DEPP had electrophiles (with an α,β-unsaturated ketone moiety). These electrophiles could induce quinone reductase (QR) activity, which might be attributed to the modification of the highly reactive cysteine residues in Keap1. Herein, four withanolides, including three new compounds physapubescin B (2), physapubescin C (3), physapubescin D (4), together with one known steroidal compound physapubescin (1) were isolated. Structures of these compounds were determined by spectroscopic analysis and that of physapubescin C (3) was confirmed by a combination of molecular modeling and quantum chemical DFT-GIAO calculations. Evaluation of the QR inducing activities of all withanolides indicated potent activities of compounds 1 and 2, which had a common α,β-unsaturated ketone moiety.

  17. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase

    DEFF Research Database (Denmark)

    Montalvetti, A; Pena Diaz, Javier; Hurtado, R


    reductase, obtaining K(m) values for the overall reaction of 40.3+/-5.8 microM for (R,S)-HMG-CoA and 81.4+/-5.3 microM for NADPH; V(max) was 33.55+/-1.8 units x mg(-1). Gel-filtration experiments suggested an apparent molecular mass of 184 kDa with subunits of 46 kDa. Finally, in order to achieve a better...... Leishmania lacks the membrane domain characteristic of eukaryotic cells but exhibits sequence similarity with eukaryotic reductases. Highly purified protein was achieved by ammonium sulphate precipitation followed by chromatography on hydroxyapatite. Kinetic parameters were determined for the protozoan...

  18. Expression Analysis of Dihydroflavonol 4-Reductase Genes Involved in Anthocyanin Biosynthesis in Purple Grains of Wheat

    Institute of Scientific and Technical Information of China (English)

    Mao-Sen LIU; Fang WANG; Yu-Xiu DONG; Xian-Sheng ZHANG


    The grain color of wheat (Triticum aestivum L.) is an important characteristic in crop production.Dihydroflavonol 4-reductase genes (DFR) encode the key enzyme dihydroflavonol 4-reductase, which is involved in the pigmentation of plant tissues. To investigate the molecular mechanism of anthocyanin deposition in grains of wheat, we determined the expression of the wheat DFR gene in purple grains of cultivar Heimai 76. The results showed that DFR transcripts were localized in the seed coat of purple grains rather than in the pericarp, whereas anthocyanins were accumulated in both tissues of purple grains,suggesting that anthocyanin deposition was mainly regulated at the transcriptional level. Overexpression of the TaDFR-A gene in Arabidopsis showed that TaDFR-A was responsible for the pigmentation of Arabidopsis plant tissues, indicating TaDFR-A gene has the same role in Arabidopsis.

  19. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates

    DEFF Research Database (Denmark)

    Chen, Z-W; Liu, Y-Y; Wu, J-F;


    The microbial community and sulfur oxygenase reductases of metagenomic DNA from bioreactors treating gold-bearing concentrates were studied by 16S rRNA library, real-time polymerase chain reaction (RT-PCR), conventional cultivation, and molecular cloning. Results indicated that major bacterial......) of bacteria and archaea were 4.59 x 10(9) and 6.68 x 10(5), respectively. Bacterial strains representing Acidithiobacillus, Leptospirillum, and Sulfobacillus were isolated from the bioreactors. To study sulfur oxidation in the reactors, pairs of new PCR primers were designed for the detection of sulfur...... oxygenase reductase (SOR) genes. Three sor-like genes, namely, sor (Fx), sor (SA), and sor (SB) were identified from metagenomic DNAs of the bioreactors. The sor (Fx) is an inactivated SOR gene and is identical to the pseudo-SOR gene of Ferroplasma acidarmanus. The sor (SA) and sor (SB) showed...

  20. A conservative region of the mercuric reductase gene (mera) as a molecular marker of bacterial mercury resistance (United States)

    Sotero-Martins, Adriana; de Jesus, Michele Silva; Lacerda, Michele; Moreira, Josino Costa; Filgueiras, Ana Luzia Lauria; Barrocas, Paulo Rubens Guimarães


    The most common bacterial mercury resistance mechanism is based on the reduction of Hg(II) to Hg0, which is dependent of the mercuric reductase enzyme (MerA) activity. The use of a 431 bp fragment of a conservative region of the mercuric reductase (merA) gene was applied as a molecular marker of this mechanism, allowing the identification of mercury resistant bacterial strains. PMID:24031221

  1. High dose androgen therapy in male pseudohermaphroditism due to 5 alpha-reductase deficiency and disorders of the androgen receptor.


    Price, P; Wass, J. A.; Griffin, J E; Leshin, M; Savage, M O; Large, D. M.; Bu'Lock, D E; Anderson, D. C.; Wilson, J. D.; Besser, G M


    We describe the clinical and biochemical features of six men with male pseudohermaphroditism due to androgen resistance. Each of the subjects had male-gender behavior but incomplete virilization. The underlying defects in androgen metabolism were defined by studies of the 5 alpha-reductase enzyme and the androgen receptor in fibroblasts cultured from biopsies of genital skin. Four of the six have 5 alpha-reductase deficiency, and two have defects of the androgen receptor (the Reifenstein synd...

  2. Synthesis of 3-[(N-Carboalkoxy)ethylamino]-indazole-dione Derivatives and Their Biological Activities on Human Liver Carbonyl Reductase


    Berhe, Solomon; Slupe, Andrew; Luster, Choice; Charlier, Henry A.; Warner, Don L.; Zalkow, Leon H.; Burgess, Edward M.; Enwerem, Nkechi M.; Bakare, Oladapo


    A series of indazole-dione derivatives were synthesized by the 1,3-dipolar cycloaddition reaction of appropriate substituted benzoquinones or naphthoquinones and N-carboalkoxyamino diazopropane derivatives. These compounds were evaluated for their effects on human carbonyl reductase. Several of the analogs were found to serve as substrates for carbonyl reductase with a wide range of catalytic efficiencies, while four analogs display inhibitory activities with IC50 values ranging from 3 – 5 μM...

  3. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings. (United States)

    Balotf, Sadegh; Kavoosi, Gholamreza; Kholdebarin, Bahman


    The objective of this study was to examine the expression and activity of nitrate reductase (NR, EC, nitrite reductase (NiR, EC, glutamine synthetase (GS, EC, and glutamate synthase (GOGAT, EC in response to potassium nitrate, ammonium chloride, and ammonium nitrate in nitrogen-starved wheat seedlings. Plants were grown in standard nutrient solution for 17 days and then subjected to nitrogen starvation for 7 days. The starved plants were supplied with potassium nitrate ammonium nitrate and ammonium chloride (50 mM) for 4 days and the leaves were harvested. The relative expression of NR, NiR, GS, and GOGAT as well as the enzyme activities were investigated. Nitrogen starvation caused a significant decrease both in transcript levels and in NR, NiR, GS, and GOGAT activities. Potassium nitrate and ammonium nitrate treatments restored NR, NiR, GS, and GOGAT expressions and activities. Ammonium chloride increased only the expressions and activities of GS and GOGAT in a dose-dependent manner. The results of our study highlight the differential effects between the type and the amount of nitrogen salts on NR, NiR, GS, and GOGAT activities in wheat seedlings while potassium nitrate being more effective.

  4. Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra). (United States)

    Eltelib, Hani A; Badejo, Adebanjo A; Fujikawa, Yukichi; Esaka, Muneharu


    Acerola (Malpighia glabra) is an exotic fruit cultivated primarily for its abundant ascorbic acid (AsA) content. The molecular mechanisms that regulate the metabolism of AsA in acerola have yet to be defined. Monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) are key enzymes of the ascorbate-glutathione cycle that maintain reduced pools of ascorbic acid and serve as important antioxidants. cDNAs encoding MDHAR and DHAR were isolated from acerola using RT-PCR and RACE. Phylogenetic trees associated acerola MDHAR and DHAR with other plant cytosolic MDHARs and DHARs. Expressions of the two genes correlated with their enzymatic activities and were differentially regulated during fruit ripening. Interestingly, MDHAR expression was only detected in overripe fruits, whereas the transcript level of DHAR was highest at the intermediate stage of fruit ripening. Under dark conditions, there was a sharp and significant decline in the total and reduced ascorbate contents, accompanied by a decrease in the level of transcripts and enzyme activities of the two genes in acerola leaves. MDHAR and DHAR transcripts and enzyme activities were significantly up-regulated in the leaves of acerola under cold and salt stress conditions, indicating that expression of both genes are transcriptionally regulated under these stresses.

  5. Transgenic Tobacco Overexpressing Tea cDNA Encoding Dihydroflavonol 4-Reductase and Anthocyanidin Reductase Induces Early Flowering and Provides Biotic Stress Tolerance.

    Directory of Open Access Journals (Sweden)

    Vinay Kumar

    Full Text Available Flavan-3-ols contribute significantly to flavonoid content of tea (Camellia sinensis L.. Dihydroflavonol 4-reductase (DFR and anthocyanidin reductase (ANR are known to be key regulatory enzymes of flavan-3-ols biosynthesis. In this study, we have generated the transgenic tobacco overexpressing individually tea cDNA CsDFR and CsANR encoding for DFR and ANR to evaluate their influence on developmental and protective abilities of plant against biotic stress. The transgenic lines of CsDFR and CsANR produced early flowering and better seed yield. Both types of transgenic tobacco showed higher content of flavonoids than control. Flavan-3-ols such as catechin, epicatechin and epicatechingallate were found to be increased in transgenic lines. The free radical scavenging activity of CsDFR and CsANR transgenic lines was improved. Oxidative stress was observed to induce lesser cell death in transgenic lines compared to control tobacco plants. Transgenic tobacco overexpressing CsDFR and CsANR also showed resistance against infestation by a tobacco leaf cutworm Spodoptera litura. Results suggested that the overexpression of CsDFR and CsANR cDNA in tobacco has improved flavonoids content and antioxidant potential. These attributes in transgenic tobacco have ultimately improved their growth and development, and biotic stress tolerance.

  6. Separation and distribution of thiosulfate-oxidizing enzyme, tetrathionate reductase, and thiosulfate reductase in extracts of marine heterotroph strain 16B. (United States)

    Whited, G M; Tuttle, J H


    Thiosulfate-oxidizing enzyme (TSO), tetrathionate reductase (TTR), and thiosulfate reductase (TSR) were demonstrated in cell-free extracts of the marine heterotrophic thiosulfate-oxidizing bacterium strain 16B. Extracts prepared from cells cultured aerobically in the absence of thiosulfate or tetrathionate exhibited constitutive TSO and TTR activity which resided in the soluble fraction of ultracentrifuged crude extracts. Constitutive TSO and TTR cochromatographed on DEAE-Sephadex A-50, Cellex D, Sephadex G-150, and orange A dye-ligand affinity gels. Extracts prepared from cells cultured anaerobically with tetrathionate or aerobically with thiosulfate followed by oxygen deprivation showed an 11- to 30-fold increase in TTR activity, with no increase in TSO activity. The inducible TTR resided in both the ultracentrifuge pellet and supernatant fractions and was readily separated from constitutive TSO and TTR in the latter by DEAE-Sephadex chromatography. Inducible TTR exhibited TSR activity, which was also located in both membrane and soluble extract fractions and which cochromatographed with inducible TTR. The results indicate that constitutive TSO and TTR in marine heterotroph 16B represent reverse activities of the same enzyme whose major physiological function is thiosulfate oxidation. Evidence is also presented which suggests a possible association of inducible TTR and TSR in strain 16B.

  7. Herpes simplex virus type 1 ribonucleotide reductase null mutants induce lesions in guinea pigs. (United States)

    Turk, S R; Kik, N A; Birch, G M; Chiego, D J; Shipman, C


    Two herpes simplex virus type 1 ribonucleotide reductase null mutants, hrR3 and ICP6 delta, produced cutaneous lesions in guinea pigs as severe as those of wild-type strains. The lesions induced by hrR3 resulted from in vivo replication of the mutant virus, suggesting that this virus-encoded enzyme is nonessential for virus replication in guinea pigs.

  8. Identification of ubiquinol cytochrome c reductase hinge (UQCRH) as a potential diagnostic biomarker for lung adenocarcinoma


    Gao, Feng; Liu, Qicai; Li, Guoping; Dong, Feng; Qiu, Minglian; Lv, Xiaoting; Zhang, Sheng; Guo, Zheng


    Ubiquinol cytochrome c reductase hinge (UQCRH) is a novel protein that localizes in the mitochondrial membrane and induces mitochondrial reactive oxygen species (ROS) generation. It had a high expression rate of 87.10% (108/124) in lung adenocarcinoma. Moreover, serum UQCR