WorldWideScience

Sample records for aldo-keto reductase 1c

  1. Pharmacogenetics of aldo-keto reductase 1C (AKR1C) enzymes.

    Science.gov (United States)

    Alshogran, Osama Y

    2017-10-01

    Genetic variation in metabolizing enzymes contributes to variable drug response and disease risk. Aldo-keto reductase type 1C (AKR1C) comprises a sub-family of reductase enzymes that play critical roles in the biotransformation of various drug substrates and endogenous compounds such as steroids. Several single nucleotide polymorphisms have been reported among AKR1C encoding genes, which may affect the functional expression of the enzymes. Areas covered: This review highlights and comprehensively discusses previous pharmacogenetic reports that have examined genetic variations in AKR1C and their association with disease development, drug disposition, and therapeutic outcomes. The article also provides information about the effect of AKR1C genetic variants on enzyme function in vitro. Expert opinion: The current evidence that links the effect of AKR1C gene polymorphisms to disease progression and development is inconsistent and needs further validation, despite of the tremendous knowledge available. Information about association of AKR1C genetic variants and drug efficacy, safety, and pharmacokinetics is limited, thus, future studies that advance our understanding about these relationships and their clinical relevance are needed. It is imperative to achieve consistent findings before the potential translation and adoption of AKR1C genetic variants in clinical practice.

  2. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

    Science.gov (United States)

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-07-16

    Xylose reductase is a homodimeric oxidoreductase dependent on NADPH or NADH and belongs to the largely monomeric aldo-keto reductase superfamily of proteins. It catalyzes the first step in the assimilation of xylose, an aldose found to be a major constituent monosaccharide of renewable plant hemicellulosic material, into yeast metabolic pathways. It does this by reducing open chain xylose to xylitol, which is reoxidized to xylulose by xylitol dehydrogenase and metabolically integrated via the pentose phosphate pathway. No structure has yet been determined for a xylose reductase, a dimeric aldo-keto reductase or a family 2 aldo-keto reductase. The structures of the Candida tenuis xylose reductase apo- and holoenzyme, which crystallize in spacegroup C2 with different unit cells, have been determined to 2.2 A resolution and an R-factor of 17.9 and 20.8%, respectively. Residues responsible for mediating the novel dimeric interface include Asp-178, Arg-181, Lys-202, Phe-206, Trp-313, and Pro-319. Alignments with other superfamily members indicate that these interactions are conserved in other dimeric xylose reductases but not throughout the remainder of the oligomeric aldo-keto reductases, predicting alternate modes of oligomerization for other families. An arrangement of side chains in a catalytic triad shows that Tyr-52 has a conserved function as a general acid. The loop that folds over the NAD(P)H cosubstrate is disordered in the apo form but becomes ordered upon cosubstrate binding. A slow conformational isomerization of this loop probably accounts for the observed rate-limiting step involving release of cosubstrate. Xylose binding (K(m) = 87 mM) is mediated by interactions with a binding pocket that is more polar than a typical aldo-keto reductase. Modeling of xylose into the active site of the holoenzyme using ordered waters as a guide for sugar hydroxyls suggests a convincing mode of substrate binding.

  3. Thermophilic enzymes and their applications in biocatalysis: a robust aldo-keto reductase.

    Science.gov (United States)

    Willies, Simon; Isupov, Misha; Littlechild, Jennifer

    2010-09-01

    Extremophiles are providing a good source of novel robust enzymes for use in biocatalysis for the synthesis of new drugs. This is particularly true for the enzymes from thermophilic organisms which are more robust than their mesophilic counterparts to the conditions required for industrial bio-processes. This paper describes a new aldo-keto reductase enzyme from a thermophilic eubacteria, Thermotoga maritima which can be used for the production of primary alcohols. The enzyme has been cloned and over-expressed in Escherichia coli and has been purified and subjected to full biochemical characterization. The aldo-keto reductase can be used for production of primary alcohols using substrates including benzaldehyde, 1,2,3,6-tetrahydrobenzaldehyde and para-anisaldehyde. It is stable up to 80 degrees C, retaining over 60% activity for 5 hours at this temperature. The enzyme at pH 6.5 showed a preference for the forward, carbonyl reduction. The enzyme showed moderate stability with organic solvents, and retained 70% activity in 20% (v/v) isopropanol or DMSO. These properties are favourable for its potential industrial applications.

  4. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Cindy [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Mueller, Uwe [Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung mbH, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Panjikar, Santosh [European Molecular Biology Laboratory Hamburg, Outstation Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Sun, Lianli [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Ruppert, Martin [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Zhao, Yu [Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China); Stöckigt, Joachim [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Department of TCM and Natural Drug Research, College of Pharmaceutical Sciences, 513 Zijingang Campus, Zhejiang University, 310058 Hangzhou (China)

    2006-12-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222{sub 1} and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å.

  5. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    International Nuclear Information System (INIS)

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-01-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222 1 and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å

  6. Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis.

    Science.gov (United States)

    Kataoka, M; Delacruz-Hidalgo, A-R G; Akond, M A; Sakuradani, E; Kita, K; Shimizu, S

    2004-04-01

    The genes encoding two conjugated polyketone reductases (CPR-C1, CPR-C2) of Candida parapsilosis IFO 0708 were cloned and sequenced. The genes encoded a total of 304 and 307 amino acid residues for CPR-C1 and CPR-C2, respectively. The deduced amino acid sequences of the two enzymes showed high similarity to each other and to several proteins of the aldo-keto reductase (AKR) superfamily. However, several amino acid residues in putative active sites of AKRs were not conserved in CPR-C1 and CPR-C2. The two CPR genes were overexpressed in Escherichia coli. The E. coli transformant bearing the CPR-C2 gene almost stoichiometrically reduced 30 mg ketopantoyl lactone/ml to D-pantoyl lactone.

  7. The aldo-keto reductase superfamily homepage.

    Science.gov (United States)

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  8. BIOLOGICAL ROLE OF ALDO-KETO REDUCTASES IN RETINOIC ACID BIOSYNTHESIS AND SIGNALING

    Directory of Open Access Journals (Sweden)

    F. Xavier eRuiz

    2012-04-01

    Full Text Available Several aldo-keto reductase (AKR enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low Km and kcat values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3, as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance.

  9. Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily

    NARCIS (Netherlands)

    Machielsen, M.P.; Uria, A.R.; Kengen, S.W.M.; Oost, van der J.

    2006-01-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily has been identified in the hyperthermophilic archaeon Pyrococcus furiosus. The gene, referred to as adhD, was functionally expressed in Escherichia coli and subsequently purified to homogeneity. The

  10. Novel Aldo-Keto Reductases for the Biocatalytic Conversion of 3-Hydroxybutanal to 1,3-Butanediol: Structural and Biochemical Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeho; Flick, Robert; Brunzelle, Joseph; Singer, Alex; Evdokimova, Elena; Brown, Greg; Joo, Jeong Chan; Minasov, George A.; Anderson, Wayne F.; Mahadevan, Radhakrishnan; Savchenko, Alexei; Yakunin, Alexander F. (KRICT); (Toronto); (NWU)

    2017-01-27

    The nonnatural alcohol 1,3-butanediol (1,3-BDO) is a valuable building block for the synthesis of various polymers. One of the potential pathways for the biosynthesis of 1,3-BDO includes the biotransformation of acetaldehyde to 1,3-BDO via 3-hydroxybutanal (3-HB) using aldolases and aldo-keto reductases (AKRs). This pathway requires an AKR selective for 3-HB, but inactive toward acetaldehyde, so it can be used for one-pot synthesis. In this work, we screened more than 20 purified uncharacterized AKRs for 3-HB reduction and identified 10 enzymes with significant activity and nine proteins with detectable activity. PA1127 fromPseudomonas aeruginosashowed the highest activity and was selected for comparative studies with STM2406 fromSalmonella entericaserovar Typhimurium, for which we have determined the crystal structure. Both AKRs used NADPH as a cofactor, reduced a broad range of aldehydes, and showed low activities toward acetaldehyde. The crystal structures of STM2406 in complex with cacodylate or NADPH revealed the active site with bound molecules of a substrate mimic or cofactor. Site-directed mutagenesis of STM2406 and PA1127 identified the key residues important for the activity against 3-HB and aromatic aldehydes, which include the residues of the substrate-binding pocket and C-terminal loop. Our results revealed that the replacement of the STM2406 Asn65 by Met enhanced the activity and the affinity of this protein toward 3-HB, resulting in a 7-fold increase inkcat/Km. Our work provides further insights into the molecular mechanisms of the substrate selectivity of AKRs and for the rational design of these enzymes toward new substrates.

    IMPORTANCEIn this study, we identified several aldo-keto reductases with significant activity in reducing 3

  11. The aldo-keto reductase AKR1B7 coexpresses with renin without influencing renin production and secretion.

    Science.gov (United States)

    Machura, Katharina; Iankilevitch, Elina; Neubauer, Björn; Theuring, Franz; Kurtz, Armin

    2013-03-01

    On the basis of evidence that within the adult kidney, the aldo-keto reductase AKR1B7 (aldo-keto reductase family 1, member 7, also known as mouse vas deferens protein, MVDP) is selectively expressed in renin-producing cells, we aimed to define a possible role of AKR1B7 for the regulation and function of renin cells in the kidney. We could confirm colocalization and corecruitment of renin and of AKR1B7 in wild-type kidneys. Renin cells in AKR1B7-deficient kidneys showed normal morphology, numbers, and intrarenal distribution. Plasma renin concentration (PRC) and renin mRNA levels of AKR1B7-deficient mice were normal at standard chow and were lowered by a high-salt diet directly comparable to wild-type mice. Treatment with a low-salt diet in combination with an angiotensin-converting enzyme inhibitor strongly increased PRC and renin mRNA in a similar fashion both in AKR1B7-deficient and wild-type mice. Under this condition, we also observed a strong retrograde recruitment of renin-expressing cell along the preglomerular vessels, however, without a difference between AKR1B7-deficient and wild-type mice. The isolated perfused mouse kidney model was used to study the acute regulation of renin secretion by ANG II and by perfusion pressure. Regarding these parameters, no differences were observed between AKR1B7-deficient and wild-type kidneys. In summary, our data suggest that AKR1B7 is not of major relevance for the regulation of renin production and secretion in spite of its striking coregulation with renin expression.

  12. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    Science.gov (United States)

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-01-01

    Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C2221 and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å. PMID:17142919

  13. Expression of human aldo-keto reductase 1C2 in cell lines of peritoneal endometriosis: potential implications in metabolism of progesterone and dydrogesterone and inhibition by progestins.

    Science.gov (United States)

    Beranič, Nataša; Brožič, Petra; Brus, Boris; Sosič, Izidor; Gobec, Stanislav; Lanišnik Rižner, Tea

    2012-05-01

    The human aldo-keto reductase AKR1C2 converts 5α-dihydrotestosterone to the less active 3α-androstanediol and has a minor 20-ketosteroid reductase activity that metabolises progesterone to 20α-hydroxyprogesterone. AKR1C2 is expressed in different peripheral tissues, but its role in uterine diseases like endometriosis has not been studied in detail. Some progestins used for treatment of endometriosis inhibit AKR1C1 and AKR1C3, with unknown effects on AKR1C2. In this study we investigated expression of AKR1C2 in the model cell lines of peritoneal endometriosis, and examined the ability of recombinant AKR1C2 to metabolise progesterone and progestin dydrogesterone, as well as its potential inhibition by progestins. AKR1C2 is expressed in epithelial and stromal endometriotic cell lines at the mRNA level. The recombinant enzyme catalyses reduction of progesterone to 20α-hydroxyprogesterone with a 10-fold lower catalytic efficiency than the major 20-ketosteroid reductase, AKR1C1. AKR1C2 also metabolises progestin dydrogesterone to its 20α-dihydrodydrogesterone, with 8.6-fold higher catalytic efficiency than 5α-dihydrotestosterone. Among the progestins that are currently used for treatment of endometriosis, dydrogesterone, medroxyprogesterone acetate and 20α-dihydrodydrogesterone act as AKR1C2 inhibitors with low μM K(i) values in vitro. Their potential in vivo effects should be further studied. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3

    International Nuclear Information System (INIS)

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir

    2014-01-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3

  15. Lignases and aldo-keto reductases for conversion of lignin-containing materials to fermentable products

    Science.gov (United States)

    Scharf, Michael; Sethi, Amit

    2016-09-13

    Termites have specialized digestive systems that overcome the lignin barrier in wood to release fermentable simple sugars. Using the termite Reticulitermes flavipes and its gut symbionts, high-throughput titanium pyrosequencing and proteomics approaches experimentally compared the effects of lignin-containing diets on host-symbiont digestome composition. Proteomic investigations and functional digestive studies with recombinant lignocellulases conducted in parallel provided strong evidence of congruence at the transcription and translational levels and provide enzymatic strategies for overcoming recalcitrant lignin barriers in biofuel feedstocks. Briefly described, therefore, the disclosure provides a system for generating a fermentable product from a lignified plant material, the system comprising a cooperating series of at least two catalytically active polypeptides, where said catalytically active polypeptides are selected from the group consisting of: cellulase Cell-1, .beta.-glu cellulase, an aldo-keto-reductase, a catalase, a laccase, and an endo-xylanase.

  16. Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Hojo, Aki; Yamane, Yumi; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira

    2013-02-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is widely used for treatment of patients with solid tumors formed in various organs including the lung, prostate and cervix, but is much less sensitive in colon and breast cancers. One major factor implicated in the ineffectiveness has been suggested to be acquisition of the CDDP resistance. Here, we established the CDDP-resistant phenotypes of human colon HCT15 cells by continuously exposing them to incremental concentrations of the drug, and monitored expressions of aldo-keto reductases (AKRs) 1A1, 1B1, 1B10, 1C1, 1C2 and 1C3. Among the six AKRs, AKR1C1 and AKR1C3 are highly induced with the CDDP resistance. The resistance lowered the sensitivity toward cellular damages evoked by oxidative stress-derived aldehydes, 4-hydroxy-2-nonenal and 4-oxo-2-nonenal that are detoxified by AKR1C1 and AKR1C3. Overexpression of AKR1C1 or AKR1C3 in the parental HCT15 cells mitigated the cytotoxicity of the aldehydes and CDDP. Knockdown of both AKR1C1 and AKR1C3 in the resistant cells or treatment of the cells with specific inhibitors of the AKRs increased the sensitivity to CDDP toxicity. Thus, the two AKRs participate in the mechanism underlying the CDDP resistance probably via detoxification of the aldehydes resulting from enhanced oxidative stress. The resistant cells also showed an enhancement in proteolytic activity of proteasome accompanied by overexpression of its catalytic subunits (PSMβ9 and PSMβ10). Pretreatment of the resistant cells with a potent proteasome inhibitor Z-Leu-Leu-Leu-al augmented the CDDP sensitization elicited by the AKR inhibitors. Additionally, the treatment of the cells with Z-Leu-Leu-Leu-al and the AKR inhibitors induced the expressions of the two AKRs and proteasome subunits. Collectively, these results suggest the involvement of up-regulated AKR1C1, AKR1C3 and proteasome in CDDP resistance of colon cancers and support a chemotherapeutic role for their inhibitors. Copyright © 2012 Elsevier Ireland

  17. Crystal structures of three classes of non-steroidal anti-inflammatory drugs in complex with aldo-keto reductase 1C3.

    Directory of Open Access Journals (Sweden)

    Jack U Flanagan

    Full Text Available Aldo-keto reductase 1C3 (AKR1C3 catalyses the NADPH dependent reduction of carbonyl groups in a number of important steroid and prostanoid molecules. The enzyme is also over-expressed in prostate and breast cancer and its expression is correlated with the aggressiveness of the disease. The steroid products of AKR1C3 catalysis are important in proliferative signalling of hormone-responsive cells, while the prostanoid products promote prostaglandin-dependent proliferative pathways. In these ways, AKR1C3 contributes to tumour development and maintenance, and suggest that inhibition of AKR1C3 activity is an attractive target for the development of new anti-cancer therapies. Non-steroidal anti-inflammatory drugs (NSAIDs are one well-known class of compounds that inhibits AKR1C3, yet crystal structures have only been determined for this enzyme with flufenamic acid, indomethacin, and closely related analogues bound. While the flufenamic acid and indomethacin structures have been used to design novel inhibitors, they provide only limited coverage of the NSAIDs that inhibit AKR1C3 and that may be used for the development of new AKR1C3 targeted drugs. To understand how other NSAIDs bind to AKR1C3, we have determined ten crystal structures of AKR1C3 complexes that cover three different classes of NSAID, N-phenylanthranilic acids (meclofenamic acid, mefenamic acid, arylpropionic acids (flurbiprofen, ibuprofen, naproxen, and indomethacin analogues (indomethacin, sulindac, zomepirac. The N-phenylanthranilic and arylpropionic acids bind to common sites including the enzyme catalytic centre and a constitutive active site pocket, with the arylpropionic acids probing the constitutive pocket more effectively. By contrast, indomethacin and the indomethacin analogues sulindac and zomepirac, display three distinctly different binding modes that explain their relative inhibition of the AKR1C family members. This new data from ten crystal structures greatly broadens

  18. An aldo-keto reductase, Bbakr1, is involved in stress response and detoxification of heavy metal chromium but not required for virulence in the insect fungal pathogen, Beauveria bassiana.

    Science.gov (United States)

    Wang, Huifang; He, Zhangjiang; Luo, Linli; Zhao, Xin; Lu, Zhuoyue; Luo, Tingying; Li, Min; Zhang, Yongjun

    2018-02-01

    The aldo-keto reductases (AKRs) belong to the NADP-dependent oxidoreductase superfamily, which play important roles in various physiological functions in prokaryotic and eukaryotic organisms. However, many AKR superfamily members remain uncharacterized. Here, a downstream target gene of the HOG1 MAPK pathways coding for an aldo-keto reductase, named Bbakr1, was characterized in the insect fungal pathogen, Beauveria bassiana. Bbakr1 expression increased in response to osmotic and salt stressors, and oxidative and heavy metal (chromium) stress. Deletion of Bbakr1 caused a reduction in conidiation, as well as delayed conidial germination. ΔBbakr1 displayed increased sensitivity to osmotic/high-salt stress with decreased compatible solute accumulation. In addition, the mutant was more sensitive to high concentrations of the heavy metal, chromium, and to oxidative stress than the wild type cells, with impaired ability to detoxify active aldehyde that might accumulate due to lipid peroxidation. However, over-expressing Bbakr1 in either the wild type strain or a ΔBbhog1 background did not cause any obvious changes in phenotypes as compared to their controls. Little effect on virulence was seen for either the ΔBbakr1 or overexpression strains in insect bioassays via cuticle infection or intrahemocoel injection assays, suggesting that Bbakr1 is not required for virulence. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-L-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-D-gluconate.

    Science.gov (United States)

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-12-25

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-D-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼ 40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-D-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18-60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. A Novel Aldo-Keto Reductase, HdRed, from the Pacific Abalone Haliotis discus hannai, Which Reduces Alginate-derived 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-d-gluconate*

    Science.gov (United States)

    Mochizuki, Shogo; Nishiyama, Ryuji; Inoue, Akira; Ojima, Takao

    2015-01-01

    Abalone feeds on brown seaweeds and digests seaweeds' alginate with alginate lyases (EC 4.2.2.3). However, it has been unclear whether the end product of alginate lyases (i.e. unsaturated monouronate-derived 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH)) is assimilated by abalone itself, because DEH cannot be metabolized via the Embden-Meyerhof pathway of animals. Under these circumstances, we recently noticed the occurrence of an NADPH-dependent reductase, which reduced DEH to 2-keto-3-deoxy-d-gluconate, in hepatopancreas extract of the pacific abalone Haliotis discus hannai. In the present study, we characterized this enzyme to some extent. The DEH reductase, named HdRed in the present study, could be purified from the acetone-dried powder of hepatopancreas by ammonium sulfate fractionation followed by conventional column chromatographies. HdRed showed a single band of ∼40 kDa on SDS-PAGE and reduced DEH to 2-keto-3-deoxy-d-gluconate with an optimal temperature and pH at around 50 °C and 7.0, respectively. HdRed exhibited no appreciable activity toward 28 authentic compounds, including aldehyde, aldose, ketose, α-keto-acid, uronic acid, deoxy sugar, sugar alcohol, carboxylic acid, ketone, and ester. The amino acid sequence of 371 residues of HdRed deduced from the cDNA showed 18–60% identities to those of aldo-keto reductase (AKR) superfamily enzymes, such as human aldose reductase, halophilic bacterium reductase, and sea hare norsolorinic acid (a polyketide derivative) reductase-like protein. Catalytic residues and cofactor binding residues known in AKR superfamily enzymes were fairly well conserved in HdRed. Phylogenetic analysis for HdRed and AKR superfamily enzymes indicated that HdRed is an AKR belonging to a novel family. PMID:26555267

  1. Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants.

    Science.gov (United States)

    Vemanna, Ramu S; Vennapusa, Amaranatha Reddy; Easwaran, Murugesh; Chandrashekar, Babitha K; Rao, Hanumantha; Ghanti, Kirankumar; Sudhakar, Chinta; Mysore, Kirankumar S; Makarla, Udayakumar

    2017-07-01

    In recent years, concerns about the use of glyphosate-resistant crops have increased because of glyphosate residual levels in plants and development of herbicide-resistant weeds. In spite of identifying glyphosate-detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an aldo-keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologues in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate-mediated cucumber seedling growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1- or OsAKRI-expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Overexpression of Aldo-Keto-Reductase in Azole-resistant Clinical Isolates of Candida Glabrata Determined by cDNA-AFLP

    Directory of Open Access Journals (Sweden)

    Mansour Heidari

    2013-01-01

    Full Text Available Background: Candida glabrata causes significant medical problems in immunocompromised patients. Many strains of this yeast are intrinsically resistant to azole antifungal agents, and treatment is problematic, leading to high morbidity and mortality rates in immunosuppressed individuals. The primary goal of this study was to investigate the genes involved in the drug resistance of clinical isolates of C. glabrata.Methods: The clinical isolates of C. glabrata were collected in an epidemiological survey of candidal infection inimmunocompromised patients and consisted of four fluconazole and itraconazole resistant isolates, two fluconazoleand itraconazole sensitive isolates, and C. glabrata CBS 138 as reference strain. Antifungal susceptibility patterns ofthe organisms were determined beforehand by the Clinical and Laboratory Standards Institute (CLSI. The potentialgene(s implicated in antifungal resistance were investigated using complementary DNA- Amplified Fragment Length Polymorphism (cDNA-AFLP. Semi-quantitative RT-PCR was carried out to evaluate the expression of gene(s in resistant isolates as compared to sensitive and reference strains.Results and conclusions: The aldo-keto-reductase superfamily (AKR gene was upregulated in the resistant clinicalisolates as assessed by cDNA-AFLP. Semi-quantitative RT-PCR revealed AKR mRNA expression approximately twice that seen in the sensitive isolates. Overexpression of the AKR gene was associated with increased fluconazole and itraconazole resistance in C. glabrata. The data suggest that upregulation of the AKR gene might give a new insight into the mechanism of azole resistance.

  3. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels

    International Nuclear Information System (INIS)

    Zhong, Linlin; Liu, Ziwen; Yan, Ruilan; Johnson, Stephen; Zhao, Yupei; Fang, Xiubin; Cao, Deliang

    2009-01-01

    Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 μM, 4-hydroxynonenal (HNE) at 0.10 μM, trans-2-hexanal at 0.10 μM, and trans-2,4-hexadienal at 0.05 μM, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 μM (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.

  4. Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases.

    Science.gov (United States)

    Felsovalyi, Flora; Patel, Tushar; Mangiagalli, Paolo; Kumar, Sanat K; Banta, Scott

    2012-08-01

    Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior. Copyright © 2012 The Protein Society.

  5. Molecular characterization of an aldo-keto reductase from Marivirga tractuosa that converts retinal to retinol.

    Science.gov (United States)

    Hong, Seung-Hye; Nam, Hyun-Koo; Kim, Kyoung-Rok; Kim, Seon-Won; Oh, Deok-Kun

    2014-01-01

    A recombinant aldo-keto reductase (AKR) from Marivirga tractuosa was purified with a specific activity of 0.32unitml(-1) for all-trans-retinal with a 72kDa dimer. The enzyme had substrate specificity for aldehydes but not for alcohols, carbonyls, or monosaccharides. The enzyme turnover was the highest for benzaldehyde (kcat=446min(-1)), whereas the affinity and catalytic efficiency were the highest for all-trans-retinal (Km=48μM, kcat/Km=427mM(-1)min(-1)) among the tested substrates. The optimal reaction conditions for the production of all-trans-retinol from all-trans-retinal by M. tractuosa AKR were pH 7.5, 30°C, 5% (v/v) methanol, 1% (w/v) hydroquinone, 10mM NADPH, 1710mgl(-1) all-trans-retinal, and 3unitml(-1) enzyme. Under these optimized conditions, the enzyme produced 1090mgml(-1) all-trans-retinol, with a conversion yield of 64% (w/w) and a volumetric productivity of 818mgl(-1)h(-1). AKR from M. tractuosa showed no activity for all-trans-retinol using NADP(+) as a cofactor, whereas human AKR exhibited activity. When the cofactor-binding residues (Ala158, Lys212, and Gln270) of M. tractuosa AKR were changed to the corresponding residues of human AKR (Ser160, Pro212, and Glu272), the A158S and Q270E variants exhibited activity for all-trans-retinol. Thus, amino acids at positions 158 and 270 of M. tractuosa AKR are determinant residues of the activity for all-trans-retinol. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  6. Crystal structure of conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 complexed with NADPH.

    Science.gov (United States)

    Qin, Hui-Min; Yamamura, Akihiro; Miyakawa, Takuya; Kataoka, Michihiko; Maruoka, Shintaro; Ohtsuka, Jun; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2013-11-01

    Conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 is a member of the aldo-keto reductase (AKR) superfamily and reduces ketopantoyl lactone to d-pantoyl lactone in a NADPH-dependent and stereospecific manner. We determined the crystal structure of CPR-C1.NADPH complex at 2.20 Å resolution. CPR-C1 adopted a triose-phosphate isomerase (TIM) barrel fold at the core of the structure in which Thr25 and Lys26 of the GXGTX motif bind uniquely to the adenosine 2'-phosphate group of NADPH. This finding provides a novel structural basis for NADPH binding of the AKR superfamily. Copyright © 2013 Wiley Periodicals, Inc.

  7. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi.

    Science.gov (United States)

    González, Laura; García-Huertas, Paola; Triana-Chávez, Omar; García, Gabriela Andrea; Murta, Silvane Maria Fonseca; Mejía-Jaramillo, Ana M

    2017-12-01

    The improvement of Chagas disease treatment is focused not only on the development of new drugs but also in understanding mechanisms of action and resistance to drugs conventionally used. Thus, some strategies aim to detect specific changes in proteins between sensitive and resistant parasites and to evaluate the role played in these processes by functional genomics. In this work, we used a natural Trypanosoma cruzi population resistant to benznidazole, which has clones with different susceptibilities to this drug without alterations in the NTR I gene. Using 2DE-gel electrophoresis, the aldo-keto reductase and the alcohol dehydrogenase proteins were found up regulated in the natural resistant clone and therefore their possible role in the resistance to benznidazole and glyoxal was investigated. Both genes were overexpressed in a drug sensitive T. cruzi clone and the biological changes in response to these compounds were evaluated. The results showed that the overexpression of these proteins enhances resistance to benznidazole and glyoxal in T. cruzi. Moreover, a decrease in mitochondrial and cell membrane damage was observed, accompanied by a drop in the intracellular concentration of reactive oxygen species after treatment. Our results suggest that these proteins are involved in the mechanism of action of benznidazole. © 2017 John Wiley & Sons Ltd.

  8. Detection of Dichlorvos Adducts in a Hepatocyte Cell Line

    Science.gov (United States)

    2014-06-30

    5453543 aldo -keto reductase family 1 member C1 aldo -keto reductase TRUE 3 156523970 alpha-2-HS-glycoprotein preproprotein 5 4503571 alpha-enolase...enolase, (YISPDQLADLYK), three variants were identified with adducts on the first, second, or both tyrosines (Figure 2), and for one peptide in aldo -keto...suggesting the possibility that DDVP adducts could alter biological activities. The modifications of aldo -keto reductase family 1 members at three

  9. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10

    International Nuclear Information System (INIS)

    Matsunaga, Toshiyuki; Morikawa, Yoshifumi; Haga, Mariko; Endo, Satoshi; Soda, Midori; Yamamura, Keiko; El-Kabbani, Ossama; Tajima, Kazuo; Ikari, Akira; Hara, Akira

    2014-01-01

    Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-L-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling. - Highlights: • 9,10-PQ promotes invasion, metastasis and tumorigenicity in lung cancer cells. • The 9,10-PQ-elicited promotion is possibly due to AKR1B10 up

  10. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Toshiyuki, E-mail: matsunagat@gifu-pu.ac.jp [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Morikawa, Yoshifumi; Haga, Mariko; Endo, Satoshi [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Soda, Midori; Yamamura, Keiko [Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650 (Japan); El-Kabbani, Ossama [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Tajima, Kazuo [Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181 (Japan); Ikari, Akira [Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Hara, Akira [Faculty of Engineering, Gifu University, Gifu 501-1193 (Japan)

    2014-07-15

    Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-L-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling. - Highlights: • 9,10-PQ promotes invasion, metastasis and tumorigenicity in lung cancer cells. • The 9,10-PQ-elicited promotion is possibly due to AKR1B10 up

  11. Isolation and primary structural analysis of two conjugated polyketone reductases from Candida parapsilosis.

    Science.gov (United States)

    Hidalgo, A R; Akond, M A; Kita, K; Kataoka, M; Shimizu, S

    2001-12-01

    Two conjugated polyketone reductases (CPRs) were isolated from Candida parapsilosis IFO 0708. The primary structures of CPRs (C1 and C2) were analyzed by amino acid sequencing. The amino acid sequences of both enzymes had high similarity to those of several proteins of the aldo-keto-reductase (AKR) superfamily. However, several amino acid residues in the putative active sites of AKRs were not conserved in CPRs-C1 and -C2.

  12. Hic-5’s Regulatory Role in TGFB Signaling in Prostate Stroma

    Science.gov (United States)

    2012-06-01

    the androgen metabolites 3α-Adiol and 3β-Adiol, and their importance is underscored by high expression levels of the aldo keto reductase (AKR1C...known as aldo -keto reductases (AKR1C) [33]. DU145 cells express AKR1C enzymes and are capable of catalyzing redox reactions at the C17 position of...584-95. 37. Bauman, D.R., et al., Development of nonsteroidal anti-inflammatory drug analogs and steroid carboxylates selective for human aldo -keto

  13. Expression, purification, crystallization and preliminary X-ray analysis of conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708.

    Science.gov (United States)

    Yamamura, Akihiro; Maruoka, Shintaro; Ohtsuka, Jun; Miyakawa, Takuya; Nagata, Koji; Kataoka, Michihiko; Kitamura, Nahoko; Shimizu, Sakayu; Tanokura, Masaru

    2009-11-01

    Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708 is a member of the NADPH-dependent aldo-keto reductase (AKR) superfamily and catalyzes the stereospecific reduction of ketopantoyl lactone to d-pantoyl lactone. A diffraction-quality crystal of recombinant CPR-C2 was obtained by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystal diffracted X-rays to 1.7 angstrom resolution on beamline NW12A of the Photon Factory-Advanced Ring (Tsukuba, Japan). The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 55.02, b = 68.30, c = 68.93 angstrom. The Matthews coefficient (V(M) = 1.76 angstrom(3) Da(-1)) indicated that the crystal contained one CPR-C2 molecule per asymmetric unit.

  14. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones

    Science.gov (United States)

    Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis. PMID:23162467

  15. Isoenzyme-specific up-regulation of glutathione transferase and aldo-keto reductase mRNA expression by dietary quercetin in rat liver.

    Science.gov (United States)

    Odbayar, Tseye-Oidov; Kimura, Toshinori; Tsushida, Tojiro; Ide, Takashi

    2009-05-01

    The impact of quercetin on the mRNA expression of hepatic enzymes involved in drug metabolism was evaluated with a DNA microarray and real-time PCR. Male Sprague-Dawley rats were fed an experimental diet containing either 0, 2.5, 5, 10, or 20 g/kg of quercetin for 15 days. The DNA microarray analysis of the gene expression profile in pooled RNA samples from rats fed diets containing 0, 5, and 20 g/kg of quercetin revealed genes of some isoenzymes of glutathione transferase (Gst) and aldo-keto reductase (Akr) to be activated by this flavonoid. Real-time PCR conducted with RNA samples from individual rats fed varying amounts of quercetin together with the microarray analysis showed that quercetin caused marked dose-dependent increases in the mRNA expression of Gsta3, Gstp1, and Gstt3. Some moderate increases were also noted in the mRNA expression of isoenzymes belonging to the Gstm class. Quercetin also dose-dependently increased the mRNA expression of Akr1b8 and Akr7a3. However, it did not affect the parameters of the other Gst and Akr isoenzymes. It is apparent that quercetin increases the mRNA expression of Gst and Akr involved in drug metabolism in an isoenzyme-specific manner. Inasmuch as Gst and Akr isoenzymes up-regulated in their gene expression are involved in the prevention and attenuation of cancer development, this consequence may account for the chemopreventive propensity of quercetin.

  16. The Role of Human Aldo-Keto Reductases (AKRs in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH-catechols and PAH o-Quinones

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2012-11-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAH are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quiniones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis.

  17. Expression, purification, crystallization and preliminary X-ray analysis of conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708

    International Nuclear Information System (INIS)

    Yamamura, Akihiro; Maruoka, Shintaro; Ohtsuka, Jun; Miyakawa, Takuya; Nagata, Koji; Kataoka, Michihiko; Kitamura, Nahoko; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    Conjugated polyketone reductase C2 from C. parapsilosis IFO 0708 was expressed, purified and crystallized by the sitting-drop vapour-diffusion method. The crystal belonged to space group P2 1 2 1 2 1 and diffracted X-rays to 1.7 Å resolution. Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708 is a member of the NADPH-dependent aldo-keto reductase (AKR) superfamily and catalyzes the stereospecific reduction of ketopantoyl lactone to d-pantoyl lactone. A diffraction-quality crystal of recombinant CPR-C2 was obtained by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystal diffracted X-rays to 1.7 Å resolution on beamline NW12A of the Photon Factory-Advanced Ring (Tsukuba, Japan). The crystal belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 55.02, b = 68.30, c = 68.93 Å. The Matthews coefficient (V M = 1.76 Å 3 Da −1 ) indicated that the crystal contained one CPR-C2 molecule per asymmetric unit

  18. Role of aldo-keto reductases and other doxorubicin pharmacokinetic genes in doxorubicin resistance, DNA binding, and subcellular localization

    International Nuclear Information System (INIS)

    Heibein, Allan D; Guo, Baoqing; Sprowl, Jason A; MacLean, David A; Parissenti, Amadeo M

    2012-01-01

    Since proteins involved in chemotherapy drug pharmacokinetics and pharmacodynamics have a strong impact on the uptake, metabolism, and efflux of such drugs, they likely play critical roles in resistance to chemotherapy drugs in cancer patients. To investigate this hypothesis, we conducted a whole genome microarray study to identify difference in the expression of genes between isogenic doxorubicin-sensitive and doxorubicin-resistant MCF-7 breast tumour cells. We then assessed the degree of over-representation of doxorubicin pharmacokinetic and pharmacodynamic genes in the dataset of doxorubicin resistance genes. Of 27,958 Entrez genes on the array, 7.4 per cent or 2,063 genes were differentially expressed by ≥ 2-fold between wildtype and doxorubicin-resistant cells. The false discovery rate was set at 0.01 and the minimum p value for significance for any gene within the “hit list” was 0.01. Seventeen and 43 per cent of doxorubicin pharmacokinetic genes were over-represented in the hit list, depending upon whether the gene name was identical or within the same gene family, respectively. The most over-represented genes were within the 1C and 1B families of aldo-keto reductases (AKRs), which convert doxorubicin to doxorubicinol. Other genes convert doxorubicin to other metabolites or affect the influx, efflux, or cytotoxicity of the drug. In further support of the role of AKRs in doxorubicin resistance, we observed that, in comparison to doxorubicin, doxorubincol exhibited dramatically reduced cytotoxicity, reduced DNA-binding activity, and strong localization to extra nuclear lysosomes. Pharmacologic inhibition of the above AKRs in doxorubicin-resistant cells increased cellular doxorubicin levels, restored doxorubicin cytotoxicity and re-established doxorubicin localization to the nucleus. The properties of doxorubicinol were unaffected. These findings demonstrate the utility of using curated pharmacokinetic and pharmacodynamic knowledge bases to identify

  19. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10).

    Science.gov (United States)

    Li, Haonan; Yang, Allison L; Chung, Yeon Tae; Zhang, Wanying; Liao, Jie; Yang, Guang-Yu

    2013-09-01

    Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesyl/geranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old LSL-Kras(G12D)-LSL-Trp53(R172H)-Pdx-1-Cre mice (Pan(kras/p53) mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (n = 20/group). Kaplan-Meier survival analysis showed that average animal survival in Pan(kras/p53) mice was 143.7 ± 8.8 days, and average survival with sulindac was increased to 168.0 ± 8.8 days (P < 0.005). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (P < 0.01) and only one mouse had lymph node metastasis. Immunochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In in vitro experiments with PDAC cells from Pan(kras/p53) mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA or by sulindac treatment, these in vitro models showed a reduction in Kras and human DNA-J homolog 2 protein prenylation, and downregulation of phosphorylated C-raf, ERK1/2 and MEK1/2 expression. Our results demonstrate that sulindac inhibits pancreatic carcinogenesis by the inhibition of Kras protein prenylation by targeting AKR1B10.

  20. NCBI nr-aa BLAST: CBRC-CINT-01-0121 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CINT-01-0121 ref|ZP_01612781.1| Aldo/keto reductase [Alteromonadales bacterium... TW-7] gb|EAW27959.1| Aldo/keto reductase [Alteromonadales bacterium TW-7] ZP_01612781.1 1.7 25% ...

  1. Crystallization and preliminary X-ray analysis of 5-keto-d-gluconate reductase from Gluconobacter suboxydans IFO12528 complexed with 5-keto-d-gluconate and NADPH

    International Nuclear Information System (INIS)

    Kubota, Keiko; Miyazono, Ken-ichi; Nagata, Koji; Toyama, Hirohide; Matsushita, Kazunobu; Tanokura, Masaru

    2010-01-01

    NADPH-dependent 5-keto-d-gluconate reductase from G. suboxydans IFO12528 (5KGR) was expressed, purified and crystallized with 5-keto-d-gluconate and NADPH using the sitting-drop vapour-diffusion method. Crystals of the 5KGR–NADPH complex and of the 5KGR–NADPH–5-keto-d-gluconate complex diffracted X-rays to 1.75 and 2.26 Å resolution, respectively. NADPH-dependent 5-keto-d-gluconate reductase from Gluconobacter suboxydans IFO12528 (5KGR) catalyzes oxidoreduction between 5-keto-d-gluconate and d-gluconate with high specificity. 5KGR was expressed in Escherichia coli, purified and crystallized with 5-keto-d-gluconate and NADPH using the sitting-drop vapour-diffusion method at 288 K. A crystal of the 5KGR–NADPH complex was obtained using reservoir solution containing PEG 4000 as a precipitant and diffracted X-rays to 1.75 Å resolution. The crystal of the complex belonged to space group P4 2 2 1 2, with unit-cell parameters a = b = 128.6, c = 62.9 Å. A crystal of the 5KGR–NADPH–5-keto-d-gluconate complex was prepared by soaking the 5KGR–NADPH complex crystal in reservoir solution supplemented with 100 mM 5-keto-d-gluconate and 10 mM NADPH for 20 min and diffracted X-rays to 2.26 Å resolution. The crystal of the ternary complex belonged to space group P4 2 2 1 2, with unit-cell parameters a = b = 128.7, c = 62.5 Å. Both crystals contained two molecules in the asymmetric unit

  2. Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-γ-dependent mechanism.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Suzuki, Ayaka; Kezuka, Chihiro; Okumura, Naoko; Iguchi, Kazuhiro; Inoue, Ikuo; Soda, Midori; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira; Ikari, Akira

    2016-08-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is one of the most effective chemotherapeutic drugs that are used for treatment of patients with gastrointestinal cancer cells, but its continuous administration often evokes the development of chemoresistance. In this study, we investigated alterations in antioxidant molecules and functions using a newly established CDDP-resistant variant of gastric cancer MKN45 cells, and found that aldo-keto reductase 1B10 (AKR1B10) is significantly up-regulated with acquisition of the CDDP resistance. In the nonresistant MKN45 cells, the sensitivity to cytotoxic effect of CDDP was decreased and increased by overexpression and silencing of AKR1B10, respectively. In addition, the AKR1B10 overexpression markedly suppressed accumulation and cytotoxicity of 4-hydroxy-2-nonenal that is produced during lipid peroxidation by CDDP treatment, suggesting that the enzyme acts as a crucial factor for facilitation of the CDDP resistance through inhibiting induction of oxidative stress by the drug. Transient exposure to CDDP and induction of the CDDP resistance decreased expression of peroxisome proliferator-activated receptor-γ (PPARγ) in MKN45 and colon cancer LoVo cells. Additionally, overexpression of PPARγ in the cells elevated the sensitivity to the CDDP toxicity, which was further augmented by concomitant treatment with a PPARγ ligand rosiglitazone. Intriguingly, overexpression of AKR1B10 in the cells resulted in a decrease in PPARγ expression, which was recovered by addition of an AKR1B10 inhibitor oleanolic acid, inferring that PPARγ is a downstream target of AKR1B10-dependent mechanism underlying the CDDP resistance. Combined treatment with the AKR1B10 inhibitor and PPARγ ligand elevated the CDDP sensitivity, which was almost the same level as that in the parental cells. These results suggest that combined treatment with the AKR1B10 inhibitor and PPARγ ligand is an effective adjuvant therapy for overcoming CDDP resistance of

  3. A novel aldo-keto reductase from Jatropha curcas L. (JcAKR) plays a crucial role in the detoxification of methylglyoxal, a potent electrophile.

    Science.gov (United States)

    Mudalkar, Shalini; Sreeharsha, Rachapudi Venkata; Reddy, Attipalli Ramachandra

    2016-05-20

    Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, β-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood. Aldo-keto reductases (AKRs) play a role in detoxification of reactive aldehydes and ketones. In the present study, we cloned and characterised a putative AKR from Jatropha curcas (JcAKR). Phylogenetically, it forms a small clade with AKRs of Glycine max and Rauwolfia serpentina. JcAKR was heterologously expressed in Escherichia coli BL-21(DE3) cells and the identity of the purified protein was confirmed through MALDI-TOF analysis. The recombinant protein had high enzyme activity and catalytic efficiency in assays containing MG as the substrate. Protein modelling and docking studies revealed MG was efficiently bound to JcAKR. Under progressive drought and salinity stress, the enzyme and transcript levels of JcAKR were higher in leaves compared to roots. Further, the bacterial and yeast cells expressing JcAKR showed more tolerance towards PEG (5%), NaCl (200mM) and MG (5mM) treatments compared to controls. In conclusion, our results project JcAKR as a possible and potential target in crop improvement for abiotic stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Genetic variation of Aflatoxin B(1) aldehyde reductase genes (AFAR) in human tumour cells

    DEFF Research Database (Denmark)

    Praml, Christian; Schulz, Wolfgang; Claas, Andreas

    2008-01-01

    AFAR genes play a key role in the detoxification of the carcinogen Aflatoxin B(1) (AFB(1)). In the rat, Afar1 induction can prevent AFB(1)-induced liver cancer. It has been proposed that AFAR enzymes can metabolise endogenous diketones and dialdehydes that may be cytotoxic and/or genotoxic. Furth...... many aldo-keto reductases. This polarity change may have an effect on the proposed substrate binding amino acids nearby (Met(47), Tyr(48), Asp(50)). Further population analyses and functional studies of the nine variants detected may show if these variants are disease-related....

  5. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    Energy Technology Data Exchange (ETDEWEB)

    Kiyota, Eduardo [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Sousa, Sylvia Morais de [Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Santos, Marcelo Leite dos; Costa Lima, Aline da [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Menossi, Marcelo [Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Yunes, José Andrés [Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas-SP (Brazil); Aparicio, Ricardo, E-mail: aparicio@iqm.unicamp.br [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil)

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  6. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    International Nuclear Information System (INIS)

    Kiyota, Eduardo; Sousa, Sylvia Morais de; Santos, Marcelo Leite dos; Costa Lima, Aline da; Menossi, Marcelo; Yunes, José Andrés; Aparicio, Ricardo

    2007-01-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2 1 2 1 2 1 , with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR

  7. High-resolution structure of AKR1a4 in the apo form and its interaction with ligands

    International Nuclear Information System (INIS)

    Faucher, Frédérick; Jia, Zongchao

    2012-01-01

    Despite its high affinity for NADPH, AKR1a4 crystallized in the apo form, which is very rare for aldo-keto reductase enzymes. Aldo-keto reductase 1a4 (AKR1a4; EC 1.1.1.2) is the mouse orthologue of human aldehyde reductase (AKR1a1), the founding member of the AKR family. As an NADPH-dependent enzyme, AKR1a4 catalyses the conversion of d-glucuronate to l-gulonate. AKR1a4 is involved in ascorbate biosynthesis in mice, but has also recently been found to interact with SMAR1, providing a novel mechanism of ROS regulation by ATM. Here, the crystal structure of AKR1a4 in its apo form at 1.64 Å resolution as well as the characterization of the binding of AKR1a4 to NADPH and P44, a peptide derived from SMAR1, is presented

  8. Sex hormones reduce NNK detoxification through inhibition of short-chain dehydrogenases/reductases and aldo-keto reductases in vitro.

    Science.gov (United States)

    Stapelfeld, Claudia; Maser, Edmund

    2017-10-01

    Carbonyl reduction is an important metabolic pathway for endogenous and xenobiotic substances. The tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, nicotine-derived nitrosamine ketone) is classified as carcinogenic to humans (IARC, Group 1) and considered to play the most important role in tobacco-related lung carcinogenesis. Detoxification of NNK through carbonyl reduction is catalyzed by members of the AKR- and the SDR-superfamilies which include AKR1B10, AKR1C1, AKR1C2, AKR1C4, 11β-HSD1 and CBR1. Because some reductases are also involved in steroid metabolism, five different hormones were tested for their inhibitory effect on NNK carbonyl reduction. Two of those hormones were estrogens (estradiol and ethinylestradiol), another two hormones belong to the gestagen group (progesterone and drospirenone) and the last tested hormone was an androgen (testosterone). Furthermore, one of the estrogens (ethinylestradiol) and one of the gestagens (drospirenone) are synthetic hormones, used as hormonal contraceptives. Five of six NNK reducing enzymes (AKR1B10, AKR1C1, AKR1C2, AKR1C4 and 11β-HSD1) were significantly inhibited by the tested sex hormones. Only NNK reduction catalyzed by CBR1 was not significantly impaired. In the case of the other five reductases, gestagens had remarkably stronger inhibitory effects at a concentration of 25 μM (progesterone: 66-88% inhibition; drospirenone: 26-87% inhibition) in comparison to estrogens (estradiol: 17-51% inhibition; ethinylestradiol: 14-79% inhibition) and androgens (14-78% inhibition). Moreover, in most cases the synthetic hormones showed a greater ability to inhibit NNK reduction than the physiologic derivatives. These results demonstrate that male and female sex hormones have different inhibitory potentials, thus indicating that there is a varying detoxification capacity of NNK in men and women which could result in a different risk for developing lung cancer. Copyright © 2017 Elsevier B

  9. Structure of conjugated polyketone reductase from Candida parapsilosis IFO 0708 reveals conformational changes for substrate recognition upon NADPH binding.

    Science.gov (United States)

    Qin, Hui-Min; Yamamura, Akihiro; Miyakawa, Takuya; Kataoka, Michihiko; Nagai, Takahiro; Kitamura, Nahoko; Urano, Nobuyuki; Maruoka, Shintaro; Ohtsuka, Jun; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-01-01

    Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708, identified as a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ketopantoyl lactone reductase, belongs to the aldo-keto reductase superfamily. This enzyme reduces ketopantoyl lactone to D-pantoyl lactone in a strictly stereospecific manner. To elucidate the structural basis of the substrate specificity, we determined the crystal structures of the apo CPR-C2 and CPR-C2/NADPH complex at 1.70 and 1.80 Å resolutions, respectively. CPR-C2 adopted a triose-phosphate isomerase barrel fold at the core of the structure. Binding with the cofactor NADPH induced conformational changes in which Thr27 and Lys28 moved 15 and 5.0 Å, respectively, in the close vicinity of the adenosine 2'-phosphate group of NADPH to form hydrogen bonds. Based on the comparison of the CPR-C2/NADPH structure with 3-α-hydroxysteroid dehydrogenase and mutation analyses, we constructed substrate binding models with ketopantoyl lactone, which provided insight into the substrate specificity by the cofactor-induced structure. The results will be useful for the rational design of CPR-C2 mutants targeted for use in the industrial manufacture of ketopantoyl lactone.

  10. Identification of the molecular switch that regulates access of 5alpha-DHT to the androgen receptor.

    Science.gov (United States)

    Penning, Trevor M; Bauman, David R; Jin, Yi; Rizner, Tea Lanisik

    2007-02-01

    Pairs of hydroxysteroid dehydrogenases (HSDs) govern ligand access to steroid receptors in target tissues and act as molecular switches. By acting as reductases or oxidases, HSDs convert potent ligands into their cognate inactive metabolites or vice versa. This pre-receptor regulation of steroid hormone action may have profound effects on hormonal response. We have identified the HSDs responsible for regulating ligand access to the androgen receptor (AR) in human prostate. Type 3 3alpha-hydroxysteroid dehydrogenase (aldo-keto reductase 1C2) acts solely as a reductase to convert 5alpha-dihydrotestosterone (DHT), a potent ligand for the AR (K(d)=10(-11)M for the AR), to the inactive androgen 3alpha-androstanediol (K(d)=10(-6)M for the AR); while RoDH like 3alpha-HSD (a short-chain dehydrogenase/reductase (SDR)) acts solely as an oxidase to convert 3alpha-androstanediol back to 5alpha-DHT. Our studies suggest that aldo-keto reductase (AKRs) and SDRs function as reductases and oxidases, respectively, to control ligand access to nuclear receptors.

  11. Enzymes of the AKR1B and AKR1C subfamilies and uterine diseases

    Directory of Open Access Journals (Sweden)

    Tea eLanisnik Rizner

    2012-03-01

    Full Text Available Endometrial and cervical cancers, uterine myoma, and endometriosis are very common uterine diseases. Worldwide, more than 800,000 women are affected annually by gynecological cancers, as a result of which, more than 360,000 die. During their reproductive age, about 70% of women develop uterine myomas, 10% to 15% suffer from endometriosis, and 35% to 50% from infertility associated with endometriosis. Uterine diseases are associated with aberrant inflammatory responses and concomitant increased production of prostaglandins (PG. They are also related to decreased differentiation, due to low levels of protective progesterone and retinoic acid, and to enhanced proliferation, due to high local concentrations of estrogens. The pathogenesis of these diseases can thus be attributed to disturbed PG, estrogen and retinoid metabolism and actions. Five human members of the aldo-keto reductase 1B (AKR1B and 1C (AKR1C superfamilies, i.e., AKR1B1, AKR1B10, AKR1C1, AKR1C2 and AKR1C3, have roles in these processes and can thus be implicated in uterine diseases. AKR1B1 and AKR1C3 catalyze the formation of PGF2alpha which stimulates cell proliferation. AKR1C3 converts PGD2 to 9alpha,11beta-PGF2, and thus counteracts the formation of 15deoxy-PGJ2, which can activate pro-apoptotic peroxisome-proliferator-activated receptor beta. AKR1B10 catalyzes the reduction of retinal to retinol, and in thus lessens the formation of retinoic acid, with potential pro-differentiating actions. The AKR1C1-AKR1C3 enzymes also act as 17-keto- and 20-ketosteroid reductases to varying extents, and are implicated in increased estradiol and decreased progesterone levels. This review comprises a short introduction to uterine diseases, followed by an overview of the current literature on the AKR1B and AKR1C expression in the uterus and in uterine diseases. The potential implications of the AKR1B and AKR1C enzymes and their pathophysiologies are then discussed, followed by conclusions and

  12. Selective reduction of AKR1C2 in prostate cancer and its role in DHT metabolism.

    Science.gov (United States)

    Ji, Qing; Chang, Lilly; VanDenBerg, David; Stanczyk, Frank Z; Stolz, Andrew

    2003-03-01

    As androgens play an essential role in prostate cancer, we sought to develop a real-time PCR to characterize mRNA expression profiles of human members of the Aldo-Keto Reductase (AKR) 1C gene family, as well as of 5 alpha-steroid reductase Type II (SRD5A2) in prostate cancer samples. Functional activity and regulation of AKR1C2, a 3 alpha-hydroxysteroid dehydrogenase (HSD) type III, was also assessed in prostate cancer cell lines. Gene specific PCR primers were established and relative gene expression of human AKR1C family members was determined in paired samples of cancerous and surrounding unaffected prostate tissue. AKR1C2 preferentially reduces DHT to the weak metabolite 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-diol) without conversion of 3 alpha-diol to DHT in the PC-3 cell line, and its expression was increased by DHT treatment in LNCaP cells. Selectively reduced expression of AKR1C2 mRNA, but not AKR1C1 (97% sequence identity), was found in approximately half of the pairs whereas AKR1C3 relative expression was not significantly altered. No aberrant expression of AKR1C4 expression or significant differences in SRD5A2 gene expression were found. AKR1C2 functions as a DHT reductase in prostate-derived cells lines and is regulated by DHT. Additional studies are needed to further define the significance of reduced AKR1C2 expression in prostate cancer and its potential role in modulating local availability of DHT. Copyright 2003 Wiley-Liss, Inc.

  13. Reductive detoxification of acrolein as a potential role for aldehyde reductase (AKR1A) in mammals.

    Science.gov (United States)

    Kurahashi, Toshihiro; Kwon, Myoungsu; Homma, Takujiro; Saito, Yuka; Lee, Jaeyong; Takahashi, Motoko; Yamada, Ken-Ichi; Miyata, Satoshi; Fujii, Junichi

    2014-09-12

    Aldehyde reductase (AKR1A), a member of the aldo-keto reductase superfamily, suppresses diabetic complications via a reduction in metabolic intermediates; it also plays a role in ascorbic acid biosynthesis in mice. Because primates cannot synthesize ascorbic acid, a principle role of AKR1A appears to be the reductive detoxification of aldehydes. In this study, we isolated and immortalized mouse embryonic fibroblasts (MEFs) from wild-type (WT) and human Akr1a-transgenic (Tg) mice and used them to investigate the potential roles of AKR1A under culture conditions. Tg MEFs showed higher methylglyoxal- and acrolein-reducing activities than WT MEFs and also were more resistant to cytotoxicity. Enzymatic analyses of purified rat AKR1A showed that the efficiency of the acrolein reduction was about 20% that of glyceraldehyde. Ascorbic acid levels were quite low in the MEFs, and while the administration of ascorbic acid to the cells increased the intracellular levels of ascorbic acid, it had no affect on the resistance to acrolein. Endoplasmic reticulum stress and protein carbonylation induced by acrolein treatment were less evident in Tg MEFs than in WT MEFs. These data collectively indicate that one of the principle roles of AKR1A in primates is the reductive detoxification of aldehydes, notably acrolein, and protection from its detrimental effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Proteome screening of pleural effusions identifies galectin 1 as a diagnostic biomarker and highlights several prognostic biomarkers for malignant mesothelioma.

    Science.gov (United States)

    Mundt, Filip; Johansson, Henrik J; Forshed, Jenny; Arslan, Sertaç; Metintas, Muzaffer; Dobra, Katalin; Lehtiö, Janne; Hjerpe, Anders

    2014-03-01

    Malignant mesothelioma is an aggressive asbestos-induced cancer, and affected patients have a median survival of approximately one year after diagnosis. It is often difficult to reach a conclusive diagnosis, and ancillary measurements of soluble biomarkers could increase diagnostic accuracy. Unfortunately, few soluble mesothelioma biomarkers are suitable for clinical application. Here we screened the effusion proteomes of mesothelioma and lung adenocarcinoma patients to identify novel soluble mesothelioma biomarkers. We performed quantitative mass-spectrometry-based proteomics using isobaric tags for quantification and used narrow-range immobilized pH gradient/high-resolution isoelectric focusing (pH 4-4.25) prior to analysis by means of nano liquid chromatography coupled to MS/MS. More than 1,300 proteins were identified in pleural effusions from patients with malignant mesothelioma (n = 6), lung adenocarcinoma (n = 6), or benign mesotheliosis (n = 7). Data are available via ProteomeXchange with identifier PXD000531. The identified proteins included a set of known mesothelioma markers and proteins that regulate hallmarks of cancer such as invasion, angiogenesis, and immune evasion, plus several new candidate proteins. Seven candidates (aldo-keto reductase 1B10, apolipoprotein C-I, galectin 1, myosin-VIIb, superoxide dismutase 2, tenascin C, and thrombospondin 1) were validated by enzyme-linked immunosorbent assays in a larger group of patients with mesothelioma (n = 37) or metastatic carcinomas (n = 25) and in effusions from patients with benign, reactive conditions (n = 16). Galectin 1 was identified as overexpressed in effusions from lung adenocarcinoma relative to mesothelioma and was validated as an excellent predictor for metastatic carcinomas against malignant mesothelioma. Galectin 1, aldo-keto reductase 1B10, and apolipoprotein C-I were all identified as potential prognostic biomarkers for malignant mesothelioma. This analysis of the effusion proteome

  15. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.

    Science.gov (United States)

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Bao, Xiaoming; Shen, Yu

    2016-04-01

    Vanillin, a type of phenolic released during the pre-treatment of lignocellulosic materials, is toxic to microorganisms and therefore its presence inhibits the fermentation. The vanillin can be reduced to vanillyl alcohol, which is much less toxic, by the ethanol producer Saccharomyces cerevisiae. The reducing capacity of S. cerevisiae and its vanillin resistance are strongly correlated. However, the specific enzymes and their contribution to the vanillin reduction are not extensively studied. In our previous work, an evolved vanillin-resistant strain showed an increased vanillin reduction capacity compared with its parent strain. The transcriptome analysis suggested the reductases and dehydrogenases of this vanillin resistant strain were up-regulated. Using this as a starting point, 11 significantly regulated reductases and dehydrogenases were selected in the present work for further study. The roles of these reductases and dehydrogenases in the vanillin tolerance and detoxification abilities of S. cerevisiae are described. Among the candidate genes, the overexpression of the alcohol dehydrogenase gene ADH6, acetaldehyde dehydrogenase gene ALD6, glucose-6-phosphate 1-dehydrogenase gene ZWF1, NADH-dependent aldehyde reductase gene YNL134C, and aldo-keto reductase gene YJR096W increased 177, 25, 6, 15, and 18 % of the strain μmax in the medium containing 1 g L(-1) vanillin. The in vitro detected vanillin reductase activities of strain overexpressing ADH6, YNL134C and YJR096W were notably higher than control. The vanillin specific reduction rate increased by 8 times in ADH6 overexpressed strain but not in YNL134C and YJR096W overexpressed strain. This suggested that the enzymes encoded by YNL134C and YJR096W might prefer other substrate and/or could not show their effects on vanillin on the high background of Adh6p in vivo. Overexpressing ALD6 and ZWF1 mainly increased the [NADPH]/[NADP(+)] and [GSH]/[GSSG] ratios but not the vanillin reductase activities. Their

  16. AKR1C1 as a Biomarker for Differentiating the Biological Effects of Combustible from Non-Combustible Tobacco Products.

    Science.gov (United States)

    Woo, Sangsoon; Gao, Hong; Henderson, David; Zacharias, Wolfgang; Liu, Gang; Tran, Quynh T; Prasad, G L

    2017-05-03

    Smoking has been established as a major risk factor for developing oral squamous cell carcinoma (OSCC), but less attention has been paid to the effects of smokeless tobacco products. Our objective is to identify potential biomarkers to distinguish the biological effects of combustible tobacco products from those of non-combustible ones using oral cell lines. Normal human gingival epithelial cells (HGEC), non-metastatic (101A) and metastatic (101B) OSCC cell lines were exposed to different tobacco product preparations (TPPs) including cigarette smoke total particulate matter (TPM), whole-smoke conditioned media (WS-CM), smokeless tobacco extract in complete artificial saliva (STE), or nicotine (NIC) alone. We performed microarray-based gene expression profiling and found 3456 probe sets from 101A, 1432 probe sets from 101B, and 2717 probe sets from HGEC to be differentially expressed. Gene Set Enrichment Analysis (GSEA) revealed xenobiotic metabolism and steroid biosynthesis were the top two pathways that were upregulated by combustible but not by non-combustible TPPs. Notably, aldo-keto reductase genes, AKR1C1 and AKR1C2 , were the core genes in the top enriched pathways and were statistically upregulated more than eight-fold by combustible TPPs. Quantitative real time polymerase chain reaction (qRT-PCR) results statistically support AKR1C1 as a potential biomarker for differentiating the biological effects of combustible from non-combustible tobacco products.

  17. Depressed levels of prostaglandin F2α in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity.

    Science.gov (United States)

    Volat, Fanny E; Pointud, Jean-Christophe; Pastel, Emilie; Morio, Béatrice; Sion, Benoit; Hamard, Ghislaine; Guichardant, Michel; Colas, Romain; Lefrançois-Martinez, Anne-Marie; Martinez, Antoine

    2012-11-01

    Negative regulators of white adipose tissue (WAT) expansion are poorly documented in vivo. Prostaglandin F(2α) (PGF(2α)) is a potent antiadipogenic factor in cultured preadipocytes, but evidence for its involvement in physiological context is lacking. We previously reported that Akr1b7, an aldo-keto reductase enriched in adipose stromal vascular fraction but absent from mature adipocytes, has antiadipogenic properties possibly supported by PGF(2α) synthase activity. To test whether lack of Akr1b7 could influence WAT homeostasis in vivo, we generated Akr1b7(-/-) mice in 129/Sv background. Akr1b7(-/-) mice displayed excessive basal adiposity resulting from adipocyte hyperplasia/hypertrophy and exhibited greater sensitivity to diet-induced obesity. Following adipose enlargement and irrespective of the diet, they developed liver steatosis and progressive insulin resistance. Akr1b7 loss was associated with decreased PGF(2α) WAT contents. Cloprostenol (PGF(2α) agonist) administration to Akr1b7(-/-) mice normalized WAT expansion by affecting both de novo adipocyte differentiation and size. Treatment of 3T3-L1 adipocytes and Akr1b7(-/-) mice with cloprostenol suggested that decreased adipocyte size resulted from inhibition of lipogenic gene expression. Hence, Akr1b7 is a major regulator of WAT development through at least two PGF(2α)-dependent mechanisms: inhibition of adipogenesis and lipogenesis. These findings provide molecular rationale to explore the status of aldo-keto reductases in dysregulations of adipose tissue homeostasis.

  18. In vivo assessment of the mitochondrial response to caloric restriction in obese women by the 2-keto[1-C]isocaproate breath test.

    Science.gov (United States)

    Parra, Dolores; González, Alvaro; Martínez, J Alfredo; Labayen, Idoia; Díez, Nieves

    2003-04-01

    The 2-keto[1-(13)C]isocaproate breath test has been proposed as a tool to detect mitochondrial dysfunction in alcoholic liver disease. The aim of this study was to evaluate if the 2-keto[1-(13)C]isocaproate breath test could detect in vivo dynamic changes on mitochondrial activity due to caloric restriction in obese women. Fifteen obese women (body mass index [BMI] > 30 kg/m(2)) participated in the study at baseline. Ten of these women agreed to participate on a diet program to induce body weight loss. Fifteen lean women (BMI keto[1-(13)C]isocaproate breath test and the plasma insulin (before diet: P =.863; after diet: P =.879), or leptin (before diet: P =.500; after diet: P =.637). In obese women before treatment, kilograms of fat free mass (P =.108), resting energy expenditure adjusted for body composition (P =.312), and the 2-keto[1-(13)C]isocaproate breath test (P =.205) were similar in comparison to lean women. However, 2-keto[1-(13)C]isocaproate oxidation tended to increase after dieting and was significantly higher than in controls (P =.015). These data suggest that the 2-keto[1-(13)C]isocaproate breath test reflected the adaptive modifications in mitochondrial oxidation in response to caloric restriction in obese women. Copyright 2003 Elsevier, Inc. All rights reserved.

  19. Overview of Catalytic Properties of Fungal Xylose Reductases and Molecular Engineering Approaches for Improved Xylose Utilisation in Yeast

    Directory of Open Access Journals (Sweden)

    Sk Amir Hossain

    2018-03-01

    Full Text Available Background and Objective: Xylose reductases belong to the aldo-keto reductase family of enzymes, which catalyse the conversion of xylose to xylitol. Yeast xylose reductases have been intensively studied in the last two decades due to their significance in biotechnological production of ethanol and xylitol from xylose. Due to its GRAS status and pronounced tolerance to harsh conditions, Saccharomyces cerevisiae is the ideal organism for industrial production of both xylitol and ethanol. However, Saccharomyces cerevisiae is unable to use xylose as the sole carbon source due to the lack of xylose specific transporters and insufficient activity of metabolic pathways for xylose utilisation. The aim of this paper is to give an overview of attempts in increasing biotechnological potential of xylose reductases and to highlight the prospective of this application. Results and Conclusion: In order to create strains with improved xylose utilization, different approaches were attempted including simultaneous overexpression of xylitol dehydrogenase, xylose reductase and pentose phosphate pathway enzymes, heterologous expression of putative xylose transporters or heterologous expression of genes coding for enzymes included in the xylose metabolism, respectively. Furthermore, number of attempts to genetically modify different xylose reductases is increasing. This review presents current knowledge about yeast xylose reductases and the different approaches applied in order to improve xylose metabolism in yeast.Conflict of interest: The authors declare no conflict of interest.

  20. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells

    DEFF Research Database (Denmark)

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio

    2015-01-01

    of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further...... and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels...

  1. Crystal Structure of Perakine Reductase, Founding Member of a Novel Aldo-Keto Reductase (AKR) Subfamily That Undergoes Unique Conformational Changes during NADPH Binding*

    Science.gov (United States)

    Sun, Lianli; Chen, Yixin; Rajendran, Chitra; Mueller, Uwe; Panjikar, Santosh; Wang, Meitian; Mindnich, Rebekka; Rosenthal, Cindy; Penning, Trevor M.; Stöckigt, Joachim

    2012-01-01

    Perakine reductase (PR) catalyzes the NADPH-dependent reduction of the aldehyde perakine to yield the alcohol raucaffrinoline in the biosynthetic pathway of ajmaline in Rauvolfia, a key step in indole alkaloid biosynthesis. Sequence alignment shows that PR is the founder of the new AKR13D subfamily and is designated AKR13D1. The x-ray structure of methylated His6-PR was solved to 2.31 Å. However, the active site of PR was blocked by the connected parts of the neighbor symmetric molecule in the crystal. To break the interactions and obtain the enzyme-ligand complexes, the A213W mutant was generated. The atomic structure of His6-PR-A213W complex with NADPH was determined at 1.77 Å. Overall, PR folds in an unusual α8/β6 barrel that has not been observed in any other AKR protein to date. NADPH binds in an extended pocket, but the nicotinamide riboside moiety is disordered. Upon NADPH binding, dramatic conformational changes and movements were observed: two additional β-strands in the C terminus become ordered to form one α-helix, and a movement of up to 24 Å occurs. This conformational change creates a large space that allows the binding of substrates of variable size for PR and enhances the enzyme activity; as a result cooperative kinetics are observed as NADPH is varied. As the founding member of the new AKR13D subfamily, PR also provides a structural template and model of cofactor binding for the AKR13 family. PMID:22334702

  2. LC/MSMS STUDY OF BENZO[A]PYRENE-7,8-QUINONE ADDUCTION TO GLOBIN TRYPTIC PEPTIDES AND N-ACETYLAMINO ACIDS

    Science.gov (United States)

    Benzo[a]pyrene-7,8-quinone (BPQ) is regarded as a reactive genotoxic compound enzymatically formed from a xenobiotic precursor benzo[a]pyrene-7,8-diol by aldo-keto-reductase family of enzymes. Because BPQ, a Michael electrophile, was previously shown to react with oligonucleotide...

  3. Novel SNPs of WNK1 and AKR1C3 are associated with preeclampsia.

    Science.gov (United States)

    Sun, Cheng-Juan; Li, Lin; Li, Xueyan; Zhang, Wei-Yuan; Liu, Xiao-Wei

    2018-08-20

    Preeclampsia is a hypertensive disorder of pregnancy and is one of the most common causes of poor perinatal outcomes. Preeclampsia increases the risk of hypertension in the future. Variants of WNK1 (lysine deficient protein kinase 1), ADRB2 (β2 adrenergic receptor), NEDD4L (ubiquitin-protein ligase NEDD4-like), KLK1 (kallikrein 1) contribute to hypertension, and AKR1C3 (aldo-keto reductase family1 member C3), is associated with preeclampsia. The association of single nucleotide polymorphisms (SNPs) in these five candidate preeclampsia susceptibility genes and the related traits in Chinese individuals were investigated. In this study, 13 SNPs of the five genes were genotyped in 276 preeclampsia patients and 229 age- and area-matched normal pregnancies in women of Chinese Northern Han origin. The 95% confidence interval (CI) and odds ratio (OR) were estimated by binary logistic regression. No obvious linkage disequilibrium or haplotypes were observed among these SNPs. Those with GG genotype and allele G of AKR1C3 (rs10508293) had a decreased risk of preeclampsia (adjusted OR = 3.011, 95% CI = 1.758-5.159, and adjusted OR = 1.745, 95% CI = 1.349-2.257, respectively). The AA genotype and allele A of WNK1 (rs1468326) were significantly associated with an increased risk in preeclampsia (adjusted OR = 2.307, 95% CI = 1.206-3.443, and adjusted OR = 1.663, 95% CI = 1.283-2.157, respectively). The findings indicate that the GG genotype of AKR1C3 rs10508293 is associated with decreased risk for preeclampsia and the AA genotype of WNK1 rs1468326 are related with an increased risk for preeclampsia. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer.

    Science.gov (United States)

    Ide, Hisamitsu; Lu, Yan; Noguchi, Takahiro; Muto, Satoru; Okada, Hiroshi; Kawato, Suguru; Horie, Shigeo

    2018-04-01

    Intratumoral androgen biosynthesis has been recognized as an essential factor of castration-resistant prostate cancer. The present study investigated the effects of curcumin on the inhibition of intracrine androgen synthesis in prostate cancer. Human prostate cancer cell lines, LNCaP and 22Rv1 cells were incubated with or without curcumin after which cell proliferation was measured at 0, 24, 48 and 72 hours, respectively. Prostate tissues from the transgenic adenocarcinoma of the mouse prostate (TRAMP) model were obtained after 1-month oral administration of 200 mg/kg/d curcumin. Testosterone and dihydrotestosterone concentrations in LNCaP prostate cancer cells were determined through LC-MS/MS assay. Curcumin inhibited cell proliferation and induced apoptosis of prostate cancer cells in a dose-dependent manner. Curcumin decreased the expression of steroidogenic acute regulatory proteins, CYP11A1 and HSD3B2 in prostate cancer cell lines, supporting the decrease of testosterone production. After 1-month oral administration of curcumin, Aldo-Keto reductase 1C2 (AKR1C2) expression was elevated. Simultaneously, decreased testosterone levels in the prostate tissues were observed in the TRAMP mice. Meanwhile, curcumin treatments considerably increased the expression of AKR1C2 in prostate cancer cell lines, supporting the decrease of dihydrotestosterone. Taken together, these results suggest that curcumin's natural bioactive compounds could have potent anticancer properties due to suppression of androgen production, and this could have therapeutic effects on prostate cancer. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. Involvement of an octose ketoreductase and two acyltransferases in the biosynthesis of paulomycins

    Science.gov (United States)

    Li, Jine; Wang, Min; Ding, Yong; Tang, Yue; Zhang, Zhiguo; Chen, Yihua

    2016-02-01

    C-4 hydroxyethyl branched octoses have been observed in polysaccharides of several genera of gram negative bacteria and in various antibiotics produced by gram positive bacteria. The C-4 hydroxyethyl branch was proposed to be converted from C-4 acetyl branch by an uncharacterized ketoreduction step. Paulomycins (PAUs) are glycosylated antibiotics with potent inhibitory activity against gram positive bacteria and are structurally defined by its unique C-4‧ hydroxyethyl branched paulomycose moiety. A novel aldo-keto-reductase, Pau7 was characterized as the enzyme catalyzing the stereospecific ketoreduction of 7‧-keto of PAU E (1) to give the C-4‧ hydroxyethyl branched paulomycose moiety of PAU F (2). An acyltransferase Pau6 further decorates the C-4‧ hydroxyethyl branch of paulomycose moiety of 2 by attaching various fatty acyl chains to 7‧-OH to generate diverse PAUs. In addition, another acyltransferase Pau24 was proposed to be responsible for the 13-O-acetylation of PAUs.

  6. CHARACTERIZATION OF STABLE BENZO(A)PYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA

    Science.gov (United States)

    Benzo[alpyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  7. CHARACTERIZATION OF STABLE BENZOLALPYRENE-7,8-QUINONE-DNA ADDUCTS IN CALF THYMUS DNA AND POLYDEOXYNUCLEOTIDES

    Science.gov (United States)

    Bcnzo[a]pyrene-7,8-dione (BPQ) is a reactive aldo-keto reductase-mediated product of B[a]P-7,8-diol, a major P450/epoxide hydrolase metabolite of the multi-species carcinogen, B[a]P. The role of BPQ in B[a]P's genotoxicity and carcinogenesis is evolving. Toxicity pathways involvi...

  8. Hepatitis B Virus X Protein Up-Regulates AKR1C1 Expression Through Nuclear Factor-Y in Human Hepatocarcinoma Cells.

    Science.gov (United States)

    Li, Kai; Ding, Shijia; Chen, Ke; Qin, Dongdong; Qu, Jialin; Wang, Sen; Sheng, Yanrui; Zou, Chengcheng; Chen, Limin; Tang, Hua

    2013-01-01

    The hepatitis B virus X (HBx) protein has long been recognized as an important transcriptional transactivator of several genes. Human aldo-keto reductase family 1, member C1 (AKR1C1), a member of the family of AKR1CS, is significantly increased in HBx-expressed cells. This study aimed to investigate the possible mechanism of HBx in regulating AKR1C1 expression in HepG2.2.15 cells and the role of AKR1C1 for HBV-induced HCC. RT-PCR was performed to detect AKR1C1 expression on mRNA level in HepG2 and HepG2.2.15 cell. The promoter activity of AKR1C1 was assayed by transient transfection and Dual-luciferase reporter assay system. The AKR1C1 promoter sequence was screened using the TFSEARCH database and the ALIBABA 2.0 software. The potential transcription factors binding sites were identified using 5' functional deletion analysis and site-directed mutagenesis. In this study, we found that HBx promoted AKR1C1 expression in HepG2.2.15 cells. Knockdown of HBx inhibited AKR1C1 activation. The role of HBx expression in regulating the promoter activity of human AKR1C1 gene was analyzed. The 5'functional deletion analysis identified that the region between -128 and -88 was the minimal promoter region of HBx to activate AKR1C1 gene expression. Site-directed mutagenesis studies suggested that nuclear factor-Y (NF-Y) plays an important role in this HBx-induced AKR1C1 activation. In HepG2.2.1.5 cell, HBx can promote AKR1C1 promoter activity and thus activates the basal transcription of AKR1C1 gene. This process is mediated by the transcription factor NF-Y. This study explored the mechanism for the regulation of HBV on AKR1C1 expression and has provided a new understanding of HBV-induced HCC.

  9. Aldo-keto Reductase Family 1 B10 as a Novel Target for Breast Cancer Treatment

    Science.gov (United States)

    2010-08-01

    overexpressed in tested human breast cancer tissues and mediates acetyl-CoA carboxylase-α ( ACCA ) stability, affecting fatty acid de novo synthesis and...9703; Fax. 217-545-3227; E-mail: dcao@siumed.edu Running title: AKR1B10 as a new risk factor for breast cancer Abbreviations used: ACCA , acetyl...The effect of AKR1B10 expression in cancer tissue on patient survival was evaluated with Kaplan - Meier plots, and results showed that AKR1B10

  10. Vitamin C. Biosynthesis, recycling and degradation in mammals.

    Science.gov (United States)

    Linster, Carole L; Van Schaftingen, Emile

    2007-01-01

    Vitamin C, a reducing agent and antioxidant, is a cofactor in reactions catalyzed by Cu(+)-dependent monooxygenases and Fe(2+)-dependent dioxygenases. It is synthesized, in vertebrates having this capacity, from d-glucuronate. The latter is formed through direct hydrolysis of uridine diphosphate (UDP)-glucuronate by enzyme(s) bound to the endoplasmic reticulum membrane, sharing many properties with, and most likely identical to, UDP-glucuronosyltransferases. Non-glucuronidable xenobiotics (aminopyrine, metyrapone, chloretone and others) stimulate the enzymatic hydrolysis of UDP-glucuronate, accounting for their effect to increase vitamin C formation in vivo. Glucuronate is converted to l-gulonate by aldehyde reductase, an enzyme of the aldo-keto reductase superfamily. l-Gulonate is converted to l-gulonolactone by a lactonase identified as SMP30 or regucalcin, whose absence in mice leads to vitamin C deficiency. The last step in the pathway of vitamin C synthesis is the oxidation of l-gulonolactone to l-ascorbic acid by l-gulonolactone oxidase, an enzyme associated with the endoplasmic reticulum membrane and deficient in man, guinea pig and other species due to mutations in its gene. Another fate of glucuronate is its conversion to d-xylulose in a five-step pathway, the pentose pathway, involving identified oxidoreductases and an unknown decarboxylase. Semidehydroascorbate, a major oxidation product of vitamin C, is reconverted to ascorbate in the cytosol by cytochrome b(5) reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Transmembrane electron transfer systems using ascorbate or NADH as electron donors serve to reduce semidehydroascorbate present in neuroendocrine secretory vesicles and in the extracellular medium. Dehydroascorbate, the fully oxidized form of vitamin C, is reduced spontaneously by glutathione, as well as enzymatically in reactions using glutathione or NADPH. The degradation of vitamin C in mammals is

  11. Substrate Specificity, Inhibitor Selectivity and Structure-Function Relationships of Aldo-Keto Reductase 1B15: A Novel Human Retinaldehyde Reductase

    Czech Academy of Sciences Publication Activity Database

    Giménez-Dejoz, J.; Kolář, Michal H.; Ruiz, F. X.; Crespo, I.; Cousido-Siah, A.; Podjarny, A.; Barski, O. A.; Fanfrlík, Jindřich; Parés, X.; Farrés, J.; Porté, S.

    2015-01-01

    Roč. 10, č. 7 (2015), e0134506/1-e0134506/19 E-ISSN 1932-6203 Institutional support: RVO:61388963 Keywords : retinoic acid biosynthesis * site-directed mutagenesis * tumor marker AKR1B15 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134506

  12. Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome.

    Science.gov (United States)

    Marti, Nesa; Galván, José A; Pandey, Amit V; Trippel, Mafalda; Tapia, Coya; Müller, Michel; Perren, Aurel; Flück, Christa E

    2017-02-05

    Recently, dihydrotestosterone biosynthesis through the backdoor pathway has been implicated for the human testis in addition to the classic pathway for testosterone (T) synthesis. In the human ovary, androgen precursors are crucial for estrogen synthesis and hyperandrogenism in pathologies such as the polycystic ovary syndrome is partially due to ovarian overproduction. However, a role for the backdoor pathway is only established for the testis and the adrenal, but not for the human ovary. To investigate whether the backdoor pathway exists in normal and PCOS ovaries, we performed specific gene and protein expression studies on ovarian tissues. We found aldo-keto reductases (AKR1C1-1C4), 5α-reductases (SRD5A1/2) and retinol dehydrogenase (RoDH) expressed in the human ovary, indicating that the ovary might produce dihydrotestosterone via the backdoor pathway. Immunohistochemical studies showed specific localization of these proteins to the theca cells. PCOS ovaries show enhanced expression, what may account for the hyperandrogenism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Purification, cloning, functional expression and characterization of perakine reductase: the first example from the AKR enzyme family, extending the alkaloidal network of the plant Rauvolfia.

    Science.gov (United States)

    Sun, Lianli; Ruppert, Martin; Sheludko, Yuri; Warzecha, Heribert; Zhao, Yu; Stöckigt, Joachim

    2008-07-01

    Perakine reductase (PR) catalyzes an NADPH-dependent step in a side-branch of the 10-step biosynthetic pathway of the alkaloid ajmaline. The enzyme was cloned by a "reverse-genetic" approach from cell suspension cultures of the plant Rauvolfia serpentina (Apocynaceae) and functionally expressed in Escherichia coli as the N-terminal His(6)-tagged protein. PR displays a broad substrate acceptance, converting 16 out of 28 tested compounds with reducible carbonyl function which belong to three substrate groups: benzaldehyde, cinnamic aldehyde derivatives and monoterpenoid indole alkaloids. The enzyme has an extraordinary selectivity in the group of alkaloids. Sequence alignments define PR as a new member of the aldo-keto reductase (AKR) super family, exhibiting the conserved catalytic tetrad Asp52, Tyr57, Lys84, His126. Site-directed mutagenesis of each of these functional residues to an alanine residue results in >97.8% loss of enzyme activity, in compounds of each substrate group. PR represents the first example of the large AKR-family which is involved in the biosynthesis of plant monoterpenoid indole alkaloids. In addition to a new esterase, PR significantly extends the Rauvolfia alkaloid network to the novel group of peraksine alkaloids.

  14. Kinetic alteration of a human dihydrodiol/3alpha-hydroxysteroid dehydrogenase isoenzyme, AKR1C4, by replacement of histidine-216 with tyrosine or phenylalanine.

    Science.gov (United States)

    Ohta, T; Ishikura, S; Shintani, S; Usami, N; Hara, A

    2000-01-01

    Human dihydrodiol dehydrogenase with 3alpha-hydroxysteroid dehydrogenase activity exists in four forms (AKR1C1-1C4) that belong to the aldo-keto reductase (AKR) family. Recent crystallographic studies on the other proteins in this family have indicated a role for a tyrosine residue (corresponding to position 216 in these isoenzymes) in stacking the nicotinamide ring of the coenzyme. This tyrosine residue is conserved in most AKR family members including AKR1C1-1C3, but is replaced with histidine in AKR1C4 and phenylalanine in some AKR members. In the present study we prepared mutant enzymes of AKR1C4 in which His-216 was replaced with tyrosine or phenylalanine. The two mutations decreased 3-fold the K(m) for NADP(+) and differently influenced the K(m) and k(cat) for substrates depending on their structures. The kinetic constants for bile acids with a 12alpha-hydroxy group were decreased 1.5-7-fold and those for the other substrates were increased 1.3-9-fold. The mutation also yielded different changes in sensitivity to competitive inhibitors such as hexoestrol analogues, 17beta-oestradiol, phenolphthalein and flufenamic acid and 3,5,3', 5'-tetraiodothyropropionic acid analogues. Furthermore, the mutation decreased the stimulatory effects of the enzyme activity by sulphobromophthalein, clofibric acid and thyroxine, which increased the K(m) for the coenzyme and substrate of the mutant enzymes more highly than those of the wild-type enzyme. These results indicate the importance of this histidine residue in creating the cavity of the substrate-binding site of AKR1C4 through the orientation of the nicotinamide ring of the coenzyme, as well as its involvement in the conformational change by binding non-essential activators. PMID:11104674

  15. Dual effects of fructose on ChREBP and FoxO1/3α are responsible for AldoB up-regulation and vascular remodelling.

    Science.gov (United States)

    Cao, Wei; Chang, Tuanjie; Li, Xiao-Qiang; Wang, Rui; Wu, Lingyun

    2017-02-01

    Increased production of methylglyoxal (MG) in vascular tissues is one of the causative factors for vascular remodelling in different subtypes of metabolic syndrome, including hypertension and insulin resistance. Fructose-induced up-regulation of aldolase B (AldoB) contributes to increased vascular MG production but the underlying mechanisms are unclear. Serum levels of MG and fructose were determined in diabetic patients with hypertension. MG level had significant positive correlations with blood pressure and fructose level respectively. C57BL/6 mice were fed with control or fructose-enriched diet for 3 months and ultrasonographic and histologic analyses were performed to evaluate arterial structural changes. Fructose-fed mice exhibited hypertension and high levels of serum MG with normal glucose level. Fructose intake increased blood vessel wall thickness and vascular smooth muscle cell (VSMC) proliferation. Western blotting and real-time PCR analysis revealed that AldoB level was significantly increased in both the aorta of fructose-fed mice and the fructose-treated VSMCs, whereas aldolase A (AldoA) expression was not changed. The knockdown of AldoB expression prevented fructose-induced MG overproduction and VSMC proliferation. Moreover, fructose significantly increased carbohydrate-responsive element-binding protein (ChREBP), phosphorylated FoxO1/3α and Akt1 levels. Fructose induced translocation of ChREBP from the cytosol to nucleus and activated AldoB gene expression, which was inhibited by the knockdown of ChREBP. Meanwhile, fructose caused FoxO1/3α shuttling from the nucleus to cytosol and inhibited its binding to AldoB promoter region. Fructose-induced AldoB up-regulation was suppressed by Akt1 inhibitor but enhanced by FoxO1/3α siRNA. Collectively, fructose activates ChREBP and inactivates FoxO1/3α pathways to up-regulate AldoB expression and MG production, leading to vascular remodelling. © 2017 The Author(s). published by Portland Press Limited on

  16. Crystallization and preliminary X-ray diffraction analysis of salutaridine reductase from the opium poppy Papaver somniferum

    International Nuclear Information System (INIS)

    Higashi, Yasuhiro; Smith, Thomas J.; Jez, Joseph M.; Kutchan, Toni M.

    2010-01-01

    Recombinant P. somniferum salutaridine reductase (SalR) was purified and crystallized with NADPH using the hanging-drop vapor-diffusion method. Crystals of the SalR–NADPH complex diffracted X-rays to a resolution of 1.9 Å. The opium poppy Papaver somniferum is the source of the narcotic analgesics morphine and codeine. Salutaridine reductase (SalR; EC 1.1.1.248) reduces the C-7 keto group of salutaridine to the C-7 (S)-hydroxyl group of salutaridinol in the biosynthetic pathway that leads to morphine in the opium poppy plant. P. somniferum SalR was overproduced in Escherichia coli and purified using cobalt-affinity and size-exclusion chromatography. Hexagonal crystals belonging to space group P6 4 22 or P6 2 22 were obtained using ammonium sulfate as precipitant and diffracted to a resolution of 1.9 Å

  17. Synthesis and structure-activity relationship of α-keto amides as enterovirus 71 3C protease inhibitors.

    Science.gov (United States)

    Zeng, Debin; Ma, Yuying; Zhang, Rui; Nie, Quandeng; Cui, Zhengjie; Wang, Yaxin; Shang, Luqing; Yin, Zheng

    2016-04-01

    α-Keto amide derivatives as enterovirus 71 (EV71) 3C protease (3C(pro)) inhibitors have been synthesized and assayed for their biochemical and antiviral activities. structure-activity relationship (SAR) study indicated that small moieties were primarily tolerated at P1' and the introduction of para-fluoro benzyl at P2 notably improved the potency of inhibitor. Inhibitors 8v, 8w and 8x exhibited satisfactory activity (IC50=1.32±0.26μM, 1.88±0.35μM and 1.52±0.31μM, respectively) and favorable CC50 values (CC50>100μM). α-Keto amide may represent a good choice as a warhead for EV71 3C(pro) inhibitor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Integration of HPV6 and downregulation of AKR1C3 expression mark malignant transformation in a patient with juvenile-onset laryngeal papillomatosis.

    Directory of Open Access Journals (Sweden)

    Christian Ulrich Huebbers

    Full Text Available Juvenile-onset recurrent respiratory papillomatosis (RRP is associated with low risk human papillomavirus (HPV types 6 and 11. Malignant transformation has been reported solely for HPV11-associated RRP in 2-4% of all RRP-cases, but not for HPV6. The molecular mechanisms in the carcinogenesis of low risk HPV-associated cancers are to date unknown. We report of a female patient, who presented with a laryngeal carcinoma at the age of 24 years. She had a history of juvenile-onset RRP with an onset at the age of three and subsequently several hundred surgical interventions due to multiple recurrences of RRP. Polymerase chain reaction (PCR or bead-based hybridization followed by direct sequencing identified HPV6 in tissue sections of previous papilloma and the carcinoma. P16(INK4A, p53 and pRb immunostainings were negative in all lesions. HPV6 specific fluorescence in situ hybridization (FISH revealed nuclear staining suggesting episomal virus in the papilloma and a single integration site in the carcinoma. Integration-specific amplification of papillomavirus oncogene transcripts PCR (APOT-PCR showed integration in the aldo-keto reductase 1C3 gene (AKR1C3 on chromosome 10p15.1. ArrayCGH detected loss of the other gene copy as part of a deletion at 10p14-p15.2. Western blot analysis and immunohistochemistry of the protein AKR1C3 showed a marked reduction of its expression in the carcinoma. In conclusion, we identified a novel molecular mechanism underlying a first case of HPV6-associated laryngeal carcinoma in juvenile-onset RRP, i.e. that HPV6 integration in the AKR1C3 gene resulted in loss of its expression. Alterations of AKR1C gene expression have previously been implicated in the tumorigenesis of other (HPV-related malignancies.

  19. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum.

    Science.gov (United States)

    Dudzik, A; Snoch, W; Borowiecki, P; Opalinska-Piskorz, J; Witko, M; Heider, J; Szaleniec, M

    2015-06-01

    Enzyme-catalyzed enantioselective reductions of ketones and keto esters have become popular for the production of homochiral building blocks which are valuable synthons for the preparation of biologically active compounds at industrial scale. Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure enantiomers from carbonyl compounds. (S)-1-phenylethanol dehydrogenase (PEDH) was found in the denitrifying bacterium Aromatoleum aromaticum (strain EbN1) and belongs to the short-chain dehydrogenase/reductase family. It catalyzes the stereospecific oxidation of (S)-1-phenylethanol to acetophenone during anaerobic ethylbenzene mineralization, but also the reverse reaction, i.e., NADH-dependent enantioselective reduction of acetophenone to (S)-1-phenylethanol. In this work, we present the application of PEDH for asymmetric reduction of 42 prochiral ketones and 11 β-keto esters to enantiopure secondary alcohols. The high enantioselectivity of the reaction is explained by docking experiments and analysis of the interaction and binding energies of the theoretical enzyme-substrate complexes leading to the respective (S)- or (R)-alcohols. The conversions were carried out in a batch reactor using Escherichia coli cells with heterologously produced PEDH as whole-cell catalysts and isopropanol as reaction solvent and cosubstrate for NADH recovery. Ketones were converted to the respective secondary alcohols with excellent enantiomeric excesses and high productivities. Moreover, the progress of product formation was studied for nine para-substituted acetophenone derivatives and described by neural network models, which allow to predict reactor behavior and provides insight on enzyme reactivity. Finally, equilibrium constants for conversion of these substrates were derived from the progress curves of the reactions. The obtained values matched very well with theoretical predictions.

  20. Enantioselective copper catalysed intramolecular C-H insertion reactions of α-diazo-β-keto sulfones, α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones; the influence of the carbene substituent.

    Science.gov (United States)

    Shiely, Amy E; Slattery, Catherine N; Ford, Alan; Eccles, Kevin S; Lawrence, Simon E; Maguire, Anita R

    2017-03-22

    Enantioselectivities in C-H insertion reactions, employing the copper-bis(oxazoline)-NaBARF catalyst system, leading to cyclopentanones are highest with sulfonyl substituents on the carbene carbon, and furthermore, the impact is enhanced by increased steric demand on the sulfonyl substituent (up to 91%ee). Enantioselective intramolecular C-H insertion reactions of α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones are reported for the first time.

  1. Long-term In Vitro Treatment of Human Glioblastoma Cells with Temozolomide Increases Resistance In Vivo through Up-regulation of GLUT Transporter and Aldo-Keto Reductase Enzyme AKR1C Expression

    Directory of Open Access Journals (Sweden)

    Benjamin Le Calvé

    2010-09-01

    Full Text Available Glioblastoma (GBM is the most frequent malignant glioma. Treatment of GBM patients is multimodal with maximum surgical resection, followed by concurrent radiation and chemotherapy with the alkylating drug temozolomide (TMZ. The present study aims to identify genes implicated in the acquired resistance of two human GBM cells of astrocytic origin, T98G and U373, to TMZ. Resistance to TMZ was induced by culturing these cells in vitro for months with incremental TMZ concentrations up to 1 mM. Only partial resistance to TMZ has been achieved and was demonstrated in vivo in immunocompromised mice bearing orthotopic U373 and T98G xenografts. Our data show that long-term treatment of human astroglioma cells with TMZ induces increased expression of facilitative glucose transporter/solute carrier GLUT/SLC2A family members, mainly GLUT-3, and of the AKR1C family of proteins. The latter proteins are phase 1 drug-metabolizing enzymes involved in the maintenance of steroid homeostasis, prostaglandin metabolism, and metabolic activation of polycyclic aromatic hydrocarbons. GLUT-3 has been previously suggested to exert roles in GBM neovascularization processes, and TMZ was found to exert antiangiogenic effects in experimental gliomas. AKR1C1 was previously shown to be associated with oncogenic potential, with proproliferative effects similar to AKR1C3 in the latter case. Both AKR1C1 and AKR1C2 proteins are involved in cancer pro-proliferative cell chemoresistance. Selective targeting of GLUT-3 in GBM and/or AKR1C proteins (by means of jasmonates, for example could thus delay the acquisition of resistance to TMZ of astroglioma cells in the context of prolonged treatment with this drug.

  2. High-resolution neutron protein crystallography with radically small crystal volumes: Application of perdeuteration to human aldose reductase

    International Nuclear Information System (INIS)

    Hazemann, I.; Dauvergne, M.T.; Blakeley, M.P.; Meilleur, Flora; Haertlein, M.; Van Dorsselaer, A.; Mitschler, A.; Myles, Dean A.A.; Podjarny, A.

    2005-01-01

    Neutron diffraction data have been collected to 2.2 (angstrom) resolution from a small (0.15 mm 3 ) crystal of perdeuterated human aldose reductase (h-AR; MW = 36 kDa) in order to help to determine the protonation state of the enzyme. h-AR belongs to the aldo-keto reductase family and is implicated in diabetic complications. Its ternary complexes (h-AR-coenzyme NADPH-selected inhibitor) provide a good model to study both the enzymatic mechanism and inhibition. Here, the successful production of fully deuterated human aldose reductase (h-AR(D)), subsequent crystallization of the ternary complex h-AR(D)-NADPH-IDD594 and neutron Laue data collection at the LADI instrument at ILL using a crystal volume of just 0.15 mm 3 are reported. Neutron data were recorded to 2 (angstrom) resolution, with subsequent data analysis using data to 2.2 (angstrom). This is the first fully deuterated enzyme of this size (36 kDa) to be solved by neutron diffraction and represents a milestone in the field, as the crystal volume is at least one order of magnitude smaller than those usually required for other high-resolution neutron structures determined to date. This illustrates the significant increase in the signal-to-noise ratio of data collected from perdeuterated crystals and demonstrates that good-quality neutron data can now be collected from more typical protein crystal volumes. Indeed, the signal-to-noise ratio is then dominated by other sources of instrument background, the nature of which is under investigation. This is important for the design of future instruments, which should take maximum advantage of the reduction in the intrinsic diffraction pattern background from fully deuterated samples.

  3. Purification and characterization of akr1b10 from human liver: role in carbonyl reduction of xenobiotics.

    Science.gov (United States)

    Martin, Hans-Jörg; Breyer-Pfaff, Ursula; Wsol, Vladimir; Venz, Simone; Block, Simone; Maser, Edmund

    2006-03-01

    Members of the aldo-keto reductase (AKR) superfamily have a broad substrate specificity in catalyzing the reduction of carbonyl group-containing xenobiotics. In the present investigation, a member of the aldose reductase subfamily, AKR1B10, was purified from human liver cytosol. This is the first time AKR1B10 has been purified in its native form. AKR1B10 showed a molecular mass of 35 kDa upon gel filtration and SDS-polyacrylamide gel electrophoresis. Kinetic parameters for the NADPH-dependent reduction of the antiemetic 5-HT3 receptor antagonist dolasetron, the antitumor drugs daunorubicin and oracin, and the carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) to the corresponding alcohols have been determined by HPLC. Km values ranged between 0.06 mM for dolasetron and 1.1 mM for daunorubicin. Enzymatic efficiencies calculated as kcat/Km were more than 100 mM-1 min-1 for dolasetron and 1.3, 0.43, and 0.47 mM-1 min-1 for daunorubicin, oracin, and NNK, respectively. Thus, AKR1B10 is one of the most significant reductases in the activation of dolasetron. In addition to its reducing activity, AKR1B10 catalyzed the NADP+-dependent oxidation of the secondary alcohol (S)-1-indanol to 1-indanone with high enzymatic efficiency (kcat/Km=112 mM-1 min-1). The gene encoding AKR1B10 was cloned from a human liver cDNA library and the recombinant enzyme was purified. Kinetic studies revealed lower activity of the recombinant compared with the native form. Immunoblot studies indicated large interindividual variations in the expression of AKR1B10 in human liver. Since carbonyl reduction of xenobiotics often leads to their inactivation, AKR1B10 may play a role in the occurrence of chemoresistance of tumors toward carbonyl group-bearing cytostatic drugs.

  4. Radioimmunoassays of tetrahydroaldosterone (TH-Aldo) in human urine

    International Nuclear Information System (INIS)

    Kohl, K.-H.; Vecsei, P.; Abdelhamid, S.

    1978-01-01

    Specific antisera against tetrahydroaldosterone (TH-Aldo) were raised in two white New Zealand rabbits. 3α,5β-TH-aldo-20-oxime-bovine-serum albumin commplex was used as antigen. The resulting titers were 1:18 000 and 1:16 000. Except tetrahydrocortisol (THF) (0.23%) and tetrahydro-18-hydroxy-11-dehydrocorticosterone (18-OH-THA) (3.2%), all steroids and steroid metabolites gave negligible cross-reactions. Immunograms of the paper chromatograms made from the n-butanol-extract of the urines, as well as after β-glucuronidase treatment and dichlormethane extraction, were studied to further define the specificity of the antiserum. Antibody H 1 (used in this study) reacted with aldosterone-18-gluc., a TH-aldosterone-glucuronide (probably the 21-glucuronide) and an unidentified less polar material. Two methods were developed: a) TH-Aldo-glucuronide(s) estimation after ethylacetate pre-extraction as a rapid screening test of endogenous aldosterone production. b) estimation of TH-aldosterone using one chromatographic system. The results of method a) showed a significant correlation with the values obtained by technique b). Normal values (method b) were 25.88 plus minus 16.50 μg/24 h (range 9.5 - 64.8 μg/24 h). A significant correlation was also shown between the TH-aldo (technique b) and 18-gluc. values. (author)

  5. Thermostable Alcohol Dehydrogenase from Thermococcus kodakarensis KOD1 for Enantioselective Bioconversion of Aromatic Secondary Alcohols

    Science.gov (United States)

    Wu, Xi; Zhang, Chong; Orita, Izumi; Imanaka, Tadayuki

    2013-01-01

    A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparent Km values for the cofactors NAD(P)+ and NADPH were similar within a range of 66 to 127 μM. TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at the meta and para positions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee). TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O–20% 2-propanol and H2O–50% n-hexane or n-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols. PMID:23354700

  6. Radioimmunological determination of tetrahydroaldosterone (TH-ALDO) in human urine

    International Nuclear Information System (INIS)

    Kohl, K.H.

    1979-01-01

    Two white New Zealand rabbits were immunised against TH-Aldo. A 3α. 5β-TH-Aldo-20 oxime BSA complex served as antigen. The titration values found were between 1:16.000 and 1:18.000. All steroids and steroid metabolites with the exception of tetra-hydro-18-hydroxy-11-dehydrocorticosterone (18-OH-THA) exhibited insignifcant slight cross-reactions. The specifity of the antisera was also investigated with immunograms using paper chromatography which was developed from the n-butanol extract of the urine samples as well as after β-glucuronida treatment and dichloromethane extraction. The immunogram showed that the antibodies crossreacted with aldosterone-18-glucuronide and with tetrahydroaldosterone-glucuronide fraction (possibly with the TH-Aldo-21-glucuronide) as well as with a non-identified weakly polar material. (orig./AJ) [de

  7. 1H, 15N and 13C NMR Assignments of Mouse Methionine Sulfoxide Reductase B2

    Science.gov (United States)

    Breivik, Åshild S.; Aachmann, Finn L.; Sal, Lena S.; Kim, Hwa-Young; Del Conte, Rebecca; Gladyshev, Vadim N.; Dikiy, Alexander

    2011-01-01

    A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N and 13C NMR assignments of the reduced form of this protein. PMID:19636904

  8. Characterization of mitochondrial thioredoxin reductase from C. elegans

    International Nuclear Information System (INIS)

    Lacey, Brian M.; Hondal, Robert J.

    2006-01-01

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k cat of 610 min -1 and a K m of 610 μM using E. coli thioredoxin as substrate. The reported k cat is 25% of the k cat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate

  9. Very low levels of 6-keto-prostaglandin F 1/sub α/ in human plasma

    International Nuclear Information System (INIS)

    Siess, W.; Dray, F.

    1982-01-01

    Two stable derivatives of PGI 2 , its nonenzymatic hydrolysis product (6-keto-PGF 1 /sub α/) and an enzymatic metabolite (6, 15-diketo-PGF 1 /sub α/) were determined in human plasma and urine. These compounds were measured by RIA after separation on rp-HPLC. Previous purification of the samples on rp=HPLC markedly enhanced the specificity of the RIA determinations of those compounds in plasma and urine. The PGI 2 derivative 6-keto-PGF 1 /sub α/ was detected in both plasma (4.7 +/- 3.2 pg/ml, mean +/- S.D., n = 34) and urine (166 +/- 61 pg/ml, n = 9). No gender differences of the plasma or urinary levels of 6-keto-PGF 1 /sub α/ were found. The PGI 2 metabolite 6, 15-diketo-PGF 1 /sub α/ was not measurable in plasma or urine ( 2 in man. When [ 3 H]PGI 2 was added to citrated blood immediately after venipuncture, it was recovered entirely as [ 3 H]6-keto-PGF 1 /sub α/ after rp-HPLC. Therefore any circulating PGI 2 would be measured as 6-keto-PGF 1 /sub α/ by our method. The results obtained suggest that PGI 2 could be present in human venous blood under physiological conditions, but only in very low concentrations

  10. The role of Cercospora zeae-maydis homologs of Rhodobacter sphaeroides 1O2-resistance genes in resistance to the photoactivated toxin cercosporin.

    Science.gov (United States)

    Beseli, Aydin; Goulart da Silva, Marilia; Daub, Margaret E

    2015-01-01

    The photosynthetic bacterium Rhodobacter sphaeroides and plant pathogenic fungus Cercospora nicotianae have been used as models for understanding resistance to singlet oxygen ((1)O(2)), a highly toxic reactive oxygen species. In Rhodobacter and Cercospora, (1)O(2) is derived, respectively, from photosynthesis and from the (1)O(2)-generating toxin cercosporin which the fungus produces to parasitize plants. We identified common genes recovered in transcriptome studies of putative (1)O(2)-resistance genes in these two systems, suggesting common (1)O(2)-resistance mechanisms. To determine if the Cercospora homologs of R. sphaeroides (1)O(2)-resistance genes are involved in resistance to cercosporin, we expressed the genes in the cercosporin-sensitive fungus Neurospora crassa and assayed for increases in cercosporin resistance. Neurospora crassa transformants expressing genes encoding aldo/keto reductase, succinyl-CoA ligase, O-acetylhomoserine (thiol) lyase, peptide methionine sulphoxide reductase and glutathione S-transferase did not have elevated levels of cercosporin resistance. Several transformants expressing aldehyde dehydrogenase were significantly more resistant to cercosporin. Expression of the transgene and enzyme activity did not correlate with resistance, however. We conclude that although the genes tested in this study are important in (1)O(2) resistance in R. sphaeroides, their Cercospora homologs are not involved in resistance to (1)O(2) generated from cercosporin. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan

    International Nuclear Information System (INIS)

    Dozmorov, Mikhail G; Lin, Hsueh-Kung; Azzarello, Joseph T; Wren, Jonathan D; Fung, Kar-Ming; Yang, Qing; Davis, Jeffrey S; Hurst, Robert E; Culkin, Daniel J; Penning, Trevor M

    2010-01-01

    Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression. To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and an in vitro Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis. Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF)-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R) and Akt activation as well as vascular endothelial growth factor (VEGF) expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC) tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024) or a non-selective phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) abolished ability of the cells to promote EC tube formation. Bioinformatics

  12. Whole-cell bioreduction of aromatic α-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Egger Sigrid

    2008-12-01

    Full Text Available Abstract Background Whole cell-catalyzed biotransformation is a clear process option for the production of chiral alcohols via enantioselective reduction of precursor ketones. A wide variety of synthetically useful reductases are expressed heterologously in Escherichia coli to a high level of activity. Therefore, this microbe has become a prime system for carrying out whole-cell bioreductions at different scales. The limited capacity of central metabolic pathways in E. coli usually requires that reductase coenzyme in the form of NADPH or NADH be regenerated through a suitable oxidation reaction catalyzed by a second NADP+ or NAD+ dependent dehydrogenase that is co-expressed. Candida tenuis xylose reductase (CtXR was previously shown to promote NADH dependent reduction of aromatic α-keto esters with high Prelog-type stereoselectivity. We describe here the development of a new whole-cell biocatalyst that is based on an E. coli strain co-expressing CtXR and formate dehydrogenase from Candida boidinii (CbFDH. The bacterial system was evaluated for the synthesis of ethyl R-4-cyanomandelate under different process conditions and benchmarked against a previously described catalyst derived from Saccharomyces cerevisiae expressing CtXR. Results Gene co-expression from a pETDuet-1 vector yielded about 260 and 90 units of intracellular CtXR and CbFDH activity per gram of dry E. coli cell mass (gCDW. The maximum conversion rate (rS for ethyl 4-cyanobenzoylformate by intact or polymyxin B sulphate-permeabilized cells was similar (2 mmol/gCDWh, suggesting that the activity of CbFDH was partly rate-limiting overall. Uncatalyzed ester hydrolysis in substrate as well as inactivation of CtXR and CbFDH in the presence of the α-keto ester constituted major restrictions to the yield of alcohol product. Using optimized reaction conditions (100 mM substrate; 40 gCDW/L, we obtained ethyl R-4-cyanomandelate with an enantiomeric excess (e.e. of 97.2% in a yield of 82

  13. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  14. Identification of a 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid Reductase, FlRed, in an Alginolytic Bacterium Flavobacterium sp. Strain UMI-01

    Directory of Open Access Journals (Sweden)

    Akira Inoue

    2015-01-01

    Full Text Available In alginate-assimilating bacteria, alginate is depolymerized to unsaturated monosaccharide by the actions of endolytic and exolytic alginate lyases (EC 4.2.2.3 and EC 4.2.2.11. The monosaccharide is non-enzymatically converted to 4-deoxy-l-ery thro-5-hexoseulose uronic acid (DEH, then reduced to 2-keto-3-deoxy-d-gluconate (KDG by a specific reductase, and metabolized through the Entner–Doudoroff pathway. Recently, the NADPH-dependent reductase A1-R that belongs to short-chain dehydrogenases/reductases (SDR superfamily was identified as the DEH-reductase in Sphingomonas sp. A1. We have subsequently noticed that an SDR-like enzyme gene, flred, occurred in the genome of an alginolytic bacterium Flavobacterium sp. strain UMI-01. In the present study, we report on the deduced amino-acid sequence of flred and DEH-reducing activity of recombinant FlRed. The deduced amino-acid sequence of flred comprised 254 residues and showed 34% amino-acid identities to that of A1-R from Sphingomonas sp. A1 and 80%–88% to those of SDR-like enzymes from several alginolytic bacteria. Common sequence motifs of SDR-superfamily enzymes, e.g., the catalytic tetrad Asn-Lys-Tyr-Ser and the cofactor-binding sequence Thr-Gly-x-x-x-Gly-x-Gly in Rossmann fold, were completely conserved in FlRed. On the other hand, an Arg residue that determined the NADPH-specificity of Sphingomonas A1-R was replaced by Glu in FlRed. Thus, we investigated cofactor-preference of FlRed using a recombinant enzyme. As a result, the recombinant FlRed (recFlRed was found to show high specificity to NADH. recFlRed exhibited practically no activity toward variety of aldehyde, ketone, keto ester, keto acid and aldose substrates except for DEH. On the basis of these results, we conclude that FlRed is the NADH-dependent DEH-specific SDR of Flavobacterium sp. strain UMI-01.

  15. A comparative proteomic analysis of Bacillus coagulans in response to lactate stress during the production of L-lactic acid.

    Science.gov (United States)

    Wang, Xiuwen; Qin, Jiayang; Wang, Landong; Xu, Ping

    2014-12-01

    The growth rate and maximum biomass of Bacillus coagulans 2-6 were inhibited by lactate; inhibition by sodium lactate was stronger than by calcium lactate. The differences of protein expressions by B. coagulans 2-6 under the lactate stress were determined using two-dimensional electrophoresis coupled with mass spectrometric identification. Under the non-stress condition, calcium lactate stress and sodium lactate stress, the number of detected protein spots was 1,571 ± 117, 1,281 ± 231 and 904 ± 127, respectively. Four proteins with high expression under lactate stress were identified: lactate dehydrogenase, cysteine synthase A, aldo/keto reductase and ribosomal protein L7/L12. These proteins are thus potential targets for the reconstruction of B. coagulans to promote its resistance to lactate stress.

  16. Quantitative analysis of hydroperoxy-, keto- and hydroxy-dienes in refined vegetable oils.

    Science.gov (United States)

    Morales, Arturo; Marmesat, Susana; Dobarganes, M Carmen; Márquez-Ruiz, Gloria; Velasco, Joaquín

    2012-03-16

    Quantitative analysis of the main oxidation products of linoleic acid - hydroperoxy-, keto- and hydroxy-dienes - in refined oils is proposed in this study. The analytical approach consists of derivatization of TAGs into FAMEs and direct analysis by HPLC-UV. Two transmethylation methods run at room temperature were evaluated. The reactants were KOH in methanol in method 1 and sodium methoxide (NaOMe) in method 2. Method 1 was ruled out because resulted in losses of hydroperoxydienes as high as 90 wt%. Transmethylation with NaOMe resulted to be appropriate as derivatization procedure, although inevitably also gives rise to losses of hydroperoxydienes, which were lower than 10 wt%, and formation of keto- and hydroxy-dienes as a result. An amount of 0.6-2.1 wt% of hydroperoxydienes was transformed into keto- and hydroxy-dienes, being the formation of the former as much as three times higher. The method showed satisfactory sensitivity (quantification limits of 0.3 μg/mL for hydroperoxy- and keto-dienes and 0.6 μg/mL for hydroxydienes), precision (coefficients of variation ≤ 6% for hydroperoxydienes and ≤ 15% for keto- and hydroxy-dienes) and accuracy (recovery values of 85(± 4), 99(± 2) and 97.0(± 0.6) % for hydroperoxy-, keto- and hydroxy-dienes, respectively). The method was applied to samples of high-linoleic (HLSO), high-oleic (HOSO) and high-stearic high-oleic (HSHOSO) sunflower oils oxidized at 40 °C. Results showed that the higher the linoleic-to-oleic ratio, the higher were the levels of hydroperoxy-, keto- and hydroxy-dienes when tocopherols were completely depleted, i.e. at the end of the induction period (IP). Levels of 23.7, 2.7 and 1.1 mg/g oil were found for hydroperoxy-, keto- and hydroxy-dienes, respectively, in the HLSO when tocopherol was practically exhausted. It was estimated that hydroperoxydienes constituted approximately 100, 95 and 60% of total hydroperoxides in the HLSO, HOSO and HSHOSO, respectively, along the IP. Copyright © 2012

  17. Effects of medicinal cake-separated moxibustion on plasma 6-keto-PGF1alpha and TXB2 contents in the rabbit of hyperlipemia.

    Science.gov (United States)

    Xiaorong, Chang; Jie, Yan; Zenghui, Yue; Jing, Shen; Yaping, Lin; Shouxiang, Yi; Xiangping, Cao

    2005-06-01

    Hyperlipemia rabbit models established with high cholesterol and fat diet were treated with direct moxibustion and medicinal cake-separated moxibustion. The post-treatment plasma 6-keto-prostaglandin F1alpha (6-keto-PGF1alpha) and thromboxane B2 (TXB2) contents were determined by radioimmunoassay. Results indicated that the plasma 6-keto-PGF1alpha content significantly increased, the TXB2 level decreased (P keto-PGF1alpha ratio also decreased (P 0.05), suggesting that both the medicinal cake-separated moxibustion and direct moxibustion can regulate the plasma 6-keto-PGF1alpha and TXB2 contents, and the TXB2/6-keto-PGF1alpha ratio with similar actions, and have a certain protective action on endothelial cells of the aorta in the rabbit of hyperlipemia.

  18. Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases

    OpenAIRE

    Felsovalyi, Flora; Patel, Tushar; Mangiagalli, Paolo; Kumar, Sanat K; Banta, Scott

    2012-01-01

    Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only...

  19. The NADPH thioredoxin reductase C functions as an electron donor to 2-Cys peroxiredoxin in a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1

    International Nuclear Information System (INIS)

    Sueoka, Keigo; Yamazaki, Teruaki; Hiyama, Tetsuo; Nakamoto, Hitoshi

    2009-01-01

    An NADPH thioredoxin reductase C was co-purified with a 2-Cys peroxiredoxin by the combination of anion exchange chromatography and electroelution from gel slices after native PAGE from a thermophilic cyanobacterium Thermosynechococcus elongatus as an NAD(P)H oxidase complex induced by oxidative stress. The result provided a strong evidence that the NADPH thioredoxin reductase C interacts with the 2-Cys peroxiredoxin in vivo. An in vitro reconstitution assay with purified recombinant proteins revealed that both proteins were essential for an NADPH-dependent reduction of H 2 O 2 . These results suggest that the reductase transfers the reducing power from NADPH to the peroxiredoxin, which reduces peroxides in the cyanobacterium under oxidative stress. In contrast with other NADPH thioredoxin reductases, the NADPH thioredoxin reductase C contains a thioredoxin-like domain in addition to an NADPH thioredoxin reductase domain in the same polypeptide. Each domain contains a conserved CXYC motif. A point mutation at the CXYC motif in the NADPH thioredoxin reductase domain resulted in loss of the NADPH oxidation activity, while a mutation at the CXYC motif in the thioredoxin-like domain did not affect the electron transfer, indicating that this motif is not essential in the electron transport from NADPH to the 2-Cys peroxiredoxin.

  20. Pre-clinical activity of PR-104 as monotherapy and in combination with sorafenib in hepatocellular carcinoma.

    Science.gov (United States)

    Abbattista, Maria R; Jamieson, Stephen M F; Gu, Yongchuan; Nickel, Jennifer E; Pullen, Susan M; Patterson, Adam V; Wilson, William R; Guise, Christopher P

    2015-01-01

    PR-104 is a clinical stage bioreductive prodrug that is converted in vivo to its cognate alcohol, PR-104A. This dinitrobenzamide mustard is reduced to activated DNA cross-linking metabolites (hydroxylamine PR-104H and amine PR-104M) under hypoxia by one-electron reductases and independently of hypoxia by the 2-electron reductase aldo-keto reductase 1C3 (AKR1C3). High expression of AKR1C3, along with extensive hypoxia, suggested the potential of PR-104 for treatment of hepatocellular carcinoma (HCC). However, a phase IB trial with sorafenib demonstrated significant toxicity that was ascribed in part to reduced PR-104A clearance, likely reflecting compromised glucuronidation in patients with advanced HCC. Here, we evaluate the activity of PR-104 in HCC xenografts (HepG2, PLC/PRF/5, SNU-398, Hep3B) in mice, which do not significantly glucuronidate PR-104A. Cell line differences in sensitivity to PR-104A in vitro under aerobic conditions could be accounted for by differences in both expression of AKR1C3 (high in HepG2 and PLC/PRF/5) and sensitivity to the major active metabolite PR-104H, to which PLC/PRF/5 was relatively resistant, while hypoxic selectivity of PR-104A cytotoxicity and reductive metabolism was greatest in the low-AKR1C3 SNU-398 and Hep3B lines. Expression of AKR1C3 in HepG2 and PLC/PRF/5 xenografts was in the range seen in 21 human HCC specimens. PR-104 monotherapy elicited significant reductions in growth of Hep3B and HepG2 xenografts, and the combination with sorafenib was significantly active in all 4 xenograft models. The results suggest that better-tolerated analogs of PR-104, without a glucuronidation liability, may have the potential to exploit AKR1C3 and/or hypoxia in HCC in humans.

  1. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    Science.gov (United States)

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Crius: A Novel Fragment-Based Algorithm of De Novo Substrate Prediction for Enzymes.

    Science.gov (United States)

    Yao, Zhiqiang; Jiang, Shuiqin; Zhang, Lujia; Gao, Bei; He, Xiao; Zhang, John Z H; Wei, Dongzhi

    2018-05-03

    The study of enzyme substrate specificity is vital for developing potential applications of enzymes. However, the routine experimental procedures require lot of resources in the discovery of novel substrates. This article reports an in silico structure-based algorithm called Crius, which predicts substrates for enzyme. The results of this fragment-based algorithm show good agreements between the simulated and experimental substrate specificities, using a lipase from Candida antarctica (CALB), a nitrilase from Cyanobacterium syechocystis sp. PCC6803 (Nit6803), and an aldo-keto reductase from Gluconobacter oxydans (Gox0644). This opens new prospects of developing computer algorithms that can effectively predict substrates for an enzyme. This article is protected by copyright. All rights reserved. © 2018 The Protein Society.

  3. Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo.

    Science.gov (United States)

    De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M

    2008-04-01

    Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.

  4. 9-Hydroxyprostaglandin dehydrogenase in rat kidney cortex converts prostaglandin I2 into 15-keto-13,14-dihydro 6-ketoprostaglandin E1.

    Science.gov (United States)

    Pace-Asciak, C R; Domazet, Z

    1984-11-14

    15-Keto-13,14-dihydro 6-ketoprostaglandin E1 was positively identified by gas chromatography-mass spectrometry with negative-ion chemical ionisation detection from samples of rat kidney high-speed supernatant incubated with prostaglandin I2 in the presence of NAD+. A decreased formation of this product was observed when NAD+ was substituted with NADP+ and none was observed in the absence of nucleotide or substrate prostaglandin I2. Experiments with [9 beta-3H]prostaglandin I2 showed a time- and concentration-dependent loss of tritium which appeared as tritiated water, typical of reaction of [9 beta-3H]prostaglandin substrates with the enzyme, 9-hydroxyprostaglandin dehydrogenase. Time-course measurements of the appearance of tritiated water showed similar rates with 6-keto[9 beta-3H]prostaglandin F1 alpha and 15-keto-13,14-dihydro 6-keto[9 beta-3H]prostaglandin F1 alpha as substrates. These experiments suggest that the transformation of prostaglandin I2 and 6-ketoprostaglandin F1 alpha into the 15-keto-13,14-dihydro 6-ketoprostaglandin E1 catabolite occurs in this in vitro preparation via the corresponding 15-keto-13,14-dihydro catabolite of 6-ketoprostaglandin F1 alpha.

  5. Facile fabrication of CdSe/CdS quantum dots and their application on the screening of colorectal cancer

    Science.gov (United States)

    Cao, Hongfeng; Dong, Quanjin; Hu, Li; Tu, Shiliang; Chai, Rui; Dai, Qiaoqiong

    2015-11-01

    In this paper, a facile aqueous route to water-soluble CdSe/CdS quantum dots (QDs) under mild conditions has been developed. The samples were characterized by means of transmission electron microscopy, energy-dispersive X-ray spectroscopy, and photoluminescence (PL) spectroscopy. The PL property of the QDs can be controlled by adjusting the reaction time. The CdSe/CdS QDs after 48-h reaction with size of 5 nm have the strongest PL intensity located at 553 nm, and the highest quantum yield of 19.9 %. The obtained QDs were applied for the colorectal cancer screening. The QDs could be conjugated with antibody of aldo-keto reductase family 1, member B10 (AKR1B10) for the detection of AKR1B10. The AKR1B10 in PBS/5 % serum solution with concentration of 1 ng/mL could be well calibrated, and the limit of detection could be lower than 0.05 ng/mL.

  6. Facile fabrication of CdSe/CdS quantum dots and their application on the screening of colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Hongfeng; Dong, Quanjin, E-mail: qjdong1508@163.com [Zhejiang Provincial People’s Hospital, Department of Colorectal Surgery (China); Hu, Li [Nanjing University of Science and Technology, School of Environmental and Biological Engineering (China); Tu, Shiliang; Chai, Rui; Dai, Qiaoqiong [Zhejiang Provincial People’s Hospital, Department of Colorectal Surgery (China)

    2015-11-15

    In this paper, a facile aqueous route to water-soluble CdSe/CdS quantum dots (QDs) under mild conditions has been developed. The samples were characterized by means of transmission electron microscopy, energy-dispersive X-ray spectroscopy, and photoluminescence (PL) spectroscopy. The PL property of the QDs can be controlled by adjusting the reaction time. The CdSe/CdS QDs after 48-h reaction with size of 5 nm have the strongest PL intensity located at 553 nm, and the highest quantum yield of 19.9 %. The obtained QDs were applied for the colorectal cancer screening. The QDs could be conjugated with antibody of aldo-keto reductase family 1, member B10 (AKR1B10) for the detection of AKR1B10. The AKR1B10 in PBS/5 % serum solution with concentration of 1 ng/mL could be well calibrated, and the limit of detection could be lower than 0.05 ng/mL.

  7. NQRS Data for AlDO70Si34 (Subst. No. 0035)

    Science.gov (United States)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for AlDO70Si34 (Subst. No. 0035)

  8. NQRS Data for AlDO28Si13 (Subst. No. 0034)

    Science.gov (United States)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for AlDO28Si13 (Subst. No. 0034)

  9. NQRS Data for AlDO28Si13 (Subst. No. 0033)

    Science.gov (United States)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for AlDO28Si13 (Subst. No. 0033)

  10. AKR1B10 induces cell resistance to daunorubicin and idarubicin by reducing C13 ketonic group

    International Nuclear Information System (INIS)

    Zhong Linlin; Shen Honglin; Huang Chenfei; Jing, Hongwu; Cao Deliang

    2011-01-01

    Daunorubicin, idarubicin, doxorubicin and epirubicin are anthracyclines widely used for the treatment of lymphoma, leukemia, and breast, lung, and liver cancers, but tumor resistance limits their clinical success. Aldo-keto reductase family 1 B10 (AKR1B10) is an NADPH-dependent enzyme overexpressed in liver and lung carcinomas. This study was aimed to determine the role of AKR1B10 in tumor resistance to anthracyclines. AKR1B10 activity toward anthracyclines was measured using recombinant protein. Cell resistance to anthracycline was determined by ectopic expression of AKR1B10 or inhibition by epalrestat. Results showed that AKR1B10 reduces C13-ketonic group on side chain of daunorubicin and idarubicin to hydroxyl forms. In vitro, AKR1B10 converted daunorubicin to daunorubicinol at V max of 837.42 ± 81.39 nmol/mg/min, K m of 9.317 ± 2.25 mM and k cat /K m of 3.24. AKR1B10 showed better catalytic efficiency toward idarubicin with V max at 460.23 ± 28.12 nmol/mg/min, K m at 0.461 ± 0.09 mM and k cat /K m at 35.94. AKR1B10 was less active toward doxorubicin and epirubicin with a C14-hydroxyl group. In living cells, AKR1B10 efficiently catalyzed reduction of daunorubicin (50 nM) and idarubicin (30 nM) to corresponding alcohols. Within 24 h, approximately 20 ± 2.7% of daunorubicin (1 μM) or 23 ± 2.3% of idarubicin (1 μM) was converted to daunorubicinol or idarubicinol in AKR1B10 expression cells compared to 7 ± 0.9% and 5 ± 1.5% in vector control. AKR1B10 expression led to cell resistance to daunorubicin and idarubicin, but inhibitor epalrestat showed a synergistic role with these agents. Together our data suggest that AKR1B10 participates in cellular metabolism of daunorubicin and idarubicin, resulting in drug resistance. These data are informative for the clinical use of idarubicin and daunorubicin. - Highlights: → This study defines enzyme activity of AKR1B10 protein towards daunorubicin, idarubicin, doxorubicin, and epirubicin. → This study pinpoints

  11. Effect of 3-keto-1,5-bisphosphonates on obese-liver's rats.

    Science.gov (United States)

    Lahbib, Karima; Touil, Soufiane

    2016-10-01

    Obesity is associated with an oxidative stress status, which is defined by an excess of reactive oxygen species (ROS) vs. the antioxidant defense system. We report in this present work, the link between fat deposition and oxidative stress markers using a High Fat Diet-(HFD) induced rat obesity and liver-oxidative stress. We further determined the impact of chronic administration of 3-keto-1, 5-BPs 1 (a & b) (40μg/kg/8 weeks/i.p.) on liver's level. In fact, exposure of rats to HFD during 16 weeks induced body and liver weight gain and metabolic disruption with an increase on liver Alanine amino transférase (ALAT) and Aspartate aminotransférase (ASAT) concentration. HFD increased liver calcium level as well as free iron, whereas, it provoked a decrease on liver lipase activity. HFD also induced liver-oxidative stress status vocalized by an increase in reactive oxygen species (ROS) as superoxide radical (O 2 ), hydroxyl radical (OH) and Hydrogen peroxide (H 2 O 2 ). Consequently, different deleterious damages as an increase on Malon Dialdehyde MDA, Carbonyl protein PC levels with a decrease in non-protein sulfhydryls NPSH concentrations, have been detected. Interestingly, our results demonstrate a decrease in antioxidant enzymes activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx) and peroxidases (POD). Importantly, 3-keto-1,5-bisphosphonates treatment corrected the majority of the deleterious effects caused by HFD, but it failed to correct some liver's disruptions as mineral profile, oxidative damages (PC and NPSH levels) as well as SOD and lipase activities. Our investigation point that 3-keto-1,5-bisphosphonates could be considered as safe antioxidant agents on the hepatic level that should also find other potential biological applications. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Ubiquinol-cytochrome c reductase (Complex III) electrochemistry at multi-walled carbon nanotubes/Nafion modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Pelster, Lindsey N.; Minteer, Shelley D.

    2012-01-01

    Highlights: ► The electron transport chain is important to the understanding of metabolism in the living cell. ► Ubiquinol-cytochrome c reductase is a membrane bound complex of the electron transport chain (Complex III). ► The paper details the first bioelectrochemical characterization of ubiquinol-cytochrome c reductase at an electrode. - Abstract: Electron transport chain complexes are critical to metabolism in living cells. Ubiquinol-cytochrome c reductase (Complex III) is responsible for carrying electrons from ubiquinol to cytochrome c, but the complex has not been evaluated electrochemically. This work details the bioelectrochemistry of ubiquinol-cytochrome c reductase of the electron transport chain of tuber mitochondria. The characterization of the electrochemistry of this enzyme is investigated in carboxylated multi-walled carbon nanotube/tetrabutyl ammonium bromide-modified Nafion ® modified glassy carbon electrodes by cyclic voltammetry. Increasing concentrations of cytochrome c result in a catalytic response from the active enzyme in the nanotube sandwich. The experiments show that the enzyme followed Michaelis–Menten kinetics with a K m for the immobilized enzyme of 2.97 (±0.11) × 10 −6 M and a V max of 6.31 (±0.82) × 10 −3 μmol min −1 at the electrode, but the K m and V max values decreased compared to the free enzyme in solution, which is expected for immobilized redox proteins. This is the first evidence of ubiquinol-cytochrome c reductase bioelectrocatalysis.

  13. Synthesis of Substituted 1,4-Dioxenes through O-H Insertion and Cyclization Using Keto-Diazo Compounds.

    Science.gov (United States)

    Davis, Owen A; Croft, Rosemary A; Bull, James A

    2016-11-18

    1,4-Dioxenes present interesting potential as synthetic intermediates and as unusual motifs for incorporation into biologically active compounds. Here, an efficient synthesis of functionalized 1,4-dioxenes is achieved in two steps. Using keto-diazo compounds, a ruthenium catalyzed O-H insertion with β-halohydrins followed by treatment with base results in cyclization with excellent selectivity, through O-alkylation of the keto-enolate. A variety of halohydrins and anion-stabilizing groups in the diazo-component are tolerated, affording novel functionalized dioxenes. Enantioenriched β-bromohydrins provide enantioenriched 1,4-dioxenes.

  14. Hepatocyte Hyperproliferation upon Liver-Specific Co-disruption of Thioredoxin-1, Thioredoxin Reductase-1, and Glutathione Reductase

    Directory of Open Access Journals (Sweden)

    Justin R. Prigge

    2017-06-01

    Full Text Available Energetic nutrients are oxidized to sustain high intracellular NADPH/NADP+ ratios. NADPH-dependent reduction of thioredoxin-1 (Trx1 disulfide and glutathione disulfide by thioredoxin reductase-1 (TrxR1 and glutathione reductase (Gsr, respectively, fuels antioxidant systems and deoxyribonucleotide synthesis. Mouse livers lacking both TrxR1 and Gsr sustain these essential activities using an NADPH-independent methionine-consuming pathway; however, it remains unclear how this reducing power is distributed. Here, we show that liver-specific co-disruption of the genes encoding Trx1, TrxR1, and Gsr (triple-null causes dramatic hepatocyte hyperproliferation. Thus, even in the absence of Trx1, methionine-fueled glutathione production supports hepatocyte S phase deoxyribonucleotide production. Also, Trx1 in the absence of TrxR1 provides a survival advantage to cells under hyperglycemic stress, suggesting that glutathione, likely via glutaredoxins, can reduce Trx1 disulfide in vivo. In triple-null livers like in many cancers, deoxyribonucleotide synthesis places a critical yet relatively low-volume demand on these reductase systems, thereby favoring high hepatocyte turnover over sustained hepatocyte integrity.

  15. Aldo Leopold: An American Prophet

    Science.gov (United States)

    Frese, Stephen J.

    2003-01-01

    In 1935, Aldo Leopold bought an abandoned farm in the sand counties along the Wisconsin River near Baraboo. Leopold sensed promise in the land, and with his wife and five children nursed the land back to health. They cleaned out the chicken coop and affectionately called their new family retreat "The Shack." Leopold kept detailed notes during the…

  16. Clinical significance of determination of plasma CF6, 6-Keto-PGF1α and RLX levels in patients with preeclampsia

    International Nuclear Information System (INIS)

    Xu Fei; Chen Daozhen; Wang Junfeng; Yang Min; Pan Donghui

    2010-01-01

    Objective: To study the relationship between development of the disease and changes of plasma mitochondrial coupling factor 6 (CF6), prostacyclin (6-Keto-PGF 1α ) and relaxin (RLX) levels in patients with preeclampsia. Methods: Serum CF6, 6-Keto-PGF 1α (as the stable metabolite of 6-Keto-PGF 1α ) and relaxin levels were determined with RIA in (1) 22 pregnant women with mild pre-eclampsia (2) 20 pregnant women with severe pre-eclampsia and (3) 40 normal pregnant women (as controls). Results: The plasma levels of CF6 were significantly higher in patients with mild as well as severe preeclampsia than those in the controls (P 1α were only insignificantly decreased in patients with mild preeclampsia than those in the controls (P > 0.05). In severe preeclampsia group, plasma levels of 6-Keto-PGF 1α were significantly decreased than those in the controls (P 1α and RLX (r =-0.058, r =-0.601, all P 1α and RLX levels in patients with preeclampsia were helpful for assessment of progress of disease and outcome prediction. (authors)

  17. TAN CERCA, TAN LEJOS: ALDO ROSSI Y EL GRUPO 2C. ARQUITECTURA, IDEOLOGÍA Y DISIDENCIAS EN LA BARCELONA DE LOS 70 / So close, so far: Aldo Rossi and the 2C group. Architecture, ideology and dissents in the Barcelona of the 70s

    Directory of Open Access Journals (Sweden)

    Carolina Beatriz García Estévez

    2014-11-01

    Full Text Available RESUMEN La recepción catalana de los manifiestos de Robert Venturi y Aldo Rossi de 1966 marca el escenario de una ruptura: mientras Norteamérica debate sobre la forma arquitectónica como estructura lingüística, Italia hunde sus raíces en la tradición del Movimiento Moderno como origen de una nueva dimensión temporal e ideológica de la arquitectura. Los primeros contactos de Rossi con España verifican esa búsqueda y permiten al italiano construir itinerarios comunes con algunos arquitectos barceloneses. De estos intercambios nacerá el grupo 2C participando de mecanismos propios de la vanguardia: editará la revista, 2C. Construcción de la ciudad (1972-1985, acudirá a la XV Triennale di Milano de 1973 con el Plan Torres Clavé (1971 y a la muestra Aldo Rossi + 21 arquitectos españoles (1975 a la vez que organizará las tres ediciones de los Seminarios Internacionales de Arquitectura Contemporánea (S.I.AC. que tuvieron lugar en Santiago, Sevilla y Barcelona entre 1976 y 1980. Frente al despliegue de los primeros, los contactos americanos de Federico Correa, Oriol Bohigas, Lluís Domènech y el estudio PER o bien la labor docente de Rafael Moneo desde Barcelona a partir de 1971, permiten trazar itinerarios de réplica con la fundación de la revista Arquitecturas Bis (1974-1985, la organización de los encuentros entre publicaciones internacionales como Lotus y Oppositions en Cadaqués (1975 y New York (1977, a la vez que establecer intercambios con miembros de los Five Architects. Réplicas que en 1976 conducen las iniciales afirmaciones ideológicas entre Rossi y el grupo 2C hacia distanciamientos irreconciliables. Verificar el recorrido del viaje que el italiano encabeza desde la resistencia italiana hacia la claudicación americana es parte del acometido de este artículo. SUMMARY The Catalan reception of the 1966 manifestos by Robert Venturi and Aldo Rossi marks the scenario of a breakup: while North America debates about the

  18. NQRS Data for AlDO2 [Al(OD)O] (Subst. No. 0032)

    Science.gov (United States)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for AlDO2 [Al(OD)O] (Subst. No. 0032)

  19. The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from ...

    African Journals Online (AJOL)

    The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from Taxus media: Cloning, characterization and functional identification. Y Sun, M Chen, J Tang, W Liu, C Yang, Y Yang, X Lan, M Hsieh, Z Liao ...

  20. Association study of methylenetetrahydrofolate reductase C677T mutation with cerebral venous thrombosis in an Iranian population.

    Science.gov (United States)

    Ghaznavi, Habib; Soheili, Zahra; Samiei, Shahram; Soltanpour, Mohammad S

    2015-12-01

    There are limited data on the role of methylenetetrahydrofolate reductase C677T polymorphism and hyperhomocysteinemia as risk factors for cerebral venous thrombosis in Iranian population. We examined a possible association between fasting plasma homocysteine levels, methylenetetrahydrofolate reductase C677T polymorphism, and cerebral venous thrombosis in 50 patients with a diagnosis of cerebral venous thrombosis (20-63 years old) and 75 healthy controls (18-65 years old). Genotyping of the methylenetetrahydrofolate reductase C677T gene polymorphism was performed by PCR-restriction fragment length polymorphism analysis, and homocysteine levels were measured by enzyme immunoassay. Fasting plasma homocysteine levels were significantly higher in cerebral venous thrombosis patients than in controls (P = 0.015). Moreover, plasma homocysteine levels were significantly higher in methylenetetrahydrofolate reductase 677TT genotype compared to 677CT and 677CC genotypes in both cerebral venous thrombosis patients (P = 0.01) and controls (P = 0.03). Neither 677CT heterozygote genotype [odds ratio (OR) 1.35, 95% confidence interval (CI) 0.64-2.84, P = 0.556] nor 677TT homozygote genotype (OR 1.73, 95% CI 0.32-9.21, P = 0.833) was significantly associated with cerebral venous thrombosis. Additionally, no significant differences in the frequency of 677T allele between cerebral venous thrombosis patients and controls were identified (OR 1.31, 95% CI 0.69-2.50, P = 0.512). In conclusion, our study demonstrated that elevated plasma homocysteine levels are significant risk factors for cerebral venous thrombosis. Also, methylenetetrahydrofolate reductase 677TT genotype is not linked with cerebral venous thrombosis, but is a determinant of elevated plasma homocysteine levels.

  1. I2-Catalyzed Oxidative Condensation of Aldoses with Diamines: Synthesis of Aldo-Naphthimidazoles for Carbohydrate Analysis

    Directory of Open Access Journals (Sweden)

    Chunchi Lin

    2010-03-01

    Full Text Available A novel method for the conversion of unprotected and unmodified aldoses to aldo-imidazoles has been developed. Using iodine as a catalyst in acetic acid solution, a series of mono- and oligosaccharides, including those containing carboxyl and acetamido groups, undergo an oxidative condensation reaction with aromatic vicinal diamines at room temperature to give the corresponding aldo-imidazole products in high yields. No cleavage of the glycosidic bond occurs under the mild reaction conditions. The compositional analysis of saccharides is commonly realized by capillary electropheresis of the corresponding aldo-imidazole derivatives, which are easily synthesized by the reported iodine-promoted oxidative condensation. In addition, a series of aldo-imidazoles were determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS to analyze molecular weight and ion intensity. The diamine-labeled saccharides showed enhanced signals in MALDI–TOF MS. The combined use of aldoimidazole derivatization and mass spectrometric analysis thus provides a rapid method for identification of saccharides, even when less than 1 pmol of saccharide is present in the sample. These results can be further applied to facilitate the isolation and analysis of novel saccharides.

  2. Evaluation of a novel biodegradable thermosensitive keto-hydrogel for improving postoperative pain in a rat model.

    Science.gov (United States)

    Wu, Meng-Huang; Shih, Ming-Hung; Hsu, Wei-Bin; Dubey, Navneet Kumar; Lee, Wen-Fu; Lin, Tsai-Yu; Hsieh, Meng-Yow; Chen, Chin-Fu; Peng, Kuo-Ti; Huang, Tsung-Jen; Shi, Chung-Sheng; Guo, Ren-Shyang; Cai, Chang-Jhih; Chung, Chiu-Yen; Wong, Chung-Hang

    2017-01-01

    This study evaluates the sustained analgesic effect of ketorolac-eluting thermosensitive biodegradable hydrogel in the plantar incisional pain model of the rat hind-paw. A ketorolac-embedded 2, 2'-Bis (2-oxazolin) (BOX) linking methoxy-poly(ethylene glycol) and poly(lactide-co-glycolide) (mPEG-PLGA) diblock copolymer (BOX copolymer) was synthesized as keto-hydrogel based on optimal sol-gel phase transition and in vitro drug release profile. The effect of keto-hydrogel on postoperative pain (POP) was assessed using the established plantar incisional pain model in hind-paw of rats and compared to that of ketorolac solution. Pain and sensory threshold, as well as pain scoring, were evaluated with behavioral tests by means of anesthesiometer and incapacitance apparatus, respectively. Pro-inflammatory cytokine levels (TNF-α, IL-6, VEGF, and IL-1β) around incisional wounds were measured by ELISA. Tissue histology was assessed using hematoxylin and eosin and Masson's trichrome staining. Ten mg/mL (25 wt%) keto-hydrogel showed a sol-gel transition at 26.4°C with a 10-day sustained drug release profile in vitro. Compared to ketorolac solution group, the concentration of ketorolac in tissue fluid was higher in the keto-hydrogel group during the first 18 h of application. Keto-hydrogel elevated pain and sensory threshold, increased weight-bearing capacity, and significantly reduced the levels of TNF-α, IL-6, and IL-1β while enhanced VEGF in tissue fluid. Histologic analysis reveals greater epithelialization and collagen deposition around wound treated with keto-hydrogel. In conclusion, our study suggests that keto-hydrogel is an ideal compound to treat POP with a secondary gain of improved incisional wound healing.

  3. Evaluation of a novel biodegradable thermosensitive keto-hydrogel for improving postoperative pain in a rat model.

    Directory of Open Access Journals (Sweden)

    Meng-Huang Wu

    Full Text Available This study evaluates the sustained analgesic effect of ketorolac-eluting thermosensitive biodegradable hydrogel in the plantar incisional pain model of the rat hind-paw. A ketorolac-embedded 2, 2'-Bis (2-oxazolin (BOX linking methoxy-poly(ethylene glycol and poly(lactide-co-glycolide (mPEG-PLGA diblock copolymer (BOX copolymer was synthesized as keto-hydrogel based on optimal sol-gel phase transition and in vitro drug release profile. The effect of keto-hydrogel on postoperative pain (POP was assessed using the established plantar incisional pain model in hind-paw of rats and compared to that of ketorolac solution. Pain and sensory threshold, as well as pain scoring, were evaluated with behavioral tests by means of anesthesiometer and incapacitance apparatus, respectively. Pro-inflammatory cytokine levels (TNF-α, IL-6, VEGF, and IL-1β around incisional wounds were measured by ELISA. Tissue histology was assessed using hematoxylin and eosin and Masson's trichrome staining. Ten mg/mL (25 wt% keto-hydrogel showed a sol-gel transition at 26.4°C with a 10-day sustained drug release profile in vitro. Compared to ketorolac solution group, the concentration of ketorolac in tissue fluid was higher in the keto-hydrogel group during the first 18 h of application. Keto-hydrogel elevated pain and sensory threshold, increased weight-bearing capacity, and significantly reduced the levels of TNF-α, IL-6, and IL-1β while enhanced VEGF in tissue fluid. Histologic analysis reveals greater epithelialization and collagen deposition around wound treated with keto-hydrogel. In conclusion, our study suggests that keto-hydrogel is an ideal compound to treat POP with a secondary gain of improved incisional wound healing.

  4. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Forlani, Giuseppe; Nocek, Boguslaw; Chakravarthy, Srinivas; Joachimiak, Andrzej

    2017-08-02

    In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  5. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Forlani, Giuseppe; Nocek, Boguslaw; Chakravarthy, Srinivas; Joachimiak, Andrzej

    2017-08-02

    In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of delta(1)-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  6. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Giuseppe Forlani

    2017-08-01

    Full Text Available In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C catalyzed by P5C reductase (EC 1.5.1.2. In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  7. Expression, purification, crystallization and preliminary X-ray analysis of conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708

    OpenAIRE

    Yamamura, Akihiro; Maruoka, Shintaro; Ohtsuka, Jun; Miyakawa, Takuya; Nagata, Koji; Kataoka, Michihiko; Kitamura, Nahoko; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    Conjugated polyketone reductase C2 from C. parapsilosis IFO 0708 was expressed, purified and crystallized by the sitting-drop vapour-diffusion method. The crystal belonged to space group P212121 and diffracted X-rays to 1.7 Å resolution.

  8. 2-keto-4-(methylthio)butyric acid (keto analog of methionine) is a safe and efficacious precursor of L-methionine in chicks.

    Science.gov (United States)

    Dilger, Ryan N; Kobler, Christoph; Weckbecker, Christoph; Hoehler, Dirk; Baker, David H

    2007-08-01

    Relative bioefficacy and toxicity of Met precursor compounds were investigated in young chicks. The effectiveness of DL-Met and 2-keto-4-(methylthio)butyric acid (Keto-Met) to serve as L-Met precursors was quantified using Met-deficient diets of differing composition. Efficacy was based on slope-ratio and standard-curve methodology. Using L-Met as a standard Met source added to a purified diet, DL-Met and Keto-Met were assigned relative bioefficacy values of 98.5 and 92.5%, respectively, based on weight gain. Relative bioefficacy values of 98.5 and 89.3% were assigned to DL-Met and Keto-Met, respectively, when chicks were fed a Met-deficient, corn-soybean meal-peanut meal diet. Thus, both DL-Met and Keto-Met are effective Met precursor compounds in chicks. Additionally, growth-depressing effects of L-Met, DL-Met, and Keto-Met were compared using a nutritionally adequate corn-soybean meal diet supplemented with 15 or 30 g/kg of each compound. Similar reductions in weight gain, food intake, and gain:food ratio were observed for each compound. Subjective spleen color scores, indicative of splenic hemosiderosis, increased linearly (P Keto-Met to L-Met in vivo merely requires transamination, Keto-Met may prove to be a useful supplement not only in food animal production, but also as a component of enteral and parenteral formulas for humans suffering from renal insufficiency.

  9. Research progress on the roles of aldose reductase in diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Hong-Zhe Li

    2015-07-01

    Full Text Available Aldose reductase(ARbelonging to nicotinamide-adenine dinucleotide phosphate(NADPH-dependent aldehyde-keto reductase superfamily, is the key rate-limiting enzyme in the polyol pathway which plays an important role in the body's high-sugar metabolism. AR is widely present in the kidneys, blood vessels, lens, retina, heart, skeletal muscle and other tissues and organs, converts glucose to sorbitol which easy permeability of cell membranes, cause cell swelling, degeneration, necrosis, and have a close relationship with the development of chronic complications of diabetes mellitus. Diabetic retinopathy(DRis a multifactorial disease, the exact cause is currently unknown, but polyol pathway has been demonstrated to play an important role in the pathogenesis of DR. Clinical risk factors such as blood sugar control, blood pressure and other treatments for DR only play a part effect of remission or invalid, if we can find out DR genes associated with the disease, this will contribute to a better understanding of the pathological mechanisms and contribute to the development of new treatments and drugs. The current research progress of AR, AR gene polymorphism, Aldose reductase inhibitors to DR was reviewed in this article.

  10. Identification, purification and characterization of furfural transforming enzymes from Clostridium beijerinckii NCIMB 8052.

    Science.gov (United States)

    Zhang, Yan; Ujor, Victor; Wick, Macdonald; Ezeji, Thaddeus Chukwuemeka

    2015-06-01

    Generation of microbial inhibitory compounds such as furfural and 5-hydroxymethylfurfural (HMF) is a formidable roadblock to fermentation of lignocellulose-derived sugars to butanol. Bioabatement offers a cost effective strategy to circumvent this challenge. Although Clostridium beijerinckii NCIMB 8052 can transform 2-3 g/L of furfural and HMF to their less toxic alcohols, higher concentrations present in biomass hydrolysates are intractable to microbial transformation. To delineate the mechanism by which C. beijerinckii detoxifies furfural and HMF, an aldo/keto reductase (AKR) and a short-chain dehydrogenase/reductase (SDR) found to be over-expressed in furfural-challenged cultures of C. beijerinckii were cloned and over-expressed in Escherichia coli Rosetta-gami™ B(DE3)pLysS, and purified by histidine tag-assisted immobilized metal affinity chromatography. Protein gel analysis showed that the molecular weights of purified AKR and SDR are close to the predicted values of 37 kDa and 27 kDa, respectively. While AKR has apparent Km and Vmax values of 32.4 mM and 254.2 mM s(-1) respectively, using furfural as substrate, SDR showed lower Km (26.4 mM) and Vmax (22.6 mM s(-1)) values on the same substrate. However, AKR showed 7.1-fold higher specific activity on furfural than SDR. Further, both AKR and SDR were found to be active on HMF, benzaldehyde, and butyraldehyde. Both enzymes require NADPH as a cofactor for aldehydes reduction. Based on these results, it is proposed that AKR and SDR are involved in the biotransformation of furfural and HMF by C. beijerinckii. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. L’ultimo carattere greco di Aldo Manuzio

    OpenAIRE

    Pagliaroli, Stefano

    2015-01-01

    Il saggio riguarda l’origine del quarto carattere greco aldino nel contesto degli ultimi anni della «dura provincia» di Aldo Manuzio. The work focuses on the first appearance of the fourth Greek Aldine character in the context of the last years of Aldus Manutius’s «dura provincia».

  12. Changes of plasma TXB2 and 6-Keto-PGF1α concentrations and their relationship with pulmonary hypertension in patients with chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Luo Rong; Li Zhuocheng; Zhang Min

    2004-01-01

    Objective: To investigate the changes of plasma levels of thromboxone A 2 (TXA 2 ) and prostacyclin (PGI 2 ) and their relationship with pulmonary hypertension in patients with chronic obstructive pulmonary disease (COPD). Methods: The mean pulmonary arterial pressure (PaP) and plasma levels of thromboxone B 2 (TXB 2 ) and 6-Keto-PGF 1α (being the measurable stable metabolic product of TXA 2 and PGI 2 respectively) were measured in 30 COPD patients (with or without pulmonary hypertension) during remission and 37 controls. Besides, these variants were measured in 7 other COPD patients with acute exacerbation both at admission and after successful treatment. Results: During remission, the plasma TXB 2 levels were significantly higher and plasma 6-Keto-PGF 1α levels significantly lower with elevated TXB 2 /6-Keto-PGF 1α ration in COPD patients with pulmonary hypertension than those in patients without pulmonary hypertension (P 0.05). PaP and TxB 2 levels significantly decreased and 6-Keto-PGF 1α increased with lower TXB 2 /6-Keto-PGF 1α ratio after successful treatment in the 7 COPD patients with acute exacerbation (vs at admission, P 2 level and negatively correlated to 6-Keto-PGF 1α level (r=+0.46 and -0.39 respectively, P 2 and PGI 2 plays an important role in the development of pulmonary hypertension in patients with COPD

  13. Characterisation of a thiamine diphosphate-dependent alpha-keto acid decarboxylase from Proteus mirabilis JN458.

    Science.gov (United States)

    Wang, Biying; Bai, Yajun; Fan, Taiping; Zheng, Xiaohui; Cai, Yujie

    2017-10-01

    Alpha-keto acid decarboxylases can convert keto acids to their corresponding aldehydes, which are often volatile aroma compounds. The gene encoding α-keto acid decarboxylase in Proteus mirabilis JN458 was cloned, and the enzyme overexpressed in Escherichia coli BL21 (DE3), purified in high yield, and characterised. The molecular weight is 62.291kDa by MALDI-TOF MS, and optimum activity at pH 6.0 and 40-50°C. The enzyme is a typical decarboxylase, dependent on thiamine diphosphate and Mg 2+ as cofactors. For the decarboxylation reaction, the enzyme displayed a broad substrate range. Kinetic parameters were determined using 4-methyl-2-oxopentanoic acid, phenyl pyruvate and 3-methyl-2-oxopentanoic acid as substrates. K m and k cat values for phenyl pyruvate were 0.62mM and 77.38s -1 , respectively, and the k cat /K m value was 124.81mM -1 s -1 . The enzyme properties suggest it may act effectively under cheese ripening conditions. Copyright © 2017. Published by Elsevier Ltd.

  14. Avalik küsimus peaminister Juhan Partsile / Aldo Vinkel

    Index Scriptorium Estoniae

    Vinkel, Aldo

    2003-01-01

    Eesti Kristliku Rahvapartei esimees Aldo Vinkel soovib peaministrilt selgitust, kas tema vihjed Jeruusalemmale kui Euroopa ühisele usuruumile ning kirikualtari ees antud valimisvanne on kantud siirast soovist arendada Eestit kui kristlikku maad.

  15. Inhibition of HMG-CoA reductase induces the UPR pathway in C. elegans

    DEFF Research Database (Denmark)

    Elmelund-Præstekær, Louise Cathrine Braun; Hansen, Nadia Jin Storm; Pilon, Marc

    -requiring enzyme-1 (IRE-1), and activating transcription factor-6 (ATF-6). Using a transgenic GFP reporter strain of the model organism C. elegans, we have recently identified that inhibition of the enzyme HMG-CoA reductase (HMG-CoAR) with Fluvastatin and knock down of HMG-CoAR using RNA interference (RNAi) both...... including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) which are necessary for posttranslational prenylation of several small G proteins. C. elegans are cholesterol auxotrophs, which enable us to investigate the isoprenoid branch and its role in UPR induction. We found...

  16. Aldo van Eyck's Playgrounds : Aesthetics, Affordances, and Creativity

    NARCIS (Netherlands)

    Withagen, Rob; Caljouw, Simone R.

    2017-01-01

    After World War II, the Dutch architect Aldo van Eyck developed hundreds of playgrounds in the city of Amsterdam. These public playgrounds were located in parks, squares, and derelict sites, and consisted of minimalistic aesthetic play equipment that was supposed to stimulate the creativity of

  17. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system

    Directory of Open Access Journals (Sweden)

    Okada Futoshi

    2005-09-01

    Full Text Available Abstract Controlled oxidation, such as disulfide bond formation in sperm nuclei and during ovulation, plays a fundamental role in mammalian reproduction. Excess oxidation, however, causes oxidative stress, resulting in the dysfunction of the reproductive process. Antioxidation reactions that reduce the levels of reactive oxygen species are of prime importance in reproductive systems in maintaining the quality of gametes and support reproduction. While anti-oxidative enzymes, such as superoxide dismutase and peroxidase, play a central role in eliminating oxidative stress, reduction-oxidation (redox systems, comprised of mainly glutathione and thioredoxin, function to reduce the levels of oxidized molecules. Aldo-keto reductase, using NADPH as an electron donor, detoxifies carbonyl compounds resulting from the oxidation of lipids and proteins. Thus, many antioxidative and redox enzyme genes are expressed and aggressively protect gametes and embryos in reproductive systems.

  18. Molecular cloning of cDNAs of human liver and placenta NADH-cytochrome b5 reductase

    International Nuclear Information System (INIS)

    Yubisui, T.; Naitoh, Y.; Zenno, S.; Tamura, M.; Takeshita, M.; Sakaki, Y.

    1987-01-01

    A cDNA coding for human liver NADH-cytochrome b 5 reductase was cloned from a human liver cDNA library constructed in phage λgt11. The library was screened by using an affinity-purified rabbit antibody against NADH-cytochrome b 5 reductase of human erythrocytes. A cDNA about 1.3 kilobase pairs long was isolated. By using the cDNA as a probe, another cDNA (pb 5 R141) of 1817 base pairs was isolated that hybridized with a synthetic oligonucleotide encoding Pro-Asp-Ile-Lys-Tyr-Pro, derived from the amino acid sequence at the amino-terminal region of the enzyme from human erythrocytes. Furthermore, by using the pb 5 R141 as a probe, cDNA clones having more 5' sequence were isolated from a human placenta cDNA library. The amino acid sequences deduced from the nucleotide sequences of these cDNA clones overlapped each other and consisted of a sequence that completely coincides with that of human erythrocytes and a sequence of 19 amino acid residues extended at the amino-terminal side. The latter sequence closely resembles that of the membrane-binding domain of steer liver microsomal enzyme

  19. 3-Keto-1,5-bisphosphonates Alleviate Serum-Oxidative Stress in the High-fat Diet Induced Obesity in Rats.

    Science.gov (United States)

    Lahbib, Karima; Aouani, Iyadh; Cavalier, Jean-François; Touil, Soufiane

    2015-09-01

    Obesity has become a leading global health problem owing to its strong association with a high incidence of oxidative stress. Many epidemiologic studies showed that an antioxidant supplementation decreases the state of oxidative stress. In the present work, a HFD-induced rat obesity and oxidative stress were used to investigate the link between fat deposition and serum-oxidative stress markers. We also studied the effect of a chronic administration of 3-keto-1,5-bisphosphonates 1 (a & b) (40 μg/kg/8 weeks/i.p.). Exposure of rats to HFD during 16 weeks induced fat deposition, weight gain and metabolic disruption characterized by an increase in cholesterol, triglyceride and glycemia levels, and a decrease in ionizable calcium and free iron concentrations. HFD also induced serum-oxidative stress status vocalized by an increase in ROS (H2 O2 ), MDA and PC levels, with a decrease in antioxidant enzyme activity (CAT, GPx, SOD). Importantly, 3-keto-1,5-bisphosphonates corrected all the deleterious effects of HFD treatment in vivo, but it failed to inhibit lipases in vitro and in vivo. These studies suggest that 3-keto-1,5-bisphosphonates 1 could be considered as safe antioxidant agents that should also find other potential biological applications. © 2014 John Wiley & Sons A/S.

  20. Synthesis and 5α-Reductase Inhibitory Activity of C21 Steroids Having 1,4-diene or 4,6-diene 20-ones and 4-Azasteroid 20-Oximes

    Directory of Open Access Journals (Sweden)

    Eunsook Ma

    2011-12-01

    Full Text Available The synthesis and evaluation of 5α-reductase inhibitory activity of some 4-azasteroid-20-ones and 20-oximes and 3β-hydroxy-, 3β-acetoxy-, or epoxy-substituted C21 steroidal 20-ones and 20-oximes having double bonds in the A and/or B ring are described. Inhibitory activity of synthesized compounds was assessed using 5α-reductase enzyme and [1,2,6,7-3H]testosterone as substrate. All synthesized compounds were less active than finasteride (IC50: 1.2 nM. Three 4-azasteroid-2-oximes (compounds 4, 6 and 8 showed good inhibitory activity (IC50: 26, 10 and 11 nM and were more active than corresponding 4-azasteroid 20-ones (compounds 3, 5 and 7. 3β-Hydroxy-, 3β-acetoxy- and 1α,2α-, 5α,6α- or 6α,7α-epoxysteroid-20-one and -20-oxime derivatives having double bonds in the A and/or B ring showed no inhibition of 5α-reductase enzyme.

  1. Reduction of azo dyes by flavin reductase from Citrobacter freundii A1

    Directory of Open Access Journals (Sweden)

    Mohd Firdaus Abdul-Wahab

    2012-12-01

    Full Text Available Citrobacter freundii A1 isolated from a sewage treatment facility was demonstrated to be able to effectively decolorize azo dyes as pure and mixed culture. This study reports on the investigation on the enzymatic systems involved. An assay performed suggested the possible involvement of flavin reductase (Fre as an azo reductase. A heterologouslyexpressed recombinant Fre from C. freundii A1 was used to investigate its involvement in the azo reduction process. Three model dyes were used, namely Acid Red 27 (AR27, Direct Blue 15 (DB15 and Reactive Black 5 (RB5. AR27 was found to be reduced the fastest by Fre, followed by RB5, and lastly DB15. Redox mediators nicotinamide adenine dinucleotide (NADH and riboflavin enhance the reduction, suggesting the redox activity of the enzyme. The rate and extent of reduction of the model dyes correlate well with the reduction potentials (Ep. The data presented here strongly suggest that Fre is one of the enzymes responsible for azo reduction in C. freundii A1, acting via an oxidation-reduction reaction.

  2. Role of aldose reductase C-106T polymorphism among diabetic Egyptian patients with different microvascular complications

    Directory of Open Access Journals (Sweden)

    Nermine Hossam Zakaria

    2014-04-01

    Full Text Available The aldose reductase pathway proves that elevated blood glucose promotes cellular dysfunction. The polyol pathway converts excess intracellular glucose into alcohols via activity of the aldose reductase. This enzyme catalyzes the conversion of glucose to sorbitol which triggers variety of intracellular changes in the tissues. Among diabetes, activity is drastically increased in association with three main consequences inside the cells. The aim of this study was to detect the association of the C-106 T polymorphism of the aldose reductase gene and its frequency among a sample of 150 Egyptian adults with type 2 diabetic patients having diabetic microvascular. The detection of the aldose reductase C-106 T polymorphism gene was done by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP. The genotype distribution of the C-106 T polymorphism showed that CC genotype was statistically significantly higher among patients with retinopathy compared to nephropathy. Patients with nephropathy had significant association with the TT genotype when compared with diabetic retinopathy patients. Follow up study after the genotype detection among recently diagnosed diabetic patients in order to give a prophylactic aldose reductase inhibitors; studying the microvascular complications and its relation to the genotype polymorphisms. The study may include multiple gene polymorphisms to make the relation between the gene and the occurrence of these complications more evident.

  3. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy.

    Science.gov (United States)

    Farrow, Scott C; Hagel, Jillian M; Beaudoin, Guillaume A W; Burns, Darcy C; Facchini, Peter J

    2015-09-01

    The gateway to morphine biosynthesis in opium poppy (Papaver somniferum) is the stereochemical inversion of (S)-reticuline since the enzyme yielding the first committed intermediate salutaridine is specific for (R)-reticuline. A fusion between a cytochrome P450 (CYP) and an aldo-keto reductase (AKR) catalyzes the S-to-R epimerization of reticuline via 1,2-dehydroreticuline. The reticuline epimerase (REPI) fusion was detected in opium poppy and in Papaver bracteatum, which accumulates thebaine. In contrast, orthologs encoding independent CYP and AKR enzymes catalyzing the respective synthesis and reduction of 1,2-dehydroreticuline were isolated from Papaver rhoeas, which does not accumulate morphinan alkaloids. An ancestral relationship between these enzymes is supported by a conservation of introns in the gene fusions and independent orthologs. Suppression of REPI transcripts using virus-induced gene silencing in opium poppy reduced levels of (R)-reticuline and morphinan alkaloids and increased the overall abundance of (S)-reticuline and its O-methylated derivatives. Discovery of REPI completes the isolation of genes responsible for known steps of morphine biosynthesis.

  4. Pärandihoidja 2009 / kommenteerivad Helgi Põllo, Aldo Järvsoo

    Index Scriptorium Estoniae

    2010-01-01

    13. veebruaril toimus käsitööliidu Pärandihoidja auhinna üleandmine ning pidulik vastuvõtt ja moeetendus Estonia talveaias. Auhinna pälvisid Eevi Astel, Helgi Põllo, Aldo Järvsoo. Sisaldab lühiintervjuusid A. Järvsoo ja H. Põlloga

  5. Ketopantoyl lactone reductase is a conjugated polyketone reductase.

    Science.gov (United States)

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-03-01

    Ketopantoyl lactone reductase (EC 1.1.1.168) of Saccharomyces cerevisiae was found to catalyze the reduction of a variety of natural and unnatural conjugated polyketone compounds and quinones, such as isatin, ninhydrin, camphorquinone and beta-naphthoquinone in the presence of NADPH. 5-Bromoisatin is the best substrate for the enzyme (Km = 3.1 mM; Vmax = 650 mumol/min/mg). The enzyme is inhibited by quercetin, and several polyketones. These results suggest that ketopantoyl lactone reductase is a carbonyl reductase which specifically catalyzes the reduction of conjugated polyketones.

  6. Bioactive constituents from Chinese natural medicines. XXXII. aminopeptidase N and aldose reductase inhibitors from Sinocrassula indica: structures of sinocrassosides B(4), B(5), C(1), and D(1)-D(3).

    Science.gov (United States)

    Morikawa, Toshio; Xie, Haihui; Wang, Tao; Matsuda, Hisashi; Yoshikawa, Masayuki

    2008-10-01

    From the methanolic extract of the whole plant of Sinocrassula indica (Crassulaceae), six new flavonol glycosides, sinocrassosides B(4) (1), B(5) (2), C(1) (3), D(1) (4), D(2) (5), and D(3) (6), were isolated together with 30 compounds. The structures of 1-6 were elucidated on the basis of chemical and physicochemical evidence. In addition, several constituents were found to show inhibitory effects on aminopeptidase N and aldose reductase.

  7. Theoretical investigation on hydrogen bond interaction of diketo/keto-enol form uracil and thymine tautomers with intercalators.

    Science.gov (United States)

    Anithaa, V S; Vijayakumar, S; Sudha, M; Shankar, R

    2017-11-06

    The interaction of diketo and keto-enol form of thymine and uracil tautomers with acridine (Acr), phenazine (Phen), benzo[c]cinnoline (Ben), 1,10-phenanthroline (1,10-Phe), and 4,7-phenenthroline (4,7-Phe) intercalating drug molecules was studied using density functional theory at B3LYP/6-311++G** and M05-2×/6-311++G** levels of theory. From the interaction energy, it is found that keto-enol form tautomers have stronger interaction with intercalators than diketone form tautomers. On complex formation of thymine and uracil tautomers with benzo[c]cinnoline the drug molecules have high interaction energy values of -20.14 (BenT3) and -20.55 (BenU3) kcal mol -1 , while phenazine has the least interaction energy values of -6.52 (PhenT2) and -6.67 (PhenU2) kcal mol -1 . The closed shell intermolecular type interaction between the molecules with minimum elliptical value of 0.018 and 0.019 a.u at both levels of theory has been found from topological analysis. The benzo[c]cinnoline drug molecule with thymine and uracil tautomers has short range intermolecular N-H…N, C-H…O, and O-H...N hydrogen bonds (H-bonds) resulting in higher stability than other drug molecules. The proper hydrogen bonds N-H..N and O-H..N have the frequency shifted toward the lower side (red shifted) with the elongation in their bond length while the improper hydrogen bond C-H...O has the frequency shifted toward the higher side (blue shifted) of the spectral region with the contraction in their bond length. Further, the charge transfer between proton acceptor and donor along with stability of the bond is studied using natural bond orbital (NBO) analysis. Graphical abstract Hydrogen bond interaction of diketo/keto-enol form uracil and thymine tautomers with intercalators.

  8. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c

    Directory of Open Access Journals (Sweden)

    Alejandro K. Samhan-Arias

    2018-05-01

    Full Text Available In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b5 reductase was measured. Complex formation between both proteins suggests that cytochrome b5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death.

  9. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.

    Science.gov (United States)

    Zhao, Xianxian; Tang, Juan; Wang, Xu; Yang, Ruoheng; Zhang, Xiaoping; Gu, Yunfu; Li, Xi; Ma, Menggen

    2015-05-01

    Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    Science.gov (United States)

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-09-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes.

  11. The effect and clinical significance of Shuxuetong injection on the changes of plasma TXB2 and 6-Keto-PGF1α levels in patients after hip orthopedic operation

    International Nuclear Information System (INIS)

    Mao Zhaoguang; Xu Shenggen; Wu Qingxin; Zhu Huihua; Liu Bingsheng; Yu Binwei; Xu Shang'ao; Zheng Yihua

    2011-01-01

    Objective: To investigate shuxuetong injection on the changes of thromboxane B 2 (TXB 2 ) and 6-keto-prostacyclin(6-Keto-PGF 1α ) levels on the patients after hip orthopedic operation and its clinical significance. Methods: 50 hip orthopedic surgery patients were randomly divided into the shuxuetong group and the low-molecular-weight heparin (LMWH) group. Both groups were treated with conventional therapy. Shuxuetong group were 23 cases, including 7 cases of total hip replacement (THR), 16 patients of internal fixation after hip fracture. Each patient were given Shuxuetong intravenous injection 6 ml once a day, LMWH group contain 27 patients, including 9 cases of total hip replacement(THR), 18 patients of applying internal fixation to hip fracture. Each patient was given LMWH 5000 IU subcutaneously once daily. Both groups were treated for 14 days. In the day of surgery and the morning after therapy,fasting venous blood were collected respectively. The levels of plasma TXB 2 and 6-Keto-PGF 1α were measured by radioimmunoassay. Seven days after the surgery, patients in both groups were given low extremity venography examination. The changes of TXB 2 , 6-Keto-PGF 1α level and the incidence of lower extremity deep vein thrombosis (DVT) between two groups were compared before and after treatment. Results: The levels of TXB 2 and 6-Keto-PGF 1α is not mach significant difference between the two groups before treatment (P>0.05). After treatment,the increased of 6-Keto-PGF 1α and the decreased of TXB 2 were statistically significant difference (P 1α level of LMWH group was significantly higher after the treatment (P 2 had no obvious difference (P>0.05). The levels of TXB 2 and 6-Keto-PGF 1α was significant difference between the two groups after treatment(P 0.05). Two groups were not found more intraoperative and postoperative bleeding and the consequent adverse reactions. Conclusion: Shuxuetong injection adjust the plasma TXB 2 /6-Keto-PGF 1α balance after hip

  12. Biotransformation and bioactivation reactions - 2015 literature highlights.

    Science.gov (United States)

    Baillie, Thomas A; Dalvie, Deepak; Rietjens, Ivonne M C M; Cyrus Khojasteh, S

    2016-05-01

    Since 1972, Drug Metabolism Reviews has been recognized as one of the principal resources for researchers in pharmacological, pharmaceutical and toxicological fields to keep abreast of advances in drug metabolism science in academia and the pharmaceutical industry. With a distinguished list of authors and editors, the journal covers topics ranging from relatively mature fields, such as cytochrome P450 enzymes, to a variety of emerging fields. We hope to continue this tradition with the current compendium of mini-reviews that highlight novel biotransformation processes that were published during the past year. Each review begins with a summary of the article followed by our comments on novel aspects of the research and their biological implications. This collection of highlights is not intended to be exhaustive, but rather to be illustrative of recent research that provides new insights or approaches that advance the field of drug metabolism. Abbreviations NAPQI N-acetyl-p-benzoquinoneimine ALDH aldehyde dehydrogenase AO aldehyde oxidase AKR aldo-keto reductase CES carboxylesterase CSB cystathionine β-synthase CSE cystathionine γ-lyase P450 cytochrome P450 DHPO 2,3-dihydropyridin-4-one ESI electrospray FMO flavin monooxygenase GSH glutathione GSSG glutathione disulfide ICPMS inductively coupled plasma mass spectrometry i.p. intraperitoneal MDR multidrug-resistant NNAL 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol NNK 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone oaTOF orthogonal acceleration time-of-flight PBK physiologically based kinetic PCP pentachlorophenol SDR short-chain dehydrogenase/reductase SULT sulfotransferase TB tuberculosis.

  13. Methyl Jasmonate: Putative Mechanisms of Action on Cancer Cells Cycle, Metabolism, and Apoptosis

    Directory of Open Access Journals (Sweden)

    Italo Mario Cesari

    2014-01-01

    Full Text Available Methyl jasmonate (MJ, an oxylipid that induces defense-related mechanisms in plants, has been shown to be active against cancer cells both in vitro and in vivo, without affecting normal cells. Here we review most of the described MJ activities in an attempt to get an integrated view and better understanding of its multifaceted modes of action. MJ (1 arrests cell cycle, inhibiting cell growth and proliferation, (2 causes cell death through the intrinsic/extrinsic proapoptotic, p53-independent apoptotic, and nonapoptotic (necrosis pathways, (3 detaches hexokinase from the voltage-dependent anion channel, dissociating glycolytic and mitochondrial functions, decreasing the mitochondrial membrane potential, favoring cytochrome c release and ATP depletion, activating pro-apoptotic, and inactivating antiapoptotic proteins, (4 induces reactive oxygen species mediated responses, (5 stimulates MAPK-stress signaling and redifferentiation in leukemia cells, (6 inhibits overexpressed proinflammatory enzymes in cancer cells such as aldo-keto reductase 1 and 5-lipoxygenase, and (7 inhibits cell migration and shows antiangiogenic and antimetastatic activities. Finally, MJ may act as a chemosensitizer to some chemotherapics helping to overcome drug resistant. The complete lack of toxicity to normal cells and the rapidity by which MJ causes damage to cancer cells turn MJ into a promising anticancer agent that can be used alone or in combination with other agents.

  14. Quorum Sensing Inhibition and Structure–Activity Relationships of β-Keto Esters

    Directory of Open Access Journals (Sweden)

    Stephanie Forschner-Dancause

    2016-07-01

    Full Text Available Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS—a cell-cell communication system in bacteria—controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure–activity relationships needed to allow for the development of novel anti-virulence agents.

  15. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    International Nuclear Information System (INIS)

    Cort, John R.; Cho, Herman M.

    2009-01-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  16. Genome sequence analysis of predicted polyprenol reductase gene from mangrove plant kandelia obovata

    Science.gov (United States)

    Basyuni, M.; Sagami, H.; Baba, S.; Oku, H.

    2018-03-01

    It has been previously reported that dolichols but not polyprenols were predominated in mangrove leaves and roots. Therefore, the occurrence of larger amounts of dolichol in leaves of mangrove plants implies that polyprenol reductase is responsible for the conversion of polyprenol to dolichol may be active in mangrove leaves. Here we report the early assessment of probably polyprenol reductase gene from genome sequence of mangrove plant Kandelia obovata. The functional assignment of the gene was based on a homology search of the sequences against the non-redundant (nr) peptide database of NCBI using Blastx. The degree of sequence identity between DNA sequence and known polyprenol reductase was confirmed using the Blastx probability E-value, total score, and identity. The genome sequence data resulted in three partial sequences, termed c23157 (700 bp), c23901 (960 bp), and c24171 (531 bp). The c23157 gene showed the highest similarity (61%) to predicted polyprenol reductase 2- like from Gossypium raimondii with E-value 2e-100. The second gene was c23901 to exhibit high similarity (78%) to the steroid 5-alpha-reductase Det2 from J. curcas with E-value 2e-140. Furthermore, the c24171 gene depicted highest similarity (79%) to the polyprenol reductase 2 isoform X1 from Jatropha curcas with E- value 7e-21.The present study suggested that the c23157, c23901, and c24171, genes may encode predicted polyprenol reductase. The c23157, c23901, c24171 are therefore the new type of predicted polyprenol reductase from K. obovata.

  17. Characterization of the Canine Anthracycline-Metabolizing Enzyme Carbonyl Reductase 1 (cbr1) and the Functional Isoform cbr1 V218.

    Science.gov (United States)

    Ferguson, Daniel C; Cheng, Qiuying; Blanco, Javier G

    2015-07-01

    The anthracyclines doxorubicin and daunorubicin are used in the treatment of various human and canine cancers, but anthracycline-related cardiotoxicity limits their clinical utility. The formation of anthracycline C-13 alcohol metabolites (e.g., doxorubicinol and daunorubicinol) contributes to the development of anthracycline-related cardiotoxicity. The enzymes responsible for the synthesis of anthracycline C-13 alcohol metabolites in canines remain to be elucidated. We hypothesized that canine carbonyl reductase 1 (cbr1), the homolog of the prominent anthracycline reductase human CBR1, would have anthracycline reductase activity. Recombinant canine cbr1 (molecular weight: 32.8 kDa) was purified from Escherichia coli. The enzyme kinetics of "wild-type" canine cbr1 (cbr1 D218) and a variant isoform (cbr1 V218) were characterized with the substrates daunorubicin and menadione, as well as the flavonoid inhibitor rutin. Canine cbr1 catalyzes the reduction of daunorubicin to daunorubicinol, with cbr1 D218 and cbr1 V218 displaying different kinetic parameters (cbr1 D218 Km: 188 ± 144 μM versus cbr1 V218 Km: 527 ± 136 μM, P < 0.05, and cbr1 D218 Vmax: 6446 ± 3615 nmol/min per milligram versus cbr1 V218 Vmax: 15539 ± 2623 nmol/min per milligram, P < 0.01). Canine cbr1 also metabolized menadione (cbr1 D218 Km: 104 ± 50 μM, Vmax: 2034 ± 307 nmol/min per milligram). Rutin acted as a competitive inhibitor for the reduction of daunorubicin (cbr1 D218 Ki: 1.84 ± 1.02 μM, cbr1 V218 Ki: 1.38 ± 0.47 μM). These studies show that canine cbr1 metabolizes daunorubicin and provide the necessary foundation to characterize the role of cbr1 in the variable pharmacodynamics of anthracyclines in canine cancer patients. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  19. Loss of HMG-CoA reductase in C. elegans causes defects in protein prenylation and muscle mitochondria.

    Directory of Open Access Journals (Sweden)

    Parmida Ranji

    Full Text Available HMG-CoA reductase is the rate-limiting enzyme in the mevalonate pathway and the target of cholesterol-lowering statins. We characterized the C. elegans hmgr-1(tm4368 mutant, which lacks HMG-CoA reductase, and show that its phenotypes recapitulate that of statin treatment, though in a more severe form. Specifically, the hmgr-1(tm4368 mutant has defects in growth, reproduction and protein prenylation, is rescued by exogenous mevalonate, exhibits constitutive activation of the UPRer and requires less mevalonate to be healthy when the UPRmt is activated by a constitutively active form of ATFS-1. We also show that different amounts of mevalonate are required for different physiological processes, with reproduction requiring the highest levels. Finally, we provide evidence that the mevalonate pathway is required for the activation of the UPRmt.

  20. HPLC Determination of α-Keto Acids from Human Serum Using 2, 3-Diamino-2, 3- Dimethyl Butane as Derivatizing Reagent

    International Nuclear Information System (INIS)

    Mahar, K.P.; Shar, G.Q.; Khuhawar, M.Y.; Abbasi, K.U.; Azmat, R.; Jameel Ahmed Biag, J.A.

    2013-01-01

    Seven α-keto acids, pyruvic acid (PYR), 2-oxobutyric acid (KB), 3-methyl-2-oxobutyric acid (MKBA), 3-methyl-2-oxovaleric acid (K3MVA), 4-methyl-2-oxovaleric acid (K4MVA), 2-oxoglutaric acid (KG) and Phenyl pyruvic acid (PPY) as derivatives of 2,3-diamino-2,3-dimethybutane (DDB) were separated by HPLC column Zorbax C-18 (4.6x150 mm-id). The compounds were eluted with methanol-water-acetonitrile (40:58:2 V/V/V) with flow rate 1 ml/min. UV detection was carried out by photodiode array at 255 nm. Linear calibration plots were obtained with 0.1 to 60 μg/ml with limits of detection (LoD) within 0.04-0.4 μg/ml. The method was applied for the analysis of α-keto acids from serum of diabetic patients with blood glucose level 430-458 mg/dl and healthy volunteers. The amounts of α-keto acids observed 3.24-9.71 μg/ml with RSD 1.1-1.9 percentage in diabetic patients were higher than healthy volunteer's 0.11-1.3 μg/ml with RSD 0.9-2.6 percentage. (author)

  1. Characterizing the Lunar Particulate Atmosphere with the Autonomous Lunar Dust Observer (ALDO)

    Science.gov (United States)

    Grund, C. J.; Colwell, J. A.

    2008-07-01

    Photoelectric effects and solar wind charge the lunar surface, levitating particles. ALDO maps suspended dust in 3D using lidar. Phenomenology and instrument modeling, applications, projected performance and concepts of operation are discussed.

  2. Major urinary metabolites of 6-keto-prostaglandin F2α in mice[S

    Science.gov (United States)

    Kuklev, Dmitry V.; Hankin, Joseph A.; Uhlson, Charis L.; Hong, Yu H.; Murphy, Robert C.; Smith, William L.

    2013-01-01

    Western diets are enriched in omega-6 vs. omega-3 fatty acids, and a shift in this balance toward omega-3 fatty acids may have health benefits. There is limited information about the catabolism of 3-series prostaglandins (PG) formed from eicosapentaenoic acid (EPA), a fish oil omega-3 fatty acid that becomes elevated in tissues following fish oil consumption. Quantification of appropriate urinary 3-series PG metabolites could be used for noninvasive measurement of omega-3 fatty acid tone. Here we describe the preparation of tritium- and deuterium-labeled 6-keto-PGF2α and their use in identifying urinary metabolites in mice using LC-MS/MS. The major 6-keto-PGF2α urinary metabolites included dinor-6-keto-PGF2α (∼10%) and dinor-13,14-dihydro-6,15-diketo-PGF1α (∼10%). These metabolites can arise only from the enzymatic conversion of EPA to the 3-series PGH endoperoxide by cyclooxygenases, then PGI3 by prostacyclin synthase and, finally, nonenzymatic hydrolysis to 6-keto-PGF2α. The 6-keto-PGF derivatives are not formed by free radical mechanisms that generate isoprostanes, and thus, these metabolites provide an unbiased marker for utilization of EPA by cyclooxygenases. PMID:23644380

  3. NADPH-Thioredoxin Reductase C Mediates the Response to Oxidative Stress and Thermotolerance in the Cyanobacterium Anabaena sp PCC7120

    NARCIS (Netherlands)

    Sanchez-Riego, Ana M.; Mata-Cabana, Alejandro; Galmozzi, CarlaV.; Florencio, Francisco J.

    2016-01-01

    NADPH-thioredoxin reductase C (NTRC) is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thiioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of

  4. Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase and accumulation of gamma-hydroxybutyrate associated with its deficiency

    Directory of Open Access Journals (Sweden)

    Malaspina Patrizia

    2009-01-01

    Full Text Available Abstract Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22 occupies a central position in central nervous system (CNS neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2, represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH or γ-hydroxybutyrate (GHB; AKR7A2. A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE, an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE. Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue.

  5. A New Type of YumC-Like Ferredoxin (Flavodoxin) Reductase Is Involved in Ribonucleotide Reduction

    DEFF Research Database (Denmark)

    Chen, Jun; Shen, Jing; Solem, Christian

    2015-01-01

    . subtilis but that the addition of deoxynucleosides cannot compensate for the lethal phenotype displayed by the B. subtilis yumC knockout mutant. Ferredoxin (flavodoxin) reductase (FdR) is involved in many important reactions in both eukaryotes and prokaryotes, such as photosynthesis, nitrate reduction, etc. The recently...... ribonucleotide reductase, which represents the workhorse for the bioconversion of nucleotides to deoxynucleotides in many prokaryotes and eukaryotic pathogens under aerobic conditions. As the partner of the flavodoxin (NrdI), the key FdR is missing in the current model describing the class Ib system...

  6. Influence of acute and chronic administration of methadone hydrochloride on NADPH-cytochrome c reductase and cytochrome P-450 of mouse liver microsomes.

    Science.gov (United States)

    Datta, R K; Johnson, E A; Bhattacharjee, G; Stenger, R J

    1976-03-01

    Administration of a single acute dose (20 mg/kg body weight) of methadone hydrochloride to both male and female mice increased the specific activity of NADPH-cytochrome c reductase and did not change much the content of cytochrome P-450 of their liver microsomes. Administration of multiple acute doses of methadone in male mice increased the specific activity of cytochrome c reductase and the content of cytochrome P-450 of their liver microsomes. Chronic administration of progressively increasing doses of methadone (up to 40 mg/kg body weight) to male mice increased the specific activity of c reductase. Similar chronic administration of methadone up to 28 mg/kg body weight also increased the microsomal content of P-450, but with higher doses of methadone, the content of P-450 declined and finally dropped slightly below control levels. The levels of c reductase activity and P-450 content returned to normal about two weeks after discontinuation of methadone administration.

  7. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    Directory of Open Access Journals (Sweden)

    Giuseppe eForlani

    2015-07-01

    Full Text Available The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L. for δ1-pyrroline-5-carboxylate (P5C reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in E. coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. Based on the structure, it was possible to identify dynamic structural differences among rice, human and bacterial enzymes.

  8. A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans.

    Science.gov (United States)

    Yu, Qilin; Dong, Yijie; Xu, Ning; Qian, Kefan; Chen, Yulu; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2014-11-01

    Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases. Iron acquisition is an important factor for pathogen-host interaction and also a significant element for the pathogenicity of this organism. Ferric reductases, which convert ferric iron into ferrous iron, are important components of the high-affinity iron uptake system. Sequence analyses have identified at least 17 putative ferric reductase genes in C. albicans genome. CFL1 was the first ferric reductase identified in C. albicans. However, little is known about its roles in C. albicans physiology and pathogenicity. In this study, we found that disruption of CFL1 led to hypersensitivity to chemical and physical cell wall stresses, activation of the cell wall integrity (CWI) pathway, abnormal cell wall composition, and enhanced secretion, indicating a defect in CWI in this mutant. Moreover, this mutant showed abnormal mitochondrial activity and morphology, suggesting a link between ferric reductases and mitochondrial function. In addition, this mutant displayed decreased ability of adhesion to both the polystyrene microplates and buccal epithelial cells and invasion of host epithelial cells. These findings revealed a novel role of C. albicans Cfl1 in maintenance of CWI, mitochondrial function, and interaction between this pathogen and the host. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Ceramide Production Mediates Aldosterone-Induced Human Umbilical Vein Endothelial Cell (HUVEC Damages.

    Directory of Open Access Journals (Sweden)

    Yumei Zhang

    Full Text Available Here, we studied the underlying mechanism of aldosterone (Aldo-induced vascular endothelial cell damages by focusing on ceramide. We confirmed that Aldo (at nmol/L inhibited human umbilical vein endothelial cells (HUVEC survival, and induced considerable cell apoptosis. We propose that ceramide (mainly C18 production might be responsible for Aldo-mediated damages in HUVECs. Sphingosine-1-phosphate (S1P, an anti-ceramide lipid, attenuated Aldo-induced ceramide production and following HUVEC damages. On the other hand, the glucosylceramide synthase (GCS inhibitor PDMP or the ceramide (C6 potentiated Aldo-induced HUVEC apoptosis. Eplerenone, a mineralocorticoid receptor (MR antagonist, almost completely blocked Aldo-induced C18 ceramide production and HUVEC damages. Molecularly, ceramide synthase 1 (CerS-1 is required for C18 ceramide production by Aldo. Knockdown of CerS-1 by targeted-shRNA inhibited Aldo-induced C18 ceramide production, and protected HUVECs from Aldo. Reversely, CerS-1 overexpression facilitated Aldo-induced C18 ceramide production, and potentiated HUVEC damages. Together, these results suggest that C18 ceramide production mediates Aldo-mediated HUVEC damages. MR and CerS-1 could be the two signaling molecule regulating C18 ceramide production by Aldo.

  10. Site specific incorporation of keto amino acids into proteins

    Science.gov (United States)

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  11. Een traditie herneemt zich - Over het belang van Aldo van Eyck

    NARCIS (Netherlands)

    Colenbrander, B.J.F.

    1997-01-01

    Zo'n zeven, acht jaar geleden veranderde Aldo van Eyck, overigens bij leven en welzijn, van een lijfelijk deelnemer aan de architectuurdiscussie in een historische figuur. Hij werd verguisd en gelauwerd. Met de Rekenkamer in Den Haag echter doet Van Eyck lang vergeten manifesten herleven. Gloort er

  12. Methylenetetrahydrofolate reductase A1298C genetic variant& risk of schizophrenia: A meta-analysis.

    Science.gov (United States)

    Rai, Vandana; Yadav, Upendra; Kumar, Pradeep; Yadav, Sushil K; Gupta, Sanjay

    2017-04-01

    Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme of folate metabolism, whose role in schizophrenia is debatable. Numerous case-control studies have investigated the association of MTHFR A1298C polymorphism with schizophrenia, but results are controversial. The aim of the present study was to find the association between MTHFR A1298C gene polymorphism and schizophrenia. PubMed, Google Scholar, Science Direct and Springer link databases were searched for case-control association studies in which MTHFR A1298C polymorphism was investigated as a risk factor for schizophrenia. In all, 19 studies with 4049 cases and 5488 controls were included in this meta-analysis. Odds ratios (ORs) with 95 per cent confidence intervals (CIs) were used as an association measure. The results of meta-analysis reported a significant association between A1298C polymorphism and schizophrenia risk in overall comparisons in all genetic models (C vs. A: OR=1.13, 95% CI=1.01-1.27, P=0.02; CC vs. AA: OR=1.20, 95% CI=1.03-1.39, P=0.02; AC vs. AA: OR=1.13, 95% CI=1.03-1.23, P=0.009; AC+CC vs. AA: OR=1.14, 95% CI=1.02-1.24, P=0.002; CC vs. AA+AC: OR=1.17, 95% CI=1.01-1.35, P=0.04). MTHFR A1298C polymorphism was found to be a risk factor for schizophrenia and might have played a significant role in the pathogenesis of schizophrenia.

  13. Stereocontrolled reduction of alpha- and beta-keto esters with micro green algae, Chlorella strains.

    Science.gov (United States)

    Ishihara, K; Yamaguchi, H; Adachi, N; Hamada, H; Nakajima, N

    2000-10-01

    The stereocontrolled reduction of alpha- and beta-keto esters using micro green algae was accomplished by a combination of the cultivation method and the introduction of an additive. The reduction of ethyl pyruvate and ethyl benzoylformate by the photoautotrophically cultivated Chlorella sorokiniana gave the corresponding alcohol in high e.e. (>99% e.e. (S) and >99% e.e. (R), respectively). In the presence of glucose as an additive, the reduction of ethyl 3-methyl-2-oxobutanoate by the heterotrophically cultivated C. sorokiniana afforded the corresponding (R)-alcohol. On the other hand, the reduction in the presence of ethyl propionate gave the (S)-alcohol. Ethyl 2-methyl-3-oxobutanoate was reduced in the presence of glycerol by the photoautotrophically cultivated C. sorokiniana or the heterotrophically cultivated C. sorokiniana to the corresponding syn-(2R,3S)-hydroxy ester with high diastereo- and enantiomeric excess (e.e.). Some additives altered the stereochemical course in the reduction of alpha- and beta-keto esters.

  14. Effect of low-protein diet supplemented with keto acids on progression of chronic kidney disease.

    Science.gov (United States)

    Garneata, Liliana; Mircescu, Gabriel

    2013-05-01

    Hypoproteic diets are most often discussed for patients with chronic kidney disease (CKD) who do not receive dialysis. A very low-protein diet supplemented with ketoanalogues of essential amino acids (keto-diet) proved effective in ameliorating metabolic disturbances of advanced CKD and delaying the initiation of dialysis without deleterious effects on nutritional status. Several recent studies report that the keto-diet could also slow down the rate of decline in renal function, with better outcomes after the initiation of dialysis. Results of a single-center randomized controlled trial addressing the rate of CKD progression revealed a 57% slower decline in renal function with the keto-diet compared with a conventional low-protein diet (LPD). The keto-diet allowed the safe management of selected patients with stage 4-5 CKD, delaying dialysis for almost 1 year, with a major impact on patient quality of life and health expenditures. Therefore, the keto-diet could be a link in the integrated care model. Careful selection of patients, nutritional monitoring, and dietary counseling are required. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  15. Oskari juht loovutab peagi vastvõidetud aktsiapaki / Aldo Parik ; interv. Hans Väre

    Index Scriptorium Estoniae

    Parik, Aldo

    2007-01-01

    Saarepeedil tegutseva lihatööstuse Oskar tegevjuht ja omanik Aldo Parik suurendas oma osalust 100%-ni, kuid kavatseb lähiajal aktsiate kontrollpakist loobuda. Lisa: Taust. Arvamust avaldab Wõro Kommertsi juhatuse esimees Kaido Kaare

  16. To Learn Is To Grow, I: Aldo Leopold, Predator Eradication, and Games Refuges.

    Science.gov (United States)

    Dolph, Gary E.

    1998-01-01

    Follows the evolution in the thinking of Aldo Leopold, a game manager who was initially an advocate of predator eradication but who came to see predators as playing an important role in normally functioning ecosystems. (DDR)

  17. De novo Sequencing and Analysis of Lemongrass Transcriptome Provides First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Directory of Open Access Journals (Sweden)

    Seema Meena

    2016-07-01

    Full Text Available Aromatic grasses of the genus Cymbopogon (Poaceae family represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavour, fragrance, cosmetic and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step towards understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases (TPS, pyrophosphatases (PPase, alcohol dehydrogenases (ADH, aldo-keto reductases (AKR, carotenoid cleavage dioxygenases (CCD, alcohol acetyltransferases (AAT and aldehyde dehydrogenases (ALDH, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes and acetates. Molecular modeling and docking further supported the role of identified enzymes in aroma formation in Cymbopogon. Also, simple sequence repeats (SSRs were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  18. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R.; Venkata Rao, D. K.; Dwivedi, Varun; Shilpashree, H. B.; Rastogi, Shubhra; Shasany, Ajit K.; Nagegowda, Dinesh A.

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition. PMID:27516768

  19. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses.

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R; Venkata Rao, D K; Dwivedi, Varun; Shilpashree, H B; Rastogi, Shubhra; Shasany, Ajit K; Nagegowda, Dinesh A

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  20. An Ecological Probe into Land Ethics by Aldo Leopold

    Institute of Scientific and Technical Information of China (English)

    白虎跃

    2015-01-01

    Aldo Leopold has gained considerable repute as the initiator of eco-conservationism and been globally known as the father of American wilderness governance.“Land ethics”,which possesses paramount importance to eco-systems,is brought forth in his Sand Country Almanac.This thesis mainly touches upon the engendering,contents and significance of the thoughts to nowadays society by means of which the contemporary values of ecological civilization embodied in“land ethics”can be concluded provokingly.

  1. Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L

    DEFF Research Database (Denmark)

    Silvestro, Daniele; Andersen, Tonni Grube; Schaller, Hubert

    2013-01-01

    in the corresponding enzymes. All fusion proteins were found to localize in the endoplasmic reticulum in functionally complemented plants. The results show that both ¿(5,7)-sterol-¿(7)-reductase and ¿(24)-sterol-¿(24)-reductase are in addition localized to the plasma membrane, whereas ¿(7)-sterol-C(5)-desaturase......Sterols are crucial lipid components that regulate membrane permeability and fluidity and are the precursors of bioactive steroids. The plant sterols exist as three major forms, free sterols, steryl glycosides and steryl esters. The storage of steryl esters in lipid droplets has been shown...... to contribute to cellular sterol homeostasis. To further document cellular aspects of sterol biosynthesis in plants, we addressed the question of the subcellular localization of the enzymes implicated in the final steps of the post-squalene biosynthetic pathway. In order to create a clear localization map...

  2. Homocysteine and the methylenetetrahydrofolate reductase 677C-->T polymorphism in relation to muscle mass and strength, physical performance and postural sway

    NARCIS (Netherlands)

    Swart, K. M. A.; Enneman, A. W.; van Wijngaarden, J. P.; van Dijk, S. C.; Brouwer-Brolsma, E. M.; Ham, A. C.; Dhonukshe-Rutten, R. A. M.; van der Velde, N.; Brug, J.; van Meurs, J. B. J.; de Groot, L. C. P. G. M.; Uitterlinden, A. G.; Lips, P.; van Schoor, N. M.

    2013-01-01

    Elevated plasma homocysteine has been linked to reduced mobility and muscle functioning in the elderly. The relation of methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism with these associations has not yet been studied. This study aimed to investigate (1) the association of plasma

  3. Crystallization and diffraction analysis of thioredoxin reductase from Streptomyces coelicolor

    International Nuclear Information System (INIS)

    Koháryová, Michaela; Brynda, Jiří; Řezáčová, Pavlína; Kollárová, Marta

    2011-01-01

    Thioredoxin reductase from S. coelicolor was crystallized and diffraction data were collected to 2.4 Å resolution. Thioredoxin reductases are homodimeric flavoenzymes that catalyze the transfer of electrons from NADPH to oxidized thioredoxin substrate. Bacterial thioredoxin reductases represent a promising target for the development of new antibiotics. Recombinant thioredoxin reductase TrxB from Streptomyces coelicolor was crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from cryocooled crystals to 2.4 Å resolution using a synchrotron-radiation source. The crystals belonged to the primitive monoclinic space group P2 1 , with unit-cell parameters a = 82.9, b = 60.6, c = 135.4 Å, α = γ = 90.0, β = 96.5°

  4. Brevetoxin-2, is a unique inhibitor of the C-terminal redox center of mammalian thioredoxin reductase-1.

    Science.gov (United States)

    Chen, Wei; Tuladhar, Anupama; Rolle, Shantelle; Lai, Yanhao; Rodriguez Del Rey, Freddy; Zavala, Cristian E; Liu, Yuan; Rein, Kathleen S

    2017-08-15

    Karenia brevis, the Florida red tide dinoflagellate produces a suite of neurotoxins known as the brevetoxins. The most abundant of the brevetoxins PbTx-2, was found to inhibit the thioredoxin-thioredoxin reductase system, whereas the PbTx-3 has no effect on this system. On the other hand, PbTx-2 activates the reduction of small disulfides such as 5,5'-dithio-bis-(2-nitrobenzoic acid) by thioredoxin reductase. PbTx-2 has an α, β-unsaturated aldehyde moiety which functions as an efficient electrophile and selenocysteine conjugates are readily formed. PbTx-2 blocks the inhibition of TrxR by the inhibitor curcumin, whereas curcumin blocks PbTx-2 activation of TrxR. It is proposed that the mechanism of inhibition of thioredoxin reduction is via the formation of a Michael adduct between selenocysteine and the α, β-unsaturated aldehyde moiety of PbTx-2. PbTx-2 had no effect on the rates of reactions catalyzed by related enzymes such as glutathione reductase, glutathione peroxidase or glutaredoxin. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Liquid-chromatography mass spectrometry (LC-MS) of steroid hormone metabolites and its applications

    Science.gov (United States)

    Penning, Trevor M.; Lee, Seon-Hwa; Jin, Yi; Gutierrez, Alejandro; Blair, Ian A.

    2010-01-01

    Advances in liquid chromatography-mass spectrometry (LC-MS) can be used to measure steroid hormone metabolites in vitro and in vivo. We find that LC-Electrospray Ionization (ESI)-MS using a LCQ ion trap mass spectrometer in the negative ion mode can be used to monitor the product profile that results from 5α–dihydrotestosterone(DHT)-17β-glucuronide, DHT-17β-sulfate, and tibolone-17β-sulfate reduction catalyzed by human members of the aldo-keto reductase (AKR) 1C subfamily and assign kinetic constants to these reactions. We also developed a stable-isotope dilution LC-electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the quantitative analysis of estrone (E1) and its metabolites as pentafluorobenzyl (PFB) derivatives in human plasma in the attomole range. The limit of detection for E1-PFB was 740 attomole on column. Separations can be performed using normal-phase LC because ionization takes place in the gas phase rather than in solution. This permits efficient separation of the regioisomeric 2- and 4-methoxy-E1. The method was validated for the simultaneous analysis of plasma E2 and its metabolites: 2-methoxy-E2, 4-methoxy-E2, 16α-hydroxy-E2, estrone (E1), 2-methoxy-E1, 4-methoxy-EI, and 16α-hydroxy-E1 from 5 pg/mL to 2,000 pg/mL. Our LC-MS methods have sufficient sensitivity to detect steroid hormone levels in prostate and breast tumors and should aid their molecular diagnosis and treatment. PMID:20083198

  6. Leucine-induced activation of translational initiation is partly regulated by the branched-chain α-keto acid dehydrogenase complex in C2C12 cells

    International Nuclear Information System (INIS)

    Nakai, Naoya; Shimomura, Yoshiharu; Tamura, Tomohiro; Tamura, Noriko; Hamada, Koichiro; Kawano, Fuminori; Ohira, Yoshinobu

    2006-01-01

    Branched-chain amino acid leucine has been shown to activate the translational regulators through the mammalian target of rapamycin. However, the leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway. The irreversible and rate-limiting step in the leucine oxidation pathway is catalyzed by the branched-chain α-keto acid dehydrogenase (BCKDH) complex. The complex contains E1 (α2β2), E2, and E3 subunits, and its activity is abolished by phosphorylation of the E1α subunit by BCKDH kinase. The relationship between the activity of BCKDH complex and leucine-mediated activation of the protein translation was investigated using the technique of RNA interference. The activity of BCKDH complex in C2C12 cell was modulated by transfection of small interfering RNA (siRNA) for BCKDH E2 subunit or BCKDH kinase. Transfection of siRNAs decreased the mRNA expression and protein amount of corresponding gene. Suppression of either E2 subunit or kinase produced opposite effects on the cell proliferation and the activation of translational regulators by leucine. Suppression of BCKDH kinase for 48 h resulted in decreasing cell proliferation. In contrast, E2 suppression led to increased amount of total cellular protein. The phosphorylation of p70 S6 kinase by leucine was increased in E2-siRNA transfected C2C12 cells, whereas the leucine's effect was diminished in kinase-siRNA transfected cells. These results suggest that the activation of the translational regulators by leucine was partly regulated by the activity of BCKDH complex

  7. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ke-Wu [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Li, Jun [Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029 (China); Dong, Xin; Wang, Ying-Hong; Ma, Zhi-Zhong; Jiang, Yong; Jin, Hong-Wei [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Tu, Peng-Fei, E-mail: pengfeitu@vip.163.com [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191 (China); Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029 (China)

    2013-11-15

    Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators. Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.

  8. Bioinformatics approach of three partial polyprenol reductase genes in Kandelia obovata

    Science.gov (United States)

    Basyuni, M.; Wati, R.; Sagami, H.; Oku, H.; Baba, S.

    2018-03-01

    This present study describesthe bioinformatics approach to analyze three partial polyprenol reductase genes from mangrove plant, Kandeliaobovataas well aspredictedphysical and chemical properties, potential peptide, subcellular localization, and phylogenetic. The diversity was noted in the physical and chemical properties of three partial polyprenol reductase genes. The values of chloroplast were relatively high, showed that chloroplast transit peptide occurred in mangrove polyprenol reductase. The target peptide value of mitochondria varied from 0.088 to 0.198 indicated it was possible to be present. These results suggested the importance of understanding the diversity of physicochemical properties of the different amino acids in polyprenol reductase. The subcellular localization of two partial genes located in the plasma membrane. To confirm the homology among the polyprenol reductase in the database, a dendrogram was drawn. The phylogenetic tree depicts that there are three clusters, the partial genes of K. obovata joined the largest one: C23157 was close to Ricinus communis polyprenol reductase. Whereas, C23901 and C24171 were grouped with Ipomoea nil polyprenol reductase, suggested that these polyprenol reductase genes form distinct separation into tropical habitat plants.

  9. PER ALDO NOSEDA: IL CRITICO MUSICALE

    Directory of Open Access Journals (Sweden)

    Chiara Fiaccadori

    2014-03-01

    Full Text Available Il presente articolo è un tentativo di fornire la lista completa degli scritti di Aldo Noseda (Milano, 1853-Stresa, 1916 come critico musicale. Fu un erudito conoscitore d’arte e appassionato collezionista, ma la quasi totalità dei suoi scritti sono dedicati alla scena musicale italiana. Prese parte all’infiammato dibattito a proposito della musica strumentale divenendo membro della Società del Quartetto e fondando la Società orchestrale della Scala a Milano. Dal 1876 al 1894, sotto lo pseudonimo de Il Misovulgo fu tra gli editorialisti militanti di importanti periodici come «La Gazzetta musicale di Milano», il «Corriere della Sera» e «Il Caffè», contribuendovi con una serie di appassionate recensioni dei contemporanei eventi musicali milanesi.

  10. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    Directory of Open Access Journals (Sweden)

    Sara H Windahl

    Full Text Available Androgens are important regulators of bone mass but the relative importance of testosterone (T versus dihydrotestosterone (DHT for the activation of the androgen receptor (AR in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2, encoded by separate genes (Srd5a1 and Srd5a2. 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05 and cortical bone mineral content (-15%, p<0.05 but unchanged serum androgen levels compared with wild type (WT mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05 in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05. Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  11. Synthesis of Cyclic α-Diazo-β-keto Sulfoxides in Batch and Continuous Flow.

    Science.gov (United States)

    McCaw, Patrick G; Buckley, Naomi M; Eccles, Kevin S; Lawrence, Simon E; Maguire, Anita R; Collins, Stuart G

    2017-04-07

    Diazo transfer to β-keto sulfoxides to form stable isolable α-diazo-β-keto sulfoxides has been achieved for the first time. Both monocyclic and benzofused ketone derived β-keto sulfoxides were successfully explored as substrates for diazo transfer. Use of continuous flow leads to isolation of the desired compounds in enhanced yields relative to standard batch conditions, with short reaction times, increased safety profile, and potential to scale up.

  12. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    Science.gov (United States)

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  13. Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase

    Directory of Open Access Journals (Sweden)

    Dugas Sandra L

    2003-07-01

    Full Text Available Abstract Background The ars gene system provides arsenic resistance for a variety of microorganisms and can be chromosomal or plasmid-borne. The arsC gene, which codes for an arsenate reductase is essential for arsenate resistance and transforms arsenate into arsenite, which is extruded from the cell. A survey of GenBank shows that arsC appears to be phylogenetically widespread both in organisms with known arsenic resistance and those organisms that have been sequenced as part of whole genome projects. Results Phylogenetic analysis of aligned arsC sequences shows broad similarities to the established 16S rRNA phylogeny, with separation of bacterial, archaeal, and subsequently eukaryotic arsC genes. However, inconsistencies between arsC and 16S rRNA are apparent for some taxa. Cyanobacteria and some of the γ-Proteobacteria appear to possess arsC genes that are similar to those of Low GC Gram-positive Bacteria, and other isolated taxa possess arsC genes that would not be expected based on known evolutionary relationships. There is no clear separation of plasmid-borne and chromosomal arsC genes, although a number of the Enterobacteriales (γ-Proteobacteria possess similar plasmid-encoded arsC sequences. Conclusion The overall phylogeny of the arsenate reductases suggests a single, early origin of the arsC gene and subsequent sequence divergence to give the distinct arsC classes that exist today. Discrepancies between 16S rRNA and arsC phylogenies support the role of horizontal gene transfer (HGT in the evolution of arsenate reductases, with a number of instances of HGT early in bacterial arsC evolution. Plasmid-borne arsC genes are not monophyletic suggesting multiple cases of chromosomal-plasmid exchange and subsequent HGT. Overall, arsC phylogeny is complex and is likely the result of a number of evolutionary mechanisms.

  14. Novel chemical scaffolds of the tumor marker AKR1B10 inhibitors discovered by 3D QSAR pharmacophore modeling.

    Science.gov (United States)

    Kumar, Raj; Son, Minky; Bavi, Rohit; Lee, Yuno; Park, Chanin; Arulalapperumal, Venkatesh; Cao, Guang Ping; Kim, Hyong-ha; Suh, Jung-keun; Kim, Yong-seong; Kwon, Yong Jung; Lee, Keun Woo

    2015-08-01

    Recent evidence suggests that aldo-keto reductase family 1 B10 (AKR1B10) may be a potential diagnostic or prognostic marker of human tumors, and that AKR1B10 inhibitors offer a promising choice for treatment of many types of human cancers. The aim of this study was to identify novel chemical scaffolds of AKR1B10 inhibitors using in silico approaches. The 3D QSAR pharmacophore models were generated using HypoGen. A validated pharmacophore model was selected for virtual screening of 4 chemical databases. The best mapped compounds were assessed for their drug-like properties. The binding orientations of the resulting compounds were predicted by molecular docking. Density functional theory calculations were carried out using B3LYP. The stability of the protein-ligand complexes and the final binding modes of the hit compounds were analyzed using 10 ns molecular dynamics (MD) simulations. The best pharmacophore model (Hypo 1) showed the highest correlation coefficient (0.979), lowest total cost (102.89) and least RMSD value (0.59). Hypo 1 consisted of one hydrogen-bond acceptor, one hydrogen-bond donor, one ring aromatic and one hydrophobic feature. This model was validated by Fischer's randomization and 40 test set compounds. Virtual screening of chemical databases and the docking studies resulted in 30 representative compounds. Frontier orbital analysis confirmed that only 3 compounds had sufficiently low energy band gaps. MD simulations revealed the binding modes of the 3 hit compounds: all of them showed a large number of hydrogen bonds and hydrophobic interactions with the active site and specificity pocket residues of AKR1B10. Three compounds with new structural scaffolds have been identified, which have stronger binding affinities for AKR1B10 than known inhibitors.

  15. Detection Identification and Quantification of Keto-Hydroperoxides in Low-Temperature Oxidation.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nils; Moshammer, Kai; Jasper, Ahren W.

    2017-07-01

    Keto-hydroperoxides are reactive partially oxidized intermediates that play a central role in chain-branching reactions during the low-temperature oxidation of hydrocarbons. In this Perspective, we outline how these short lived species can be detected, identified, and quantified using integrated experimental and theoretical approaches. The procedures are based on direct molecular-beam sampling from reactive environments, followed by mass spectrometry with single-photon ionization, identification of fragmentation patterns, and theoretical calculations of ionization thresholds, fragment appearance energies, and photoionization cross sections. Using the oxidation of neo-pentane and tetrahydrofuran as examples, the individual steps of the experimental approaches are described in depth together with a detailed description of the theoretical efforts. For neo-pentane, the experimental data are consistent with the calculated ionization and fragment appearance energies of the keto-hydroperoxide, thus adding confidence to the analysis routines and the employed levels of theory. For tetrahydrofuran, multiple keto-hydroperoxide isomers are possible due to the presence of nonequivalent O2 addition sites. Despite this additional complexity, the experimental data allow for the identification of two to four keto-hydroperoxides. Mole fraction profiles of the keto-hydroperoxides, which are quantified using calculated photoionization cross sections, are provided together with estimated uncertainties as function of the temperature of the reactive mixture and can serve as validation targets for chemically detailed mechanisms.

  16. Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Kroneck, Peter M H; Zumft, Walter G

    2003-01-01

    Cytochrome cd1 nitrite reductase is a bifunctional multiheme enzyme catalyzing the one-electron reduction of nitrite to nitric oxide and the four-electron reduction of dioxygen to water. Kinetics and thermodynamics of the internal electron transfer process in the Pseudomonas stutzeri enzyme have...... been studied and found to be dominated by pronounced interactions between the c and the d1 hemes. The interactions are expressed both in dramatic changes in the internal electron-transfer rates between these sites and in marked cooperativity in their electron affinity. The results constitute a prime...... example of intraprotein control of the electron-transfer rates by allosteric interactions....

  17. Cooperative use of cytochrome cd1 nitrite reductase and its redox partner cytochrome c552 to improve the selectivity of nitrite biosensing

    International Nuclear Information System (INIS)

    Serra, A.S.; Jorge, S.R.; Silveira, C.M.; Moura, J.J.G.; Jubete, E.; Ochoteco, E.; Cabanero, G.; Grande, H.; Almeida, M.G.

    2011-01-01

    In this work, a novel enzymatic biosensor for determination of nitrites constructed on an electrochemical transducing platform is proposed. The sensor is based on cytochrome-cd 1 (cyt-cd 1 ) nitrite reductase from Marinobacter hydrocarbonoclasticus strain 617 as biological recognition element, and its putative physiological redox partner cytochrome-c 552 (cyt-c 552 ), as electron mediator. The proteins were co-immobilized using a photopolymerizable polyvinyl alcohol (PVA) derivative, onto carbon paste screen printed electrodes (CPSPEs); the optimal modification conditions were 100 μM cyt-cd 1 /100 μM cyt-c 552 and 50% PVA, after a 48 h polymerization time. Electrochemical characterization of the mediator was carried out by cyclic voltammetry. The one-electron exchange between cyt-c 552 and the working electrode is a quasi-reversible process, without mass transport limitations. The formal potential of the mediator is 254 ± 2 mV vs NHE and the intermolecular electron transfer rate constant between cytochromes c 552 and cd 1 is 9.9 x 10 3 M -1 s -1 . The analytical parameters of the biosensor response to nitrite as assessed by amperometric measurements were: linear range from 10 to 200 μM; detection and quantification limits of 7 and 24 μM, respectively; sensitivity of 2.49 ± 0.08 A mol -1 cm 2 μM -1 . Catalytic profiles in the presence of possible interfering species were also investigated. The interference from competitive enzymatic reduction of dissolved oxygen could be overcome by tuning the cyclic voltammograms for faster sweep rates.

  18. Effect of short-term low-protein diet supplemented with keto acids on hyperphosphatemia in maintenance hemodialysis patients.

    Science.gov (United States)

    Li, Haiming; Long, Quan; Shao, Chunhai; Fan, Hong; Yuan, Li; Huang, Bihong; Gu, Yong; Lin, Shanyan; Hao, Chuanming; Chen, Jing

    2011-01-01

    To evaluate the effects of short-term restriction of dietary protein intake (DPI) supplemented with keto acids on hyperphosphatemia in maintenance hemodialysis (MHD) patients. Forty MHD patients with uncontrolled hyperphosphatemia were randomized to either low DPI with keto acid-supplemented (sLP) or normal DPI (NP) group for 8 weeks. After 8 weeks, the sLP group was shifted to NP for another 8 weeks. Low-protein diet (LPD) was individualized with total caloric intake 30-35 kcal/kg/day, protein intake of 0.8 g/kg/day and phosphate intake of 500 mg/day. Keto acids were supplied in a dosage of 12 pills per day. Calcium phosphorous metabolism index and nutritional index (serum albumin, total protein, somatometric measurements, 3-day diaries and Mini-Nutritional Assessment score) were recorded. C-reactive protein, CO(2) combining power and Kt/V were measured to evaluate the inflammation, metabolic acidosis and dialysis adequacy, respectively. Serum phosphorus level and calcium-phosphate product were significantly decreased at the end of the first 8 weeks in the sLP group compared to the basal value and the NP group (p keto acids could decrease hyperphosphatemia and calcium-phosphate product, while keeping stable nutritional status among MHD patients. Copyright © 2010 S. Karger AG, Basel.

  19. Characteristics of 36C103- influx into nitrate reductase deficient mutant E1 pisum sativum seedlings: evidence for restricted ''induction'' by nitrate compared with wild type

    International Nuclear Information System (INIS)

    Deane-Drummond, C.E.; Jacobsen, E.

    1986-01-01

    The characteristics of nitrate uptake into seedlings of Pisum sativum L. cv. Rondo mutant E 1 defective for nitrate reductase (NR) and of its parent variety Rondo have been investigated using 36 C10 3 - as an analogue for nitrate. The apparent Michaelis Menten constants (K m ) for 36 ClO 3 - influx measured over 10 min were similar for mutant E 1 and the wild type (Wt). There was a 28% increase in 36 C10 3 - into Wt seedlings following nitrate pretreatment but this was not found when mutant seedlings were used. N starvation increased 36 C10 3 - influx into both mutant and Wt seedlings, and the rate of cycling E/I was also enhanced to a similar extent. The results are discussed in terms of current ideas on the regulation of nitrate uptake and assimilation. (author)

  20. PENSAMIENTOS COMPARTIDOS. ALDO VAN EYCK, EL GRUPO COBRA Y EL ARTE / Shared thoughts. Aldo van Eyck, the COBRA group, and art

    Directory of Open Access Journals (Sweden)

    Esther Mayoral Campa

    2014-11-01

    Full Text Available RESUMEN El periodo inmediatamente posterior a la II Guerra Mundial es uno de los episodios más interesantes desde el punto de vista cultural del siglo XX, un momento vivido por muchos de los intelectuales europeos coetáneos a esta época como un punto de inflexión, una oportunidad para repensar el mundo, para comenzar de nuevo tras el cataclismo bélico. En ese contexto comienza su andadura como arquitecto Aldo van Eyck, así como su colaboración con el breve, pero intenso, movimiento Cobra, grupo esencial para comprender el panorama cultural europeo de posguerra y una de las últimas vanguardias del siglo XX. Este artículo explora la vinculación del arquitecto holandés Aldo van Eyck con el mundo del arte. Una relación poliédrica, parte esencial de su discurso, que engloba su formación cultural, sus relaciones de amistad, su pensamiento crítico y su obra. En esa correlación entre la arquitectura y las artes será determinante la vinculación del arquitecto con Cobra, con el que compartirá una mirada común sobre la realidad, una relación compleja con líneas de investigación comunes, escritos, exposiciones y trabajos compartidos. A todo ello se suma la aportación fundamental que supone un trasvase de valores constantes entre la arquitectura y el mundo del arte, que caracterizó la relación entre el arquitecto y los miembros del grupo.

  1. Avicequinone C Isolated from Avicennia marina Exhibits 5α-Reductase-Type 1 Inhibitory Activity Using an Androgenic Alopecia Relevant Cell-Based Assay System

    Directory of Open Access Journals (Sweden)

    Ruchy Jain

    2014-05-01

    Full Text Available Avicennia marina (AM exhibits various biological activities and has been traditionally used in Egypt to cure skin diseases. In this study, the methanolic heartwood extract of AM was evaluated for inhibitory activity against 5α-reductase (5α-R [E.C.1.3.99.5], the enzyme responsible for the over-production of 5α-dihydrotestosterone (5α-DHT causing androgenic alopecia (AGA. An AGA-relevant cell-based assay was developed using human hair dermal papilla cells (HHDPCs, the main regulator of hair growth and the only cells within the hair follicle that are the direct site of 5α-DHT action, combined with a non-radioactive thin layer chromatography (TLC detection technique. The results revealed that AM is a potent 5α-R type 1 (5α-R1 inhibitor, reducing the 5α-DHT production by 52% at the final concentration of 10 µg/mL. Activity-guided fractionation has led to the identification of avicequinone C, a furanonaphthaquinone, as a 5α-R1 inhibitor with an IC50 of 9.94 ± 0.33 µg/mL or 38.8 ± 1.29 µM. This paper is the first to report anti-androgenic activity through 5α-R1 inhibition of AM and avicequinone C.

  2. Aldo Järvsoo: kirivööd ma ei lõigu / Tiiu Laks

    Index Scriptorium Estoniae

    Laks, Tiiu, 1984-

    2009-01-01

    Eesti 2008. aasta parim moekunstnik ja auhinna Kuldnõel omanik on Aldo Järvsoo, tema kollektsioonist "Virve". Lühidalt auhinna teiste nominentide Liisi Eesmaa, Tiina Talumehe ja Liivia Leškini kollektsioonidest. Võidukollektsiooni saab 15. märtsini vaadata Tallinna Kaubamaja Naistemaailmas paikneval näitusepinnal

  3. Pharmacogenetic evaluation of ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase polymorphisms in teratogenicity of anti-epileptic drugs in women with epilepsy

    Directory of Open Access Journals (Sweden)

    Manna Jose

    2014-01-01

    Full Text Available Aim: Pregnancy in women with epilepsy (WWE who are on anti-epileptic drugs (AEDs has two- to three-fold increased risk of fetal malformations. AEDs are mostly metabolized by Cyp2C9, Cyp2C19 and Cyp3A4 and transported by ABCB1. Patients on AED therapy can have folate deficiency. We hypothesize that the polymorphisms in ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase (MTHFR might result in differential expression resulting in differential drug transport, drug metabolism and folate metabolism, which in turn may contribute to the teratogenic impact of AEDs. Materials and Methods: The ABCB1, Cyp2C9, Cyp2C19 and MTHFR polymorphisms were genotyped for their role in teratogenic potential and the nature of teratogenecity in response to AED treatment in WWE. The allelic, genotypic associations were tested in 266 WWE comprising of 143 WWE who had given birth to babies with WWE-malformation (WWE-M and 123 WWE who had normal offsprings (WWE-N. Results: In WWE-M, CC genotype of Ex07 + 139C/T was overrepresented (P = 0.0032 whereas the poor metabolizer allele FNx012 and FNx012 FNx012 genotype of CYP2C219 was significantly higher in comparison to WWE-N group (P = 0.007 and P = 0.005, respectively. All these observations were independent of the nature of malformation (cardiac vs. non cardiac malformations. Conclusion: Our study indicates the possibility that ABCB1 and Cyp2C19 may play a pivotal role in the AED induced teratogenesis, which is independent of nature of malformation. This is one of the first reports indicating the pharmacogenetic role of Cyp2C19 and ABCB1 in teratogenesis of AED in pregnant WWE.

  4. Ketopantoyl-lactone reductase from Candida parapsilosis: purification and characterization as a conjugated polyketone reductase.

    Science.gov (United States)

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-02-24

    Ketopantoyl-lactone reductase (2-dehydropantoyl-lactone reductase, EC 1.1.1.168) was purified and crystallized from cells of Candida parapsilosis IFO 0708. The enzyme was found to be homogeneous on ultracentrifugation, high-performance gel-permeation liquid chromatography and SDS-polyacrylamide gel electrophoresis. The relative molecular mass of the native and SDS-treated enzyme is approximately 40,000. The isoelectric point of the enzyme is 6.3. The enzyme was found to catalyze specifically the reduction of a variety of natural and unnatural polyketones and quinones other than ketopantoyl lactone in the presence of NADPH. Isatin and 5-methylisatin are rapidly reduced by the enzyme, the Km and Vmax values for isatin being 14 microM and 306 mumol/min per mg protein, respectively. Ketopantoyl lactone is also a good substrate (Km = 333 microM and Vmax = 481 mumol/min per mg protein). Reverse reaction was not detected with pantoyl lactone and NADP+. The enzyme is inhibited by quercetin, several polyketones and SH-reagents. 3,4-Dihydroxy-3-cyclobutene-1,2-dione, cyclohexenediol-1,2,3,4-tetraone and parabanic acid are uncompetitive inhibitors for the enzyme, the Ki values being 1.4, 0.2 and 3140 microM, respectively, with isatin as substrate. Comparison of the enzyme with the conjugated polyketone reductase of Mucor ambiguus (S. Shimizu, H. Hattori, H. Hata and H. Yamada (1988) Eur. J. Biochem. 174, 37-44) and ketopantoyl-lactone reductase of Saccharomyces cerevisiae suggested that ketopantoyl-lactone reductase is a kind of conjugated polyketone reductase.

  5. Supramolecular Influence on Keto-Enol Tautomerism and Thermochromic Properties of o-Hydroxy Schiff Bases

    Directory of Open Access Journals (Sweden)

    Marija Zbačnik

    2016-06-01

    Full Text Available This work presents a study on thermo-optical properties of three Schiff bases (imines in the solid state. The Schiff bases were obtained by means of mechanochemical synthesis using monosubstituted o-hydroxy aromatic aldehydes and monosubstituted aromatic amines. The keto-enol tautomerism and proton transfer via intramolecular O∙∙∙N hydrogen bond of the reported compounds was found to be influenced more by supramolecular interactions than by a temperature change. All products were characterised by powder X-ray diffraction (PXRD, FT-IR spectroscopy, thermogravimetric (TG analysis and differential scanning calorimetry (DSC. Molecular and crystal structures of compounds 1, 2 and 3 were determined by single crystal X-ray diffraction (SCXRD. The molecules of 1 appear to be present as the enol-imine, the molecules of 2 as the keto-amine tautomer and the molecules of 3 exhibit keto-enol tautomeric equilibrium in the solid state. An analysis of Cambridge structural database (CSD data on similar imines has been used for structural comparison. This work is licensed under a Creative Commons Attribution 4.0 International License.

  6. Manumycin A Is a Potent Inhibitor of Mammalian Thioredoxin Reductase-1 (TrxR-1).

    Science.gov (United States)

    Tuladhar, Anupama; Rein, Kathleen S

    2018-04-12

    The anticancer effect of manumycin A (Man A) has been attributed to the inhibition of farnesyl transferase (FTase), an enzyme that is responsible for post-translational modification of Ras proteins. However, we have discovered that Man A inhibits mammalian cytosolic thioredoxin reductase 1 (TrxR-1) in a time-dependent manner, with an IC 50 of 272 nM with preincubation and 1586 nM without preincubation. The inhibition of TrxR-1 by Man A is irreversible and is the result of a covalent interaction between Man A and TrxR-1. Evidence presented herein demonstrates that Man A forms a Michael adduct with the selenocysteine residue, which is located in the C-terminal redox center of TrxR-1. Inhibitors of TrxR-1, which act through this mechanism, convert TrxR-1 into a SecTRAP, which utilizes NADPH to reduce oxygen to superoxide radical anion (O 2 -• ).

  7. Inhibition of NADH-ubiquinone reductase activity by N,N'-dicyclohexylcarbodiimide and correlation of this inhibition with the occurrence of energy-coupling site 1 in various organisms

    International Nuclear Information System (INIS)

    Yagi, T.

    1987-01-01

    The NADH-ubiquinone reductase activity of the respiratory chains of several organisms was inhibited by the carboxyl-modifying reagent N,N'-dicyclohexylcarbodiimide (DCCD). This inhibition correlated with the presence of an energy-transducing site in this segment of the respiratory chain. Where the NADH-quinone reductase segment involved an energy-coupling site (e.g., in bovine heart and rat liver mitochondria, and in Paracoccus denitrificans, Escherichia coli, and Thermus thermophilus HB-8 membranes), DCCD acted as an inhibitor of ubiquinone reduction by NADH. By contrast, where energy-coupling site 1 was absent (e.g., in Saccharomyces cerevisiae mitochondria and BacilLus subtilis membranes), there was no inhibition of NADH-ubiquinone reductase activity by DCCD. In the bovine and P. denitrificans systems, DCCD inhibition was pseudo first order with respect to incubation time, and reaction order with respect to inhibitor concentration was close to unity, indicating that inhibition resulted from the binding of one inhibitor molecule per active unit of NADH-ubiquinone reductase. In the bovine NADH-ubiquinone reductase complex (complex I), [ 14 C]DCCD was preferentially incorporated into two subunits of molecular weight 49,000 and 29,000. The time course of labeling of the 29,000 molecular weight subunit with [ 14 C]DCCD paralleled the time course of inhibition of NADH-ubiquinone reductase activity

  8. JS-K, a Nitric Oxide Prodrug, Has Enhanced Cytotoxicity in Colon Cancer Cells with Knockdown of Thioredoxin Reductase 1

    Science.gov (United States)

    Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.

    2010-01-01

    Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717

  9. Transcriptional response after exposure to domoic acid-producing Pseudo-nitzschia in the digestive gland of the mussel Mytilus galloprovincialis.

    Science.gov (United States)

    Pazos, Antonio J; Ventoso, Pablo; Martínez-Escauriaza, Roi; Pérez-Parallé, M Luz; Blanco, Juan; Triviño, Juan C; Sánchez, José L

    2017-12-15

    Bivalve molluscs are filter feeding species that can accumulate biotoxins in their body tissues during harmful algal blooms. Amnesic Shellfish Poisoning (ASP) is caused by species of the diatom genus Pseudo-nitzschia, which produces the toxin domoic acid. The Mytilus galloprovincialis digestive gland transcriptome was de novo assembled based on the sequencing of 12 cDNA libraries, six obtained from control mussels and six from mussels naturally exposed to domoic acid-producing diatom Pseudo-nitzschia australis. After de novo assembly 94,727 transcripts were obtained, with an average length of 1015 bp and a N50 length of 761 bp. The assembled transcripts were clustered (homology > 90%) into 69,294 unigenes. Differential gene expression analysis was performed (DESeq2 algorithm) in the digestive gland following exposure to the toxic algae. A total of 1158 differentially expressed unigenes (absolute fold change > 1.5 and p-value < 0.05) were detected: 686 up-regulated and 472 down-regulated. Several membrane transporters belonging to the family of the SLC (solute carriers) were over-expressed in exposed mussels. Functional enrichment was performed using Pfam annotations obtained from the genes differentially expressed, 37 Pfam families were found to be significantly (FDR adjusted p-value < 0.1) enriched. Some of these families (sulfotransferases, aldo/keto reductases, carboxylesterases, C1q domain and fibrinogen C-terminal globular domain) could be putatively involved in detoxification processes, in the response against of the oxidative stress and in immunological processes. Protein network analysis with STRING algorithm found alteration of the Notch signaling pathway under the action of domoic acid-producing Pseudo-nitzschia. In conclusion, this study provides a high quality reference transcriptome of M. galloprovincialis digestive gland and identifies potential genes involved in the response to domoic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The thermoelastic Aldo contact model with frictional heating

    Science.gov (United States)

    Afferrante, L.; Ciavarella, M.

    2004-03-01

    In the study of the essential features of thermoelastic contact, Comninou and Dundurs (J. Therm. Stresses 3 (1980) 427) devised a simplified model, the so-called "Aldo model", where the full 3 D body is replaced by a large number of thin rods normal to the interface and insulated between each other, and the system was further reduced to 2 rods by Barber's Conjecture (ASME J. Appl. Mech. 48 (1981) 555). They studied in particular the case of heat flux at the interface driven by temperature differences of the bodies, and opposed by a contact resistance, finding possible multiple and history dependent solutions, depending on the imposed temperature differences. The Aldo model is here extended to include the presence of frictional heating. It is found that the number of solutions of the problem is still always odd, and Barber's graphical construction and the stability analysis of the previous case with no frictional heating can be extended. For any given imposed temperature difference, a critical speed is found for which the uniform pressure solution becomes non-unique and/or unstable. For one direction of the temperature difference, the uniform pressure solution is non-unique before it becomes unstable. When multiple solutions occur, outermost solutions (those involving only one rod in contact) are always stable. A full numerical analysis has been performed to explore the transient behaviour of the system, in the case of two rods of different size. In the general case of N rods, Barber's conjecture is shown to hold since there can only be two stable states for all the rods, and the reduction to two rods is always possible, a posteriori.

  11. Time-dependent aldosterone metabolism in toad urinary bladder

    International Nuclear Information System (INIS)

    Brem, A.S.; Pacholski, M.; Morris, D.J.

    1988-01-01

    Aldosterone (Aldo) metabolism was examined in the toad bladder. Bladders were incubated with [ 3 H]aldosterone (10(-7) M) for 5 h, 1 h, or 10 min. Tissues were analyzed for metabolites using high-pressure liquid chromatography (HPLC). In separate experiments, Na+ transport was assessed by the short-circuit current (SCC) technique. Following a 5-h tissue incubation, about 25% of the [ 3 H]-aldosterone was converted into metabolites including a polar monosulfate metabolite, 20 beta-dihydroaldo (20 beta-DHAldo), small quantities of 5 beta-reduced products, and a variety of 5 alpha-reduced Aldo products including 5 alpha-DHAldo, 3 alpha,5 alpha-tetrahydroaldo (3 alpha,5 alpha-THAldo), and 3 beta,5 alpha-THAldo. Tissues metabolized approximately 10% of the labeled hormone into the same compounds by 1 h. Measurable quantities of these metabolites were also synthesized by bladders exposed to Aldo for only 10 min and then incubated in buffer for an additional 50 min without Aldo. Bladders pretreated with the spironolactone, K+-canrenoate (3.5 X 10(-4) M), and stimulated with Aldo (10(-7) M) generated a peak SCC 44 +/- 6% of that observed in matched pairs stimulated with Aldo (P less than 0.001; n = 6). K+-canrenoate also markedly diminished [ 3 H]aldosterone metabolism at both 5 and 1 h. Thus, metabolic transformation of Aldo begins prior to hormone-induced increases in Na+ transport. Both the generation of certain metabolites (e.g., 5 alpha-reductase pathway products) and the increase in Na+ transport can be selectively inhibited by K+-canrenoate

  12. Structural and biochemical properties of cloned and expressed human and rat steroid 5α-reductases

    International Nuclear Information System (INIS)

    Andersson, S.; Russell, D.W.

    1990-01-01

    The microsomal enzyme steroid 5α-reductase is responsible for the conversion of testosterone into the more potent androgen dihydrotestosterone. In man, this steroid acts on a variety of androgen-responsive target tissues to mediate such diverse endocrine processes as male sexual differentiation in the fetus and prostatic growth in men. Here we describe the isolation, structure, and expression of a cDNA encoding the human steroid 5α-reductase. A rat cDNA was used as a hybridization probe to screen a human prostate cDNA library. A 2.1-kilobase cDNA was identified and DNA sequence analysis indicated that the human steroid 5α-reductase was a hydrophobic protein of 259 amino acids with a predicted molecular weight of 29,462. A comparison of the human and rat protein sequences revealed a 60% identity. Transfection of expression vectors containing the human and rat cDNAs into simian COS cells resulted in the synthesis of high levels of steroid 5α-reductase enzyme activity. Both enzymes expressed in COS cells showed similar substrate specificities for naturally occurring steroid hormones. However, synthetic 4-azasteroids demonstrated marked differences in their abilities to inhibit the human and rat steroid 5α-reductases

  13. Biliverdin reductase: more than a namesake - the reductase, its Peptide fragments, and biliverdin regulate activity of the three classes of protein kinase C.

    Science.gov (United States)

    Gibbs, Peter E M; Tudor, Cicerone; Maines, Mahin D

    2012-01-01

    The expanse of human biliverdin reductase (hBVR) functions in the cells is arguably unmatched by any single protein. hBVR is a Ser/Thr/Tyr-kinase, a scaffold protein, a transcription factor, and an intracellular transporter of gene regulators. hBVR is an upstream activator of the insulin/IGF-1 signaling pathway and of protein kinase C (PKC) kinases in the two major arms of the pathway. In addition, it is the sole means for generating the antioxidant bilirubin-IXα. hBVR is essential for activation of ERK1/2 kinases by upstream MAPKK-MEK and by PKCδ, as well as the nuclear import and export of ERK1/2. Small fragments of hBVR are potent activators and inhibitors of the ERK kinases and PKCs: as such, they suggest the potential application of BVR-based technology in therapeutic settings. Presently, we have reviewed the function of hBVR in cell signaling with an emphasis on regulation of PKCδ activity.

  14. Organocatalytic Asymmetric Michael Addition of 4-Hydroxycoumarin to β,γ-Unsaturated α-Keto Esters

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang Won; Han, Tae Hyun; Kim, Dae Young [Soonchunhyang Univ., Asan (Korea, Republic of)

    2013-06-15

    In conclusion, we have developed organocatalytic enantioselective conjugate addition reaction of 4-hydroxycoumarin (1) to β,γ-unsaturated α-keto esters 2 to afford biologically valuable warfarin derivatives 3. The process is efficiently catalyzed by a binaphthyl-modified thiourea organocatalyst. The coumarin core is present as a characteristic structural motif in a large number of natural products and biologically active molecules.1 Particularly, many of these naturally occurring 4-hydroxycoumarin and their synthetic analogues are important precursors for the synthesis of natural products and pharmaceuticals. Enantioselective organocatalytic conjugate addition of 4-hydroxycoumarin to α,β-unsaturated ketones is a straightforward method to access warfarin which is an effective anticoagulants. Although a number of reactions of α,β-unsaturated ketones as Michael acceptors have been reported, the corresponding β,γ-unsaturated α-keto esters have received relatively little attention as Michael acceptors. Recently, several groups have reported the asymmetric Michael addition of 4-hydroxycoumarin to β,γ-unsaturated α-keto esters catalyzed by Cu(II)-bisoxazoline, N,N'-dioxide-Ni(II) complexes, thiourea catalysts. Although several efficient methods have been achieved by these systems, an effective method for the synthesis of warfarin analogues is still a challenge.

  15. Organocatalytic Asymmetric Michael Addition of 4-Hydroxycoumarin to β,γ-Unsaturated α-Keto Esters

    International Nuclear Information System (INIS)

    Suh, Chang Won; Han, Tae Hyun; Kim, Dae Young

    2013-01-01

    In conclusion, we have developed organocatalytic enantioselective conjugate addition reaction of 4-hydroxycoumarin (1) to β,γ-unsaturated α-keto esters 2 to afford biologically valuable warfarin derivatives 3. The process is efficiently catalyzed by a binaphthyl-modified thiourea organocatalyst. The coumarin core is present as a characteristic structural motif in a large number of natural products and biologically active molecules.1 Particularly, many of these naturally occurring 4-hydroxycoumarin and their synthetic analogues are important precursors for the synthesis of natural products and pharmaceuticals. Enantioselective organocatalytic conjugate addition of 4-hydroxycoumarin to α,β-unsaturated ketones is a straightforward method to access warfarin which is an effective anticoagulants. Although a number of reactions of α,β-unsaturated ketones as Michael acceptors have been reported, the corresponding β,γ-unsaturated α-keto esters have received relatively little attention as Michael acceptors. Recently, several groups have reported the asymmetric Michael addition of 4-hydroxycoumarin to β,γ-unsaturated α-keto esters catalyzed by Cu(II)-bisoxazoline, N,N'-dioxide-Ni(II) complexes, thiourea catalysts. Although several efficient methods have been achieved by these systems, an effective method for the synthesis of warfarin analogues is still a challenge

  16. Evidence for a Ustilago maydis Steroid 5α-Reductase by Functional Expression in Arabidopsis det2-1 Mutants1

    Science.gov (United States)

    Basse, Christoph W.; Kerschbamer, Christine; Brustmann, Markus; Altmann, Thomas; Kahmann, Regine

    2002-01-01

    We have identified a gene (udh1) in the basidiomycete Ustilago maydis that is induced during the parasitic interaction with its host plant maize (Zea mays). udh1 encodes a protein with high similarity to mammalian and plant 5α-steroid reductases. Udh1 differs from those of known 5α-steroid reductases by six additional domains, partially predicted to be membrane-spanning. A fusion protein of Udh1 and the green fluorescent protein provided evidence for endoplasmic reticulum localization in U. maydis. The function of the Udh1 protein was demonstrated by complementing Arabidopsis det2-1 mutants, which display a dwarf phenotype due to a mutation in the 5α-steroid reductase encoding DET2 gene. det2-1 mutant plants expressing either the udh1 or the DET2 gene controlled by the cauliflower mosaic virus 35S promoter differed from wild-type Columbia plants by accelerated stem growth, flower and seed development and a reduction in size and number of rosette leaves. The accelerated growth phenotype of udh1 transgenic plants was stably inherited and was favored under reduced light conditions. Truncation of the N-terminal 70 amino acids of the Udh1 protein abolished the ability to restore growth in det2-1 plants. Our results demonstrate the existence of a 5α-steroid reductase encoding gene in fungi and suggest a common ancestor between fungal, plant, and mammalian proteins. PMID:12068114

  17. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site.

    Science.gov (United States)

    Hardwicke, Mary Ann; Rendina, Alan R; Williams, Shawn P; Moore, Michael L; Wang, Liping; Krueger, Julie A; Plant, Ramona N; Totoritis, Rachel D; Zhang, Guofeng; Briand, Jacques; Burkhart, William A; Brown, Kristin K; Parrish, Cynthia A

    2014-09-01

    Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the β-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor.

  18. Methylenetetrahydrofolate reductase C677T mutation and risk of retinal vein thrombosis.

    Science.gov (United States)

    Soltanpour, Mohammad Soleiman; Soheili, Zahra; Shakerizadeh, Ali; Pourfathollah, Ali Akbar; Samiei, Shahram; Meshkani, Reza; Shahjahani, Mohammad; Karimi, Abbas

    2013-06-01

    Elevated plasma homocysteine (Hcy) level has been established as a significant risk factor for venous thrombosis and cardiovascular disease. Homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T mutation has been associated with elevated plasma Hcy concentration and may contribute to retinal vein thrombosis (RVT) development. The aim of the present study was to investigate whether the hyperhomocysteinemia and/or homozygosity for the MTHFR C677T mutation are associated with an increased risk for RVT. Our study population consisted of 73 consecutive patients (50-78 years old) with RVT and 73 control subjects (51-80 years old), matched for age and sex. Genotyping for the MTHFR C677T mutation was performed by polymerase chain reaction-restriction fragment length polymorphism technique and Hcy level was determined by an enzyme immunoassay kit. The prevalence of 677TT genotype was higher in patients than control subjects, but the difference in frequency didn't reach a significant value (P = 0.07). The frequency of the 677T allele was 26% and 21.2% in patients and controls, respectively and did not differ significantly between the two groups (odds ratio = 1.3, 95% confidence interval (0.75-2.24), P = 0.33). Fasting plasma total Hcy level was significantly higher in patients than controls (P = 0.001). Our study demonstrated that hyperhomocysteinemia, but not the MTHFR C677T mutation, is associated with RVT.

  19. Characterisation of a desmosterol reductase involved in phytosterol dealkylation in the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Leonora F Ciufo

    Full Text Available Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C(29 and C(28 yielding cholesterol (C(27. The final step of this dealkylation pathway involves desmosterol reductase (DHCR24-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735. Following PCR-based cloning of the cDNA (1.6 kb and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD-dependent reaction.Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250 kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation.

  20. Characterisation of a Desmosterol Reductase Involved in Phytosterol Dealkylation in the Silkworm, Bombyx mori

    Science.gov (United States)

    Ciufo, Leonora F.; Murray, Patricia A.; Thompson, Anu; Rigden, Daniel J.; Rees, Huw H.

    2011-01-01

    Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C29 and C28) yielding cholesterol (C27). The final step of this dealkylation pathway involves desmosterol reductase (DHCR24)-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735). Following PCR-based cloning of the cDNA (1.6 kb) and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD- dependent reaction. Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation. PMID:21738635

  1. ALDO: A radiation-tolerant, low-noise, adjustable low drop-out linear regulator in 0.35 μm CMOS technology

    International Nuclear Information System (INIS)

    Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.

    2016-01-01

    In this work we present ALDO, an adjustable low drop-out linear regulator designed in AMS 0.35 μm CMOS technology. It is specifically tailored for use in the upgraded LHCb RICH detector in order to improve the power supply noise for the front end readout chip (CLARO). ALDO is designed with radiation-tolerant solutions such as an all-MOS band-gap voltage reference and layout techniques aiming to make it able to operate in harsh environments like High Energy Physics accelerators. It is capable of driving up to 200 mA while keeping an adequate power supply filtering capability in a very wide frequency range from 10 Hz up to 100 MHz. This property allows us to suppress the noise and high frequency spikes that could be generated by a DC/DC regulator, for example. ALDO also shows a very low noise of 11.6 μV RMS in the same frequency range. Its output is protected with over-current and short detection circuits for a safe integration in tightly packed environments. Design solutions and measurements of the first prototype are presented.

  2. ALDO: A radiation-tolerant, low-noise, adjustable low drop-out linear regulator in 0.35 μm CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Carniti, P., E-mail: paolo.carniti@mib.infn.it [INFN, Sezione di Milano Bicocca, I-20126 Milano (Italy); Dipartimento di Fisica, Università di Milano Bicocca, I-20126 Milano (Italy); Cassina, L.; Gotti, C.; Maino, M.; Pessina, G. [INFN, Sezione di Milano Bicocca, I-20126 Milano (Italy); Dipartimento di Fisica, Università di Milano Bicocca, I-20126 Milano (Italy)

    2016-07-11

    In this work we present ALDO, an adjustable low drop-out linear regulator designed in AMS 0.35 μm CMOS technology. It is specifically tailored for use in the upgraded LHCb RICH detector in order to improve the power supply noise for the front end readout chip (CLARO). ALDO is designed with radiation-tolerant solutions such as an all-MOS band-gap voltage reference and layout techniques aiming to make it able to operate in harsh environments like High Energy Physics accelerators. It is capable of driving up to 200 mA while keeping an adequate power supply filtering capability in a very wide frequency range from 10 Hz up to 100 MHz. This property allows us to suppress the noise and high frequency spikes that could be generated by a DC/DC regulator, for example. ALDO also shows a very low noise of 11.6 μV RMS in the same frequency range. Its output is protected with over-current and short detection circuits for a safe integration in tightly packed environments. Design solutions and measurements of the first prototype are presented.

  3. ALDO: A radiation-tolerant, low-noise, adjustable low drop-out linear regulator in 0.35 μm CMOS technology

    Science.gov (United States)

    Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.

    2016-07-01

    In this work we present ALDO, an adjustable low drop-out linear regulator designed in AMS 0.35 μm CMOS technology. It is specifically tailored for use in the upgraded LHCb RICH detector in order to improve the power supply noise for the front end readout chip (CLARO). ALDO is designed with radiation-tolerant solutions such as an all-MOS band-gap voltage reference and layout techniques aiming to make it able to operate in harsh environments like High Energy Physics accelerators. It is capable of driving up to 200 mA while keeping an adequate power supply filtering capability in a very wide frequency range from 10 Hz up to 100 MHz. This property allows us to suppress the noise and high frequency spikes that could be generated by a DC/DC regulator, for example. ALDO also shows a very low noise of 11.6 μV RMS in the same frequency range. Its output is protected with over-current and short detection circuits for a safe integration in tightly packed environments. Design solutions and measurements of the first prototype are presented.

  4. Molecular characterization of a gene for aldose reductase (CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae

    Science.gov (United States)

    Min Hyung Kang; Haiying Ni; Thomas W. Jeffries

    2003-01-01

    Candida boidinii produces significant amounts of xylitol from xylose, and assays of crude homogenates for aldose (xylose) reductase (XYL1p) have been reported to show relatively high activity with NADH as a cofactor even though XYL1p purified from this yeast does not have such activity. A gene coding for XYL1p from C. boidinii (CbXYL1) was isolated by amplifying the...

  5. Biliverdin Reductase: More than a Namesake – The Reductase, Its Peptide Fragments, and Biliverdin Regulate Activity of the Three Classes of Protein Kinase C

    Science.gov (United States)

    Gibbs, Peter E. M.; Tudor, Cicerone; Maines, Mahin. D.

    2012-01-01

    The expanse of human biliverdin reductase (hBVR) functions in the cells is arguably unmatched by any single protein. hBVR is a Ser/Thr/Tyr-kinase, a scaffold protein, a transcription factor, and an intracellular transporter of gene regulators. hBVR is an upstream activator of the insulin/IGF-1 signaling pathway and of protein kinase C (PKC) kinases in the two major arms of the pathway. In addition, it is the sole means for generating the antioxidant bilirubin-IXα. hBVR is essential for activation of ERK1/2 kinases by upstream MAPKK-MEK and by PKCδ, as well as the nuclear import and export of ERK1/2. Small fragments of hBVR are potent activators and inhibitors of the ERK kinases and PKCs: as such, they suggest the potential application of BVR-based technology in therapeutic settings. Presently, we have reviewed the function of hBVR in cell signaling with an emphasis on regulation of PKCδ activity. PMID:22419908

  6. Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Brunori, Maurizio; Cutruzzolà, Francesca

    2009-01-01

    ) as the level of reduction increased in both the WT and the His mutant. Equilibrium standard enthalpy and entropy changes and activation parameters of this ET process were determined. We concluded that negative cooperativity is a common feature among the cd(1) nitrite reductases, and we discuss this control...

  7. P(NMe2)3-Mediated Umpolung Alkylation and Nonylidic Olefination of α-Keto Esters.

    Science.gov (United States)

    Wang, Sunewang Rixin; Radosevich, Alexander T

    2015-08-07

    A commercial phosphorus-based reagent (P(NMe2)3) mediates umpolung alkylation of methyl aroylformates with benzylic and allylic bromides, leading to either Barbier-type addition or ylide-free olefination products upon workup. The reaction sequence is initiated by a two-electron redox addition of the tricoordinate phosphorus reagent with an α-keto ester compound (Kukhtin-Ramirez addition). A mechanistic rationale is offered for the chemoselectivity upon which the success of this nonmetal mediated C-C bond forming strategy is based.

  8. [Effects of low-protein diet plus alpha-keto acid on micro-inflammation and the relationship between micro-inflammation and nutritional status in patients performing continuous ambulatory peritoneal dialysis: a randomized controlled trial].

    Science.gov (United States)

    Chen, Wei; Guo, Zhi-Yong; Wu, Hao; Sun, Li-Jing; Cai, Li-Li; Xu, Hai-Yan

    2008-05-01

    To investigate the effects of the combination of alpha-keto acid and low-protein diet on the levels of serum cytokines in patients performing continuous ambulatory peritoneal dialysis (CAPD) and to explore the relationship between inflammation and malnutrition in CAPD patients. Eighty-nine CAPD patients were randomized into three groups, and 78 cases completed a one-year follow-up and with complete data. There were 31 cases in low-protein diet plus alpha-keto acid group, 26 cases in low-protein diet group and 21 cases in routine-protein diet group. The levels of serum albumin (Alb), prealbumin (PA), retinol-binding protein (RBP), transferrin (TRF), cholesterol (TC), triglycerides (TG), leptin, and triceps skinfold thickness (TSF), mid-arm muscle circumference (MAMC), body mass index (BMI) were measured. The changes of serum interleukin-1alpha (IL-1alpha), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and C-reactive protein (CRP) were also detected. Compared with low-protein diet group, serum levels of PA, RBP and TRF were significantly increased both in low-protein diet plus alpha-keto acid and routine-protein diet groups ( Pdiet plus alpha-keto acid group and routine-protein diet group. There was an increased tendency in the content of Alb, TC, TG, BMI, TSF and MAMC, but there were no significant differences. The plasma levels of IL-1alpha, IL-6 and TNF-alpha in low-protein diet plus alpha-keto acid group were decreased as compared with the routine-protein diet group, but there were no significant differences. The plasma level of CRP in low-protein diet plus alpha-keto acid group was lower than that in the routine-protein diet group ( Pketo acid and low-protein diet can ameliorate malnutrition and micro-inflammation in CAPD patients.

  9. Life as a sober citizen: Aldo Leopold's Wildlife Ecology 118

    Science.gov (United States)

    Theiss, Nancy Stearns

    This historic case study addressed the issue of the lack of citizen action toward environmentally responsible behavior. Although there have been studies regarding components of environmental responsible behavior [ERB], there has been little focus on historic models of exemplary figures of ERB. This study examined one of the first conservation courses in the United States, Wildlife Ecology 118, taught by Aldo Leopold (1887--1948) for 13 years at the University of Wisconsin. Today, Aldo Leopold is recognized as an exemplary conservationist whose land ethic is cited as providing the ecological approach needed for understanding the complex issues of modern society. The researcher conjectured that examination of one of the first environmental education courses could support and strengthen environmental education practices by providing a heuristic perspective. The researcher used two different strategies for analysis of the case. For Research Question One---"What were Leopold's teaching strategies in Wildlife Ecology 118?"---the researcher used methods of comparative historical analysis. The researcher examined the learning outcomes that Leopold used in Wildlife Ecology 118 and compared them against a rubric of the Four Strands for Environmental Education (North American Association for Environmental Education [NAAEE], 1999). The Four Strands for Environmental Education are the current teaching strategies used by educators. The results indicated that Wildlife Ecology 118 scored high in Knowledge of Processes and Systems and Environmental Problem Solving strands. Leopold relied on historic case examples and animal biographies to build stories that engaged students. Field trips gave students practical experience for environmental knowledge with special emphasis on phenology. For Research Question Two---"What was the context of the lessons in Wildlife Ecology 118?"---the researcher used environmental history methods for analysis. Context provided the knowledge and

  10. Prevalence of methylenetetrahydrofolate reductase ( MTHFR ) and ...

    African Journals Online (AJOL)

    Methylenetetrahydrofolate reductase (MTHFR) and Cytosolic serine hydroxymethyltransferase (cSHMT) are enzymes involve in folate regulation in human. The C to T transition of the cSHMT and MTHFR genes at the 1420 as well as 677 nucleotides both carries TT genotype respectively. These enzymes have direct and ...

  11. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  12. The intra-annular acylamide chelate-coordinated compound: The keto-tautomer of metal (II) milrinone complex

    Science.gov (United States)

    Gong, Yun; Liu, Jinzhi; Tang, Wang; Hu, Changwen

    2008-03-01

    In the presence of N, N'-dimethyllformamide (DMF), two isostructural metal (II)-milrinone complexes formulated as M(C 12H 8N 3O) 2 (M = Co 1 and Ni 2) have been synthesized and characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. The two compounds crystallize in the tetragonal system, chiral space group P4 32 12. They exhibit similar two dimensional (2D) square grid-like framework, in which milrinone acts as a ditopic ligand with its terminal pyridine and intra-annular acylamide groups covalently bridging different metal centers. The intra-annular acylamide ligand shows a chelate-coordinated mode. Compounds 1 and 2 are stable under 200 °C. Compound 3 formulated as (C 12H 9N 3O) 4·H 2O was obtained in the presence of water, the water molecule in the structure leads to the racemization of compound 3 and it crystallizes in the monoclinic system, non-chiral space group P2 1/ c. Milrinone exhibits a keto-form in the three compounds and compounds 1- 3 exhibit different photoluminescence properties.

  13. The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts

    International Nuclear Information System (INIS)

    Moon, Jeong Chan; Jang, Ho Hee; Chae, Ho Byoung; Lee, Jung Ro; Lee, Sun Yong; Jung, Young Jun; Shin, Mi Rim; Lim, Hye Song; Chung, Woo Sik; Yun, Dae-Jin; Lee, Kyun Oh; Lee, Sang Yeol

    2006-01-01

    2-Cys peroxiredoxins (Prxs) play important roles in the antioxidative defense systems of plant chloroplasts. In order to determine the interaction partner for these proteins in Arabidopsis, we used a yeast two-hybrid screening procedure with a C175S-mutant of Arabidopsis 2-Cys Prx-A as bait. A cDNA encoding an NADPH-dependent thioredoxin reductase (NTR) isotype C was identified and designated ANTR-C. We demonstrated that this protein effected efficient transfer of electrons from NADPH to the 2-Cys Prxs of chloroplasts. Interaction between 2-Cys Prx-A and ANTR-C was confirmed by a pull-down experiment. ANTR-C contained N-terminal TR and C-terminal Trx domains. It exhibited both TR and Trx activities and co-localized with 2-Cys Prx-A in chloroplasts. These results suggest that ANTR-C functions as an electron donor for plastidial 2-Cys Prxs and represents the NADPH-dependent TR/Trx system in chloroplasts

  14. Functional characterization and stability improvement of a ‘thermophilic-like’ ene-reductase from Rhodococcus opacus 1CP

    Directory of Open Access Journals (Sweden)

    Anika eRiedel

    2015-10-01

    Full Text Available Ene-reductases are widely applied for the asymmetric synthesis of relevant industrial chemicals. A novel ene-reductase OYERo2 was found within a set of 14 putative Old Yellow Enzymes (OYEs obtained by genome mining of the actinobacterium Rhodococcus opacus 1CP. Multiple sequence alignment suggested that the enzyme belongs to the group of ‘thermophilic-like’ OYEs. OYERo2 was produced in Escherichia coli and biochemically characterized. The enzyme is strongly NADPH dependent and uses non-covalently bound FMNH2 for the reduction of activated α,β-unsaturated alkenes. In the active form OYERo2 is a dimer. Optimal catalysis occurs at pH 7.3 and 37 °C. OYERo2 showed highest specific activities (4550 U mg-1 on maleimides, which are efficiently converted to the corresponding succinimides. The OYERo2-mediated reduction of prochiral alkenes afforded the (R-products with excellent optical purity (ee > 99%. OYERo2 is not as thermo-resistant as related OYEs. Introduction of a characteristic intermolecular salt bridge by site-specific mutagenesis raised the half-life of enzyme inactivation at 32 °C from 28 min to 87 min and improved the tolerance towards organic co-solvents. The suitability of OYERo2 for application in industrial biocatalysis is discussed.

  15. Cooperative use of cytochrome cd{sub 1} nitrite reductase and its redox partner cytochrome c{sub 552} to improve the selectivity of nitrite biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Serra, A.S.; Jorge, S.R.; Silveira, C.M.; Moura, J.J.G. [REQUIMTE - Dept. de Quimica, CQFB, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Jubete, E.; Ochoteco, E.; Cabanero, G.; Grande, H. [CIDETEC - Centro de Tecnologias Electroquimicas, Parque Tecnologico de San Sebastian, Po Miramon, 196, 20009 Donostia - San Sebastian (Spain); Almeida, M.G., E-mail: mga@dq.fct.unl.pt [REQUIMTE - Dept. de Quimica, CQFB, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Escola Superior de Saude Egas Moniz, Monte de Caparica, 2829-511 Caparica (Portugal)

    2011-05-05

    In this work, a novel enzymatic biosensor for determination of nitrites constructed on an electrochemical transducing platform is proposed. The sensor is based on cytochrome-cd{sub 1} (cyt-cd{sub 1}) nitrite reductase from Marinobacter hydrocarbonoclasticus strain 617 as biological recognition element, and its putative physiological redox partner cytochrome-c{sub 552} (cyt-c{sub 552}), as electron mediator. The proteins were co-immobilized using a photopolymerizable polyvinyl alcohol (PVA) derivative, onto carbon paste screen printed electrodes (CPSPEs); the optimal modification conditions were 100 {mu}M cyt-cd{sub 1}/100 {mu}M cyt-c{sub 552} and 50% PVA, after a 48 h polymerization time. Electrochemical characterization of the mediator was carried out by cyclic voltammetry. The one-electron exchange between cyt-c{sub 552} and the working electrode is a quasi-reversible process, without mass transport limitations. The formal potential of the mediator is 254 {+-} 2 mV vs NHE and the intermolecular electron transfer rate constant between cytochromes c{sub 552} and cd{sub 1} is 9.9 x 10{sup 3} M{sup -1} s{sup -1}. The analytical parameters of the biosensor response to nitrite as assessed by amperometric measurements were: linear range from 10 to 200 {mu}M; detection and quantification limits of 7 and 24 {mu}M, respectively; sensitivity of 2.49 {+-} 0.08 A mol{sup -1} cm{sup 2} {mu}M{sup -1}. Catalytic profiles in the presence of possible interfering species were also investigated. The interference from competitive enzymatic reduction of dissolved oxygen could be overcome by tuning the cyclic voltammograms for faster sweep rates.

  16. Isolation and expression of the Pneumocystis carinii dihydrofolate reductase gene

    DEFF Research Database (Denmark)

    Edman, J C; Edman, U; Cao, Mi-Mi

    1989-01-01

    Pneumocystis carinii dihydrofolate reductase (DHFR; 5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) cDNA sequences have been isolated by their ability to confer trimethoprim resistance to Escherichia coli. Consistent with the recent conclusion that P. carinii is a member of the Fungi...

  17. FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors.

    Science.gov (United States)

    Guan, Xiaoqian; Chen, Shuai; Voon, Chia Pao; Wong, Kam-Bo; Tikkanen, Mikko; Lim, Boon L

    2018-01-01

    Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP + oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids.

  18. Synthesis of Novel β-Keto-Enol Derivatives Tethered Pyrazole, Pyridine and Furan as New Potential Antifungal and Anti-Breast Cancer Agents

    Directory of Open Access Journals (Sweden)

    Smaail Radi

    2015-11-01

    Full Text Available Recently, a new generation of highly promising inhibitors bearing β-keto-enol functionality has emerged. Reported herein is the first synthesis and use of novel designed drugs based on the β-keto-enol group embedded with heterocyclic moieties such as pyrazole, pyridine, and furan, prepared in a one-step procedure by mixed Claisen condensation. All the newly synthesized compounds were characterized by FT-IR, 1H-NMR, 13C-NMR, ESI/LC-MS, elemental analysis, and evaluated for their in vitro antiproliferative activity against breast cancer (MDA-MB241 human cell lines and fungal strains (Fusarium oxysporum f.sp albedinis FAO. Three of the synthesized compounds showed potent activity against fungal strains with IC50 values in the range of 0.055–0.092 µM. The results revealed that these compounds showed better IC50 values while compared with positive controls.

  19. 5,6-Dihydro-5-aza-2’-deoxycytidine potentiates the anti-HIV-1 activity of ribonucleotide reductase inhibitors

    OpenAIRE

    Rawson, Jonathan M.; Heineman, Richard H.; Beach, Lauren B.; Martin, Jessica L.; Schnettler, Erica K.; Dapp, Michael J.; Patterson, Steven E.; Mansky, Louis M.

    2013-01-01

    The nucleoside analog 5,6-dihydro-5-aza-2’-deoxycytidine (KP-1212) has been investigated as a first-in-class lethal mutagen of human immunodeficiency virus type-1 (HIV-1). Since a prodrug monotherapy did not reduce viral loads in Phase II clinical trials, we tested if ribonucleotide reductase inhibitors (RNRIs) combined with KP-1212 would improve antiviral activity. KP-1212 potentiated the activity of gemcitabine and resveratrol and simultaneously increased the viral mutant frequency. G-to-C ...

  20. Methylenetetrahydrofolate reductase C677T mutation and risk of retinal vein thrombosis

    Directory of Open Access Journals (Sweden)

    Mohammad Soleiman Soltanpour

    2013-01-01

    Full Text Available Background: Elevated plasma homocysteine (Hcy level has been established as a significant risk factor for venous thrombosis and cardiovascular disease. Homozygosity for the methylenetetrahydrofolate reductase (MTHFR C677T mutation has been associated with elevated plasma Hcy concentration and may contribute to retinal vein thrombosis (RVT development. The aim of the present study was to investigate whether the hyperhomocysteinemia and/or homozygosity for the MTHFR C677T mutation are associated with an increased risk for RVT. Materials and Methods: Our study population consisted of 73 consecutive patients (50-78 years old with RVT and 73 control subjects (51-80 years old, matched for age and sex. Genotyping for the MTHFR C677T mutation was performed by polymerase chain reaction-restriction fragment length polymorphism technique and Hcy level was determined by an enzyme immunoassay kit. Results: The prevalence of 677TT genotype was higher in patients than control subjects, but the difference in frequency didn′t reach a significant value (P = 0.07. The frequency of the 677T allele was 26% and 21.2% in patients and controls, respectively and did not differ significantly between the two groups (odds ratio = 1.3, 95% confidence interval (0.75-2.24, P = 0.33. Fasting plasma total Hcy level was significantly higher in patients than controls (P = 0.001. Conclusion: Our study demonstrated that hyperhomocysteinemia, but not the MTHFR C677T mutation, is associated with RVT.

  1. Role of a novel dual flavin reductase (NR1) and an associated histidine triad protein (DCS-1) in menadione-induced cytotoxicity

    International Nuclear Information System (INIS)

    Kwasnicka-Crawford, Dorota A.; Vincent, Steven R.

    2005-01-01

    Microsomal cytochrome P450 reductase catalyzes the one-electron transfer from NADPH via FAD and FMN to various electron acceptors, such as cytochrome P450s or to some anti-cancer quinone drugs. This results in generation of free radicals and toxic oxygen metabolites, which can contribute to the cytotoxicity of these compounds. Recently, a cytosolic NADPH-dependent flavin reductase, NR1, has been described which is highly homologous to the microsomal cytochrome P450 reductase. In this study, we show that over-expression of NR1 in human embryonic kidney cells enhances the cytotoxic action of the model quinone, menadione. Furthermore, we show that a novel human histidine triad protein DCS-1, which is expressed together with NR1 in many tissues, can significantly reduce menadione-induced cytotoxicity in these cells. We also show that DCS-1 binds NF1 and directly modulates its activity. These results suggest that NR1 may play a role in carcinogenicity and cell death associated with one-electron reductions

  2. Alpha 1-blockers vs 5 alpha-reductase inhibitors in benign prostatic hyperplasia. A comparative review

    DEFF Research Database (Denmark)

    Andersen, J T

    1995-01-01

    During recent years, pharmacological treatment of symptomatic benign prostatic hyperplasia (BPH) has become the primary treatment choice for an increasing number of patients. The 2 principal drug classes employed are alpha 1-blockers and 5 alpha-reductase inhibitors. Current information from...... of patients who will respond well to alpha 1-blockers have yet to be identified, and data concerning the long term effects of these drugs are not yet available. 5 alpha-Reductase inhibitors have a slow onset of effect, but treatment leads to improvement in symptoms, reduction of the size of the prostate gland...... and improvement in objective parameters for bladder outflow obstruction. Approximately 30 to 50% of patients will respond to treatment with 5 alpha-reductase inhibitors. The definitive role of pharmacological treatment in symptomatic BPH remains to be established, although it seems that patients unfit...

  3. Methylenetetrahydrofolate reductase gene polymorphism in type 1 ...

    African Journals Online (AJOL)

    In patients with type-I diabetes mellitus folate deficiency is associated with endothelial dysfunction. So, polymorphism in genes involved in folate metabolism may have a role in vascular disease. This study was designed to evaluate the relationship between methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

  4. Aldo Oliva: a ghost in Argentine poetry

    Directory of Open Access Journals (Sweden)

    Bruno Crisorio

    2017-03-01

    Full Text Available Aldo Oliva (1927-2000 presents several problems to the researcher: acknowledged as an indispensable voice in Argentinian poetry (to quote David Viñas, his work, however, still waits for academic reception, and has circulated for many years in a marginal and reduced way. His reluctance to publish, his distance from any poetic movement of the second half of the XXth century, the complexity of his work explains, in part, this situation. In this context, the present article tries to locate Oliva in the history of Argentinian poetry; to that end, and considering that his work as well as his creative project prevent any linear and chronological approach, I have used the concepts of “anachronism” (Didi-Huberman, “contemporary” (Agamben o “constellation” (Benjamin, that revealed themselves useful to think this spectral figure that is at the same time unavoidable and invisible.

  5. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  6. Association between methylenetetrahydrofolate reductase (MTHFR ...

    African Journals Online (AJOL)

    Association between methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism and risk of ischemic stroke in North Indian population: A hospital based case–control study. Amit Kumar, Shubham Misra, Anjali Hazarika, Pradeep Kumar, Ram Sagar, Abhishek Pathak, Kamalesh Chakravarty, Kameshwar ...

  7. Biochemical characterization of a recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius.

    Science.gov (United States)

    Pennacchio, Angela; Giordano, Assunta; Pucci, Biagio; Rossi, Mosè; Raia, Carlo A

    2010-03-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases (SDRs) superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh gene was heterologously overexpressed in Escherichia coli, and the protein (SaADH) was purified to homogeneity and characterized. SaADH is a tetrameric enzyme consisting of identical 28,978-Da subunits, each composed of 264 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 75 degrees C and a 30-min half-inactivation temperature of ~90 degrees C, and shows good tolerance to common organic solvents. SaADH has a strict requirement for NAD(H) as the coenzyme, and displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and alpha-keto esters, but is poorly active on aliphatic, cyclic and aromatic alcohols, and shows no activity on aldehydes. The enzyme catalyses the reduction of alpha-methyl and alpha-ethyl benzoylformate, and methyl o-chlorobenzoylformate with 100% conversion to methyl (S)-mandelate [17% enantiomeric excess (ee)], ethyl (R)-mandelate (50% ee), and methyl (R)-o-chloromandelate (72% ee), respectively, with an efficient in situ NADH-recycling system which involves glucose and a thermophilic glucose dehydrogenase. This study provides further evidence supporting the critical role of the D37 residue in discriminating NAD(H) from NAD(P)H in members of the SDR superfamily.

  8. [Effects of keto/amino acids and a low-protein diet on the nutritional status of patients with Stages 3B-4 chronic kidney disease].

    Science.gov (United States)

    Milovanova, S Yu; Milovanov, Yu S; Taranova, M V; Dobrosmyslov, I A

    To evaluate the efficacy of keto/amino acids in maintaining protein balance and preventing mineral metabolic disturbances and the development of uremic hyperparathyroidism in the long-term use of a low-protein diet (LPD) in patients with Stages 3B-4 chronic kidney disease (CKD). Ninety patients with CKD caused by chronic latent glomerulonephritis in 65 patients and chronic tubulointerstitial nephritis of various etiologies (gout, drug-induced, and infection) in 25 were examined. The investigators conducted clinical, laboratory, and instrumental examinations, including bioelectrical impedance analysis (body mass index (BMI), the percentages of lean and fat mass), echocardiography and radiography of the abdominal aorta in the lateral projection (the presence of cardiac valvular and aortic calcification), and pulse wave velocity measurements using a Sphygmocor apparatus (vessel stiffness estimation). The stages of CKD were defined according to the 2012 Kidney Disease: Improving Global Outcomes (KDIGO) criteria; glomerular filtration rate was calculated using the CKD EPI equation. According to the diet used, all the patients were divided into 3 groups: 1) 30 patients who took LPD (0.6 g of protein per kg of body weight/day) in combination with the keto/amino acid ketosteril (1 tablet per 5 kg of body weight/day; Diet One); 2) 30 patients who used LPD in combination with the other keto/amino acid ketoaminol at the same dose (Diet Two); 3) 30 patients had LPD without using the keto/amino acids (Diet Three) (a control group). During a follow-up, there were no signs of malnutrition in Groups 1 and 2 patients receiving LPD (0.6 g protein per kg/day) in combination with the keto/amino acids ketosteril and ketaminol, respectively. At the same time, 11 (36.6%) patients in Group 3 (a control group) who did not take the keto/amino acids showed a BMI decrease from 24 (23; 26) kg/m2 to 18.5 (17; 19.2) kg/m2 (p amino/keto acids than in Groups 1 and 2. As compared to Group 3, Groups

  9. The Aldo Leopold Wilderness Research Institute: a national wilderness research program in support of wilderness management

    Science.gov (United States)

    Vita Wright

    2000-01-01

    The Aldo Leopold Wilderness Research Institute strives to provide scientific leadership in developing and applying the knowledge necessary to sustain wilderness ecosystems and values. Since its 1993 dedication, researchers at this federal, interagency Institute have collaborated with researchers and managers from other federal, academic and private institutions to...

  10. Benchmarking Continuum Solvent Models for Keto-Enol Tautomerizations.

    Science.gov (United States)

    McCann, Billy W; McFarland, Stuart; Acevedo, Orlando

    2015-08-13

    Experimental free energies of tautomerization, ΔGT, were used to benchmark the gas-phase predictions of 17 different quantum mechanical methods and eight basis sets for seven keto-enol tautomer pairs dominated by their enolic form. The G4 method and M06/6-31+G(d,p) yielded the most accurate results, with mean absolute errors (MAE's) of 0.95 and 0.71 kcal/mol, respectively. Using these two theory levels, the solution-phase ΔGT values for 23 unique tautomer pairs composed of aliphatic ketones, β-dicarbonyls, and heterocycles were computed in multiple protic and aprotic solvents. The continuum solvation models, namely, polarizable continuum model (PCM), polarizable conductor calculation model (CPCM), and universal solvation model (SMD), gave relatively similar MAE's of ∼1.6-1.7 kcal/mol for G4 and ∼1.9-2.0 kcal/mol with M06/6-31+G(d,p). Partitioning the tautomer pairs into their respective molecular types, that is, aliphatic ketones, β-dicarbonyls, and heterocycles, and separating out the aqueous versus nonaqueous results finds G4/PCM utilizing the UA0 cavity to be the overall most accurate combination. Free energies of activation, ΔG(‡), for the base-catalyzed keto-enol interconversion of 2-nitrocyclohexanone were also computed using six bases and five solvents. The M06/6-31+G(d,p) reproduced the ΔG(‡) with MAE's of 1.5 and 1.8 kcal/mol using CPCM and SMD, respectively, for all combinations of base and solvent. That specific enolization was previously proposed to proceed via a concerted mechanism in less polar solvents but shift to a stepwise mechanism in more polar solvents. However, the current calculations suggest that the stepwise mechanism operates in all solvents.

  11. Location of the redox-active thiols of ribonucleotide reductase: sequences similarity between the Escherichia coli and Lactobacillus leichmannii enzymes

    International Nuclear Information System (INIS)

    Lin, A.N.I.; Ashley, G.W.; Stubbe, J.

    1987-01-01

    The redox-active thiols of Escherichia coli ribonucleoside diphosphate reductase and of Lactobacillus leichmannii ribonucleoside triphosphate reductase have been located by a procedure involving (1) prereduction of enzyme with dithiothreitol, (2) specific oxidation of the redox-active thiols by treatment with substrate in the absence of exogenous reductant, (3) alkylation of other thiols with iodoacetamide, and (4) reduction of the disulfides with dithiothreitol and alkylation with [1- 14 C]iodoacetamide. The dithiothreitol-reduce E. coli B1 subunit is able to convert 3 equiv of CDP to dCDP and is labeled with 5.4 equiv of 14 C. Sequencing of tryptic peptides shows that 2.8 equiv of 14 C is on cysteines-752 and -757 at the C-terminus of B1, while 1.0-1.5 equiv of 14 C is on cysteines-222 and -227. It thus appears that two sets of redox-active dithiols are involved in substrate reduction. The L. leichmannii reductase is able to convert 1.1 equiv of CTP to dCTP and is labeled with 2.1 equiv of 14 C. Sequencing of tryptic peptides shows that 1.4 equiv of 14 C is located on the two cysteines of C-E-G-G-A-C-P-I-K. This peptide shows remarkable and unexpected similarity to the thiol-containing region of the C-terminal peptide of E. coli B1, C-E-S-G-A-C-K-I

  12. Aldo Leopold on Education: An Educator and His Land Ethic in the Context of Contemporary Environmental Education.

    Science.gov (United States)

    Callicott, J. Baird

    1982-01-01

    Aldo Leopold, the founder of wildlife management (wildlife ecology) is credited with powerfully advocating for the first time in Western intellectual history, broad human ethical responsibility to the nonhuman natural world. Leopold's views on education and Leopold as an educator are discussed. (Author/JN)

  13. N-terminus determines activity and specificity of styrene monooxygenase reductases.

    Science.gov (United States)

    Heine, Thomas; Scholtissek, Anika; Westphal, Adrie H; van Berkel, Willem J H; Tischler, Dirk

    2017-12-01

    Styrene monooxygenases (SMOs) are two-enzyme systems that catalyze the enantioselective epoxidation of styrene to (S)-styrene oxide. The FADH 2 co-substrate of the epoxidase component (StyA) is supplied by an NADH-dependent flavin reductase (StyB). The genome of Rhodococcus opacus 1CP encodes two SMO systems. One system, which we define as E1-type, displays homology to the SMO from Pseudomonas taiwanensis VLB120. The other system, originally reported as a fused system (RoStyA2B), is defined as E2-type. Here we found that E1-type RoStyB is inhibited by FMN, while RoStyA2B is known to be active with FMN. To rationalize the observed specificity of RoStyB for FAD, we generated an artificial reductase, designated as RoStyBart, in which the first 22 amino acid residues of RoStyB were joined to the reductase part of RoStyA2B, while the oxygenase part (A2) was removed. RoStyBart mainly purified as apo-protein and mimicked RoStyB in being inhibited by FMN. Pre-incubation with FAD yielded a turnover number at 30°C of 133.9±3.5s -1 , one of the highest rates observed for StyB reductases. RoStyBart holo-enzyme switches to a ping-pong mechanism and fluorescence analysis indicated for unproductive binding of FMN to the second (co-substrate) binding site. In summary, it is shown for the first time that optimization of the N-termini of StyB reductases allows the evolution of their activity and specificity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Nuclear magnetic resonance study of interaction of ligands with Streptococcus faecium dihydrofolate reductase labeled with [#betta#-13C]tryptophan

    International Nuclear Information System (INIS)

    London, R.E.; Groff, J.P.; Cocco, L.; Blakley, R.L.

    1982-01-01

    Dihydrofolate reductase from Streptococcus faecium has been labeled with [#betta#- 13 C]tryptophan. We have determined changes occurring in the chemical shifts and line widths of the four resonances of the 13 C NMR spectrum of the labeled enzyme, due to its interaction with various ligands. These include the coenzyme, NPDPH and related nucleotides, folate and its polyglutamate derivatives, and many inhibitors including methotrexate and trimethoprim. In addition, paramagnetic relaxation effects produced by a bound spin-labeled analogue of 2'-phosphoadenosine-5'-diphosphoribose on the tryptophan C/sup #betta#/ carbons have been measured. Distances calculated from the relaxation data have been compared with corresponding distances in the crystallographic model of the NADPH-methotrexate ternary complex of Lactobacillus casei reductase. The paramagnetic relaxation data indicate that the two downfield resonances (1 and 2) correspond to tryptophans (W/sub A/ and W/sub B/) that are more remote from the catalytic site, and from the crystallographic model these are seen to be Trp-115 and Trp-160. The upfield resonances (3 and 4) that show broadening due to chemical exchange correspond to closer residues (W/sub C/ and W/sub D/), and these are identified with Trp-6 and Trp-22. However, the relaxation data do not permit specific assignments within the nearer and farther pairs. Although resonance 3, which is split due to chemical exchange, was formerly assigned to Trp-6, data obtained for the enzyme in the presence of various ligands are better interpreted if resonance 3 is assigned to Trp-22, which is located on a loop that joins elements of secondary structure and forms one side of the ligand-binding cavity

  15. Framing a Philosophy of Environmental Action: Aldo Leopold, John Muir, and the Importance of Community

    Science.gov (United States)

    Goralnik, Lissy; Nelson, Michael P.

    2011-01-01

    A philosophy of action consists of a theory about how and why we do things and what motivates us to act. By juxtaposing the theory of environmental action implied by the works and life of John Muir with the philosophy of action suggested by Aldo Leopold's Land Ethic, we will illuminate the importance of a philosophy of action in determining one's…

  16. YqhD. A broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, Laura R. [Iowa State Univ., Ames, IA (United States). Dept. of Chemical and Biological Engineering

    2011-01-15

    The Escherichia coli NADPH-dependent aldehyde reductase YqhD has contributed to a variety of metabolic engineering projects for production of biorenewable fuels and chemicals. As a scavenger of toxic aldehydes produced by lipid peroxidation, YqhD has reductase activity for a broad range of short-chain aldehydes, including butyraldehyde, glyceraldehyde, malondialdehyde, isobutyraldehyde, methylglyoxal, propanealdehyde, acrolein, furfural, glyoxal, 3-hydroxypropionaldehyde, glycolaldehyde, acetaldehyde, and acetol. This reductase activity has proven useful for the production of biorenewable fuels and chemicals, such as isobutanol and 1,3- and 1,2-propanediol; additional capability exists for production of 1-butanol, 1-propanol, and allyl alcohol. A drawback of this reductase activity is the diversion of valuable NADPH away from biosynthesis. This YqhD-mediated NADPH depletion provides sufficient burden to contribute to growth inhibition by furfural and 5-hydroxymethyl furfural, inhibitory contaminants of biomass hydrolysate. The structure of YqhD has been characterized, with identification of a Zn atom in the active site. Directed engineering efforts have improved utilization of 3-hydroxypropionaldehyde and NADPH. Most recently, two independent projects have demonstrated regulation of yqhD by YqhC, where YqhC appears to function as an aldehyde sensor. (orig.)

  17. The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: a narrative review

    OpenAIRE

    Cliff J. d C. Harvey; Grant M. Schofield; Micalla Williden

    2018-01-01

    Background Adaptation to a ketogenic diet (keto-induction) can cause unpleasant symptoms, and this can reduce tolerability of the diet. Several methods have been suggested as useful for encouraging entry into nutritional ketosis (NK) and reducing symptoms of keto-induction. This paper reviews the scientific literature on the effects of these methods on time-to-NK and on symptoms during the keto-induction phase. Methods PubMed, Science Direct, CINAHL, MEDLINE, Alt Health Watch, Food Science So...

  18. The diterpenoid 7-keto-sempervirol, derived from Lycium chinense, displays anthelmintic activity against both Schistosoma mansoni and Fasciola hepatica.

    Directory of Open Access Journals (Sweden)

    Jennifer Edwards

    2015-03-01

    Full Text Available BACKGROUND: Two platyhelminths of biomedical and commercial significance are Schistosoma mansoni (blood fluke and Fasciola hepatica (liver fluke. These related trematodes are responsible for the chronic neglected tropical diseases schistosomiasis and fascioliasis, respectively. As no vaccine is currently available for anti-flukicidal immunoprophylaxis, current treatment is mediated by mono-chemical chemotherapy in the form of mass drug administration (MDA (praziquantel for schistosomiasis or drenching (triclabendazole for fascioliasis programmes. This overreliance on single chemotherapeutic classes has dramatically limited the number of novel chemical entities entering anthelmintic drug discovery pipelines, raising significant concerns for the future of sustainable blood and liver fluke control. METHODOLOGY/ PRINCIPLE FINDINGS: Here we demonstrate that 7-keto-sempervirol, a diterpenoid isolated from Lycium chinense, has dual anthelmintic activity against related S. mansoni and F. hepatica trematodes. Using a microtiter plate-based helminth fluorescent bioassay (HFB, this activity is specific (Therapeutic index = 4.2, when compared to HepG2 cell lines and moderately potent (LD50 = 19.1 μM against S. mansoni schistosomula cultured in vitro. This anti-schistosomula effect translates into activity against both adult male and female schistosomes cultured in vitro where 7-keto-sempervirol negatively affects motility/behaviour, surface architecture (inducing tegumental holes, tubercle swelling and spine loss/shortening, oviposition rates and egg morphology. As assessed by the HFB and microscopic phenotypic scoring matrices, 7-keto-sempervirol also effectively kills in vitro cultured F. hepatica newly excysted juveniles (NEJs, LD50 = 17.7 μM. Scanning electron microscopy (SEM evaluation of adult F. hepatica liver flukes co-cultured in vitro with 7-keto-sempervirol additionally demonstrates phenotypic abnormalities including breaches in tegumental

  19. Methylenetetrahydrofolate Reductase (MTHFR) (C677T and A1298C) Polymorphisms and Vascular Complications in Patients with Type 2 Diabetes.

    Science.gov (United States)

    Fekih-Mrissa, Najiba; Mrad, Meriem; Ibrahim, Hazard; Akremi, Imen; Sayeh, Aicha; Jaidane, Amel; Ouertani, Haroun; Zidi, Borni; Gritli, Nasreddine

    2017-08-01

    To assess whether 2 polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene, C677T and A1298C, are risk factors for vascular complications in Tunisian patients with type 2 diabetes mellitus. The MTHFR polymorphisms were genotyped, and plasma homocysteine levels were evaluated in 160 Tunisian patients with type 2 diabetes mellitus. Prevalence of the 2 heterozygous polymorphisms of the thermolabile MTHFR gene (CT and AC) was encountered more commonly in patients with diabetes mellitus than in the healthy controls (phomocysteine (Hcy) levels than the control subjects; however, there was no statistical difference in plasma Hcy values between carriers of mutant genotypes (CT/TT for C677T and AC/CC for A1298C) and wild types (CC and AA) in patients with diabetes. Retinopathy was found to be a vascular complication in patients with either the 677CT or the 1298(AC+CC) genotype more commonly than in those with the wild-type genotypes (p=0.003; OR=3.2, 95% CI, 1.4 to 7.4; p<10 -3 ; OR=5.9, 95% CI, 2.7 to 13). Only patients who carry the A1298C mutation (AC+CC) are at risk for at least 1 complication (p=0.002). Double heterozygous mutants were at the greatest risk for retinopathy and for suffering at least 1 complication (p<10 -3 ). Studies involving a larger study population and various ethnic groups are required before ruling out the role of MTHFR gene in type 2 diabetes mellitus and in vascular complications. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  20. Reduction of plasma asymmetric dimethylarginine in obese patients with chronic kidney disease after three years of a low-protein diet supplemented with keto-amino acids: a randomized controlled trial.

    Science.gov (United States)

    Teplan, Vladimir; Schück, Otto; Racek, Jaroslav; Mareckova, Olga; Stollova, Milena; Hanzal, Vladimir; Malý, Jan

    2008-01-01

    Levels of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) are elevated in chronic kidney disease (CKD) and may contribute to vascular complications. In this study we tested the hypothesis that elevated ADMA can be reduced in obese CKD patients by long-term administration of a low-protein diet supplemented with keto-amino acids. In a long-term prospective double-blind placebo-controlled randomized trial, we evaluated for a period of 36 months a total of 111 CKD patients (54 men, 57 women) aged 22-76 years with obesity (BMI >or= 30 kg/m(2)) and an inulin clearance rate (C(in)) of 22-40 ml/min/1.73 m(2). All patients were on a low-protein diet containing 0.6 g protein/kg BW per day and 120-125 kJ/kg BW per day. The diet was randomly supplemented with keto-amino acids at a dosage of 100 mg/kg BW per day (66 patients, Group I); 65 patients received placebo (Group II). During the study period, the glomerular filtration rate decreased slightly in Group I (C(in) from 32.4 +/- 12.6 to 29.8 +/- 8.6 ml/min/1.73 m(2)) and more markedly in Group II (from 33.2 +/- 12.6 to 23.2 +/- 98.4 ml/min/1.73 m(2), P diet and keto-amino acids in CKD patients with obesity led to decreases of ADMA, visceral body fat and proteinuria. Concomitant decreases of glycated hemoglobin, LDL-cholesterol and pentosidine may also contribute to the delay in progression of renal failure.

  1. Nitrate reductase and nitrous oxide production by Fusarium oxysporum 11dn1 under aerobic and anaerobic conditions.

    Science.gov (United States)

    Kurakov, A V; Nosikov, A N; Skrynnikova, E V; L'vov, N P

    2000-08-01

    The fungus Fusarium oxysporum 11dn1 was found to be able to grow and produce nitrous oxide on nitrate-containing medium in anaerobic conditions. The rate of nitrous oxide formation was three to six orders of magnitude lower than the rates of molecular nitrogen production by common denitrifying bacteria. Acetylene and ammonia did not affect the release of nitrous oxide release. It was shown that under anaerobic conditions fast increase of nitrate reductase activity occurred, caused by the synthesis of enzyme de novo and protein dephosphorylation. Reverse transfer of the mycelium to aerobic conditions led to a decline in nitrate reductase activity and stopped nitrous oxide production. The presence of two nitrate reductases was shown, which differed in molecular mass, location, temperature optima, and activity in nitrate- and ammonium-containing media. Two enzymes represent assimilatory and dissimilatory nitrate reductases, which are active in aerobic and anaerobic conditions, respectively.

  2. Regulators of ribonucleotide reductase inhibit Ty1 mobility in saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    O'Donnell John P

    2010-11-01

    Full Text Available Abstract Background Ty1 is a long terminal repeat retrotransposon of Saccharomyces cerevisiae, with a replication cycle similar to retrovirus replication. Structurally, Ty1 contains long terminal repeat (LTR regions flanking the gag and pol genes that encode for the proteins that enable Ty1 mobility. Reverse transcriptase produces Ty1 complementary (cDNA that can either be integrated back into the genome by integrase or recombined into the yeast genome through homologous recombination. The frequency of Ty1 mobility is temperature sensitive, with optimum activity occurring at 24-26°C. Results In this study, we identified two host genes that when deleted allow for high temperature Ty1 mobility: RFX1 and SML1. The protein products of these genes are both negative regulators of the enzyme ribonucleotide reductase, a key enzyme in regulating deoxyribonucleotide triphosphate (dNTP levels in the cell. Processing of Ty1 proteins is defective at high temperature, and processing is not improved in either rfx1 or sml1 deletion strains. Ty1 mobility at high temperature is mediated by homologous recombination of Ty1 cDNA to Ty1 elements within the yeast genome. We quantified cDNA levels in wild type, rfx1 and sml1 deletion background strains at different temperatures. Southern blot analysis demonstrated that cDNA levels were not markedly different between the wild type and mutant strains as temperatures increased, indicating that the increased Ty1 mobility is not a result of increased cDNA synthesis in the mutant strains. Homologous recombination efficiency was increased in both rfx1 and sml1 deletion strains at high temperatures; the rfx1 deletion strain also had heightened homologous recombination efficiency at permissive temperatures. In the presence of the dNTP reducing agent hydroxyurea at permissive temperatures, Ty1 mobility was stimulated in the wild type and sml1 deletion strains but not in the rfx1 deletion strain. Mobility frequency was greatly

  3. Structure of Escherichia coli RutC, a member of the YjgF family and putative aminoacrylate peracid reductase of the rut operon

    International Nuclear Information System (INIS)

    Knapik, Aleksandra Alicja; Petkowski, Janusz Jurand; Otwinowski, Zbyszek; Cymborowski, Marcin Tadeusz; Cooper, David Robert; Chruszcz, Maksymilian; Krajewska, Wanda Małgorzata; Minor, Wladek

    2012-01-01

    The structure of the putative aminoacrylate peracid reductase RutC of the rut operon, a member of the YjgF family, is reported. RutC is the third enzyme in the Escherichia coli rut pathway of uracil degradation. RutC belongs to the highly conserved YjgF family of proteins. The structure of the RutC protein was determined and refined to 1.95 Å resolution. The crystal belonged to space group P2 1 2 1 2 and contained six molecules in the asymmetric unit. The structure was solved by SAD phasing and was refined to an R work of 19.3% (R free = 21.7%). The final model revealed that this protein has a Bacillus chorismate mutase-like fold and forms a homotrimer with a hydrophobic cavity in the center of the structure and ligand-binding clefts between two subunits. A likely function for RutC is the reduction of peroxy-aminoacrylate to aminoacrylate as a part of a detoxification process

  4. C677T methylenetetrahydrofolate reductase and plasma homocysteine levels among Thai vegans and omnivores.

    Science.gov (United States)

    Kajanachumpol, Saowanee; Atamasirikul, Kalayanee; Tantibhedhyangkul, Phieuvit

    2013-01-01

    Hyperhomocysteinemia among vegetarians and vegans is caused mostly by vitamin B12 deficiency. A C-to-T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene results in a thermolabile MTHFR, which may affect homocysteine (Hcy) levels. The importance of this gene mutation among populations depends on the T allele frequency. Blood Hcy, vitamin B12, folate, vitamin B6, and MTHFR C677T mutation status were determined in 109 vegans and 86 omnivores aged 30 - 50 years. The vegans had significantly higher Hcy levels than the omnivores, geometric means (95 % CI) 19.2 (17.0 - 21.7) µmol/L vs. 8.53 (8.12 - 8.95) µmol/L, p vegans increased plasma Hcy, albeit insignificantly; geometric means 18.2 µmol/L, 20.4 µmol/L, and 30.0 µmol/L respectively in CC, CT, and TT MTHFR genotypes. There was also a significant decrease in serum folate; geometric means 12.1 ng/mL, 9.33 ng/mL, and 7.20 ng/mL respectively, in the CC, CT, and TT mutants, p = 0.006, and particularly, in the TT mutant compared with the CC wild type, 7.20 ng/mL vs. 12.1 ng/mL, p = 0.023. These findings were not seen in the omnivores. It was concluded that hyperhomocysteinemia is prevalent among Thai vegans due to vitamin B12 deficiency. C-to-T MTHFR mutation contributes only modestly to the hyperhomocysteinemia.

  5. Biochemical characterization of recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala.

    Science.gov (United States)

    Sonawane, Prashant; Vishwakarma, Rishi Kishore; Khan, Bashir M

    2013-07-01

    Recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) protein from Leucaena leucocephala was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Optimum pH for forward and reverse reaction was found to be 6.5 and 7.8 respectively. The enzyme was most stable around pH 6.5 at 25°C for 90 min. The enzyme showed Kcat/Km for feruloyl, caffeoyl, sinapoyl, coumaroyl CoA, coniferaldehyde and sinapaldehyde as 4.6, 2.4, 2.3, 1.7, 1.9 and 1.2 (×10(6) M(-1) s(-1)), respectively, indicating affinity of enzyme for feruloyl CoA over other substrates and preference of reduction reaction over oxidation. Activation energy, Ea for various substrates was found to be in the range of 20-50 kJ/mol. Involvement of probable carboxylate ion, histidine, lysine or tyrosine at the active site of enzyme was predicted by pH activity profile. SAXS studies of protein showed radius 3.04 nm and volume 49.25 nm(3) with oblate ellipsoid shape. Finally, metal ion inhibition studies revealed that Ll-CCRH1 is a metal independent enzyme. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Methylenetetrahydrofolate reductase genotypes and predisposition to atherothrombotic disease; evidence that all three MTHFR C677T genotypes confer different levels of risk.

    NARCIS (Netherlands)

    Kluijtmans, L.A.J.; Whitehead, A.S.

    2001-01-01

    AIMS: Elevated plasma homocysteine is an independent risk factor for atherothrombotic disease. Individuals homozygous for the methylenetetrahydrofolate reductase (MTHFR) 677C allele exclusively accumulate 5methyltetrahydrofolate, the methyl donor for homocysteine remethylation, in their red blood

  7. Association between methylene tetrahydrofolate reductase gene C677T polymorphism with preeclampsia in south-east of Iran

    Directory of Open Access Journals (Sweden)

    Mohsen Saravani

    2011-12-01

    Full Text Available Background: Preeclampsia (PE is a serious problem of pregnancy and its etiology is still unknown. There are some evidence that vascular complications play an important role in development of PE. Methylenetetrahydrofolate reductase (MTHFR is a key enzyme in folate metabolism and the C677T polymorphism of the MTHFR gene is associated with decreased MTHFR activity. The aim of this study was to evaluate the relationship between MTHFR gene C677T polymorphism with PE development in south-east of Iran.Materials and method: This study was performed in 106 preeclamptic pregnant women and 107 control individuals. The C677T polymorphism of the MTHFR gene was determined by PCR-RFLP method. Results: The CC, CT and TT genotypes frequency of C677T polymorphism of MTHFR gene were 77, 22 and 1 percent in preeclamptic women and 73, 19.5 and 7.5 percent in control group. They were not significantly different (p=0.06. However, the frequency of TT genotype was significantly higher in control group (OR=8.5; 95% CI 1.1-71; p=.018. There was not any significant difference in T allele distribution between preeclamptic women (12% and control group (17%. Conclusion: Our results showed that there was not any correlation between the C677T polymorphism and PE but the TT genotype of C677T polymorphism seems to be a protective factor for preeclampsia

  8. Expression, purification, crystallization and preliminary X-ray diffraction analysis of carbonyl reductase from Candida parapsilosis ATCC 7330

    International Nuclear Information System (INIS)

    Aggarwal, Nidhi; Mandal, P. K.; Gautham, Namasivayam; Chadha, Anju

    2013-01-01

    The expression, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies on C. parapsilosis carbonyl reductase are reported. The NAD(P)H-dependent carbonyl reductase from Candida parapsilosis ATCC 7330 catalyses the asymmetric reduction of ethyl 4-phenyl-2-oxobutanoate to ethyl (R)-4-phenyl-2-hydroxybutanoate, a precursor of angiotensin-converting enzyme inhibitors such as Cilazapril and Benazepril. The carbonyl reductase was expressed in Escherichia coli and purified by GST-affinity and size-exclusion chromatography. Crystals were obtained by the hanging-drop vapour-diffusion method and diffracted to 1.86 Å resolution. The asymmetric unit contained two molecules of carbonyl reductase, with a solvent content of 48%. The structure was solved by molecular replacement using cinnamyl alcohol dehydrogenase from Saccharomyces cerevisiae as a search model

  9. 11β-Hydroxysteroid dehydrogenase type 1 contributes to the balance between 7-keto- and 7-hydroxy-oxysterols in vivo.

    Science.gov (United States)

    Mitić, Tijana; Shave, Steven; Semjonous, Nina; McNae, Iain; Cobice, Diego F; Lavery, Gareth G; Webster, Scott P; Hadoke, Patrick W F; Walker, Brian R; Andrew, Ruth

    2013-07-01

    11β-Hydroxysteroid dehydrogenase 1 (11βHSD1; EC 1.1.1.146) generates active glucocorticoids from inert 11-keto metabolites. However, it can also metabolize alternative substrates, including 7β-hydroxy- and 7-keto-cholesterol (7βOHC, 7KC). This has been demonstrated in vitro but its consequences in vivo are uncertain. We used genetically modified mice to investigate the contribution of 11βHSD1 to the balance of circulating levels of 7KC and 7βOHC in vivo, and dissected in vitro the kinetics of the interactions between oxysterols and glucocorticoids for metabolism by the mouse enzyme. Circulating levels of 7KC and 7βOHC in mice were 91.3±22.3 and 22.6±5.7 nM respectively, increasing to 1240±220 and 406±39 nM in ApoE(-/-) mice receiving atherogenic western diet. Disruption of 11βHSD1 in mice increased (p<0.05) the 7KC/7βOHC ratio in plasma (by 20%) and also in isolated microsomes (2 fold). The 7KC/7βOHC ratio was similarly increased when NADPH generation was restricted by disruption of hexose-6-phosphate dehydrogenase. Reduction and oxidation of 7-oxysterols by murine 11βHSD1 proceeded more slowly and substrate affinity was lower than for glucocorticoids. in vitro 7βOHC was a competitive inhibitor of oxidation of corticosterone (Ki=0.9 μM), whereas 7KC only weakly inhibited reduction of 11-dehydrocorticosterone. However, supplementation of 7-oxysterols in cultured cells, secondary to cholesterol loading, preferentially slowed reduction of glucocorticoids, rather than oxidation. Thus, in mouse, 11βHSD1 influenced the abundance and balance of circulating and tissue levels of 7βOHC and 7KC, promoting reduction of 7KC. In health, 7-oxysterols are unlikely to regulate glucocorticoid metabolism. However, in hyperlipidaemia, 7-oxysterols may inhibit glucocorticoid metabolism and modulate signaling through corticosteroid receptors. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. La historia de la acción popular en la perspectiva del partido comunista de Brasil: un análisis de la obra de haroldo lima y aldo arantes sobre la historia de la AP The history of popular action from the perspective of the communist party of Brazil: an analysis of the research by haroldo lima and aldo arantes on the history of the popular action - doi: 10.4025/dialogos.v10i1.111 A história da ação popular na perspectiva do PC do b: uma análise da obra de Haroldo Lima e Aldo Arantes sobre a história da AP - doi: 10.4025/dialogos.v10i1.111

    OpenAIRE

    Reginaldo Benedito Dias

    2010-01-01

    A principios de la década de 1970, un significativo número de militantes de la Acción Popular (importante organización de izquierda) decidió incorporarse al Partido Comunista de Brasil (PC do B). Este trabajo analiza la forma en cómo fue escrita la historia de la Acción Popular por aquellos que realizaron esa elección, tomando como base el libro de Aldo Arantes y Haroldo Lima. Aquí se pretende d...

  11. The Effect of Medium Chain Triglycerides on Time to Nutritional Ketosis and Symptoms of Keto-Induction in Healthy Adults: A Randomised Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Cliff J. d C. Harvey

    2018-01-01

    Full Text Available Medium chain triglycerides (MCTs are ketogenic and might reduce adverse effects of keto-induction and improve time to ketosis and the tolerability of very low carbohydrate diets. This study investigates whether MCT supplementation improves time to nutritional ketosis (NK, mood, and symptoms of keto-induction. We compared changes in beta-hydroxybutyrate (BOHB, blood glucose, symptoms of keto-induction, and mood disturbance, in 28 healthy adults prescribed a ketogenic diet, randomised to receive either 30 ml of MCT, or sunflower oil as a control, three times per day, for 20 days. The primary outcome measured was the achievement of NK (≥0.5 mmol·L−1 BOHB. Participants also completed a daily Profile of Mood States and keto-induction symptom questionnaire. MCT resulted in higher BOHB at all time points and faster time to NK, a result that failed to reach significance. Symptoms of keto-induction resulted from both diets, with a greater magnitude in the control group, except for abdominal pain, which occurred with greater frequency and severity in the MCT-supplemented diet. There was a possibly beneficial effect on symptoms by MCT, but the effect on mood was unclear. Based on these results, MCTs increase BOHB compared with LCT and reduce symptoms of keto-induction. It is unclear whether MCTs significantly improve mood or time to NK. The trial was registered by the Australia New Zealand Clinical Trial Registry ACTRN12616001099415.

  12. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  13. The role of quinone reductase (NQO1) and quinone chemistry in quercetin cytotoxicity

    NARCIS (Netherlands)

    Gliszczynska-Swiglo, A.; Woude, van der H.; Haan, de L.H.J.; Tyrakowska, B.; Aarts, J.M.M.J.G.; Rietjens, I.M.C.M.

    2003-01-01

    The effects of quercetin on viability and proliferation of Chinese Hamster Ovary (CHO) cells and CHO cells overexpressing human quinone reductase (CHO+NQO1) were studied to investigate the involvement of the pro-oxidant quinone chemistry of quercetin. The toxicity of menadione was significantly

  14. Low-Protein Diet Supplemented with Keto Acids Is Associated with Suppression of Small-Solute Peritoneal Transport Rate in Peritoneal Dialysis Patients

    OpenAIRE

    Jiang, Na; Qian, Jiaqi; Lin, Aiwu; Fang, Wei; Zhang, Weiming; Cao, Liou; Wang, Qin; Ni, Zhaohui; Yao, Qiang

    2011-01-01

    Objective. We investigate whether low-protein diet would show benefits in suppressing peritoneal transport rate in peritoneal dialysis (PD) patients. Methods. This is a supplemented analysis of our previously published trial, which randomized 60 PD patients to receive low- (LP: dietary protein intake of 0.6–0.8 g/kg/d), keto-acid-supplemented low- (sLP: 0.6–0.8 g/kg/d with 0.12 g/kg/d of keto acids), or high- (HP: 1.0–1.2 g/kg/d) protein diet and lasted for one year. In this study, the variat...

  15. Maternal methylenetetrahydrofolate reductase C677T polymorphism and down syndrome risk: a meta-analysis from 34 studies.

    Directory of Open Access Journals (Sweden)

    Vandana Rai

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR is a key enzyme of folate metabolic pathway which catalyzes the irreversible conversion of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. 5-methyltetrahydrofolate donates methyl group for the methylation of homocysteine to methionine. Several studies have investigated maternal MTHFR C677T polymorphism as a risk factor for DS, but the results were controversial and inconclusive. To come into a conclusive estimate, authors performed a meta-analysis.A meta-analysis of published case control studies was performed to investigate the association between maternal MTHFR C677T polymorphism and Down syndrome.PubMed, Google Scholar, Elsevier, Springer Link databases were searched to select the eligible case control studies using appropriate keywords. The pooled odds ratio (OR with 95%confidence interval were calculated for risk assessment.Thirty four studies with 3,098 DS case mothers and 4,852 control mothers were included in the present meta-analysis. The pooled OR was estimated under five genetic models and significant association was found between maternal MTHFR 677C>T polymorphism and Down syndrome under four genetic models except recessive model (for T vs. C, OR = 1.26, 95% CI = 1.09-1.46, p = 0.001; for TT vs. CC, OR = 1.49, 95% CI = 1.13-1.97, p = 0.008; for CT vs. CC, OR = 1.29, 95% CI = 1.10-1.51, p = 0.001; for TT+CT vs. CC, OR = 1.35, 95% CI = 1.13-1.60, p = 0.0008; for TT vs. CT+CC, OR = 0.76, 95% CI = 0.60-0.94, p = 0.01.The results of the present meta-analysis support that maternal MTHFR C677T polymorphism is a risk factor for DS- affected pregnancy.

  16. Louis I. Kahn ja Aldo van Eyck : paralleelid moodsa arhitektuuri teises traditsioonis / Robert McCarter ; tõlk. Tiina Randus

    Index Scriptorium Estoniae

    McCarter, Robert

    2007-01-01

    Vaadeldakse Louis I. Kahni ja Aldo van Eycki esinemist 1959. a. CIAMi (Congres Internatinaux d'Architecture Moderne) XI kongressil Otterlos, ajaloolistes paikades saadud kogemuste mõju nende loomingule, suhteid kaasaja kunstnikega ja kunstnike loomingu mõju neile, hoonete kavandamist, linnaarhitektuuri ja -planeerimist. Bibliograafia lk.101-102

  17. The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase.

    Science.gov (United States)

    Martin, Hans-Jörg; Ziemba, Marta; Kisiela, Michael; Botella, José A; Schneuwly, Stephan; Maser, Edmund

    2011-05-30

    Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Immunocytochemical localization of APS reductase and bisulfite reductase in three Desulfovibrio species

    NARCIS (Netherlands)

    Kremer, D.R.; Veenhuis, M.; Fauque, G.; Peck Jr., H.D.; LeGall, J.; Lampreia, J.; Moura, J.J.G.; Hansen, T.A.

    1988-01-01

    The localization of APS reductase and bisulfite reductase in Desulfovibrio gigas, D. vulgaris Hildenborough and D. thermophilus was studied by immunoelectron microscopy. Polyclonal antibodies were raised against the purified enzymes from each strain. Cells fixed with formaldehyde/glutaraldehyde were

  19. Low-protein diet supplemented with keto acids is associated with suppression of small-solute peritoneal transport rate in peritoneal dialysis patients.

    Science.gov (United States)

    Jiang, Na; Qian, Jiaqi; Lin, Aiwu; Fang, Wei; Zhang, Weiming; Cao, Liou; Wang, Qin; Ni, Zhaohui; Yao, Qiang

    2011-01-01

    Objective. We investigate whether low-protein diet would show benefits in suppressing peritoneal transport rate in peritoneal dialysis (PD) patients. Methods. This is a supplemented analysis of our previously published trial, which randomized 60 PD patients to receive low- (LP: dietary protein intake of 0.6-0.8 g/kg/d), keto-acid-supplemented low- (sLP: 0.6-0.8 g/kg/d with 0.12 g/kg/d of keto acids), or high- (HP: 1.0-1.2 g/kg/d) protein diet and lasted for one year. In this study, the variations of peritoneal transport rate were assessed. Results. While baseline D/P(cr) (dialysate-to-plasma concentration ratio for creatinine at 4 hour) and D/D0(glu) (dialysate glucose at 4 hour to baseline dialysate glucose concentration ratio) were similar, D/P(cr) in group sLP was lower, and D/D0(glu) was higher than those in the other two groups (P diet with keto acids may benefit PD patients by maintaining peritoneum at a lower transport rate.

  20. Association of aldose reductase gene polymorphism (C-106T) in susceptibility of diabetic peripheral neuropathy among north Indian population.

    Science.gov (United States)

    Gupta, Balram; Singh, S K

    2017-07-01

    Polymorphism in aldose reductase (ALR) gene at nucleotide C(-106)T (rs759853) in the promoter region is associated with susceptibility to development of diabetic peripheral neuropathy. The aim of this study was to detect the association of the C (-106)T polymorphism of ALR gene and its frequency among patients with type 2 diabetes mellitus with and without peripheral neuropathy. The study subjects were divided into three groups. Group I included 356 patients with diabetes having peripheral neuropathy. Group II included 294 patients with diabetes without peripheral neuropathy and group III included 181 healthy subjects. Genotyping of ALR C(-106)T SNPs was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing methods. The genetic risk among the groups was compared and tested by calculating odds ratio with 95% class interval. ALR 106TT genotype was significantly higher in group I compared to group II with an odds ratio of 2.12 (95% CI: 1.22-3.67; pneuropathy with relative risk of 1.97 (95% CI: 1.16-3.35; pperipheral neuropathy in patients with type 2 diabetes mellitus. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Crystallization and preliminary X-ray analysis of the reductase component of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii

    International Nuclear Information System (INIS)

    Oonanant, Worrapoj; Sucharitakul, Jeerus; Chaiyen, Pimchai; Yuvaniyama, Jirundon

    2012-01-01

    The reductase component of p-hydroxyphenylacetate 3-hydroxylase from A. baumannii was overexpressed, purified and crystallized. X-ray diffraction data were collected and processed to 2.3 Å resolution. p-Hydroxyphenylacetate 3-hydroxylase (HPAH) from Acinetobacter baumannii catalyzes the hydroxylation of p-hydroxyphenylacetate (HPA) at the ortho position to yield 3,4-dihydroxyphenylacetate (DHPA). HPAH from A. baumannii is a two-component flavoprotein consisting of a smaller reductase (C 1 ) component and a larger oxygenase (C 2 ) component. The C 1 component supplies a reduced flavin in its free form to the C 2 counterpart for hydroxylation. In addition, HPA can bind to C 1 and enhance the flavin-reduction rate without becoming hydroxylated. The recombinant C 1 component was purified and crystallized using the microbatch method at 295 K. X-ray diffraction data were collected to 2.3 Å resolution using synchrotron radiation on the BL13B1 beamline at NSRRC, Taiwan. The crystal belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 47.78, b = 59.92, c = 211.85 Å, and contained two molecules of C 1 per asymmetric unit

  2. Evidence that steroid 5alpha-reductase isozyme genes are differentially methylated in human lymphocytes.

    Science.gov (United States)

    Rodríguez-Dorantes, M; Lizano-Soberón, M; Camacho-Arroyo, I; Calzada-León, R; Morimoto, S; Téllez-Ascencio, N; Cerbón, M A

    2002-03-01

    The synthesis of dihydrotestosterone (DHT) is catalyzed by steroid 5alpha-reductase isozymes 1 and 2, and this function determines the development of the male phenotype during embriogenesis and the growth of androgen sensitive tissues during puberty. The aim of this study was to determine the cytosine methylation status of 5alpha-reductase isozymes types 1 and 2 genes in normal and in 5alpha-reductase deficient men. Genomic DNA was obtained from lymphocytes of both normal subjects and patients with primary 5alpha-reductase deficiency due to point mutations in 5alpha-reductase 2 gene. Southern blot analysis of 5alpha-reductase types 1 and 2 genes from DNA samples digested with HpaII presented a different cytosine methylation pattern compared to that observed with its isoschizomer MspI, indicating that both genes are methylated in CCGG sequences. The analysis of 5alpha-reductase 1 gene from DNA samples digested with Sau3AI and its isoschizomer MboI which recognize methylation in GATC sequences showed an identical methylation pattern. In contrast, 5alpha-reductase 2 gene digested with Sau3AI presented a different methylation pattern to that of the samples digested with MboI, indicating that steroid 5alpha-reductase 2 gene possess methylated cytosines in GATC sequences. Analysis of exon 4 of 5alpha-reductase 2 gene after metabisulfite PCR showed that normal and deficient subjects present a different methylation pattern, being more methylated in patients with 5alpha-reductase 2 mutated gene. The overall results suggest that 5alpha-reductase genes 1 and 2 are differentially methylated in lymphocytes from normal and 5alpha-reductase deficient patients. Moreover, the extensive cytosine methylation pattern observed in exon 4 of 5alpha-reductase 2 gene in deficient patients, points out to an increased rate of mutations in this gene.

  3. [Autophagy-lysosome pathway in skeletal muscle of diabetic nephropathy rats and the effect of low-protein diet plus α-keto acids on it].

    Science.gov (United States)

    Huang, Juan; Yuan, Wei-jie; Wang, Jia-lin; Gu, Li-jie; Yin, Jun; Dong, Ting; Bao, Jin-fang; Tang, Zhi-huan

    2013-11-26

    To explore the regulation of autophagy-lysosome pathway (ALP) in skeletal muscle of diabetic nephropathy and examine the effect of low protein diet plus α-keto acid on ALP. A total of 45 24-week-old Goto-Kakizaki rats were randomized to receive normal protein (22%) diet (NPD), low-protein (6%) diet (LPD) or low-protein (5%) plus α-keto acids (1%) diet (Keto) (n = 15 each). Wistar control rats had a normal protein diet. The mRNA and protein levels of ALP markers LC3B, Bnip3, Cathepsin L in soleus muscle were evaluated at 48 weeks. Electron microscopy was used to confirm the changes of autophagy. Compared with CTL group, the mRNA levels of LC3B, Bnip3, Cathepsin L in soleus muscle of rats on NPD were higher, and protein levels of LC3B-I, LC3B-II, Bnip3, Cathepsin L in soleus muscle of rats on NPD also higher than CTL group (0.82 ± 0.33 vs 0.25 ± 0.07, 0.76 ± 0.38 vs 0.20 ± 0.12, 1.25 ± 0.30 vs 0.56 ± 0.19, 1.29 ± 0.40 vs 0.69 ± 0.20). The mRNA levels of LC3B, Bnip3 and Cathepsin L in LPD group were slightly lower, compared with NPD group. However there was no statistical significance. Similarly the protein levels of LC3B-I, LC3B-II, Bnip3 and Cathepsin L in LPD group were slightly lower with no statistical significance. In contrast, the mRNA levels of LC3B, Bnip3 and Cathepsin L were greatly lower in Keto group in comparison with NPD and LPD. And protein levels of LC3B-I, LC3B-II, Bnip3 and Cathepsin L were also greatly lower in Keto group in comparison with NPD and LPD. Additionally, autophagosome or auto-lysosome was found in NPD and LPD groups by electron microscopy. ALP is activated in skeletal muscle of diabetic nephropathy rats. And low protein plus α-keto acid decrease the activation of ALP and improve muscle wasting.

  4. Crystallization and preliminary X-ray analysis of the NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra

    International Nuclear Information System (INIS)

    Takeshita, Daijiro; Kataoka, Michihiko; Miyakawa, Takuya; Miyazono, Ken-ichi; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    The NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra was expressed, purified, and crystallized and X-ray diffraction data of this crystal were collected to 2.2 Å resolution. (R)-3-Quinuclidinol is a useful compound that is applicable to the synthesis of various pharmaceuticals. The NADPH-dependent carbonyl reductase 3-quinuclidinone reductase from Rhodotorula rubra catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol and is expected to be utilized in industrial production of this alcohol. 3-Quinuclidinone reductase from R. rubra was expressed in Escherichia coli and purified using Ni-affinity and ion-exchange column chromatography. Crystals of the protein were obtained by the sitting-drop vapour-diffusion method using PEG 8000 as the precipitant. The crystals belonged to space group P4 1 2 1 2, with unit-cell parameters a = b = 91.3, c = 265.4 Å, and diffracted X-rays to 2.2 Å resolution. The asymmetric unit contained four molecules of the protein and the solvent content was 48.4%

  5. Thioredoxin reductase 1 upregulates MCP-1 release in human endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen-Bo [Institute of Biophysics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing (China); Shen, Xun, E-mail: shenxun@sun5.ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing (China)

    2009-09-04

    To know if thioredoxin reductase 1 (TrxR1) plays a role in antioxidant defense mechanisms against atherosclerosis, effect of TrxR1 on expression/release of monocyte chemoattractant protein (MCP-1) was investigated in activated human endothelial-like EAhy926 cells. The MCP-1 release and expression, cellular generation of reactive oxygen species (ROS), nuclear translocation and DNA-binding activity of NF-{kappa}B subunit p65 were assayed in cells either overexpressing recombinant TrxR1 or having their endogenous TrxR1 knocked down. It was found that overexpression of TrxR1 enhanced, while knockdown of TrxR1 reduced MCP-1 release and expression. Upregulation of MCP-1 by TrxR1 was associated with increasing generation of intracellular ROS generation, enhanced nuclear translocation and DNA-binding activity of NF-{kappa}B. Assay using NF-{kappa}B reporter revealed that TrxR1 upregulated transcriptional activity of NF-{kappa}B. This study suggests that TrxR1 enhances ROS generation, NF-{kappa}B activity and subsequent MCP-1 expression in endothelial cells, and may promote rather than prevent vascular endothelium from forming atherosclerotic plaque.

  6. A Keto-Mediet Approach with Coconut Substitution and Exercise May Delay the Onset of Alzheimer's Disease among Middle-Aged.

    Science.gov (United States)

    Perng, B C; Chen, M; Perng, J C; Jambazian, P

    2017-01-01

    Coconut oil has been widely used to improve health because there is much information available by word of mouth, in books, and on the internet. However, researchers still continue to search for the best diets to improve the quality of life, especially for people with cognitive decline. The aim of this review is to develop a novel dietary approach, the Keto-Mediet, which may help prevent the onset of Alzheimer's disease. Evidence gained through literature review from 1982 to 2015 on gene-by-diet interaction and lipid and glucose metabolism in the brains of Alzheimer's patients is converted into the new Keto-Mediet approach. The Keto-Mediet approach combines the benefits of a Ketogenic diet and a Mediterranean diet into a pyramidal model that is rich in various types of vitamins and substitutes coconuts for saturated animal fats. Limited glucose intake is intended to delay brain degeneration. A revised adult food pyramid was created to illustrate the principles of the Keto-Mediet approach. The Keto-Mediet approach represents and interprets food groups according to the revised adult food pyramid. This approach also encourages adherence to this healthy diet and lifestyle changes including exercise for people whose age ranges from 40 to 75 years. Those who comply with this approach will significantly enhance their knowledge and adopt a healthier lifestyle, as compared to those whose modern eating patterns are typically less healthy. Therefore, the Keto-Mediet approach can be applied in hopes of preventing and decreasing Alzheimer's disease in different ethnicities and cultural groups.

  7. The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism.

    Science.gov (United States)

    Stenmark, Pål; Moche, Martin; Gurmu, Daniel; Nordlund, Pär

    2007-10-12

    We have determined the crystal structure of the bi-functional deaminase/reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the C-terminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP(+)) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast.

  8. Purification, crystallization and preliminary X-ray analysis of 3-hydroxy-3-methylglutaryl-coenzyme A reductase of Streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Zhang, Liping; Feng, Lingling; Zhou, Li; Gui, Jie; Wan, Jian; Hu, Xiaopeng

    2010-01-01

    3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of Streptococcus pneumoniae has been cloned, overexpressed and purified to homogeneity using Ni–NTA affinity chromatography. Crystals were obtained using the hanging-drop vapour-diffusion method. Class II 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases are potential targets for novel antibiotic development. In order to obtain a precise structural model for use in virtual screening and inhibitor design, HMG-CoA reductase of Streptococcus pneumoniae was cloned, overexpressed and purified to homogeneity using Ni–NTA affinity chromatography. Crystals were obtained using the hanging-drop vapour-diffusion method. A complete data set was collected from a single frozen crystal on a home X-ray source. The crystal diffracted to 2.3 Å resolution and belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 773.4836, b = 90.3055, c = 160.5592 Å, α = β = γ = 90°. Assuming the presence of two molecules in the asymmetric unit, the solvent content was estimated to be 54.1% (V M = 2.68 Å 3 Da −1 )

  9. Expression, purification, crystallization and preliminary X-ray analysis of maleylacetate reductase from Burkholderia sp. strain SJ98

    International Nuclear Information System (INIS)

    Chauhan, Archana; Islam, Zeyaul; Jain, Rakesh Kumar; Karthikeyan, Subramanian

    2009-01-01

    Purification and preliminary X-ray crystallographic analysis of maleylacetate reductase encoded by the pnpD gene is reported. Maleylacetate reductase (EC 1.3.1.32) is an important enzyme that is involved in the degradation pathway of aromatic compounds and catalyzes the reduction of maleylacetate to 3-oxoadipate. The gene pnpD encoding maleylacetate reductase in Burkholderia sp. strain SJ98 was cloned, expressed in Escherichia coli and purified by affinity chromatography. The enzyme was crystallized in both native and SeMet-derivative forms by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant at 293 K. The crystals belonged to space group P2 1 2 1 2, with unit-cell parameters a = 72.91, b = 85.94, c = 53.07 Å. X-ray diffraction data for the native and SeMet-derivative crystal were collected to 2.7 and 2.9 Å resolution, respectively

  10. Structure of octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens in a complex with phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Trofimov, A. A.; Polyakov, K. M., E-mail: kostya@eimb.relarn.ru [Russian Academy of Sciences, Engelhardt Institute of Molecular Biology (Russian Federation); Boiko, K. M.; Filimonenkov, A. A. [Russian Academy of Sciences, Bach Institute of Biochemistry (Russian Federation); Dorovatovskii, P. V. [Kurchatov Center for Synchrotron Radiation and Nanotechnology (Russian Federation); Tikhonova, T. V.; Popov, V. O. [Russian Academy of Sciences, Bach Institute of Biochemistry (Russian Federation); Koval' chuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-01-15

    Octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens (TvNiR) catalyzes the reduction of nitrite and hydroxylamine to ammonia. The structures of the free enzyme and of the enzyme in complexes with the substrate (nitrite ion) and the inhibitor (azide ion) have been solved previously. In this study we report the structures of the oxidized complex of TvNiR with phosphate and of this complex reduced by europium(II) chloride (1.8- and 2.0-A resolution, the R factors are 15.9 and 16.7%, respectively) and the structure of the enzyme in the complex with cyanide (1.76-A resolution, the R factor is 16.5%), which was prepared by soaking a crystal of the oxidized phosphate complex of TvNiR. In the active site of the enzyme, the phosphate ion binds to the iron ion of the catalytic heme and to the side chains of the catalytic residues Arg131, Tyr303, and His361. The cyanide ion is coordinated to the heme-iron ion and is hydrogen bonded to the residue His361. In the structure of reduced TvNiR, the phosphate ion is bound in the same manner as in the structure of oxidized TvNiR, and the nine{sub c}oordinated europium ion is located on the surface of one of the crystallographically independent monomers of the enzyme.

  11. Structure of octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens in a complex with phosphate

    International Nuclear Information System (INIS)

    Trofimov, A. A.; Polyakov, K. M.; Boiko, K. M.; Filimonenkov, A. A.; Dorovatovskii, P. V.; Tikhonova, T. V.; Popov, V. O.; Koval'chuk, M. V.

    2010-01-01

    Octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens (TvNiR) catalyzes the reduction of nitrite and hydroxylamine to ammonia. The structures of the free enzyme and of the enzyme in complexes with the substrate (nitrite ion) and the inhibitor (azide ion) have been solved previously. In this study we report the structures of the oxidized complex of TvNiR with phosphate and of this complex reduced by europium(II) chloride (1.8- and 2.0-A resolution, the R factors are 15.9 and 16.7%, respectively) and the structure of the enzyme in the complex with cyanide (1.76-A resolution, the R factor is 16.5%), which was prepared by soaking a crystal of the oxidized phosphate complex of TvNiR. In the active site of the enzyme, the phosphate ion binds to the iron ion of the catalytic heme and to the side chains of the catalytic residues Arg131, Tyr303, and His361. The cyanide ion is coordinated to the heme-iron ion and is hydrogen bonded to the residue His361. In the structure of reduced TvNiR, the phosphate ion is bound in the same manner as in the structure of oxidized TvNiR, and the nine c oordinated europium ion is located on the surface of one of the crystallographically independent monomers of the enzyme.

  12. Aldose reductase C-106T gene polymorphism in type 2 diabetics with microangiopathy in Iranian individuals

    Directory of Open Access Journals (Sweden)

    Majid Reza Sheikh Rezaee

    2015-01-01

    Full Text Available Background: Aldose reductase (AR is the rate-limiting enzyme in the glucose metabolism, which has been implicated in the pathogenesis of diabetic microvascular complications (MVCs. Frequent C-106T polymorphism in the promoter of the AR gene may change the expression of the gene. Aims: The aim of the following study is to study the association between AR C106T genotypes and diabetic MVCs in Iranian population. Materials and Methods: We included 206 type 2 diabetic patients categorized into two groups according to the presence or absence of diabetic microangiopathy. The cases of interest were diabetic neuropathy, retinopathy and nephropathy identified during clinical and or laboratory examination. In addition, 114 age- and sex-matched individuals were selected to serve as a control group. AR genotyping was done using an amplification gel electrophoresis. Results: The frequency of CC genotype was specifically higher in subjects with diabetic retinopathy as compared to those without it (53.2% vs. 38.1%, P = 0.030. Patients with diabetic microangiopathy in general; however, did not differ significantly between AR genotype groups. Conclusion: The C-106T polymorphism in the AR gene is likely a risk factor for development of only retinal complication of diabetes microvascular in Iranian individuals.

  13. Plasma level of endothelin, 6-keto-PGF1α and urine albumin in essential hypertension with diabetes mellitus and their significance

    International Nuclear Information System (INIS)

    Miao Datong

    2001-01-01

    Objective: To investigate the damage of blood vessel endothelium and kidney function in patients with essential hypertension plus diabetes mellitus. Methods: Plasma levels of endothelin (Et) and 6-keto-PGF 1α (6-K-PGF 1α ) as well as urine albumin content were measured by radio immunoassay in 75 patients with essential hypertension (EH), among them 34 were complicated with DM, 35 controls were included in this experiment. Results: The plasma level of ET, 6-K-PGF 1α and urine Alb content were significantly higher in the patients than those in the controls (P 1α were also higher but of no statistic significance. Conclusion: The results suggest that the EH patients with DM were complicated with more serous damage in kidney function

  14. Endothelial cell markers in vascular neoplasms: an immunohistochemical study comparing factor VIII-related antigen, blood group specific antigens, 6-keto-PGF1 alpha, and Ulex europaeus 1 lectin.

    Science.gov (United States)

    Little, D; Said, J W; Siegel, R J; Fealy, M; Fishbein, M C

    1986-06-01

    Markers for endothelial cells including Ulex europaeus 1 lectin, blood group A, B, and H, and the prostaglandin metabolite 6-keto-PGF1 alpha were evaluated in paraffin secretions from formalin-fixed benign and malignant vascular neoplasms using a variety of immunohistochemical techniques, and results compared with staining for factor VIII-related antigen. Staining for Ulex appeared more sensitive than factor VIII-related antigen in identifying poorly differentiated neoplasms including haemangiosarcomas and spindle cell proliferations in Kaposi's sarcoma. Staining for blood group related antigens correlated with blood group in all cases. Ulex europaeus 1 lectin was the only marker for endothelial cells in lymphangiomas.

  15. Identification of Multiple Soluble Fe(III Reductases in Gram-Positive Thermophilic Bacterium Thermoanaerobacter indiensis BSB-33

    Directory of Open Access Journals (Sweden)

    Subrata Pal

    2014-01-01

    Full Text Available Thermoanaerobacter indiensis BSB-33 has been earlier shown to reduce Fe(III and Cr(VI anaerobically at 60°C optimally. Further, the Gram-positive thermophilic bacterium contains Cr(VI reduction activity in both the membrane and cytoplasm. The soluble fraction prepared from T. indiensis cells grown at 60°C was found to contain the majority of Fe(III reduction activity of the microorganism and produced four distinct bands in nondenaturing Fe(III reductase activity gel. Proteins from each of these bands were partially purified by chromatography and identified by mass spectrometry (MS with the help of T. indiensis proteome sequences. Two paralogous dihydrolipoamide dehydrogenases (LPDs, thioredoxin reductase (Trx, NADP(H-nitrite reductase (Ntr, and thioredoxin disulfide reductase (Tdr were determined to be responsible for Fe(III reductase activity. Amino acid sequence and three-dimensional (3D structural similarity analyses of the T. indiensis Fe(III reductases were carried out with Cr(VI reducing proteins from other bacteria. The two LPDs and Tdr showed very significant sequence and structural identity, respectively, with Cr(VI reducing dihydrolipoamide dehydrogenase from Thermus scotoductus and thioredoxin disulfide reductase from Desulfovibrio desulfuricans. It appears that in addition to their iron reducing activity T. indiensis LPDs and Tdr are possibly involved in Cr(VI reduction as well.

  16. [C677T-SNP of methylenetetrahydrofolate reductase gene and breast cancer in Mexican women].

    Science.gov (United States)

    Calderón-Garcidueñas, Ana Laura; Cerda-Flores, Ricardo Martín; Castruita-Ávila, Ana Lilia; González-Guerrero, Juan Francisco; Barrera-Saldaña, Hugo Alberto

    2017-01-01

    Low-penetrance susceptibility genes such as 5,10-methylenetetrahydrofolate reductase gene (MTHFR) have been considered in the progression of breast cancer (BC). Cancer is a result of genetic, environmental and epigenetic interactions; therefore, these genes should be studied in environmental context, because the results can vary between populations and even within the same country. The objective was to analyze the allelic and genotypic frequencies of the MTHFR C667T SNP in Mexican Mestizo patients with BC and controls from Northeastern Mexico. 243 patients and 118 healthy women were studied. The analysis of the polymorphism was performed with a DNA microarray. Once the frequency of the polymorphism was obtained, Hardy-Weinberg equilibrium test was carried out for the genotypes. Chi square test was used to compare the distribution of frequencies. The allele frequency in patients was: C = 0.5406; T = 0.4594 and in controls C = 0.5678, T = 0.4322. Genotype in BC patients was: C / C = 29.9%, C / T = 48.3% and T / T = 21.8. The distribution in controls was: C / C = 31.4%, C / T = 50.8%, T / T = 17.8% (chi squared 0.77, p = 0.6801). Northeastern Mexican women in this study showed no association between MTFHR C667T SNP and the risk of BC. It seems that the contribution of this polymorphism to BC in Mexico varies depending on various factors, both genetic and environmental.

  17. Methylenetetrahydrofolate reductase C677T polymorphism in patients with lung cancer in a Korean population

    Directory of Open Access Journals (Sweden)

    Yun Woo-Jun

    2011-02-01

    Full Text Available Abstract Background This study was designed to investigate an association between methylenetetrahydrofolate reductase (MTHFR C677T polymorphism and the risk of lung cancer in a Korean population. Methods We conducted a large-scale, case-control study involving 3938 patients with newly diagnosed lung cancer and 1700 healthy controls. Genotyping was performed with peripheral blood DNA for MTHFR C677T polymorphisms. Statistical significance was estimated by logistic regression analysis. Results The MTHFR C677T frequencies of CC, CT, and TT genotypes were 34.5%, 48.5%, and 17% among lung cancer patients, and 31.8%, 50.7%, and 17.5% in the controls, respectively. The MTHFR 677CT and TT genotype showed a weak protection against lung cancer compared with the homozygous CC genotype, although the results did not reach statistical significance. The age- and gender-adjusted odds ratio (OR of overall lung cancer was 0.90 (95% confidence interval (CI, 0.77-1.04 for MTHFR 677 CT and 0.88 (95% CI, 0.71-1.07 for MTHFR 677TT. However, after stratification analysis by histological type, the MTHFR 677CT genotype showed a significantly decreased risk for squamous cell carcinoma (age- and gender-adjusted OR, 0.78; 95% CI, 0.64-0.96. The combination of 677 TT homozygous with 677 CT heterozygous also appeared to have a protection effect on the risk of squamous cell carcinoma. We observed no significant interaction between the MTHFR C677T polymorphism and age and gender or smoking habit. Conclusions This is the first reported study focusing on the association between MTHFR C677T polymorphisms and the risk of lung cancer in a Korean population. The T allele was found to provide a weak protective association with lung squamous cell carcinoma.

  18. Indium-catalyzed synthesis of keto esters from cyclic 1,3-diketones and alcohols and application to the synthesis of seratrodast.

    Science.gov (United States)

    Kuninobu, Yoichiro; Kawata, Atsushi; Noborio, Taihei; Yamamoto, Syun-Ichi; Matsuki, Takashi; Takata, Kazumi; Takai, Kazuhiko

    2010-04-01

    Esterification reactions from cyclic 1,3-diketones and alcohols are carried out in the presence of several Lewis acids. In particular, indium(III) triflate, In(OTf)(3), iron(III) triflate, Fe(OTf)(3), copper(II) triflate, Cu(OTf)(2), and silver(I) triflate, AgOTf, show high catalytic activities. These reactions proceed through the carbon-carbon bond cleavage by a retro-aldol reaction and were found to be highly regioselective even in the presence of other functional groups. This type of reaction can also be applied to the preparation of the keto esters during the synthesis of seratrodast, which is an antiasthmatic and eicosanoid antagonist.

  19. Correlation of changes in rate of sterol synthesis with changes in HMG CoA reductase activity in cultured lens epithelial cells

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Hitchener, W.R.

    1986-01-01

    In the present study, the authors correlated changes in HMG CoA reductase activity with changes in relative rates of sterol synthesis measured from either 3 H 2 O or 1- 14 C-acetate for bovine lens epithelial cells cultured in the presence or absence of lipoproteins. Enzyme activity and rates of incorporation of 3 H 2 O or 1- 14 C-acetate into digitonin precipitable sterols were measured in cells on the 4th day of subculture in DMEM containing 9% whole calf serum (WM) or 9% lipoprotein deficient serum (LDM). In three experiments, HMG CoA reductase activity (U/10 6 cells) averaged 2.2 +/- 0.1 times greater for cells grown in LDM than WM. Sterol synthesis averaged 3.0 +/- 0.4 times greater when measured with 3 H 2 O and 4.0 +/- 1.1 times greater when measured with 14 C-acetate. Thus, 3 H 2 O and 14 C-acetate appear to be comparable substrates for estimating changes in relative rates of sterol synthesis by cultured cells. The larger increases in rates of sterol synthesis than in reductase activity in response to decreased cholesterol could reflect stimulation at additional metabolic steps in the cholesterol pathway beyond mevalonic acid

  20. Better preservation of residual renal function in peritoneal dialysis patients treated with a low-protein diet supplemented with keto acids: a prospective, randomized trial.

    Science.gov (United States)

    Jiang, Na; Qian, Jiaqi; Sun, Weilan; Lin, Aiwu; Cao, Liou; Wang, Qin; Ni, Zhaohui; Wan, Yanping; Linholm, Bengt; Axelsson, Jonas; Yao, Qiang

    2009-08-01

    While a low-protein diet may preserve residual renal function (RRF) in chronic kidney disease (CKD) patients before the start of dialysis, a high-protein intake is usually recommended in dialysis patients to prevent protein-energy wasting. Keto acids, which were often recommended to pre-dialysis CKD patients treated with a low-protein diet, had also been reported to be associated with both RRF and nutrition maintenance. We conducted a randomized trial to test whether a low-protein diet with or without keto acids would be safe and associated with a preserved RRF during peritoneal dialysis (PD). To assess the safety of low protein, we first conducted a nitrogen balance study in 34 incident PD patients randomized to receive in-centre diets containing 1.2, 0.9 or 0.6 g of protein/kg ideal body weight (IBW)/day for 10 days. Second, 60 stable PD patients [RRF 4.04 +/- 2.30 ml/ min/1.73 m(2), urine output 1226 +/- 449 ml/day, aged 53.6 +/- 12.8 years, PD duration 8.8 (1.5-17.8) months] were randomized to receive either a low- (LP: 0.6-0.8 g/kg IBW/day), keto acid-supplemented low- (sLP: 0.6-0.8 g/kg IBW/day with 0.12 g/kg IBW/day of keto acids) or high-protein (HP: 1.0-1.2 g/kg IBW/day) diet. The groups were followed for 1 year and RRF as well as nutritional status was evaluated serially. A neutral or positive nitrogen balance was achieved in all three groups. RRF remained stable in group sLP (3.84 +/- 2.17 to 3.39 +/- 3.23 ml/min/1.73 m(2), P = ns) while it decreased in group LP (4.02 +/- 2.49 to 2.29 +/- 1.72 ml/min/1.73 m(2), P diet containing 0.6-0.8 g of protein/kg IBW/day is safe and, when combined with keto acids, is associated with an improved preservation of RRF in relatively new PD patients without significant malnutrition or inflammation.

  1. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms

    DEFF Research Database (Denmark)

    Nestoras, Konstantinos; Mohammed, Asma Hadi; Schreurs, Ann-Sofie

    2010-01-01

    The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and...

  2. Methylenetetrahydrofolate Reductase Gene Polymorphism (C677T) as a Risk Factor for Arterial Thrombosis in Georgian Patients.

    Science.gov (United States)

    Garakanidze, Sopio; Costa, Elísio; Bronze-Rocha, Elsa; Santos-Silva, Alice; Nikolaishvili, Giorgi; Nakashidze, Irina; Kakauridze, Nona; Glonti, Salome; Khukhunaishvili, Rusudan; Koridze, Marina; Ahmad, Sarfraz

    2018-01-01

    Methylenetetrahydrofolate reductase ( MTHFR) gene polymorphism (C677T)] is a well-recognized genetic risk factor for venous thrombosis; however, its association with arterial thrombosis is still under debate. Herein, we evaluated the prevalence of MTHFR C677T polymorphism in Georgian patients in comparison with healthy individuals and its association with arterial thrombosis. We enrolled 214 participants: 101 with arterial thrombosis (71.3% males; mean age: 66.3 ± 12.1 years) and 113 controls (67.3% males; mean age: 56.6 ± 11.3 years). Genomic DNA was extracted from dry blood spot on Whatman filter paper. Polymerase chain reaction was performed to determine MTHFR C677T polymorphism. Frequency of C677T allele polymorphism in controls was 21.2%, which corresponded to heterozygous and homozygous stage frequencies of 35.4% and 3.5%, respectively. In patient group, an allelic frequency of 33.2% was found, which corresponded to the presence of 48.5% of heterozygous and 8.9% of homozygous individuals. Comparing the frequency of mutated alleles between the 2 groups, a significantly high frequency of mutated alleles was found in patient group ( P < .05). In conclusion, high frequency of MTHFR C677T polymorphism found in arterial thrombosis patient group suggests that this polymorphism might increase the risk of arterial thrombosis in Georgian patients.

  3. Expression and site-directed mutagenesis of human dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Prendergast, N.J.; Delcamp, T.J.; Smith, P.L.; Freisheim, J.H.

    1988-05-17

    A procaryotic high-level expression vector for human dihydrofolate reductase has been constructed and the protein characterized as a first step toward structure-function studies of this enzyme. A vector bearing the tac promoter, four synthetic oligodeoxynucleotides, and a restriction fragment from the dihydrofolate reductase cDNA were ligated in a manner which optimized the transcriptional and translational frequency of the enzyme mRNA. The reductase, comprising ca. 17% of the total soluble protein in the host bacteria, was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and characterized by amino acid composition, partial amino acid sequence, and steady-sate kinetic analysis. This expression vector has been used as a template for double-stranded plasmid DNA site-specific mutagenesis. Functional studies on a Cys-6 ..-->.. Ser-6 mutant enzyme support the contention that Cys-6 is obligatory for organomercurial activation of human dihydrofolate reductase. The Ser-6 mutant enzyme was not activated to any extent following a 24-h incubation with p-(hydroxymercuri)benzoate and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH), whereas the k/sub cat/ for Cys-6 reductase increased 2-fold under identical conditions. The specific activities of the Cys-6 and Ser-6 enzymes were virtually identical as determined by methotrexate titration as were the K/sub m/ values for both dihydrofolate and NADPH. The Ser-6 mutant showed a decreased temperature stability and was more sensitive to inactivation by ..cap alpha..-chymotrypsin when compared to the wild-type enzyme. These results suggest that the Ser-6 mutant reductase is conformationally altered relative to the Cys-6 native enzyme.

  4. Expression and site-directed mutagenesis of human dihydrofolate reductase

    International Nuclear Information System (INIS)

    Prendergast, N.J.; Delcamp, T.J.; Smith, P.L.; Freisheim, J.H.

    1988-01-01

    A procaryotic high-level expression vector for human dihydrofolate reductase has been constructed and the protein characterized as a first step toward structure-function studies of this enzyme. A vector bearing the tac promoter, four synthetic oligodeoxynucleotides, and a restriction fragment from the dihydrofolate reductase cDNA were ligated in a manner which optimized the transcriptional and translational frequency of the enzyme mRNA. The reductase, comprising ca. 17% of the total soluble protein in the host bacteria, was purified to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and characterized by amino acid composition, partial amino acid sequence, and steady-sate kinetic analysis. This expression vector has been used as a template for double-stranded plasmid DNA site-specific mutagenesis. Functional studies on a Cys-6 → Ser-6 mutant enzyme support the contention that Cys-6 is obligatory for organomercurial activation of human dihydrofolate reductase. The Ser-6 mutant enzyme was not activated to any extent following a 24-h incubation with p-(hydroxymercuri)benzoate and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH), whereas the k/sub cat/ for Cys-6 reductase increased 2-fold under identical conditions. The specific activities of the Cys-6 and Ser-6 enzymes were virtually identical as determined by methotrexate titration as were the K/sub m/ values for both dihydrofolate and NADPH. The Ser-6 mutant showed a decreased temperature stability and was more sensitive to inactivation by α-chymotrypsin when compared to the wild-type enzyme. These results suggest that the Ser-6 mutant reductase is conformationally altered relative to the Cys-6 native enzyme

  5. Synthesis of 5α-Androstane-17-spiro-δ-lactones with a 3-Keto, 3-Hydroxy, 3-Spirocarbamate or 3-Spiromorpholinone as Inhibitors of 17β-Hydroxysteroid Dehydrogenases

    Directory of Open Access Journals (Sweden)

    Donald Poirier

    2013-01-01

    Full Text Available We synthesized two series of androstane derivatives as inhibitors of type 3 and type 5 17β-hydroxysteroid dehydrogenases (17β-HSDs. In the first series, four monospiro derivatives at position C17 were prepared from androsterone (ADT or epi-ADT. After the protection of the alcohol at C3, the C17-ketone was alkylated with the lithium acetylide of tetrahydro-2-(but-3-ynyl-2-H-pyran, the triple bond was hydrogenated, the protecting groups hydrolysed and the alcohols oxidized to give the corresponding 3-keto-17-spiro-lactone derivative. The other three compounds were generated from this keto-lactone by reducing the ketone at C3, or by introducing one or two methyl groups. In the second series, two dispiro derivatives at C3 and C17 were prepared from epi-ADT. After introducing a spiro-δ-lactone at C17 and an oxirane at C3, an aminolysis of the oxirane with L-isoleucine methyl ester provided an amino alcohol, which was treated with triphosgene or sodium methylate to afford a carbamate- or a morpholinone-androstane derivative, respectively. These steroid derivatives inhibited 17β-HSD3 (14–88% at 1 μM; 46–94% at 10 μM and 17β-HSD5 (54–73% at 0.3 μM; 91–92% at 3 μM. They did not produce any androgenic activity and did not bind steroid (androgen, estrogen, glucocorticoid and progestin receptors, suggesting a good profile for prostate cancer therapy.

  6. Deletion of thioredoxin reductase and effects of selenite and selenate toxicity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Christopher J Boehler

    Full Text Available Thioredoxin reductase-1 (TRXR-1 is the sole selenoprotein in C. elegans, and selenite is a substrate for thioredoxin reductase, so TRXR-1 may play a role in metabolism of selenium (Se to toxic forms. To study the role of TRXR in Se toxicity, we cultured C. elegans with deletions of trxr-1, trxr-2, and both in axenic media with increasing concentrations of inorganic Se. Wild-type C. elegans cultured for 12 days in Se-deficient axenic media grow and reproduce equivalent to Se-supplemented media. Supplementation with 0-2 mM Se as selenite results in inverse, sigmoidal response curves with an LC50 of 0.20 mM Se, due to impaired growth rather than reproduction. Deletion of trxr-1, trxr-2 or both does not modulate growth or Se toxicity in C. elegans grown axenically, and (75Se labeling showed that TRXR-1 arises from the trxr-1 gene and not from bacterial genes. Se response curves for selenide (LC50 0.23 mM Se were identical to selenite, but selenate was 1/4(th as toxic (LC50 0.95 mM Se as selenite and not modulated by TRXR deletion. These nutritional and genetic studies in axenic media show that Se and TRXR are not essential for C. elegans, and that TRXR alone is not essential for metabolism of inorganic Se to toxic species.

  7. Modulation of the ribonucleotide reductase M1-gemcitabine interaction in vivo by N-ethylmaleimide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhengming; Zhou, Jun; Zhang, Yingtao [Developmental Therapeutics Program, Karmanos Cancer Institute, Detroit, MI (United States); Bepler, Gerold, E-mail: beplerg@karmanos.org [Developmental Therapeutics Program, Karmanos Cancer Institute, Detroit, MI (United States)

    2011-09-23

    Highlights: {yields} Gemcitabine induces a RRM1 conformational change in tumor cell lines and xenografts. {yields} The 110 kDa RRM1 is unique to gemcitabine interaction among 12 cytotoxic agents. {yields} The 110 kDa RRM1 can be stabilized by the thiol alkylator N-ethylmaleimide. {yields} C218A, C429A, and E431A mutations in RRM1 abolished the conformational change. {yields} The 110 kDa RRM1 may be a specific biomarker of gemcitabine's therapeutic efficacy. -- Abstract: Ribonucleotide reductase M1 (RRM1) is the regulatory subunit of the holoenzyme that catalyzes the conversion of ribonucleotides to 2'-deoxyribonucleotides. Its function is indispensible in cell proliferation and DNA repair. It also serves as a biomarker of therapeutic efficacy of the antimetabolite drug gemcitabine (2',2'-difluoro-2'-deoxycytidine) in various malignancies. However, a mechanistic explanation remains to be determined. This study investigated how the alkylating agent N-ethylmaleimide (NEM) interacts with the inhibitory activity of gemcitabine on its target protein RRM1 in vivo. We found, when cells were treated with gemcitabine in the presence of NEM, a novel 110 kDa band, along with the 90 kDa native RRM1 band, appeared in immunoblots. This 110 kDa band was identified as RRM1 by mass spectrometry (LC-MS/MS) and represented a conformational change resulting from covalent labeling by gemcitabine. It is specific to gemcitabine/NEM, among 11 other chemotherapy drugs tested. It was also detectable in human tumor xenografts in mice treated with gemcitabine. Among mutations of seven residues essential for RRM1 function, C218A, C429A, and E431A abolished the conformational change, while N427A, C787A, and C790A diminished it. C444A was unique since it was able to alter the conformation even in absence of gemcitabine treatment. We conclude that the thiol alkylator NEM can stabilize the gemcitabine-induced conformational change of RRM1, and this stabilized RRM1

  8. Modulation of the ribonucleotide reductase M1-gemcitabine interaction in vivo by N-ethylmaleimide

    International Nuclear Information System (INIS)

    Chen, Zhengming; Zhou, Jun; Zhang, Yingtao; Bepler, Gerold

    2011-01-01

    Highlights: → Gemcitabine induces a RRM1 conformational change in tumor cell lines and xenografts. → The 110 kDa RRM1 is unique to gemcitabine interaction among 12 cytotoxic agents. → The 110 kDa RRM1 can be stabilized by the thiol alkylator N-ethylmaleimide. → C218A, C429A, and E431A mutations in RRM1 abolished the conformational change. → The 110 kDa RRM1 may be a specific biomarker of gemcitabine's therapeutic efficacy. -- Abstract: Ribonucleotide reductase M1 (RRM1) is the regulatory subunit of the holoenzyme that catalyzes the conversion of ribonucleotides to 2'-deoxyribonucleotides. Its function is indispensible in cell proliferation and DNA repair. It also serves as a biomarker of therapeutic efficacy of the antimetabolite drug gemcitabine (2',2'-difluoro-2'-deoxycytidine) in various malignancies. However, a mechanistic explanation remains to be determined. This study investigated how the alkylating agent N-ethylmaleimide (NEM) interacts with the inhibitory activity of gemcitabine on its target protein RRM1 in vivo. We found, when cells were treated with gemcitabine in the presence of NEM, a novel 110 kDa band, along with the 90 kDa native RRM1 band, appeared in immunoblots. This 110 kDa band was identified as RRM1 by mass spectrometry (LC-MS/MS) and represented a conformational change resulting from covalent labeling by gemcitabine. It is specific to gemcitabine/NEM, among 11 other chemotherapy drugs tested. It was also detectable in human tumor xenografts in mice treated with gemcitabine. Among mutations of seven residues essential for RRM1 function, C218A, C429A, and E431A abolished the conformational change, while N427A, C787A, and C790A diminished it. C444A was unique since it was able to alter the conformation even in absence of gemcitabine treatment. We conclude that the thiol alkylator NEM can stabilize the gemcitabine-induced conformational change of RRM1, and this stabilized RRM1 conformation has the potential to serve as a specific

  9. Plasma homocysteine levels, methylene tetrahydrofolate reductase A1298C gene polymorphism and risk of retinal vein thrombosis.

    Science.gov (United States)

    Ghaznavi, Habib; Soheili, Zahra; Samiei, Shahram; Soltanpour, Mohammad Soleiman

    2016-09-01

    There are limited data regarding the role of methylene tetrahydrofolate reductase (MTHFR) A1298C polymorphism and hyperhomocysteinemia as risk factors for retinal vein thrombosis (RVT) in Iranians. This study aimed to examine a possible association between fasting plasma total homocysteine (tHcy) levels, MTHFR A1298C polymorphism and RVT development in Iranian patients. Our study population consisted of 73 patients with a diagnosis of RVT (52.7 ± 16.2 years) and 73 age and sex-matched healthy controls (49.1 ± 14.6 years). Genotyping for the MTHFR A1298Cpolymorphism was conducted by PCR-RFLP technique and plasma tHcy levels were measured by an enzyme immunoassay method. Fasting plasma tHcy levels were 20.29 ± 8.5 μmol/l in RVT patients and 10.9 ± 3.1 μmol/l in control subjects. The number of cases with abnormal tHcy values (hyperhomocysteinemia) was significantly higher in the RVT patients than control subjects (P = 0.0001). The prevalence of MTHFR 1298CC homozygote genotype was similar in RVT patients and controls (17.8 vs.15.1%, P = 0.45). There were no significant differences in genotype distribution of MTHFR A1298C polymorphism between males and females in both RVT patients and controls (P > 0.05). The frequency of the 1298C allele was 39.1 and 35.6% in patients and controls, respectively, and did not differ significantly between them (P = 0.23). Moreover, heterozygote and homozygote genotypes in the RVT patients had significantly higher abnormal tHcy values than corresponding genotypes in control subjects (P < 0.001). Our study demonstrated that hyperhomocysteinemia but not homozygosity for MTHFR A1298C polymorphism is a significant risk factor for RVT in the Iranian population.

  10. Theoretical and vibrational spectroscopic approach to keto-enol tautomerism in methyl-2-(4-methoxybenzoyl)-3-(4-methoxyphenyl)-3-oxopropanoylcarbamate

    Science.gov (United States)

    Arı, Hatice; Özpozan, Talat; Büyükmumcu, Zeki; Kabacalı, Yiğit; Saçmaci, Mustafa

    2016-10-01

    A carbamate compound having tricarbonyl groups, methyl-2-(4-methoxybenzoyl)-3-(4-methoxyphenyl)-3-oxopropanoylcarbamate (BPOC) was investigated from theoretical and vibrational spectroscopic point of view employing quantum chemical methods. Hybrid Density Functionals (B3LYP, X3LYP and B3PW91) with 6-311 G(d,p) basis set were used for the calculations. Rotational barrier and conformational analyses were performed to find the most stable conformers of keto and enol forms of the molecule. Three transition states for keto-enol tautomerism in gas phase were determined. The results of the calculations show that enol-1 form of BPOC is more stable than keto and enol-2 forms. Hydrogen bonding investigation including Natural bond orbital analysis (NBO) for all the tautomeric structures was employed to compare intra-molecular interactions. The energies of HOMO and LUMO molecular orbitals for all tautomeric forms of BPOC were predicted. Normal Coordinate Analysis (NCA) was carried out for the enol-1 to assign vibrational bands of IR and Raman spectra. The scaling factors were calculated as 0.9721, 0.9697 and 0.9685 for B3LYP, X3LYP and B3PW91 methods, respectively. The correlation graphs of experimental versus calculated vibrational wavenumbers were plotted and X3LYP method gave better frequency agreement than the others.

  11. Caracemide, a site-specific irreversible inhibitor of protein R1 of Escherichia coli ribonucleotide reductase

    DEFF Research Database (Denmark)

    Larsen, I. K.; Cornett, Claus; Karlsson, M.

    1992-01-01

    The anticancer drug caracemide, N-acetyl-N,O-di(methylcarbamoyl)hydroxylamine, and one of its degradation products, N-acetyl-O-methylcarbamoyl-hydroxylamine, were found to inhibit the enzyme ribonucleotide reductase of Escherichia coli by specific interaction with its larger component protein R1....

  12. The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: a narrative review.

    Science.gov (United States)

    Harvey, Cliff J D C; Schofield, Grant M; Williden, Micalla

    2018-01-01

    Adaptation to a ketogenic diet (keto-induction) can cause unpleasant symptoms, and this can reduce tolerability of the diet. Several methods have been suggested as useful for encouraging entry into nutritional ketosis (NK) and reducing symptoms of keto-induction. This paper reviews the scientific literature on the effects of these methods on time-to-NK and on symptoms during the keto-induction phase. PubMed, Science Direct, CINAHL, MEDLINE, Alt Health Watch, Food Science Source and EBSCO Psychology and Behavioural Sciences Collection electronic databases were searched online. Various purported ketogenic supplements were searched along with the terms "ketogenic diet", "ketogenic", "ketosis" and ketonaemia (/ ketonemia). Additionally, author names and reference lists were used for further search of the selected papers for related references. Evidence, from one mouse study, suggests that leucine doesn't significantly increase beta-hydroxybutyrate (BOHB) but the addition of leucine to a ketogenic diet in humans, while increasing the protein-to-fat ratio of the diet, doesn't reduce ketosis. Animal studies indicate that the short chain fatty acids acetic acid and butyric acid, increase ketone body concentrations. However, only one study has been performed in humans. This demonstrated that butyric acid is more ketogenic than either leucine or an 8-chain monoglyceride. Medium-chain triglycerides (MCTs) increase BOHB in a linear, dose-dependent manner, and promote both ketonaemia and ketogenesis. Exogenous ketones promote ketonaemia but may inhibit ketogenesis. There is a clear ketogenic effect of supplemental MCTs; however, it is unclear whether they independently improve time to NK and reduce symptoms of keto-induction. There is limited research on the potential for other supplements to improve time to NK and reduce symptoms of keto-induction. Few studies have specifically evaluated symptoms and adverse effects of a ketogenic diet during the induction phase. Those that

  13. Dissociation of branched-chain alpha-keto acid dehydrogenase kinase (BDK) from branched-chain alpha-keto acid dehydrogenase complex (BCKDC) by BDK inhibitors.

    Science.gov (United States)

    Murakami, Taro; Matsuo, Masayuki; Shimizu, Ayako; Shimomura, Yoshiharu

    2005-02-01

    Branched-chain alpha-keto acid dehydrogenase kinase (BDK) phosphorylates and inactivates the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), which is the rate-limiting enzyme in the branched-chain amino acid catabolism. BDK has been believed to be bound to the BCKDC. However, recent our studies demonstrated that protein-protein interaction between BDK and BCKDC is one of the factors to regulate BDK activity. Furthermore, only the bound form of BDK appears to have its activity. In the present study, we examined effects of BDK inhibitors on the amount of BDK bound to the BCKDC using rat liver extracts. The bound form of BDK in the extracts of liver from low protein diet-fed rats was measured by an immunoprecipitation pull down assay with or without BDK inhibitors. Among the BDK inhibitors. alpha-ketoisocaproate, alpha-chloroisocaproate, and a-ketoisovalerate released the BDK from the complex. Furthermore, the releasing effect of these inhibitors on the BDK appeared to depend on their inhibition constants. On the other hand, clofibric acid and thiamine pyrophosphate had no effect on the protein-protein interaction between two enzymes. These results suggest that the dissociation of the BDK from the BCKDC is one of the mechanisms responsible for the action of some inhibitors to BDK.

  14. P450 reductase and cytochrome b5 interactions with cytochrome P450: Effects on house fly CYP6A1 catalysis

    OpenAIRE

    Murataliev, Marat B.; Guzov, Victor M.; Walker, F. Ann; Feyereisen, René

    2008-01-01

    The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylatio...

  15. Use of 5-alpha-reductase inhibitors did not increase the risk of cardiovascular diseases in patients with benign prostate hyperplasia: a five-year follow-up study.

    Directory of Open Access Journals (Sweden)

    Teng-Fu Hsieh

    Full Text Available This nationwide population-based study investigated the risk of cardiovascular diseases after 5-alpha-reductase inhibitor therapy for benign prostate hyperplasia (BPH using the National Health Insurance Research Database (NHIRD in Taiwan.In total, 1,486 adult patients newly diagnosed with BPH and who used 5-alpha-reductase inhibitors were recruited as the study cohort, along with 9,995 subjects who did not use 5-alpha-reductase inhibitors as a comparison cohort from 2003 to 2008. Each patient was monitored for 5 years, and those who subsequently had cardiovascular diseases were identified. A Cox proportional hazards model was used to compare the risk of cardiovascular diseases between the study and comparison cohorts after adjusting for possible confounding risk factors.The patients who received 5-alpha-reductase inhibitor therapy had a lower cumulative rate of cardiovascular diseases than those who did not receive 5-alpha-reductase inhibitor therapy during the 5-year follow-up period (8.4% vs. 11.2%, P=0.003. In subgroup analysis, the 5-year cardiovascular event hazard ratio (HR was lower among the patients older than 65 years with 91 to 365 cumulative defined daily dose (cDDD 5-alpha-reductase inhibitor use (HR=0.63, 95% confidence interval (CI 0.42 to 0.92; P=0.018, however there was no difference among the patients with 28 to 90 and more than 365 cDDD 5-alpha-reductase inhibitor use (HR=1.14, 95% CI 0.77 to 1.68; P=0.518 and HR=0.83, 95% CI 0.57 to 1.20; P=0.310, respectively.5-alpha-reductase inhibitor therapy did not increase the risk of cardiovascular events in the BPH patients in 5 years of follow-up. Further mechanistic research is needed.

  16. Evidence for an association of methylene tetrahydrofolate reductase polymorphism C677T and an increased risk of fractures

    DEFF Research Database (Denmark)

    Bathum, Lise; von Bornemann Hjelmborg, Jacob; Christiansen, Lene

    2004-01-01

    established. Previous studies concerning association of the common point mutation C677T in methylentetrahydrofolate reductase (MTHFR) and osteoporosis have revealed contradictory results. The aim of this study was to test the association between the MTHFR polymorphism, homocysteine, and fractures...... in the TT group compared with the CT group. Homocysteine, smoking, and self-reported hormone use provided no significant contribution to fracture risk. Using biometrical modelling, the heritability of the liability to fractures was found to be approximately 0.10, when the effect of the MTHFR locus...

  17. A newly-detected reductase from Rauvolfia closes a gap in the biosynthesis of the antiarrhythmic alkaloid ajmaline.

    Science.gov (United States)

    Gao, Shujuan; von Schumann, Gerald; Stöckigt, Joachim

    2002-10-01

    A new enzyme, 1,2-dihydrovomilenine reductase (E.C. 1.3.1), has been detected in Rauvolfia cell suspension cultures. The enzyme specifically converts 2beta( R)-1,2-dihydrovomilenine through an NADPH-dependent reaction into 17-O-acetylnorajmaline, a close biosynthetic precursor of the antiarrhythmic alkaloid ajmaline from Rauvolfia. A five-step purification procedure using SOURCE 30Q chromatography, hydroxyapatite chromatography, 2',5'-ADP Sepharose 4B affinity chromatography and ion exchange chromatography on DEAE Sepharose and Mono Q delivered an approximately 200-fold enriched enzyme in a yield of approximately 6%. SDS-PAGE showed an M r for the enzyme of approximately 48 kDa. Optimum pH and optimum temperature of the reductase were at pH 6.0 and 37 degrees C. The enzyme shows a limited distribution in cell cultures expressing ajmaline biosynthesis, and is obviously highly specific for the ajmaline pathway.

  18. Adiponectin,leptin: focus on low-protein diet supplemented with keto acids in chronic glomerulonephritis with hbv patients

    OpenAIRE

    Mou, Shan; Li, Jialin; Ni, Zhaohui; Yu, Zanzhe; Wang, Qin; Xu, Weijia

    2012-01-01

    Leptin and adiponectin come from adipose tissue, which can reflect patients' inflammation and status of lipid metabolism. Our study is aim to evaluate the effects of short-term restriction of dietary protein intake (DPI) supplemented with keto acids on nutrition and lipid metabolic disturbance in chronic glomeruloneph-ritis with HBV patients. 17 patients were randomized to either low DPI with keto acid-supplemented (sLP) or low DPI (LP) group for 12 weeks. Low-protein diet (LPD) wasindividual...

  19. Transition from androgenic to neurosteroidal action of 5α-androstane-3α, 17β-diol through the type A γ-aminobutyric acid receptor in prostate cancer progression.

    Science.gov (United States)

    Xia, Ding; Lai, Doan V; Wu, Weijuan; Webb, Zachary D; Yang, Qing; Zhao, Lichao; Yu, Zhongxin; Thorpe, Jessica E; Disch, Bryan C; Ihnat, Michael A; Jayaraman, Muralidharan; Dhanasekaran, Danny N; Stratton, Kelly L; Cookson, Michael S; Fung, Kar-Ming; Lin, Hsueh-Kung

    2018-04-01

    Androgen ablation is the standard of care prescribed to patients with advanced or metastatic prostate cancer (PCa) to slow down disease progression. Unfortunately, a majority of PCa patients under androgen ablation progress to castration-resistant prostate cancer (CRPC). Several mechanisms including alternative intra-prostatic androgen production and androgen-independent androgen receptor (AR) activation have been proposed for CRPC progression. Aldo-keto reductase family 1 member C3 (AKR1C3), a multi-functional steroid metabolizing enzyme, is specifically expressed in the cytoplasm of PCa cells; and positive immunoreactivity of the type A γ-aminobutyric acid receptor (GABA A R), an ionotropic receptor and ligand-gated ion channel, is detected on the membrane of PCa cells. We studied a total of 72 radical prostatectomy cases by immunohistochemistry, and identified that 21 cases exhibited positive immunoreactivities for both AKR1C3 and GABA A R. In the dual positive cancer cases, AKR1C3 and GABA A R subunit α 1 were either expressed in the same cells or in neighboring cells. Among several possible substrates, AKR1C3 reduces 5α-dihydrotesterone (DHT) to form 5α-androstane-3α, 17β-diol (3α-diol). 3α-diol is a neurosteroid that acts as a positive allosteric modulator of the GABA A R in the central nervous system (CNS). We examined the hypothesis that 3α-diol-regulated pathological effects in the prostate are GABA A R-dependent, but are independent of the AR. In GABA A R-positive, AR-negative human PCa PC-3 cells, 3α-diol significantly stimulated cell growth in culture and the in ovo chorioallantoic membrane (CAM) xenograft model. 3α-diol also up-regulated expression of the epidermal growth factor (EGF) family of growth factors and activation of EGF receptor (EGFR) and Src as measured by quantitative polymerase chain reaction and immunoblotting, respectively. Inclusion of GABA A R antagonists reversed 3α-diol-stimulated tumor cell growth, expression of EGF

  20. Low-Protein Diet Supplemented with Keto Acids Is Associated with Suppression of Small-Solute Peritoneal Transport Rate in Peritoneal Dialysis Patients

    Directory of Open Access Journals (Sweden)

    Na Jiang

    2011-01-01

    Full Text Available Objective. We investigate whether low-protein diet would show benefits in suppressing peritoneal transport rate in peritoneal dialysis (PD patients. Methods. This is a supplemented analysis of our previously published trial, which randomized 60 PD patients to receive low- (LP: dietary protein intake of 0.6–0.8 g/kg/d, keto-acid-supplemented low- (sLP: 0.6–0.8 g/kg/d with 0.12 g/kg/d of keto acids, or high- (HP: 1.0–1.2 g/kg/d protein diet and lasted for one year. In this study, the variations of peritoneal transport rate were assessed. Results. While baseline D/Pcr (dialysate-to-plasma concentration ratio for creatinine at 4 hour and D/D0glu (dialysate glucose at 4 hour to baseline dialysate glucose concentration ratio were similar, D/Pcr in group sLP was lower, and D/D0glu was higher than those in the other two groups (P<0.05 at 12th month. D/D0glu increased (P<0.05, and D/Pcr tended to decrease, (P=0.071 in group sLP. Conclusions. Low-protein diet with keto acids may benefit PD patients by maintaining peritoneum at a lower transport rate.

  1. Cyclohex-1-ene carboxylic acids: synthesis and biological evaluation of novel inhibitors of human 5 alpha reductase.

    Science.gov (United States)

    Baston, Eckhard; Salem, Ola I A; Hartmann, Rolf W

    2003-03-01

    In search of novel nonsteroidal mimics of steroidal inhibitors of 5 alpha reductase, 4-(2-phenylethyl)cyclohex-1-ene carboxylic acids 1-5 were synthesized with different substituents in para position of the phenyl ring (1: N, N-diisopropylcarbamoyl, 2: phenyl, 3: phenoxy, 4: benzoyl, and 5: benzyl). The principal synthetic approach for the desired compounds consisted of a Wittig olefination between 1, 4-dioxaspiro [4.5]-decane-8-carbaldehyde (4g and the appropriate phosphonium salts. The compounds were tested for inhibition of human 5 alpha reductase isozymes 1 and 2 using DU 145 cells and preparations from prostatic tissue, respectively. They turned out to be good inhibitors of the prostatic isozyme 2 with compound 1 being the most potent one (IC(50) = 760 nM). Isozyme 1 was only slightly inhibited. It is concluded that the novel structures are appropriate for being further optimized, aiming at the development of a novel drug for the treatment of benign prostatic hyperplasia.

  2. Constituents of Musa x paradisiaca cultivar with the potential to induce the phase II enzyme, quinone reductase.

    Science.gov (United States)

    Jang, Dae Sik; Park, Eun Jung; Hawthorne, Michael E; Vigo, Jose Schunke; Graham, James G; Cabieses, Fernando; Santarsiero, Bernard D; Mesecar, Andrew D; Fong, Harry H S; Mehta, Rajendra G; Pezzuto, John M; Kinghorn, A Douglas

    2002-10-23

    A new bicyclic diarylheptanoid, rel-(3S,4aR,10bR)-8-hydroxy-3-(4-hydroxyphenyl)-9-methoxy-4a,5,6,10b-tetrahydro-3H-naphtho[2,1-b]pyran (1), as well as four known compounds, 1,2-dihydro-1,2,3-trihydroxy-9-(4-methoxyphenyl)phenalene (2), hydroxyanigorufone (3), 2-(4-hydroxyphenyl)naphthalic anhydride (4), and 1,7-bis(4-hydroxyphenyl)hepta-4(E),6(E)-dien-3-one (5), were isolated from an ethyl acetate-soluble fraction of the methanol extract of the fruits of Musa x paradisiaca cultivar, using a bioassay based on the induction of quinone reductase (QR) in cultured Hepa1c1c7 mouse hepatoma cells to monitor chromatographic fractionation. The structure and relative stereochemistry of compound 1 were elucidated unambiguously by one- and two-dimensional NMR experiments ((1)H NMR, (13)C NMR, DEPT, COSY, HMQC, HMBC, and NOESY) and single-crystal X-ray diffraction analysis. Isolates 1-5 were evaluated for their potential cancer chemopreventive properties utilizing an in vitro assay to determine quinone reductase induction and a mouse mammary organ culture assay.

  3. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    Science.gov (United States)

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-04

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.

  4. GENOMIC APPROACHES FOR IMPROVEMENT OF DROUGHT ADAPTATION IN WHEAT

    Directory of Open Access Journals (Sweden)

    Dénes Dudits

    2008-09-01

    Full Text Available Breeding for yield stability under water limited conditions plays an essential role in the reduction of economic and social consequences of global climate changes. We show that two exotic drought resistant genotypes (Kobomughi and Plainsmann differ in root growth rate, root/shoot ratio, and adaptation to low soil water content. These genotypes exhibit characteristic transcript profiles as shown by barley macroarray studies using 10500 unigenes. Reprogramming of gene expression primarily occurred during the 1-2 weeks of water stress, and 6,1% of tested genes were up-regulated in roots of the more adaptive Plainsmann plants. The time course for expression of gene clusters from Kobomughi genotype revealed a prompt and transient gene activation that can help the survival of plants through function of various defense mechanisms. The aldo-keto reductases (AKRs can detoxify lipid peroxidation products (4-hydroxynon-2-enal and glycolysis-derived reactive aldehydes (metylglyoxal that contribute significantly to cellular damages caused by variety of environmental stresses such as drought, high light intensity, UV-B irradiation, cold. Overproduction of AKRs in transgenic tobacco or wheat plants provides considerable stress tolerance and resistance to methylglyoxal. Several transgenic wheat genotypes have been produced with production of elevated level of AKR enzyme. The drought tolerance of these materials was tested by a complex stress diagnostic system, that integrates imaging of plants and monitoring the leaf temperature and fluorescence induction. Based on these parameters, we can conclude that this transgenic strategy that is based on detoxification of lipid aldehyde can result in improved stress adaptation and reduced yield loss.

  5. [C677T polymorphism of the methylentetrahydrofolate reductase gene in mothers of children affected with neural tube defects].

    Science.gov (United States)

    Morales de Machín, Alisandra; Méndez, Karile; Solís, Ernesto; Borjas de Borjas, Lisbeth; Bracho, Ana; Hernández, María Luisa; Negrón, Aimara; Delgado, Wilmer; Sánchez, Yanira

    2015-09-01

    Neural tube defects (NTD) are the most common congenital anomalies of the central nervous system, with a multifactorial pattern of inheritance, presumably involving the interaction of several genetic and environmental factors. The methylenetetrahydrofolate reductase (MTHFR) gene 677C>T polymorphism has been implicated as a risk factor for NTD. The main objective of this research was to investigate the association of the 677C>T polymorphism of the MTHFR gene as a genetic risk factor for NTD. Molecular analysis was performed in DNA samples from 52 mothers with antecedent of NTD offspring and from 119 healthy control mothers. Using the Polymerase Chain Reaction, a 198 bases pairs fragment was digested with the restriction enzyme Hinfi. 677T MTHFR allele frequencies for the problem and the control groups were 51.92% and 34.45%, respectively, and 677C MTHFR allele frequencies were 48.08% and 65.55%, respectively. There were significant differences in allele (p: 0.002) and genotype (p: 0.007) frequencies between these two groups. The odds ratio (OR) to the TT genotype vs. the CC genotype was estimated as OR: 4.9 [95% CI: 1,347-6.416] p: 0.002; CT+TT vs. CC: OR: 2.9 [95% CI: 1.347-6.416] p: 0.005; TT vs. CT+CC: OR: 2.675 [95% CI: 1,111-6.441] p: 0.024. The data presented in this study support the relationship between MTHFR 677C>T polymorphism and risk in mothers with antecedent of NTD offspring.

  6. Keto acid-supplemented low-protein diet for treatment of adult patients with hepatitis B virus infection and chronic glomerulonephritis.

    Science.gov (United States)

    Mou, Shan; Li, Jialin; Yu, Zanzhe; Wang, Qin; Ni, Zhaohui

    2013-02-01

    An open-label, randomized, controlled, single-centre clinical trial to evaluate the effects of low-protein intake, with or without keto acid supplementation, on nutritional status and proteinuria, in patients with hepatitis B virus (HBV) and early stage chronic glomerulonephritis. Patients with chronic glomerulonephritis and HBV infection were randomized to receive a low-protein diet (0.6-0.8 g/kg ideal body weight [IBW] per day) either without (LP group) or with (sLP group) keto acid supplementation (0.1 g/kg IBW per day), for 12 months. Nutritional, clinical and safety parameters were recorded. The study included 17 patients (LP group n = 9; sLP group n = 8). Proteinuria and microalbuminuria were significantly lower in the sLP group at 6 and 12 months compared with baseline, and at 12 months compared with the LP group. There were no significant differences in serum creatinine level or estimated glomerular filtration rate. Nutritional parameters (serum albumin and prealbumin) were significantly improved at 12 months, compared with baseline, in the sLP group. Restriction of dietary protein intake to 0.6-0.8 g/kg IBW per day appears to have an acceptable safety profile. Supplementation with keto acids is associated with decreased urine protein excretion.

  7. Subtle trade-off existing between (anti)aromaticity, push-pull interaction, keto-enol tautomerism, and steric hindrance when defining the electronic properties of conjugated structures.

    Science.gov (United States)

    Kleinpeter, Erich; Bölke, Ute; Koch, Andreas

    2010-07-22

    The spatial magnetic properties (through space NMR shieldings, TSNMRS) of conjugated structures (benzenoid/quinonoid keto/enol tautomers, 1,3-dihydroxyaryl-2-aldehydes, Don-pi-Acc chromophores with trade-off existing push-pull vs aromatic behavior) have been calculated by the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept, and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values, thus obtained, can be successfully employed to quantify and visualize (anti)aromaticity and to identify readily hereby zwitterionic structures due to push-pull behavior of the compounds studied. In addition, the push-pull behavior was quantified by the quotient (pi*/pi) approach of the central partial C=C double bond.

  8. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    Science.gov (United States)

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  9. The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: a narrative review

    Directory of Open Access Journals (Sweden)

    Cliff J. d C. Harvey

    2018-03-01

    Full Text Available Background Adaptation to a ketogenic diet (keto-induction can cause unpleasant symptoms, and this can reduce tolerability of the diet. Several methods have been suggested as useful for encouraging entry into nutritional ketosis (NK and reducing symptoms of keto-induction. This paper reviews the scientific literature on the effects of these methods on time-to-NK and on symptoms during the keto-induction phase. Methods PubMed, Science Direct, CINAHL, MEDLINE, Alt Health Watch, Food Science Source and EBSCO Psychology and Behavioural Sciences Collection electronic databases were searched online. Various purported ketogenic supplements were searched along with the terms “ketogenic diet”, “ketogenic”, “ketosis” and ketonaemia (/ ketonemia. Additionally, author names and reference lists were used for further search of the selected papers for related references. Results Evidence, from one mouse study, suggests that leucine doesn’t significantly increase beta-hydroxybutyrate (BOHB but the addition of leucine to a ketogenic diet in humans, while increasing the protein-to-fat ratio of the diet, doesn’t reduce ketosis. Animal studies indicate that the short chain fatty acids acetic acid and butyric acid, increase ketone body concentrations. However, only one study has been performed in humans. This demonstrated that butyric acid is more ketogenic than either leucine or an 8-chain monoglyceride. Medium-chain triglycerides (MCTs increase BOHB in a linear, dose-dependent manner, and promote both ketonaemia and ketogenesis. Exogenous ketones promote ketonaemia but may inhibit ketogenesis. Conclusions There is a clear ketogenic effect of supplemental MCTs; however, it is unclear whether they independently improve time to NK and reduce symptoms of keto-induction. There is limited research on the potential for other supplements to improve time to NK and reduce symptoms of keto-induction. Few studies have specifically evaluated symptoms and adverse

  10. Predicting Keto-Enol Equilibrium from Combining UV/Visible Absorption Spectroscopy with Quantum Chemical Calculations of Vibronic Structures for Many Excited States. A Case Study on Salicylideneanilines.

    Science.gov (United States)

    Zutterman, Freddy; Louant, Orian; Mercier, Gabriel; Leyssens, Tom; Champagne, Benoît

    2018-06-21

    Salicylideneanilines are characterized by a tautomer equilibrium, between an enol and a keto form of different colors, at the origin of their remarkable thermochromic, solvatochromic, and photochromic properties. The enol form is usually the most stable but appropriate choice of substituents and conditions (solvent, crystal, host compound) can displace the equilibrium toward the keto form so that there is a need for fast prediction of the keto:enol abundance ratio. Here we demonstrate the reliability of a combined theoretical-experimental method, based on comparing simulated and measured UV/visible absorption spectra, to determine this keto/enol ratio. The calculations of the excitation energies, oscillator strengths, and vibronic structures of both enol and keto forms are performed for all excited states absorbing in the relevant (visible and near-UV) wavelength range at the time-dependent density functional theory level by accounting for solvent effects using the polarizable continuum model. This approach is illustrated for two salicylideneaniline derivatives, which are present, in solution, under the form of keto-enol mixtures. The results are compared to those of chemometric analysis as well as ab initio predictions of the reaction free enthalpies.

  11. Destrutturare le maiuscole. Pensiero debole, Italian Theory e politica. Conversazione con Pier Aldo Rovatti

    Directory of Open Access Journals (Sweden)

    Pier Aldo Rovatti

    2014-06-01

    Full Text Available The conversation focuses on the social and political role of the philosopher nowadays. Pier Aldo Rovatti discusses about the growing philosophical movement called “Italian Theory” while revisiting his own recent intellectual path. The italian philosopher retraces the cultural experience of the “pensiero debole”, whereof he has been one of the two promoters, and underlines the intellectual and political fight, against all the so-called universal truths (and ideological violences, inspired by this philosophical trend at the beginning of the Eighties. The interview ends with a discussion about the dawning perspectives of the political-philosophical action in the post-modern age.

  12. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].

    Science.gov (United States)

    Tan, Zhilei; Wang, Hongcui; Wei, Yuqiao; Li, Yanyan; Zhong, Cheng; Jia, Shiru

    2014-01-01

    Gluconobacter oxydans is known to oxidize glucose to gluconic acid (GA), and subsequently, to 2-keto-gluconic acid (2KGA) and 5-keto-gluconic acid (5KGA), while 5KGA can be converted to L-(+)-tartaric acid. In order to increase the production of 5KGA, Gluconobacter oxydans HGI-1 that converts GA to 5KGA exclusively was chosen in this study, and effects of carbon sources (lactose, maltose, sucrose, amylum and glucose) and nitrogen sources (yeast extract, fish meal, corn steep liquor, soybean meal and cotton-seed meal) on 5KGA production were investigated. Results of experiment in 500 mL shake-flask show that the highest yield of 5KGA (98.20 g/L) was obtained using 100 g/L glucose as carbon source. 5KGA reached 100.20 g/L, 109.10 g/L, 99.83 g/L with yeast extract, fish meal and corn steep liquor as nitrogen source respectively, among which the optimal nitrogen source was fish meal. The yield of 5KGA by corn steep liquor is slightly lower than that by yeast extract. For the economic reason, corn steep liquor was selected as nitrogen source and scaled up to 5 L stirred-tank fermentor, and the final concentration of 5KGA reached 93.80 g/L, with its maximum volumetric productivity of 3.48 g/(L x h) and average volumetric productivity of 1.56 g/(L x h). The result obtained in this study showed that carbon and nitrogen sourses for large-scale production of 5KGA by Gluconobacter oxydans HGI-1 were glucose and corn steep liquor, respectively, and the available glucose almost completely (85.93%) into 5KGA.

  13. Gamma-irradiation activates biochemical systems: induction of nitrate reductase activity in plant callus.

    OpenAIRE

    Pandey, K N; Sabharwal, P S

    1982-01-01

    Gamma-irradiation induced high levels of nitrate reductase activity (NADH:nitrate oxidoreductase, EC 1.6.6.1) in callus of Haworthia mirabilis Haworth. Subcultures of gamma-irradiated tissues showed autonomous growth on minimal medium. We were able to mimic the effects of gamma-irradiation by inducing nitrate reductase activity in unirradiated callus with exogenous auxin and kinetin. These results revealed that induction of nitrate reductase activity by gamma-irradiation is mediated through i...

  14. Thioredoxin and NADPH-Dependent Thioredoxin Reductase C Regulation of Tetrapyrrole Biosynthesis.

    Science.gov (United States)

    Da, Qingen; Wang, Peng; Wang, Menglong; Sun, Ting; Jin, Honglei; Liu, Bing; Wang, Jinfa; Grimm, Bernhard; Wang, Hong-Bin

    2017-10-01

    In chloroplasts, thioredoxin (TRX) isoforms and NADPH-dependent thioredoxin reductase C (NTRC) act as redox regulatory factors involved in multiple plastid biogenesis and metabolic processes. To date, less is known about the functional coordination between TRXs and NTRC in chlorophyll biosynthesis. In this study, we aimed to explore the potential functions of TRX m and NTRC in the regulation of the tetrapyrrole biosynthesis (TBS) pathway. Silencing of three genes, TRX m1 , TRX m2 , and TRX m4 ( TRX ms ), led to pale-green leaves, a significantly reduced 5-aminolevulinic acid (ALA)-synthesizing capacity, and reduced accumulation of chlorophyll and its metabolic intermediates in Arabidopsis ( Arabidopsis thaliana ). The contents of ALA dehydratase, protoporphyrinogen IX oxidase, the I subunit of Mg-chelatase, Mg-protoporphyrin IX methyltransferase (CHLM), and NADPH-protochlorophyllide oxidoreductase were decreased in triple TRX m- silenced seedlings compared with the wild type, although the transcript levels of the corresponding genes were not altered significantly. Protein-protein interaction analyses revealed a physical interaction between the TRX m isoforms and CHLM. 4-Acetoamido-4-maleimidylstilbene-2,2-disulfonate labeling showed the regulatory impact of TRX ms on the CHLM redox status. Since CHLM also is regulated by NTRC (Richter et al., 2013), we assessed the concurrent functions of TRX m and NTRC in the control of CHLM. Combined deficiencies of three TRX m isoforms and NTRC led to a cumulative decrease in leaf pigmentation, TBS intermediate contents, ALA synthesis rate, and CHLM activity. We discuss the coordinated roles of TRX m and NTRC in the redox control of CHLM stability with its corollary activity in the TBS pathway. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Synthesis of [11C]-ohmefentanyl, a novel, highly potent and selective agonist for opiate μ-receptors

    International Nuclear Information System (INIS)

    Zhu, Y.C.; Academia Sinica, Shangha, SH; Prenant, C.; Crouzel, C.; Comar, D.; Chi, Z.Q.

    1992-01-01

    We describe the synthesis of 11 C-ohmefentanyl, a novel, highly potent and selective agonist for opiate μ-receptors, to be visualized by Positron Emission Tomography (PET). The unlabelled cis-A-ohmefentanyl was prepared in a nine-step synthesis and two-step fractional crystallization, and the OH-precursor for [ 11 C]-ohmefentanyl labelling was obtained by hydrolysis of the 4-N-propionyl group of cis-A-ohmefentanyl in 6 N hydrochloric acid. The [ 11 C]-propionyl chloride was prepared by carbonation of ethylmagnesium bromide with cyclotron-produced [ 11 C]-carbon dioxide followed by direct treatment of the intermediate complex with phthaloyl dichloride and 2,6-di-t-butylpyridine. Reaction of the OH-precursor with [ 11 C]-propionyl chloride yields [ 11 C]-ohmefentanyl separated by HPLC, with a high specific activity of 300-400 mCi μmol -1 . The keto-precursor prepared by hydrolysis of the 4-N-propionyl group of cis-10 in 8 N hydrochloric acid, was also used for [ 11 C]-ohmefentanyl labelling. Reaction of the [ 11 C]-propionyl chloride with keto-precursor, followed by addition of sodium borohydride, yields [ 11 C]-ohmefentanyl. The [ 11 C]-labelled ohmefentanyl obtained using the OH-precursor is a cis-A form, while that obtained using the keto-precursor is a mixture of cis-A and cis-B forms. (author)

  16. Association of methylenetetrahydrofolate reductase gene C677T polymorphism with polycystic ovary syndrome risk: a systematic review and meta-analysis update.

    Science.gov (United States)

    Fu, Li-yuan; Dai, Li-meng; Li, Xiao-gang; Zhang, Kun; Bai, Yun

    2014-01-01

    To re-estimate the association between methylenetetrahydrofolate reductase gene (MTHFR) C677T polymorphism and polycystic ovary syndrome (PCOS) risk by critically reviewing, analyzing and updating the current evidence. MTHFR C677T polymorphism has been studied as a possible risk factor for a variety of common conditions including heart disease, stroke and hypertension. Its association with PCOS was negative in a previous meta-analysis which had possible shortcomings. More studies have now been done but their results remain inconclusive. Available case-control studies containing genotype frequencies of MTHFR C677T were chosen, and odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of the association. Statistical analyses were performed using software Review Manager (Version 5. 2) and Stata (Version 11.0). Nine case-control studies including 638 PCOS and 759 healthy controls were identified. Meta-analysis showed a significant effect in the dominant model (TT+CT vs. CC: OR=1.65, 95%CI=1.28-2.12, PPCOS risk in European populations (TT+CT vs. CC: OR=2.16, 95%CI=1.50-3.12, PPCOS susceptibility, and this relevance seems to be more intense in Europeans than in Asians. Copyright © 2013. Published by Elsevier Ireland Ltd.

  17. Aldose reductase inhibition prevents allergic airway remodeling through PI3K/AKT/GSK3β pathway in mice.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    Full Text Available Long-term and unresolved airway inflammation and airway remodeling, characteristic features of chronic asthma, if not treated could lead to permanent structural changes in the airways. Aldose reductase (AR, an aldo-sugar and lipid aldehyde metabolizing enzyme, mediates allergen-induced airway inflammation in mice, but its role in the airway remodeling is not known. In the present study, we have examined the role of AR on airway remodeling using ovalbumin (OVA-induced chronic asthma mouse model and cultured human primary airway epithelial cells (SAECs and mouse lung fibroblasts (mLFs.Airway remodeling in chronic asthma model was established in mice sensitized and challenged twice a week with OVA for 6 weeks. AR inhibitor, fidarestat, was administered orally in drinking water after first challenge. Inflammatory cells infiltration in the lungs and goblet cell metaplasia, airway thickening, collagen deposition and airway hyper-responsiveness (AHR in response to increasing doses of methacholine were assessed. The TGFβ1-induced epithelial-mesenchymal transition (EMT in SAECs and changes in mLFs were examined to investigate AR-mediated molecular mechanism(s of airway remodeling.In the OVA-exposed mice for 6 wks inflammatory cells infiltration, levels of inflammatory cytokines and chemokines, goblet cell metaplasia, collagen deposition and AHR were significantly decreased by treatment with AR inhibitor, fidarestat. Further, inhibition of AR prevented TGFβ1-induced altered expression of E-cadherin, Vimentin, Occludin, and MMP-2 in SAECs, and alpha-smooth muscle actin and fibronectin in mLFs. Further, in SAECs, AR inhibition prevented TGFβ1- induced activation of PI3K/AKT/GSK3β pathway but not the phosphorylation of Smad2/3.Our results demonstrate that allergen-induced airway remodeling is mediated by AR and its inhibition blocks the progression of remodeling via inhibiting TGFβ1-induced Smad-independent and PI3K/AKT/GSK3β-dependent pathway.

  18. Metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, in mouse liver by alcohol dehydrogenase Adh1 and aldehyde reductase AKR1A4

    International Nuclear Information System (INIS)

    Short, Duncan M.; Lyon, Robert; Watson, David G.; Barski, Oleg A.; McGarvie, Gail; Ellis, Elizabeth M.

    2006-01-01

    The reductive metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, was studied in mouse liver. Using an HPLC-based stopped assay, the primary reduced metabolite was identified as 6-hydroxy-trans, trans-2,4-hexadienal (OH/CHO) and the secondary metabolite as 1,6-dihydroxy-trans, trans-2,4-hexadiene (OH/OH). The main enzymes responsible for the highest levels of reductase activity towards trans, trans-muconaldehyde were purified from mouse liver soluble fraction first by Q-sepharose chromatography followed by either blue or red dye affinity chromatography. In mouse liver, trans, trans-muconaldehyde is predominantly reduced by an NADH-dependent enzyme, which was identified as alcohol dehydrogenase (Adh1). Kinetic constants obtained for trans, trans-muconaldehyde with the native Adh1 enzyme showed a V max of 2141 ± 500 nmol/min/mg and a K m of 11 ± 4 μM. This enzyme was inhibited by pyrazole with a K I of 3.1 ± 0.57 μM. Other fractions were found to contain muconaldehyde reductase activity independent of Adh1, and one enzyme was identified as the NADPH-dependent aldehyde reductase AKR1A4. This showed a V max of 115 nmol/min/mg and a K m of 15 ± 2 μM and was not inhibited by pyrazole

  19. Functional mechanism of C-terminal tail in the enzymatic role of porcine testicular carbonyl reductase: a combined experiment and molecular dynamics simulation study of the C-terminal tail in the enzymatic role of PTCR.

    Directory of Open Access Journals (Sweden)

    Minky Son

    Full Text Available Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C-terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV. Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily.

  20. Laboratory informatics based evaluation of methylene tetrahydrofolate reductase C677T genetic test overutilization

    Directory of Open Access Journals (Sweden)

    David A Cohen

    2013-01-01

    Full Text Available Background: Laboratory data can provide a wide range of information to estimate adherence to guidelines and proper utilization of genetic testing. The methylene tetrahydrofolate reductase (MTHFR C677T variant has been demonstrated to have negligible utility in patient management. However, the testing of this variant remains pervasive. The purpose of this study was to develop methods to analyze concordance of clinician ordering practices with national guidelines. Methods: We used laboratory data to extract specific data elements including patient demographics, timestamps, physician ordering logs and temporal relationship to chemistry requests to examine 245 consecutive MTHFR tests ordered in 2011 at an academic tertiary center. A comprehensive chart review was used to identify indications for testing. These results were correlated with a retrospective analysis of 4,226 tests drawn at a range of hospitals requesting testing from a national reference laboratory over a 2-year period. MTHFR ordering practices drawn from 17 institutions were examined longitudinally from 2002 to 2011. Results: Indications for testing included cerebrovascular events (40.0% and venous thrombosis (39.1%. Family history prompted testing in eight cases. Based on acceptable hypercoagulability guidelines recommending MTHFR C677T testing only in the presence of elevated serum homocysteine, 10.6% (22/207 of adult patients met an indicated threshold at an academic tertiary center. Among 77 institutions, 14.5% (613/4226 of MTHFR testing met recommendations. Conclusion: We demonstrate an effective method to examine discreet elements of a molecular diagnostics laboratory information system at a tertiary care institution and to correlate these findings at a national level. Retrospective examination of clinicians′ request of MTHFR C677T genetic testing strongly suggests that clinicians have failed to adjust their ordering practices in light of evolving scientific and professional

  1. Carbohydrate restriction and dietary cholesterol modulate the expression of HMG-CoA reductase and the LDL receptor in mononuclear cells from adult men

    Directory of Open Access Journals (Sweden)

    Volek Jeff S

    2007-11-01

    Full Text Available Abstract The liver is responsible for controlling cholesterol homeostasis in the body. HMG-CoA reductase and the LDL receptor (LDL-r are involved in this regulation and are also ubiquitously expressed in all major tissues. We have previously shown in guinea pigs that there is a correlation in gene expression of HMG-CoA reductase and the LDL-r between liver and mononuclear cells. The present study evaluated human mononuclear cells as a surrogate for hepatic expression of these genes. The purpose was to evaluate the effect of dietary carbohydrate restriction with low and high cholesterol content on HMG-CoA reductase and LDL-r mRNA expression in mononuclear cells. All subjects were counseled to consume a carbohydrate restricted diet with 10–15% energy from carbohydrate, 30–35% energy from protein and 55–60% energy from fat. Subjects were randomly assigned to either EGG (640 mg/d additional dietary cholesterol or SUB groups [equivalent amount of egg substitute (0 dietary cholesterol contributions per day] for 12 weeks. At the end of the intervention, there were no changes in plasma total or LDL cholesterol (LDL-C compared to baseline (P > 0.10 or differences in plasma total or LDL-C between groups. The mRNA abundance for HMG-CoA reductase and LDL-r were measured in mononuclear cells using real time PCR. The EGG group showed a significant decrease in HMG-CoA reductase mRNA (1.98 ± 1.26 to 1.32 ± 0.92 arbitrary units P

  2. Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Silva, Teresa; Trincão, José; Carvalho, Ana L.; Bonifácio, Cecília; Auchère, Françoise; Moura, Isabel; Moura, José J. G.; Romão, Maria J., E-mail: mromao@dq.fct.unl.pt [REQUIMTE Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2005-11-01

    Superoxide reductase is a non-haem iron-containing protein involved in resistance to oxidative stress. The oxidized form of the protein has been crystallized and its three-dimensional structure solved. A highly redundant X-ray diffraction data set was collected on a rotating-anode generator using Cu Kα X-ray radiation. Four Fe atoms were located in the asymmetric unit corresponding to four protein molecules arranged as a dimer of homodimers. Superoxide reductase is a 14 kDa metalloprotein containing a catalytic non-haem iron centre [Fe(His){sub 4}Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponema pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K{sub 3}Fe(CN){sub 6} belonged to space group P2{sub 1} (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 Å, β = 106.9°) and diffracted beyond 1.60 Å resolution, while crystals grown in the presence of Na{sub 2}IrCl{sub 6} belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 Å, β = 104.9°) and diffracted beyond 1.55 Å. A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator (λ = 1.542 Å) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P2{sub 1} data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed.

  3. Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays

    International Nuclear Information System (INIS)

    Santos-Silva, Teresa; Trincão, José; Carvalho, Ana L.; Bonifácio, Cecília; Auchère, Françoise; Moura, Isabel; Moura, José J. G.; Romão, Maria J.

    2005-01-01

    Superoxide reductase is a non-haem iron-containing protein involved in resistance to oxidative stress. The oxidized form of the protein has been crystallized and its three-dimensional structure solved. A highly redundant X-ray diffraction data set was collected on a rotating-anode generator using Cu Kα X-ray radiation. Four Fe atoms were located in the asymmetric unit corresponding to four protein molecules arranged as a dimer of homodimers. Superoxide reductase is a 14 kDa metalloprotein containing a catalytic non-haem iron centre [Fe(His) 4 Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponema pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K 3 Fe(CN) 6 belonged to space group P2 1 (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 Å, β = 106.9°) and diffracted beyond 1.60 Å resolution, while crystals grown in the presence of Na 2 IrCl 6 belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 Å, β = 104.9°) and diffracted beyond 1.55 Å. A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator (λ = 1.542 Å) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P2 1 data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed

  4. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1

    NARCIS (Netherlands)

    Serrano, L.M.; Molenaar, D.; Wels, M.W.W.; Teusink, B.; Bron, P.A.; Vos, de W.M.; Smid, E.J.

    2007-01-01

    Background - Thioredoxin (TRX) is a powerful disulfide oxido-reductase that catalyzes a wide spectrum of redox reactions in the cell. The aim of this study is to elucidate the role of the TRX system in the oxidative stress response in Lactobacillus plantarum WCFS1. Results - We have identified the

  5. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1

    NARCIS (Netherlands)

    Serrano, L.M.; Molenaar, D; Sanders, M.W.W.; Teusink, B.; Bron, P.A.; Vos, W.M. de; Smid, E.J.

    2007-01-01

    ABSTRACT: BACKGROUND: Thioredoxin (TRX) is a powerful disulfide oxido-reductase that catalyzes a wide spectrum of redox reactions in the cell. The aim of this study is to elucidate the role of the TRX system in the oxidative stress response in Lactobacillus plantarum WCFS1. RESULTS: We have

  6. Method of preparing pyrimidine derivatives universally labelled with 14C

    International Nuclear Information System (INIS)

    Pritasil, L.; Filip, J.

    1976-01-01

    Sodium salts of beta-keto acid ethyl esters having mole activity higher than 40 mCi/milliatom 14 C are condensed with 14 C-thiourea having mole activity higher than 40 mCi/milliatom 14 C. Condensation proceeds in an anhydrous ethanol medium at a 1:1 molar ratio, with a 40 to 50% yield. Under the above reaction conditions, the radiochemical yield is higher than 20% while in biosynthesis it is 1% and in the chemical synthesis it is 10%. (J.P.)

  7. Deposition Form and Bioaccessibility of Keto-carotenoids from Mamey Sapote (Pouteria sapota), Red Bell Pepper (Capsicum annuum), and Sockeye Salmon (Oncorhynchus nerka) Filet.

    Science.gov (United States)

    Chacón-Ordóñez, Tania; Esquivel, Patricia; Jiménez, Víctor M; Carle, Reinhold; Schweiggert, Ralf M

    2016-03-09

    The ultrastructure and carotenoid-bearing structures of mamey sapote (Pouteria sapota) chromoplasts were elucidated using light and transmission electron microscopy and compared to carotenoid deposition forms in red bell pepper (Capsicum annuum) and sockeye salmon (Oncorhynchus nerka). Globular-tubular chromoplasts of sapote contained numerous lipid globules and tubules embodying unique provitamin A keto-carotenoids in a lipid-dissolved and presumably liquid-crystalline form, respectively. Bioaccessibility of sapotexanthin and cryptocapsin was compared to that of structurally related keto-carotenoids from red bell pepper and salmon. Capsanthin from bell pepper was the most bioaccessible pigment, followed by sapotexanthin and cryptocapsin esters from mamey sapote. In contrast, astaxanthin from salmon was the least bioaccessible keto-carotenoid. Thermal treatment and fat addition consistently enhanced bioaccessibility, except for astaxanthin from naturally lipid-rich salmon, which remained unaffected. Although the provitamin A keto-carotenoids from sapote were highly bioaccessible, their qualitative and quantitative in vivo bioavailability and their conversion to vitamin A remains to be confirmed.

  8. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    International Nuclear Information System (INIS)

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-01-01

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities

  9. Cloning, molecular characterization and expression of a cDNA encoding a functional NADH-cytochrome b5 reductase from Mucor racemosus PTCC 5305 in E. coli

    Directory of Open Access Journals (Sweden)

    NED A SETAYESH

    2009-01-01

    Full Text Available The present work aims to study a new NADH-cytochrome b5 reductase (cb5r from Mucor racemosus PTCC 5305. A cDNA coding for cb s r was isolated from a Mucor racemosus PTCC 5305 cDNA library. The nucleotide sequence of the cDNA including coding and sequences flanking regions was determined. The open reading frame starting from ATG and ending with TAG stop codon encoded 228 amino acids and displayed the closest similarity (73% with Mortierella alpina cb s r. Lack of hydrophobic residues in the N-terminal sequence was apparent, suggesting that the enzyme is a soluble isoform. The coding sequence was then cloned in the pET16b transcription vector carrying an N-terminal-linked His-Tag® sequence and expressed in Escherichia coli BL21 (DE3. The enzyme was then homogeneously purified by a metal affinity column. The recombinant Mucor enzyme was shown to have its optimal activity at pH and temperature of about 7.5 and 40 °C, respectively. The apparent Km value was calculated to be 13 μM for ferricyanide. To our knowledge, this is the first report on cloning and expression of a native fungal soluble isoform of NADH-cytochrome b5 reductase in E. coli.

  10. Status of vitamin B-12 and B-6 but not of folate, homocysteine and the methylenetetrahydrofolate reductase C677T polymorphism are associated with impaired cognition and depression in adults

    Science.gov (United States)

    The C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene differs in frequency in different ethnic groups which have differing prevalence of age-related cognitive impairments. We used a battery of neuropsychological tests to examine association of the MTHFR C677T polymorphism w...

  11. Metabolism of ginger component [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human.

    Science.gov (United States)

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-05-01

    There are limited data on the metabolism of [6]-shogaol (6S), a major bioactive component of ginger. This study demonstrates metabolism of 6S in liver microsomes from mouse, rat, dog, monkey, and human. The in vitro metabolism of 6S was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with 6S, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E,4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites, M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than 6S. We conclude that 6S is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning preclinical trials toward 6S chemoprevention. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Crystallization and preliminary characterization of dihydropteridine reductase from Dictyostelium discoideum

    International Nuclear Information System (INIS)

    Chen, Cong; Seo, Kyung Hye; Kim, Hye Lim; Zhuang, Ningning; Park, Young Shik; Lee, Kon Ho

    2008-01-01

    The dihydropteridine reductase from D. discoideum has been crystallized. Diffraction data were collected from a rectangular-shaped crystal to 2.16 Å resolution. Dihydropteridine reductase from Dictyostelium discoideum (dicDHPR) can produce d-threo-BH 4 [6R-(1′R,2′R)-5,6,7,8-tetrahydrobiopterin], a stereoisomer of l-erythro-BH 4 , in the last step of tetrahydrobiopterin (BH 4 ) recycling. In this reaction, DHPR uses NADH as a cofactor to reduce quinonoid dihydrobiopterin back to BH 4 . To date, the enzyme has been purified to homogeneity from many sources. In this report, the dicDHPR–NAD complex has been crystallized using the hanging-drop vapour-diffusion method with PEG 3350 as a precipitant. Rectangular-shaped crystals were obtained. Crystals grew to maximum dimensions of 0.4 × 0.6 × 0.1 mm. The crystal belonged to space group P2 1 , with unit-cell parameters a = 49.81, b = 129.90, c = 78.76 Å, β = 100.00°, and contained four molecules in the asymmetric unit, forming two closely interacting dicDHPR–NAD dimers. Diffraction data were collected to 2.16 Å resolution using synchrotron radiation. The crystal structure has been determined using the molecular-replacement method

  13. Microorganisms' mediated reduction of β-ketoesters

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... Whole cells usually express a multitude of enzymatic activities; therefore an ... Each microorganism was cultivated for the biomass development on specific medium ..... Ketoester reductase for conversion of keto acid esters to ...

  14. Reconstitution of FMN-free NADPH-cytochrome P-450 reductase with a phosphorothioate analog of FMN: 31P NMR studies of the reconstituted protein

    International Nuclear Information System (INIS)

    Krum, D.P.; Otvos, J.D.; Calhoun, J.P.; Miziorko, H.M.; Masters, B.S.S.

    1987-01-01

    A phosphorothioate analog of FMN (FMNS) has been synthesized and shown to be completely competent in reconstituting the FMN-free form of NADPH-cytochrome P-450 reductase as evidenced by flavin determinations and cytochrome c reductase activity assays. The FMNS-reconstituted FMN-free reductase gives rise to an air-stable semiquinone, and the fluorescence of FMNS is quenched upon addition of FMN-free reductase. 31 P NMR spectra of the FMN-free reductase reveal only two resonances (-7.3 and -11.3 ppm), which are attributable to FAD. This result confirms the assignments of Otvos et al, and demonstrates unequivocally that there are no phosphate residues other than those of FMN and FAD attached to the steapsin-solubilized reductase. The addition of FMN to the FMN-free reductase resulted in the appearance of one additional resonance at 3.9 ppm. Addition of FMNS to the FMN-free reductase caused no change, surprisingly, in the 31 P NMR spectrum until Mn(II) was added, after which a peak centered at ∼ 45 ppm was observed. This unexpected result may be explained if the T 1 for the phosphate of FMNS is significantly longer than that of FMN, and suggests that the sulfur atom of FMNS may perturb the interaction of the phosphate with its protein environment. These results demonstrate the utility of phosphorothioate analogs as mechanistic probes for proteins containing nucleotide cofactors

  15. Isolation of 2-deoxy-scyllo-inosose (DOI)-assimilating yeasts and cloning and characterization of the DOI reductase gene of Cryptococcus podzolicus ND1.

    Science.gov (United States)

    Ara, Satoshi; Yamazaki, Harutake; Takaku, Hiroaki

    2018-04-01

    2-Deoxy-scyllo-inosose (DOI) is the first intermediate in the 2-deoxystreptamine-containing aminoglycoside antibiotic biosynthesis pathway and has a six-membered carbocycle structure. DOI is a valuable material because it is easily converted to aromatic compounds and carbasugar derivatives. In this study, we isolated yeast strains capable of assimilating DOI as a carbon source. One of the strains, Cryptococcus podzolicus ND1, mainly converted DOI to scyllo-quercitol and (-)-vibo-quercitol, which is a valuable compound used as an antihypoglycemia agent and as a heat storage material. An NADH-dependent DOI reductase coding gene, DOIR, from C. podzolicus ND1 was cloned and successfully overexpressed in Escherichia coli. The purified protein catalyzed the irreversible reduction of DOI with NADH and converted DOI into (-)-vibo-quercitol. The enzyme had an optimal pH of 8.5 and optimal temperature of 35°C, respectively. The k cat of this enzyme was 9.98 s -1 , and the K m values for DOI and NADH were 4.38 and 0.24 mM, respectively. The enzyme showed a strong preference for NADH and showed no activity with NADPH. Multiple-alignment analysis of DOI reductase revealed that it belongs to the GFO_IDH_MocA protein family and is an inositol dehydrogenase homolog in other fungi, such as Cryptococcus gattii, and bacteria, such as Bacillus subtilis. This is the first identification of a DOI-assimilating yeast and a gene involved in DOI metabolism in fungi. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Rearrangement of beta,gamma-unsaturated esters with thallium trinitrate: synthesis of indans bearing a beta-keto ester moiety

    Directory of Open Access Journals (Sweden)

    Silva Jr. Luiz F.

    2006-01-01

    Full Text Available The rearrangement of beta,gamma-unsaturated esters, such as 2-(3,4-dihydronaphthalen-1-yl-propionic acid ethyl ester, with thallium trinitrate (TTN in acetic acid leads to 3-indan-1-yl-2-methyl-3-oxo-propionic acid ethyl ester in good yield, through a ring contraction reaction. The new indans thus obtained feature a beta-keto ester moiety, which would be useful for further functionalization.

  17. Identification of 5α-reductase isoenzymes in canine skin.

    Science.gov (United States)

    Bernardi de Souza, Lucilene; Paradis, Manon; Zamberlam, Gustavo; Benoit-Biancamano, Marie-Odile; Price, Christopher

    2015-10-01

    Alopecia X in dogs is a noninflammatory alopecia that may be caused by a hormonal dysfunction. It may be similar to androgenic alopecia in men that is caused by the effect of dihydrotestosterone (DHT). The 5α-reductase isoenzymes, 5αR1 and 5αR2, and a recently described 5αR3, are responsible for the conversion of testosterone into DHT. However, which 5α-reductases are present in canine skin has not yet been described. The main objective of this study was to determine the pattern of expression of 5α-reductase genes in canine skin. Skin biopsies were obtained from healthy, intact young-mature beagles (three males, four females) at three anatomical sites normally affected by alopecia X (dorsal neck, back of thighs and base of tail) and two sites generally unaffected (dorsal head and ventral thorax). Prostate samples (n = 3) were collected as positive controls for 5α-reductase mRNA abundance measurement by real-time PCR. We detected mRNA encoding 5αR1 and 5αR3 but not 5αR2. There were no significant differences in 5αR1 and 5αR3 mRNA levels between the different anatomical sites, irrespective of gender (P > 0.05). Moreover, the mean mRNA abundance in each anatomical site did not differ between males and females (P > 0.05). To the best of the authors' knowledge, this is the first study demonstrating the expression of 5α-reductases in canine skin and the expression of 5αR3 in this tissue. These results may help to elucidate the pathogenesis of alopecia X and to determine more appropriate treatments for this disorder. © 2015 ESVD and ACVD.

  18. Methylenetetrahydrofolate reductase 677C>T and methionine synthase 2756A>G mutations: no impact on survival, cognitive functioning, or cognitive decline in nonagenarians

    DEFF Research Database (Denmark)

    Bathum, Lise; von Bornemann Hjelmborg, Jacob; Christiansen, Lene

    2007-01-01

    BACKGROUND: Several reports have shown an association between homocysteine, cognitive functioning, and survival among the oldest-old. Two common polymorphisms in the genes coding for methylenetetrahydrofolate reductase (MTHFR 677C>T) and methionine synthase (MTR 2756A>G) have an impact on plasma...... homocysteine level. METHODS: We examined the effect of the MTHFR 677C>T and MTR 2756A>G genotypes on baseline cognitive functioning, cognitive decline over 5 years measured in three assessments, and survival in a population-based cohort of 1581 nonagenarians. Cognitive functioning was assessed by using...

  19. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  20. Structure and mechanism of dimethylsulfoxide reductase, a molybdopterin-containing enzyme of DMSO reductase family

    International Nuclear Information System (INIS)

    McEwan, A.G.; Ridge, J.P.; McDevitt, C.A.; Hanson, G.R.

    2001-01-01

    Full text: Apart from nitrogenase, enzymes containing molybdenum are members of a superfamily, the molybdopterin-containing enzymes. Most of these enzymes catalyse an oxygen atom transfer and two electron transfer reaction. During catalysis the Mo at the active site cycles between the Mo(VI) and Mo(IV) states. The DMSO reductase family of molybdopterin-containing enzymes all contain a bis(molybdopterin guanine dinucleotide)Mo cofactor and over thirty examples have now been described. Over the last five years crystal structures of dimethylsulfoxide (DMSO) reductase and four other enzymes of the DMSO reductase family have revealed that enzymes of this family have a similar tertiary structure. The Mo atom at the active site is coordinated by four thiolate ligands provided by the dithiolene side chains of the two MGD molecules of the bis(MGD)Mo cofactor as well as a ligand provided by an amino acid side chain. In addition, an oxygen atom in the form of an oxo, hydroxo or aqua group is also coordinated to the Mo atom. In the case of dimethylsulfoxide reductase X-ray crystallography of the product-reduced species and Raman spectroscopy has demonstrated that the enzyme contains a single exchangeable oxo group that is H-bonded to W116

  1. Carbonyl Reduction of NNK by Recombinant Human Lung Enzymes. Identification of HSD17β12 as the Reductase important in (R)-NNAL formation in Human Lung.

    Science.gov (United States)

    Ashmore, Joseph H; Luo, Shaman; Watson, Christy J W; Lazarus, Philip

    2018-05-17

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the most abundant and carcinogenic tobacco-specific nitrosamine in tobacco and tobacco smoke. The major metabolic pathway for NNK is carbonyl reduction to form the (R) and (S) enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) which, like NNK, is a potent lung carcinogen. The goal of the present study was to characterize NNAL enantiomer formation in human lung and identify the enzymes responsible for this activity. While (S)-NNAL was the major enantiomer of NNAL formed in incubations with NNK in lung cytosolic fractions, (R)-NNAL comprised ~60 and ~95% of the total NNAL formed in lung whole cell lysates and microsomes, respectively. In studies examining the role of individual recombinant reductase enzymes in lung NNAL enantiomer formation, AKR1C1, AKR1C2, AKR1C3, AKR1C4 and CBR1 all exhibited (S)-NNAL formation activity. To identify the microsomal enzymes responsible for (R)-NNAL formation, 28 microsomal reductase enzymes were screened for expression by real-time PCR in normal human lung. HSD17β6, HSD17β12, KDSR, NSDHL, RDH10, RDH11 and SDR16C5 were all expressed at levels >HSD11β1, the only previously reported microsomal reductase enzyme with NNK-reducing activity, with HSD17β12 the most highly expressed. Of these lung-expressing enzymes, only HSD17β12 exhibited activity against NNK, forming primarily (>95%) (R)-NNAL, a pattern consistent with that observed in lung microsomes. siRNA knockdown of HSD17β12 resulted in significant decreases in (R)-NNAL formation activity in HEK293 cells. These data suggest that both cytosolic and microsomal enzymes are active against NNK and that HSD17β12 is the major active microsomal reductase that contributes to (R)-NNAL formation in human lung.

  2. Expression, purification, crystallization and preliminary X-ray analysis of NAD(P)H-dependent carbonyl reductase specifically expressed in thyroidectomized chicken fatty liver

    International Nuclear Information System (INIS)

    Yoneda, Kazunari; Fukuda, Yudai; Shibata, Takeshi; Araki, Tomohiro; Nikki, Takahiro; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2012-01-01

    An NAD(P)H-dependent carbonyl reductase specifically expressed in thyroidectomized chicken fatty liver was successfully isolated and crystallized. An NAD(P)H-dependent carbonyl reductase specifically expressed in thyroidectomized chicken fatty liver was crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol 300 as the precipitant. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 104.26, b = 81.32, c = 77.27 Å, β = 119.43°, and diffracted to 1.86 Å resolution on beamline NE3A at the Photon Factory. The overall R merge was 5.4% and the data completeness was 99.4%

  3. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kume, Toshiaki; Izumi, Yasuhiko [Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Simoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Park, Si-Bum [Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Hirata, Takashi [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Rehabilitation, Shijonawategakuen University, 5-11-10, Hojo, Daitou-shi, Osaka 574-0011 (Japan); Sugawara, Tatsuya, E-mail: sugawara@kais.kyoto-u.ac.jp [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  4. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    International Nuclear Information System (INIS)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-01-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  5. The endothelial αENaC contributes to vascular endothelial function in vivo

    DEFF Research Database (Denmark)

    Tarjus, Antoine; Maase, Martina; Jeggle, Pia

    2017-01-01

    The Epithelial Sodium Channel (ENaC) is a key player in renal sodium homeostasis. The expression of α β γ ENaC subunits has also been described in the endothelium and vascular smooth muscle, suggesting a role in vascular function. We recently demonstrated that endothelial ENaC is involved in aldo......-mediated dilation. Our data suggest that endothelial αENaC contributes to vascular endothelial function in vivo....

  6. The role of thioredoxin reductase 1 in melanoma metabolism and metastasis.

    Science.gov (United States)

    Cassidy, Pamela B; Honeggar, Matthew; Poerschke, Robyn L; White, Karen; Florell, Scott R; Andtbacka, Robert H I; Tross, Joycelyn; Anderson, Madeleine; Leachman, Sancy A; Moos, Philip J

    2015-11-01

    Although significant progress has been made in targeted and immunologic therapeutics for melanoma, many tumors fail to respond, and most eventually progress when treated with the most efficacious targeted combination therapies thus far identified. Therefore, alternative approaches that exploit distinct melanoma phenotypes are necessary to develop new approaches for therapeutic intervention. Tissue microarrays containing human nevi and melanomas were used to evaluate levels of the antioxidant protein thioredoxin reductase 1 (TR1), which was found to increase as a function of disease progression. Melanoma cell lines revealed metabolic differences that correlated with TR1 levels. We used this new insight to design a model treatment strategy that creates a synthetic lethal interaction wherein targeting TR1 sensitizes melanoma to inhibition of glycolytic metabolism, resulting in a decrease in metastases in vivo. This approach holds the promise of a new clinical therapeutic strategy, distinct from oncoprotein inhibition. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Identification and characterization of trans-3-hydroxy-l-proline dehydratase and Δ1-pyrroline-2-carboxylate reductase involved in trans-3-hydroxy-l-proline metabolism of bacteria

    Directory of Open Access Journals (Sweden)

    Seiya Watanabe

    2014-01-01

    Full Text Available trans-4-Hydroxy-l-proline (T4LHyp and trans-3-hydroxy-l-proline (T3LHyp occur mainly in collagen. A few bacteria can convert T4LHyp to α-ketoglutarate, and we previously revealed a hypothetical pathway consisting of four enzymes at the molecular level (J Biol Chem (2007 282, 6685–6695; J Biol Chem (2012 287, 32674–32688. Here, we first found that Azospirillum brasilense has the ability to grow not only on T4LHyp but also T3LHyp as a sole carbon source. In A. brasilense cells, T3LHyp dehydratase and NAD(PH-dependent Δ1-pyrroline-2-carboxylate (Pyr2C reductase activities were induced by T3LHyp (and d-proline and d-lysine but not T4LHyp, and no effect of T3LHyp was observed on the expression of T4LHyp metabolizing enzymes: a hypothetical pathway of T3LHyp → Pyr2C → l-proline was proposed. Bacterial T3LHyp dehydratase, encoded to LhpH gene, was homologous with the mammalian enzyme. On the other hand, Pyr2C reductase encoded to LhpI gene was a novel member of ornithine cyclodeaminase/μ-crystallin superfamily, differing from known bacterial protein. Furthermore, the LhpI enzymes of A. brasilense and another bacterium showed several different properties, including substrate and coenzyme specificities. T3LHyp was converted to proline by the purified LhpH and LhpI proteins. Furthermore, disruption of LhpI gene from A. brasilense led to loss of growth on T3LHyp, d-proline and d-lysine, indicating that this gene has dual metabolic functions as a reductase for Pyr2C and Δ1-piperidine-2-carboxylate in these pathways, and that the T3LHyp pathway is not linked to T4LHyp and l-proline metabolism.

  8. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening

    Directory of Open Access Journals (Sweden)

    Lin SH

    2015-06-01

    Full Text Available Shih-Hung Lin,1 Kao-Jean Huang,1,2 Ching-Feng Weng,1 David Shiuan1 1Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, Republic of China; 2Development Center of Biotechnology, Taipei, Taiwan, Republic of China Abstract: Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR. The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening. Keywords: HMG-CoA reductase, virtual screening, curcumin, salvianolic acid C

  9. Individual and Joint Associations of Methylenetetrahydrofolate Reductase C677T Genotype and Plasma Homocysteine With Dyslipidemia in a Chinese Population With Hypertension.

    Science.gov (United States)

    Liu, Yanhong; Li, Kang; Venners, Scott A; Hsu, Yi-Hsiang; Jiang, Shanqun; Weinstock, Justin; Wang, Binyan; Tang, Genfu; Xu, Xiping

    2017-04-01

    We aimed to examine the cross-sectional associations of plasma total homocysteine (tHcy) concentrations and methylenetetrahydrofolate reductase ( MTHFR) C677T genotype with dyslipidemia. A total of 231 patients with mild-to-moderate essential hypertension were enrolled from the Huoqiu and Yuexi communities in Anhui Province, China. Plasma tHcy levels were measured by high-performance liquid chromatography. Genotyping was performed by TaqMan allelic discrimination technique. Compared with MTHFR 677 CC + CT genotype carriers, TT genotype carriers had higher odds of hypercholesterolemia (adjusted odds ratio [OR] [95% confidence interval (CI)]: 2.7 [1.4-5.2]; P = .004) and higher odds of abnormal low-density lipoprotein cholesterol (adjusted OR [95% CI]: 2.3 [1.1-4.8]; P = .030). The individuals with the TT genotype had higher concentrations of log(tHcy) than those with the 677 CC + CT genotype (adjusted β [standard error]: .2 [0.03]; P dyslipidemia in Chinese patients with essential hypertension. Further studies are needed to confirm the role of tHcy and the MTHFR C677T mutation in the development of dyslipidemia in a larger sample.

  10. Expression, purification, crystallization and X-ray analysis of 3-quinuclidinone reductase from Agrobacterium tumefaciens

    International Nuclear Information System (INIS)

    Hou, Feng; Miyakawa, Takuya; Takeshita, Daijiro; Kataoka, Michihiko; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2012-01-01

    The purification and crystallization of 3-quinuclidinone reductase from A. tumefaciens allowed the collection of a diffraction data set to 1.72 Å resolution. (R)-3-Quinuclidinol is a useful chiral building block for the synthesis of various pharmaceuticals and can be produced from 3-quinuclidinone by asymmetric reduction. A novel 3-quinuclidinone reductase from Agrobacterium tumefaciens (AtQR) catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol with NADH as a cofactor. Recombinant AtQR was overexpressed in Escherichia coli, purified and crystallized with NADH using the sitting-drop vapour-diffusion method at 293 K. Crystals were obtained using a reservoir solution containing PEG 3350 as a precipitant. X-ray diffraction data were collected to 1.72 Å resolution on beamline BL-5A at the Photon Factory. The crystal belonged to space group P2 1 , with unit-cell parameters a = 62.0, b = 126.4, c = 62.0 Å, β = 110.5°, and was suggested to contain four molecules in the asymmetric unit (V M = 2.08 Å 3 Da −1 )

  11. Effect of the methionine ligand on the reorganization energy of the type-1 copper site of nitrite Reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Wijma, Hein J.; MacPherson, Iain

    2007-01-01

    Copper-containing nitrite reductase harbors a type-1 and a type-2 Cu site. The former acts as the electron acceptor site of the enzyme, and the latter is the site of catalytic action. The effect of the methionine ligand on the reorganization energy of the type-1 site was explored by studying...

  12. Catalytic Enantioselective Alkylation of β-Keto Esters with Xanthydrol in the Presence of Chiral Palladium Complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu Yeon; Kim, Dae Young [Soonchunhyang Univ., Asan (Korea, Republic of)

    2016-01-15

    Our research interest has been directed toward the development of synthetic methods for the enantioselective construction of stereogenic carbon centers. Recently, we explored the catalytic enantioselective functionalization of active methines in the presence of chiral palladium(II) complexes. In conclusion, we have accomplished the efficient catalytic enantioselective alkylation of β-keto esters 1 with xanthydrol 2 with high yields and excellent enantioselectivity (up to 98% ee). It should be noted that this alkyaltion reaction proceeds well using air- and moisture-stable chiral palladium com- plexes with low loading (1 mol%)

  13. Biochemical characterization of GDP-L-fucose de novo synthesis pathway in fungus Mortierella alpina

    International Nuclear Information System (INIS)

    Ren, Yan; Perepelov, Andrei V.; Wang, Haiyan; Zhang, Hao; Knirel, Yuriy A.; Wang, Lei; Chen, Wei

    2010-01-01

    Mortierella alpina is a filamentous fungus commonly found in soil, which is able to produce large amount of polyunsaturated fatty acids. L-Fucose is an important sugar found in a diverse range of organisms, playing a variety of biological roles. In this study, we characterized the de novo biosynthetic pathway of GDP-L-fucose (the nucleotide-activated form of L-fucose) in M. alpina. Genes encoding GDP-D-mannose 4,6-dehydratase (GMD) and GDP-keto-6-deoxymannose 3,5-epimerase/4-reductase (GMER) were expressed heterologously in Escherichia coli. The recombinant enzymes were produced as His-tagged fusion proteins. Conversion of GDP-mannose to GDP-4-keto-6-deoxy mannose by GMD and GDP-4-keto-6-deoxy mannose to GDP-L-fucose by GMER were analyzed by capillary electrophoresis, electro-spray ionization-mass spectrometry, and nuclear magnetic resonance spectroscopy. The k m values of GMD for GDP-mannose and GMER for GDP-4-keto-6-deoxy mannose were determined to be 0.77 mM and 1.047 mM, respectively. Both NADH and NADPH may be used by GMER as the coenzyme. The optimum temperature and pH were determined to be 37 o C and pH 9.0 (GMD) or pH 7.0 (GMER). Divalent cations are not required for GMD and GMER activity, and the activities of both enzymes may be enhanced by DTT. To our knowledge this is the first report on the characterization of GDP-L-fucose biosynthetic pathway in fungi.

  14. Effect of restricted protein diet supplemented with keto analogues in end-stage renal disease: a systematic review and meta-analysis.

    Science.gov (United States)

    Jiang, Zheng; Tang, Yi; Yang, Lichuan; Mi, Xuhua; Qin, Wei

    2018-04-01

    To evaluate the efficacy and safety of the restricted protein diet supplemented with keto analogues when applied in end-stage renal disease (ESRD). The Cochrane Library, PubMed, Embase, CBM and CENTRAL databases were searched and reviewed up to January 2017. Clinical trials were analyzed using RevMan 5.3 software. Five randomized controlled trials were selected and included in this study according to our inclusion and exclusion criteria. Changes in serum albumin, PTH, triglyceride, cholesterol, calcium, phosphorus, hemoglobin, Kt/v and CRP before and after treatment were analyzed. Meta-analysis results indicated that, compared with normal protein diet, low-protein diet (LPD) supplemented with keto analogues (sLPD) could improve serum albumin (P diet supplemented with keto analogues (sLPD) may improve nutritional status and prevent hyperparathyroidism in ESRD patients. The current data were mainly obtained from short-term, single-center trails with small sample sizes and limited nutritional status indexes, indicating a need for further study.

  15. Fatty acyl-CoA reductases of birds

    Directory of Open Access Journals (Sweden)

    Hellenbrand Janine

    2011-12-01

    Full Text Available Abstract Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba, domestic chicken (Gallus gallus domesticus and domestic goose (Anser anser domesticus. Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis.

  16. Fatty acyl-CoA reductases of birds

    Science.gov (United States)

    2011-01-01

    Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis. PMID:22151413

  17. Post-Transcriptional Regulation Prevents Accumulation of Glutathione Reductase Protein and Activity in the Bundle Sheath Cells of Maize1

    Science.gov (United States)

    Pastori, Gabriela M.; Mullineaux, Philip M.; Foyer, Christine H.

    2000-01-01

    Glutathione reductase (GR; EC 1.6.4.2) activity was assayed in bundle sheath and mesophyll cells of maize (Zea mays L. var H99) from plants grown at 20°C, 18°C, and 15°C. The purity of each fraction was determined by measuring the associated activity of the compartment-specific marker enzymes, Rubisco and phosphoenolpyruvate carboxylase, respectively. GR activity and the abundance of GR protein and mRNA increased in plants grown at 15°C and 18°C compared with those grown at 20°C. In all cases GR activity was found only in mesophyll fractions of the leaves, with no GR activity being detectable in bundle sheath extracts. Immunogold labeling with GR-specific antibodies showed that the GR protein was exclusively localized in the mesophyll cells of leaves at all growth temperatures, whereas GR transcripts (as determined by in situ hybridization techniques) were observed in both cell types. These results indicate that post-transcriptional regulation prevents GR accumulation in the bundle sheath cells of maize leaves. The resulting limitation on the capacity for regeneration of reduced glutathione in this compartment may contribute to the extreme chilling sensitivity of maize leaves. PMID:10712529

  18. Nitrite-reductase and peroxynitrite isomerization activities of Methanosarcina acetivorans protoglobin.

    Directory of Open Access Journals (Sweden)

    Paolo Ascenzi

    Full Text Available Within the globin superfamily, protoglobins (Pgb belong phylogenetically to the same cluster of two-domain globin-coupled sensors and single-domain sensor globins. Multiple functional roles have been postulated for Methanosarcina acetivorans Pgb (Ma-Pgb, since the detoxification of reactive nitrogen and oxygen species might co-exist with enzymatic activity(ies to facilitate the conversion of CO to methane. Here, the nitrite-reductase and peroxynitrite isomerization activities of the CysE20Ser mutant of Ma-Pgb (Ma-Pgb* are reported and analyzed in parallel with those of related heme-proteins. Kinetics of nitrite-reductase activity of ferrous Ma-Pgb* (Ma-Pgb*-Fe(II is biphasic and values of the second-order rate constant for the reduction of NO2- to NO and the concomitant formation of nitrosylated Ma-Pgb*-Fe(II (Ma-Pgb*-Fe(II-NO are k(app1= 9.6 ± 0.2 M(-1 s(-1 and k(app2 = 1.2 ± 0.1 M(-1 s(-1 (at pH 7.4 and 20 °C. The k(app1 and k(app2 values increase by about one order of magnitude for each pH unit decrease, between pH 8.3 and 6.2, indicating that the reaction requires one proton. On the other hand, kinetics of peroxynitrite isomerization catalyzed by ferric Ma-Pgb* (Ma-Pgb*-Fe(III is monophasic and values of the second order rate constant for peroxynitrite isomerization by Ma-Pgb*-Fe(III and of the first order rate constant for the spontaneous conversion of peroxynitrite to nitrate are h(app = 3.8 × 10(4 M(-1 s(-1 and h0 = 2.8 × 10(-1 s(-1 (at pH 7.4 and 20 °C. The pH-dependence of hon and h0 values reflects the acid-base equilibrium of peroxynitrite (pKa = 6.7 and 6.9, respectively; at 20 °C, indicating that HOONO is the species that reacts preferentially with the heme-Fe(III atom. These results highlight the potential role of Pgbs in the biosynthesis and scavenging of reactive nitrogen and oxygen species.

  19. Effect of restricted protein diet supplemented with keto analogues in chronic kidney disease: a systematic review and meta-analysis.

    Science.gov (United States)

    Jiang, Zheng; Zhang, Xiaoyan; Yang, Lichuan; Li, Zi; Qin, Wei

    2016-03-01

    To evaluate the efficacy and safety of the restricted protein diet (low or very low protein diet) supplemented with keto analogues in the treatment of chronic kidney disease (CKD). The Cochrane library, PubMed, Embase, CBM and CENTRAL databases were searched and reviewed up to April 2015. Clinical trials were analyzed using RevMan 5.3 software. Seven random control trials, one cross-over trial and one non-randomized concurrent control trial were selected and included in this study according to our inclusion and exclusion criteria. The changes of eGFR, BUN, Scr, albumin, PTH, triglyceride, cholesterol, calcium, phosphorus and nutrition indexes (BMI, lean body mass and mid-arm muscular circumference) before and after treatment were analyzed. The meta-analysis results indicated that, comparing with normal protein diet, low protein diet (LPD) or very low protein diet (vLPD) supplemented with keto analogues (s(v)LPD) could significantly prevent the deterioration of eGFR (P diet supplemented with keto analogues (s(v)LPD) could delay the progression of CKD effectively without causing malnutrition.

  20. Inhibitory effect of rhetsinine isolated from Evodia rutaecarpa on aldose reductase activity.

    Science.gov (United States)

    Kato, A; Yasuko, H; Goto, H; Hollinshead, J; Nash, R J; Adachi, I

    2009-03-01

    Aldose reductase inhibitors have considerable potential for the treatment of diabetic complications, without increased risk of hypoglycemia. Search for components inhibiting aldose reductase led to the discovery of active compounds contained in Evodia rutaecarpa Bentham (Rutaceae), which is the one of the component of Kampo-herbal medicine. The hot water extract from the E. rutaecarpa was subjected to distribution or gel filtration chromatography to give an active compound, N2-(2-methylaminobenzoyl)tetrahydro-1H-pyrido[3,4-b]indol-1-one (rhetsinine). It inhibited aldose reductase with IC(50) values of 24.1 microM. Furthermore, rhetsinine inhibited sorbitol accumulation by 79.3% at 100 microM. These results suggested that the E. rutaecarpa derived component, rhetsinine, would be potentially useful in the treatment of diabetic complications.

  1. Purification, crystallization and preliminary X-ray analysis of l-sorbose reductase from Gluconobacter frateurii complexed with l-sorbose or NADPH

    International Nuclear Information System (INIS)

    Kubota, Keiko; Nagata, Koji; Miyazono, Ken-ichi; Toyama, Hirohide; Matsushita, Kazunobu; Tanokura, Masaru

    2009-01-01

    NADPH-dependent l-sorbose reductase from G. frateurii (SR) was expressed, purified and crystallized with l-sorbose or NADPH using the sitting-drop vapour-diffusion method. Crystals of the SR–l-sorbose complex and SR–NADPH complex diffracted X-rays to 2.38 and 1.90 Å resolution, respectively. NADPH-dependent l-sorbose reductase (SR) from Gluconobacter frateurii was expressed in Escherichia coli, purified and crystallized with l-sorbose or NADPH using the sitting-drop vapour-diffusion method at 293 K. Crystals of the SR–l-sorbose complex and the SR–NADPH complex were obtained using reservoir solutions containing PEG 2000 or PEG 400 as precipitants and diffracted X-rays to 2.38 and 1.90 Å resolution, respectively. The crystal of the SR–l-sorbose complex belonged to space group C222 1 , with unit-cell parameters a = 124.2, b = 124.1, c = 60.8 Å. The crystal of the SR–NADPH complex belonged to space group P2 1 , with unit-cell parameters a = 124.3, b = 61.0, c = 124.5 Å, β = 89.99°. The crystals contained two and eight molecules, respectively, in the asymmetric unit

  2. Determination of thermodynamic parameters of tautomerization in gas phase by mass spectrometry and DFT calculations: Keto-enol versus nitrile-ketenimine equilibria.

    Science.gov (United States)

    Giussi, Juan M; Gastaca, Belen; Albesa, Alberto; Cortizo, M Susana; Allegretti, Patricia E

    2011-02-01

    The study of tautomerics equilibria is really important because the reactivity of each compound with tautomeric capacity can be determined from the proportion of each tautomer. In the present work the tautomeric equilibria in some γ,δ-unsaturated β-hydroxynitriles and γ,δ-unsaturated β-ketonitriles were studied. The first family of compounds presents two possible theoretical tautomers, nitrile and ketenimine, while the second one presents four possible theoretical tautomers, keto-nitrile, enol (E and Z)-nitrile and keto-ketenimine. The equilibrium in gas phase was studied by gas chromatography-mass spectrometry (GC-MS). Tautomerization enthalpies were calculated by this methodology, and results were compared with those obtained by density functional theory (DFT) calculations, observing a good agreement between them. Nitrile tautomers were favored within the first family of compounds, while keto-nitrile tautomers were favored in the second family. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. ARM-microcontroller based portable nitrite electrochemical analyzer using cytochrome c reductase biofunctionalized onto screen printed carbon electrode.

    Science.gov (United States)

    Santharaman, Paulraj; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Benjamin, Alby Robson; Sethy, Niroj K; Bhargava, Kalpana; Karunakaran, Chandran

    2017-04-15

    Nitrite (NO 2 - ) supplementation limits hypoxia-induced oxidative stress and activates the alternate NO pathway which may partially account for the nitrite-mediated cardioprotection. So, sensitive and selective biosensors with point-of-care devices need to be explored to detect the physiological nitrite level due to its important role in human pathophysiology. In this work, cytochrome c reductase (CcR) biofunctionalized self assembled monolayer (SAM) functionalized on gold nanoparticles (GNPs) in polypyrrole (PPy) nanocomposite onto the screen printed carbon electrode (SPCE) was investigated as a biosensor for the detection of nitrite based on its electrochemical and catalytic properties. CcR was covalently coupled with SAM layers on GNPs by using EDC and NHS. Direct electrochemical response of CcR biofunctionalized electrodes showed a couple of well-defined and nearly reversible cyclic voltammetric peaks at -0.34 and -0.45 vs. Ag/AgCl. Under optimal conditions, the biosensor could be used for the determination of NO 2 - with a linear range from 0.1-1600µm and a detection limit of 60nM with a sensitivity of 0.172µAµM -1 cm -2 . Further, we have designed and developed a novel and cost effective portable electrochemical analyzer for the measurement of NO 2 - in hypoxia induced H9c2 cardiac cells using ARM microcontroller. The results obtained here using the developed portable electrochemical nitrite analyzer were also compared with the standard cyclic voltammetry instrument and found in agreement with each other. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis.

    Science.gov (United States)

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-06-02

    Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K(+)in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant.

  5. Association of methylenetetrahydrofolate reductase C677T-A1298C polymorphisms with risk for esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis.

    Science.gov (United States)

    Ekiz, F; Ormeci, N; Coban, S; Karabulut, H G; Aktas, B; Tukun, A; Tuncali, T; Yüksel, O; Alkış, N

    2012-07-01

    Incidence of the esophagus adenocarcinoma has been dramatically increasing in Western countries since the last decade. Gastroesophageal reflux disease and Barrett's esophagus are risk factors for adenocarcinoma. Methylenetetrahydrofolate reductase (MTHFR) genes play a key role not only in folate metabolism but also in esophagus, stomach, pancreatic carcinoma, and acute leukemias. Studies have suggested that genetic polymorphisms of MTHFR (C677T) may clarify the causes and events involved in esophageal carcinogenesis. In this study, we evaluated MTHFR C677T and A1298C polymorphisms, and vitamin B12, folate, and plasma homocystein levels in patients with esophageal adenocarcinoma (EAC), Barrett's esophagus (BE), chronic esophagitis, and healthy controls (n = 26, n = 14, n = 30, and n = 30, respectively). The mean age of patients in the EAC and BE groups was significantly higher compared with the control group (P homocystein, and B12 levels among the groups. MTHFR gene polymorphisms and folate deficiency are not predictors of early esophageal carcinoma. However, further studies using larger series of patients are needed to evaluate the effect of genetic polymorphisms in the folate metabolic pathway and to clarify the role of folate deficiency and folate metabolism in the development of esophagus adenocarcinoma. © 2011 Copyright the Authors. Journal compilation © 2011, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  6. Endoplasmic Reticulum Chaperon Tauroursodeoxycholic Acid Attenuates Aldosterone-Infused Renal Injury

    Directory of Open Access Journals (Sweden)

    Honglei Guo

    2016-01-01

    Full Text Available Aldosterone (Aldo is critically involved in the development of renal injury via the production of reactive oxygen species and inflammation. Endoplasmic reticulum (ER stress is also evoked in Aldo-induced renal injury. In the present study, we investigated the role of ER stress in inflammation-mediated renal injury in Aldo-infused mice. C57BL/6J mice were randomized to receive treatment for 4 weeks as follows: vehicle infusion, Aldo infusion, vehicle infusion plus tauroursodeoxycholic acid (TUDCA, and Aldo infusion plus TUDCA. The effect of TUDCA on the Aldo-infused inflammatory response and renal injury was investigated using periodic acid-Schiff staining, real-time PCR, Western blot, and ELISA. We demonstrate that Aldo leads to impaired renal function and inhibition of ER stress via TUDCA attenuates renal fibrosis. This was indicated by decreased collagen I, collagen IV, fibronectin, and TGF-β expression, as well as the downregulation of the expression of Nlrp3 inflammasome markers, Nlrp3, ASC, IL-1β, and IL-18. This paper presents an important role for ER stress on the renal inflammatory response to Aldo. Additionally, the inhibition of ER stress by TUDCA negatively regulates the levels of these inflammatory molecules in the context of Aldo.

  7. Glutathione reductase: solvent equilibrium and kinetic isotope effects

    International Nuclear Information System (INIS)

    Wong, K.K.; Vanoni, M.A.; Blanchard, J.S.

    1988-01-01

    Glutathione reductase catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). The kinetic mechanism is ping-pong, and we have investigated the rate-limiting nature of proton-transfer steps in the reactions catalyzed by the spinach, yeast, and human erythrocyte glutathione reductases using a combination of alternate substrate and solvent kinetic isotope effects. With NADPH or GSSG as the variable substrate, at a fixed, saturating concentration of the other substrate, solvent kinetic isotope effects were observed on V but not V/K. Plots of Vm vs mole fraction of D 2 O (proton inventories) were linear in both cases for the yeast, spinach, and human erythrocyte enzymes. When solvent kinetic isotope effect studies were performed with DTNB instead of GSSG as an alternate substrate, a solvent kinetic isotope effect of 1.0 was observed. Solvent kinetic isotope effect measurements were also performed on the asymmetric disulfides GSSNB and GSSNP by using human erythrocyte glutathione reductase. The Km values for GSSNB and GSSNP were 70 microM and 13 microM, respectively, and V values were 62 and 57% of the one calculated for GSSG, respectively. Both of these substrates yield solvent kinetic isotope effects greater than 1.0 on both V and V/K and linear proton inventories, indicating that a single proton-transfer step is still rate limiting. These data are discussed in relationship to the chemical mechanism of GSSG reduction and the identity of the proton-transfer step whose rate is sensitive to solvent isotopic composition. Finally, the solvent equilibrium isotope effect measured with yeast glutathione reductase is 4.98, which allows us to calculate a fractionation factor for the thiol moiety of GSH of 0.456

  8. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.

    Science.gov (United States)

    Jeeves, Rose E; Mason, Robert P; Woodacre, Alexandra; Cashmore, Annette M

    2011-09-01

    The pathogenic yeast Candida albicans possesses a reductive iron uptake system which is active in iron-restricted conditions. The sequestration of iron by this mechanism initially requires the reduction of free iron to the soluble ferrous form, which is catalysed by ferric reductase proteins. Reduced iron is then taken up into the cell by a complex of a multicopper oxidase protein and an iron transport protein. Multicopper oxidase proteins require copper to function and so reductive iron and copper uptake are inextricably linked. It has previously been established that Fre10 is the major cell surface ferric reductase in C. albicans and that transcription of FRE10 is regulated in response to iron levels. We demonstrate here that Fre10 is also a cupric reductase and that Fre7 also makes a significant contribution to cell surface ferric and cupric reductase activity. It is also shown, for the first time, that transcription of FRE10 and FRE7 is lower in hyphae compared to yeast and that this leads to a corresponding decrease in cell surface ferric, but not cupric, reductase activity. This demonstrates that the regulation of two virulence determinants, the reductive iron uptake system and the morphological form of C. albicans, are linked. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    Glucocorticoids (GCs) exert potent, but poorly characterized, effects on the skeleton. The cellular activity of GCs is regulated at a prereceptor level by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). The type 1 isoform, which predominates in bone, functions as a reductase in intact cells...... and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  10. [Comparison of the effects of alpha-keto/ amino acid supplemented low protein diet and diabetes diet in patients with diabetic nephropathy].

    Science.gov (United States)

    Qiu, Hong-yu; Liu, Fang; Zhao, Li-jun; Huang, Song-min; Zuo, Chuan; Zhong, Hui; Chen, Feng

    2012-05-01

    To investigate if a-keto/amino acid supplemented low protein diet can slow down the progression of diabetic nephrophathy in comparison with non-supplemented diabetes diet. A prospective, randomized, controlled clinical study was conducted. Twenty three cases of type 2 diabetic nephropathy in IV stage were randomly divided into alpha-keto/amino acid supplemented diet group (trial group) and conventional diabetes diet group (control group), The treatment duration was 52 weeks. 24 h urine protein was measured at 0, 12, 20, 36 and 52 weeks. Before and after the 52 weeks treatment, all the patients received the measurement of glomerular filtration rate (GFR), blood glucose, blood lipids, inflammatory markers, as well as nutritional status. After the treatment for 20, 36, 52 weeks, mean 24 h urine protein decreased significantly in trial groups (P keto/amino acid can reduce proteinuria more effectively, while improve renal function and nutritional status in diabetic nephropathy patients with well-toleration.

  11. Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation

    Science.gov (United States)

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine forming Met, which is then used for the syn...

  12. Expressions of the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase genes are stimulated by recombinant platelet-derived growth factor isomers

    International Nuclear Information System (INIS)

    Roth, M.; Emmons, L.R.; Perruchoud, A.; Block, L.H.

    1991-01-01

    The plausible role that platelet-derived growth factor (PDGF) has in the localized pathophysiological changes that occur in the arterial wall during development of atherosclerotic lesions led the authors to investigate the influence of recombinant (r)PDGF isomers -AA, -AB, and -BB on the expression of low density lipoprotein receptor (LDL-R) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG0CoA) reductase [(S)-mevalonate:NAD + oxidoreductase (CoA-acylating), EC 1.1.1.88] genes. In addition, they clarified the role of protein kinase C (PKC) in expression of the two genes in human skin fibroblasts and vascular smooth muscle cells. The various rPDGF isoforms are distinct in their ability to activate transcription of both genes: (i) both rPDGF-AA and -BB stimulate transcription of the LDL-R gene; in contrast, rPDGF-BB but not -AA, activates transcription of the HMG-CoA reductase gene; (ii) all recombinant isoforms of PDGF activate transcription of the c-fos gene; (iii) while rPDGF-dependent transcription of the lDL-R gene occurs independently of PKC, transcription of the HMG-CoA reductase gene appears to involve the action of that enzyme

  13. A soluble 3-hydroxy-3-methylglutaryl-CoA reductase in the protozoan Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, A; Camacho, A

    1997-01-01

    of the genes described from eukaryotic organisms and the deduced amino acid sequence could be aligned with the C-terminal half of animal and plant reductases exhibiting pronounced similarity to other eukaryotic counterparts. Further examination of the 5' flanking region by cDNA analysis and establishment...

  14. NADPH-thioredoxin reductase C mediates the response to oxidative stress and thermotolerance in the cyanobacterium Anabaena sp. PCC7120.

    Directory of Open Access Journals (Sweden)

    ANA MARÍA SÁNCHEZ-RIEGO

    2016-08-01

    Full Text Available NTRC (NADPH-thioredoxin reductase C is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of the 2-Cys peroxiredoxin (2-Cys Prx as well as through other functions related to redox enzyme regulation. In cyanobacteria, the Anabaena NTRC has been characterized in vitro, however nothing was known about its in vivo function. In order to study that, we have generated the first knockout mutant strain (∆ntrC, apart from the previously described in Arabidopsis. Detailed characterization of this strain reveals a differential sensitivity to oxidative stress treatments with respect to the wild-type Anabaena strain, including a higher level of ROS (reactive oxygen species in normal growth conditions. In the mutant strain, different oxidative stress treatments such as hydrogen peroxide, methyl-viologen or high light irradiance provoke an increase in the expression of genes related to ROS detoxification, including AnNTRC and peroxiredoxin genes, with a concomitant increase in the amount of AnNTRC and 2-Cys Prx. Moreover, the role of AnNTRC in the antioxidant response is confirmed by the observation of a pronounced overoxidation of the 2-Cys Prx and a time-delay recovery of the reduced form of this protein upon oxidative stress treatments. Our results suggest the participation of this enzyme in the peroxide detoxification in Anabaena. In addition, we describe the role of Anabaena NTRC in thermotolerance, by the appearance of high molecular mass AnNTRC complexes, showing that the mutant strain is more sensitive to high temperature treatments.

  15. Design, optimization, and biological evaluation of novel keto-benzimidazoles as potent and selective inhibitors of phosphodiesterase 10A (PDE10A).

    Science.gov (United States)

    Hu, Essa; Kunz, Roxanne K; Chen, Ning; Rumfelt, Shannon; Siegmund, Aaron; Andrews, Kristin; Chmait, Samer; Zhao, Sharon; Davis, Carl; Chen, Hang; Lester-Zeiner, Dianna; Ma, Ji; Biorn, Christopher; Shi, Jianxia; Porter, Amy; Treanor, James; Allen, Jennifer R

    2013-11-14

    Our development of PDE10A inhibitors began with an HTS screening hit (1) that exhibited both high p-glycoprotein (P-gp) efflux ratios in rat and human and poor metabolic stability. On the basis of cocrystal structure of 1 in human PDE10A enzyme, we designed a novel keto-benzimidazole 26 with comparable PDE10A potency devoid of efflux liabilities. On target in vivo coverage of PDE10A in rat brain was assessed using our previously reported LC-MS/MS receptor occupancy (RO) technology. Compound 26 achieved 55% RO of PDE10A at 30 mg/kg po and covered PDE10A receptors in rat brain in a dose-dependent manner. Cocrystal structure of 26 in PDE10A confirmed the binding mode of the novel scaffold. Further optimization resulted in the identification of keto-benzimidazole 34, which showed an increased in vivo efficacy of 57% RO in rats at 10 mg/kg po and an improved in vivo rat clearance and oral bioavailability.

  16. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1.

    Science.gov (United States)

    Randall, Matthew J; Spiess, Page C; Hristova, Milena; Hondal, Robert J; van der Vliet, Albert

    2013-01-01

    Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1-30 μM) resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases such as JNK, and

  17. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1

    Directory of Open Access Journals (Sweden)

    Matthew J. Randall

    2013-01-01

    Full Text Available Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal. Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1, a critical enzyme involved in regulation of thioredoxin (Trx-mediated redox signaling, by alkylation at its selenocysteine (Sec residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1–30 μM resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases

  18. Structure and expression of human dihydropteridine reductase

    International Nuclear Information System (INIS)

    Lockyer, J.; Cook, R.G.; Milstien, S.; Kaufman, S.; Woo, S.L.C.; Ledley, F.D.

    1987-01-01

    Dihydropteridine reductase catalyzes the NADH-mediated reduction of quinonoid dihydrobiopterin and is an essential component of the pterindependent aromatic amino acid hydroxylating systems. A cDNA for human DHPR was isolated from a human liver cDNA library in the vector λgt11 using a monospecific antibody against sheep DHPR. The nucleic acid sequence and amino acid sequence of human DHPR were determined from a full-length clone. A 112 amino acid sequence of sheep DHPR was obtained by sequencing purified sheep DHPR. This sequence is highly homologous to the predicted amino acid sequence of the human protein. Gene transfer of the recombinant human DHPR into COS cells leads to expression of DHPR enzymatic activity. These results indicate that the cDNA clone identified by antibody screening is an authentic and full-length cDNA for human DHPR

  19. Aldo van Eyck’s Playgrounds: Aesthetics, Affordances, and Creativity

    Directory of Open Access Journals (Sweden)

    Rob Withagen

    2017-07-01

    Full Text Available After World War II, the Dutch architect Aldo van Eyck developed hundreds of playgrounds in the city of Amsterdam. These public playgrounds were located in parks, squares, and derelict sites, and consisted of minimalistic aesthetic play equipment that was supposed to stimulate the creativity of children. Over the last decades, these playgrounds have been studied by sociologists, theorists of art and architecture, and psychologists. Adopting an ecological approach to the human environment, it is argued that the abstract forms of van Eyck’s play sculptures indeed stimulate the creativity of the child. Whereas a slide or a swing almost dictates what a child is supposed to do, van Eyck’s play equipment invites the child to actively explore the numerous affordances (action possibilities it provided. However, it is argued that the standardization (e.g., equal distances between blocks or bars that tends to characterize van Eyck’ play equipment has negative effects on the playability. This standardization, which was arguably the result of the aesthetic motives of the designer, might be appealing to children when simply looking at the equipment, but it is not of overriding importance to them when playing in it. Indeed, a recent study indicates that the affordances provided by messy structures appear to have a greater appeal to playing children.

  20. The methylenetetrahydrofolate reductase gene variant C677T influences susceptibility to migraine with aura

    Directory of Open Access Journals (Sweden)

    Sundholm James

    2004-02-01

    Full Text Available Abstract Background The C677T variant in the methylenetetrahydrofolate reductase (MTHFR gene is associated with increased levels of circulating homocysteine and is a mild risk factor for vascular disease. Migraine, with and without aura (MA and MO, is a prevalent and complex neurovascular disorder that may also be affected by genetically influenced hyperhomocysteinaemia. To determine whether the C677T variant in the MTHFR gene is associated with migraine susceptibility we utilised unrelated and family-based case-control study designs. Methods A total of 652 Caucasian migraine cases were investigated in this study. The MTHFR C677T variant was genotyped in 270 unrelated migraine cases and 270 controls as well as 382 affected subjects from 92 multiplex pedigrees. Results In the unrelated case-control sample we observed an over-representation of the 677T allele in migraine patients compared to controls, specifically for the MA subtype (40% vs. 33% (χ2 = 5.70, P = 0.017. The Armitage test for trend indicated a significant dosage effect of the risk allele (T for MA (χ2 = 5.72, P = 0.017. This linear trend was also present in the independent family-based sample (χ2 = 4.25, Padjusted = 0.039. Overall, our results indicate that the T/T genotype confers a modest, yet significant, increase in risk for the MA subtype (odds ratio: 2.0 – 2.5. No increased risk for the MO subtype was observed (P > 0.05. Conclusions In Caucasians, the C677T variant in the MTHFR gene influences susceptibility to MA, but not MO. Investigation into the enzyme activity of MTHFR and the role of homocysteine in the pathophysiology of migraine is warranted.

  1. Solution structure of an arsenate reductase-related protein, YffB, from Brucella melitensis, the etiological agent responsible for brucellosis

    International Nuclear Information System (INIS)

    Buchko, Garry W.; Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.; Myler, Peter J.

    2011-01-01

    B. melitensis is a NIAID Category B microorganism that is responsible for brucellosis and is a potential agent for biological warfare. Here, the solution structure of the 116-residue arsenate reductase-related protein Bm-YffB (BR0369) from this organism is reported. Brucella melitensis is the etiological agent responsible for brucellosis. Present in the B. melitensis genome is a 116-residue protein related to arsenate reductases (Bm-YffB; BR0369). Arsenate reductases (ArsC) convert arsenate ion (H 2 AsO 4 − ), a compound that is toxic to bacteria, to arsenite ion (AsO 2 − ), a product that may be efficiently exported out of the cell. Consequently, Bm-YffB is a potential drug target because if arsenate reduction is the protein’s major biological function then disabling the cell’s ability to reduce arsenate would make these cells more sensitive to the deleterious effects of arsenate. Size-exclusion chromatography and NMR spectroscopy indicate that Bm-YffB is a monomer in solution. The solution structure of Bm-YffB shows that the protein consists of two domains: a four-stranded mixed β-sheet flanked by two α-helices on one side and an α-helical bundle. The α/β domain is characteristic of the fold of thioredoxin-like proteins and the overall structure is generally similar to those of known arsenate reductases despite the marginal sequence similarity. Chemical shift perturbation studies with 15 N-labeled Bm-YffB show that the protein binds reduced glutathione at a site adjacent to a region similar to the HX 3 CX 3 R catalytic sequence motif that is important for arsenic detoxification activity in the classical arsenate-reductase family of proteins. The latter observation supports the hypothesis that the ArsC-YffB family of proteins may function as glutathione-dependent thiol reductases. However, comparison of the structure of Bm-YffB with the structures of proteins from the classical ArsC family suggest that the mechanism and possibly the function of Bm

  2. ANTI-INFLAMMATORY EFFECTS OF LOW PROTEIN DIET SUPPLEMENTED WITH KETO-AMINO ACID IN THE TREATMENT OF TYPE 2 DIABETIC NEPHROPATHY

    Directory of Open Access Journals (Sweden)

    Nan Chen

    2012-06-01

    Full Text Available Recent clinical research strongly approves that low-protein diet supplemented with keto-amino acid can effectively delay progression of type 2 diabetic nephropathy (DN. Anti-inflammation is one of these effects, but the mechanism is still controversial. This study is designed to further explore roles of ketogenic diets in regulation of inflammation status of type 2 DN. Twenty-one patients with type 2 DN (mean age at 65.14±7.34 years, were followed-up for 52 weeks in this study. All patients were in CKD stages 3–4 with glomerular filtration rates 26–55 ml/min/1.73 m2 and were all on a low-protein diet containing 0.8 g protein/kg BW per day and 30–35 Kcal /kg BW per day. The diet was randomly supplemented with keto-amino acids at a dosage of 100 mg/kg BW per day in 10 patients, who were assigned into Group II. Other 11 patients were assigned into Group I. At the end of this study, related clinical data showed there was a significant increase in the serum level of TNF-α which could mediate inflammation systemically in Group I (from 230.25±54.34 to 332.11 pg/ml, P 0.05. The level of CRP, which is produced in response to inflammation, rose greatly in Group I (from 7.5±1.07 to 20.4±3.72 ug/ml, P 0.05. Nutritional markers including serum albumin, hemoglobin and basal metabolic index showed no malnutrition happened during the follow-up period. In conclusion, low-protein diet supplemented with keto-amino acids contribute to ameliorate inflammation in the progression of type 2 diabetic nephropathy through regulating inflammatory factors production, including TNF-α, CRP and adiponectin.

  3. Inverse Regulation of DHT Synthesis Enzymes 5α-Reductase Types 1 and 2 by the Androgen Receptor in Prostate Cancer.

    Science.gov (United States)

    Audet-Walsh, Étienne; Yee, Tracey; Tam, Ingrid S; Giguère, Vincent

    2017-04-01

    5α-Reductase types 1 and 2, encoded by SRD5A1 and SRD5A2, are the two enzymes that can catalyze the conversion of testosterone to dihydrotestosterone, the most potent androgen receptor (AR) agonist in prostate cells. 5α-Reductase type 2 is the predominant isoform expressed in the normal prostate. However, its expression decreases during prostate cancer (PCa) progression, whereas SRD5A1 increases, and the mechanism underlying this transcriptional regulatory switch is still unknown. Interrogation of SRD5A messenger RNA expression in three publicly available data sets confirmed that SRD5A1 is increased in primary and metastatic PCa compared with nontumoral prostate tissues, whereas SRD5A2 is decreased. Activation of AR, a major oncogenic driver of PCa, induced the expression of SRD5A1 from twofold to fourfold in three androgen-responsive PCa cell lines. In contrast, AR repressed SRD5A2 expression in this context. Chromatin-immunoprecipitation studies established that AR is recruited to both SRD5A1 and SRD5A2 genes following androgen stimulation but initiates transcriptional activation only at SRD5A1 as monitored by recruitment of RNA polymerase II and the presence of the H3K27Ac histone mark. Furthermore, we showed that the antiandrogens bicalutamide and enzalutamide block the AR-mediated regulation of both SRD5A1 and SRD5A2, highlighting an additional mechanism explaining their beneficial effects in patients. In summary, we identified an AR-dependent transcriptional regulation that explains the differential expression of 5α-reductase types 1 and 2 during PCa progression. Our work thus defines a mechanism by which androgens control their own synthesis via differential regulatory control of the expression of SRD5A1 and SRD5A2. Copyright © 2017 Endocrine Society.

  4. AKR1C3-Mediated Adipose Androgen Generation Drives Lipotoxicity in Women With Polycystic Ovary Syndrome.

    Science.gov (United States)

    O'Reilly, Michael W; Kempegowda, Punith; Walsh, Mark; Taylor, Angela E; Manolopoulos, Konstantinos N; Allwood, J William; Semple, Robert K; Hebenstreit, Daniel; Dunn, Warwick B; Tomlinson, Jeremy W; Arlt, Wiebke

    2017-09-01

    Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder occurring in up to 10% of women of reproductive age. PCOS is associated with insulin resistance and cardiovascular risk. Androgen excess is a defining feature of PCOS and has been suggested as causally associated with insulin resistance; however, mechanistic evidence linking both is lacking. We hypothesized that adipose tissue is an important site linking androgen activation and metabolic dysfunction in PCOS. We performed a human deep metabolic in vivo phenotyping study examining the systemic and intra-adipose effects of acute and chronic androgen exposure in 10 PCOS women, in comparison with 10 body mass index-matched healthy controls, complemented by in vitro experiments. PCOS women had increased intra-adipose concentrations of testosterone (P = 0.0006) and dihydrotestosterone (P = 0.01), with increased expression of the androgen-activating enzyme aldo-ketoreductase type 1 C3 (AKR1C3) (P = 0.04) in subcutaneous adipose tissue. Adipose glycerol levels in subcutaneous adipose tissue microdialysate supported in vivo suppression of lipolysis after acute androgen exposure in PCOS (P = 0.04). Mirroring this, nontargeted serum metabolomics revealed prolipogenic effects of androgens in PCOS women only. In vitro studies showed that insulin increased adipose AKR1C3 expression and activity, whereas androgen exposure increased adipocyte de novo lipid synthesis. Pharmacologic AKR1C3 inhibition in vitro decreased de novo lipogenesis. These findings define an intra-adipose mechanism of androgen activation that contributes to adipose remodeling and a systemic lipotoxic metabolome, with intra-adipose androgens driving lipid accumulation and insulin resistance in PCOS. AKR1C3 represents a promising therapeutic target in PCOS. Copyright © 2017 Endocrine Society

  5. Cloning and sequence of the human adrenodoxin reductase gene

    International Nuclear Information System (INIS)

    Lin, Dong; Shi, Y.; Miller, W.L.

    1990-01-01

    Adrenodoxin reductase is a flavoprotein mediating electron transport to all mitochondrial forms of cytochrome P450. The authors cloned the human adrenodoxin reductase gene and characterized it by restriction endonuclease mapping and DNA sequencing. The entire gene is approximately 12 kilobases long and consists of 12 exons. The first exon encodes the first 26 of the 32 amino acids of the signal peptide, and the second exon encodes the remainder of signal peptide and the apparent FAD binding site. The remaining 10 exons are clustered in a region of only 4.3 kilobases, separated from the first two exons by a large intron of about 5.6 kilobases. Two forms of human adrenodoxin reductase mRNA, differing by the presence or absence of 18 bases in the middle of the sequence, arise from alternate splicing at the 5' end of exon 7. This alternately spliced region is directly adjacent to the NADPH binding site, which is entirely contained in exon 6. The immediate 5' flanking region lacks TATA and CAAT boxes; however, this region is rich in G+C and contains six copies of the sequence GGGCGGG, resembling promoter sequences of housekeeping genes. RNase protection experiments show that transcription is initiated from multiple sites in the 5' flanking region, located about 21-91 base pairs upstream from the AUG translational initiation codon

  6. Crystallization and preliminary crystallographic analysis of selenomethionine-labelled progesterone 5β-reductase from Digitalis lanata Ehrh

    Energy Technology Data Exchange (ETDEWEB)

    Egerer-Sieber, Claudia [Lehrstuhl für Biotechnik, Institut für Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, D-91052 Erlangen (Germany); Herl, Vanessa; Müller-Uri, Frieder; Kreis, Wolfgang [Lehrstuhl für Pharmazeutische Biologie, Institut für Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen (Germany); Muller, Yves A., E-mail: ymuller@biologie.uni-erlangen.de [Lehrstuhl für Biotechnik, Institut für Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, D-91052 Erlangen (Germany)

    2006-03-01

    Progesterone 5β-reductase is the first stereospecific enzyme in the pathway for the synthesis of cardenolides. To elucidate the structural mechanism of this reaction, we crystallized the selenomethionine-labelled enzyme from D. lanata and report the preliminary analysis of a MAD data set collected from these crystals. Progesterone 5β-reductase (5β-POR) catalyzes the reduction of progesterone to 5β-pregnane-3,20-dione and is the first stereospecific enzyme in the putative biosynthetic pathway of Digitalis cardenolides. Selenomethionine-derivatized 5β-POR from D. lanata was successfully overproduced and crystallized. The crystals belong to space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 71.73, c = 186.64 Å. A MAD data set collected at 2.7 Å resolution allowed the identification of six out of eight possible Se-atom positions. A first inspection of the MAD-phased electron-density map shows that 5β-POR is a Rossmann-type reductase and the quality of the map is such that it is anticipated that a complete atomic model of 5β-POR will readily be built.

  7. Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol.

    Science.gov (United States)

    Smeriglio, Antonella; Giofrè, Salvatore V; Galati, Enza M; Monforte, Maria T; Cicero, Nicola; D'Angelo, Valeria; Grassi, Gianpaolo; Circosta, Clara

    2018-02-07

    Aldose reductase (ALR2) is a key enzyme involved in diabetic complications and the search for new aldose reductase inhibitors (ARIs) is currently very important. The synthetic ARIs are often associated with deleterious side effects and medicinal and edible plants, containing compounds with aldose reductase inhibitory activity, could be useful for prevention and therapy of diabetic complications. Non-psychotropic phytocannabinoids exert multiple pharmacological effects with therapeutic potential in many diseases such as inflammation, cancer, diabetes. Here, we have investigated the inhibitory effects of extracts and their fractions from two Cannabis sativa L. chemotypes with high content of cannabidiol (CBD)/cannabidiolic acid (CBDA) and cannabigerol (CBG)/cannabigerolic acid (CBGA), respectively, on human recombinant and pig kidney aldose reductase activity in vitro. A molecular docking study was performed to evaluate the interaction of these cannabinoids with the active site of ALR2 compared to known ARIs. The extracts showed significant dose-dependent aldose reductase inhibitory activity (>70%) and higher than fractions. The inhibitory activity of the fractions was greater for acidic cannabinoid-rich fractions. Comparative molecular docking results have shown a higher stability of the ALR2-cannabinoid acids complex than the other inhibitors. The extracts of Cannabis with high content of non-psychotropic cannabinoids CBD/CBDA or CBG/CBGA significantly inhibit aldose reductase activity. These results may have some relevance for the possible use of C. sativa chemotypes based preparations as aldose reductase inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Testosterone 5alpha-reductase inhibitory active constituents of Piper nigrum leaf.

    Science.gov (United States)

    Hirata, Noriko; Tokunaga, Masashi; Naruto, Shunsuke; Iinuma, Munekazu; Matsuda, Hideaki

    2007-12-01

    Previously we reported that Piper nigrum leaf extract showed a potent stimulation effect on melanogenesis and that (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2) were isolated as active constituents. As a part of our continuous studies on Piper species for the development of cosmetic hair-care agents, testosterone 5alpha-reductase inhibitory activity of aqueous ethanolic extracts obtained from several different parts of six Piper species, namely Piper nigrum, P. methysticum, P. betle, P. kadsura, P. longum, and P. cubeba, were examined. Among them, the extracts of P. nigrum leaf, P. nigrum fruit and P. cubeba fruit showed potent inhibitory activity. Activity-guided fractionation of P. nigrum leaf extract led to the isolation of 1 and 2. Fruits of P. cubeba contain 1 as a major lignan, thus inhibitory activity of the fruit may be attributable to 1. As a result of further assay on other known constituents of the cited Piper species, it was found that piperine, a major alkaloid amide of P. nigrum fruit, showed potent inhibitory activity, thus a part of the inhibitory activity of P. nigrum fruit may depend on piperine. The 5alpha-reductase inhibitory activities of 1 and piperine were found for the first time. In addition, the P. nigrum leaf extract showed in vivo anti-androgenic activity using the hair regrowth assay in testosterone sensitive male C57Black/6CrSlc strain mice.

  9. Intraethnic variation in steroid-5-alpha-reductase polymorphisms in ...

    Indian Academy of Sciences (India)

    2015-06-01

    Jun 1, 2015 ... in prostate cancer patients: a potential factor implicated ... reductase alpha polypeptides 1 and 2 in a set of 601 prostate cancer patients from four ..... tion in the key androgen-regulating genes androgen receptor, cytochrome ...

  10. Interactions among the branched-chain amino acids and their effects on methionine utilization in growing pigs: effects on plasma amino- and keto-acid concentrations and branched-chain keto-acid dehydrogenase activity.

    Science.gov (United States)

    Langer, S; Scislowski, P W; Brown, D S; Dewey, P; Fuller, M F

    2000-01-01

    The present experiment was designed to elucidate the mechanism of the methionine-sparing effect of excess branched-chain amino acids (BCAA) reported in the previous paper (Langer & Fuller, 2000). Twelve growing gilts (30-35 kg) were prepared with arterial catheters. After recovery, they received for 7 d a semipurified diet with a balanced amino acid pattern. On the 7th day blood samples were taken before (16 h postabsorptive) and after the morning meal (4 h postprandial). The animals were then divided into three groups and received for a further 7 d a methionine-limiting diet (80% of requirement) (1) without any amino acid excess; (2) with excess leucine (50% over requirement); or (3) with excesses of all three BCAA (leucine, isoleucine, valine, each 50% over the requirement). On the 7th day blood samples were taken as in the first period, after which the animals were killed and liver and muscle samples taken. Plasma amino acid and branched-chain keto acid (BCKA) concentrations in the blood and branched-chain keto-acid dehydrogenase (BCKDH; EC 1.2.4.4) activity in liver and muscle homogenates were determined. Compared with those on the balanced diet, pigs fed on methionine-limiting diets had significantly lower (P < 0.05) plasma methionine concentrations in the postprandial but not in the postabsorptive state. There was no effect of either leucine or a mixture of all three BCAA fed in excess on plasma methionine concentrations. Excess dietary leucine reduced (P < 0.05) the plasma concentrations of isoleucine and valine in both the postprandial and postabsorptive states. Plasma concentrations of the BCKA reflected the changes in the corresponding amino acids. Basal BCKDH activity in the liver and total BCKDH activity in the biceps femoris muscle were significantly (P < 0.05) increased by excesses of leucine or all BCAA.

  11. Expression of reductases in continuous mammal cell cultures and its significance for the activation of nitroaromatics shown for the example of 1.6 dinitropyrene

    International Nuclear Information System (INIS)

    Reuter, U.

    1993-01-01

    The aim of the first part of the work was to establish the metabolism of 1,3- and 1,6-DNP in intact cells. This gave rise to the following questions. What metabolites are formed in cell lines with different enzyme outfits? What influence does the induction of P450 have on the metabolism of the two nitroaromates? Does the metabolism found in the different test cell lines permit any conclusions as to the activating mechanism of 1,6- and 1,3-DNP. In the second part these test cell lines were studied with respect to the expression of the reductases that might be involved in the metabolism of aromates. The following questions were of focal interest: Are cytochrome reductase, DT diaphorase and xanthine-oxidase expressed in the cell lines? If so, to what extent? Can these enzymes be induced in the test cell lines? In the last part the enzymes that reduce 1,6-DNP to gene-toxic products were identified. This required clarifying the following: What role do the above-mentioned reductases play in the activation of 1,6-DNP in individual cell lines? Are there other enzymes responsible for the activation of 1,6-DNP? (MG) [de

  12. A study on alfalfa-dodder relationships by 14C-sucrose incorporation in their tissues

    International Nuclear Information System (INIS)

    Tsenova, M.

    1975-01-01

    Plant-parasite relationships between lesser-dodder (Cuscuta epithymum) and alfalfa (Medicago sativa) are investigated. 14 C-sucrose was incorporated via the cut stems of host and parasite into their tissues and the content of the free sugars, keto acids and free amino acids are determined. 14 C-sucrose was introduced also in lesser-dodder previously taken from the host-plant and immersed directly into radioactive sucrose. It is shown that the parasite intensively absorbs sucrose from the host-plant tissues using it as a source of energy and as a substrat for different synthetic processes. In the case when the parasite was previously taken away from the host-plant 14 C-sucrose taken up directly from the solution was used for the synthesis of various compounds (carbohydrates, amino- and keto acids). The suggestion was made that the respective enzyme systems are present in dodder tissues. The 14 C-glucose and 14 C-fructose content is an evidence for high invertase hydrolytic activity. The presence of 14 C-keto acids shows that the 14 C-sucrose incorporated in lesser-dodder tissues without the mediation of the host-plant was used as a respiratory substrate by the degradation following Krebs cycle. (author)

  13. Effect of a keto acid-amino acid supplement on the metabolism and renal elimination of branched-chain amino acids in patients with chronic renal insufficiency on a low protein diet.

    Science.gov (United States)

    Teplan, V; Schück, O; Horácková, M; Skibová, J; Holecek, M

    2000-10-27

    The aim of our study was to evaluate the effect of a low-protein diet supplemented with keto acids-amino acids on renal function and urinary excretion of branched-chain amino acids (BCAA) in patients with chronic renal insufficiency (CRI). In a prospective investigation 28 patients with CRI (16 male, 12 female, aged 28-66 yrs, CCr 18.6 +/- 10.2 ml/min) on a low-protein diet (0.6 g of protein /kg BW/day and energy intake 140 kJ/kg BW/day) for a period of one month were included. Subsequently, this low protein diet was supplemented with keto acids-amino acids at a dose of 0.1 g/kg BW/day orally for a period of 3 months. Examinations performed at baseline and at the end of the follow-up period revealed significant increase in the serum levels of BCAA leucine (p Keto acid-amino acid administration had no effect on renal function and on the clearance of inulin, para-aminohippuric acid. Endogenous creatinine and urea clearance remained unaltered. A significant correlation between fractional excretion of sodium and leucine (p diet the supplementation of keto acids-amino acids does not affect renal hemodynamics, but is associated--despite increases in plasma concentrations--with a reduction of renal amino acid and protein excretion suggesting induction of alterations in the tubular transport mechanisms.

  14. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    Science.gov (United States)

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  15. Molecular mechanisms of drug resistance and tumor promotion involving mammalian ribonucleotide reductase

    Energy Technology Data Exchange (ETDEWEB)

    Choy, B.B.K.

    1991-01-01

    Mammalian ribonucleotide reductase is a highly regulated, rate-limiting activity responsible for converting ribonucleoside diphosphates to the deoxyribonucleotide precursors of DNA. The enzyme consists of two nonidentical proteins called M1 and M2, both of which are required for activity. Hydroxyurea is an antitumor agent which inhibits ribonucleotide reductase by interacting with the M2 component specifically at a unique tyrosyl free radical. Studies were conducted on a series of drug resistant mouse cell lines, selected by a step-wise procedure for increasing levels of resistance to the cytotoxic effects of hydroxyurea. Each successive drug selection step leading to the isolation of highly resistant cells was accompanied by stable elevations in cellular resistance and ribonucleotide reductase activity. The drug resistant cell lines exhibited gene amplification of the M2 gene, elevated M2 mRNA, and M2 protein. In addition to M2 gene amplification, posttranscriptional modulation also occurred during the drug selection. Studies of the biosynthesis rates with exogenously added iron suggest a role for iron in regulating the level of M2 protein when cells are cultured in the presence of hydroxyurea. The hydroxyurea-inactivated ribonucleotide reductase protein M2 has a destabilized iron centre, which readily releases iron. Altered expression of ferritin appears to be required for the development of hydroxyurea resistance in nammalian cells. The results show an interesting relationship between the expressions of ribonucleotide reductase and ferritin. The phorbol ester tumor promoter, TPA, is also able to alter the expression of M2. TPA was able to induce M2 mRNA levels transiently up to 18-fold within 1/2 hour. This rapid and large elevation of ribonucleotide reductase suggests that the enzyme may play a role in tumor promotion. Studies of the M2 promoter region were undertaken to better understand the mechanism of TPA induction of M2.

  16. Farmacocinética, metabolismo e excreção renal da doxorrubicina em pacientes com câncer de mama

    OpenAIRE

    Leandro Francisco Pippa

    2016-01-01

    O presente estudo visa descrever a farmacocinética, o metabolismo e a excreção renal da doxorrubicina, uma antraciclina utilizada no tratamento do câncer de mama. A doxorrubicina é biotransformada a doxorrubicinol pelas enzimas carbonil redutase 1 e 3 e aldo-ceto redutase. Foram investigadas 12 pacientes portadoras de câncer de mama no primeiro ciclo de tratamento adjuvante ou neoadjuvante com doxorrubicina (60 mg/m2) administrada por infusão intravenosa durante 30 min. As amostras seriadas d...

  17. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    can replace light in eliciting an increase of nitrate reductase mRNA accumulation in dark-adapted green Arabidopsis plants. We show further that sucrose alone is sufficient for the full expression of nitrate reductase genes in etiolated Arabidopsis plants. Finally, using a reporter gene, we show......Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression....... Located in the cytosol, nitrate reductase obtains its reductant not from photosynthesis but from carbohydrate catabolism. This relationship prompted us to investigate the indirect role that light might play, via photosynthesis, in the regulation of nitrate reductase gene expression. We show that sucrose...

  18. Regulation of schistosome egg production by HMG CoA reductase

    International Nuclear Information System (INIS)

    VandeWaa, E.A.; Bennett, J.L.

    1986-01-01

    Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of 14 C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivo were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production

  19. The Cholesterol-Lowering Effect of Alisol Acetates Based on HMG-CoA Reductase and Its Molecular Mechanism

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2016-01-01

    Full Text Available This study measured the impact of alisol B 23-acetate and alisol A 24-acetate, the main active ingredients of the traditional Chinese medicine Alismatis rhizoma, on total cholesterol (TC, triglyceride (TG, high density lipoprotein-cholesterol (HDL-C, and low density lipoprotein-cholesterol (LDL-C levels of hyperlipidemic mice. The binding of alisol B 23-acetate and alisol A 24-acetate to the key enzyme involved in the metabolism of TC, 3-hydroxy-3-methylglutary-coenzyme A (HMG-CoA reductase, was studied using the reagent kit method and the western blotting technique combined with a molecular simulation technique. According to the results, alisol acetates significantly lower the TC, TG, and LDL-C concentrations of hyperlipidemic mice, while raising HDL-C concentrations. Alisol acetates lower HMG-CoA reductase activity in a dose-dependent fashion, both in vivo and in vitro. Neither of these alisol acetates significantly lower the protein expression of HMG-CoA. This suggests that alisol acetates lower the TC level via inhibiting the activity of HMG-CoA reductase by its prototype drug, which may exhibit an inhibition effect via directly and competitively binding to HMG-CoA. The side chain of the alisol acetate was the steering group via molecular simulation.

  20. Short-chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy.

    Science.gov (United States)

    Chen, Xue; Facchini, Peter J

    2014-01-01

    The final step in the biosynthesis of the phthalideisoquinoline alkaloid noscapine involves a purported dehydrogenation of the narcotinehemiacetal keto moiety. A short-chain dehydrogenase/reductase (SDR), designated noscapine synthase (NOS), that catalyzes dehydrogenation of narcotinehemiacetal to noscapine was identified in opium poppy and functionally characterized. The NOS gene was isolated using an integrated transcript and metabolite profiling strategy and subsequently expressed in Escherichia coli. Noscapine synthase is highly divergent from other characterized members of the NADPH-dependent SDR superfamily involved in benzylisoquinoline alkaloid metabolism, and it exhibits exclusive substrate specificity for narcotinehemiacetal. Kinetic analyses showed that NOS exhibits higher catalytic efficiency with NAD+ as the cofactor compared with NADP+. Suppression of NOS transcript levels in opium poppy plants subjected to virus-induced gene silencing resulted in a corresponding reduction in the accumulation of noscapine and an increase in narcotinehemiacetal levels in the latex. Noscapine and NOS transcripts were detected in all opium poppy organs, but both were most abundant in stems. Unlike other putative biosynthetic genes clustered in the opium poppy genome, and their corresponding proteins, NOS transcripts and the cognate enzyme were abundant in latex, indicating that noscapine metabolism is completed in a distinct cell type compared with the rest of the pathway.

  1. Role of Hyperhomocysteinemia and Methylene Tetrahydrofolate Reductase C677T Polymorphism in Idiopathic Portal Vein Thrombosis.

    Science.gov (United States)

    Ghaznavi, Habib; Soheili, Zahra; Samiei, Shahram; Soltanpour, Mohammad Soleiman

    2016-03-01

    Portal vein thrombosis (PVT) is a rare and life-threatening vascular disorder characterized by obstruction or narrowing of the portal vein. Hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism has been studied in PVT patients with conflicting results. In the present study the association of hyperhomocysteinemia and MTHFR C677T polymorphism with PVT risk was investigated in Iranians. Our study population consisted of 10 idiopathic PVT patients and 80 healthy control subjects matched for age and sex. MTHFR C677T polymorphism was genotyped by the polymerase chain reaction technique combined with restriction enzyme fragment length polymorphism (PCR-RFLP) technique and plasma total homocysteine (tHcy) levels were determined by enzyme immunoassay method. Mean plasma tHcy levels were significantly higher in PVT patients (20.2±6.8) than control subjects (10.9±4.7) (P=0.001). Moreover, plasma tHcy levels were significantly higher in 677T allele carriers relative to 677C allele carriers in both PVT patients (P=0.01) and control subjects (P=0.03). Neither homozygote nor heterozygote genotypes of MTHFR C677T polymorphism correlated significantly with PVT risk (P>0.05). Moreover, MTHFR C677T polymorphism didn't increase the risk of PVT under dominant (CT+TT vs. CC) or recessive (TT vs. CC+CT) genetic models analyzed (P>0.05). The difference in frequency of minor 677T allele between PVT patients and control subjects was not statistically significant (P>0.05). Based on the current study, we suggest that hyperhomocysteinemia constitutes a significant and common risk factor for PVT. Also, MTHFR C677T polymorphism is not a risk factor for PVT but is a contributing factor for elevated plasma tHcy levels.

  2. Chemical modification of human muscle aldose reductase by pyridoxal 5'-phosphate

    International Nuclear Information System (INIS)

    Morjana, N.A.; Lyons, C.; Flynn, T.G.

    1987-01-01

    Aldose reductase (ALR2) is a monomeric oxidoreductase (Mr, 37,000). This enzyme catalyzes the reduction of a wide variety of aliphatic and aromatic aldehydes to their corresponding alcohols. The ability to reduce D-glucose and utilize NADH distinguishes ALR2 from aldehyde reductase (ALR1) which is exclusively NADPH-dependent. As part of a study to determine active site residues critical for binding and catalysis they have investigated the behavior of ALR2 with pyridoxal phosphate (PLP). In contrast to ALR1, which is inactivated by PLP, the reaction of ALR2 with PLP results in a 2-3 fold activation with the incorporation of 1 mol of PLP/mol enzyme. However, despite a 3-fold increase in k/sub cat/, there is also a 13-14 fold increase in the Km for both coenzyme and substrate and catalytic efficiency (k/sub cat//Km) is actually decreased. Reaction of ALR2 with 3 [H] PLP followed by digestion with endoproteinase Lys-C enabled the separation and purification by HPLC of a peptide containing a single pyridoxyllysine residue. The sequence of this 32 residue peptide is highly homologous with a peptide similarly obtained from pig and human ALR1 and is identical with one from pig ALR2. In all four enzymes, pig ALR1, ALR2; human ALR1, ALR2, a tetrapeptide containing the pyridoxylated lysine (I-P-K-S) shows absolute identity. Thus, despite differences in substrate and coenzyme specificity, the active site in both ALR1 and ALR2 is relatively conserved

  3. The experience of the Use of Essential Amino Acids and Their Keto-analogs in Children with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    S.V. Kushnirenko

    2013-02-01

    Full Text Available This article explored the possibility of prolonged use of low-protein diet, 0.8 g/kg/day in combination with essential keto-analogs of amino acids in children with chronic kidney disease stage 4 to maximize the predialysis period. Long-term low-protein diet in combination with amino acids keto-analogs hadn’t negative impact on laboratory indices of the nutritional status, as well as had favorable effect on the correction of metabolic acidosis and disorders of calcium-phosphorus metabolism. During intake of amino acids keto-analogs there had been marked a distinct tendency to preserve the level of creatinine and significant reduction in the level of urea in the blood serum, which helped to keep the current level of azotemia in 18 patients (90 %. In 2 patients (10 % dialysis program had been started. In the control group by the end of the study period, the need for renal replacement therapy occurred in 4 patients (23.5 %. Dynamics of glomerular filtration rate in the two treatment groups showed a decrease in this indicator in an average of 2 ml/min per year in patients treated with low-protein diet in combination with Ketosteril, and 6 ml/min per year in the control group.

  4. Synthesis and spectroscopic exploration of carboxylic acid derivatives of 6-hydroxy-1-keto-1,2,3,4-tetrahydrocarbazole: Hydrogen bond sensitive fluorescent probes

    International Nuclear Information System (INIS)

    Krishna Mitra, Amrit; Ghosh, Sujay; Chakraborty, Suchandra; Basu, Samita; Saha, Chandan

    2013-01-01

    Two new fluorescent carboxylic acid derivatives having 6-hydroxy-1-keto-1,2,3,4-tetrahydrocarbazole moiety, 2-(1-oxo-2,3,4,9-tetrahydro-1H-carbazol-6-yloxy)acetic acid [OTHCA] and 2-(7-methoxy-1-oxo-2,3,4,9-tetrahydro-1H-carbazol-6-yloxy)acetic acid [MOTHCA] were synthesized by Japp–Klingemann reaction followed by Fischer indole cyclization. Extensive spectroscopic investigation has been carried out on the compounds in sixteen different aprotic and protic solvents as well as in binary solvent mixtures using absorption, steady-state and time-resolved fluorescence techniques. Fluorescence maxima of the compounds have shifted consistently to longer wavelength in mediums of higher polarity and hydrogen bonding ability. Dipole moment change of the molecules upon photoexcitation has been calculated using Lippert–Mataga theory of solvatochromic shifts. Kamlet–Taft solvatochromic comparison method has been used to determine the dependence of spectral shifts upon empirical solvent parameters. Formation of intermolecular hydrogen bonding of both OTHCA and MOTHCA with protic solvents has been proved by comparing their spectral responses in toluene–acetonitrile and toluene–methanol solvent mixtures. -- Highlights: • The compounds have similar electronic distribution in ground and excited state. • Emission maxima shift towards red with increase in the E T (30) value of the solvents. • Dipole moment change in the excited state is different in protic and aprotic solvents. • OTHCA and MOTHCA form intermolecular hydrogen bond with protic solvents. • Fluorescence lifetime decays are bi-exponential in long chain alcoholic solvents

  5. De Novo Biosynthesis of Glutarate via α-Keto Acid Carbon Chain Extension and Decarboxylation Pathway in Escherichia coli.

    Science.gov (United States)

    Wang, Jian; Wu, Yifei; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2017-10-20

    Microbial based bioplastics are promising alternatives to petroleum based synthetic plastics due to their renewability and economic feasibility. Glutarate is one of the most potential building blocks for bioplastics. The recent biosynthetic routes for glutarate were mostly based on the l-lysine degradation pathway from Pseudomonas putida that required lysine either by feeding or lysine overproduction via genetic manipulations. Herein, we established a novel glutarate biosynthetic pathway by incorporation of a "+1" carbon chain extension pathway from α-ketoglutarate (α-KG) in combination with α-keto acid decarboxylation pathway in Escherichia coli. Introduction of homocitrate synthase (HCS), homoaconitase (HA) and homoisocitrate dehydrogenase (HICDH) from Saccharomyces cerevisiae into E. coli enabled "+1" carbon extension from α-KG to α-ketoadipate (α-KA), which was subsequently converted into glutarate by a promiscuous α-keto acid decarboxylase (KivD) and a succinate semialdehyde dehydrogenase (GabD). The recombinant E. coli coexpressing all five genes produced 0.3 g/L glutarate from glucose. To further improve the titers, α-KG was rechanneled into carbon chain extension pathway via the clustered regularly interspersed palindromic repeats system mediated interference (CRISPRi) of essential genes sucA and sucB in tricarboxylic acid (TCA) cycle. The final strain could produce 0.42 g/L glutarate, which was increased by 40% compared with the parental strain.

  6. Adiponectin,leptin: focus on low-protein diet supplemented with keto acids in chronic glomerulonephritis with hbv patients

    Directory of Open Access Journals (Sweden)

    Shan Mou

    2012-06-01

    In conclusion: Short-term restriction of DPI 0.6–0.8 g of protein/ kg IBW/day is safe, when combined with keto acids, is associated with decreased of urinary protein and improvement of lipid metabolism

  7. 5α-reductase activity in rat adipose tissue

    International Nuclear Information System (INIS)

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-01-01

    We measured the 5 α-reductase activity in isolated cell preparations of rat adipose tissue using the formation of [ 3 H] dihydrotestosterone from [ 3 H] testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5α-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10 -8 M), when added to the medium, caused a 90% decrease in 5α-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5α-reductase activity in each tissue studied

  8. Dietary sources of aldose reductase inhibitors: prospects for alleviating diabetic complications.

    Science.gov (United States)

    Saraswat, Megha; Muthenna, P; Suryanarayana, P; Petrash, J Mark; Reddy, G Bhanuprakash

    2008-01-01

    Activation of polyol pathway due to increased aldose reductase activity is one of the several mechanisms that have been implicated in the development of various secondary complications of diabetes. Though numerous synthetic aldose reductase inhibitors have been tested, these have not been very successful clinically. Therefore, a number of common plant/ natural products used in Indian culinary have been evaluated for their aldose reductase inhibitory potential in the present study. The aqueous extracts of 22 plant-derived materials were prepared and evaluated for the inhibitory property against rat lens and human recombinant aldose reductase. Specificity of these extracts towards aldose reductase was established by testing their ability to inhibit a closely related enzyme viz, aldehyde reductase. The ex vivo incubation of erythrocytes in high glucose containing medium was used to underscore the significance in terms of prevention of intracellular sorbitol accumulation. Among the 22 dietary sources tested, 10 showed considerable inhibitory potential against both rat lens and human recombinant aldose reductase. Prominent inhibitory property was found in spinach, cumin, fennel, lemon, basil and black pepper with an approximate IC50 of 0.2 mg/mL with an excellent selectivity towards aldose reductase. As against this, 10 to 20 times higher concentrations were required for 50% inhibition of aldehyde reductase. Reduction in the accumulation of intracellular sorbitol by the dietary extracts further substantiated their in vivo efficacy. The findings reported here indicate the scope of adapting life-style modifications in the form of inclusion of certain common sources in the diet for the management of diabetic complications.

  9. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2008-10-01

    Full Text Available Abstract Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells-1 h-1 compared with 0.01 g (g cells-1 h-1

  10. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  11. Metabolic effects of keto acid--amino acid supplementation in patients with chronic renal insufficiency receiving a low-protein diet and recombinant human erythropoietin--a randomized controlled trial.

    Science.gov (United States)

    Teplan, V; Schück, O; Votruba, M; Poledne, R; Kazdová, L; Skibová, J; Malý, J

    2001-09-17

    Supplement with keto acids/amino acids (KA) and erythropoietin can independently improve the metabolic sequels of chronic renal insufficiency. Our study was designed to establish whether a supplementation with keto acids/amino acids (KA) exerts additional beneficial metabolic effects in patients with chronic renal insufficiency (CRF) treated with a low-protein diet (LPD) and recombinant human erythropoietin (EPO). In a prospective randomized controlled trial over a period of 12 months, we evaluated a total of 38 patients (20 M/18 F) aged 32-68 years with a creatinine clearance (CCr) of 20-36 ml/min. All patients were receiving EPO (40 U/kg twice a week s.c.) and a low-protein diet (0.6 g protein/kg/day and 145 kJ/kg/day). The diet of 20 patients (Group I) was supplemented with KA at a dosage of 100 mg/kg/day while 18 patients (Group II) received no supplementation. During the study period, the glomerular filtration rate slightly decreased (CCr from 28.2 +/- 3.4 to 26.4 +/- 4.1 ml/min and 29.6 +/- 4.8 to 23.4 +/- 4.4 ml/min in groups I and II, respectively and Cin); this however was more marked in Group II (Group I vs. Group II, p diet presents an effective treatment modality in the conservative management of CRF.

  12. Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients.

    Science.gov (United States)

    García-Cazorla, Angels; Oyarzabal, Alfonso; Fort, Joana; Robles, Concepción; Castejón, Esperanza; Ruiz-Sala, Pedro; Bodoy, Susanna; Merinero, Begoña; Lopez-Sala, Anna; Dopazo, Joaquín; Nunes, Virginia; Ugarte, Magdalena; Artuch, Rafael; Palacín, Manuel; Rodríguez-Pombo, Pilar; Alcaide, Patricia; Navarrete, Rosa; Sanz, Paloma; Font-Llitjós, Mariona; Vilaseca, Ma Antonia; Ormaizabal, Aida; Pristoupilova, Anna; Agulló, Sergi Beltran

    2014-04-01

    Inactivating mutations in the BCKDK gene, which codes for the kinase responsible for the negative regulation of the branched-chain α-keto acid dehydrogenase complex (BCKD), have recently been associated with a form of autism in three families. In this work, two novel exonic BCKDK mutations, c.520C>G/p.R174G and c.1166T>C/p.L389P, were identified at the homozygous state in two unrelated children with persistently reduced body fluid levels of branched-chain amino acids (BCAAs), developmental delay, microcephaly, and neurobehavioral abnormalities. Functional analysis of the mutations confirmed the missense character of the c.1166T>C change and showed a splicing defect r.[520c>g;521_543del]/p.R174Gfs1*, for c.520C>G due to the presence of a new donor splice site. Mutation p.L389P showed total loss of kinase activity. Moreover, patient-derived fibroblasts showed undetectable (p.R174Gfs1*) or barely detectable (p.L389P) levels of BCKDK protein and its phosphorylated substrate (phospho-E1α), resulting in increased BCKD activity and the very rapid BCAA catabolism manifested by the patients' clinical phenotype. Based on these results, a protein-rich diet plus oral BCAA supplementation was implemented in the patient homozygous for p.R174Gfs1*. This treatment normalized plasma BCAA levels and improved growth, developmental and behavioral variables. Our results demonstrate that BCKDK mutations can result in neurobehavioral deficits in humans and support the rationale for dietary intervention. © 2014 WILEY PERIODICALS, INC.

  13. Historical and current fire management practices in two wilderness areas in the southwestern United States: The Saguaro Wilderness Area and the Gila-Aldo Leopold Wilderness Complex

    Science.gov (United States)

    Molly E. Hunter; Jose M. Iniguez; Calvin A. Farris

    2014-01-01

    Fire suppression has been the dominant fire management strategy in the West over the last century. However, managers of the Gila and Aldo Leopold Wilderness Complex in New Mexico and the Saguaro Wilderness Area in Arizona have allowed fire to play a more natural role for decades. This report summarizes the effects of these fire management practices on key resources,...

  14. Histochemical Localization of Glutathione Dependent NBT-Reductase in Mouse Skin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Localization of the glutathione dependent Nitroblue tetrazolium (NBT) reductase in fresh frozen sections of mouse skin and possible dependence of NBT reductase on tissue thiol levels has been investigated. Methods The fresh frozen tissue sections (8m thickness) were prepared and incubated in medium containing NBT, reduced glutathione (GSH) and phosphate buffer. The staining for GSH was performed with mercury orange. Results  The activity of the NBT-reductase in mouse skin has been found to be localized in the areas rich in glutathione and actively proliferating area of the skin. Conclusion The activity of the NBT-reductase seems to be dependent on the glutathione contents.

  15. The role of keto acids in the supportive treatment of children with chronic renal failure.

    Science.gov (United States)

    Mir, Sevgi; Ozkayin, Nese; Akgun, Aysegul

    2005-07-01

    According to the hyperfiltration theory of renal diseases characterized by a decrease in the number of functional nephrons, increased arterial blood pressure, excessive protein intake in the diet, high levels of calcium (Ca) and phosphorus (P), secondary hyperparathyroidism, hypertriglyceridemia and/or hypercholesterolemia, proteinuria and metabolic acidosis are some factors that impair the prognosis of the disease. The amount of protein in the diet is the most important of these factors. A protein-restricted diet administered to patients with chronic renal failure results in the risk of inadequate amino acid intake. To overcome this problem, the use of dysaminated alpha-keto analogues has been considered to reduce the risk of nitrogenemia resulting from the continuous intake of essential amino acids. Currently, the necessity of essential amino acids even in adult patients with chronic renal failure is controversial; besides, trials on the use of these amino acids in pediatric patients are scarce. The aim of this study is to investigate the efficacy and applicability of conservative therapy with a protein-restricted diet supplemented with keto acids in the management of chronic renal insufficiency or failure.

  16. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the ZmNR1, ZmNR2, ...

  17. Effect of diet and 677 C-->T 5, 10-methylenetetrahydrofolate reductase genotypes on plasma homocyst(e)ine concentrations in slovak adolescent population.

    Science.gov (United States)

    Raslová, K; Bederová, A; Gasparovic, J; Blazícek, P; Smolková, B

    2000-01-01

    The objective of this study was to evaluate the effect of diet and 677 C-->T mutation of the methylenetetrahydrofolate reductase (MTHFR) gene on plasma homocyst(e)ine concentrations in an adolescent population (113 males, age: 14.2+/-2.4 years; 202 females, age: 14.9+/-2.1 years) from a region characterized by high cardiovascular mortality. Homocyst(e)ine levels did not differ between males and females (9.4+/-3.5 and 8.9+/-3.1 micromol/l, respectively). The homozygosity for the 677 C-->T MTHFR mutation was found in 4.6 % of subjects. No differences in homocyst(e)ine levels were found between MTHFR genotypes. Analysis of the diet composition which was performed on a 24-hour daily recall basis and a food frequency questionnaire showed a low daily intake of vitamin B6 (males: 1.13 mg/66% RDA; females: 0.92 mg/61% RDA). Daily folic acid intake was 0.21 g/105% RDA in males and 0.23 g/115% RDA in females. The results of our study show that the high homocyst(e)ine levels in the adolescent population were not affected by the 677 C-->T MTHFR mutation. We conclude that an insufficient dietary intake of vitamin B6 and folic acid is responsible for this finding. This is in accord with the recommendation that the dietary allowances for folate should be reset to the originally prescribed levels of 0.4 g/day which should be sufficient to control the homocysteine levels.

  18. Nitrile-assisted oxidation over oxidative-annulation: Pd-catalyzed α,β-dehydrogenation of α-cinnamyl β-keto nitriles.

    Science.gov (United States)

    Nallagonda, Rajender; Reddy, Reddy Rajasekhar; Ghorai, Prasanta

    2017-09-13

    A palladium-catalyzed oxidation reaction is disclosed where the nitrile functionality on the substrate simply changes the course of the reaction. Our previous finding showed that using the Pd(ii)-catalyst in the presence of benzoquinone as an oxidant, 2-cinnamyl-1,3-dicarbonyls provides functionalized furans via oxidative cyclization. When a nitrile group is replaced with one of the carbonyl functionalities of the same substrate, the oxidative cyclization was completely suppressed; instead, the oxidation at the α,β-position occurred to provide α,β,γ,δ-diene containing β-keto nitriles.

  19. A phase I trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, given weekly to solid tumour patients

    International Nuclear Information System (INIS)

    McKeage, Mark J; Gu, Yongchuan; Wilson, William R; Hill, Andrew; Amies, Karen; Melink, Teresa J; Jameson, Michael B

    2011-01-01

    The phosphate ester PR-104 is rapidly converted in vivo to the alcohol PR-104A, a nitrogen mustard prodrug that is metabolised to hydroxylamine (PR-104H) and amine (PR-104M) DNA crosslinking agents by one-electron reductases in hypoxic cells and by aldo-keto reductase 1C3 independently of oxygen. In a previous phase I study using a q 3 week schedule of PR-104, the maximum tolerated dose (MTD) was 1100 mg/m 2 and fatigue, neutropenic fever and infection were dose-limiting. The primary objective of the current study was to determine the dose-limiting toxicity (DLT) and MTD of weekly PR-104. Patients with advanced solid tumours received PR-104 as a 1-hour intravenous infusion on days 1, 8 and 15 every 28 days with assessment of pharmacokinetics on cycle 1 day 1. Twenty-six patients (pts) were enrolled (16 male/10 female; median age 58 yrs, range 30 to 70 yrs) who had received a median of two prior chemotherapy regimens (range, 0 to 3) for melanoma (8 pts), colorectal or anal cancer (3 pts), NSCLC (3 pts), sarcoma (3 pts), glioblastoma (2 pts), salivary gland tumours (2 pts) or other solid tumours (5 pts). PR-104 was administered at 135 mg/m 2 (3 pts), 270 mg/m 2 (6 pts), 540 mg/m 2 (6 pts), 675 mg/m 2 (7 pts) and 900 mg/m 2 (4 pts) for a median of two treatment cycles (range, 1 to 7 cycles) and five infusions (range, 1 to 18) per patient. Dose-limiting toxicities (DLTs) during cycle one included grade four thrombocytopenia at 540 mg/m 2 (1 of 6 pts) and grade four thrombocytopenia and neutropenia at 900 mg/m 2 (2 of 4 pts). At an intermediate dose of 675 mg/m 2 , there were no DLTs among a total of seven patients given 12 treatment cycles but all experienced moderate to severe (grade 2 to 4) haematological toxicity. Thrombocytopenia was delayed in its onset and nadir, and its recovery was protracted and incomplete in many patients. There were no complete or partial tumour responses. PR-104-induced thrombocytopenia and neutropenia correlated with plasma AUC of PR-104

  20. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    Science.gov (United States)

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production. Copyright © 2015 John Wiley & Sons, Ltd.

  1. A novel class of α-glucosidase and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of ganomycin I in KK-Ay mice.

    Science.gov (United States)

    Wang, Kai; Bao, Li; Ma, Ke; Zhang, Jinjin; Chen, Baosong; Han, Junjie; Ren, Jinwei; Luo, Huajun; Liu, Hongwei

    2017-02-15

    Three new meroterpenoids, ganoleucin A-C (1-3), together with five known meroterpenoids (4-8), were isolated from the fruiting bodies of Ganoderma leucocontextum. The structures of the new compounds were elucidated by extensive spectroscopic analysis, circular dichroism (CD) spectroscopy, and chemical transformation. The inhibitory effects of 1-8 on HMG-CoA reductase and α-glucosidase were tested in vitro. Ganomycin I (4), 5, and 8 showed stronger inhibitory activity against HMG-CoA reductase than the positive control atorvastatin. Compounds 1, and 3-8 presented potent noncompetitive inhibitory activity against α-glucosidase from both yeast and rat small intestinal mucosa. Ganomycin I (4), the most potent inhibitor against both α-glucosidase and HMG-CoA reductase, was synthesized and evaluated for its in vivo bioactivity. Pharmacological results showed that ganomycin I (4) exerted potent and efficacious hypoglycemic, hypolipidemic, and insulin-sensitizing effects in KK-A y mice. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Purification of nitrate reductase from Nicotiana plumbaginifolia by affinity chromatography using 5'AMP-sepharose and monoclonal antibodies.

    Science.gov (United States)

    Moureaux, T; Leydecker, M T; Meyer, C

    1989-02-15

    Nitrate reductase was purified from leaves of Nicotiana plumbaginifolia using either 5'AMP-Sepharose chromatography or two steps of immunoaffinity chromatography involving monoclonal antibodies directed against nitrate reductase from maize and against ribulose-1,5-bisphosphate carboxylase from N. plumbaginifolia. Nitrate reductase obtained by the first method was purified 1000-fold to a specific activity of 9 units/mg protein. The second method produced an homogenous enzyme, purified 21,000-fold to a specific activity of 80 units/mg protein. SDS/PAGE of nitrate reductase always resulted in two bands of 107 and 99.5 kDa. The 107-kDa band was the nitrate reductase subunit of N. plumbaginifolia; the smaller one of 99.5 kDa is thought, as commonly reported, to result from proteolysis of the larger protein. The molecular mass of 107 kDa is close to the values calculated from the coding sequences of the two nitrate reductase genes recently cloned from tobacco (Nicotiana tabacum cv Xanthi).

  3. Crystallization and preliminary X-ray analysis of the NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra

    Science.gov (United States)

    Takeshita, Daijiro; Kataoka, Michihiko; Miyakawa, Takuya; Miyazono, Ken-ichi; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    (R)-3-Quinuclidinol is a useful compound that is applicable to the synthesis of various pharmaceuticals. The NADPH-dependent carbonyl reductase 3-­quinuclidinone reductase from Rhodotorula rubra catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol and is expected to be utilized in industrial production of this alcohol. 3-Quinuclidinone reductase from R. rubra was expressed in Escherichia coli and purified using Ni-affinity and ion-exchange column chromatography. Crystals of the protein were obtained by the sitting-drop vapour-diffusion method using PEG 8000 as the precipitant. The crystals belonged to space group P41212, with unit-cell parameters a = b = 91.3, c = 265.4 Å, and diffracted X-rays to 2.2 Å resolution. The asymmetric unit contained four molecules of the protein and the solvent content was 48.4%. PMID:19478454

  4. Molecular structure, spectroscopic and docking analysis of 1,3-diphenylpyrazole-4-propionic acid: A good prostaglandin reductase inhibitor

    Science.gov (United States)

    Kavitha, T.; Velraj, G.

    2018-03-01

    The molecule 1,3-diphenylpyrazole-4-propionic acid (DPPA) was optimized to its minimum energy level using density functional theory (DFT) calculations. The vibrational frequencies of DPPA were calculated along with their potential energy distribution (PED) and the obtained values are validated with the help of experimental calculations. The reactivity nature of the molecule was investigated with the aid of various DFT methods such as global reactivity descriptors, local reactivity descriptors, molecular electrostatic potential (MEP), natural bond orbitals (NBOs), etc. The prediction of activity spectra for substances (PASS) result forecast that, DPPA can be more active as a prostaglandin (PG) reductase inhibitor. The PGs are biologically synthesized by the cyclooxygenase (COX) enzyme which exists in COX1 and COX2 forms. The PGs produced by COX2 enzyme induces inflammation and fungal infections and hence the inhibition of COX2 enzyme is indispensable in anti-inflammation and anti-fungal activities. The docking analysis of DPPA with COX enzymes (both COX1 and COX2) were carried out and eventually, it was found that DPPA can selectively inhibit COX2 enzyme and can serve as a PG reductase inhibitor thereby acting as a lead compound for the treatment of inflammation and fungal diseases.

  5. Cdna cloning and expression analyses of the isoflavone reductase-like gene of dendrobium officinale

    International Nuclear Information System (INIS)

    Qian, X.; Xu, S.Z.

    2015-01-01

    The full length of the isoflavone reductase-like gene (IRL) cDNA of Dendrobium officinale was cloned by using reverse transcription (RT) PCR combined with cDNA library, the IRL function was identified by Bioinformatics and prokaryotic expression analyses, and the IRL expression levels in the organs and tissues of D. officinale plants with different ages were determined by using real-time quantitative PCR (RT-qPCR). The results indicated that the full length of the cDNA of D. officinale IRL, DoIRL, was 1238 bp (accession no. KJ661023). Its open reading frame (ORF) was 930 bp which encoded 309 amino acids with a predicted molecular mass of 34 kDa, the 5 untranslated region (UTR) was 61 bp and the 3 UTR containing a poly (A) tail was 247 bp. The deduced amino acid sequence of DoIRL, DoIRL, was forecast to contain a NAD(P)H-binding motif (GGTGYIG) in the N-terminal region, two conserved N-glycosylation sites, a conserved nitrogen metabolite repression regulator (NmrA) domain and a phenylcoumaran benzylic ether reductase (PCBER) domain, to hold the nearest phylogenetic relationship with the PCBER of Striga asiatica, and to share both 73% identity with the isoflavone reductases-like (IRLs) of Cucumis sativus and Striga asiatica. In Escherichia coli 'BL21' cells, the DoIRL cDNA expression produced a protein band holding the predicted molecular mass of 34 kDa. DoIRL expressed in all organs and tissues of D. officinale plants with different ages at comparatively low levels, and the expression level in the leaves of the two-year-old plants was the highest. (author)

  6. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Jönsson, Erik G; Larsson, Kristina; Vares, Maria

    2008-01-01

    disorder. In a replication attempt the MTHFR C677T and A1298C SNPs were analyzed in three Scandinavian schizophrenia case-control samples. In addition, Norwegian patients with bipolar disorder were investigated. There were no statistically significant allele or genotype case-control differences....... The present Scandinavian results do not verify previous associations between the putative functional MTHFR gene polymorphisms and schizophrenia or bipolar disorder. However, when combined with previous studies in meta-analyses there is still evidence for association between the MTHFR C677T polymorphism......Recent meta-analyses of the methylenetetrahydrofolate reductase gene (MTHFR) have suggested association between two of its functional single gene polymorphisms (SNPs; C677T and A1298C) and schizophrenia. Studies have also suggested association between MTHFR C677T and A1298C variation and bipolar...

  7. Photoinduced catalytic synthesis of biologically important metabolites from formaldehyde and ammonia under plausible "prebiotic" conditions

    Science.gov (United States)

    Delidovich, I. V.; Taran, O. P.; Simonov, A. N.; Matvienko, L. G.; Parmon, V. N.

    2011-08-01

    The article analyzes new and previously reported data on several catalytic and photochemical processes yielding biologically important molecules. UV-irradiation of formaldehyde aqueous solution yields acetaldehyde, glyoxal, glycolaldehyde and glyceraldehyde, which can serve as precursors of more complex biochemically relevant compounds. Photolysis of aqueous solution of acetaldehyde and ammonium nitrate results in formation of alanine and pyruvic acid. Dehydration of glyceraldehyde catalyzed by zeolite HZSM-5-17 yields pyruvaldehyde. Monosaccharides are formed in the course of the phosphate-catalyzed aldol condensation reactions of glycolaldehyde, glyceraldehyde and formaldehyde. The possibility of the direct synthesis of tetroses, keto- and aldo-pentoses from pure formaldehyde due to the combination of the photochemical production of glycolahyde and phosphate-catalyzed carbohydrate chain growth is demonstrated. Erythrulose and 3-pentulose are the main products of such combined synthesis with selectivity up to 10%. Biologically relevant aldotetroses, aldo- and ketopentoses are more resistant to the photochemical destruction owing to the stabilization in hemiacetal cyclic forms. They are formed as products of isomerization of erythrulose and 3-pentulose. The conjugation of the concerned reactions results in a plausible route to the formation of sugars, amino and organic acids from formaldehyde and ammonia under presumed 'prebiotic' conditions.

  8. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress.

    Science.gov (United States)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. Copyright © 2016. Published by Elsevier Inc.

  9. Light Sensitivity of Lactococcus lactis Thioredoxin Reductase

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas

    The thioredoxin system has evolved in all kingdoms of life acting as a key antioxidant system in the defense against oxidative stress. The thioredoxin system utilizes reducing equivalents from NADPH to reduce protein disulfide targets. The reducing equivalents are shuttled via a flavin and redox...... active dithiol motif in thioredoxin reductase (TrxR) to reduce the small ubiquitous thioredoxin (Trx). Trx in turn regulates the protein dithiol/disulfide balance by reduction of protein disulfide targets in e.g. ribonucleotide reductase, peroxiredoxins and methionine sulfoxide reductase. The glutathione......, thus expected to rely mainly on the Trx system for thiol-disulfide control. L. lactis is an important industrial microorganism used as starter culture in the dairy production of cheese, buttermilk etc. and known to be sensitive to oxidative stress. The L. lactis TrxR (LlTrxR) is a homodimeric...

  10. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    Science.gov (United States)

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  11. Molecular and crystal structure and the Hirshfeld surface analysis of 1-amino-1-deoxy-α-D-sorbopyranose and 1-amino-1-deoxy-α-D-psicopyranose ("D-sorbosamine" and "D-psicosamine") derivatives

    Science.gov (United States)

    Mossine, Valeri V.; Barnes, Charles L.; Mawhinney, Thomas P.

    2018-05-01

    Sorbosamine and psicosamine are the last two 1-amino-1-deoxy-hexuloses for which no structural data were available. We report on a13C NMR and a single crystal X-ray diffraction study of 1-deoxy-1-(N-methylphenylamino)-D-sorbose (1) and 1-deoxy-1-(N-methylphenylamino)-D-psicose (2). In solutions, both aminosugars are conformationally unstable and establish equilibria, with 90.7% α-pyranose, 3.8% α-furanose, 1.0% β-pyranose, 0.5% β-furanose, and 4.0% acyclic keto form for 1 and 32.4% α-furanose, 27.2% α-pyranose, 21.0% β-pyranose, 9.1% β-furanose, and 11.0% acyclic keto form for 2. X-ray diffraction data provided detailed structural information on 1 and 2 in the α-pyranose form. Both molecules adopt the 5C2 ring conformations, the bond distances and valence angles compare well with respective pyranose structures. All hydroxyl groups in crystal structures of both 1 and 2 participate in two-dimensional hydrogen bonding networks, the H-bonding pattern in 1 is dominated by co-crystallized water molecules. The Hirshfeld surface analysis revealed a significant contribution of non- or weakly polar interactions to the packing forces for both molecules, with crystal structure of 2 featuring short H⋯H contacts. Other structural features found in 2 are a significant planarity of the tertiary amino group (the pyramid heights are 0.127 Å in 2 vs 0.231 Å in 1), a concomitant non-involvement of the amine nitrogen in heteroatom contacts, and a unique anti-periplanar conformation around the C1sbnd C2 bond.

  12. Association of aldose reductase gene Z+2 polymorphism with reduced susceptibility to diabetic nephropathy in Caucasian Type 1 diabetic patients

    DEFF Research Database (Denmark)

    Lajer, Mathilde; Tarnow, L; Fleckner, Jan

    2004-01-01

    AIMS: The Z-2 allele of the (AC)n polymorphism in the aldose reductase gene (ALR2) confers increased risk of microvascular diabetic complications, whereas the Z+2 allele has been proposed to be a marker of protection. However data are conflicting. Therefore, we investigated whether this polymorph......AIMS: The Z-2 allele of the (AC)n polymorphism in the aldose reductase gene (ALR2) confers increased risk of microvascular diabetic complications, whereas the Z+2 allele has been proposed to be a marker of protection. However data are conflicting. Therefore, we investigated whether...... this polymorphism is associated with diabetic nephropathy and retinopathy in Type 1 diabetes mellitus in a large case-control study and a family-based analysis. METHODS: A total of 431 Type 1 diabetic patients with diabetic nephropathy and 468 patients with longstanding Type 1 diabetes and persistent...... of the ALR2 promoter polymorphism is associated with a reduced susceptibility to diabetic nephropathy in Danish Type 1 diabetic patients, suggesting a minor role for the polyol pathway in the pathogenesis of diabetic kidney disease. No association of the ALR2 polymorphism with diabetic retinopathy was found....

  13. The role of biliverdin reductase in colorectal cancer

    International Nuclear Information System (INIS)

    Bauer, M.

    2010-01-01

    In recent years, the effects of biliverdin and bilirubin have been studied extensively, and an inhibitory effect of bile pigments in cancer progression has been proposed. In this study we focused on the effects of biliverdin reductase, the enzyme that converts biliverdin to bilirubin, in colorectal cancer. For in vitro experiments we used a human colorectal carcinoma cell line and transfected it with an expression construct of shRNA specific for biliverdin reductase, to create cells with stable knock-down of enzyme expression. Cell proliferation was analyzed using the CASY model TT cell counting device. Western blot protein analysis was performed to study intracellular signaling cascades. Samples of human colorectal cancer were analyzed using immunohistochemistry. We were able to confirm the antiproliferative effects of bile pigments on cancer cells in vitro. However, this effect was attenuated in biliverdin reductase knock down cells. ERK and Akt activation seen under biliverdin and bilirubin treatment was also reduced in biliverdin reductase deficient cells. Immunohistochemical analysis of tumor samples from patients with colorectal cancer showed elevated biliverdin reductase levels. High enzyme expression was associated with lower overall and disease free patient survival. We conclude that BVR is required for bile pigment mediated effects regarding cancer cell proliferation and modulation of intracellular signaling cascades. The role of BVR overexpression in vivo and its exact influence on cancer progression and patient survival need to be further investigated. (author) [de

  14. Cell death by SecTRAPs: thioredoxin reductase as a prooxidant killer of cells.

    Directory of Open Access Journals (Sweden)

    Karin Anestål

    Full Text Available BACKGROUND: SecTRAPs (selenium compromised thioredoxin reductase-derived apoptotic proteins can be formed from the selenoprotein thioredoxin reductase (TrxR by targeting of its selenocysteine (Sec residue with electrophiles, or by its removal through C-terminal truncation. SecTRAPs are devoid of thioredoxin reductase activity but can induce rapid cell death in cultured cancer cell lines by a gain of function. PRINCIPAL FINDINGS: Both human and rat SecTRAPs killed human A549 and HeLa cells. The cell death displayed both apoptotic and necrotic features. It did not require novel protein synthesis nor did it show extensive nuclear fragmentation, but it was attenuated by use of caspase inhibitors. The redox active disulfide/dithiol motif in the N-terminal domain of TrxR had to be maintained for manifestation of SecTRAP cytotoxicity. Stopped-flow kinetics showed that NADPH can reduce the FAD moiety in SecTRAPs at similar rates as in native TrxR and purified SecTRAPs could maintain NADPH oxidase activity, which was accelerated by low molecular weight substrates such as juglone. In a cellular context, SecTRAPs triggered extensive formation of reactive oxygen species (ROS and consequently antioxidants could protect against the cell killing by SecTRAPs. CONCLUSIONS: We conclude that formation of SecTRAPs could contribute to the cytotoxicity seen upon exposure of cells to electrophilic agents targeting TrxR. SecTRAPs are prooxidant killers of cells, triggering mechanisms beyond those of a mere loss of thioredoxin reductase activity.

  15. Insights on the mechanism of thioredoxin reductase inhibition by gold N-heterocyclic carbene compounds using the synthetic linear selenocysteine containing C-terminal peptide hTrxR(488-499): an ESI-MS investigation.

    Science.gov (United States)

    Pratesi, Alessandro; Gabbiani, Chiara; Michelucci, Elena; Ginanneschi, Mauro; Papini, Anna Maria; Rubbiani, Riccardo; Ott, Ingo; Messori, Luigi

    2014-07-01

    Gold-based drugs typically behave as strong inhibitors of the enzyme thioredoxin reductase (hTrxR), possibly as the consequence of direct Gold(I) coordination to its active site selenocysteine. To gain a deeper insight into the molecular basis of enzyme inhibition and prove gold-selenocysteine coordination, the reactions of three parent Gold(I) NHC compounds with the synthetic C-terminal dodecapeptide of hTrxR containing Selenocysteine at position 498, were investigated by electrospray ionization mass spectrometry (ESI-MS). Formation of 1:1 Gold-peptide adducts, though in highly different amounts, was demonstrated in all cases. In these adducts the same [Au-NHC](+) moiety is always associated to the intact peptide. Afterward, tandem MS experiments, conducted on a specific Gold-peptide complex, pointed out that Gold is coordinated to the selenolate group. The relatively large strength of the Gold-selenolate coordinative bond well accounts for potent enzyme inhibition typically afforded by these Gold(I) compounds. In a selected case, the time course of enzyme inhibition was explored. Interestingly, enzyme inhibition turned out to show up very quickly and reached its maximum just few minutes after mixing. Overall, the present results offer some clear insight into the process of thioredoxin reductase inhibition by Gold-based compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Photoaffinity labeling of steroid 5 alpha-reductase of rat liver and prostate microsomes

    International Nuclear Information System (INIS)

    Liang, T.; Cheung, A.H.; Reynolds, G.F.; Rasmusson, G.H.

    1985-01-01

    21-Diazo-4-methyl-4-aza-5 alpha-pregnane-3,20-dione (Diazo-MAPD) inhibits steroid 5 alpha-reductase in liver microsomes of female rats with a K/sub i/ value of 8.7 +/- 1.7 nM, and the inhibition is competitive with testosterone. It also inhibits the binding of a 5 alpha-reductase inhibitor, [ 3 H] 17 beta-N,N-diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([ 3 H]4-MA), to the enzyme in liver microsomes. The inhibition of 5 alpha-reductase activity and of inhibitor binding activity by diazo-MAPD becomes irreversible upon UV irradiation. [1,2- 3 H]Diazo-MAPD binds to a single high affinity site in liver microsomes of female rats, and this binding requires NADPH. Without UV irradiation, this binding is reversible, and it becomes irreversible upon UV irradiation. Both the initial reversible binding and the subsequent irreversible conjugation after UV irradiation are inhibited by inhibitors (diazo-MAPD and 4-MA) and substrates (progesterone and testosterone) of 5 alpha-reductase, but they are not inhibited by 5 alpha-reduced steroids. Photoaffinity labeled liver microsomes of female rats were solubilized and fractionated by high performance gel filtration. The radioactive conjugate eluted in one major peak at Mr 50,000

  17. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the soluble domain of PPA0092, a putative nitrite reductase from Propionibacterium acnes

    International Nuclear Information System (INIS)

    Nojiri, Masaki; Shirota, Felicia; Hira, Daisuke; Suzuki, Shinnichiro

    2009-01-01

    The soluble domain of a putative copper-containing nitrite reductase from P. acnes has been overexpressed, purified and crystallized. The crystal belonged to space group P2 1 3 and diffracted to 2.4 Å resolution. The soluble domain (residues 483–913) of PPA0092, a putative copper-containing nitrite reductase from Propionibacterium acnes KPA171202, has been overexpressed in Escherichia coli. The purified recombinant protein was crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected and processed to a maximum resolution of 2.4 Å. The crystal belonged to space group P2 1 3, with unit-cell parameters a = b = c = 108.63 Å. Preliminary diffraction data show that one molecule is present in the asymmetric unit; this corresponds to a V M of 2.1 Å 3 Da −1

  18. Production of Xylitol from D-Xylose by Overexpression of Xylose Reductase in Osmotolerant Yeast Candida glycerinogenes WL2002-5.

    Science.gov (United States)

    Zhang, Cheng; Zong, Hong; Zhuge, Bin; Lu, Xinyao; Fang, Huiying; Zhuge, Jian

    2015-07-01

    Efficient bioconversion of D-xylose into various biochemicals is critical for the developing lignocelluloses application. In this study, we compared D-xylose utilization in Candida glycerinogenes WL2002-5 transformants expressing xylose reductase (XYL1) in D-xylose metabolism. C. glycerinogenes WL2002-5 expressing XYL1 from Schefferomyces stipitis can produce xylitol. Xylitol production by the recombinant strains was evaluated using a xylitol fermentation medium with glucose as a co-substrate. As glucose was found to be an insufficient co-substrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best co-substrate. The effects of glycerol on the xylitol production rate by a xylose reductase gene (XYL1)-overexpressed mutant of C. glycerinogenes WL2002-5 were investigated. The XYL1-overexpressed mutant produced xylitol from D-xylose using glycerol as a co-substrate for cell growth and NAD (P) H regeneration: 100 g/L D-xylose was completely converted into xylitol when at least 20 g/L glycerol was used as a co-substrate. XYL1 overexpressed mutant grown on glycerol as co-substrate accumulated 2.1-fold increased xylitol concentration over those cells grown on glucose as co-substrate. XYL1 overexpressed mutant produced xylitol with a volumetric productivity of 0.83 g/L/h, and a xylitol yield of 98 % xylose. Recombinant yeast strains obtained in this study are promising candidates for xylitol production. This is the first report of XYL1 gene overexpression of C. glycerinogenes WL2002-5 for enhancing the efficiency of xylitol production.

  19. Autovaccination confers protection against Devriesea agamarum associated septicemia but not dermatitis in bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Hellebuyck, Tom; Van Steendam, Katleen; Deforce, Dieter; Blooi, Mark; Van Nieuwerburgh, Filip; Bullaert, Evelien; Ducatelle, Richard; Haesebrouck, Freddy; Pasmans, Frank; Martel, An

    2014-01-01

    Devrieseasis caused by Devriesea agamarum is a highly prevalent disease in captive desert lizards, resulting in severe dermatitis and in some cases mass mortality. In this study, we assessed the contribution of autovaccination to devrieseasis control by evaluating the capacity of 5 different formalin-inactivated D. agamarum vaccines to induce a humoral immune response in bearded dragons (Pogona vitticeps). Each vaccine contained one of the following adjuvants: CpG, incomplete Freund's, Ribi, aluminium hydroxide, or curdlan. Lizards were administrated one of the vaccines through subcutaneous injection and booster vaccination was given 3 weeks after primo-vaccination. An indirect ELISA was developed and used to monitor lizard serological responses. Localized adverse effects following subcutaneous immunization were observed in all but the Ribi adjuvanted vaccine group. Following homologous experimental challenge, the incomplete Freund's as well as the Ribi vaccine were observed to confer protection in bearded dragons against the development of D. agamarum associated septicemia but not against dermatitis. Subsequently, two-dimensional gelelectrophoresis followed by immunoblotting and mass spectrometry was conducted with serum obtained from 3 lizards that showed seroconversion after immunisation with the Ribi vaccine. Fructose-bisphosphate aldolase and aldo-keto reductase of D. agamarum reacted with serum from the latter lizards. Based on the demonstrated seroconversion and partial protection against D. agamarum associated disease following the use of formalin-inactivated vaccines as well as the identification of target antigens in Ribi vaccinated bearded dragons, this study provides promising information towards the development of a vaccination strategy to control devrieseasis in captive lizard collections.

  20. Autovaccination confers protection against Devriesea agamarum associated septicemia but not dermatitis in bearded dragons (Pogona vitticeps.

    Directory of Open Access Journals (Sweden)

    Tom Hellebuyck

    Full Text Available Devrieseasis caused by Devriesea agamarum is a highly prevalent disease in captive desert lizards, resulting in severe dermatitis and in some cases mass mortality. In this study, we assessed the contribution of autovaccination to devrieseasis control by evaluating the capacity of 5 different formalin-inactivated D. agamarum vaccines to induce a humoral immune response in bearded dragons (Pogona vitticeps. Each vaccine contained one of the following adjuvants: CpG, incomplete Freund's, Ribi, aluminium hydroxide, or curdlan. Lizards were administrated one of the vaccines through subcutaneous injection and booster vaccination was given 3 weeks after primo-vaccination. An indirect ELISA was developed and used to monitor lizard serological responses. Localized adverse effects following subcutaneous immunization were observed in all but the Ribi adjuvanted vaccine group. Following homologous experimental challenge, the incomplete Freund's as well as the Ribi vaccine were observed to confer protection in bearded dragons against the development of D. agamarum associated septicemia but not against dermatitis. Subsequently, two-dimensional gelelectrophoresis followed by immunoblotting and mass spectrometry was conducted with serum obtained from 3 lizards that showed seroconversion after immunisation with the Ribi vaccine. Fructose-bisphosphate aldolase and aldo-keto reductase of D. agamarum reacted with serum from the latter lizards. Based on the demonstrated seroconversion and partial protection against D. agamarum associated disease following the use of formalin-inactivated vaccines as well as the identification of target antigens in Ribi vaccinated bearded dragons, this study provides promising information towards the development of a vaccination strategy to control devrieseasis in captive lizard collections.

  1. Kinetics of carbonyl reductase from human brain.

    OpenAIRE

    Bohren, K M; von Wartburg, J P; Wermuth, B

    1987-01-01

    Initial-rate analysis of the carbonyl reductase-catalysed reduction of menadione by NADPH gave families of straight lines in double-reciprocal plots consistent with a sequential mechanism being obeyed. The fluorescence of NADPH was increased up to 7-fold with a concomitant shift of the emission maximum towards lower wavelength in the presence of carbonyl reductase, and both NADPH and NADP+ caused quenching of the enzyme fluorescence, indicating formation of a binary enzyme-coenzyme complex. D...

  2. Respiratory arsenate reductase as a bidirectional enzyme

    Science.gov (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  3. Solvent Dependency of the UV-Vis Spectrum of Indenoisoquinolines: Role of Keto-Oxygens as Polarity Interaction Probes

    Science.gov (United States)

    Coletta, Andrea; Castelli, Silvia; Chillemi, Giovanni; Sanna, Nico; Cushman, Mark; Pommier, Yves; Desideri, Alessandro

    2013-01-01

    Indenoisoquinolines are the most promising non-campthotecins topoisomerase IB inhibitors. We present an integrated experimental/computational investigation of the UV-Vis spectra of the IQNs parental compound (NSC314622) and two of its derivatives (NSC724998 and NSC725776) currently undergoing Phase I clinical trials. In all the three compounds a similar dependence of the relative absorption intensities at 270 nm and 290 nm on solvent polarity is found. The keto-oxygens in positions 5 and 11 of the molecular scaffold of the molecule are the principal chromophores involved in this dependence. Protic interactions on these sites are also found to give rise to absorptions at wavelength <250 nm observed in water solution, due to the stabilization of highly polarized tautomers of the molecule. These results suggest that the keto-oxygens are important polarizable groups that can act as useful interactors with the molecular receptor, providing at the same time an useful fingerprint for the monitoring of the drug binding to topoisomerase IB. PMID:24086299

  4. Mechanisms of activation of muscle branched-chain alpha-keto acid dehydrogenase during exercise in man

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; MacLean, D A; Saltin, B

    1996-01-01

    1. Exercise leads to activation (dephosphorylation) of the branched-chain alpha-keto acid dehydrogenase (BCKADH). Here we investigate the effect of low pre-exercise muscle glycogen content and of branched-chain amino acid (BCAA) ingestion on the activity of BCKADH at rest and after 90 min of one......-leg knee-extensor exercise at 65% maximal one-leg power output in five subjects. 2. Pre-exercise BCAA ingestion (308 mg BCAAs (kg body wt)-1) caused an increased muscle BCAA uptake, a higher intramuscular BCAA concentration and activation of BCKADH both at rest (9 +/- 1 versus 25 +/- 5% for the control...... and BCAA test, respectively) and after exercise (27 +/- 4 versus 54 +/- 7%). 3. At rest the percentage active BCKADH was not different, 6 +/- 2% versus 5 +/- 1%, in the normal and low glycogen content leg (392 +/- 21 and 147 +/- 34 mumol glycosyl units (g dry muscle)-1, respectively). The post...

  5. Synthesis, structure and study of azo-hydrazone tautomeric equilibrium of 1,3-dimethyl-5-(arylazo)-6-amino-uracil derivatives

    Science.gov (United States)

    Debnath, Diptanu; Roy, Subhadip; Li, Bing-Han; Lin, Chia-Her; Misra, Tarun Kumar

    2015-04-01

    Azo dyes, 1,3-dimethyl-5-(arylazo)-6-aminouracil (aryl = -C6H5 (1), -p-CH3C6H4 (2), -p-ClC6H4 (3), -p-NO2C6H4 (4)) were prepared and characterized by UV-vis, FT-IR, 1H NMR, 13C NMR spectroscopic techniques and single crystal X-ray crystallographic analysis. In the light of spectroscopic analysis it evidences that of the tautomeric forms, the azo-enamine-keto (A) form is the predominant form in the solid state whereas in different solvents it is the hydrazone-imine-keto (B) form. The study also reveals that the hydrazone-imine-keto (B) form exists in an equilibrium mixture with its anionic form in various organic solvents. The solvatochromic and photophysical properties of the dyes in various solvents with different hydrogen bonding parameter were investigated. The dyes exhibit positive solvatochromic property on moving from polar protic to polar aprotic solvents. They are fluorescent active molecules and exhibit high intense fluorescent peak in some solvents like DMSO and DMF. It has been demonstrated that the anionic form of the hydrazone-imine form is responsible for the high intense fluorescent peak. In addition, the acid-base equilibrium in between neutral and anionic form of hydrazone-imine form in buffer solution of varying pH was investigated and evaluated the pKa values of the dyes by making the use of UV-vis spectroscopic methods. The determined acid dissociation constant (pKa) values increase according to the sequence of 2 > 1 > 3 > 4.

  6. Imaging cerebral 2-ketoisocaproate metabolism with hyperpolarized (13)C Magnetic Resonance Spectroscopic Imaging

    DEFF Research Database (Denmark)

    Butt, Sadia Asghar; Søgaard, Lise Vejby-Christensen; Magnusson, Peter O.

    2012-01-01

    The branched chain amino acid transaminase (BCAT) has an important role in nitrogen shuttling and glutamate metabolism in the brain. The purpose of this study was to describe the cerebral distribution and metabolism of hyperpolarized 2-keto[1-(13)C]isocaproate (KIC) in the normal rat using magnet...... & Metabolism advance online publication, 28 March 2012; doi:10.1038/jcbfm.2012.34....

  7. Crystallization of purple nitrous oxide reductase from Pseudomonas stutzeri

    International Nuclear Information System (INIS)

    Pomowski, Anja; Zumft, Walter G.; Kroneck, Peter M. H.; Einsle, Oliver

    2010-01-01

    The physiologically active form of nitrous oxide reductase was isolated and crystallized under strict exclusion of dioxygen and diffraction data were collected from crystals belonging to two different space groups. Nitrous oxide reductase (N 2 OR) from Pseudomonas stutzeri catalyzes the final step in denitrification: the two-electron reduction of nitrous oxide to molecular dinitrogen. Crystals of the enzyme were grown under strict exclusion of dioxygen by sitting-drop vapour diffusion using 2R,3R-butanediol as a cryoprotectant. N 2 OR crystallized in either space group P1 or P6 5 . Interestingly, the key determinant for the resulting space group was the crystallization temperature. Crystals belonging to space group P1 contained four 130 kDa dimers in the asymmetric unit, while crystals belonging to space group P6 5 contained a single dimer in the asymmetric unit. Diffraction data were collected to resolutions better than 2 Å

  8. Nitrate reductase activity and its relationship with applied nitrogen in soybean

    International Nuclear Information System (INIS)

    Ge Wenting; Jin Xijun; Ma Chunmei; Dong Shoukun; Gong Zhenping; Zhang Lei

    2011-01-01

    Field experiments were conducted to study the nitrate reductase activity and its relationship to nitrogen by using frame tests (pot without bottom), sand culture and 15 N-urea at transplanting in soybean variety Suinong 14. Results showed that the activity of nitrate reductase in leaf changed as a signal peak curve with the soybean growth, lower in vegetative growth phase, higher in reproductive growth period and reached the peak in blooming period, then decreased gradually. Nitrogen application showed obvious effect on the nitrate reductase activity. The activities of nitrate reductase in leaves followed the order of N 135 > N 90 > N 45 > N 0 in vegetative growth stage, no clear regularity was found during the whole reproductive growth period. The activities of nitrate reductase in leaves were accorded with the order of upper leaves > mid leaves > lower leaves, and it was very significant differences (P 15 N labeling method during beginning seed stage and full seed stage shown that 15 N abundance in various organs at different node position also followed the same order, suggesting that high level of nitrate reductase activity at upper leaves of soybean promoted the assimilation of NO 3 - . (authors)

  9. Comparative molecular modeling study of Arabidopsis NADPH-dependent thioredoxin reductase and its hybrid protein.

    Directory of Open Access Journals (Sweden)

    Yuno Lee

    Full Text Available 2-Cys peroxiredoxins (Prxs play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C of thioredoxin reductase (TrxR in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D, which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD simulations on AtNTRC and AtNTRA-(Trx-D proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D because of following reasons: i unstable and unfavorable interaction of the linker region, ii shifted Trx domain, and iii different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.

  10. A click chemistry approach to glycomimetics: Michael addition of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose to 4-deoxy-1,2-O-isopropylidene-L-glycero-pent-4-enopyranos-3-ulose--a convenient route to novel 4-deoxy-(1-->5)-5-C-thiodisaccharides.

    Science.gov (United States)

    Witczak, Zbigniew J; Lorchak, David; Nguyen, Nguyen

    2007-09-03

    The base catalyzed conjugate Michael addition of the 1-thiosugar, 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranose, 1, to a new highly reactive enone 4-deoxy-1,2-O-isopropylidene-L-glycero-pent-4-enopyranos-3-ulose, 2, proceeds steroselectively with formation of adduct 3 in 94% yield. Convenient stereoselective reduction of the C-3 keto function of 3 with L-Selectride followed by in situ acetylation produces thiodisaccharide 4 in good 82% yield. Cleavage of the 1,2-O-isopropylidene protecting group with p-toluenesulfonic acid in methanol, followed by de-O-acetylation, produced an inseparable anomeric mixture of methyl 4-deoxy-5-C-(beta-D-glucopyranosyl)-thio-alpha/beta-L-ribo-pyranoside 5 in 72% overall yield. This approach constitutes a new general two-step click chemistry route to the previously unknown class of 4-deoxy-(1-->5)-5-C-thiodisaccharides as stable and biologically important glycomimetics.

  11. Differential expression of disulfide reductase enzymes in a free-living platyhelminth (Dugesia dorotocephala.

    Directory of Open Access Journals (Sweden)

    Alberto Guevara-Flores

    Full Text Available A search of the disulfide reductase activities expressed in the adult stage of the free-living platyhelminth Dugesia dorotocephala was carried out. Using GSSG or DTNB as substrates, it was possible to obtain a purified fraction containing both GSSG and DTNB reductase activities. Through the purification procedure, both disulfide reductase activities were obtained in the same chromatographic peak. By mass spectrometry analysis of peptide fragments obtained after tryptic digestion of the purified fraction, the presence of glutathione reductase (GR, thioredoxin-glutathione reductase (TGR, and a putative thioredoxin reductase (TrxR was detected. Using the gold compound auranofin to selectively inhibit the GSSG reductase activity of TGR, it was found that barely 5% of the total GR activity in the D. dorotocephala extract can be assigned to GR. Such strategy did allow us to determine the kinetic parameters for both GR and TGR. Although It was not possible to discriminate DTNB reductase activity due to TrxR from that of TGR, a chromatofocusing experiment with a D. dorotocephala extract resulted in the obtention of a minor protein fraction enriched in TrxR, strongly suggesting its presence as a functional protein. Thus, unlike its parasitic counterparts, in the free-living platyhelminth lineage the three disulfide reductases are present as functional proteins, albeit TGR is still the major disulfide reductase involved in the reduction of both Trx and GSSG. This fact suggests the development of TGR in parasitic flatworms was not linked to a parasitic mode of life.

  12. Expression of alkyl hydroperoxide reductase is regulated negatively by OxyR1 and positively by RpoE2 sigma factor in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Singh, Sudhir; Dwivedi, Susheel Kumar; Singh, Vijay Shankar; Tripathi, Anil Kumar

    2016-10-01

    OxyR proteins are LysR-type transcriptional regulators, which play an important role in responding to oxidative stress in bacteria. Azospirillum brasilense Sp7 harbours two copies of OxyR. The inactivation of the oxyR1, the gene organized divergently to ahpC in A. brasilense Sp7, led to an increased tolerance to alkyl hydroperoxides, which was corroborated by an increase in alkyl hydroperoxide reductase (AhpC) activity, enhanced expression of ahpC :lacZ fusion and increased synthesis of AhpC protein in the oxyR1::km mutant. The upstream region of ahpC promoter harboured a putative OxyR binding site, T-N11-A. Mutation of T, A or both in the T-N11-Amotif caused derepression of ahpC in A. brasilense suggesting that T-N11-A might be the binding site for a negative regulator. Retardation of the electrophoretic mobility of the T-N11-A motif harbouring oxyR1-ahpC intergenic DNA by recombinant OxyR1, under reducing as well as oxidizing conditions, indicated that OxyR1 acts as a negative regulator of ahpC in A. brasilense. Sequence of the promoter of ahpC, predicted on the basis of transcriptional start site, and an enhanced expression of ahpC:lacZ fusion in chrR2::km mutant background suggested that ahpC promoter was RpoE2 dependent. Thus, this study shows that in A. brasilense Sp7, ahpC expression is regulated negatively by OxyR1 but is regulated positively by RpoE2, an oxidative-stress-responsive sigma factor. It also shows that OxyR1 regulates the expression RpoE1, which is known to play an important role during photooxidative stress in A. brasilense.

  13. Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells

    International Nuclear Information System (INIS)

    Ruiz-Ramos, Ruben; Lopez-Carrillo, Lizbeth; Albores, Arnulfo; Hernandez-Ramirez, Raul U.; Cebrian, Mariano E.

    2009-01-01

    There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 μM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations (< 5 μM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (≥ 5 μM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

  14. Immunological comparison of the NADH:nitrate reductase from different cucumber tissues

    Directory of Open Access Journals (Sweden)

    Jolanta Marciniak

    2014-01-01

    Full Text Available Soluble nitrate reductase from cucumber roots (Cucumis sativus L. was isolated and purified with blue-Sepharose 4B. Specific antibodies against the NR protein were raised by immunization of a goat. Using polyclonal antibodies anti-NR properties of the nitrate reductase from various cucumber tissues were examined. Experiments showed difference in immuno-logical properties of nitrate reductase (NR from cotyledon roots and leaves.

  15. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1☆☆☆

    Science.gov (United States)

    Randall, Matthew J.; Spiess, Page C.; Hristova, Milena; Hondal, Robert J.; van der Vliet, Albert

    2013-01-01

    Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1–30 μM) resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated1 kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases such as JNK

  16. Bromopyruvate, an active site-directed inactivator of E. coli 2-keto-4-hydroxyglutarate(KHG) aldolase, modifies glutamic acid residue-45

    International Nuclear Information System (INIS)

    Vlahos, C.J.; Dekker, E.E.

    1987-01-01

    E. coli KHG-aldolase (2-keto-4-hydroxyglutarate ↔ pyruvate + glyoxylate), a novel trimeric Class I aldolase, requires one active-site lysine residue (Lys 133)/subunit for Schiff-base formation as well as one arginine residue (Arg 49)/subunit for catalytic activity. The substrate analog, 3-bromopyruvate (BRPY), causes a time- and concentration-dependent loss of KHG-aldolase activity. This inactivation is regarded as active site-directed since: (a) BRPY modification results in complete loss of enzymatic activity; (b) saturation kinetics are exhibited, suggesting that a reversible complex is formed between the aldolase and BRPY prior to the rate-limiting inactivation step; (c) over 90% of the initial aldolase activity is protected by either substrate, pyruvate or KHG; (d) 1.1 mol of 14 C-BRPY is bound/enzyme subunit. Peptide isolation and sequencing show that the incorporated radioactivity is associated with residue Glu-45. Denaturation of the enzyme with guanidine x HCl following treatment with excess 14 C-BRPY allows for the incorporation of carbon-14 at Cys-159 and Cys-180 as well. The presence of pyruvate protects Glu-45 from being esterified but does not prevent the alkylation of the two cysteine residues. These results suggest that Glu-45 is essential for the catalytic activity of E. coli KHG-aldolase, most likely functioning as the active-site amphoteric proton donor/acceptor moiety that is involved in the overall mechanism of the reaction catalyzed by this enzyme

  17. Expression of mitochondrial branched-chain aminotransferase and α-keto-acid dehydrogenase in rat brain: implications for neurotransmitter metabolism

    Science.gov (United States)

    Cole, Jeffrey T.; Sweatt, Andrew J.; Hutson, Susan M.

    2012-01-01

    In the brain, metabolism of the essential branched chain amino acids (BCAAs) leucine, isoleucine, and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT) isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). The BCATs are thought to participate in a α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from α-ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC) catalyzes the second, irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA) products of the BCAT reaction. Maple Syrup Urine Disease (MSUD) results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron. PMID:22654736

  18. Site of pheromone biosynthesis and isolation of HMG-CoA reductase cDNA in the cotton boll weevil, Anthonomus grandis.

    Science.gov (United States)

    Taban, A Huma; Fu, Jessica; Blake, Jacob; Awano, Ami; Tittiger, Claus; Blomquist, Gary J

    2006-08-01

    Isolated gut tissue from male cotton boll weevil, Anthonomus grandis (Coleoptera: Curculionidae), incorporated radiolabeled acetate into components that co-eluted with monoterpenoid pheromone components on HPLC. This demonstrates that pheromone components of male A. grandis are produced de novo and strongly suggests that pheromone biosynthesis occurs in gut tissue. A central enzyme in isoprenoid biosynthesis is 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-R), and a full-length HMG-R cDNA was isolated from A. grandis. The predicted translation product was 54 and 45% identical to HMG-R from Ips paraconfusus and Drosophila melanogaster, respectively. HMG-R gene expression gradually increased with age in male A. grandis, which correlates with pheromone production. However, topical application of JH III did not significantly increase HMG-R mRNA levels.

  19. Boletus edulis Nitrite Reductase Reduces Nitrite Content of Pickles and Mitigates Intoxication in Nitrite-intoxicated Mice.

    Science.gov (United States)

    Zhang, Weiwei; Tian, Guoting; Feng, Shanshan; Wong, Jack Ho; Zhao, Yongchang; Chen, Xiao; Wang, Hexiang; Ng, Tzi Bun

    2015-10-08

    Pickles are popular in China and exhibits health-promoting effects. However, nitrite produced during fermentation adversely affects health due to formation of methemoglobin and conversion to carcinogenic nitrosamine. Fruiting bodies of the mushroom Boletus edulis were capable of inhibiting nitrite production during pickle fermentation. A 90-kDa nitrite reductase (NiR), demonstrating peptide sequence homology to fungal nitrite reductase, was isolated from B. edulis fruiting bodies. The optimum temperature and pH of the enzyme was 45 °C and 6.8, respectively. B. edulis NiR was capable of prolonging the lifespan of nitrite-intoxicated mice, indicating that it had the action of an antidote. The enzyme could also eliminate nitrite from blood after intragastric administration of sodium nitrite, and after packaging into capsule, this nitrite-eliminating activity could persist for at least 120 minutes thus avoiding immediate gastric degradation. B. edulis NiR represents the first nitrite reductase purified from mushrooms and may facilitate subsequent applications.

  20. Methyl Jasmonate and 1-Methylcyclopropene Treatment Effects on Quinone Reductase Inducing Activity and Post-Harvest Quality of Broccoli

    Science.gov (United States)

    Ku, Kang Mo; Choi, Jeong Hee; Kim, Hyoung Seok; Kushad, Mosbah M.; Jeffery, Elizabeth H.; Juvik, John A.

    2013-01-01

    Effect of pre-harvest methyl jasmonate (MeJA) and post-harvest 1-methylcyclopropene (1-MCP) treatments on broccoli floret glucosinolate (GS) concentrations and quinone reductase (QR, an in vitro anti-cancer biomarker) inducing activity were evaluated two days prior to harvest, at harvest and at 10, 20, and 30 days of post-harvest storage at 4 °C. MeJA treatments four days prior to harvest of broccoli heads was observed to significantly increase floret ethylene biosynthesis resulting in chlorophyll catabolism during post-harvest storage and reduced product quality. Post-harvest treatment with 1-methylcyclopropene (1-MCP), which competitively binds to protein ethylene receptors, maintained post-harvest floret chlorophyll concentrations and product visual quality in both control and MeJA-treated broccoli. Transcript abundance of BoPPH, a gene which is responsible for the synthesis of pheophytinase, the primary enzyme associated with chlorophyll catabolism in broccoli, was reduced by 1-MCP treatment and showed a significant, negative correlation with floret chlorophyll concentrations. The GS, glucobrassicin, neoglucobrassicin, and gluconasturtiin were significantly increased by MeJA treatments. The products of some of the GS from endogenous myrosinase hydrolysis [sulforaphane (SF), neoascorbigen (NeoASG), N-methoxyindole-3-carbinol (NI3C), and phenethyl isothiocyanate (PEITC)] were also quantified and found to be significantly correlated with QR. Sulforaphane, the isothiocyanate hydrolysis product of the GS glucoraphanin, was found to be the most potent QR induction agent. Increased sulforaphane formation from the hydrolysis of glucoraphanin was associated with up-regulated gene expression of myrosinase (BoMyo) and the myrosinase enzyme co-factor gene, epithiospecifier modifier1 (BoESM1). This study demonstrates the combined treatment of MeJA and 1-MCP increased QR activity without post-harvest quality loss. PMID:24146962

  1. Cloning and characterization of a nitrite reductase gene related to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-01

    Mar 1, 2010 ... Alexander et al., 2005) and heme-type nitrite reductase gene (Smith and ... owing to a genotype-dependent response (Zhang et al.,. 1991; Sakhanokho et al., ..... Improvement of cell culture conditions for rice. Jpn. Agric. Res.

  2. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1

    Directory of Open Access Journals (Sweden)

    Teusink Bas

    2007-08-01

    Full Text Available Abstract Background Thioredoxin (TRX is a powerful disulfide oxido-reductase that catalyzes a wide spectrum of redox reactions in the cell. The aim of this study is to elucidate the role of the TRX system in the oxidative stress response in Lactobacillus plantarum WCFS1. Results We have identified the trxB1-encoded thioredoxin reductase (TR as a key enzyme in the oxidative stress response of Lactobacillus plantarum WCFS1. Overexpression of the trxB1 gene resulted in a 3-fold higher TR activity in comparison to the wild-type strain. Subsequently, higher TR activity was associated with an increased resistance towards oxidative stress. We further determined the global transcriptional response to hydrogen peroxide stress in the trxB1-overexpression and wild-type strains grown in continuous cultures. Hydrogen peroxide stress and overproduction of TR collectively resulted in the up-regulation of 267 genes. Additionally, gene expression profiling showed significant differential expression of 27 genes in the trxB1-overexpression strain. Over expression of trxB1 was found to activate genes associated with DNA repair and stress mechanisms as well as genes associated with the activity of biosynthetic pathways for purine and sulfur-containing amino acids. A total of 16 genes showed a response to both TR overproduction and hydrogen peroxide stress. These genes are involved in the purine metabolism, energy metabolism (gapB as well as in stress-response (groEL, npr2, and manganese transport (mntH2. Conclusion Based on our findings we propose that overproduction of the trxB1-encoded TR in L. plantarum improves tolerance towards oxidative stress. This response coincides with simultaneous induction of a group of 16 transcripts of genes. Within this group of genes, most are associated with oxidative stress response. The obtained crossover between datasets may explain the phenotype of the trxB1-overexpression strain, which appears to be prepared for encountering

  3. Cloning, functional expression and characterization of a bifunctional 3-hydroxybutanal dehydrogenase /reductase involved in acetone metabolism by Desulfococcus biacutus.

    Science.gov (United States)

    Frey, Jasmin; Rusche, Hendrik; Schink, Bernhard; Schleheck, David

    2016-11-25

    The strictly anaerobic, sulfate-reducing bacterium Desulfococcus biacutus can utilize acetone as sole carbon and energy source for growth. Whereas in aerobic and nitrate-reducing bacteria acetone is activated by carboxylation with CO 2 to acetoacetate, D. biacutus involves CO as a cosubstrate for acetone activation through a different, so far unknown pathway. Proteomic studies indicated that, among others, a predicted medium-chain dehydrogenase/reductase (MDR) superfamily, zinc-dependent alcohol dehydrogenase (locus tag DebiaDRAFT_04514) is specifically and highly produced during growth with acetone. The MDR gene DebiaDRAFT_04514 was cloned and overexpressed in E. coli. The purified recombinant protein required zinc as cofactor, and accepted NADH/NAD + but not NADPH/NADP + as electron donor/acceptor. The pH optimum was at pH 8, and the temperature optimum at 45 °C. Highest specific activities were observed for reduction of C 3 - C 5 -aldehydes with NADH, such as propanal to propanol (380 ± 15 mU mg -1 protein), butanal to butanol (300 ± 24 mU mg -1 ), and 3-hydroxybutanal to 1,3-butanediol (248 ± 60 mU mg -1 ), however, the enzyme also oxidized 3-hydroxybutanal with NAD + to acetoacetaldehyde (83 ± 18 mU mg -1 ). The enzyme might play a key role in acetone degradation by D. biacutus, for example as a bifunctional 3-hydroxybutanal dehydrogenase/reductase. Its recombinant production may represent an important step in the elucidation of the complete degradation pathway.

  4. Detoxification of hexavalent chromium by Leucobacter sp. uses a reductase with specificity for dihydrolipoamide.

    Science.gov (United States)

    Sarangi, Abhipsa; Krishnan, Chandraraj

    2016-02-01

    Leucobacter sp. belongs to the metal stressed community and possesses higher tolerance to metals including chromium and can detoxify toxic hexavalent chromium by reduction to less toxic trivalent chromium. But, the mechanism of reduction of hexavalent chromium by Leucobacter sp. has not been studied. Understanding the enzyme catalyzing reduction of chromium is important to improve the species for application in bioremediation. Hence, a soluble reductase catalyzing the reduction of hexavalent chromium was purified from a Leucobacter sp. and characterized. The pure chromate reductase was obtained from the cell-free extract through hydrophobic interaction and gel filtration column chromatographic methods. It was a monomeric enzyme and showed similar molecular weights in both gel filtration (∼68 KDa) and SDS-PAGE (64 KDa). It reduced Cr(VI) using both NADH and NADPH as the electron donor, but exhibited higher activity with NADH. The optimal activity was found at pH 5.5 and 30 °C. The K(m) and V(max) for Cr(VI) reduction with NADH were 46.57 μM and 0.37 μmol min(-1) (mg protein) (-1), respectively. The activity was inhibited by p-hydroxy mercury benzoate, Ag(2+) and Hg(2+) indicating the role of thiol groups in the catalysis. The spectrophotometric analysis of the purified enzyme showed the absence of bound flavin in the enzyme. The N-terminal amino acid sequence and LC/MS analysis of trypsin digested purified enzyme showed similarity to dihydrolipoyl dehydrogenase. The purified enzyme had dihydrolipoyl dehydrogenase activity with dihydrolipoamide as the substrate, which suggested that Leucobacter sp. uses reductase with multiple substrate specificity for reduction of Cr(VI) detoxification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. In vivo photoinactivation of Escherichia coli ribonucleoside reductase by near-ultraviolet light

    International Nuclear Information System (INIS)

    Peters, J.

    1977-01-01

    Some experimental work is described showing that near-U.V. irradiation of E.coli cells selectively destroys RDP-reductase (ribonucleoside diphosphate reductase) activity in vivo are providing evidence relating the loss of RDP-reductase to loss of cellular visibility and the inactivity of irrdiated cells to support the replication of DNA phages. The data are consistent with the interpretation that the principal cause in the killing of exponentially growing E.coli cells by near-U.V., and the loss of ability of irradiated host cells to support the replication of DNA phages, is the photoinactivation of the RDP-reductase complex. (U.K.)

  6. In vivo photoinactivation of Escherichia coli ribonucleoside reductase by near-ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Peters, J [California Univ., Irvine (USA)

    1977-06-09

    Some experimental work is described showing that near-uv irradiation of E.coli cells selectively destroys RDP-reductase (ribonucleoside diphosphate reductase) activity in vivo are providing evidence relating the loss of RDP-reductase to loss of cellular visibility and the inactivity of irrdiated cells to support the replication of DNA phages. The data are consistent with the interpretation that the principal cause in the killing of exponentially growing E.coli cells by near-uv, and the loss of ability of irradiated host cells to support the replication of DNA phages, is the photoinactivation of the RDP-reductase complex.

  7. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Baskaran G

    2015-01-01

    Full Text Available Gunasekaran Baskaran,1 Shamala Salvamani,1 Siti Aqlima Ahmad,1 Noor Azmi Shaharuddin,1 Parveen Devi Pattiram,2 Mohd Yunus Shukor1 1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, 2Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia Abstract: The enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA reductase is the key enzyme of the mevalonate pathway that produces cholesterol. Inhibition of HMG-CoA reductase reduces cholesterol biosynthesis in the liver. Synthetic drugs, statins, are commonly used for the treatment of hypercholesterolemia. Due to the side effects of statins, natural HMG-CoA reductase inhibitors of plant origin are needed. In this study, 25 medicinal plant methanol extracts were screened for anti-HMG-CoA reductase activity. Basella alba leaf extract showed the highest inhibitory effect at about 74%. Thus, B. alba was examined in order to investigate its phytochemical components. Gas chromatography with tandem mass spectrometry and reversed phase high-performance liquid chromatography analysis revealed the presence of phenol 2,6-bis(1,1-dimethylethyl, 1-heptatriacotanol, oleic acid, eicosyl ester, naringin, apigenin, luteolin, ascorbic acid, and a-tocopherol, which have been reported to possess antihypercholesterolemic effects. Further investigation of in vivo models should be performed in order to confirm its potential as an alternative treatment for hypercholesterolemia and related cardiovascular diseases. Keywords: HMG-CoA reductase, Basella alba, phytochemical, GC-MS/MS, RP-HPLC, hypercholesterolemia

  8. N-Heterocyclic Carbene-Catalyzed Vinylogous Mukaiyama Aldol Reaction of α-Keto Esters and α-Trifluoromethyl Ketones

    KAUST Repository

    Du, Guang-Fen; Wang, Ying; Xing, Fen; Xue, Mei; Guo, Xu-Hong; Huang, Kuo-Wei; Dai, Bin

    2015-01-01

    © Georg Thieme Verlag Stuttgart · New York · Synthesis 2016. N-Heterocyclic carbene (NHC)-catalyzed vinylogous Mukaiyama aldol reaction of ketones was developed. Under the catalysis of 5 mol% NHC, α-keto esters and α-trifluoromethyl ketones reacted with 2-(trimethysilyloxy)furan efficiently to produce γ-substituted butenolides containing adjacent quaternary and tertiary carbon centers in high yields with good diastereoselectivities.

  9. Catabolism of 6-ketoprostaglandin F1alpha by the rat kidney cortex.

    Science.gov (United States)

    Pace-Asciak, C R; Domazet, Z; Carrara, M

    1977-05-25

    Homogenates of the rat kidney cortex converted 5,8,9,11,12,14,15-hepta-tritiated 6-ketoprostaglandin F 1alpha into one major product identified by gas chromatography-mass spectrometry of the methoxime-methyl ester trimethylsilyl ether derivative as 6,15-diketo-9,11-dihydroxyprost-13-enoic acid. The sequence of derivatisation i.e. methoximation prior to methylation, was crucial as methylation of 15-keto catabolites of the E, F and 6-keto-F series affords degradation products. The corresponding 15-keto-13,14-dihydro catabolite was formed in much smaller quantities. Time course studies indicated that 6-keto-prostaglandin F1alpha was catabolised at a slower rate (about 2-5 fold) than prostaglandin F1alpha. The catabolic activity was blocked by NADH.

  10. Atomic Structure of Salutaridine Reductase from the Opium Poppy (Papaver somniferum)

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Yasuhiro; Kutchan, Toni M.; Smith, Thomas J. (Danforth)

    2011-11-18

    The opium poppy (Papaver somniferum L.) is one of the oldest known medicinal plants. In the biosynthetic pathway for morphine and codeine, salutaridine is reduced to salutaridinol by salutaridine reductase (SalR; EC 1.1.1.248) using NADPH as coenzyme. Here, we report the atomic structure of SalR to a resolution of {approx}1.9 {angstrom} in the presence of NADPH. The core structure is highly homologous to other members of the short chain dehydrogenase/reductase family. The major difference is that the nicotinamide moiety and the substrate-binding pocket are covered by a loop (residues 265-279), on top of which lies a large 'flap'-like domain (residues 105-140). This configuration appears to be a combination of the two common structural themes found in other members of the short chain dehydrogenase/reductase family. Previous modeling studies suggested that substrate inhibition is due to mutually exclusive productive and nonproductive modes of substrate binding in the active site. This model was tested via site-directed mutagenesis, and a number of these mutations abrogated substrate inhibition. However, the atomic structure of SalR shows that these mutated residues are instead distributed over a wide area of the enzyme, and many are not in the active site. To explain how residues distal to the active site might affect catalysis, a model is presented whereby SalR may undergo significant conformational changes during catalytic turnover.

  11. Vitamin K epoxide reductase complex subunit 1 (Vkorc1 haplotype diversity in mouse priority strains

    Directory of Open Access Journals (Sweden)

    Kohn Michael H

    2008-12-01

    Full Text Available Abstract Background Polymorphisms in the vitamin K-epoxide reductase complex subunit 1 gene, Vkorc1, could affect blood coagulation and other vitamin K-dependent proteins, such as osteocalcin (bone Gla protein, BGP. Here we sequenced the Vkorc1 gene in 40 mouse priority strains. We analyzed Vkorc1 haplotypes with respect to prothrombin time (PT and bone mineral density and composition (BMD and BMC; phenotypes expected to be vitamin K-dependent and represented by data in the Mouse Phenome Database (MPD. Findings In the commonly used laboratory strains of Mus musculus domesticus we identified only four haplotypes differing in the intron or 5' region sequence of the Vkorc1. Six haplotypes differing by coding and non-coding polymorphisms were identified in the other subspecies of Mus. We detected no significant association of Vkorc1 haplotypes with PT, BMD and BMC within each subspecies of Mus. Vkorc1 haplotype sequences divergence between subspecies was associated with PT, BMD and BMC. Conclusion Phenotypic variation in PT, BMD and BMC within subspecies of Mus, while substantial, appears to be dominated by genetic variation in genes other than the Vkorc1. This was particularly evident for M. m. domesticus, where a single haplotype was observed in conjunction with virtually the entire range of PT, BMD and BMC values of all 5 subspecies of Mus included in this study. Differences in these phenotypes between subspecies also should not be attributed to Vkorc1 variants, but should be viewed as a result of genome wide genetic divergence.

  12. Association of Methylenetetrahydrofolate Reductase C677T Polymorphism with Hyperhomocysteinemia and Deep Vein Thrombosis in the Iranian Population.

    Science.gov (United States)

    Ghaznavi, Habib; Soheili, Zahra; Samiei, Shahram; Soltanpour, Mohammad Soleiman

    2015-12-01

    Deep venous thrombosis (DVT) is a common but elusive condition characterized by a high morbidity and mortality rate. The aim of the present study was to investigate the correlation between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism with plasma total homocysteine (tHcy) levels and DVT risk in an Iranian population. Our study population consisted of 67 patients with a diagnosis of DVT and 67 healthy subjects as controls. Genotyping of MTHFR C677T polymorphism was performed by the polymerase chain reaction technique combined with restriction enzyme fragment length polymorphism (PCR-RFLP) and measurement of tHcy levels was done by enzyme immunoassay method. Plasma tHcy levels were significantly higher in DVT patients than controls (18.09±7.6 vs. 10.5±4.3, P=0.001). Also, plasma tHcy levels were significantly higher in MTHFR 677TT genotypes compared to 677CC genotypes in both DVT patients (P=0.016) and controls (P=0.03). Neither heterozygote nor homozygote genotypes of MTHFR C677T polymorphism was significantly correlated with DVT (P>0.05). The distribution of MTHFR C677T genotypes was similar between men and women in both DVT patients and controls (P>0.05). Moreover, the frequency of mutant 677T allele did not differ significantly between the two groups (28.3% vs. 21.6%, P=0.15). Based on this study, we propose that hyperhomocysteinemia but not homozygosity for MTHFR C677T polymorphism is a significant risk factor for DVT in the Iranian population. Also, MTHFR 677TT genotype is a determinant of elevated plasma tHcy levels.

  13. Mutations in the gene for methylenetetrahydrofolate reductase, homocysteine levels, and vitamin status in women with a history of preeclampsia

    NARCIS (Netherlands)

    Lachmeijer, AMA; Arngrimsson, R; Bastiaans, EJ; Pals, G; ten Kate, LP; de Vries, JIP; Kostense, PJ; Aarnoudse, JG; Dekker, GA

    OBJECTIVE: This study was undertaken to assess frequencies of the methylenetetrahydrofolate reductase gene mutations cytosine-to-thymine substitution at base 677 (C677T) and adenine-to-cytosine substitution at base 1298 (A1298C) and their interactions with homocysteine and vitamin levels among Dutch

  14. Expression of Mitochondrial Branched-Chain Aminotransferase and α-Keto-Acid Dehydrogenase in Rat Brain: Implications for Neurotransmitter Metabolism

    Directory of Open Access Journals (Sweden)

    Jeffrey Thomas Cole

    2012-05-01

    Full Text Available In the brain, metabolism of the essential branched chain amino acids (BCAAs leucine, isoleucine and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter -aminobutyric acid (GABA. The BCATs are thought to participate in an α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from -ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC catalyzes the second and first irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA products of the BCAT reaction. Maple Syrup Urine Disease (MSUD results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron.

  15. Laboratoire de Chimie Bactérienne C.N.R.S., Marsielle, France.

    Science.gov (United States)

    Chippaux, M; Giudici, D; Abou-Jaoudé, A; Casse, F; Pascal, M C

    1978-04-06

    Mutants of E. coli, completely devoid of nitrite reductase activity with glucose or formate as donor were studied. Biochemical analysis indicates that they are simultaneously affected in nitrate reductase, nitrite reductase, fumarate reductase and hydrogenase activities as well as in cytochrome C552 biosynthesis. The use of an antiserum specific for nitrate reductase shows that the nitrate reductase protein is probably missing. A single mutation is responsible for this phenotype: the gene affected, nir R, is located close to tyr R i.e. at 29 min on the chromosomal map.

  16. Nutrition, phosphorus, and keto-analogues in hemodialysis patients: a Chinese perspective.

    Science.gov (United States)

    Chen, Jing

    2013-05-01

    The optimal dietary protein requirements in maintenance hemodialysis (HD) patients and how to balance the treatments between the nutritional intervention and other approaches are still controversies among nephrologists. In China, excessive dietary intake, low dose of dialysis, and lack of non-calcium-containing phosphorus binders are the main causes of hyperphosphatemia among HD patients. If the daily protein intake reached the recommended dose of 1.2 g/kg body weight per the Kidney Disease Outcomes Quality Initiative guidelines, the net accumulation of phosphorus in patients receiving conventional thrice-weekly low-flux HD may reach 1550 mg per week on the basis of our studies on the assessment of phosphorus removal by HD and residual renal function. In fact, a relatively low-protein diet supplemented with keto-analogues could maintain the stable nutritional status in dialysis patients and provide additional beneficial effects. An individualized nutritional intervention is worth trying to treat hyperphosphatemia in HD patients. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  17. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.

    Science.gov (United States)

    Metz, J G; Pollard, M R; Anderson, L; Hayes, T R; Lassner, M W

    2000-03-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes.

  18. [Comparison of Physico-chemical Aspects between E. coli and Human Dihydrofolate Reductase: an Equilibrium Unfolding Study].

    Science.gov (United States)

    Thapliyal, Charu; Jain, Neha; Chaudhuri, Pratima

    2015-01-01

    A protein, differing in origin, may exhibit variable physicochemical behaviour, difference in sequence homology, fold and function. Thus studying structure-function relationship of proteins from altered sources is meaningful in the sense that it may give rise to comparative aspects of their sequence-structure-function relationship. Dihydrofolate reductase is an enzyme involved in cell cycle regulation. It is a significant enzyme as.a target for developing anticancer drugs. Hence, detailed understanding of structure-function relationships of wide variants of the enzyme dihydrofolate reductase would be important for developing an inhibitor or an antagonist against the enzyme involved in the cellular developmental processes. In this communication, we have reported the comparative structure-function relationship between E. coli and human dihydrofolate reductase. The differences in the unfolding behaviour of these two proteins have been investigated to understand various properties of these two proteins like relative' stability differences and variation in conformational changes under identical denaturing conditions. The equilibrium unfolding mechanism of dihydrofolate reductase proteins using guanidine hydrochloride as a denaturant in the presence of various types of osmolytes has been monitored using loss in enzymatic activity, intrinsic tryptophan fluorescence and an extrinsic fluorophore 8-anilino-1-naphthalene-sulfonic acid as probes. It has been observed that osmolytes, such as 1M sucrose, and 30% glycerol, provided enhanced stability to both variants of dihydrofolate reductase. Their level of stabilisation has been observed to be dependent on intrinsic protein stability. It was observed that 100 mM proline does not show any 'significant stabilisation to either of dihydrofolate reductases. In the present study, it has been observed that the human protein is relatively less stable than the E.coli counterpart.

  19. Cell death in response to antimetabolites directed at ribonucleotide reductase and thymidylate synthase

    Science.gov (United States)

    Asuncion Valenzuela, Malyn M; Castro, Imilce; Gonda, Amber; Diaz Osterman, Carlos J; Jutzy, Jessica M; Aspe, Jonathan R; Khan, Salma; Neidigh, Jonathan W; Wall, Nathan R

    2015-01-01

    New agent development, mechanistic understanding, and combinatorial partnerships with known and novel modalities continue to be important in the study of pancreatic cancer and its improved treatment. In this study, known antimetabolite drugs such as gemcitabine (ribonucleotide reductase inhibitor) and 5-fluorouracil (thymidylate synthase inhibitor) were compared with novel members of these two drug families in the treatment of a chemoresistant pancreatic cancer cell line PANC-1. Cellular survival data, along with protein and messenger ribonucleic acid expression for survivin, XIAP, cIAP1, and cIAP2, were compared from both the cell cytoplasm and from exosomes after single modality treatment. While all antimetabolite drugs killed PANC-1 cells in a time- and dose-dependent manner, neither family significantly altered the cytosolic protein level of the four inhibitors of apoptosis (IAPs) investigated. Survivin, XIAP, cIAP1, and cIAP2 were found localized to exosomes where no significant difference in expression was recorded. This inability for significant and long-lasting expression may be a reason why pancreatic cancer lacks responsiveness to these and other cancer-killing agents. Continued investigation is required to determine the responsibilities of these IAPs in their role in chemoresistance in pancreatic adenocarcinoma. PMID:25767396

  20. S-Nitrosomycothiol Reductase and Mycothiol Are Required for Survival Under Aldehyde Stress and Biofilm Formation in Mycobacterium smegmatis

    Science.gov (United States)

    Vargas, Derek; Hageman, Samantha; Gulati, Megha; Nobile, Clarissa J.; Rawat, Mamta

    2017-01-01

    We show that Mycobacterium smegmatis mutants disrupted in mscR, coding for a dual function S-nitrosomycothiol reductase and formaldehyde dehydrogenase, and mshC, coding for a mycothiol ligase and lacking mycothiol (MSH), are more susceptible to S-nitrosoglutathione (GSNO) and aldehydes than wild type. MSH is a cofactor for MscR, and both mshC and mscR are induced by GSNO and aldehydes. We also show that a mutant disrupted in egtA, coding for a γ-glutamyl cysteine synthetase and lacking in ergothioneine, is sensitive to nitrosative stress but not to aldehydes. In addition, we find that MSH and S-nitrosomycothiol reductase are required for normal biofilm formation in M. smegmatis, suggesting potential new therapeutic pathways to target to inhibit or disrupt biofilm formation. PMID:27321674