WorldWideScience

Sample records for aldh gene variants

  1. Comparative and evolutionary studies of vertebrate ALDH1A-like genes and proteins.

    Science.gov (United States)

    Holmes, Roger S

    2015-06-05

    Vertebrate ALDH1A-like genes encode cytosolic enzymes capable of metabolizing all-trans-retinaldehyde to retinoic acid which is a molecular 'signal' guiding vertebrate development and adipogenesis. Bioinformatic analyses of vertebrate and invertebrate genomes were undertaken using known ALDH1A1, ALDH1A2 and ALDH1A3 amino acid sequences. Comparative analyses of the corresponding human genes provided evidence for distinct modes of gene regulation and expression with putative transcription factor binding sites (TFBS), CpG islands and micro-RNA binding sites identified for the human genes. ALDH1A-like sequences were identified for all mammalian, bird, lizard and frog genomes examined, whereas fish genomes displayed a more restricted distribution pattern for ALDH1A1 and ALDH1A3 genes. The ALDH1A1 gene was absent in many bony fish genomes examined, with the ALDH1A3 gene also absent in the medaka and tilapia genomes. Multiple ALDH1A1-like genes were identified in mouse, rat and marsupial genomes. Vertebrate ALDH1A1, ALDH1A2 and ALDH1A3 subunit sequences were highly conserved throughout vertebrate evolution. Comparative amino acid substitution rates showed that mammalian ALDH1A2 sequences were more highly conserved than for the ALDH1A1 and ALDH1A3 sequences. Phylogenetic studies supported an hypothesis for ALDH1A2 as a likely primordial gene originating in invertebrate genomes and undergoing sequential gene duplication to generate two additional genes, ALDH1A1 and ALDH1A3, in most vertebrate genomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Genetic Polymorphisms of the Mitochondrial Aldehyde Dehydrogenase ALDH2 Gene in a Large Ethnic Hakka Population in Southern China.

    Science.gov (United States)

    Zhong, Zhixiong; Hou, Jingyuan; Li, Bin; Zhang, Qifeng; Li, Cunren; Liu, Zhidong; Yang, Min; Zhong, Wei; Zhao, Pingsen

    2018-04-06

    BACKGROUND Human mitochondrial aldehyde dehydrogenase 2 (ALDH2) plays a critical role in the detoxification of the ethanol metabolite acetaldehyde. The ALDH2*2 (rs671) gene variant is mainly absent among Europeans but is prevalent in populations in East Asia. The aim of this study was to investigate ALDH2*2 mutant alleles and genotype frequencies in the Hakka population of China. MATERIAL AND METHODS Between January 2016 and June 2017, 7,966 unrelated individuals were recruited into the study from the Hakka ethnic population residing in the Meizhou area of Guangdong Province, China, who provided venous blood samples. Genotyping of ALDH2 genotypes were determined using a gene chip platform and confirmed by DNA sequencing. RESULTS In the 7,966 individuals from the Hakka population of China in this study, the frequencies of the ALDH2 genotypes *1/*1, *1/*2 and *2/*2 were 52.03%, 39.67%, and 8.30%, respectively; 47.97% of the individuals were found to carry the ALDH2*2 genotype, which was associated with a deficiency in the aldehyde dehydrogenase (ALDH2) enzyme activity. The frequency of the ALDH2*2 allele was lower than that previously reported in the Japanese population but higher than that reported in other Oriental populations. CONCLUSIONS The findings of this study have provided new information on the ALDH2 gene polymorphisms in the Hakka ethnic population residing in the Meizhou area of Guangdong Province, China, including an understanding of the origin of the atypical ALDH2*2 allele. Also, the study findings may be relevant to the primary care of patients in China.

  3. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP+ -dependent succinic semialdehyde dehydrogenase.

    Science.gov (United States)

    Kopečná, Martina; Vigouroux, Armelle; Vilím, Jan; Končitíková, Radka; Briozzo, Pierre; Hájková, Eva; Jašková, Lenka; von Schwartzenberg, Klaus; Šebela, Marek; Moréra, Solange; Kopečný, David

    2017-10-01

    Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP + -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD + is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP + binding induces a conformational change of the loop carrying Arg-228, which seals the NADP + in the coenzyme cavity via its 2'-phosphate and α-phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg-121 and Arg-457, and a hydrogen bond with Tyr-296. While both arginine residues are pre-formed for substrate/product binding, Tyr-296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Characteristics and expression patterns of the aldehyde dehydrogenase (ALDH gene superfamily of foxtail millet (Setaria italica L..

    Directory of Open Access Journals (Sweden)

    Zhu Chen

    Full Text Available Recent genomic sequencing of the foxtail millet, an abiotic, stress-tolerant crop, has provided a great opportunity for novel gene discovery and functional analysis of this popularly-grown grass. However, few stress-mediated gene families have been studied. Aldehyde dehydrogenases (ALDHs comprise a gene superfamily encoding NAD (P +-dependent enzymes that play the role of "aldehyde scavengers", which indirectly detoxify cellular ROS and reduce the effect of lipid peroxidation meditated cellular toxicity under various environmental stresses. In the current paper, we identified a total of 20 ALDH genes in the foxtail millet genome using a homology search and a phylogenetic analysis and grouped them into ten distinct families based on their amino acid sequence identity. Furthermore, evolutionary analysis of foxtail millet reveals that both tandem and segmental duplication contributed significantly to the expansion of its ALDH genes. The exon-intron structures of members of the same family in foxtail millet or the orthologous genes in rice display highly diverse distributions of their exonic and intronic regions. Also, synteny analysis shows that the majority of foxtail millet and rice ALDH gene homologs exist in the syntenic blocks between the two, implying that these ALDH genes arose before the divergence of cereals. Semi-quantitative and real-time quantitative PCR data reveals that a few SiALDH genes are expressed in an organ-specific manner and that the expression of a number of foxtail millet ALDH genes, such as, SiALDH7B1, SiALDH12A1 and SiALDH18B2 are up-regulated by osmotic stress, cold, H2O2, and phytohormone abscisic acid (ABA. Furthermore, the transformation of SiALDH2B2, SiALDH10A2, SiALDH5F1, SiALDH22A1, and SiALDH3E2 into Escherichia coli (E.coli was able to improve their salt tolerance. Taken together, our results show that genome-wide identification characteristics and expression analyses provide unique opportunities for assessing

  5. Characteristics and expression patterns of the aldehyde dehydrogenase (ALDH) gene superfamily of foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Chen, Zhu; Chen, Ming; Xu, Zhao-shi; Li, Lian-cheng; Chen, Xue-ping; Ma, You-zhi

    2014-01-01

    Recent genomic sequencing of the foxtail millet, an abiotic, stress-tolerant crop, has provided a great opportunity for novel gene discovery and functional analysis of this popularly-grown grass. However, few stress-mediated gene families have been studied. Aldehyde dehydrogenases (ALDHs) comprise a gene superfamily encoding NAD (P) +-dependent enzymes that play the role of "aldehyde scavengers", which indirectly detoxify cellular ROS and reduce the effect of lipid peroxidation meditated cellular toxicity under various environmental stresses. In the current paper, we identified a total of 20 ALDH genes in the foxtail millet genome using a homology search and a phylogenetic analysis and grouped them into ten distinct families based on their amino acid sequence identity. Furthermore, evolutionary analysis of foxtail millet reveals that both tandem and segmental duplication contributed significantly to the expansion of its ALDH genes. The exon-intron structures of members of the same family in foxtail millet or the orthologous genes in rice display highly diverse distributions of their exonic and intronic regions. Also, synteny analysis shows that the majority of foxtail millet and rice ALDH gene homologs exist in the syntenic blocks between the two, implying that these ALDH genes arose before the divergence of cereals. Semi-quantitative and real-time quantitative PCR data reveals that a few SiALDH genes are expressed in an organ-specific manner and that the expression of a number of foxtail millet ALDH genes, such as, SiALDH7B1, SiALDH12A1 and SiALDH18B2 are up-regulated by osmotic stress, cold, H2O2, and phytohormone abscisic acid (ABA). Furthermore, the transformation of SiALDH2B2, SiALDH10A2, SiALDH5F1, SiALDH22A1, and SiALDH3E2 into Escherichia coli (E.coli) was able to improve their salt tolerance. Taken together, our results show that genome-wide identification characteristics and expression analyses provide unique opportunities for assessing the functional

  6. Comparative genomic study of ALDH gene superfamily in Gossypium: A focus on Gossypium hirsutum under salt stress.

    Directory of Open Access Journals (Sweden)

    Yating Dong

    Full Text Available Aldehyde dehydrogenases (ALDHs are a superfamily of enzymes which play important role in the scavenging of active aldehydes molecules. In present work, a comprehensive whole-genomic study of ALDH gene superfamily was carried out for an allotetraploid cultivated cotton species, G. hirsutum, as well as in parallel relative to their diploid progenitors, G. arboreum and G. raimondii. Totally, 30 and 58 ALDH gene sequences belong to 10 families were identified from diploid and allotetraploid cotton species, respectively. The gene structures among the members from same families were highly conserved. Whole-genome duplication and segmental duplication might be the major driver for the expansion of ALDH gene superfamily in G. hirsutum. In addition, the expression patterns of GhALDH genes were diverse across tissues. Most GhALDH genes were induced or repressed by salt stress in upland cotton. Our observation shed lights on the molecular evolutionary properties of ALDH genes in diploid cottons and their alloallotetraploid derivatives. It may be useful to mine key genes for improvement of cotton response to salt stress.

  7. A comparison of CRISPR/Cas9 and siRNA-mediated ALDH2 gene silencing in human cell lines.

    Science.gov (United States)

    Wang, Fei; Guo, Tao; Jiang, Hongmei; Li, Ruobi; Wang, Ting; Zeng, Ni; Dong, Guanghui; Zeng, Xiaowen; Li, Daochuan; Xiao, Yongmei; Hu, Qiansheng; Chen, Wen; Xing, Xiumei; Wang, Qing

    2018-06-01

    Gene knockdown and knockout using RNAi and CRISPR/Cas9 allow for efficient evaluation of gene function, but it is unclear how the choice of technology can influence the results. To compare the phenotypes obtained using siRNA and CRISPR/Cas9 technologies, aldehyde dehydrogenase 2 (ALDH2) was selected as an example. In this study, we constructed one HepG2 cell line with a homozygous mutation in the fifth exon of ALDH2 (ALDH2-KO1 cell) using the eukaryotic CRISPR/Cas9 expression system followed by the limited dilution method and one HepG2 cell line with different mutations in the ALDH2 gene (ALDH2-KO2 cell) using the lentivirus CRISPR/Cas9 system. Additionally, one ALDH2-knockdown (KD) HepG2 cell line was created using siRNA. The reproducibility of these methods was further verified in the HEK293FT cell line. We found that the mRNA expression level of ALDH2 was significantly decreased and the protein expression level of ALDH2 was completely abolished in the ALDH2-KO cell lines, but not in ALDH2-KD cells. Furthermore, the functional activity of ALDH2 was also markedly disrupted in the two ALDH2-KO cell lines compared with ALDH2-KD and wild-type cells. The lack of ALDH2 expression mediated by CRIPSR/Cas9 resulted in a more dramatic increase in the cellular susceptibility to chemical-induced reactive oxygen species generation, cytotoxicity, apoptosis, and inflammation, especially at low concentrations compared with ALDH2-KD and WT cells. Therefore, we consider the gene knockout cell line created by CRISPR/Cas9 to be a more useful tool for identifying the function of a gene.

  8. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    Science.gov (United States)

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Novel splice-site and missense mutations in the ALDH1A3 gene underlying autosomal recessive anophthalmia/microphthalmia.

    Science.gov (United States)

    Semerci, C Nur; Kalay, Ersan; Yıldırım, Cem; Dinçer, Tuba; Olmez, Akgün; Toraman, Bayram; Koçyiğit, Ali; Bulgu, Yunus; Okur, Volkan; Satıroğlu-Tufan, Lale; Akarsu, Nurten A

    2014-06-01

    This study aimed to identify the underlying genetic defect responsible for anophthalmia/microphthalmia. In total, two Turkish families with a total of nine affected individuals were included in the study. Affymetrix 250 K single nucleotide polymorphism genotyping and homozygosity mapping were used to identify the localisation of the genetic defect in question. Coding region of the ALDH1A3 gene was screened via direct sequencing. cDNA samples were generated from primary fibroblast cell cultures for expression analysis. Reverse transcriptase PCR (RT-PCR) analysis was performed using direct sequencing of the obtained fragments. The causative genetic defect was mapped to chromosome 15q26.3. A homozygous G>A substitution (c.666G>A) at the last nucleotide of exon 6 in the ALDH1A3 gene was identified in the first family. Further cDNA sequencing of ALDH1A3 showed that the c.666G>A mutation caused skipping of exon 6, which predicted in-frame loss of 43 amino acids (p.Trp180_Glu222del). A novel missense c.1398C>A mutation in exon 12 of ALDH1A3 that causes the substitution of a conserved asparagine by lysine at amino acid position 466 (p.Asn466Lys) was observed in the second family. No extraocular findings-except for nevus flammeus in one affected individual and a variant of Dandy-Walker malformation in another affected individual-were observed. Autistic-like behaviour and mental retardation were observed in three cases. In conclusion, novel ALDH1A3 mutations identified in the present study confirm the pivotal role of ALDH1A3 in human eye development. Autistic features, previously reported as an associated finding, were considered to be the result of social deprivation and inadequate parenting during early infancy in the presented families. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera).

    Science.gov (United States)

    Chen, Yao; Shen, Bin; Zhang, Junpeng; Jones, Gareth; He, Guimei

    2013-02-01

    Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.

  11. ALDH2(E487K) mutation increases protein turnover and promotes murine hepatocarcinogenesis.

    Science.gov (United States)

    Jin, Shengfang; Chen, Jiang; Chen, Lizao; Histen, Gavin; Lin, Zhizhong; Gross, Stefan; Hixon, Jeffrey; Chen, Yue; Kung, Charles; Chen, Yiwei; Fu, Yufei; Lu, Yuxuan; Lin, Hui; Cai, Xiujun; Yang, Hua; Cairns, Rob A; Dorsch, Marion; Su, Shinsan M; Biller, Scott; Mak, Tak W; Cang, Yong

    2015-07-21

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the liver removes toxic aldehydes including acetaldehyde, an intermediate of ethanol metabolism. Nearly 40% of East Asians inherit an inactive ALDH2*2 variant, which has a lysine-for-glutamate substitution at position 487 (E487K), and show a characteristic alcohol flush reaction after drinking and a higher risk for gastrointestinal cancers. Here we report the characterization of knockin mice in which the ALDH2(E487K) mutation is inserted into the endogenous murine Aldh2 locus. These mutants recapitulate essentially all human phenotypes including impaired clearance of acetaldehyde, increased sensitivity to acute or chronic alcohol-induced toxicity, and reduced ALDH2 expression due to a dominant-negative effect of the mutation. When treated with a chemical carcinogen, these mutants exhibit increased DNA damage response in hepatocytes, pronounced liver injury, and accelerated development of hepatocellular carcinoma (HCC). Importantly, ALDH2 protein levels are also significantly lower in patient HCC than in peritumor or normal liver tissues. Our results reveal that ALDH2 functions as a tumor suppressor by maintaining genomic stability in the liver, and the common human ALDH2 variant would present a significant risk factor for hepatocarcinogenesis. Our study suggests that the ALDH2*2 allele-alcohol interaction may be an even greater human public health hazard than previously appreciated.

  12. Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Missihoun, Tagnon D; Willée, Eva; Guegan, Jean-Paul; Berardocco, Solenne; Shafiq, Muhammad R; Bouchereau, Alain; Bartels, Dorothea

    2015-09-01

    Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A. thaliana. We analysed changes in metabolite contents of transgenic plants in comparison with the wild type. Using exogenous or endogenous choline, our results indicated that ALDH10A8 and ALDH10A9 are involved in the synthesis of glycine betaine in Arabidopsis. Choline availability seems to be a factor limiting glycine betaine synthesis. Moreover, the contents of diverse metabolites including sugars (glucose and fructose) and amino acids were altered in fully developed transgenic plants compared with the wild type. The plant metabolic response to salt and the salt stress tolerance were impaired only in young transgenic plants, which exhibited a delayed growth of the seedlings early after germination. Our results suggest that a balanced expression of the betaine aldehyde dehydrogenase genes is important for early growth of A. thaliana seedlings and for salt stress mitigation in young seedlings. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. ADH1B, ALDH2, GSTM1 and GSTT1 Gene Polymorphic Frequencies among Alcoholics and Controls in the Arcadian

    Science.gov (United States)

    Mansoori, Abdul Anvesh; Jain, Subodh Kumar

    2018-03-27

    Background: Epidemiological research has highlighted the global burden of primary liver cancer cases due to alcohol consumption, even in a low consumption country like India. Alcohol detoxification is governed by ADH1B, ALDH2, GSTM1 and GSTT1 genes that encode functional enzymes which are coordinated with each other to remove highly toxic metabolites i.e. acetaldehyde as well as reactive oxygen species generated through detoxification processes. Some communities in the population appears to be at greater risk for development of the liver cancer due to genetic predispositions. Methods: The aim of this study was to screen the arcadian population of central India in order to investigate and compare the genotype distribution and allele frequencies of alcohol metabolizing genes (ADH1B, ALDH2, GSTM1 and GSTT1) in both alcoholic (N=121) and control (N=145) healthy subjects. The gene polymorphism analysis was conducted using PCR and RFLP methods. Results: The allele frequency of ALDH2 *1 was 0.79 and of ALDH2*2 was 0.21 (OR:1.12; CI (95%): 0.74-1.71). The null allele frequency for GSTM1 was 0.28 (OR:0.85; CI (95%): 0.50-1.46) and for GSTT1 was 0.20 (OR:1.93; CI (95%): 1.05-3.55). No gene polymorphism for ADH1B was not observed. The total prevalence of polymorphisms was 3.38% for ALDH2, GSTM1 and GSTT1. Conclusion: The results of this study suggested that individuals of the Central India population under study are at risk for liver disorders due to ALDH2, GSTM1 and GSTT1 gene polymorphisms. This results may have significance for prevention of alcohol dependence, alcoholic liver disorders and the likelihood of liver cancer. Creative Commons Attribution License

  14. ALDH16A1 is a novel non-catalytic enzyme that may be involved in the etiology of gout via protein-protein interactions with HPRT1.

    Science.gov (United States)

    Vasiliou, Vasilis; Sandoval, Monica; Backos, Donald S; Jackson, Brian C; Chen, Ying; Reigan, Philip; Lanaspa, Miguel A; Johnson, Richard J; Koppaka, Vindhya; Thompson, David C

    2013-02-25

    Gout, a common form of inflammatory arthritis, is strongly associated with elevated uric acid concentrations in the blood (hyperuricemia). A recent study in Icelanders identified a rare missense single nucleotide polymorphism (SNP) in the ALDH16A1 gene, ALDH16A1*2, to be associated with gout and serum uric acid levels. ALDH16A1 is a novel and rather unique member of the ALDH superfamily in relation to its gene and protein structures. ALDH16 genes are present in fish, amphibians, protista, bacteria but absent from archaea, fungi and plants. In most mammalian species, two ALDH16A1 spliced variants (ALDH16A1, long form and ALDH16A1_v2, short form) have been identified and both are expressed in HepG-2, HK-2 and HK-293 human cell lines. The ALDH16 proteins contain two ALDH domains (as opposed to one in the other members of the superfamily), four transmembrane and one coiled-coil domains. The active site of ALDH16 proteins from bacterial, frog and lower animals contain the catalytically important cysteine residue (Cys-302); this residue is absent from the mammalian and fish orthologs. Molecular modeling predicts that both the short and long forms of human ALDH16A1 protein would lack catalytic activity but may interact with the hypoxanthine-guanine phosphoribosyltransferase (HPRT1) protein, a key enzyme involved in uric acid metabolism and gout. Interestingly, such protein-protein interactions with HPRT1 are predicted to be impaired for the long or short forms of ALDH16A1*2. These results lead to the intriguing possibility that association between ALDH16A1 and HPRT1 may be required for optimal HPRT activity with disruption of this interaction possibly contributing to the hyperuricemia seen in ALDH16A1*2 carriers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Whole-Exome Sequencing in a South American Cohort Links ALDH1A3, FOXN1 and Retinoic Acid Regulation Pathways to Autism Spectrum Disorders.

    Science.gov (United States)

    Moreno-Ramos, Oscar A; Olivares, Ana María; Haider, Neena B; de Autismo, Liga Colombiana; Lattig, María Claudia

    2015-01-01

    Autism spectrum disorders (ASDs) are a range of complex neurodevelopmental conditions principally characterized by dysfunctions linked to mental development. Previous studies have shown that there are more than 1000 genes likely involved in ASD, expressed mainly in brain and highly interconnected among them. We applied whole exome sequencing in Colombian-South American trios. Two missense novel SNVs were found in the same child: ALDH1A3 (RefSeq NM_000693: c.1514T>C (p.I505T)) and FOXN1 (RefSeq NM_003593: c.146C>T (p.S49L)). Gene expression studies reveal that Aldh1a3 and Foxn1 are expressed in ~E13.5 mouse embryonic brain, as well as in adult piriform cortex (PC; ~P30). Conserved Retinoic Acid Response Elements (RAREs) upstream of human ALDH1A3 and FOXN1 and in mouse Aldh1a3 and Foxn1 genes were revealed using bioinformatic approximation. Chromatin immunoprecipitation (ChIP) assay using Retinoid Acid Receptor B (Rarb) as the immunoprecipitation target suggests RA regulation of Aldh1a3 and Foxn1 in mice. Our results frame a possible link of RA regulation in brain to ASD etiology, and a feasible non-additive effect of two apparently unrelated variants in ALDH1A3 and FOXN1 recognizing that every result given by next generation sequencing should be cautiously analyzed, as it might be an incidental finding.

  16. ALDH1A3: A Marker of Mesenchymal Phenotype in Gliomas Associated with Cell Invasion.

    Directory of Open Access Journals (Sweden)

    Wenlong Zhang

    Full Text Available Aldehyde dehydrogenases (ALDH is a family of enzymes including 19 members. For now, ALDH activity had been wildly used as a marker of cancer stem cells (CSCs. But biological functions of relevant isoforms and their clinical applications are still controversial. Here, we investigate the clinical significance and potential function of ALDH1A3 in gliomas. By whole-genome transcriptome microarray and mRNA sequencing analysis, we compared the expression of ALDH1A3 in high- and low- grade gliomas as well as different molecular subtypes. Microarray analysis was performed to identify the correlated genes of ALDH1A3. We further used Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways analysis to explore the biological function of ALDH1A3. Finally, by mRNA knockdown we revealed the relationship between ALDH1A3 and the ability of tumor invasion. ALDH1A3 overexpression was significantly associated with high grade as well as the higher mortality of gliomas in survival analysis. ALDH1A3 was characteristically highly expressed in Mesenchymal (Mes subtype gliomas. Moreover, we found that ALDH1A3 was most relevant to extracellular matrix organization and cell adhesion biological process, and the ability of tumor invasion was suppressed after ALDH1A3 knockdown in vitro. In conclusion, ALDH1A3 can serve as a novel marker of Mes phenotype in gliomas with potential clinical prognostic value. The expression of ALDH1A3 is associated with tumor cell invasion.

  17. Trends in gastrectomy and ADH1B and ALDH2 genotypes in Japanese alcoholic men and their gene-gastrectomy, gene-gene and gene-age interactions for risk of alcoholism.

    Science.gov (United States)

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2013-01-01

    The life-time drinking profiles of Japanese alcoholics have shown that gastrectomy increases susceptibility to alcoholism. We investigated the trends in gastrectomy and alcohol dehydrogenase-1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) genotypes and their interactions in alcoholics. This survey was conducted on 4879 Japanese alcoholic men 40 years of age or older who underwent routine gastrointestinal endoscopic screening during the period 1996-2010. ADH1B/ALDH2 genotyping was performed in 3702 patients. A history of gastrectomy was found in 508 (10.4%) patients. The reason for the gastrectomy was peptic ulcer in 317 patients and gastric cancer in 187 patients. The frequency of gastrectomy had gradually decreased from 13.3% in 1996-2000 to 10.5% in 2001-2005 and to 7.8% in 2006-2010 (P alcoholism-susceptibility genotypes, ADH1B*1/*1 and ALDH2*1/*1, modestly but significantly tended not to occur in the same individual (P = 0.026). The frequency of ADH1B*1/*1 decreased with ascending age groups. The high frequency of history of gastrectomy suggested that gastrectomy is still a risk factor for alcoholism, although the percentage decreased during the period. The alcoholism-susceptibility genotype ADH1B*1/*1 was less frequent in the gastrectomy group, suggesting a competitive gene-gastrectomy interaction for alcoholism. A gene-gene interaction and gene-age interactions regarding the ADH1B genotype were observed.

  18. Identification of rs671, a common variant of ALDH2, as a gout susceptibility locus.

    Science.gov (United States)

    Sakiyama, Masayuki; Matsuo, Hirotaka; Nakaoka, Hirofumi; Yamamoto, Ken; Nakayama, Akiyoshi; Nakamura, Takahiro; Kawai, Sayo; Okada, Rieko; Ooyama, Hiroshi; Shimizu, Toru; Shinomiya, Nariyoshi

    2016-05-16

    Gout is a common disease resulting from hyperuricemia. Recently, a genome-wide association study identified an association between gout and a single nucleotide polymorphism (SNP) rs2188380, located on an intergenic region between MYL2 and CUX2 on chromosome 12. However, other genes around rs2188380 could possibly be gout susceptibility genes. Therefore, we performed a fine-mapping study of the MYL2-CUX2 region. From 8,595 SNPs in the MYL2-CUX2 region, 9 tag SNPs were selected, and genotyping of 1,048 male gout patients and 1,334 male controls was performed by TaqMan method. Eight SNPs showed significant associations with gout after Bonferroni correction. rs671 (Glu504Lys) of ALDH2 had the most significant association with gout (P = 1.7 × 10(-18), odds ratio = 0.53). After adjustment for rs671, the other 8 SNPs no longer showed a significant association with gout, while the significant association of rs671 remained. rs671 has been reportedly associated with alcohol drinking behavior, and it is well-known that alcohol drinking elevates serum uric acid levels. These data suggest that rs671, a common functional SNP of ALDH2, is a genuine gout-associated SNP in the MYL2-CUX2 locus and that "A" allele (Lys) of rs671 plays a protective role in the development of gout.

  19. ALDH2 and ADH1B interactions in retrospective reports of low-dose reactions and initial sensitivity to alcohol in Asian American college students.

    Science.gov (United States)

    Luczak, Susan E; Pandika, Danielle; Shea, Shoshana H; Eng, Mimy Y; Liang, Tiebing; Wall, Tamara L

    2011-07-01

    A mechanistic model has been proposed for how alcohol-metabolizing gene variants protect individuals from the development of alcohol use disorders, with heightened sensitivity to alcohol being an early step (endophenotype) in this model. This study was designed to determine whether possession of 2 alcohol-metabolizing genes variations, the aldehyde dehydrogenase ALDH2*2 allele and the alcohol dehydrogenase ADH1B*2 allele, was associated with self-reported sensitivity to alcohol at low doses and at initial use. Asian-American college students (N=784) of Chinese and Korean descent were genotyped at the ALDH2 and ADH1B loci and assessed for lifetime alcohol symptoms following 1 or 2 drinks and level of response to alcohol during the first 5 lifetime drinking episodes. Participants who had an ALDH2*2 allele were more likely to report experiencing all 6 low-dose symptoms and having heightened initial response to alcohol. An interaction was found between ALDH2*2 and ADH1B*2, with ADH1B*2 being associated with heightened self-reported sensitivity to alcohol only in individuals who also possessed 1 ALDH2*2 allele. These findings suggest the effects of ADH1B*2 may be felt more strongly in Asians who already have some heightened sensitivity to alcohol from possessing 1 ALDH2*2 allele, but who are not too sensitized to alcohol from possessing 2 ALDH2*2 alleles. These results offer additional insight into the discrepant findings that have been reported in the literature for the role of ADH1B*2 in response to alcohol and the development of alcohol-related problems. Copyright © 2011 by the Research Society on Alcoholism.

  20. Interaction between ALDH2*1*1 and DRD2/ANKK1 TaqI A1A1 genes may be associated with antisocial personality disorder not co-morbid with alcoholism.

    Science.gov (United States)

    Lu, Ru-Band; Lee, Jia-Fu; Huang, San-Yuan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Kuo, Po-Hsiu; Chen, Shiou-Lan; Chen, Shih-Heng; Chu, Chun-Hsien; Lin, Wei-Wen; Wu, Pei-Lin; Ko, Huei-Chen

    2012-09-01

    Previous studies on acetaldehyde dehydrogenase 2 (ALDH2) focused on drinking behavior or alcoholism because the ALDH2*2 allele protects against the risk of developing alcoholism. The mechanism provides that the ALDH2 gene's protective effect is also involved in dopamine metabolism. The interaction of the ALDH2 gene with neurotransmitters, such as dopamine, is suggested to be related to alcoholism. Because alcoholism is often co-morbid with antisocial personality disorder (ASPD), previous association studies on antisocial alcoholism cannot differentiate whether those genes relate to ASPD with alcoholism or ASPD only. This study examined the influence of the interaction effect of the ALDH2*1*1, *1*2 or *2*2 polymorphisms with the dopamine 2 receptor (DRD2) Taq I polymorphism on ASPD. Our 541 Han Chinese male participants were classified into three groups: antisocial alcoholism (ASPD co-morbid with alcohol dependence, antisocial ALC; n = 133), ASPD without alcoholism (ASPD not co-morbid with alcohol dependence, antisocial non-ALC; n = 164) and community controls (healthy volunteers from the community; n = 244). Compared with healthy controls, individuals with the DRD2 A1/A1 and the ALDH2*1/*1 genotypes were at a 5.39 times greater risk for antisocial non-ALC than were those with other genotypes. Our results suggest that the DRD2/ANKK1 and ALDH2 genes interacted in the antisocial non-ALC group; a connection neglected in previous studies caused by not separating antisocial ALC from ASPD. Our study made this distinction and showed that these two genes may be associated ASPD without co-morbid alcoholism. © 2010 The Authors, Addiction Biology © 2010 Society for the Study of Addiction.

  1. ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm.

    Science.gov (United States)

    Yahyavi, Mani; Abouzeid, Hana; Gawdat, Ghada; de Preux, Anne-Sophie; Xiao, Tong; Bardakjian, Tanya; Schneider, Adele; Choi, Alex; Jorgenson, Eric; Baier, Herwig; El Sada, Mohamad; Schorderet, Daniel F; Slavotinek, Anne M

    2013-08-15

    The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew-Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model systems.

  2. A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred.

    Science.gov (United States)

    Mory, Adi; Ruiz, Francesc X; Dagan, Efrat; Yakovtseva, Evgenia A; Kurolap, Alina; Parés, Xavier; Farrés, Jaume; Gershoni-Baruch, Ruth

    2014-03-01

    Nine affected individuals with isolated anophthalmia/microphthalmia from a large Muslim-inbred kindred were investigated. Assuming autosomal-recessive mode of inheritance, whole-genome linkage analysis, on DNA samples from four affected individuals, was undertaken. Homozygosity mapping techniques were employed and a 1.5-Mbp region, homozygous in all affected individuals, was delineated. The region contained nine genes, one of which, aldehyde dehydrogenase 1 (ALDH1A3), was a clear candidate. This gene seems to encode a key enzyme in the formation of a retinoic-acid gradient along the dorsoventral axis during an early eye development and the development of the olfactory system. Sanger sequence analysis revealed a missense mutation, causing a substitution of valine (Val) to methionine (Met) at position 71. Analyzing the p.Val71Met missense mutation using standard open access software (MutationTaster online, PolyPhen, SIFT/PROVEAN) predicts this variant to be damaging. Enzymatic activity, studied in vitro, showed no changes between the mutated and the wild-type ALDH1A3 protein.

  3. Effects of ALDH2*2 on Alcohol Problem Trajectories of Asian American College Students

    Science.gov (United States)

    Luczak, Susan E.; Yarnell, Lisa M.; Prescott, Carol A.; Myers, Mark G.; Liang, Tiebing; Wall, Tamara L.

    2014-01-01

    The variant aldehyde dehydrogenase allele, ALDH2*2, consistently has been associated with protection against alcohol dependence, but the mechanism underlying this process is not known. This study examined growth trajectories of alcohol consumption (frequency, average quantity, binge drinking, maximum drinks) and problems over the college years and then tested whether the ALDH2 genotype mediated or moderated the relationship between alcohol consumption and problems. Asian American college students (N = 433) reported on their drinking behavior in their first year of college and then annually for 3 consecutive years. Alcohol consumption and problems increased over the college years for both those with and without ALDH2*2, but having an ALDH2*2 allele was associated with less of an increase in problems over time. A mediation model was supported, with ALDH2*2 group differences in problems fully accounted for by differences in frequency of binge drinking. Findings also supported a moderation hypothesis: All four alcohol consumption variables were significant predictors of subsequent alcohol problems, but these relationships were not as strong in those with ALDH2*2 as in those without ALDH2*2. Our findings suggest that the interplay between ALDH2*2 and drinking-related problems is complex, involving both mediation and moderation processes that reduce the likelihood of developing problems via reduction of heavy drinking as well as by altering the relationship between alcohol consumption and problems. Results of this longitudinal study provide evidence that what seems like a relatively straightforward effect of a diminished ability to metabolize alcohol on drinking behavior is actually dependent on behavior and developmental stage. PMID:24661165

  4. ALDH2 Inhibition Potentiates High Glucose Stress-Induced Injury in Cultured Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Guodong Pan

    2016-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH gene superfamily consists of 19 isozymes. They are present in various organs and involved in metabolizing aldehydes that are biologically generated. For instance, ALDH2, a cardiac mitochondrial ALDH isozyme, is known to detoxify 4-hydroxy-2-nonenal, a reactive aldehyde produced upon lipid peroxidation in diabetic conditions. We hypothesized that inhibition of ALDH leads to the accumulation of unmetabolized 4HNE and consequently exacerbates injury in cells subjected to high glucose stress. H9C2 cardiomyocyte cell lines were pretreated with 10 μM disulfiram (DSF, an inhibitor of ALDH2 or vehicle (DMSO for 2 hours, and then subjected to high glucose stress {33 mM D-glucose (HG or 33 mM D-mannitol as an osmotic control (Ctrl} for 24 hrs. The decrease in ALDH2 activity with DSF pretreatment was higher in HG group when compared to Ctrl group. Increased 4HNE adduct formation with DSF pretreatment was higher in HG group compared to Ctrl group. Pretreatment with DSF leads to potentiated HG-induced cell death in cultured H9C2 cardiomyocytes by lowering mitochondrial membrane potential. Our results indicate that ALDH2 activity is important in preventing high glucose induced cellular dysfunction.

  5. Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells.

    Science.gov (United States)

    Liu, Jing; Xiao, Zhijie; Wong, Sunny Kit-Man; Tin, Vicky Pui-Chi; Ho, Ka-Yan; Wang, Junwen; Sham, Mai-Har; Wong, Maria Pik

    2013-10-01

    Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.

  6. Association between ALDH 2 Glu504Lys polymorphism and ...

    African Journals Online (AJOL)

    : a meta-analysis. Jiang Xinhua, Zhao Yanfei. Abstract. Background: The findings from studies on the relationship between aldehyde dehydrogenases(ALDH) gene Glu504Lys polymorphism and colorectal cancer(CRC) were inconsistent.

  7. Co-transforming bar and CsALDH Genes Enhanced Resistance to Herbicide and Drought and Salt Stress in Transgenic Alfalfa (Medicago sativa L.)

    Science.gov (United States)

    Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Hu, Xiaowen; Meng, Xuanchen; Luo, Kai; Zhang, Jiyu; Wang, Yanrong

    2015-01-01

    Drought and high salinity are two major abiotic factors that restrict the productivity of alfalfa. By application of the Agrobacterium-mediated transformation method, an oxidative responsive gene, CsALDH12A1, from the desert grass Cleistogenes songorica together with the bar gene associated with herbicide resistance, were co-transformed into alfalfa (Medicago sativa L.). From the all 90 transformants, 16 were positive as screened by spraying 1 mL L-1 10% Basta solution and molecularly diagnosis using PCR. Real-time PCR analysis indicated that drought and salt stress induced high CsALDH expression in the leaves of the transgenic plants. The CsALDH expression levels under drought (15 d) and salt stress (200 mM NaCl) were 6.11 and 6.87 times higher than in the control plants, respectively. In comparison to the WT plants, no abnormal phenotypes were observed among the transgenic plants, which showed significant enhancement of tolerance to 15 d of drought and 10 d of salinity treatment. Evaluation of the physiological and biochemical indices during drought and salt stress of the transgenic plants revealed relatively lower Na+ content and higher K+ content in the leaves relative to the WT plants, a reduction of toxic on effects and maintenance of osmotic adjustment. In addition, the transgenic plants could maintain a higher relative water content level, higher shoot biomass, fewer changes in the photosystem, decreased membrane injury, and a lower level of osmotic stress. These results indicate that the co-expression of the introduced bar and CsALDH genes enhanced the herbicide, drought and salt tolerance of alfalfa and therefore can potentially be used as a novel genetic resource for the future breeding programs to develop new cultivars. PMID:26734025

  8. Newborn serum retinoic acid level is associated with variants of genes in the retinol metabolism pathway.

    Science.gov (United States)

    Manolescu, Daniel C; El-Kares, Reyhan; Lakhal-Chaieb, Lajmi; Montpetit, Alexandre; Bhat, Pangala V; Goodyer, Paul

    2010-06-01

    Retinoic acid (RA) is a critical regulator of gene expression during embryonic development. In rodents, moderate maternal vitamin A deficiency leads to subtle morphogenetic defects and inactivation of RA pathway genes causes major disturbances of embryogenesis. In this study, we quantified RA in umbilical cord blood of 145 healthy full-term Caucasian infants from Montreal. Sixty seven percent of values were ROL). However, we found that the (A) allele of the rs12591551 single nucleotide polymorphism (SNP) in the ALDH1A2 gene (ALDH1A2rs12591551(A)), occurring in 19% of newborns, was associated with 2.5-fold higher serum RA levels. ALDH1A2 encodes retinaldehyde dehydrogenase (RALDH) 2, which synthesizes RA in fetal tissues. We also found that homozygosity for the (A) allele of the rs12724719 SNP in the CRABP2 gene (CRABP2rs12724719(A/A)) was associated with 4.4-fold increase in umbilical cord serum RA. CRABP2 facilitates RA binding to its cognate receptor complex and transfer to the nucleus. We hypothesize that individual variation in RA pathway genes may account for subtle variations in RA-dependent human embryogenesis.

  9. The rarity of ALDH(+) cells is the key to separation of normal versus leukemia stem cells by ALDH activity in AML patients.

    Science.gov (United States)

    Hoang, Van T; Buss, Eike C; Wang, Wenwen; Hoffmann, Isabel; Raffel, Simon; Zepeda-Moreno, Abraham; Baran, Natalia; Wuchter, Patrick; Eckstein, Volker; Trumpp, Andreas; Jauch, Anna; Ho, Anthony D; Lutz, Christoph

    2015-08-01

    To understand the precise disease driving mechanisms in acute myeloid leukemia (AML), comparison of patient matched hematopoietic stem cells (HSC) and leukemia stem cells (LSC) is essential. In this analysis, we have examined the value of aldehyde dehydrogenase (ALDH) activity in combination with CD34 expression for the separation of HSC from LSC in 104 patients with de novo AML. The majority of AML patients (80 out of 104) had low percentages of cells with high ALDH activity (ALDH(+) cells; cells (≥1.9%; ALDH-numerous AML). In patients with ALDH-rare AML, normal HSC could be separated by their CD34(+) ALDH(+) phenotype, whereas LSC were exclusively detected among CD34(+) ALDH(-) cells. For patients with ALDH-numerous AML, the CD34(+) ALDH(+) subset consisted mainly of LSC and separation from HSC was not feasible. Functional analyses further showed that ALDH(+) cells from ALDH-numerous AML were quiescent, refractory to ARA-C treatment and capable of leukemic engraftment in a xenogenic mouse transplantation model. Clinically, resistance to chemotherapy and poor long-term outcome were also characteristic for patients with ALDH-numerous AML providing an additional risk-stratification tool. The difference in spectrum and relevance of ALDH activity in the putative LSC populations demonstrates, in addition to phenotypic and genetic, also functional heterogeneity of leukemic cells and suggests divergent roles for ALDH activity in normal HSC versus LSC. By acknowledging these differences our study provides a new and useful tool for prospective identification of AML cases in which separation of HSC from LSC is possible. © 2014 UICC.

  10. Characterization of the first knock-out aldh7a1 zebrafish model for pyridoxine-dependent epilepsy using CRISPR-Cas9 technology.

    Science.gov (United States)

    Zabinyakov, Nikita; Bullivant, Garrett; Cao, Feng; Fernandez Ojeda, Matilde; Jia, Zheng Ping; Wen, Xiao-Yan; Dowling, James J; Salomons, Gajja S; Mercimek-Andrews, Saadet

    2017-01-01

    Pyridoxine dependent epilepsy (PDE) is caused by likely pathogenic variants in ALDH7A1 (PDE-ALDH7A1) and inherited autosomal recessively. Neurotoxic alpha-amino adipic semialdehyde (alpha-AASA), piperideine 6-carboxylate and pipecolic acid accumulate in body fluids. Neonatal or infantile onset seizures refractory to anti-epileptic medications are clinical features. Treatment with pyridoxine, arginine and lysine-restricted diet does not normalize neurodevelopmental outcome or accumulation of neurotoxic metabolites. There is no animal model for high throughput drug screening. For this reason, we developed and characterized the first knock-out aldh7a1 zebrafish model using CRISPR-Cas9 technology. Zebrafish aldh7a1 mutants were generated by using a vector free method of CRISPR-Cas9 mutagenesis. Genotype analysis of aldh7a1 knock-out zebrafish was performed by high resolution melt analysis, direct sequencing and QIAxcel system. Electroencephalogram was performed. Alpha-AASA, piperideine 6-carboxylate and pipecolic acid, were measured by liquid chromatography-tandem mass spectrometry. Our knock-out aldh7a1 zebrafish has homozygous 5 base pair (bp) mutation in ALDH7A1. Knock-out aldh7a1 embryos have spontaneous rapid increase in locomotion and a rapid circling swim behavior earliest 8-day post fertilization (dpf). Electroencephalogram revealed large amplitude spike discharges compared to wild type. Knock-out aldh7a1 embryos have elevated alpha-AASA, piperideine 6-carboxylate and pipecolic acid compared to wild type embryos at 3 dpf. Knock-out aldh7a1 embryos showed no aldh7a1 protein by western blot compared to wild type. Our knock-out aldh7a1 zebrafish is a well characterized model for large-scale drug screening using behavioral and biochemical features and accurately recapitulates the human PDE-ALDH7A1 disease.

  11. Aldehyde Dehydrogenase-2 (ALDH2) Ameliorates Chronic Alcohol Ingestion-Induced Myocardial Insulin Resistance and Endoplasmic Reticulum Stress

    OpenAIRE

    Li, Shi-Yan; Gilbert, Sara A.B.; Li, Qun; Ren, Jun

    2009-01-01

    Chronic alcohol intake leads to insulin resistance and alcoholic cardiomyopathy, which appears to be a result of the complex interaction between genes and environment. This study was designed to examine the impact of aldehyde dehydrogenase-2 (ALDH2) transgenic overexpression on alcohol-induced insulin resistance and myocardial injury. ALDH2 transgenic mice were produced using chicken β-actin promoter. Wild-type FVB and ALDH2 mice were fed a 4% alcohol or control diet for 12 wks. Cell shorteni...

  12. ALDH1A3 mutations cause recessive anophthalmia and microphthalmia.

    Science.gov (United States)

    Fares-Taie, Lucas; Gerber, Sylvie; Chassaing, Nicolas; Clayton-Smith, Jill; Hanein, Sylvain; Silva, Eduardo; Serey, Margaux; Serre, Valérie; Gérard, Xavier; Baumann, Clarisse; Plessis, Ghislaine; Demeer, Bénédicte; Brétillon, Lionel; Bole, Christine; Nitschke, Patrick; Munnich, Arnold; Lyonnet, Stanislas; Calvas, Patrick; Kaplan, Josseline; Ragge, Nicola; Rozet, Jean-Michel

    2013-02-07

    Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Science.gov (United States)

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  14. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  15. Mutations in ALDH1A3 represent a frequent cause of microphthalmia/anophthalmia in consanguineous families.

    Science.gov (United States)

    Abouzeid, Hana; Favez, Tatiana; Schmid, Angélique; Agosti, Céline; Youssef, Mohammed; Marzouk, Iman; El Shakankiry, Nihal; Bayoumi, Nader; Munier, Francis L; Schorderet, Daniel F

    2014-08-01

    Anophthalmia or microphthalmia (A/M), characterized by absent or small eye, can be unilateral or bilateral and represent developmental anomalies due to the mutations in several genes. Recently, mutations in aldehyde dehydrogenase family 1, member A3 (ALDH1A3) also known as retinaldehyde dehydrogenase 3, have been reported to cause A/M. Here, we screened a cohort of 75 patients with A/M and showed that mutations in ALDH1A3 occurred in six families. Based on this series, we estimate that mutations in ALDH1A3 represent a major cause of A/M in consanguineous families, and may be responsible for approximately 10% of the cases. Screening of this gene should be performed in a first line of investigation, together with SOX2. © 2014 WILEY PERIODICALS, INC.

  16. Characterization of polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 and relationship to the alcoholism in a Colombian population.

    Science.gov (United States)

    Méndez, Claudia; Rey, Mauricio

    2015-12-30

    Identify and characterize polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 in a Colombian population residing in the city of Bogotá and determine its possible relationship to the alcoholism. ADH2, ADH3, ALDH2, and CYP2E1 genotypes a population of 148 individuals with non-problematic alcohol and 65 individuals with alcoholism were determined with TaqMan probes and PCR-RFLP. DNA was obtained from peripheral blood white cells. Significant difference was found in family history of alcoholism and use of other psychoactive substances to compare alcoholics with controls. When allelic frequencies for each category (gender) were considered, frequency of A2 allele carriers in ADH2 was found higher in male patients than controls. In women, the relative frequency for c1 allele in CYP2E1 was lower in controls than alcoholics. The ALDH2 locus is monomorphic. No significant differences in allele distributions of the loci examined to compare two populations were observed, however when stratifying the same trend was found that these differences tended to be significant. This study allows us to conclude the positive association between family history of alcoholism and alcoholism suggesting that there is a favourable hereditary predisposition. Since substance dependence requires interaction of multiple genes, the combination of genotypes ADH2 * 2, CYP2E1 * 1 combined with genotype homozygous ALDH2 * 1 found in this study could be leading to the population to a potential risk to alcoholism.

  17. ALDH1A2 (RALDH2 genetic variation in human congenital heart disease

    Directory of Open Access Journals (Sweden)

    Mesquita Sonia MF

    2009-11-01

    ALDH1A2 genetic variation is present in TOF patients, suggesting a possible causal role for this gene in rare cases of human CHD, but does not support the hypothesis that variation at the ALDH1A2 locus is a significant modifier of the risk for CHD in humans.

  18. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice.

    Science.gov (United States)

    Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A; Stumpf, Sina K; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine

    2016-01-01

    Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions.

  19. Effects of Worldwide Population Subdivision on ALDH2 Linkage Disequilibrium

    OpenAIRE

    Peterson, Raymond J.; Goldman, David; Long, Jeffrey C.

    1999-01-01

    The effect of human population subdivision on linkage disequilibrium has previously been studied for unlinked genes. However, no study has focused on closely linked polymorphisms or formally partitioned linkage disequilibrium within and among worldwide populations. With an emphasis on population subdivision, the goal of this paper is to investigate the causes of linkage disequilibrium in ALDH2, the gene that encodes aldehyde dehydrogenase 2. Haplotypes for 756 people from 17 populations acros...

  20. ALDH2*2 and peer drinking in East Asian college students.

    Science.gov (United States)

    O'Shea, Taryn; Thomas, Nathaniel; Webb, Bradley Todd; Dick, Danielle M; Kendler, Kenneth S; Chartier, Karen G

    2017-11-01

    The ALDH2*2 allele (A-allele) at rs671 is more commonly carried by Asians and is associated with alcohol-related flushing, a strong adverse reaction to alcohol that is protective against drinking. Social factors, such as having friends who binge drink, also contribute to drinking in Asian youth. This study examined the interplay between ALDH2*2, peer drinking, and alcohol consumption in college students. We hypothesized that the relationship between ALDH2*2 and standard grams of ethanol per month would vary based on the level of peer drinking. Subjects (N = 318, 63.25% female) were East Asian college students in the United States who reported drinking alcohol. Data were from the freshman year of a university survey that included a saliva DNA sample. ALDH2*2 status was coded ALDH2*2(+) (A/G and A/A genotypes) and ALDH2*2(-) (G/G genotype). Peer drinking was students' perception of how many of their friends "got drunk". Main effects of ALDH2*2(-) and having more friends who got drunk were associated with greater alcohol consumption. The ALDH2*2 × peer drunkenness interaction showed a stronger positive association with alcohol consumption for ALDH2*2(-) versus ALDH2*2(+) at increasing levels of peer drunkenness. Follow-up comparisons within each peer drunkenness level identified significantly higher alcohol consumption for ALDH2*2(-) compared to ALDH2*2(+) at the all friends got drunk level. There was evidence of a stronger effect for ALDH2*2(-) compared to ALDH2*2(+) with greater alcohol use when students were more exposed to peer drinking. Findings contribute to a growing literature on the interrelationships between genetic influences and more permissive environments for alcohol consumption.

  1. ALDH2 restores exhaustive exercise-induced mitochondrial dysfunction in skeletal muscle

    International Nuclear Information System (INIS)

    Zhang, Qiuping; Zheng, Jianheng; Qiu, Jun; Wu, Xiahong; Xu, Yangshuo; Shen, Weili; Sun, Mengwei

    2017-01-01

    Background: Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is highly expressed in heart and skeletal muscles, and is the major enzyme that metabolizes acetaldehyde and toxic aldehydes. The cardioprotective effects of ALDH2 during cardiac ischemia/reperfusion injury have been recognized. However, less is known about the function of ALDH2 in skeletal muscle. This study was designed to evaluate the effect of ALDH2 on exhaustive exercise-induced skeletal muscle injury. Methods: We created transgenic mice expressing ALDH2 in skeletal muscles. Male wild-type C57/BL6 (WT) and ALDH2 transgenic mice (ALDH2-Tg), 8-weeks old, were challenged with exhaustive exercise for 1 week to induce skeletal muscle injury. Animals were sacrificed 24 h post-exercise and muscle tissue was excised. Results: ALDH2-Tg mice displayed significantly increased treadmill exercise capacity compared to WT mice. Exhaustive exercise caused an increase in mRNA levels of the muscle atrophy markers, Atrogin-1 and MuRF1, and reduced mitochondrial biogenesis and fusion in WT skeletal muscles; these effects were attenuated in ALDH2-Tg mice. Exhaustive exercise also enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of Beclin1 and Bnip3; the effects of which were mitigated by ALDH2 overexpression. In addition, ALDH2-Tg reversed the increase of an oxidative stress biomarker (4-hydroxynonenal) and decreased levels of mitochondrial antioxidant proteins, including manganese superoxide dismutase and NAD(P)H:quinone oxidoreductase 1, in skeletal muscle induced by exhaustive exercise. Conclusion: ALDH2 may reverse skeletal muscle mitochondrial dysfunction due to exhaustive exercise by regulating mitochondria dynamic remodeling and enhancing the quality of mitochondria. - Highlights: • Skeletal muscle ALDH2 expression and activity declines during exhaustive exercise. • ALDH2 overexpression enhances physical performance and restores muscle

  2. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency)

    NARCIS (Netherlands)

    Mills, P.B.; Footitt, E.J.; Mills, K.A.; Tuschl, K.; Aylett, S.; Varadkar, S.; Hemingway, C.; Marlow, N.; Rennie, J.; Baxter, P.; Dulac, O.; Nabbout, R.; Craigen, W.J.; Schmitt, B.; Feillet, F.; Christensen, E.; de Lonlay, P.; Pike, M.G.; Hughes, M.I.; Struijs, E.A.; Jakobs, C.; Zuberi, S.M.; Clayton, P.T.

    2010-01-01

    Pyridoxine-dependent epilepsy was recently shown to be due to mutations in the ALDH7A1 gene, which encodes antiquitin, an enzyme that catalyses the nicotinamide adenine dinucleotide-dependent dehydrogenation of l-α-aminoadipic semialdehyde/l-Δ

  3. Pyridoxine-Dependent Epilepsy in Zebrafish Caused by Aldh7a1 Deficiency

    NARCIS (Netherlands)

    Pena, Izabella A; Roussel, Yann; Daniel, Kate; Mongeon, Kevin; Johnstone, Devon; Weinschutz Mendes, Hellen; Bosma, Marjolein; Saxena, Vishal; Lepage, Nathalie; Chakraborty, Pranesh; Dyment, David A; van Karnebeek, Clara D M; Verhoeven-Duif, Nanda; Bui, Tuan Vu; Boycott, Kym M.; Ekker, Marc; MacKenzie, Alex

    2017-01-01

    Pyridoxine-dependent epilepsy (PDE) is a rare disease characterized by mutations in the lysine degradation gene ALDH7A1 leading to recurrent neonatal seizures, which are uniquely alleviated by high doses of pyridoxine or pyridoxal 5'-phosphate (vitamin B6 vitamers). Despite treatment,

  4. A homozygous mutation in a consanguineous family consolidates the role of ALDH1A3 in autosomal recessive microphthalmia

    DEFF Research Database (Denmark)

    Roos, L; Fang, M; Dali, C

    2013-01-01

    to the identification of new genes. Very recently, homozygous variations within ALDH1A3 have been associated with autosomal recessive microphthalmia with or without cysts or coloboma, and with variable subphenotypes of developmental delay/autism spectrum disorder in eight families. In a consanguineous family where...... three of the five siblings were affected with microphthalmia/coloboma, we identified a novel homozygous missense mutation in ALDH1A3 using exome sequencing. Of the three affected siblings, one had intellectual disability and one had intellectual disability and autism, while the last one presented...... with normal development. This study contributes further to the description of the clinical spectrum associated with ALDH1A3 mutations, and illustrates the interfamilial clinical variation observed in individuals with ALDH1A3 mutations....

  5. GxGrare: gene-gene interaction analysis method for rare variants from high-throughput sequencing data.

    Science.gov (United States)

    Kwon, Minseok; Leem, Sangseob; Yoon, Joon; Park, Taesung

    2018-03-19

    With the rapid advancement of array-based genotyping techniques, genome-wide association studies (GWAS) have successfully identified common genetic variants associated with common complex diseases. However, it has been shown that only a small proportion of the genetic etiology of complex diseases could be explained by the genetic factors identified from GWAS. This missing heritability could possibly be explained by gene-gene interaction (epistasis) and rare variants. There has been an exponential growth of gene-gene interaction analysis for common variants in terms of methodological developments and practical applications. Also, the recent advancement of high-throughput sequencing technologies makes it possible to conduct rare variant analysis. However, little progress has been made in gene-gene interaction analysis for rare variants. Here, we propose GxGrare which is a new gene-gene interaction method for the rare variants in the framework of the multifactor dimensionality reduction (MDR) analysis. The proposed method consists of three steps; 1) collapsing the rare variants, 2) MDR analysis for the collapsed rare variants, and 3) detect top candidate interaction pairs. GxGrare can be used for the detection of not only gene-gene interactions, but also interactions within a single gene. The proposed method is illustrated with 1080 whole exome sequencing data of the Korean population in order to identify causal gene-gene interaction for rare variants for type 2 diabetes. The proposed GxGrare performs well for gene-gene interaction detection with collapsing of rare variants. GxGrare is available at http://bibs.snu.ac.kr/software/gxgrare which contains simulation data and documentation. Supported operating systems include Linux and OS X.

  6. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency)

    DEFF Research Database (Denmark)

    Mills, Philippa B; Footitt, Emma J; Mills, Kevin A

    2010-01-01

    Pyridoxine-dependent epilepsy was recently shown to be due to mutations in the ALDH7A1 gene, which encodes antiquitin, an enzyme that catalyses the nicotinamide adenine dinucleotide-dependent dehydrogenation of l-alpha-aminoadipic semialdehyde/L-Delta1-piperideine 6-carboxylate. However, whilst t...

  7. HFE gene variants affect iron in the brain.

    Science.gov (United States)

    Nandar, Wint; Connor, James R

    2011-04-01

    Iron accumulation in the brain and increased oxidative stress are consistent observations in many neurodegenerative diseases. Thus, we have begun examination into gene mutations or allelic variants that could be associated with loss of iron homeostasis. One of the mechanisms leading to iron overload is a mutation in the HFE gene, which is involved in iron metabolism. The 2 most common HFE gene variants are C282Y (1.9%) and H63D (8.9%). The C282Y HFE variant is more commonly associated with hereditary hemochromatosis, which is an autosomal recessive disorder, characterized by iron overload in a number of systemic organs. The H63D HFE variant appears less frequently associated with hemochromatosis, but its role in the neurodegenerative diseases has received more attention. At the cellular level, the HFE mutant protein resulting from the H63D HFE gene variant is associated with iron dyshomeostasis, increased oxidative stress, glutamate release, tau phosphorylation, and alteration in inflammatory response, each of which is under investigation as a contributing factor to neurodegenerative diseases. Therefore, the HFE gene variants are proposed to be genetic modifiers or a risk factor for neurodegenerative diseases by establishing an enabling milieu for pathogenic agents. This review will discuss the current knowledge of the association of the HFE gene variants with neurodegenerative diseases: amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and ischemic stroke. Importantly, the data herein also begin to dispel the long-held view that the brain is protected from iron accumulation associated with the HFE mutations.

  8. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    International Nuclear Information System (INIS)

    Choi, Ji-Woong; Kim, Jae-Hwan; Cho, Sung-Chun; Ha, Moon-Kyung; Song, Kye-Yong; Youn, Hong-Duk; Park, Sang Chul

    2011-01-01

    Research highlights: → ALDH2 is an MDA-modified protein in old rat kidney tissues. → AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. → ALDH2 serves as a general transcriptional repressor by associating with HDACs. → MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  9. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji-Woong [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of); Kim, Jae-Hwan [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Cho, Sung-Chun; Ha, Moon-Kyung [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of); Song, Kye-Yong [Department of Pathology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Youn, Hong-Duk, E-mail: hdyoun@snu.ac.kr [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biomedical Sciences and Biochemistry and Molecular Biology, Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799 (Korea, Republic of); Aging and Apoptosis Research Center (AARC), Seoul National University College of Medicine, 28 Yongon-dong, Chongro-gu, Seoul 110-799, (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} ALDH2 is an MDA-modified protein in old rat kidney tissues. {yields} AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. {yields} ALDH2 serves as a general transcriptional repressor by associating with HDACs. {yields} MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  10. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jan Winchenbach

    2016-12-01

    Full Text Available Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions.

  11. Alcohol Metabolizing Gene Polymorphisms as Genetic Biomarkers of Alcoholic Liver Disease Susceptibility and Severity: A Northeast India Patient Based Study

    Directory of Open Access Journals (Sweden)

    Tarun K. Basumatary

    2017-07-01

    Full Text Available Background: Excessive alcohol consumption is associated with genetic predisposition to Alcoholic Liver Disease (ALD, but there is very limited data on both molecular and genetic aspects of ALD among the Northeast Indian (NEI population. Aim and Objectives: Screening the role of genetic alterations in alcohol metabolizing pathway genes in the pathogenesis of ALD which is prevalent in the ethnically NEI population. Material and Methods: Whole blood was collected from ALD patients (n=150 [alcoholic chronic liver disease (CLD, n=110 and alcoholic cirrhosis (Cirr/cirrhosis, n=40], Alcoholic Without Liver Disease (AWLD, n=93 and healthy controls (HC/controls, n=274 with informed consents along with Fibroscan based liver stiffness measurement (LSM score and clinical data. Alcohol Dehydrogenase 2 (ADH2 and Aldehyde Dehydrogenase 2 (ALDH2 genotyping was studied by Polymerase Chain Reaction with Confronting Two Pair Primers (PCR-CTPP; and Alcohol Dehydrogenase 3 (ADH3 by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP method. Results:ADH2*2 genotype was predominant and associated with increased risk of cirrhosis compared to healthy controls, AWLD and CLD cases; and CLD compared to AWLD cases. ADH3*1 genotype was associated with significantly increased risk of cirrhosis compared to healthy controls, AWLD and CLD cases (p<0.001. Variant ALDH2 genotype was rare and analysis of the joint effects of genotypes showed that higher variant genotype resulted increased risk of CLD and cirrhosis compared to AWLD, and cirrhosis compared to CLD; thereby confirming the association of the polymorphisms in key alcohol metabolizing genes in the predisposition to ALD susceptibility and severity. Presence of variant ADH2, ADH3 and ALDH2 genotypes correlated with higher LSM scores in ALD. Conclusion: Alterations in the alcohol metabolizing genes are critically associated with ALD susceptibility and severity.

  12. Microsatellite Instability Use in Mismatch Repair Gene Sequence Variant Classification

    Directory of Open Access Journals (Sweden)

    Bryony A. Thompson

    2015-03-01

    Full Text Available Inherited mutations in the DNA mismatch repair genes (MMR can cause MMR deficiency and increased susceptibility to colorectal and endometrial cancer. Microsatellite instability (MSI is the defining molecular signature of MMR deficiency. The clinical classification of identified MMR gene sequence variants has a direct impact on the management of patients and their families. For a significant proportion of cases sequence variants of uncertain clinical significance (also known as unclassified variants are identified, constituting a challenge for genetic counselling and clinical management of families. The effect on protein function of these variants is difficult to interpret. The presence or absence of MSI in tumours can aid in determining the pathogenicity of associated unclassified MMR gene variants. However, there are some considerations that need to be taken into account when using MSI for variant interpretation. The use of MSI and other tumour characteristics in MMR gene sequence variant classification will be explored in this review.

  13. Notch Signaling Is Associated With ALDH Activity And An Aggressive Metastatic Phenotype In Murine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Xiaodong eMu

    2013-06-01

    Full Text Available Osteosarcoma (OS is the most common primary malignancy of bone, and pulmonary metastatic disease accounts for nearly all mortality. However, little is known about the biochemical signaling alterations that drive the progression of metastatic disease. Two murine OS cell populations, K7M2 and K12, are clonally related but differ significantly in their metastatic phenotypes and therefore represent excellent tools for studying metastatic OS molecular biology. K7M2 cells are highly metastatic, whereas K12 cells display limited metastatic potential. Here we report that the expression of Notch genes (Notch1, 2, 4 are up-regulated, including downstream targets Hes1 and Stat3, in the highly metastatic K7M2 cells compared to the less metastatic K12 cells, indicating that the Notch signaling pathway is more active in K7M2 cells. We have previously described that K7M2 cells exhibit higher levels of aldehyde dehydrogenase (ALDH activity. Here we report that K7M2 cell ALDH activity is reduced with Notch inhibition, suggesting that ALDH activity may be regulated in part by the Notch pathway. Notch signaling is also associated with increased resistance to oxidative stress, migration, invasion, and VEGF expression in vitro. However, Notch inhibition did not significantly alter K7M2 cell proliferation. In conclusion, we provide evidence that Notch signaling is associated with ALDH activity and increased metastatic behavior in OS cells. Both Notch and ALDH are putative molecular targets for the treatment and prevention of OS metastasis.

  14. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    Science.gov (United States)

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Variant of Rett syndrome and CDKL5 gene

    DEFF Research Database (Denmark)

    Pini, Giorgio; Bigoni, Stefania; Engerström, Ingegerd Witt

    2012-01-01

    UNLABELLED: Rett syndrome (RTT) is a severe neurodevelopmental disorder affecting almost exclusively females. The Hanefeld variant, or early-onset seizure variant, has been associated with mutations in CDKL5 gene. AIMS: In recent years more than 60 patients with mutations in the CDKL5 gene have...... been described in the literature, but the cardiorespiratory phenotype has not been reported. Our aim is to describe clinical and autonomic features of these girls. METHODS: 10 girls with CDKL5 mutations and a diagnosis of Hanefeld variant have been evaluated on axiological and clinical aspects. In all...

  16. High-performance web services for querying gene and variant annotation.

    Science.gov (United States)

    Xin, Jiwen; Mark, Adam; Afrasiabi, Cyrus; Tsueng, Ginger; Juchler, Moritz; Gopal, Nikhil; Stupp, Gregory S; Putman, Timothy E; Ainscough, Benjamin J; Griffith, Obi L; Torkamani, Ali; Whetzel, Patricia L; Mungall, Christopher J; Mooney, Sean D; Su, Andrew I; Wu, Chunlei

    2016-05-06

    Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community.

  17. Identifying noncoding risk variants using disease-relevant gene regulatory networks.

    Science.gov (United States)

    Gao, Long; Uzun, Yasin; Gao, Peng; He, Bing; Ma, Xiaoke; Wang, Jiahui; Han, Shizhong; Tan, Kai

    2018-02-16

    Identifying noncoding risk variants remains a challenging task. Because noncoding variants exert their effects in the context of a gene regulatory network (GRN), we hypothesize that explicit use of disease-relevant GRNs can significantly improve the inference accuracy of noncoding risk variants. We describe Annotation of Regulatory Variants using Integrated Networks (ARVIN), a general computational framework for predicting causal noncoding variants. It employs a set of novel regulatory network-based features, combined with sequence-based features to infer noncoding risk variants. Using known causal variants in gene promoters and enhancers in a number of diseases, we show ARVIN outperforms state-of-the-art methods that use sequence-based features alone. Additional experimental validation using reporter assay further demonstrates the accuracy of ARVIN. Application of ARVIN to seven autoimmune diseases provides a holistic view of the gene subnetwork perturbed by the combinatorial action of the entire set of risk noncoding mutations.

  18. Genome-wide DNA methylation profiling identifies ALDH1A3 promoter methylation as a prognostic predictor in G-CIMP- primary glioblastoma.

    Science.gov (United States)

    Zhang, Wei; Yan, Wei; You, Gan; Bao, Zhaoshi; Wang, Yongzhi; Liu, Yanwei; You, Yongping; Jiang, Tao

    2013-01-01

    To date, the aberrations in the DNA methylation patterns that are associated with different prognoses of G-CIMP- primary GBMs remain to be elucidated. Here, DNA methylation profiling of primary GBM tissues from 13 long-term survivors (LTS; overall survival ⩾18months) and 20 short-term survivors (STS; overall survival ⩽9months) was performed. Then G-CIMP+ samples were excluded. The differentially expressed CpG loci were identified between residual 18 STS and 9 LTS G-CIMP- samples. Methylation levels of 11 CpG loci (10genes) were statistically significantly lower, and 43 CpG loci (40genes) were statistically significantly higher in the tumor tissues of LTS than those of STS G-CIMP- samples (PCIMP- samples, 3 CpG loci localized in the promoter of ALDH1A3. Furthermore, using an independent validation cohort containing 37 primary GBM samples without IDH1 mutation and MGMT promoter methylation, the hypermethylation status of ALDH1A3 promoter predicted a better prognosis with an accompanied low expression of ALDH1A3 protein. Taken together, our results defined prognosis-related methylation signatures systematically for the first time in G-CIMP- primary GBMs. ALDH1A3 promoter methylation conferred a favorable prognosis in G-CIMP- primary GBMs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Arrhythmogenic KCNE gene variants: current knowledge and future challenges

    Directory of Open Access Journals (Sweden)

    Shawn M Crump

    2014-01-01

    Full Text Available There are twenty-five known inherited cardiac arrhythmia susceptibility genes, all of which encode either ion channel pore-forming subunits or proteins that regulate aspects of ion channel biology such as function, trafficking and localization. The human KCNE gene family comprises five potassium channel regulatory subunits, sequence variants in each of which are associated with cardiac arrhythmias. KCNE gene products exhibit promiscuous partnering and in some cases ubiquitous expression, hampering efforts to unequivocally correlate each gene to specific native potassium currents. Likewise, deducing the molecular etiology of cardiac arrhythmias in individuals harboring rare KCNE gene variants, or more common KCNE polymorphisms, can be challenging. In this review we provide an update on putative arrhythmia-causing KCNE gene variants, and discuss current thinking and future challenges in the study of molecular mechanisms of KCNE-associated cardiac rhythm disturbances.

  20. Novel homozygous missense mutation in ALDH7A1 causes neonatal pyridoxine dependent epilepsy.

    Science.gov (United States)

    Coci, Emanuele G; Codutti, Luca; Fink, Christian; Bartsch, Sophie; Grüning, Gunnar; Lücke, Thomas; Kurth, Ingo; Riedel, Joachim

    2017-04-01

    Pyridoxine dependent epilepsy (PDE) (OMIM#266100) is a neonatal form of epilepsy, caused by dysfunction of the enzyme α-aminoadipic semialdehyde dehydrogenase (ALDH7A1 or Antiquitin). This enzyme converts α-aminoadipic semialdehyde (α-AASA) into α-aminoadipate (AAA), a critical step in the lysine metabolism of the brain. ALDH7A1 dysfunction causes an accumulation of α-AASA and δ 1 -piperideine-6-carboxylic acid (P6C), which are in equilibrium with each other. P6C binds and inactivates pyridoxal 5'-phosphate (PLP), the active form of pyridoxine. Individuals affected by ALDH7A1 deficiency show pre-natal and post-natal seizures, which respond to oral pyridoxine but not to other pediatric anti-epileptic drugs. We discovered a novel missense mutation (c.566G > A, p.Gly189Glu) in homozygous state residing in the NAD+ binding domain coding region of exon 6 and affecting an highly conserved amino acid residue. The seizures stopped under post-natal pyridoxine therapy, nevertheless a longer follow-up is needed to evaluate the intellectual development of the child, who is additionally treated with oral l-arginine since the 13th month of life. Developmental delay with or without structural cortex abnormalities were reported in several patients. A brain MRI scan revealed hyperintense white matter in the right cerebellum compatible with cerebellar gliosis. Taken together, our studies enlarge the group of missense pathogenic mutations of ALDH7A1 gene and reveal a novel cerebellar finding within the PDE patients cohort. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Novel compound heterozygous mutations of ALDH1A3 contribute to anophthalmia in a non-consanguineous Chinese family

    Directory of Open Access Journals (Sweden)

    Yunqiang Liu

    2017-06-01

    Full Text Available Abstract Anophthalmia is a rare eye development anomaly resulting in absent ocular globes or tissue in the orbit since birth. Here, we investigated a newborn with bilateral anophthalmia in a Chinese family. Exome sequencing revealed that compound heterozygous mutations c.287G > A (p.(Arg96His and c.709G > A (p.(Gly237Arg of the ALDH1A3 gene were present in the affected newborn. Both mutations were absent in all of the searched databases, including 10,000 in-house Chinese exome sequences, and these mutations were confirmed as having been transmitted from the parents. Comparative amino acid sequence analysis across distantly related species revealed that the residues at positions 96 and 234 were evolutionarily highly conserved. In silico analysis predicted these changes to be damaging, and in vitro expression analysis revealed that the mutated alleles were associated with decreased protein production and impaired tetrameric protein formation. This study firstly reported that compound heterozygous mutations of the ALDH1A3 gene can result in anophthalmia in humans, thus highlighting those heterozygous mutations in ALDH1A3 should be considered for molecular screening in anophthalmia, particularly in cases from families without consanguineous relationships.

  2. Pyridoxine-dependent epilepsy owing to antiquitin deficiency - mutation in the ALDH7A1 gene

    NARCIS (Netherlands)

    Jagadeesh, S.; Suresh, B.; Murugan, V.; Suresh, S.; Salomons, G.S.; Struys, E.A.; Jacobs, C.

    2013-01-01

    Pyridoxine-dependent epilepsy (PDE) is an inborn error of metabolism resulting from antiquitin deficiency. There is marked elevation of a-amino adipic semi-aldehyde (aAASA), piperidine-6-carboxylate (P6C) and pipecolic acid. The diagnosis can be confirmed by identifying the mutation in the ALDH7A1

  3. ALDH1-high ovarian cancer stem-like cells can be isolated from serous and clear cell adenocarcinoma cells, and ALDH1 high expression is associated with poor prognosis.

    Directory of Open Access Journals (Sweden)

    Takafumi Kuroda

    Full Text Available Cancer stem-like cells (CSCs/cancer-initiating cells (CICs are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1(high population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas by the ALDEFLUOR assay. ALDH1(high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1(high cells. ALDH1(high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis.

  4. Novel genetic variants in miR-191 gene and familial ovarian cancer

    International Nuclear Information System (INIS)

    Shen, Jie; DiCioccio, Richard; Odunsi, Kunle; Lele, Shashikant B; Zhao, Hua

    2010-01-01

    Half of the familial aggregation of ovarian cancer can't be explained by any known risk genes, suggesting the existence of other genetic risk factors. Some of these unknown factors may not be traditional protein encoding genes. MicroRNA (miRNA) plays a critical role in tumorigenesis, but it is still unknown if variants in miRNA genes lead to predisposition to cancer. Considering the fact that miRNA regulates a number of tumor suppressor genes (TSGs) and oncogenes, genetic variations in miRNA genes could affect the levels of expression of TSGs or oncogenes and, thereby, cancer risk. To test this hypothesis in familial ovarian cancer, we screened for genetic variants in thirty selected miRNA genes, which are predicted to regulate key ovarian cancer genes and are reported to be misexpressed in ovarian tumor tissues, in eighty-three patients with familial ovarian cancer. All of the patients are non-carriers of any known BRCA1/2 or mismatch repair (MMR) gene mutations. Seven novel genetic variants were observed in four primary or precursor miRNA genes. Among them, three rare variants were found in the precursor or primary precursor of the miR-191 gene. In functional assays, the one variant located in the precursor of miR-191 resulted in conformational changes in the predicted secondary structures, and consequently altered the expression of mature miR-191. In further analysis, we found that this particular variant exists in five family members who had ovarian cancer. Our findings suggest that there are novel genetic variants in miRNA genes, and those certain genetic variants in miRNA genes can affect the expression of mature miRNAs and, consequently, might alter the regulation of TSGs or oncogenes. Additionally, the variant might be potentially associated with the development of familial ovarian cancer

  5. Autosomal dominant cutis laxa with progeroid features due to a novel, de novo mutation in ALDH18A1.

    Science.gov (United States)

    Bhola, Priya T; Hartley, Taila; Bareke, Eric; Boycott, Kym M; Nikkel, Sarah M; Dyment, David A

    2017-06-01

    De novo dominant mutations in the aldehyde dehydrogenase 18 family member A1 (ALDH18A1) gene have recently been shown to cause autosomal dominant cutis laxa with progeroid features (MIM 616603). To date, all de novo dominant mutations have been found in a single highly conserved amino acid residue at position p.Arg138. We report an 8-year-old male with a clinical diagnosis of autosomal dominant cutis laxa (ADCL) with progeroid features and a novel de novo missense mutation in ALDH18A1 (NM_002860.3: c.377G>A (p.Arg126His)). This is the first report of an individual with ALDH18A1-ADCL due to a substitution at a residue other than p.Arg138. Knowledge of the complete spectrum of dominant-acting mutations that cause this rare syndrome will have implications for molecular diagnosis and genetic counselling of these families.

  6. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes.

    Science.gov (United States)

    Astuti, Galuh D N; van den Born, L Ingeborgh; Khan, M Imran; Hamel, Christian P; Bocquet, Béatrice; Manes, Gaël; Quinodoz, Mathieu; Ali, Manir; Toomes, Carmel; McKibbin, Martin; El-Asrag, Mohammed E; Haer-Wigman, Lonneke; Inglehearn, Chris F; Black, Graeme C M; Hoyng, Carel B; Cremers, Frans P M; Roosing, Susanne

    2018-01-10

    Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 ( SNRNP200 ) and Zinc Finger Protein 513 ( ZNF513 ), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 ( DHX32 ) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.

  7. A Turkish family with Sjögren-Larsson syndrome caused by a novel ALDH3A2 mutation

    Directory of Open Access Journals (Sweden)

    Faruk Incecik

    2013-01-01

    Full Text Available Sjögren-Larsson syndrome (SLS is an inherited neurocutaneous disorder caused by mutations in the aldehyde dehydrogenase family 3 member A2 (ALDH3A2 gene that encodes fatty aldehyde dehydrogenase. Affected patients display ichthyosis, mental retardation, and spastic diplegia. More than 70 mutations in ALDH3A2 have been discovered in SLS patients. We diagnosed two brothers age of 12 and 20 years with characteristic features of this rare syndrome. Magnetic resonance imaging showed demyelinating disease in both of them. We described a novel homozygous, c. 835 T > A (p.Y279N mutation in exon 6 in two patients.

  8. Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1

    Science.gov (United States)

    2017-01-01

    Mast syndrome (SPG21) is an autosomal-recessive complicated form of hereditary spastic paraplegia characterized by dementia, thin corpus callosum, white matter abnormalities, and cerebellar and extrapyramidal signs in addition to spastic paraparesis. A nucleotide insertion resulting in premature truncation of the SPG21 gene product acidic cluster protein 33 (ACP33)/maspardin underlies this disorder, likely causing loss of protein function. However, little is known about the function of maspardin. Here, we report that maspardin localizes prominently to cytoplasm as well as to membranes, possibly at trans-Golgi network/late endosomal compartments. Immunoprecipitation of maspardin with identification of coprecipitating proteins by mass spectrometry revealed the aldehyde dehydrogenase ALDH16A1 as an interacting protein. This interaction was confirmed using overexpressed proteins as well as by fusion protein pull down experiments, and these proteins colocalized in cells. Further studies of the function of ALDH16A1 and the role of the maspardin–ALDH16A1 interaction in neuronal cells may clarify the cellular pathogenesis of Mast syndrome. PMID:19184135

  9. Pleiotropic Effects of Variants in Dementia Genes in Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Laura Ibanez

    2018-04-01

    Full Text Available Background: The prevalence of dementia in Parkinson disease (PD increases dramatically with advancing age, approaching 80% in patients who survive 20 years with the disease. Increasing evidence suggests clinical, pathological and genetic overlap between Alzheimer disease, dementia with Lewy bodies and frontotemporal dementia with PD. However, the contribution of the dementia-causing genes to PD risk, cognitive impairment and dementia in PD is not fully established.Objective: To assess the contribution of coding variants in Mendelian dementia-causing genes on the risk of developing PD and the effect on cognitive performance of PD patients.Methods: We analyzed the coding regions of the amyloid-beta precursor protein (APP, Presenilin 1 and 2 (PSEN1, PSEN2, and Granulin (GRN genes from 1,374 PD cases and 973 controls using pooled-DNA targeted sequence, human exome-chip and whole-exome sequencing (WES data by single variant and gene base (SKAT-O and burden tests analyses. Global cognitive function was assessed using the Mini-Mental State Examination (MMSE or the Montreal Cognitive Assessment (MoCA. The effect of coding variants in dementia-causing genes on cognitive performance was tested by multiple regression analysis adjusting for gender, disease duration, age at dementia assessment, study site and APOE carrier status.Results: Known AD pathogenic mutations in the PSEN1 (p.A79V and PSEN2 (p.V148I genes were found in 0.3% of all PD patients. There was a significant burden of rare, likely damaging variants in the GRN and PSEN1 genes in PD patients when compared with frequencies in the European population from the ExAC database. Multiple regression analysis revealed that PD patients carrying rare variants in the APP, PSEN1, PSEN2, and GRN genes exhibit lower cognitive tests scores than non-carrier PD patients (p = 2.0 × 10−4, independent of age at PD diagnosis, age at evaluation, APOE status or recruitment site.Conclusions: Pathogenic mutations in

  10. Aldehyde dehydrogenase (ALDH activity does not select for cells with enhanced aggressive properties in malignant melanoma.

    Directory of Open Access Journals (Sweden)

    Lina Prasmickaite

    Full Text Available BACKGROUND: Malignant melanoma is an exceptionally aggressive, drug-resistant and heterogeneous cancer. Recently it has been shown that melanoma cells with high clonogenic and tumourigenic abilities are common, but markers distinguishing such cells from cells lacking these abilities have not been identified. There is therefore no definite evidence that an exclusive cell subpopulation, i.e. cancer stem cells (CSC, exists in malignant melanoma. Rather, it is suggested that multiple cell populations are implicated in initiation and progression of the disease, making it of importance to identify subpopulations with elevated aggressive properties. METHODS AND FINDINGS: In several other cancer forms, Aldehyde Dehydrogenase (ALDH, which plays a role in stem cell biology and resistance, is a valuable functional marker for identification of cells that show enhanced aggressiveness and drug-resistance. Furthermore, the presence of ALDH(+ cells is linked to poor clinical prognosis in these cancers. By analyzing cell cultures, xenografts and patient biopsies, we showed that aggressive melanoma harboured a large, distinguishable ALDH(+ subpopulation. In vivo, ALDH(+ cells gave rise to ALDH(- cells, while the opposite conversion was rare, indicating a higher abilities of ALDH(+ cells to reestablish tumour heterogeneity with respect to the ALDH phenotype. However, both ALDH(+ and ALDH(- cells demonstrated similarly high abilities for clone formation in vitro and tumour initiation in vivo. Furthermore, both subpopulations showed similar sensitivity to the anti-melanoma drugs, dacarbazine and lexatumumab. CONCLUSIONS: These findings suggest that ALDH does not distinguish tumour-initiating and/or therapy-resistant cells, implying that the ALDH phenotype is not associated with more-aggressive subpopulations in malignant melanoma, and arguing against ALDH as a "universal" marker. Besides, it was shown that the ability to reestablish tumour heterogeneity is not

  11. A global evolutionary and metabolic analysis of human obesity gene risk variants.

    Science.gov (United States)

    Castillo, Joseph J; Hazlett, Zachary S; Orlando, Robert A; Garver, William S

    2017-09-05

    It is generally accepted that the selection of gene variants during human evolution optimized energy metabolism that now interacts with our obesogenic environment to increase the prevalence of obesity. The purpose of this study was to perform a global evolutionary and metabolic analysis of human obesity gene risk variants (110 human obesity genes with 127 nearest gene risk variants) identified using genome-wide association studies (GWAS) to enhance our knowledge of early and late genotypes. As a result of determining the mean frequency of these obesity gene risk variants in 13 available populations from around the world our results provide evidence for the early selection of ancestral risk variants (defined as selection before migration from Africa) and late selection of derived risk variants (defined as selection after migration from Africa). Our results also provide novel information for association of these obesity genes or encoded proteins with diverse metabolic pathways and other human diseases. The overall results indicate a significant differential evolutionary pattern for the selection of obesity gene ancestral and derived risk variants proposed to optimize energy metabolism in varying global environments and complex association with metabolic pathways and other human diseases. These results are consistent with obesity genes that encode proteins possessing a fundamental role in maintaining energy metabolism and survival during the course of human evolution. Copyright © 2017. Published by Elsevier B.V.

  12. A multiple mediator analysis approach to quantify the effects of the ADH1B and ALDH2 genes on hepatocellular carcinoma risk.

    Science.gov (United States)

    Shih, Stephannie; Huang, Yen-Tsung; Yang, Hwai-I

    2018-06-01

    Previous work suggested a genetic component affecting the risk of hepatocellular carcinoma (HCC) and mediation analyses have elucidated potential indirect pathways of these genetic effects. Specifically, the effects of alcohol dehydrogenase (ADH1B) and aldehyde dehydrogenase (ALDH2) genes on HCC risk vary based on alcohol consumption habits. However, alcohol consumption may not be the only mediator in the identified pathway: factors related to alcohol consumption may contribute to the same indirect pathway. Thus, we developed a multimediator model to quantify the genetic effects on HCC risk through sequential dichotomous mediators under the counterfactual framework. Our method provided a closed form formula for the mediation effects through different indirect paths, which requires no assumption for the rarity of outcome. In simulation studies of a finite sample, we presented the utility of the method with the variance of the effects estimated using the delta method and bootstrapping. We applied our method to data from participants in Taiwan (580 cases and 3,207 controls) and quantified the mediation effects of single nucleotide polymorphisms (SNPs) in the ADH1B and ALDH2 genes on HCC through alcohol consumption (yes/no) and high alanine transaminase (ALT) levels (greater than or equal to 45 U/L or below 45 U/L). Assuming a dominant risk model, we identified that the SNPs' effects through alcohol consumption is more significant than through ALT levels on HCC risk. This new method provides insight to the magnitude of various casual mechanisms as a closed form solution and can be readily applied in other genomic studies. © 2018 WILEY PERIODICALS, INC.

  13. Genome-wide meta-analysis of homocysteine and methionine metabolism identifies five one carbon metabolism loci and a novel association of ALDH1L1 with ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Stephen R Williams

    2014-03-01

    Full Text Available Circulating homocysteine levels (tHcy, a product of the folate one carbon metabolism pathway (FOCM through the demethylation of methionine, are heritable and are associated with an increased risk of common diseases such as stroke, cardiovascular disease (CVD, cancer and dementia. The FOCM is the sole source of de novo methyl group synthesis, impacting many biological and epigenetic pathways. However, the genetic determinants of elevated tHcy (hyperhomocysteinemia, dysregulation of methionine metabolism and the underlying biological processes remain unclear. We conducted independent genome-wide association studies and a meta-analysis of methionine metabolism, characterized by post-methionine load test tHcy, in 2,710 participants from the Framingham Heart Study (FHS and 2,100 participants from the Vitamin Intervention for Stroke Prevention (VISP clinical trial, and then examined the association of the identified loci with incident stroke in FHS. Five genes in the FOCM pathway (GNMT [p = 1.60 × 10(-63], CBS [p = 3.15 × 10(-26], CPS1 [p = 9.10 × 10(-13], ALDH1L1 [p = 7.3 × 10(-13] and PSPH [p = 1.17 × 10(-16] were strongly associated with the difference between pre- and post-methionine load test tHcy levels (ΔPOST. Of these, one variant in the ALDH1L1 locus, rs2364368, was associated with incident ischemic stroke. Promoter analyses reveal genetic and epigenetic differences that may explain a direct effect on GNMT transcription and a downstream affect on methionine metabolism. Additionally, a genetic-score consisting of the five significant loci explains 13% of the variance of ΔPOST in FHS and 6% of the variance in VISP. Association between variants in FOCM genes with ΔPOST suggest novel mechanisms that lead to differences in methionine metabolism, and possibly the epigenome, impacting disease risk. These data emphasize the importance of a concerted effort to understand regulators of one carbon metabolism as potential therapeutic targets.

  14. Tamoxifen enhances stemness and promotes metastasis of ERα36+ breast cancer by upregulating ALDH1A1 in cancer cells

    Science.gov (United States)

    Wang, Qiang; Jiang, Jun; Ying, Guoguang; Xie, Xiao-Qing; Zhang, Xia; Xu, Wei; Zhang, Xuemin; Song, Erwei; Bu, Hong; Ping, Yi-Fang; Yao, Xiao-Hong; Wang, Bin; Xu, Shilei; Yan, Ze-Xuan; Tai, Yanhong; Hu, Baoquan; Qi, Xiaowei; Wang, Yan-Xia; He, Zhi-Cheng; Wang, Yan; Wang, Ji Ming; Cui, You-Hong; Chen, Feng; Meng, Kun; Wang, Zhaoyi; Bian, Xiu-Wu

    2018-01-01

    The 66 kDa estrogen receptor alpha (ERα66) is the main molecular target for endocrine therapy such as tamoxifen treatment. However, many patients develop resistance with unclear mechanisms. In a large cohort study of breast cancer patients who underwent surgery followed by tamoxifen treatment, we demonstrate that ERα36, a variant of ERα66, correlates with poor prognosis. Mechanistically, tamoxifen directly binds and activates ERα36 to enhance the stemness and metastasis of breast cancer cells via transcriptional stimulation of aldehyde dehydrogenase 1A1 (ALDH1A1). Consistently, the tamoxifen-induced stemness and metastasis can be attenuated by either ALDH1 inhibitors or a specific ERα36 antibody. Thus, tamoxifen acts as an agonist on ERα36 in breast cancer cells, which accounts for hormone therapy resistance and metastasis of breast cancer. Our study not only reveals ERα36 as a stratifying marker for endocrine therapy but also provides a promising therapeutic avenue for tamoxifen-resistant breast cancer. PMID:29393296

  15. Rare variants analysis of cutaneous malignant melanoma genes in Parkinson's disease.

    Science.gov (United States)

    Lubbe, S J; Escott-Price, V; Brice, A; Gasser, T; Pittman, A M; Bras, J; Hardy, J; Heutink, P; Wood, N M; Singleton, A B; Grosset, D G; Carroll, C B; Law, M H; Demenais, F; Iles, M M; Bishop, D T; Newton-Bishop, J; Williams, N M; Morris, H R

    2016-12-01

    A shared genetic susceptibility between cutaneous malignant melanoma (CMM) and Parkinson's disease (PD) has been suggested. We investigated this by assessing the contribution of rare variants in genes involved in CMM to PD risk. We studied rare variation across 29 CMM risk genes using high-quality genotype data in 6875 PD cases and 6065 controls and sought to replicate findings using whole-exome sequencing data from a second independent cohort totaling 1255 PD cases and 473 controls. No statistically significant enrichment of rare variants across all genes, per gene, or for any individual variant was detected in either cohort. There were nonsignificant trends toward different carrier frequencies between PD cases and controls, under different inheritance models, in the following CMM risk genes: BAP1, DCC, ERBB4, KIT, MAPK2, MITF, PTEN, and TP53. The very rare TYR p.V275F variant, which is a pathogenic allele for recessive albinism, was more common in PD cases than controls in 3 independent cohorts. Tyrosinase, encoded by TYR, is the rate-limiting enzyme for the production of neuromelanin, and has a role in the production of dopamine. These results suggest a possible role for another gene in the dopamine-biosynthetic pathway in susceptibility to neurodegenerative Parkinsonism, but further studies in larger PD cohorts are needed to accurately determine the role of these genes/variants in disease pathogenesis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Immunohistochemical Expression of CD56 and ALDH1 in Common Salivary Gland Tumors

    Directory of Open Access Journals (Sweden)

    Safoura Seifi

    2016-11-01

    Full Text Available Introduction: Natural killer (NK cells, of which CD56 is a specific marker, play an important role in host defense against tumors. Cancer stem cells, of which aldehyde dehydrogenase isoform 1 (ALDH1 is an immunohistochemical marker, are a group of tumorigenic cells which are involved in migration and tumor recurrences. We aimed to evaluate the expression of ALDH1 and CD56 in common salivary gland tumors, as well as their relationship with each other and with a number of clinicopathologic factors.   Materials and Methods: Forty-five paraffin blocks of salivary gland tumors (pleomorphic adenoma, mucoepidermoid carcinoma and adenoid cystic carcinoma, 15 samples each were selected. Malignant tumors were classified into two groups: low-grade (including mucoepidermoid carcinoma grade I and high-grade (including mucoepidermoid carcinoma grade III and adenoid cystic carcinoma. Immunohistochemical staining for ALDH1 and CD56 markers was performed. Data were analyzed using SPSS (20 and the Chi-square test.   Results: CD56 expression was significantly higher in benign and high-grade malignant tumors (P=0.01. ALDH1 overexpressed in all three salivary tumors, but not to statistically significant degree (P=0.54. There was no statistically significant correlation between ALDH1 and CD56 expression with demographic factors (age, gender, or location of tumor; P>0.05.   Conclusion: It appears that the number of NK cells and their function change in different types of salivary gland tumors (benign/malignant and stroma. NK cells are important components of the anti-tumor system; therefore immune dysfunction is associated with tumor progression in tumors of the salivary gland. ALDH1 overexpression suggests its role in tumorogenesis, but ALDH1 is not involved in the morphogenesis of salivary gland tumors.

  17. Identification of low-frequency variants associated with gout and serum uric acid levels

    DEFF Research Database (Denmark)

    Sulem, Patrick; Gudbjartsson, Daniel F; Walters, G Bragi

    2011-01-01

    ,506 individuals for whom serum uric acid measurements were available. We identified a low-frequency missense variant (c.1580C>G) in ALDH16A1 associated with gout (OR = 3.12, P = 1.5 × 10(-16), at-risk allele frequency = 0.019) and serum uric acid levels (effect = 0.36 s.d., P = 4.5 × 10(-21)). We confirmed.......48 s.d., P = 4.5 × 10(-16)). This variant is close to a common variant previously associated with serum uric acid levels. This work illustrates how whole-genome sequencing data allow the detection of associations between low-frequency variants and complex traits....

  18. Silencing of NRF2 Reduces the Expression of ALDH1A1 and ALDH3A1 and Sensitizes to 5-FU in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hong-Quan Duong

    2017-07-01

    Full Text Available Pancreatic cancer remains an intractable cancer with a poor five-year survival rate, which requires new therapeutic modalities based on the biology of pancreatic oncogenesis. Nuclear factor E2 related factor-2 (NRF2, a key cytoprotective nuclear transcription factor, regulates antioxidant production, reduction, detoxification and drug efflux proteins. It also plays an essential role in cell homeostasis, cell proliferation and resistance to chemotherapy. We aimed to evaluate the possibility that modulation of NRF2 expression could be effective in the treatment of pancreatic cancer cells. We investigated whether the depletion of NRF2 by using small interfering RNAs (siRNAs is effective in the expression of biomarkers of pancreatic cancer stemness such as aldehyde dehydrogenase 1 family, member A1 (ALDH1A1 and aldehyde dehydrogenase 3 family, member A1 (ALDH3A1. NRF2 knockdown markedly reduced the expression of NRF2 and glutamate-cysteine ligase catalytic subunit (GCLC in cell lines established from pancreatic cancers. NRF2 silencing also decreased the ALDH1A1 and ALDH3A1 expression. Furthermore, this NRF2 depletion enhanced the antiproliferative effects of the chemotherapeutic agent, 5-fluorouracil (5-FU in pancreatic cancer cells.

  19. ALDH1 and podoplanin expression patterns predict the risk of malignant transformation in oral leukoplakia.

    Science.gov (United States)

    Habiba, Umma; Hida, Kyoko; Kitamura, Tetsuya; Matsuda, Aya Yanagawa; Higashino, Fumihiro; Ito, Yoichi M; Ohiro, Yoichi; Totsuka, Yasunori; Shindoh, Masanobu

    2017-01-01

    Oral leukoplakia (OL) is a clinically diagnosed preneoplastic lesion of the oral cavity with an increased oral cancer risk. However, the risk of malignant transformation is still difficult to assess. The objective of the present study was to examine the expression patterns of aldehyde dehydrogenase 1 (ALDH1) and podoplanin in OL, and to determine their roles in predicting oral cancer development. In the present study, the expression patterns of ALDH1 and podoplanin were determined in samples from 79 patients with OL. The association between protein expression and clinicopathological parameters, including oral cancer-free survival, was analyzed during a mean follow-up period of 3.4 years. Expression of ALDH1 and podoplanin was observed in 61 and 67% patients, respectively. Kaplan-Meier analysis demonstrated that the expression of the proteins was correlated with the risk of progression to oral cancer. Multivariate analysis revealed that expression of ALDH1 and podoplanin was associated with 3.02- and 2.62-fold increased risk of malignant transformation, respectively. The malignant transformation risk of OL was considerably higher in cases with expression of both proteins. Point-prevalence analysis revealed that 66% of patients with co-expression of ALDH1 and podoplanin developed oral cancer. Taken together, our data indicate that ALDH1 and podoplanin expression patterns in OL are associated with oral cancer development, suggesting that ALDH1 and podoplanin may be useful biomarkers to identify OL patients with a substantially high oral cancer risk.

  20. Aldehyde dehydrogenase 1 (ALDH1) expression is an independent prognostic factor in triple negative breast cancer (TNBC).

    Science.gov (United States)

    Ma, Fei; Li, Huihui; Li, Yiqun; Ding, Xiaoyan; Wang, Haijuan; Fan, Ying; Lin, Chen; Qian, Haili; Xu, Binghe

    2017-04-01

    Triple negative breast cancer (TNBC) is a subset of breast cancer that is highly aggressive and has a poor prognosis. Meanwhile, cancer stem cells (CSCs) are also characterized by a strong tumorigenic potential, which might be partly responsible for the aggressive behavior of TNBC. We previously showed that CSCs are enriched in TNBC cell lines and tissues. Further experiments in animal models revealed higher tumorigenicity of CSCs sorted from TNBC cell lines. In this study, we aimed to determine the clinical relationship between CSCs and TNBC by exploring the expression of aldehyde dehydrogenase 1 (ALDH1), which is a putative marker of breast CSCs, in TNBC tissues.ALDH1 levels in paraffin-embedded tumor tissues from 158 TNBC patients were evaluated by immunohistochemistry staining using an ALDH1A1 primary antibody. Staining evaluation was performed independently by two pathologists, and the expression level of ALDH1 was evaluated in terms of the percentage and intensity of positive cells. The association of immunohistochemistry staining of ALDH1 expression with clinical parameters was also analyzed.ALDH1 expression in tumor cells was observed in 88 out of 158 cases (55.7%). Analysis of clinicopathological parameters showed that the immunohistochemistry staining of ALDH1 was significantly correlated with tumor size (P = 0.02) and stage (P = 0.04). Survival analysis in patients with ALDH1 expression demonstrated shorter relapse-free survival (RFS) and overall survival (OS) times (P = 0.01; P = 0.001). Moreover, Cox multivariate analysis revealed that ALDH1 expression was an independent prognostic indicator of RFS and OS (P = 0.04; P = 0.04).Immunohistochemistry staining of ALDH1 in tumor cells is an independent prognostic indicator of RFS and OS in TNBC patients.

  1. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Jae-Ha [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Seo-Yoen; Kim, Jeong-Yul [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Cho, Eun-Wie [Epigenomics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2014-11-21

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation.

  2. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Kim, In-Gyu; Lee, Jae-Ha; Kim, Seo-Yoen; Kim, Jeong-Yul; Cho, Eun-Wie

    2014-01-01

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation

  3. Aldh2 knockout mice were more sensitive to DNA damage in leukocytes due to ethyl tertiary butyl ether exposure.

    Science.gov (United States)

    Weng, Zuquan; Suda, Megumi; Ohtani, Katsumi; Mei, Nan; Kawamoto, Toshihiro; Nakajima, Tamie; Wang, Rui-Sheng

    2011-01-01

    To clarify the genotoxicity of ethyl tertiary butyl ether (ETBE), a gasoline additive, male and female C57BL/6 mice of Aldh2+/+ and Aldh2-/- genotypes, aged 8 wk, were exposed to 0, 500, 1,750, or 5,000 ppm ETBE for 6 h/day, 5 d per week for 13 wk. DNA damage in leukocytes was measured by the alkaline comet assay and expressed quantitatively as Tail Intensity (TI). For male mice, TI was significantly higher in all three groups exposed to ETBE than in those without exposure within Aldh2-/- mice, whereas within Aldh2+/+ mice, TI increased only in those exposed to 5,000 ppm of ETBE as compared with mice without exposure. For female mice, a significant increase in TI values was observed in the group exposed to 5,000 ppm of ETBE as compared with those without exposure within Aldh2-/- mice; TI in Aldh2-/- mice exposed to 1,750 and 5,000 ppm was significantly higher than in Aldh2+/+ mice without exposure. TI did not significantly increase in any of the groups exposed to ETBE within female Aldh2+/+ mice. Based on the results we suggest that Aldh2-/- mice are more sensitive to DNA damage caused by ETBE than Aldh2+/+ mice and that males seem more susceptible to this effect than females.

  4. Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31

    DEFF Research Database (Denmark)

    Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Helgadottir, Hafdis T

    2014-01-01

    Osteoarthritis is the most common form of arthritis and is a major cause of pain and disability in the elderly. To search for sequence variants that confer risk of osteoarthritis of the hand, we carried out a genome-wide association study (GWAS) in subjects with severe hand osteoarthritis, using...

  5. Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde

    Directory of Open Access Journals (Sweden)

    Lourdes Gómez-Gómez

    2018-05-01

    Full Text Available In saffron, the cleavage of zeaxanthin by means of CCD2 generates crocetin dialdehyde, which is then converted by an unknown aldehyde dehydrogenase to crocetin. A proteome from saffron stigma was released recently and, based on the expression pattern and correlation analyses, five aldehyde dehydrogenases (ALDHs were suggested as possible candidates to generate crocetin from crocetin dialdehydes. We selected four of the suggested ALDHs and analyzed their expression in different tissues, determined their activity over crocetin dialdehyde, and performed structure modeling and docking calculation to find their specificity. All the ALDHs were able to convert crocetin dialdehyde to crocetin, but two of them were stigma tissue-specific. Structure modeling and docking analyses revealed that, in all cases, there was a high coverage of residues in the models. All of them showed a very close conformation, indicated by the low root-mean-square deviation (RMSD values of backbone atoms, which indicate a high similarity among them. However, low affinity between the enzymes and the crocetin dialdehyde were observed. Phylogenetic analysis and binding affinities calculations, including some ALDHs from Gardenia jasmonoides, Crocus sieberi, and Buddleja species that accumulate crocetin and Bixa orellana synthetizing the apocarotenoid bixin selected on their expression pattern matching with the accumulation of either crocins or bixin, pointed out that family 2 C4 members might be involved in the conversion of crocetin dialdehyde to crocetin with high specificity.

  6. Association between ALDH2 and ADH1B polymorphisms, alcohol drinking and gastric cancer: a replication and mediation analysis.

    Science.gov (United States)

    Ishioka, Kuka; Masaoka, Hiroyuki; Ito, Hidemi; Oze, Isao; Ito, Seiji; Tajika, Masahiro; Shimizu, Yasuhiro; Niwa, Yasumasa; Nakamura, Shigeo; Matsuo, Keitaro

    2018-04-03

    Aldehyde dehydrogenase 2 (ALDH2; rs671, Glu504Lys) and alcohol dehydrogenase 1B (ADH1B; rs1229984, His47Arg) polymorphisms have a strong impact on carcinogenic acetaldehyde accumulation after alcohol drinking. To date, however, evidence for a significant ALDH2-alcohol drinking interaction and a mediation effect of ALDH2/ADH1B through alcohol drinking on gastric cancer have remained unclear. We conducted two case-control studies to validate the interaction and to estimate the mediation effect on gastric cancer. We calculated odds ratios (OR) and 95% confidence intervals (CI) for ALDH2/ADH1B genotypes and alcohol drinking using conditional logistic regression models after adjustment for potential confounding in the HERPACC-2 (697 cases and 1372 controls) and HERPACC-3 studies (678 cases and 678 controls). We also conducted a mediation analysis of the combination of the two studies to assess whether the effects of these polymorphisms operated through alcohol drinking or through other pathways. ALDH2 Lys alleles had a higher risk with increased alcohol consumption compared with ALDH2 Glu/Glu (OR for heavy drinking, 3.57; 95% CI 2.04-6.27; P for trend = 0.007), indicating a significant ALDH2-alcohol drinking interaction (P interaction  = 0.024). The mediation analysis indicated a significant positive direct effect (OR 1.67; 95% CI 1.38-2.03) and a protective indirect effect (OR 0.84; 95% CI 0.76-0.92) of the ALDH2 Lys alleles with the ALDH2-alcohol drinking interaction. No significant association of ADH1B with gastric cancer was observed. The observed ALDH2-alcohol drinking interaction and the direct effect of ALDH2 Lys alleles may suggest the involvement of acetaldehyde in the development of gastric cancer.

  7. ALDH2 genotype has no effect on salivary acetaldehyde without the presence of ethanol in the systemic circulation.

    Directory of Open Access Journals (Sweden)

    Andreas Helminen

    Full Text Available Acetaldehyde associated with alcoholic beverages was recently classified as carcinogenic (Group 1 to humans based on uniform epidemiological and biochemical evidence. ALDH2 (aldehyde dehydrogenase 2 deficient alcohol consumers are exposed to high concentrations of salivary acetaldehyde and have an increased risk of upper digestive tract cancer. However, this interaction is not seen among ALDH2 deficient non-drinkers or rare drinkers, regardless of their smoking status or consumption of edibles containing ethanol or acetaldehyde. Therefore, the aim of this study was to examine the effect of the ALDH2 genotype on the exposure to locally formed acetaldehyde via the saliva without ethanol ingestion.The ALDH2 genotypes of 17 subjects were determined by PCR-RFLP. The subjects rinsed out their mouths with 5 ml of 40 vol% alcohol for 5 seconds. Salivary ethanol and acetaldehyde levels were measured by gas chromatography.Acetaldehyde reached mutagenic levels rapidly and the exposure continued for up to 20 minutes. The mean salivary acetaldehyde concentrations did not differ between ALDH2 genotypes.For ALDH2 deficient subjects, an elevated exposure to endogenously formed acetaldehyde requires the presence of ethanol in the systemic circulation.Our findings provide a logical explanation for how there is an increased incidence of upper digestive tract cancers among ALDH2 deficient alcohol drinkers, but not among those ALDH2 deficient subjects who are locally exposed to acetaldehyde without bloodborne ethanol being delivered to the saliva. Thus, ALDH2 deficient alcohol drinkers provide a human model for increased local exposure to acetaldehyde derived from the salivary glands.

  8. Importance of inverse correlation between ALDH3A1 and PPARγ in tumor cells and tissue regeneration.

    Science.gov (United States)

    Oraldi, M; Saracino, S; Maggiora, M; Chiaravalloti, A; Buemi, C; Martinasso, G; Paiuzzi, E; Thompson, D; Vasiliou, V; Canuto, R A

    2011-05-30

    Aldehyde dehydrogenase (ALDH) enzymes are involved in maintaining cellular homeostasis by metabolizing both endogenous and exogenous reactive aldehydes. They modulate several cell functions including proliferation, differentiation, survival as well as cellular response to oxidative stress. We previously reported that ALDH3A1 expression is inversely correlated with the activation of PPARs (Peroxisome Proliferators-Activated Receptors), a category of orphan nuclear hormone receptors, in both rat and human cells. PPARγ is involved in cell proliferation. In this study, we have used PPARγ transfection and inhibition to examine the relationship between ALDH3A1 and PPARγ and their role as regulators of cell proliferation. Induction of PPARγ in A549 and NCTC 2544 cells by transfection caused a decrease in ALDH3A1 and inhibition of cell proliferation, a result we obtained previously using ligands that induce PPARγ. A reduction of PPARγ expression using siRNA increased ALDH3A1 expression and cell proliferation. In cells induced to proliferate in a model of tissue regeneration, ALDH3A1 expression increased during the period of proliferation, whereas PPARγ expression decreased. In conclusion, through modulation of PPARγ or ALDH3A1, it may be possible to reduce cell proliferation in tumor cells or stimulate cell proliferation in normal cells during tissue regeneration. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. MYO7A and USH2A gene sequence variants in Italian patients with Usher syndrome.

    Science.gov (United States)

    Sodi, Andrea; Mariottini, Alessandro; Passerini, Ilaria; Murro, Vittoria; Tachyla, Iryna; Bianchi, Benedetta; Menchini, Ugo; Torricelli, Francesca

    2014-01-01

    To analyze the spectrum of sequence variants in the MYO7A and USH2A genes in a group of Italian patients affected by Usher syndrome (USH). Thirty-six Italian patients with a diagnosis of USH were recruited. They received a standard ophthalmologic examination, visual field testing, optical coherence tomography (OCT) scan, and electrophysiological tests. Fluorescein angiography and fundus autofluorescence imaging were performed in selected cases. All the patients underwent an audiologic examination for the 0.25-8,000 Hz frequencies. Vestibular function was evaluated with specific tests. DNA samples were analyzed for sequence variants of the MYO7A gene (for USH1) and the USH2A gene (for USH2) with direct sequencing techniques. A few patients were analyzed for both genes. In the MYO7A gene, ten missense variants were found; three patients were compound heterozygous, and two were homozygous. Thirty-four USH2A gene variants were detected, including eight missense variants, nine nonsense variants, six splicing variants, and 11 duplications/deletions; 19 patients were compound heterozygous, and three were homozygous. Four MYO7A and 17 USH2A variants have already been described in the literature. Among the novel mutations there are four USH2A large deletions, detected with multiplex ligation dependent probe amplification (MLPA) technology. Two potentially pathogenic variants were found in 27 patients (75%). Affected patients showed variable clinical pictures without a clear genotype-phenotype correlation. Ten variants in the MYO7A gene and 34 variants in the USH2A gene were detected in Italian patients with USH at a high detection rate. A selective analysis of these genes may be valuable for molecular analysis, combining diagnostic efficiency with little time wastage and less resource consumption.

  10. Expression of the human growth hormone variant gene in cultured fibroblasts and transgenic mice

    International Nuclear Information System (INIS)

    Selden, R.F.; Wagner, T.E.; Blethen, S.; Yun, J.S.; Rowe, M.E.; Goodman, H.M.

    1988-01-01

    The nucleotide sequence of the human growth hormone variant gene, one of the five members of the growth hormone gene family, predicts that it encodes a growth hormone-like protein. As a first step in determining whether this gene is functional in humans, the authors have expressed a mouse methallothionein I/human growth hormone variant fusion gene in mouse L cells and in transgenic mice. The growth hormone variant protein expressed in transiently transfected L cells is distinct from growth hormone itself with respect to reactivity with anti-growth hormone monoclonal antibodies, behavior during column chromatography, and isoelectric point. Transgenic mice expressing the growth hormone variant protein are 1.4- to 1.9-fold larger than nontransgenic controls, suggesting that the protein has growth-promoting properties

  11. Screening for common copy-number variants in cancer genes.

    Science.gov (United States)

    Tyson, Jess; Majerus, Tamsin M O; Walker, Susan; Armour, John A L

    2010-12-01

    For most cases of colorectal cancer that arise without a family history of the disease, it is proposed that an appreciable heritable component of predisposition is the result of contributions from many loci. Although progress has been made in identifying single nucleotide variants associated with colorectal cancer risk, the involvement of low-penetrance copy number variants is relatively unexplored. We have used multiplex amplifiable probe hybridization (MAPH) in a fourfold multiplex (QuadMAPH), positioned at an average resolution of one probe per 2 kb, to screen a total of 1.56 Mb of genomic DNA for copy number variants around the genes APC, AXIN1, BRCA1, BRCA2, CTNNB1, HRAS, MLH1, MSH2, and TP53. Two deletion events were detected, one upstream of MLH1 in a control individual and the other in APC in a colorectal cancer patient, but these do not seem to correspond to copy number polymorphisms with measurably high population frequencies. In summary, by means of our QuadMAPH assay, copy number measurement data were of sufficient resolution and accuracy to detect any copy number variants with high probability. However, this study has demonstrated a very low incidence of deletion and duplication variants within intronic and flanking regions of these nine genes, in both control individuals and colorectal cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Distinct patterns of ALDH1A1 expression predict metastasis and poor outcome of colorectal carcinoma

    Science.gov (United States)

    Xu, Sen-Lin; Zeng, Dong-Zu; Dong, Wei-Guo; Ding, Yan-Qing; Rao, Jun; Duan, Jiang-Jie; Liu, Qing; Yang, Jing; Zhan, Na; Liu, Ying; Hu, Qi-Ping; Zhang, Xia; Cui, You-Hong; Kung, Hsiang-Fu; Yu, Shi-Cang; Bian, Xiu-Wu

    2014-01-01

    Purpose: Aldehyde dehydrogenase 1A1 (ALDH1A1) has been proposed as a candidate biomarker for colorectal carcinoma (CRC). However, the heterogeneity of its expression makes it difficult to predict the outcome of CRC. The aim of this study was to evaluate the diagnostic and prognostic value of this molecule in CRC. Methods and Results: In this study, we examined ALDH1A1 expression by immunohistochemistry including 406 cases of primary CRC with corresponding adjacent mucosa, with confirmation of real-time PCR and Western blotting. We found that the expression patterns of ALDH1A1 were heterogeneous in the CRC and corresponding adjacent tissues. We defined the ratio of ALDH1A1 level in adjacent mucosa to that in tumor tissues as RA/C and found that the capabilities of tumor invasion and metastasis in the tumors with RA/C < 1 were significantly higher than those with RA/C ≥ 1. Follow-up data showed the worse prognoses in the CRC patients with RA/C < 1. For understanding the underlying mechanism, the localization of β-catenin was detected in the CRC tissues with different patterns of ALDH1A1 expression from 221 patients and β-catenin was found preferentially expressed in cell nuclei of the tumors with RA/C < 1 and ALDH1A1high expression of HT29 cell line, indicating that nuclear translocation of β-catenin might contribute to the increased potentials of invasion and metastasis. Conclusion: Our results indicate that RA/C is a novel biomarker to reflect the distinct expression patterns of ALDH1A1 for predicting metastasis and prognosis of CRC. PMID:25031716

  13. Comprehensive investigation of cytokine- and immune-related gene variants in HBV-associated hepatocellular carcinoma patients.

    Science.gov (United States)

    Yu, Fengxue; Zhang, Xiaolin; Tian, Suzhai; Geng, Lianxia; Xu, Weili; Ma, Ning; Wang, Mingbang; Jia, Yuan; Liu, Xuechen; Ma, Junji; Quan, Yuan; Zhang, Chaojun; Guo, Lina; An, Wenting; Liu, Dianwu

    2017-12-22

    Host genotype may be closely related to the different outcomes of Hepatitis B virus (HBV) infection. To identify the association of variants and HBV infection, we comprehensively investigated the cytokine- and immune-related gene mutations in patients with HBV associated hepatocellular carcinoma (HBV-HCC). Fifty-three HBV-HCC patients, 53 self-healing cases (SH) with HBV infection history and 53 healthy controls (HCs) were recruited, the whole exon region of 404 genes were sequenced at >900× depth. Comprehensive variants and gene levels were compared between HCC and HC, and HCC and SH. Thirty-nine variants (adjusted P HBV-HCC. Thirty-four variants were from eight human leukocyte antigen (HLA) genes that were previously reported to be associated with HBV-HCC. The novelties of our study are: five variants (rs579876, rs579877, rs368692979, NM_145007:c.*131_*130delTG, NM_139165:exon5:c.623-2->TT) from three genes ( REAT1E , NOD-like receptor (NLR) protein 11 ( NLRP11 ), hydroxy-carboxylic acid receptor 2 ( HCAR2 )) were found strongly associated with HBV-HCC. We found 39 different variants in 11 genes that were significantly related to HBV-HCC. Five of them were new findings. Our data implied that chronic hepatitis B patients who carry these variants are at a high risk of developing HCC. © 2017 The Author(s).

  14. Identification of Candidate Gene Variants in Korean MODY Families by Whole-Exome Sequencing.

    Science.gov (United States)

    Shim, Ye Jee; Kim, Jung Eun; Hwang, Su-Kyeong; Choi, Bong Seok; Choi, Byung Ho; Cho, Eun-Mi; Jang, Kyoung Mi; Ko, Cheol Woo

    2015-01-01

    To date, 13 genes causing maturity-onset diabetes of the young (MODY) have been identified. However, there is a big discrepancy in the genetic locus between Asian and Caucasian patients with MODY. Thus, we conducted whole-exome sequencing in Korean MODY families to identify causative gene variants. Six MODY probands and their family members were included. Variants in the dbSNP135 and TIARA databases for Koreans and the variants with minor allele frequencies >0.5% of the 1000 Genomes database were excluded. We selected only the functional variants (gain of stop codon, frameshifts and nonsynonymous single-nucleotide variants) and conducted a case-control comparison in the family members. The selected variants were scanned for the previously introduced gene set implicated in glucose metabolism. Three variants c.620C>T:p.Thr207Ile in PTPRD, c.559C>G:p.Gln187Glu in SYT9, and c.1526T>G:p.Val509Gly in WFS1 were respectively identified in 3 families. We could not find any disease-causative alleles of known MODY 1-13 genes. Based on the predictive program, Thr207Ile in PTPRD was considered pathogenic. Whole-exome sequencing is a valuable method for the genetic diagnosis of MODY. Further evaluation is necessary about the role of PTPRD, SYT9 and WFS1 in normal insulin release from pancreatic beta cells. © 2015 S. Karger AG, Basel.

  15. The Analysis Mutation Of The CARD 15 Gene Variants In Chronic Periodontis

    OpenAIRE

    Bahruddin Thalib, Dr.drg. M.Kes,Sp.Pros.

    2014-01-01

    As Conclusion, CARD 15 gene mutation with chronic periodontitis was found to have heterozygote mutation and homozygote mutation variants, and also found genetics variation that changed the composition of C??? T nucleotide at codon 802 in exon 4 amino acid changed from alanine to valine. Purpose of This study was to determine the variant of card 15 gene mutation with periodontitis chronic.

  16. The interplay between alcohol consumption, oral hygiene, ALDH2 and ADH1B in the risk of head and neck cancer.

    Science.gov (United States)

    Tsai, Sen-Tien; Wong, Tung-Yiu; Ou, Chun-Yen; Fang, Sheen-Yie; Chen, Ken-Chung; Hsiao, Jenn-Ren; Huang, Cheng-Chih; Lee, Wei-Ting; Lo, Hung-I; Huang, Jehn-Shyun; Wu, Jiunn-Liang; Yen, Chia-Jui; Hsueh, Wei-Ting; Wu, Yuan-Hua; Yang, Ming-Wei; Lin, Forn-Chia; Chang, Jang-Yang; Chang, Kwang-Yu; Wu, Shang-Yin; Liao, Hsiao-Chen; Lin, Chen-Lin; Wang, Yi-Hui; Weng, Ya-Ling; Yang, Han-Chien; Chang, Jeffrey S

    2014-11-15

    Alcohol consumption is an established risk factor for head and neck cancer (HNC). The major carcinogen from alcohol is acetaldehyde, which may be produced by humans or by oral microorganisms through the metabolism of ethanol. To account for the different sources of acetaldehyde production, the current study examined the interplay between alcohol consumption, oral hygiene (as a proxy measure for the growth of oral microorganisms), and alcohol-metabolizing genes (ADH1B and ALDH2) in the risk of HNC. We found that both the fast (*2/*2) and the slow (*1/*1+ *1/*2) ADH1B genotypes increased the risk of HNC due to alcohol consumption, and this association differed according to the slow/non-functional ALDH2 genotypes (*1/*2+ *2/*2) or poor oral hygiene. In persons with the fast ADH1B genotype, the HNC risk associated with alcohol drinking was increased for those with the slow/non-functional ALDH2 genotypes. For those with the slow ADH1B genotypes, oral hygiene appeared to play an important role; the highest magnitude of an increased HNC risk in alcohol drinkers occurred among those with the worst oral hygiene. This is the first study to show that the association between alcohol drinking and HNC risk may be modified by the interplay between genetic polymorphisms of ADH1B and ALDH2 and oral hygiene. Although it is important to promote abstinence from or reduction of alcohol drinking to decrease the occurrence of HNC, improving oral hygiene practices may provide additional benefit. © 2014 UICC.

  17. AAV Gene Therapy for Alcoholism: Inhibition of Mitochondrial Aldehyde Dehydrogenase Enzyme Expression in Hepatoma Cells.

    Science.gov (United States)

    Sanchez, Anamaria C; Li, Chengwen; Andrews, Barbara; Asenjo, Juan A; Samulski, R Jude

    2017-09-01

    Most ethanol is broken down in the liver in two steps by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH2) enzymes, which metabolize down ethanol into acetaldehyde and then acetate. Some individuals from the Asian population who carry a mutation in the aldehyde dehydrogenase gene (ALDH2*2) cannot metabolize acetaldehyde as efficiently, producing strong effects, including facial flushing, dizziness, hypotension, and palpitations. This results in an aversion to alcohol intake and protection against alcoholism. The large prevalence of this mutation in the human population strongly suggests that modulation of ALDH2 expression by genetic technologies could result in a similar phenotype. scAAV2 vectors encoding ALDH2 small hairpin RNA (shRNA) were utilized to validate this hypothesis by silencing ALDH2 gene expression in human cell lines. Human cell lines HEK-293 and HepG2 were transduced with scAAV2/shRNA, showing a reduction in ALDH2 RNA and protein expression with the two viral concentration assayed (1 × 10 4 and 1 × 10 5 vg/cell) at two different time points. In both cell lines, ALDH2 RNA levels were reduced by 90% and protein expression was inhibited by 90% and 52%, respectively, 5 days post infection. Transduced HepG2 VL17A cells (ADH+) exposed to ethanol resulted in a 50% increase in acetaldehyde levels. These results suggest that gene therapy could be a useful tool for the treatment of alcoholism by knocking down ALDH2 expression using shRNA technology delivered by AAV vectors.

  18. Genetic Variants Contribute to Gene Expression Variability in Humans

    Science.gov (United States)

    Hulse, Amanda M.; Cai, James J.

    2013-01-01

    Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify ∼300 trans-acting evQTL between >13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. PMID:23150607

  19. Pathological assessment of mismatch repair gene variants in Lynch syndrome

    DEFF Research Database (Denmark)

    Rasmussen, Lene Juel; Heinen, Christopher D; Royer-Pokora, Brigitte

    2012-01-01

    Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes and is the most prevalent hereditary colorectal cancer syndrome. A significant proportion of variants identified in MMR and other common cancer susceptibility genes are missense or noncoding changes whose...

  20. Alteration of gene expression by alcohol exposure at early neurulation.

    Science.gov (United States)

    Zhou, Feng C; Zhao, Qianqian; Liu, Yunlong; Goodlett, Charles R; Liang, Tiebing; McClintick, Jeanette N; Edenberg, Howard J; Li, Lang

    2011-02-21

    We have previously demonstrated that alcohol exposure at early neurulation induces growth retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression changes which may underline these developmental defects, microarray analyses were performed in a whole embryo mouse culture model that allows control over alcohol and embryonic variables. Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also showed cranial neural tube defects. In microarray analysis (accession number GSM9545), adopting hypothesis-driven Gene Set Enrichment Analysis (GSEA) informatics and intersection analysis of two independent experiments, we found that there was a collective reduction in expression of neural specification genes (neurogenin, Sox5, Bhlhe22), neural growth factor genes [Igf1, Efemp1, Klf10 (Tieg), and Edil3], and alteration of genes involved in cell growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding protein 1 (Rbp1), and de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1). Remarkably, four key hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin) were absent after alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an open (ALC-NTO) and a closed neural tube (ALC-NTC). Further, the epidermal growth factor signaling pathway and histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes were down-regulated in the ALC-NTO than in the ALC-NTC embryos. This study revealed a set of genes vulnerable to alcohol exposure and genes that were associated with neural tube

  1. Genetic variants in hormone-related genes and risk of breast cancer.

    Directory of Open Access Journals (Sweden)

    Tess Clendenen

    Full Text Available Sex hormones play a key role in the development of breast cancer. Certain polymorphic variants (SNPs and repeat polymorphisms in hormone-related genes are associated with sex hormone levels. However, the relationship observed between these genetic variants and breast cancer risk has been inconsistent. We conducted a case-control study nested within two prospective cohorts to assess the relationship between specific genetic variants in hormone-related genes and breast cancer risk. In total, 1164 cases and 2111 individually-matched controls were included in the study. We did not observe an association between potential functional genetic polymorphisms in the estrogen pathway, SHBG rs6259, ESR1 rs2234693, CYP19 rs10046 and rs4775936, and UGT1A1 rs8175347, or the progesterone pathway, PGR rs1042838, with the risk of breast cancer. Our results suggest that these genetic variants do not have a strong effect on breast cancer risk.

  2. The expression of aldehyde dehydrogenase 1 (ALDH1) in ovarian carcinomas and its clinicopathological associations: a retrospective study

    International Nuclear Information System (INIS)

    Huang, Ruixia; Li, Xiaoran; Holm, Ruth; Trope, Claes G.; Nesland, Jahn M.; Suo, Zhenhe

    2015-01-01

    Aldehyde dehydrogenase 1 (ALDH1) is widely used as a specific cancer stem cell marker in a variety of cancers, and may become a promising target for cancer therapy. However, the role of its expression in tumor cells and the microenvironment in different cancers is still controversial. To clarify the clinicopathological effect of ALDH1 expression in ovarian carcinoma, a series of 248 cases of paraffin-embedded formalin fixed ovarian carcinoma tissues with long term follow-up information were studied by immunohistochemistry. The immunostaining of ALDH1was variably detected in both tumor cells and the stromal cells, although the staining in tumor cells was not as strong as that in stromal cells. Statistical analyses showed that high ALDH1 expression in tumor cells was significantly associated with histological subtypes, early FIGO stage, well differentiation grade and better survival probability (p < 0.05). The expression of ALDH1 in the stromal cells had no clinicopathological associations in the present study (p > 0.05). High expression of cancer stem cell marker ALDH1 in ovarian carcinoma cells may thus portend a favorable prognosis, but its expression in tumor microenvironment may have no role in tumor behavior of ovarian carcinomas. More studies are warranted to find out the mechanisms for this

  3. Friendships Moderate an Association Between a Dopamine Gene Variant and Political Ideology.

    Science.gov (United States)

    Settle, Jaime E; Dawes, Christopher T; Christakis, Nicholas A; Fowler, James H

    2010-01-01

    Scholars in many fields have long noted the importance of social context in the development of political ideology. Recent work suggests that political ideology also has a heritable component, but no specific gene variant or combination of variants associated with political ideology have so far been identified. Here, we hypothesize that individuals with a genetic predisposition toward seeking out new experiences will tend to be more liberal, but only if they are embedded in a social context that provides them with multiple points of view. Using data from the National Longitudinal Study of Adolescent Health, we test this hypothesis by investigating an association between self-reported political ideology and the 7R variant of the dopamine receptor D4 gene (DRD4), which has previously been associated with novelty seeking. Among those with DRD4-7R, we find that the number of friendships a person has in adolescence is significantly associated with liberal political ideology. Among those without the gene variant, there is no association. This is the first study to elaborate a specific gene-environment interaction that contributes to ideological self-identification, and it highlights the importance of incorporating both nature and nurture into the study of political preferences.

  4. Depleted aldehyde dehydrogenase 1A1 (ALDH1A1) reverses cisplatin resistance of human lung adenocarcinoma cell A549/DDP.

    Science.gov (United States)

    Wei, Yunyan; Wu, Shuangshuang; Xu, Wei; Liang, Yan; Li, Yue; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Cisplatin is the standard first-line chemotherapeutic agent for the treatment of non-small cell lung cancer (NSCLC). However, resistance to chemotherapy has been a major obstacle in the management of NSCLC. Aldehyde dehydrogenase 1A1 (ALDH1A1) overexpression has been observed in a variety of cancers, including lung cancer. The purpose of this study was to investigate the effect of ALDH1A1 expression on cisplatin resistance and explore the mechanism responsible. Reverse transcriptase-PCR was applied to measure the messenger RNA expression of ALDH1A1, while Western blot assay was employed to evaluate the protein expression of ALDH1A1, B-cell lymphoma 2, Bcl-2-like protein 4, phospho-protein kinase B (p-AKT) and AKT. A short hairpin RNA was used to knockdown ALDH1A1 expression. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine the effect of ALDH1A1 decrease on cell viability. The cell apoptotic rate was tested using flow cytometry assay. ALDH1A1 is overexpressed in cisplatin resistant cell line A549/DDP, compared with A549. ALDH1A1 depletion significantly decreased A549/DDP proliferation, increased apoptosis, and reduced cisplatin resistance. In addition, the phosphoinositide 3-kinase (PI3K) / AKT pathway is activated in A549/DDP, and ALDH1A1 knockdown reduced the phosphorylation level of AKT. Moreover, the combination of ALDH1A1-short hairpin RNA and PI3K/AKT pathway inhibitor LY294002 markedly inhibited cell viability, enhanced apoptotic cell death, and increased cisplatin sensitivity. These results suggest that ALDH1A1 depletion could reverse cisplatin resistance in human lung cancer cell line A549/DDP, and may act as a potential target for the treatment of lung cancers resistant to cisplatin. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  5. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Anthony R Torres

    2016-10-01

    Full Text Available The common variant - common disease hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased versus matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the common variant—common disease hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics.Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14bp-indel frequencies are significantly increased by more than 5% over control populations (Table2. The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2. Three activating KIR genes: 3DS1, 2DS1 and 2DS2 have increased frequencies of 15%, 22% and 14% in autism populations, respectively. There is a 6% increase in total activating KIR

  6. Neural retina-specific Aldh1a1 controls dorsal choroidal vascular development via Sox9 expression in retinal pigment epithelial cells.

    Science.gov (United States)

    Goto, So; Onishi, Akishi; Misaki, Kazuyo; Yonemura, Shigenobu; Sugita, Sunao; Ito, Hiromi; Ohigashi, Yoko; Ema, Masatsugu; Sakaguchi, Hirokazu; Nishida, Kohji; Takahashi, Masayo

    2018-04-03

    VEGF secreted from retinal pigment epithelial (RPE) cells is responsible for the choroidal vascular development; however, the molecular regulatory mechanism is unclear. We found that Aldh1a1 -/- mice showed choroidal hypoplasia with insufficient vascularization in the dorsal region, although Aldh1a1, an enzyme that synthesizes retinoic acids (RAs), is expressed in the dorsal neural retina, not in the RPE/choroid complex. The level of VEGF in the RPE/choroid was significantly decreased in Aldh1a1 -/- mice, and RA-dependent enhancement of VEGF was observed in primary RPE cells. An RA-deficient diet resulted in dorsal choroidal hypoplasia, and simple RA treatment of Aldh1a1 -/- pregnant females suppressed choroid hypoplasia in their offspring. We also found downregulation of Sox9 in the dorsal neural retina and RPE of Aldh1a1 -/- mice and RPE-specific disruption of Sox9 phenocopied Aldh1a1 -/- choroidal development. These results suggest that RAs produced by Aldh1a1 in the neural retina directs dorsal choroidal vascular development via Sox9 upregulation in the dorsal RPE cells to enhance RPE-derived VEGF secretion. © 2018, Goto et al.

  7. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Lawrenson, Kate; Iversen, Edwin S; Tyrer, Jonathan

    2015-01-01

    genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association......, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest...... that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene....

  8. Deleterious genetic variants in ciliopathy genes increase risk of ritodrine-induced cardiac and pulmonary side effects.

    Science.gov (United States)

    Seo, Heewon; Kwon, Eun Jin; You, Young-Ah; Park, Yoomi; Min, Byung Joo; Yoo, Kyunghun; Hwang, Han-Sung; Kim, Ju Han; Kim, Young Ju

    2018-01-24

    Ritodrine is a commonly used tocolytic to prevent preterm labour. However, it can cause unexpected serious adverse reactions, such as pulmonary oedema, pulmonary congestion, and tachycardia. It is unknown whether such adverse reactions are associated with pharmacogenomic variants in patients. Whole-exome sequencing of 13 subjects with serious ritodrine-induced cardiac and pulmonary side-effects was performed to identify causal genes and variants. The deleterious impact of nonsynonymous substitutions for all genes was computed and compared between cases (n = 13) and controls (n = 30). The significant genes were annotated with Gene Ontology (GO), and the associated disease terms were categorised into four functional classes for functional enrichment tests. To assess the impact of distributed rare variants in cases with side effects, we carried out rare variant association tests with a minor allele frequency ≤ 1% using the burden test, the sequence Kernel association test (SKAT), and optimised SKAT. We identified 28 genes that showed significantly lower gene-wise deleteriousness scores in cases than in controls. Three of the identified genes-CYP1A1, CYP8B1, and SERPINA7-are pharmacokinetic genes. The significantly identified genes were categorized into four functional classes: ion binding, ATP binding, Ca 2+ -related, and ciliopathies-related. These four classes were significantly enriched with ciliary genes according to SYSCILIA Gold Standard genes (P side effects may be associated with deleterious genetic variants in ciliary and pharmacokinetic genes.

  9. Association between genetic variants of the clock gene and obesity and sleep duration.

    Science.gov (United States)

    Valladares, Macarena; Obregón, Ana María; Chaput, Jean-Philippe

    2015-12-01

    Obesity is a multifactorial disease caused by the interaction of genetic and environmental factors related to lifestyle aspects. It has been shown that reduced sleep is associated with increased body mass index (BMI). Circadian Locomotor Output Cycles Kaput (CLOCK) gene variants have also been associated with obesity. The objective of this mini-review was to discuss the available literature related to CLOCK gene variants associated with adiposity and sleep duration in humans. In total, 16 articles complied with the terms of the search that reported CLOCK variants associated with sleep duration, energy intake, and BMI. Overall, six CLOCK single nucleotide polymorphisms (SNPs) have been associated with sleep duration, and three variants have been associated with energy intake variables. Overall, the most studied area has been the association of CLOCK gene with obesity; close to eight common variants have been associated with obesity. The most studied CLOCK SNP in different populations is rs1801260, and most of these populations correspond to European populations. Collectively, identifying at risk CLOCK genotypes is a new area of research that may help identify individuals who are more susceptible to overeating and gaining weight when exposed to short sleep durations.

  10. Variants in the interleukin 8 gene and the response to inhaled bronchodilators in cystic fibrosis.

    Science.gov (United States)

    Furlan, Larissa Lazzarini; Ribeiro, José Dirceu; Bertuzzo, Carmen Sílvia; Salomão Junior, João Batista; Souza, Dorotéia Rossi Silva; Marson, Fernando Augusto Lima

    Interleukin 8 protein promotes inflammatory responses, even in airways. The presence of interleukin 8 gene variants causes altered inflammatory responses and possibly varied responses to inhaled bronchodilators. Thus, this study analyzed the interleukin 8 variants (rs4073, rs2227306, and rs2227307) and their association with the response to inhaled bronchodilators in cystic fibrosis patients. Analysis of interleukin 8 gene variants was performed by restriction fragment length polymorphism of polymerase chain reaction. The association between spirometry markers and the response to inhaled bronchodilators was evaluated by Mann-Whitney and Kruskal-Wallis tests. The analysis included all cystic fibrosis patients, and subsequently patients with two mutations in the cystic fibrosis transmembrane conductance regulator gene belonging to classes I to III. This study included 186 cystic fibrosis patients. There was no association of the rs2227307 variant with the response to inhaled bronchodilators. The rs2227306 variant was associated with FEF 50% in the dominant group and in the group with two identified mutations in the cystic fibrosis transmembrane conductance regulator gene. The rs4073 variant was associated with spirometry markers in four genetic models: co-dominant (FEF 25-75% and FEF 75% ), dominant (FEV 1 , FEF 50% , FEF 75% , and FEF 25-75% ), recessive (FEF 75% and FEF 25-75% ), and over-dominant (FEV 1 /FVC). This study highlighted the importance of the rs4073 variant of the interleukin 8 gene, regarding response to inhaled bronchodilators, and of the assessment of mutations in the cystic fibrosis transmembrane conductance regulator gene. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  11. Isolation of Shiga toxin-producing Escherichia coli harboring variant Shiga toxin genes from seafood

    Directory of Open Access Journals (Sweden)

    Sreepriya Prakasan

    2018-03-01

    Full Text Available Background and Aim: Shiga toxin-producing Escherichia coli (STEC are important pathogens of global significance. STEC are responsible for numerous food-borne outbreaks worldwide and their presence in food is a potential health hazard. The objective of the present study was to determine the incidence of STEC in fresh seafood in Mumbai, India, and to characterize STEC with respect to their virulence determinants. Materials and Methods: A total of 368 E. coli were isolated from 39 fresh seafood samples (18 finfish and 21 shellfish using culture-based methods. The isolates were screened by polymerase chain reaction (PCR for the genes commonly associated with STEC. The variant Shiga toxin genes were confirmed by Southern blotting and hybridization followed by DNA sequencing. Results: One or more Shiga toxins genes were detected in 61 isolates. Of 39 samples analyzed, 10 (25.64% samples harbored STEC. Other virulence genes, namely, eaeA (coding for an intimin and hlyA (hemolysin A were detected in 43 and 15 seafood isolates, respectively. The variant stx1 genes from 6 isolates were sequenced, five of which were found to be stx1d variants, while one sequence varied considerably from known stx1 sequences. Southern hybridization and DNA sequence analysis suggested putative Shiga toxin variant genes (stx2 in at least 3 other isolates. Conclusion: The results of this study showed the occurrence of STEC in seafood harboring one or more Shiga toxin genes. The detection of STEC by PCR may be hampered due to the presence of variant genes such as the stx1d in STEC. This is the first report of stx1d gene in STEC isolated from Indian seafood.

  12. Illustrating, Quantifying, and Correcting for Bias in Post-hoc Analysis of Gene-Based Rare Variant Tests of Association

    Directory of Open Access Journals (Sweden)

    Kelsey E. Grinde

    2017-09-01

    Full Text Available To date, gene-based rare variant testing approaches have focused on aggregating information across sets of variants to maximize statistical power in identifying genes showing significant association with diseases. Beyond identifying genes that are associated with diseases, the identification of causal variant(s in those genes and estimation of their effect is crucial for planning replication studies and characterizing the genetic architecture of the locus. However, we illustrate that straightforward single-marker association statistics can suffer from substantial bias introduced by conditioning on gene-based test significance, due to the phenomenon often referred to as “winner's curse.” We illustrate the ramifications of this bias on variant effect size estimation and variant prioritization/ranking approaches, outline parameters of genetic architecture that affect this bias, and propose a bootstrap resampling method to correct for this bias. We find that our correction method significantly reduces the bias due to winner's curse (average two-fold decrease in bias, p < 2.2 × 10−6 and, consequently, substantially improves mean squared error and variant prioritization/ranking. The method is particularly helpful in adjustment for winner's curse effects when the initial gene-based test has low power and for relatively more common, non-causal variants. Adjustment for winner's curse is recommended for all post-hoc estimation and ranking of variants after a gene-based test. Further work is necessary to continue seeking ways to reduce bias and improve inference in post-hoc analysis of gene-based tests under a wide variety of genetic architectures.

  13. Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer.

    Science.gov (United States)

    Lawrenson, Kate; Iversen, Edwin S; Tyrer, Jonathan; Weber, Rachel Palmieri; Concannon, Patrick; Hazelett, Dennis J; Li, Qiyuan; Marks, Jeffrey R; Berchuck, Andrew; Lee, Janet M; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bandera, Elisa V; Bean, Yukie; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Chen, Ann; Chen, Zhihua; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Plisiecka-Halasa, Joanna; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Eccles, Diana; Easton, Douglas T; Edwards, Robert P; Eilber, Ursula; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Jakubowska, Anna; Paul, James; Jensen, Allan; Karlan, Beth Y; Kjaer, Susanne Kruger; Kelemen, Linda E; Kellar, Melissa; Kelley, Joseph L; Kiemeney, Lambertus A; Krakstad, Camilla; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Cannioto, Rikki; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Nevanlinna, Heli; McNeish, Iain; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Narod, Steven A; Nedergaard, Lotte; Ness, Roberta B; Noor Azmi, Mat Adenan; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Budzilowska, Agnieszka; Sellers, Thomas A; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Sucheston, Lara; Tangen, Ingvild L; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tworoger, Shelley S; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Coetzee, Gerhard A; Freedman, Matthew L; Monteiro, Alvaro N A; Moes-Sosnowska, Joanna; Kupryjanczyk, Jolanta; Pharoah, Paul D; Gayther, Simon A; Schildkraut, Joellen M

    2015-11-01

    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. MSX1 gene variant - its presence in tooth absence - a case control genetic study.

    Science.gov (United States)

    Reddy, Naveen Admala; Adusumilli, Gopinath; Devanna, Raghu; Pichai, Saravanan; Rohra, Mayur Gobindram; Arjunan, Sharmila

    2013-10-01

    Non Syndromic tooth agenesis is a congenital anomaly with significant medical, psychological and social ramifications. There is sufficient evidence to hypothesize that locus for this condition can be identified by candidate genes. The aim of this study was to test whether MSX1 671 T>C gene variant was involved in etiology of Non Syndromic tooth agenesis in Raichur Patients. Blood samples were collected with informed consent from 50 subjects having Non Syndromic tooth agenesis and 50 controls. Genomic DNA was extracted from the blood samples, Polymerase Chain Reaction was performed (PCR) and Restriction Fragment Length Polymorphism (RFLP) was performed for digestion products that were evaluated. The RESULTS showed positive correlation between MSX1671 T>C gene variant and Non Syndromic tooth agenesis in Raichur Patients. MSX1 671 T>C gene variant may be a good screening marker for Non Syndromic tooth agenesis in Raichur Patients . How to cite this article:Reddy NA, Adusumilli G, Devanna R, Pichai S, Rohra MG, Arjunan S. Msx1 Gene Variant - Its Presence in Tooth Absence - A Case Control Genetic Study. J Int Oral Health 2013; 5(5):20-6.

  15. Molecular profiling of ALDH1+ colorectal cancer stem cells reveals preferential activation of MAPK, FAK, and oxidative stress prosurvival signalling pathways

    DEFF Research Database (Denmark)

    Vishnubalaji, Radhakrishnan; Manikandan, Muthurangan; Fahad, Mohamed

    2018-01-01

    enrichment related to DNA damage, MAPK, FAK, oxidative stress response, and Wnt signalling. ALDH+ cells showed enhanced ROS stress resistance, whereas MAPK/FAK pathway pharmacologic inhibition limited their survival. Conversely, 5-fluorouracil increased the ALDH+ cell fraction among the SW403, HCT116 and SW.......006) and poor DFS (p = 0.05), thus implicating ALDH1A1 and POU5F1 in CRC prognosis. Our data reveal distinct molecular signature of ALDH+ CSCs in CRC and suggest pathways relevant for successful targeted therapies and management of CRC....

  16. Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease

    NARCIS (Netherlands)

    Robak, L.A.; Jansen, I.E.; Rooij, J van; Uitterlinden, A.G.; Kraaij, R.; Jankovic, J.; Heutink, P.; Shulman, J.M.; Bloem, B.; Post, B.; Scheffer, H.; Warrenburg, B.P.C. van de; et al.,

    2017-01-01

    Mutations in the glucocerebrosidase gene (GBA), which cause Gaucher disease, are also potent risk factors for Parkinson's disease. We examined whether a genetic burden of variants in other lysosomal storage disorder genes is more broadly associated with Parkinson's disease susceptibility. The

  17. Molecular characterization of a genetic variant of the steroid hormone-binding globulin gene in heterozygous subjects

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D.O.; Catterall, J.F. [Population Council, New York, NY (United States); Carino, C. [Instituto National de la Nutricion, Mexico City, MX (United States)] [and others

    1995-04-01

    Steroid hormone-binding globulin in human serum displays different isoelectric focusing (IEF) patterns among individuals, suggesting genetic variation in the gene for this extracellular steroid carrier protein. Analysis of allele frequencies and family studies suggested the existence of two codominant alleles of the gene. Subsequent determination of the molecular basis of a variant of the gene was carried out using DNA from homozygous individuals from a single Belgian family. It was of interest to characterize other variant individuals to determine whether all variants identified by IEF phenotyping were caused by the same mutation or whether other mutations occurred in the gene in different populations. Previous studies identified Mexican subjects who were heterozygous for the variant IEF phenotype. Denaturing gradient gel electrophoresis was used to localize the mutation in these subjects and to purify the variant allele for DNA sequence analysis. The results show that the mutation in this population is identical to that identified in the Belgian family, and no other mutations were detected in the gene. These data represent the first analysis of steroid hormone-binding globulin gene variation in heterozygous subjects and further support the conclusion of biallelism of the gene worldwide. 11 refs., 2 figs., 1 tab.

  18. Determination of Aldehyde Dehydrogenase (ALDH Isozymes in Human Cancer Samples - Comparison of Kinetic and Immunochemical Assays

    Directory of Open Access Journals (Sweden)

    Dorota Borecka

    2002-12-01

    Full Text Available A fluorimetric assay of aldehyde dehydrogenase isozymes, based on naphthaldehyde oxidation, is compared with Western Blotting analysis on several clinical samples obtained from surgery. The comparison reveals qualitatively good correlation of ALDH1A1 isozyme detection with two methods and somewhat worse on ALDH3A1 assay.

  19. Sexually dimorphic effects of oxytocin receptor gene (OXTR variants on Harm Avoidance

    Directory of Open Access Journals (Sweden)

    Stankova Trayana

    2012-07-01

    Full Text Available Abstract Background Recent research has suggested that oxytocin receptor gene (OXTR variants may account for individual differences in social behavior, the effects of stress and parenting styles. Little is known, however, on a putative role of the gene in heritable temperamental traits. Methods We addressed effects of two common OXTR variants, rs237900 and rs237902, on personality dimensions in 99 healthy subjects using the Temperament and Character Inventory. Results When sex was controlled for and an OXTR genotype*sex interaction term was included in the regression model, 11% of the variance in Harm Avoidance could be explained (uncorrected p ≤ 0.01. Female carriers of the minor alleles scored highest, and a novel A217T mutation emerged in the most harm avoidant male participant. Conclusions Findings lend support to a modulatory effect of common OXTR variants on Harm Avoidance in healthy caucasian women and invite resequencing of the gene in anxiety phenotypes to identify more explanatory functional variation.

  20. Increased burden of deleterious variants in essential genes in autism spectrum disorder.

    Science.gov (United States)

    Ji, Xiao; Kember, Rachel L; Brown, Christopher D; Bućan, Maja

    2016-12-27

    Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication, and repetitive behavior. It is estimated that hundreds of genes contribute to ASD. We asked if genes with a strong effect on survival and fitness contribute to ASD risk. Human orthologs of genes with an essential role in pre- and postnatal development in the mouse [essential genes (EGs)] are enriched for disease genes and under strong purifying selection relative to human orthologs of mouse genes with a known nonlethal phenotype [nonessential genes (NEGs)]. This intolerance to deleterious mutations, commonly observed haploinsufficiency, and the importance of EGs in development suggest a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. With a comprehensive catalog of 3,915 mammalian EGs, we provide compelling evidence for a stronger contribution of EGs to ASD risk compared with NEGs. By examining the exonic de novo and inherited variants from 1,781 ASD quartet families, we show a significantly higher burden of damaging mutations in EGs in ASD probands compared with their non-ASD siblings. The analysis of EGs in the developing brain identified clusters of coexpressed EGs implicated in ASD. Finally, we suggest a high-priority list of 29 EGs with potential ASD risk as targets for future functional and behavioral studies. Overall, we show that large-scale studies of gene function in model organisms provide a powerful approach for prioritization of genes and pathogenic variants identified by sequencing studies of human disease.

  1. Illustrating, Quantifying, and Correcting for Bias in Post-hoc Analysis of Gene-Based Rare Variant Tests of Association

    Science.gov (United States)

    Grinde, Kelsey E.; Arbet, Jaron; Green, Alden; O'Connell, Michael; Valcarcel, Alessandra; Westra, Jason; Tintle, Nathan

    2017-01-01

    To date, gene-based rare variant testing approaches have focused on aggregating information across sets of variants to maximize statistical power in identifying genes showing significant association with diseases. Beyond identifying genes that are associated with diseases, the identification of causal variant(s) in those genes and estimation of their effect is crucial for planning replication studies and characterizing the genetic architecture of the locus. However, we illustrate that straightforward single-marker association statistics can suffer from substantial bias introduced by conditioning on gene-based test significance, due to the phenomenon often referred to as “winner's curse.” We illustrate the ramifications of this bias on variant effect size estimation and variant prioritization/ranking approaches, outline parameters of genetic architecture that affect this bias, and propose a bootstrap resampling method to correct for this bias. We find that our correction method significantly reduces the bias due to winner's curse (average two-fold decrease in bias, p bias and improve inference in post-hoc analysis of gene-based tests under a wide variety of genetic architectures. PMID:28959274

  2. Two novel rare variants of APOA5 gene found in subjects with severe hypertriglyceridemia.

    Science.gov (United States)

    Pisciotta, Livia; Fresa, Raffaele; Bellocchio, Antonella; Guido, Virgilia; Priore Oliva, Claudio; Calandra, Sebastiano; Bertolini, Stefano

    2011-11-20

    Common variants of APOA5 gene affect plasma triglyceride (TG) in the population and a number of rare variants APOA5 have been reported in individuals with hypertriglyceridemia (HTG). APOA5 was analysed in 98 HTG individuals (plasma TG >9 mmol/L) in whom no mutations in LPL and APOC2 had been found. Two patients were found to be heterozygous for two novel APOA5 variants. The first variant (p.L253P) was identified in an obese male who consumed a diet rich in fat and simple sugars. He was also a carrier in trans of the common TG-raising p.S19W SNP (5*3 haplotype). The second variant (c.295-297 del GAG, p.E99 del) was found in a lean male with no life style or metabolic factors known to affect plasma TG. He was a carrier in trans of the TG-raising 5*2 haplotype and was homozygous for the rare c.1337T allele of a SNP of GCKR gene. No mutations in other genes affecting plasma TG (LMF1 and GPIHBP1) were found in these patients. These APOA5 variants, resulted to be deleterious in silico, were not found in 350 control subjects. These novel APOA5 variants predispose to HTG in combination with other genetic or nutritional factors. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Gene-wise association of variants in four lysosomal storage disorder genes in neuropathologically confirmed Lewy body disease.

    Science.gov (United States)

    Clark, Lorraine N; Chan, Robin; Cheng, Rong; Liu, Xinmin; Park, Naeun; Parmalee, Nancy; Kisselev, Sergey; Cortes, Etty; Torres, Paola A; Pastores, Gregory M; Vonsattel, Jean P; Alcalay, Roy; Marder, Karen; Honig, Lawrence L; Fahn, Stanley; Mayeux, Richard; Shelanski, Michael; Di Paolo, Gilbert; Lee, Joseph H

    2015-01-01

    Variants in GBA are associated with Lewy Body (LB) pathology. We investigated whether variants in other lysosomal storage disorder (LSD) genes also contribute to disease pathogenesis. We performed a genetic analysis of four LSD genes including GBA, HEXA, SMPD1, and MCOLN1 in 231 brain autopsies. Brain autopsies included neuropathologically defined LBD without Alzheimer Disease (AD) changes (n = 59), AD without significant LB pathology (n = 71), Alzheimer disease and lewy body variant (ADLBV) (n = 68), and control brains without LB or AD neuropathology (n = 33). Sequencing of HEXA, SMPD1, MCOLN1 and GBA followed by 'gene wise' genetic association analysis was performed. To determine the functional effect, a biochemical analysis of GBA in a subset of brains was also performed. GCase activity was measured in a subset of brain samples (n = 64) that included LBD brains, with or without GBA mutations, and control brains. A lipidomic analysis was also performed in brain autopsies (n = 67) which included LBD (n = 34), ADLBV (n = 3), AD (n = 4), PD (n = 9) and control brains (n = 17), comparing GBA mutation carriers to non-carriers. In a 'gene-wise' analysis, variants in GBA, SMPD1 and MCOLN1 were significantly associated with LB pathology (p range: 0.03-4.14 x10(-5)). Overall, the mean levels of GCase activity were significantly lower in GBA mutation carriers compared to non-carriers (plipid classes, ceramides and sphingolipids, was observed in LBD brains carrying GBA mutations compared to controls (p range: p<0.05-p<0.01). Our study indicates that variants in GBA, SMPD1 and MCOLN1 are associated with LB pathology. Biochemical data comparing GBA mutation carrier to non-carriers support these findings, which have important implications for biomarker development and therapeutic strategies.

  4. Gene-wise association of variants in four lysosomal storage disorder genes in neuropathologically confirmed Lewy body disease.

    Directory of Open Access Journals (Sweden)

    Lorraine N Clark

    Full Text Available Variants in GBA are associated with Lewy Body (LB pathology. We investigated whether variants in other lysosomal storage disorder (LSD genes also contribute to disease pathogenesis.We performed a genetic analysis of four LSD genes including GBA, HEXA, SMPD1, and MCOLN1 in 231 brain autopsies. Brain autopsies included neuropathologically defined LBD without Alzheimer Disease (AD changes (n = 59, AD without significant LB pathology (n = 71, Alzheimer disease and lewy body variant (ADLBV (n = 68, and control brains without LB or AD neuropathology (n = 33. Sequencing of HEXA, SMPD1, MCOLN1 and GBA followed by 'gene wise' genetic association analysis was performed. To determine the functional effect, a biochemical analysis of GBA in a subset of brains was also performed. GCase activity was measured in a subset of brain samples (n = 64 that included LBD brains, with or without GBA mutations, and control brains. A lipidomic analysis was also performed in brain autopsies (n = 67 which included LBD (n = 34, ADLBV (n = 3, AD (n = 4, PD (n = 9 and control brains (n = 17, comparing GBA mutation carriers to non-carriers.In a 'gene-wise' analysis, variants in GBA, SMPD1 and MCOLN1 were significantly associated with LB pathology (p range: 0.03-4.14 x10(-5. Overall, the mean levels of GCase activity were significantly lower in GBA mutation carriers compared to non-carriers (p<0.001. A significant increase and accumulation of several species for the lipid classes, ceramides and sphingolipids, was observed in LBD brains carrying GBA mutations compared to controls (p range: p<0.05-p<0.01.Our study indicates that variants in GBA, SMPD1 and MCOLN1 are associated with LB pathology. Biochemical data comparing GBA mutation carrier to non-carriers support these findings, which have important implications for biomarker development and therapeutic strategies.

  5. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding...

  6. Study on the IFNL4 gene ss469415590 variant in Ukrainian population

    Directory of Open Access Journals (Sweden)

    Kucherenko A. M.

    2014-09-01

    Full Text Available Aim. To determine genotype and allele disribution for the IFNL4 gene ss469415590 and examine it for linkage with the IL28B gene rs12979860 in Ukrainian population. Methods. The studied group consisted of 100 unrelated donors of Eastern European origin representing the population of Ukraine. Genotyping for the IFNL4 gene ss469415590 was performed using the amplification-refractory mutation system PCR. Genotyping for the IL28B gene rs12979860 was performed by the PCR-based restriction fragment length polymorphism assay. Results. Genotype frequencies for both studied variants showed no significant deviation from those expected according to Hardy-Weinberg equilibrium. Allelic distribution for ss469415590 was: TT – 0.665, G – 0.335. Allelic frequencies of rs12979860 were: C – 0.655, T – 0.345. The results of likelihood ratio test indicated a linkage disequilibrium between the studied variants (p > 0.0001, the major alleles ss469415590 TT and rs12979860 C were in phase. The genetic structure of Ukrainian population in terms of two studied polymorphic variants is similar to the European population presented in the «1000 genomes» project. Conclusions. Considering a tight linkage revealed in Ukrainian population between the ss469415590 variant and rs12979860, a crucial genetic marker of chronic hepatitis C treatment efficiency, this polymorphism might be a promising target for further investigation as a pharmacogenetic marker.

  7. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling.

    Directory of Open Access Journals (Sweden)

    Erhong Meng

    Full Text Available OBJECTIVE: Aldehyde dehydrogenase (ALDH expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. METHODS: Isogenic ovarian cancer cell lines for platinum sensitivity (A2780 and platinum resistant (A2780/CP70 as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. RESULTS: ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01. ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ and replication checkpoint (pS317 Chk1 were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. CONCLUSION: This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling.

  8. Peeling skin syndrome associated with novel variant in FLG2 gene.

    Science.gov (United States)

    Alfares, Ahmed; Al-Khenaizan, Sultan; Al Mutairi, Fuad

    2017-12-01

    Peeling skin syndrome is a rare genodermatosis characterized by variably pruritic superficial generalized peeling of the skin with several genes involved until now little is known about the association between FLG2 and peeling skin syndrome. We describe multiple family members from a consanguineous Saudi family with peeling skin syndrome. Next Generation Sequencing identifies a cosegregating novel variant in FLG2 c.632C>G (p.Ser211*) as a likely etiology in this family. Here, we reported on the clinical manifestation of homozygous loss of function variant in FLG2 as a disease-causing gene for peeling skin syndrome and expand the dermatology findings. © 2017 Wiley Periodicals, Inc.

  9. Burden of rare variants in ALS genes influences survival in familial and sporadic ALS.

    Science.gov (United States)

    Pang, Shirley Yin-Yu; Hsu, Jacob Shujui; Teo, Kay-Cheong; Li, Yan; Kung, Michelle H W; Cheah, Kathryn S E; Chan, Danny; Cheung, Kenneth M C; Li, Miaoxin; Sham, Pak-Chung; Ho, Shu-Leong

    2017-10-01

    Genetic variants are implicated in the development of amyotrophic lateral sclerosis (ALS), but it is unclear whether the burden of rare variants in ALS genes has an effect on survival. We performed whole genome sequencing on 8 familial ALS (FALS) patients with superoxide dismutase 1 (SOD1) mutation and whole exome sequencing on 46 sporadic ALS (SALS) patients living in Hong Kong and found that 67% had at least 1 rare variant in the exons of 40 ALS genes; 22% had 2 or more. Patients with 2 or more rare variants had lower probability of survival than patients with 0 or 1 variant (p = 0.001). After adjusting for other factors, each additional rare variant increased the risk of respiratory failure or death by 60% (p = 0.0098). The presence of the rare variant was associated with the risk of ALS (Odds ratio 1.91, 95% confidence interval 1.03-3.61, p = 0.03), and ALS patients had higher rare variant burden than controls (MB, p = 0.004). Our findings support an oligogenic basis with the burden of rare variants affecting the development and survival of ALS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Cancer stem-like cells of ovarian clear cell carcinoma are enriched in the ALDH-high population associated with an accelerated scavenging system in reactive oxygen species.

    Science.gov (United States)

    Mizuno, T; Suzuki, N; Makino, H; Furui, T; Morii, E; Aoki, H; Kunisada, T; Yano, M; Kuji, S; Hirashima, Y; Arakawa, A; Nishio, S; Ushijima, K; Ito, K; Itani, Y; Morishige, K

    2015-05-01

    In ovarian cancer cases, recurrence after chemotherapy is frequently observed, suggesting the involvement of ovarian cancer stem-like cells (CSCs). The chemoresistance of ovarian clear cell carcinomas is particularly strong in comparison to other epithelial ovarian cancer subtypes. We investigated the relationship between a CSC marker, aldehyde dehydrogenase 1 (ALDH1), and clinical prognosis using ovarian clear cell carcinoma tissue samples. Furthermore, we investigated the antioxidant mechanism by which CSCs maintain a lower reactive oxygen species (ROS) level, which provides protection from chemotherapeutic agents. Immunohistochemical staining was performed to examine the CSC markers (CD133, CD44, ALDH1) using ovarian clear cell carcinoma tissue samples (n=81). Clear cell carcinoma cell lines (KOC-7C, OVTOKO) are separated into the ALDH-high and ALDH-low populations by ALDEFLUOR assay and fluorescence-activated cell sorting (FACS). We compared the intracellular ROS level, mRNA level of the antioxidant enzymes and Nrf2 expression of the two populations. High ALDH1 expression levels are related to advanced stage in clear cell carcinoma cases. ALDH1 expression significantly reduced progression free survival. Other markers are not related to clinical stage and prognosis. ALDH-high cells contained a lower ROS level than ALDH-low cells. Antioxidant enzymes were upregulated in ALDH-high cells. ALDH-high cells showed increased expression of Nrf2, a key transcriptional factor of the antioxidant system. ALDH-positive CSCs might have increased Nrf2-induced antioxidant scavengers, which lower ROS level relevant to chemoresistance in ovarian clear cell carcinoma. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Common variants in Mendelian kidney disease genes and their association with renal function.

    Science.gov (United States)

    Parsa, Afshin; Fuchsberger, Christian; Köttgen, Anna; O'Seaghdha, Conall M; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Bochud, Murielle; Heid, Iris M; Siscovick, David S; Fox, Caroline S; Kao, W Linda; Böger, Carsten A

    2013-12-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.

  12. Common Gene Variants Account for Most Genetic Risk for Autism

    Science.gov (United States)

    ... gene variants account for most genetic risk for autism Roles of heritability, mutations, environment estimated – NIH-funded study. The bulk of risk, or liability, for autism spectrum disorders (ASD) was traced to inherited variations ...

  13. Homozygous sequence variants in the WNT10B gene underlie split hand/foot malformation

    Directory of Open Access Journals (Sweden)

    Asmat Ullah

    2018-01-01

    Full Text Available Abstract Split-hand/split-foot malformation (SHFM, also known as ectrodactyly is a rare genetic disorder. It is a clinically and genetically heterogeneous group of limb malformations characterized by absence/hypoplasia and/or median cleft of hands and/or feet. To date, seven genes underlying SHFM have been identified. This study described four consanguineous families (A-D segregating SHFM in an autosomal recessive manner. Linkage in the families was established to chromosome 12p11.1–q13.13 harboring WNT10B gene. Sequence analysis identified a novel homozygous nonsense variant (p.Gln154* in exon 4 of the WNT10B gene in two families (A and B. In the other two families (C and D, a previously reported variant (c.300_306dupAGGGCGG; p.Leu103Argfs*53 was detected. This study further expands the spectrum of the sequence variants reported in the WNT10B gene, which result in the split hand/foot malformation.

  14. Resequencing three candidate genes discovers seven potentially deleterious variants susceptibility to major depressive disorder and suicide attempts in Chinese.

    Science.gov (United States)

    Rao, Shitao; Leung, Cherry She Ting; Lam, Macro Hb; Wing, Yun Kwok; Waye, Mary Miu Yee; Tsui, Stephen Kwok Wing

    2017-03-01

    To date almost 200 genes were found to be associated with major depressive disorder (MDD) or suicide attempts (SA), but very few genes were reported for their molecular mechanisms. This study aimed to find out whether there were common or rare variants in three candidate genes altering the risk for MDD and SA in Chinese. Three candidate genes (HOMER1, SLC6A4 and TEF) were chosen for resequencing analysis and association studies as they were reported to be involved in the etiology of MDD and SA. Following that, bioinformatics analyses were applied on those variants of interest. After resequencing analysis and alignment for the amplicons, a total of 34 common or rare variants were found in the randomly selected 36 Hong Kong Chinese patients with both MDD and SA. Among those, seven variants show potentially deleterious features. Rs60029191 and a rare variant located in regulatory region of the HOMER1 gene may affect the promoter activities through interacting with predicted transcription factors. Two missense mutations existed in the SLC6A4 coding regions were firstly reported in Hong Kong Chinese MDD and SA patients, and both of them could affect the transport efficiency of SLC6A4 to serotonin. Moreover, a common variant rs6354 located in the untranslated region of this gene may affect the expression level or exonic splicing of serotonin transporter. In addition, both of a most studied polymorphism rs738499 and a low-frequency variant in the promoter region of the TEF gene were found to be located in potential transcription factor binding sites, which may let the two variants be able to influence the promoter activities of the gene. This study elucidated the potentially molecular mechanisms of the three candidate genes altering the risk for MDD and SA. These findings implied that not only common variants but rare variants could make contributions to the genetic susceptibility to MDD and SA in Chinese. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Novel variant in the TP63 gene associated to ankyloblepharon-ectodermal dysplasia-cleft lip/palate (AEC) syndrome.

    Science.gov (United States)

    Gonzalez, Francisco; Loidi, Lourdes; Abalo-Lojo, Jose M

    2017-01-01

    Ankyloblepharon-ectodermal dysplasia-cleft lip/palate (AEC) syndrome is a disorder resulting from anomalous embryonic development of ectodermal tissues. There is evidence that AEC syndrome is caused by mutations in the TP63 gene, which encodes the p63 protein. This is an important regulatory protein involved in epidermal proliferation and differentiation. Genome sequencing was performed in DNA from peripheral blood leukocytes of a newborn with AEC syndrome and her parents. Variants were searched in all coding exons and intron-exon boundaries of the TP63 gene. A heterozygous missense variant (NM_003722.4:c.1063G>C (p.Asp355His) was found in the newborn patient. No variants were found in either of the parents. We identified a previously unreported variant in TP63 gene which seems to be involved in the somatic malformations found in the AEC syndrome. The absence of this variant in both parents suggests that the variant appeared de novo.

  16. ALDH2 polymorphism, associated with attenuating negative symptoms in patients with schizophrenia treated with add-on dextromethorphan.

    Science.gov (United States)

    Lee, Sheng-Yu; Chen, Shiou-Lan; Chang, Yun-Hsuan; Chen, Po-See; Huang, San-Yuan; Tzeng, Nian-Sheng; Wang, Liang-Jen; Lee, I-Hui; Wang, Tzu-Yun; Chen, Kao-Chin; Yang, Yen-Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2015-10-01

    Increasing the evidence of inflammation's contribution to schizophrenia; using anti-inflammatory or neurotrophic therapeutic agents to see whether they improve schizophrenia treatment. Dextromethorphan (DM), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, might protect monoamine neurons. Whether treating schizophrenia with risperidone plus add-on DM is more effective than risperidone (RISP) alone, and the association between the ALDH2 polymorphism and treatment response were investigated. A double-blind study in which patients with schizophrenia were randomly assigned to the RISP + DM (60 mg/day; n = 74) or the RISP + Placebo (n = 75) group. The Positive and Negative Syndrome Scale (PANSS) and the Scale for the Assessment of Negative Symptoms (SANS) scores were used to evaluate clinical response during weeks 0, 1, 2, 4, 6, 8, and 11. The genotypes of the ALDH2 polymorphism were determined using polymerase chain reactions plus restriction fragment length polymorphism analysis. A generalized estimating equation was used to analyze the effects of ALDH2 polymorphism on the clinical performance of DM. PANSS and SANS scores were significantly lower in both groups after 11 weeks of treatment. SANS total scores were significantly lower in the RISP + DM group in patients with the ALDH2*2*2 genotype. RISP plus add-on DM treatment reduced negative schizophrenia symptoms in patients with the ALDH2 polymorphism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia

    Science.gov (United States)

    Loughman, James; Wildsoet, Christine F.; Williams, Cathy; Guggenheim, Jeremy A.

    2018-01-01

    Purpose To test the hypothesis that genes known to cause clinical syndromes featuring myopia also harbor polymorphisms contributing to nonsyndromic refractive errors. Methods Clinical phenotypes and syndromes that have refractive errors as a recognized feature were identified using the Online Mendelian Inheritance in Man (OMIM) database. One hundred fifty-four unique causative genes were identified, of which 119 were specifically linked with myopia and 114 represented syndromic myopia (i.e., myopia and at least one other clinical feature). Myopia was the only refractive error listed for 98 genes and hyperopia and the only refractive error noted for 28 genes, with the remaining 28 genes linked to phenotypes with multiple forms of refractive error. Pathway analysis was carried out to find biological processes overrepresented within these sets of genes. Genetic variants located within 50 kb of the 119 myopia-related genes were evaluated for involvement in refractive error by analysis of summary statistics from genome-wide association studies (GWAS) conducted by the CREAM Consortium and 23andMe, using both single-marker and gene-based tests. Results Pathway analysis identified several biological processes already implicated in refractive error development through prior GWAS analyses and animal studies, including extracellular matrix remodeling, focal adhesion, and axon guidance, supporting the research hypothesis. Novel pathways also implicated in myopia development included mannosylation, glycosylation, lens development, gliogenesis, and Schwann cell differentiation. Hyperopia was found to be linked to a different pattern of biological processes, mostly related to organogenesis. Comparison with GWAS findings further confirmed that syndromic myopia genes were enriched for genetic variants that influence refractive errors in the general population. Gene-based analyses implicated 21 novel candidate myopia genes (ADAMTS18, ADAMTS2, ADAMTSL4, AGK, ALDH18A1, ASXL1, COL4A1

  18. Common and rare variants in the exons and regulatory regions of osteoporosis-related genes improve osteoporotic fracture risk prediction.

    Science.gov (United States)

    Lee, Seung Hun; Kang, Moo Il; Ahn, Seong Hee; Lim, Kyeong-Hye; Lee, Gun Eui; Shin, Eun-Soon; Lee, Jong-Eun; Kim, Beom-Jun; Cho, Eun-Hee; Kim, Sang-Wook; Kim, Tae-Ho; Kim, Hyun-Ju; Yoon, Kun-Ho; Lee, Won Chul; Kim, Ghi Su; Koh, Jung-Min; Kim, Shin-Yoon

    2014-11-01

    Osteoporotic fracture risk is highly heritable, but genome-wide association studies have explained only a small proportion of the heritability to date. Genetic data may improve prediction of fracture risk in osteopenic subjects and assist early intervention and management. To detect common and rare variants in coding and regulatory regions related to osteoporosis-related traits, and to investigate whether genetic profiling improves the prediction of fracture risk. This cross-sectional study was conducted in three clinical units in Korea. Postmenopausal women with extreme phenotypes (n = 982) were used for the discovery set, and 3895 participants were used for the replication set. We performed targeted resequencing of 198 genes. Genetic risk scores from common variants (GRS-C) and from common and rare variants (GRS-T) were calculated. Nineteen common variants in 17 genes (of the discovered 34 functional variants in 26 genes) and 31 rare variants in five genes (of the discovered 87 functional variants in 15 genes) were associated with one or more osteoporosis-related traits. Accuracy of fracture risk classification was improved in the osteopenic patients by adding GRS-C to fracture risk assessment models (6.8%; P risk in an osteopenic individual.

  19. Analysis of IL12B gene variants in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Jürgen Glas

    Full Text Available BACKGROUND: IL12B encodes the p40 subunit of IL-12, which is also part of IL-23. Recent genome-wide association studies identified IL12B and IL23R as susceptibility genes for inflammatory bowel disease (IBD. However, the phenotypic effects and potential gene-gene interactions of IL12B variants are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed IL12B gene variants regarding association with Crohn's disease (CD and ulcerative colitis (UC. Genomic DNA from 2196 individuals including 913 CD patients, 318 UC patients and 965 healthy, unrelated controls was analyzed for four SNPs in the IL12B gene region (rs3212227, rs17860508, rs10045431, rs6887695. Our analysis revealed an association of the IL12B SNP rs6887695 with susceptibility to IBD (p = 0.035; OR 1.15 [95% CI 1.01-1.31] including a trend for rs6887695 for association with CD (OR 1.41; [0.99-1.31], p = 0.066 and UC (OR 1.18 [0.97-1.43], p = 0.092. CD patients, who were homozygous C/C carriers of this SNP, had significantly more often non-stricturing, non-penetrating disease than carriers of the G allele (p = 6.8×10(-5; OR = 2.84, 95% CI 1.66-4.84, while C/C homozygous UC patients had less often extensive colitis than G allele carriers (p = 0.029; OR = 0.36, 95% CI 0.14-0.92. In silico analysis predicted stronger binding of the minor C allele of rs6887695 to the transcription factor RORα which is involved in Th17 differentiation. Differences regarding the binding to the major and minor allele sequence of rs6887695 were also predicted for the transcription factors HSF1, HSF2, MZF1 and Oct-1. Epistasis analysis revealed weak epistasis of the IL12B SNP rs6887695 with several SNPs (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694 in the STAT4 gene which encodes the major IL-12 downstream transcription factor STAT4 (p<0.05 but there was no epistasis between IL23R and IL12B variants. CONCLUSIONS/SIGNIFICANCE: The IL12B SNP rs6887695

  20. Selection of radioresistant tumor cells and presence of ALDH1 activity in vitro

    International Nuclear Information System (INIS)

    Mihatsch, Julia; Toulany, Mahmoud; Bareiss, Petra M.; Grimm, Sabrina; Lengerke, Claudia; Kehlbach, Rainer; Rodemann, H. Peter

    2011-01-01

    Background: Tumor resistance to radiotherapy has been hypothesized to be mediated by a tumor subpopulation, called cancer stem cells (CSCs). Based on the proposed function of CSCs in radioresistance, we explored the cancer stem cell properties of cells selected for radioresistance phenotype. Materials and methods: A549 and SK-BR-3 cells were radioselected with four single doses of 4 or 3 Gy in intervals of 10-12 days and used for colony formation assay and γ-H2AX foci formation assay. Expression of putative stem cell markers, i.e. Sox2, Oct4, ALDH1, and CD133 were analyzed using Western blotting. A549 and SK-BR-3 cells sorted based on their ALDH1 activity were analyzed in clonogenic survival assays. Results: Radioselected A549 and SK-BR-3 cells (A549-R, SK-BR-3-R) showed increased radioresistance and A549-R cells presented enhanced repair of DNA-double strand breaks. PI3K inhibition significantly reduced radioresistance of A549-R cells. Cell line specific differences in the expression of the putative CSC markers Sox2 and Oct4 were observed when parental and radioselected cells were compared but could not be directly correlated to the radioresistant phenotype. However, enzyme activity of the putative stem cell marker ALDH1 showed a correlation to radioresistance. Conclusions: Subpopulations of pooled radioresistant colonies, selected by various radiation exposures were analyzed for the presence of putative stem cell markers. Although the pattern of Sox2, Oct4, and CD133 expression was not generally associated with radioresistance, presence of ALDH1 seems to be indicative for subpopulations with increased radioresistance.

  1. The role of ghrelin and ghrelin-receptor gene variants and promoter activity in type 2 diabetes.

    Science.gov (United States)

    Garcia, Edwin A; King, Peter; Sidhu, Kally; Ohgusu, Hideko; Walley, Andrew; Lecoeur, Cecile; Gueorguiev, Maria; Khalaf, Sahira; Davies, Derek; Grossman, Ashley B; Kojima, Masayasu; Petersenn, Stephan; Froguel, Phillipe; Korbonits, Márta

    2009-08-01

    Ghrelin and its receptor play an important role in glucose metabolism and energy homeostasis, and therefore they are functional candidates for genes carrying susceptibility alleles for type 2 diabetes. We assessed common genetic variation of the ghrelin (GHRL; five single nucleotide polymorphisms (SNP)) and the ghrelin-receptor (GHSR) genes (four SNPs) in 610 Caucasian patients with type 2 diabetes and 820 controls. In addition, promoter reporter assays were conducted to model the regulatory regions of both genes. Neither GHRL nor GHSR gene SNPs were associated with type 2 diabetes. One of the ghrelin haplotypes showed a marginal protective role in type 2 diabetes. We observed profound differences in the regulation of the GHRL gene according to promoter sequence variants. There are three different GHRL promoter haplotypes represented in the studied cohort causing up to 45% difference in the level of gene expression, while the promoter region of GHSR gene is primarily represented by a single haplotype. The GHRL and GHSR gene variants are not associated with type 2 diabetes, although GHRL promoter variants have significantly different activities.

  2. Targeted deep resequencing identifies coding variants in the PEAR1 gene that play a role in platelet aggregation.

    Directory of Open Access Journals (Sweden)

    Yoonhee Kim

    Full Text Available Platelet aggregation is heritable, and genome-wide association studies have detected strong associations with a common intronic variant of the platelet endothelial aggregation receptor1 (PEAR1 gene both in African American and European American individuals. In this study, we used a sequencing approach to identify additional exonic variants in PEAR1 that may also determine variability in platelet aggregation in the GeneSTAR Study. A 0.3 Mb targeted region on chromosome 1q23.1 including the entire PEAR1 gene was Sanger sequenced in 104 subjects (45% male, 49% African American, age = 52±13 selected on the basis of hyper- and hypo- aggregation across three different agonists (collagen, epinephrine, and adenosine diphosphate. Single-variant and multi-variant burden tests for association were performed. Of the 235 variants identified through sequencing, 61 were novel, and three of these were missense variants. More rare variants (MAF<5% were noted in African Americans compared to European Americans (108 vs. 45. The common intronic GWAS-identified variant (rs12041331 demonstrated the most significant association signal in African Americans (p = 4.020×10(-4; no association was seen for additional exonic variants in this group. In contrast, multi-variant burden tests indicated that exonic variants play a more significant role in European Americans (p = 0.0099 for the collective coding variants compared to p = 0.0565 for intronic variant rs12041331. Imputation of the individual exonic variants in the rest of the GeneSTAR European American cohort (N = 1,965 supports the results noted in the sequenced discovery sample: p = 3.56×10(-4, 2.27×10(-7, 5.20×10(-5 for coding synonymous variant rs56260937 and collagen, epinephrine and adenosine diphosphate induced platelet aggregation, respectively. Sequencing approaches confirm that a common intronic variant has the strongest association with platelet aggregation in African Americans

  3. Multi-species sequence comparison reveals conservation of ghrelin gene-derived splice variants encoding a truncated ghrelin peptide.

    Science.gov (United States)

    Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K

    2016-06-01

    The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.

  4. CEACAM6 gene variants in inflammatory bowel disease.

    Science.gov (United States)

    Glas, Jürgen; Seiderer, Julia; Fries, Christoph; Tillack, Cornelia; Pfennig, Simone; Weidinger, Maria; Beigel, Florian; Olszak, Torsten; Lass, Ulrich; Göke, Burkhard; Ochsenkühn, Thomas; Wolf, Christiane; Lohse, Peter; Müller-Myhsok, Bertram; Diegelmann, Julia; Czamara, Darina; Brand, Stephan

    2011-04-29

    The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) acts as a receptor for adherent-invasive E. coli (AIEC) and its ileal expression is increased in patients with Crohn's disease (CD). Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD). In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC), and 1,350 healthy, unrelated controls) was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839). In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants. This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment.

  5. CEACAM6 gene variants in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Jürgen Glas

    Full Text Available BACKGROUND: The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6 acts as a receptor for adherent-invasive E. coli (AIEC and its ileal expression is increased in patients with Crohn's disease (CD. Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD. METHODOLOGY: In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC, and 1,350 healthy, unrelated controls was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839. In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants. CONCLUSIONS: This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment.

  6. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors.

    Science.gov (United States)

    Jones, Matthew L; Norman, Jane E; Morgan, Neil V; Mundell, Stuart J; Lordkipanidzé, Marie; Lowe, Gillian C; Daly, Martina E; Simpson, Michael A; Drake, Sian; Watson, Steve P; Mumford, Andrew D

    2015-04-01

    Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≥ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes.

  7. Enrichment of deleterious variants of mitochondrial DNA polymerase gene (POLG1) in bipolar disorder.

    Science.gov (United States)

    Kasahara, Takaoki; Ishiwata, Mizuho; Kakiuchi, Chihiro; Fuke, Satoshi; Iwata, Nakao; Ozaki, Norio; Kunugi, Hiroshi; Minabe, Yoshio; Nakamura, Kazuhiko; Iwata, Yasuhide; Fujii, Kumiko; Kanba, Shigenobu; Ujike, Hiroshi; Kusumi, Ichiro; Kataoka, Muneko; Matoba, Nana; Takata, Atsushi; Iwamoto, Kazuya; Yoshikawa, Takeo; Kato, Tadafumi

    2017-08-01

    Rare missense variants, which likely account for a substantial portion of the genetic 'dark matter' for a common complex disease, are challenging because the impacts of variants on disease development are difficult to substantiate. This study aimed to examine the impacts of amino acid substitution variants in the POLG1 found in bipolar disorder, as an example and proof of concept, in three different modalities of assessment: in silico predictions, in vitro biochemical assays, and clinical evaluation. We then tested whether deleterious variants in POLG1 contributed to the genetics of bipolar disorder. We searched for variants in the POLG1 gene in 796 Japanese patients with bipolar disorder and 767 controls and comprehensively investigated all 23 identified variants in the three modalities of assessment. POLG1 encodes mitochondrial DNA polymerase and is one of the causative genes for a Mendelian-inheritance mitochondrial disease, which is occasionally accompanied by mood disorders. The healthy control data from the Tohoku Medical Megabank Organization were also employed. Although the frequency of carriers of deleterious variants varied from one method to another, every assessment achieved the same conclusion that deleterious POLG1 variants were significantly enriched in the variants identified in patients with bipolar disorder compared to those in controls. Together with mitochondrial dysfunction in bipolar disorder, the present results suggested deleterious POLG1 variants as a credible risk for the multifactorial disease. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  8. Biology, Genetics, and Environment

    Science.gov (United States)

    Wall, Tamara L.; Luczak, Susan E.; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)—particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles—have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person’s alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity). PMID:27163368

  9. Biology, Genetics, and Environment: Underlying Factors Influencing Alcohol Metabolism.

    Science.gov (United States)

    Wall, Tamara L; Luczak, Susan E; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)--particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles--have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person's alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity).

  10. HFE gene C282Y variant is associated with colorectal cancer in Caucasians: a meta-analysis.

    Science.gov (United States)

    Chen, Weidong; Zhao, Hua; Li, Tiegang; Yao, Hongliang

    2013-08-01

    The HFE gene has been suggested to play an important role in the pathogenesis of colorectal cancer. However, the results have been conflicting. In this study, we performed a meta-analysis to clarify the association of HFE gene C282Y variant with colorectal cancer. PubMed and Embase were retrieved to identify the potential literature. Pooled odds ratio (OR) with 95 % confidence interval (CI) was calculated using fixed- or random-effects model. A total of eight papers including nine studies (7,588 colorectal cancer cases and 81,571 controls) for HFE gene C282Y variant were included in the meta-analysis. The result indicated that HFE gene C282Y variant was significantly associated with colorectal cancer under recessive model (OR = 2.00, 95 % CI = 1.32-3.04), with no evidence of between-study heterogeneity (I (2) = 0.2 %, p = 0.432). Further subgroup analysis by number of cases suggested the effect was significant in studies with more than 500 cases (OR = 2.51, 95 % CI = 1.58-3.98, I (2) = 0.0 %, p = 0.921), but not in studies with less than 500 cases (OR = 0.75, 95 % CI = 0.28-1.97, I (2) = 0.0 %, p = 0.622). The current meta-analysis supported the positive association of HFE gene C282Y variant with colorectal cancer. Further large-scale studies with the consideration for gene-gene/gene-environment interactions should be conducted to investigate the association.

  11. New tools for Mendelian disease gene identification: PhenoDB variant analysis module; and GeneMatcher, a web-based tool for linking investigators with an interest in the same gene.

    Science.gov (United States)

    Sobreira, Nara; Schiettecatte, François; Boehm, Corinne; Valle, David; Hamosh, Ada

    2015-04-01

    Identifying the causative variant from among the thousands identified by whole-exome sequencing or whole-genome sequencing is a formidable challenge. To make this process as efficient and flexible as possible, we have developed a Variant Analysis Module coupled to our previously described Web-based phenotype intake tool, PhenoDB (http://researchphenodb.net and http://phenodb.org). When a small number of candidate-causative variants have been identified in a study of a particular patient or family, a second, more difficult challenge becomes proof of causality for any given variant. One approach to this problem is to find other cases with a similar phenotype and mutations in the same candidate gene. Alternatively, it may be possible to develop biological evidence for causality, an approach that is assisted by making connections to basic scientists studying the gene of interest, often in the setting of a model organism. Both of these strategies benefit from an open access, online site where individual clinicians and investigators could post genes of interest. To this end, we developed GeneMatcher (http://genematcher.org), a freely accessible Website that enables connections between clinicians and researchers across the world who share an interest in the same gene(s). © 2015 WILEY PERIODICALS, INC.

  12. Matrix metalloproteinase-2 gene variants and abdominal aortic aneurysm.

    Science.gov (United States)

    Smallwood, L; Warrington, N; Allcock, R; van Bockxmeer, F; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2009-08-01

    To investigate associations between two polymorphisms of the matrix metalloproteinase-2 gene (MMP2) and the incidence and progression of abdominal aortic aneurysm (AAA). Cases and controls were recruited from a trial of screening for AAAs. The association between two variants of MMP2 (-1360C>T, and +649C>T) in men with AAA (n=678) and in controls (n=659) was examined using multivariate analyses. The association with AAA expansion (n=638) was also assessed. In multivariate analyses with adjustments for multiple testing, no association between either SNP and AAA presence or expansion was detected. MMP2 -1360C>T and +649C>T variants are not risk factors for AAA.

  13. Common variants in mendelian kidney disease genes and their association with renal function

    NARCIS (Netherlands)

    A. Parsa (Afshin); C. Fuchsberger (Christian); A. Köttgen (Anna); C.M. O'Seaghdha (Conall); C. Pattaro (Cristian); M. de Andrade (Mariza); D.I. Chasman (Daniel); A. Teumer (Alexander); K. Endlich (Karlhans); M. Olden (Matthias); M-H. Chen (Ming-Huei); A. Tin (Adrienne); Y-J. Kim (Yong-Jin); D. Taliun (Daniel); M. Li (Man); M.F. Feitosa (Mary Furlan); M. Gorski (Mathias); Q. Yang (Qiong); C. Hundertmark (Claudia); M.C. Foster (Michael); N. Glazer (Nicole); A.J. Isaacs (Aaron); M. Rao (Madhumathi); G.D. Smith; J.R. O´Connell; M.V. Struchalin (Maksim); T. Tanaka (Toshiko); G. Li (Guo); S.J. Hwang; E.J. Atkinson (Elizabeth); K. Lohman (Kurt); M. Cornelis (Marilyn); A. Johansson (Åsa); A. Tönjes (Anke); A. Dehghan (Abbas); V. Couraki (Vincent); E.G. Holliday (Elizabeth); R. Sorice; Z. Kutalik (Zoltán); T. Lehtimäki (Terho); T. Esko (Tõnu); H. Deshmukh (Harshal); S. Ulivi (Shelia); A.Y. Chu (Audrey); D. Murgia (Daniela); S. Trompet (Stella); M. Imboden (Medea); B. Kollerits (Barbara); G. Pistis (Giorgio); T.B. Harris (Tamara); L.J. Launer (Lenore); T. Aspelund (Thor); G. Eiriksdottir (Gudny); B.D. Mitchell (Braxton); E.A. Boerwinkle (Eric); H. Schmidt (Helena); E. Hofer (Edith); F.B. Hu (Frank); A. Demirkan (Ayşe); B.A. Oostra (Ben); S.T. Turner (Stephen); J. Ding (Jingzhong); J.S. Andrews (Jeanette); B.I. Freedman (Barry); F. Giulianini (Franco); W. Koenig (Wolfgang); T. Illig (Thomas); A. Döring (Angela); H.E. Wichmann (Heinz Erich); L. Zgaga (Lina); T. Zemunik (Tatijana); M. Boban (Mladen); C. Minelli (Cosetta); H.E. Wheeler (Heather); W. Igl (Wilmar); G. Zaboli (Ghazal); S.H. Wild (Sarah); A.F. Wright (Alan); H. Campbell (Harry); D. Ellinghaus (David); U. Nöthlings (Ute); G. Jacobs (Gunnar); R. Biffar (Reiner); F.D.J. Ernst (Florian); G. Homuth (Georg); H.K. Kroemer (Heyo); M. Nauck (Matthias); S. Stracke (Sylvia); U. Vol̈ker (Uwe); H. Völzke (Henry); P. Kovacs (Peter); M. Stumvoll (Michael); R. Mägi (Reedik); A. Hofman (Albert); A.G. Uitterlinden (André); F. Rivadeneira Ramirez (Fernando); Y.S. Aulchenko (Yurii); O. Polasek (Ozren); N. Hastie (Nick); V. Vitart (Veronique); C. Helmer (Catherine); J.J. Wang (Jie Jin); B. Stengel (Bernd); D. Ruggiero; S.M. Bergmann (Sven); M. Kähönen (Mika); J. Viikari (Jorma); T. Nikopensius (Tiit); M.A. Province (Mike); H.M. Colhoun (H.); A.S.F. Doney (Alex); A. Robino (Antonietta); B.K. Krämer (Bernhard); L. Portas (Laura); I. Ford (Ian); B.M. Buckley (Brendan M.); M. Adam (Martin); G.-A. Thun (Gian-Andri); B. Paulweber (Bernhard); M. Haun (Margot); C. Sala (Cinzia); P. Mitchell (Paul); M. Ciullo; P. Vollenweider (Peter); O. Raitakari (Olli); A. Metspalu (Andres); C.N.A. Palmer (Colin); P. Gasparini (Paolo); M. Pirastu (Mario); J.W. Jukema (Jan Wouter); N.M. Probst-Hensch (Nicole M.); F. Kronenberg (Florian); D. Toniolo (Daniela); V. Gudnason (Vilmundur); A.R. Shuldiner (Alan); J. Coresh (Josef); R. Schmidt (Reinhold); L. Ferrucci (Luigi); C.M. van Duijn (Cornelia); I.B. Borecki (Ingrid); S.L.R. Kardia (Sharon); Y. Liu (YongMei); G.C. Curhan (Gary); I. Rudan (Igor); U. Gyllensten (Ulf); J.F. Wilson (James); A. Franke (Andre); P.P. Pramstaller (Peter Paul); R. Rettig (Rainer); I. Prokopenko (Inga); J.C.M. Witteman (Jacqueline); C. Hayward (Caroline); P.M. Ridker (Paul); M. Bochud (Murielle); I.M. Heid (Iris); D.S. Siscovick (David); C.S. Fox (Caroline); W.H.L. Kao (Wen); C.A. Böger (Carsten)

    2013-01-01

    textabstractMany common genetic variants identified by genome-wide association studies for complex traitsmap to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with

  14. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    Science.gov (United States)

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-07

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  15. The D313Y variant in the GLA gene - no evidence of a pathogenic role in Fabry disease

    DEFF Research Database (Denmark)

    Hasholt, Lis; Ballegaard, Martin; Bundgaard, Henning

    2017-01-01

    Fabry disease is an X- linked inherited lysosomal storage disease caused by mutations in the GLA gene encoding the lysosomal enzyme alpha-galactosidase A (α-Gal A). The possible pathological significance of the D313Y variant in the GLA gene has not been verified and it may be a Fabry variant. Our......, and the presence in Fabry females did not significantly enhance the phenotype of a known causative mutation in the GLA gene (G271S). Our findings indicate that the D313Y variant is not causative to nor enhancing Fabry disease phenotype. The D313Y variant in the GLA gene was not disease causative in 2 Danish...... families. Investigating male family members were crucial in excluding the Fabry phenotype, and thus very important for proper genetic counceling of all family members, as well as overdiagnosing a devastating genetic disease....

  16. An abundance of rare functional variants in 202 drug target genes sequenced in 14.002 people

    DEFF Research Database (Denmark)

    Nelson, Matthew R.; Wegmann, Daniel; Ehm, Margaret G.

    2012-01-01

    Rare genetic variants contribute to complex disease risk; however, the abundance of rare variants in human populations remains unknown. We explored this spectrum of variation by sequencing 202 genes encoding drug targets in 14,002 individuals. We find rare variants are abundant (1 every 17 bases)...

  17. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Frédéric Pontvianne

    2010-11-01

    Full Text Available In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1. Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre-rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis.

  18. Analysis of IL12B Gene Variants in Inflammatory Bowel Disease

    Science.gov (United States)

    Wagner, Johanna; Olszak, Torsten; Fries, Christoph; Tillack, Cornelia; Friedrich, Matthias; Beigel, Florian; Stallhofer, Johannes; Steib, Christian; Wetzke, Martin; Göke, Burkhard; Ochsenkühn, Thomas; Diegelmann, Julia; Czamara, Darina; Brand, Stephan

    2012-01-01

    Background IL12B encodes the p40 subunit of IL-12, which is also part of IL-23. Recent genome-wide association studies identified IL12B and IL23R as susceptibility genes for inflammatory bowel disease (IBD). However, the phenotypic effects and potential gene-gene interactions of IL12B variants are largely unknown. Methodology/Principal Findings We analyzed IL12B gene variants regarding association with Crohn's disease (CD) and ulcerative colitis (UC). Genomic DNA from 2196 individuals including 913 CD patients, 318 UC patients and 965 healthy, unrelated controls was analyzed for four SNPs in the IL12B gene region (rs3212227, rs17860508, rs10045431, rs6887695). Our analysis revealed an association of the IL12B SNP rs6887695 with susceptibility to IBD (p = 0.035; OR 1.15 [95% CI 1.01–1.31] including a trend for rs6887695 for association with CD (OR 1.41; [0.99–1.31], p = 0.066) and UC (OR 1.18 [0.97–1.43], p = 0.092). CD patients, who were homozygous C/C carriers of this SNP, had significantly more often non-stricturing, non-penetrating disease than carriers of the G allele (p = 6.8×10−5; OR = 2.84, 95% CI 1.66–4.84), while C/C homozygous UC patients had less often extensive colitis than G allele carriers (p = 0.029; OR = 0.36, 95% CI 0.14–0.92). In silico analysis predicted stronger binding of the minor C allele of rs6887695 to the transcription factor RORα which is involved in Th17 differentiation. Differences regarding the binding to the major and minor allele sequence of rs6887695 were also predicted for the transcription factors HSF1, HSF2, MZF1 and Oct-1. Epistasis analysis revealed weak epistasis of the IL12B SNP rs6887695 with several SNPs (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694) in the STAT4 gene which encodes the major IL-12 downstream transcription factor STAT4 (p<0.05) but there was no epistasis between IL23R and IL12B variants. Conclusions/Significance The IL12B SNP rs6887695 modulates

  19. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    International Nuclear Information System (INIS)

    Zacapala-Gómez, Ana Elvira; Del Moral-Hernández, Oscar; Villegas-Sepúlveda, Nicolás; Hidalgo-Miranda, Alfredo; Romero-Córdoba, Sandra Lorena

    2016-01-01

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  20. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    Energy Technology Data Exchange (ETDEWEB)

    Zacapala-Gómez, Ana Elvira, E-mail: zak_ana@yahoo.com.mx [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Del Moral-Hernández, Oscar, E-mail: odelmoralh@gmail.com [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Villegas-Sepúlveda, Nicolás, E-mail: nvillega@cinvestav.mx [Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México (Mexico); Hidalgo-Miranda, Alfredo, E-mail: ahidalgo@inmegen.gob.mx [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); Romero-Córdoba, Sandra Lorena, E-mail: sromero_cordoba@hotmail.com [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); and others

    2016-01-15

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  1. Identification and characterization of two functional variants in the human longevity gene FOXO3

    DEFF Research Database (Denmark)

    Flachsbart, Friederike; Dose, Janina; Gentschew, Liljana

    2017-01-01

    FOXO3 is consistently annotated as a human longevity gene. However, functional variants and underlying mechanisms for the association remain unknown. Here, we perform resequencing of the FOXO3 locus and single-nucleotide variant (SNV) genotyping in three European populations. We find two FOXO3 SN...

  2. A novel variant in the SLC12A1 gene in two families with antenatal Bartter syndrome.

    Science.gov (United States)

    Breinbjerg, Anders; Siggaard Rittig, Charlotte; Gregersen, Niels; Rittig, Søren; Hvarregaard Christensen, Jane

    2017-01-01

    Bartter syndrome is an autosomal-recessive inherited disease in which patients present with hypokalaemia and metabolic alkalosis. We present two apparently nonrelated cases with antenatal Bartter syndrome type I, due to a novel variant in the SLC12A1 gene encoding the bumetanide-sensitive sodium-(potassium)-chloride cotransporter 2 in the thick ascending limb of the loop of Henle. Blood samples were received from the two cases and 19 of their relatives, and deoxyribonucleic acid was extracted. The coding regions of the SLC12A1 gene were amplified using polymerase chain reaction, followed by bidirectional direct deoxyribonucleic acid sequencing. Each affected child in the two families was homozygous for a novel inherited variant in the SLC12A1gene, c.1614T>A. The variant predicts a change from a tyrosine codon to a stop codon (p.Tyr538Ter). The two cases presented antenatally and at six months of age, respectively. The two cases were homozygous for the same variant in the SLC12A1 gene, but presented clinically at different ages. This could eventually be explained by the presence of other gene variants or environmental factors modifying the phenotypes. The phenotypes of the patients were similar to other patients with antenatal Bartter syndrome. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  3. Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence.

    Directory of Open Access Journals (Sweden)

    Andrea Vereczkei

    Full Text Available BACKGROUND: Heroin dependence is a debilitating psychiatric disorder with complex inheritance. Since the dopaminergic system has a key role in rewarding mechanism of the brain, which is directly or indirectly targeted by most drugs of abuse, we focus on the effects and interactions among dopaminergic gene variants. OBJECTIVE: To study the potential association between allelic variants of dopamine D2 receptor (DRD2, ANKK1 (ankyrin repeat and kinase domain containing 1, dopamine D4 receptor (DRD4, catechol-O-methyl transferase (COMT and dopamine transporter (SLC6A3 genes and heroin dependence in Hungarian patients. METHODS: 303 heroin dependent subjects and 555 healthy controls were genotyped for 7 single nucleotide polymorphisms (SNPs rs4680 of the COMT gene; rs1079597 and rs1800498 of the DRD2 gene; rs1800497 of the ANKK1 gene; rs1800955, rs936462 and rs747302 of the DRD4 gene. Four variable number of tandem repeats (VNTRs were also genotyped: 120 bp duplication and 48 bp VNTR in exon 3 of DRD4 and 40 bp VNTR and intron 8 VNTR of SLC6A3. We also perform a multivariate analysis of associations using Bayesian networks in Bayesian multilevel analysis (BN-BMLA. FINDINGS AND CONCLUSIONS: In single marker analysis the TaqIA (rs1800497 and TaqIB (rs1079597 variants were associated with heroin dependence. Moreover, -521 C/T SNP (rs1800955 of the DRD4 gene showed nominal association with a possible protective effect of the C allele. After applying the Bonferroni correction TaqIB was still significant suggesting that the minor (A allele of the TaqIB SNP is a risk component in the genetic background of heroin dependence. The findings of the additional multiple marker analysis are consistent with the results of the single marker analysis, but this method was able to reveal an indirect effect of a promoter polymorphism (rs936462 of the DRD4 gene and this effect is mediated through the -521 C/T (rs1800955 polymorphism in the promoter.

  4. The prevalence of PAI-1 4G/5G gene variant in Serbian population

    Directory of Open Access Journals (Sweden)

    Đorđević Valentina

    2013-01-01

    Full Text Available Introduction: Plasminogen activator inhibitor 1 (PAI-1 has a major role in inhibition of firinolysis and normal haemostasis. The presence of the PAI-1 4G/4G genotype leads to increased expression of PAI-1. High blood level of PAI-1 is associated with many diseases such as thrombosis, cerebral insult, myocardial infarction, pregnancy loss, preeclampsia, insulin resistance, type 2 diabetes, breast cancer and asthma. In this study, the prevalence of PAI-1 4G/5G gene variant was determined in healthy subjects from Serbian population. Methods: The study was carried out in a group of 210 healthy subjects (105 women and 105 men. The presence of PAI-1 4G/5G gene variant was detected by PCR-RFLP analysis. Results: The prevalence of PAI-1 4G/4G genotype was 34.76% and it was increased compared to PAI-1 5G/5G genotype (19.05%. The most frequent was PAI-1 4G/5G genotype (46.19%. Allelic frequency for 4G allele was higher (0.58 compared to 5G allele (0.42. Conclusions: The prevalence of PAI-1 4G/5G gene variant in Serbian population is similar to the neighboring populations. Results of this study represent the first data for Serbian population. This study could be useful for further research where the role of PAI-1 4G/5G gene variant will be assessed in the pathogenesis of many diseases.

  5. Cystinuria Associated with Different SLC7A9 Gene Variants in the Cat.

    Directory of Open Access Journals (Sweden)

    Keijiro Mizukami

    Full Text Available Cystinuria is a classical inborn error of metabolism characterized by a selective proximal renal tubular defect affecting cystine, ornithine, lysine, and arginine (COLA reabsorption, which can lead to uroliths and urinary obstruction. In humans, dogs and mice, cystinuria is caused by variants in one of two genes, SLC3A1 and SLC7A9, which encode the rBAT and bo,+AT subunits of the bo,+ basic amino acid transporter system, respectively. In this study, exons and flanking regions of the SLC3A1 and SLC7A9 genes were sequenced from genomic DNA of cats (Felis catus with COLAuria and cystine calculi. Relative to the Felis catus-6.2 reference genome sequence, DNA sequences from these affected cats revealed 3 unique homozygous SLC7A9 missense variants: one in exon 5 (p.Asp236Asn from a non-purpose-bred medium-haired cat, one in exon 7 (p.Val294Glu in a Maine Coon and a Sphinx cat, and one in exon 10 (p.Thr392Met from a non-purpose-bred long-haired cat. A genotyping assay subsequently identified another cystinuric domestic medium-haired cat that was homozygous for the variant originally identified in the purebred cats. These missense variants result in deleterious amino acid substitutions of highly conserved residues in the bo,+AT protein. A limited population survey supported that the variants found were likely causative. The remaining 2 sequenced domestic short-haired cats had a heterozygous variant at a splice donor site in intron 10 and a homozygous single nucleotide variant at a branchpoint in intron 11 of SLC7A9, respectively. This study identifies the first SLC7A9 variants causing feline cystinuria and reveals that, as in humans and dogs, this disease is genetically heterogeneous in cats.

  6. The expression of aldehyde dehydrogenase 1 (ALDH1) in ovarian carcinomas and its clinicopathological associations: a retrospective study

    OpenAIRE

    Huang, Ruixia; Li, Xiaoran; Holm, Ruth; Trope, Claes G; Nesland, Jahn M; Suo, Zhenhe

    2015-01-01

    Background Aldehyde dehydrogenase 1 (ALDH1) is widely used as a specific cancer stem cell marker in a variety of cancers, and may become a promising target for cancer therapy. However, the role of its expression in tumor cells and the microenvironment in different cancers is still controversial. Methods To clarify the clinicopathological effect of ALDH1 expression in ovarian carcinoma, a series of 248...

  7. Associations between variants of the HAL gene and milk production traits in Chinese Holstein cows.

    Science.gov (United States)

    Wang, Haifei; Jiang, Li; Wang, Wenwen; Zhang, Shengli; Yin, Zongjun; Zhang, Qin; Liu, Jian-Feng

    2014-11-25

    The histidine ammonia-lyse gene (HAL) encodes the histidine ammonia-lyase, which catalyzes the first reaction of histidine catabolism. In our previous genome-wide association study in Chinese Holstein cows to identify genetic variants affecting milk production traits, a SNP (rs41647754) located 357 bp upstream of HAL, was found to be significantly associated with milk yield and milk protein yield. In addition, the HAL gene resides within the reported QTLs for milk production traits. The aims of this study were to identify genetic variants in HAL and to test the association between these variants and milk production traits. Fifteen SNPs were identified within the regions under study of the HAL gene, including three coding mutations, seven intronic mutations, one promoter region mutation, and four 3'UTR mutations. Nine of these identified SNPs were chosen for subsequent genotyping and association analyses. Our results showed that five SNP markers (ss974768522, ss974768525, ss974768531, ss974768533 and ss974768534) were significantly associated with one or more milk production traits. Haplotype analysis showed that two haplotype blocks were significantly associated with milk yield and milk protein yield, providing additional support for the association between HAL variants and milk production traits in dairy cows (P HAL gene and milk production traits in Chinese Holstein cows, indicating the potential role of HAL variants in these traits. These identified SNPs may serve as genetic markers used in genomic selection schemes to accelerate the genetic gains of milk production traits in dairy cattle.

  8. Pooled Resequencing of 122 Ulcerative Colitis Genes in a Large Dutch Cohort Suggests Population-Specific Associations of Rare Variants in MUC2.

    Science.gov (United States)

    Visschedijk, Marijn C; Alberts, Rudi; Mucha, Soren; Deelen, Patrick; de Jong, Dirk J; Pierik, Marieke; Spekhorst, Lieke M; Imhann, Floris; van der Meulen-de Jong, Andrea E; van der Woude, C Janneke; van Bodegraven, Adriaan A; Oldenburg, Bas; Löwenberg, Mark; Dijkstra, Gerard; Ellinghaus, David; Schreiber, Stefan; Wijmenga, Cisca; Rivas, Manuel A; Franke, Andre; van Diemen, Cleo C; Weersma, Rinse K

    2016-01-01

    Genome-wide association studies have revealed several common genetic risk variants for ulcerative colitis (UC). However, little is known about the contribution of rare, large effect genetic variants to UC susceptibility. In this study, we performed a deep targeted re-sequencing of 122 genes in Dutch UC patients in order to investigate the contribution of rare variants to the genetic susceptibility to UC. The selection of genes consists of 111 established human UC susceptibility genes and 11 genes that lead to spontaneous colitis when knocked-out in mice. In addition, we sequenced the promoter regions of 45 genes where known variants exert cis-eQTL-effects. Targeted pooled re-sequencing was performed on DNA of 790 Dutch UC cases. The Genome of the Netherlands project provided sequence data of 500 healthy controls. After quality control and prioritization based on allele frequency and pathogenicity probability, follow-up genotyping of 171 rare variants was performed on 1021 Dutch UC cases and 1166 Dutch controls. Single-variant association and gene-based analyses identified an association of rare variants in the MUC2 gene with UC. The associated variants in the Dutch population could not be replicated in a German replication cohort (1026 UC cases, 3532 controls). In conclusion, this study has identified a putative role for MUC2 on UC susceptibility in the Dutch population and suggests a population-specific contribution of rare variants to UC.

  9. Common Variants in CLDN2 and MORC4 Genes Confer Disease Susceptibility in Patients with Chronic Pancreatitis.

    Directory of Open Access Journals (Sweden)

    Anil K Giri

    Full Text Available A recent genome-wide association study (GWAS identified association with variants in X-linked CLDN2 and MORC4, and PRSS1-PRSS2 loci with chronic pancreatitis (CP in North American patients of European ancestry. We selected 9 variants from the reported GWAS and replicated the association with CP in Indian patients by genotyping 1807 unrelated Indians of Indo-European ethnicity, including 519 patients with CP and 1288 controls. The etiology of CP was idiopathic in 83.62% and alcoholic in 16.38% of 519 patients. Our study confirmed a significant association of 2 variants in CLDN2 gene (rs4409525-OR 1.71, P = 1.38 x 10-09; rs12008279-OR 1.56, P = 1.53 x 10-04 and 2 variants in MORC4 gene (rs12688220-OR 1.72, P = 9.20 x 10-09; rs6622126-OR 1.75, P = 4.04x10-05 in Indian patients with CP. We also found significant association at PRSS1-PRSS2 locus (OR 0.60; P = 9.92 x 10-06 and SAMD12-TNFRSF11B (OR 0.49, 95% CI [0.31-0.78], P = 0.0027. A variant in the gene MORC4 (rs12688220 showed significant interaction with alcohol (OR for homozygous and heterozygous risk allele -14.62 and 1.51 respectively, P = 0.0068 suggesting gene-environment interaction. A combined analysis of the genes CLDN2 and MORC4 based on an effective risk allele score revealed a higher percentage of individuals homozygous for the risk allele in CP cases with 5.09 fold enhanced risk in individuals with 7 or more effective risk alleles compared with individuals with 3 or less risk alleles (P = 1.88 x 10-14. Genetic variants in CLDN2 and MORC4 genes were associated with CP in Indian patients.

  10. Glu504Lys Single Nucleotide Polymorphism of Aldehyde Dehydrogenase 2 Gene and the Risk of Human Diseases

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2015-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH 2 is a mitochondrial enzyme that is known for its important role in oxidation and detoxification of ethanol metabolite acetaldehyde. ALDH2 also metabolizes other reactive aldehydes such as 4-hydroxy-2-nonenal and acrolein. The Glu504Lys single nucleotide polymorphism (SNP of ALDH2 gene, which is found in approximately 40% of the East Asian populations, causes defect in the enzyme activity of ALDH2, leading to alterations in acetaldehyde metabolism and alcohol-induced “flushing” syndrome. Evidence suggests that ALDH2 Glu504Lys SNP is a potential candidate genetic risk factor for a variety of chronic diseases such as cardiovascular disease, cancer, and late-onset Alzheimer’s disease. In addition, the association between ALDH2 Glu504Lys SNP and the development of these chronic diseases appears to be affected by the interaction between the SNP and lifestyle factors such as alcohol consumption as well as by the presence of other genetic variations.

  11. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei

    NARCIS (Netherlands)

    Zomerdijk, J. C.; Ouellette, M.; ten Asbroek, A. L.; Kieft, R.; Bommer, A. M.; Clayton, C. E.; Borst, P.

    1990-01-01

    The variant-specific surface glycoprotein (VSG) gene 221 of Trypanosoma brucei is transcribed as part of a 60 kb expression site (ES). We have identified the promoter controlling this multigene transcription unit by the use of 221 chromosome-enriched DNA libraries and VSG gene 221 expression site

  12. Association analysis of calpain 10 gene variants/haplotypes with gestational diabetes mellitus among Mexican women.

    Science.gov (United States)

    Castro-Martínez, Anna Gabriela; Sánchez-Corona, José; Vázquez-Vargas, Adriana Patricia; García-Zapién, Alejandra Guadalupe; López-Quintero, Andres; Villalpando-Velazco, Héctor Javier; Flores-Martínez, Silvia Esperanza

    2018-02-28

    Gestational diabetes mellitus (GDM) is a metabolically complex disease with major genetic determinants. GDM has been associated with insulin resistance and dysfunction of pancreatic beta cells, so the GDM candidate genes are those that encode proteins modulating the function and secretion of insulin, such as that for calpain 10 (CAPN10). This study aimed to assess whether single nucleotide polymorphism (SNP)-43, SNP-44, SNP-63, and the indel-19 variant, and specific haplotypes of the CAPN10 gene were associated with gestational diabetes mellitus. We studied 116 patients with gestational diabetes mellitus and 83 women with normal glucose tolerance. Measurements of anthropometric and biochemical parameters were performed. SNP-43, SNP-44, and SNP-63 were identified by polymerase chain reaction (PCR)-restriction fragment length polymorphisms, while the indel-19 variant was detected by TaqMan qPCR assays.  The allele, genotype, and haplotype frequencies of the four variants did not differ significantly between women with gestational diabetes mellitus and controls. However, in women with gestational diabetes mellitus, glucose levels were significantly higher bearing the 3R/3R genotype than in carriers of the 3R/2R genotype of the indel-19 variant (p = 0.006). In conclusion, the 3R/3R genotype of the indel-19 variant of the CAPN-10 gene influenced increased glucose levels in these Mexican women with gestational diabetes mellitus.

  13. Exome sequencing reveals frequent deleterious germline variants in cancer susceptibility genes in women with invasive breast cancer undergoing neoadjuvant chemotherapy.

    Science.gov (United States)

    Ellingson, Marissa S; Hart, Steven N; Kalari, Krishna R; Suman, Vera; Schahl, Kimberly A; Dockter, Travis J; Felten, Sara J; Sinnwell, Jason P; Thompson, Kevin J; Tang, Xiaojia; Vedell, Peter T; Barman, Poulami; Sicotte, Hugues; Eckel-Passow, Jeanette E; Northfelt, Donald W; Gray, Richard J; McLaughlin, Sarah A; Moreno-Aspitia, Alvaro; Ingle, James N; Moyer, Ann M; Visscher, Daniel W; Jones, Katie; Conners, Amy; McDonough, Michelle; Wieben, Eric D; Wang, Liewei; Weinshilboum, Richard; Boughey, Judy C; Goetz, Matthew P

    2015-09-01

    When sequencing blood and tumor samples to identify targetable somatic variants for cancer therapy, clinically relevant germline variants may be uncovered. We evaluated the prevalence of deleterious germline variants in cancer susceptibility genes in women with breast cancer referred for neoadjuvant chemotherapy and returned clinically actionable results to patients. Exome sequencing was performed on blood samples from women with invasive breast cancer referred for neoadjuvant chemotherapy. Germline variants within 142 hereditary cancer susceptibility genes were filtered and reviewed for pathogenicity. Return of results was offered to patients with deleterious variants in actionable genes if they were not aware of their result through clinical testing. 124 patients were enrolled (median age 51) with the following subtypes: triple negative (n = 43, 34.7%), HER2+ (n = 37, 29.8%), luminal B (n = 31, 25%), and luminal A (n = 13, 10.5%). Twenty-eight deleterious variants were identified in 26/124 (21.0%) patients in the following genes: ATM (n = 3), BLM (n = 1), BRCA1 (n = 4), BRCA2 (n = 8), CHEK2 (n = 2), FANCA (n = 1), FANCI (n = 1), FANCL (n = 1), FANCM (n = 1), FH (n = 1), MLH3 (n = 1), MUTYH (n = 2), PALB2 (n = 1), and WRN (n = 1). 121/124 (97.6%) patients consented to return of research results. Thirteen (10.5%) had actionable variants, including four that were returned to patients and led to changes in medical management. Deleterious variants in cancer susceptibility genes are highly prevalent in patients with invasive breast cancer referred for neoadjuvant chemotherapy undergoing exome sequencing. Detection of these variants impacts medical management.

  14. MSX ₁ gene variant and non-syndromic clefting: association or rejection?

    Science.gov (United States)

    Reddy, Naveen Admala; Gopinath, Adusumilli; Reddy, Jayaprakash Thirumala; Devanna, Raghu; Saravanan, Pichai; Rohra, Mayur G

    2014-01-01

    Non-syndromic cleft lip/palate (NSCL/P) is a congenital anomaly with significant medical, psychological and social ramifications. There is sufficient evidence to hypothesize that locus for this condition can be identified by candidate genes. The aim of this study is to amplify the chosen region (799 G >T) of MSX 1 gene, investigate the degree of association and perform a mutation research from Raichur cleft lip and palate patient sample. Case history and clinical examination of the patient were recorded to rule. Written consent was obtained from patients and controls for in vivo study. STUDY WAS DESIGNED IN FOUR STEPS AS FOLLOWS: a. Collection of a blood sample; b. Genomic deoxyribonucleic acid (DNA) extraction; c. Polymerase chain reaction (PCR); d. Restriction fragment length polymorphism (RFLP). Blood samples were collected from 50 subjects having NSCL/P and 50 controls. Genomic DNA was extracted, PCR and RFLP was performed for digestion products that were evaluated. Chi-square test with P value at 95% confidence intervals. The results showed a positive correlation between MSX 1 799 G >T gene variant and NSCL/P patients in Raichur patients. From a genetically diverse etiology MSX 1 799 G >T gene variant may be a good screening marker for NSCL/P in Raichur patients.

  15. Comprehensive analysis of pathogenic deletion variants in Fanconi anemia genes.

    Science.gov (United States)

    Flynn, Elizabeth K; Kamat, Aparna; Lach, Francis P; Donovan, Frank X; Kimble, Danielle C; Narisu, Narisu; Sanborn, Erica; Boulad, Farid; Davies, Stella M; Gillio, Alfred P; Harris, Richard E; MacMillan, Margaret L; Wagner, John E; Smogorzewska, Agata; Auerbach, Arleen D; Ostrander, Elaine A; Chandrasekharappa, Settara C

    2014-11-01

    Fanconi anemia (FA) is a rare recessive disease resulting from mutations in one of at least 16 different genes. Mutation types and phenotypic manifestations of FA are highly heterogeneous and influence the clinical management of the disease. We analyzed 202 FA families for large deletions, using high-resolution comparative genome hybridization arrays, single-nucleotide polymorphism arrays, and DNA sequencing. We found pathogenic deletions in 88 FANCA, seven FANCC, two FANCD2, and one FANCB families. We find 35% of FA families carry large deletions, accounting for 18% of all FA pathogenic variants. Cloning and sequencing across the deletion breakpoints revealed that 52 FANCA deletion ends, and one FANCC deletion end extended beyond the gene boundaries, potentially affecting neighboring genes with phenotypic consequences. Seventy-five percent of the FANCA deletions are Alu-Alu mediated, predominantly by AluY elements, and appear to be caused by nonallelic homologous recombination. Individual Alu hotspots were identified. Defining the haplotypes of four FANCA deletions shared by multiple families revealed that three share a common ancestry. Knowing the exact molecular changes that lead to the disease may be critical for a better understanding of the FA phenotype, and to gain insight into the mechanisms driving these pathogenic deletion variants. © 2014 WILEY PERIODICALS, INC.

  16. Gene Variants Are Associated with PCOS Susceptibility and Hyperandrogenemia in Young Korean Women

    Directory of Open Access Journals (Sweden)

    Do Kyeong Song

    2014-08-01

    Full Text Available BackgroundThe fat mass and obesity-associated (FTO gene is associated with obesity and type 2 diabetes mellitus. Obesity and insulin resistance are also common features of polycystic ovary syndrome (PCOS. Therefore, the FTO gene might be a candidate gene for PCOS susceptibility. The aim of the present study was to evaluate the effects of FTO gene variants on PCOS susceptibility and metabolic and reproductive hormonal parameters.MethodsWe recruited 432 women with PCOS (24±5 years and 927 healthy women with regular menstrual cycles (27±5 years and performed a case-control association study. We genotyped the single nucleotide polymorphisms rs1421085, rs17817449, and rs8050136 in the FTO gene and collected metabolic and hormonal measurements.ResultsLogistic regression revealed that the G/G genotype (rs1421085, 1.6%, the C/C genotype (rs17817449, 1.6%, and the A/A genotype (rs8050136, 1.6% were strongly associated with an increased risk of PCOS (odds ratio, 2.551 to 2.559; all P<0.05. The strengths of these associations were attenuated after adjusting for age and BMI. The women with these genotypes were more obese and exhibited higher free androgen indices (P<0.05 and higher free testosterone levels (P=0.053 to 0.063 compared to the other genotypes. However the significant differences disappeared after adjusting for body mass index (BMI. When we analyzed the women with PCOS and the control groups separately, there were no significant differences in the metabolic and reproductive hormonal parameters according to the FTO gene variants.ConclusionThe rs1421085, rs17817449, and rs8050136 variants of the FTO gene were associated with PCOS susceptibility and hyperandrogenemia in young Korean women. These associations may be mediated through an effect of BMI.

  17. Inactivation of DNA mismatch repair by variants of uncertain significance in the PMS2 gene.

    Science.gov (United States)

    Drost, Mark; Koppejan, Hester; de Wind, Niels

    2013-11-01

    Lynch syndrome (LS) is a common cancer predisposition caused by an inactivating mutation in one of four DNA mismatch repair (MMR) genes. Frequently a variant of uncertain significance (VUS), rather than an obviously pathogenic mutation, is identified in one of these genes. The inability to define pathogenicity of such variants precludes targeted healthcare. Here, we have modified a cell-free assay to test VUS in the MMR gene PMS2 for functional activity. We have analyzed nearly all VUS in PMS2 found thus far and describe loss of MMR activity for five, suggesting the applicability of the assay for diagnosis of LS. © 2013 WILEY PERIODICALS, INC.

  18. Exceptions to the rule: case studies in the prediction of pathogenicity for genetic variants in hereditary cancer genes.

    Science.gov (United States)

    Rosenthal, E T; Bowles, K R; Pruss, D; van Kan, A; Vail, P J; McElroy, H; Wenstrup, R J

    2015-12-01

    Based on current consensus guidelines and standard practice, many genetic variants detected in clinical testing are classified as disease causing based on their predicted impact on the normal expression or function of the gene in the absence of additional data. However, our laboratory has identified a subset of such variants in hereditary cancer genes for which compelling contradictory evidence emerged after the initial evaluation following the first observation of the variant. Three representative examples of variants in BRCA1, BRCA2 and MSH2 that are predicted to disrupt splicing, prematurely truncate the protein, or remove the start codon were evaluated for pathogenicity by analyzing clinical data with multiple classification algorithms. Available clinical data for all three variants contradicts the expected pathogenic classification. These variants illustrate potential pitfalls associated with standard approaches to variant classification as well as the challenges associated with monitoring data, updating classifications, and reporting potentially contradictory interpretations to the clinicians responsible for translating test outcomes to appropriate clinical action. It is important to address these challenges now as the model for clinical testing moves toward the use of large multi-gene panels and whole exome/genome analysis, which will dramatically increase the number of genetic variants identified. © 2015 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. CD10-/ALDH- cells are the sole cisplatin-resistant component of a novel ovarian cancer stem cell hierarchy.

    Science.gov (United States)

    Ffrench, Brendan; Gasch, Claudia; Hokamp, Karsten; Spillane, Cathy; Blackshields, Gordon; Mahgoub, Thamir Mahmoud; Bates, Mark; Kehoe, Louise; Mooney, Aoibhinn; Doyle, Ronan; Doyle, Brendan; O'Donnell, Dearbhaile; Gleeson, Noreen; Hennessy, Bryan T; Stordal, Britta; O'Riain, Ciaran; Lambkin, Helen; O'Toole, Sharon; O'Leary, John J; Gallagher, Michael F

    2017-10-19

    It is long established that tumour-initiating cancer stem cells (CSCs) possess chemoresistant properties. However, little is known of the mechanisms involved, particularly with respect to the organisation of CSCs as stem-progenitor-differentiated cell hierarchies. Here we aimed to elucidate the relationship between CSC hierarchies and chemoresistance in an ovarian cancer model. Using a single cell-based approach to CSC discovery and validation, we report a novel, four-component CSC hierarchy based around the markers cluster of differentiation 10 (CD10) and aldehyde dehydrogenase (ALDH). In a change to our understanding of CSC biology, resistance to chemotherapy drug cisplatin was found to be the sole property of CD10 - /ALDH - CSCs, while all four CSC types were sensitive to chemotherapy drug paclitaxel. Cisplatin treatment quickly altered the hierarchy, resulting in a three-component hierarchy dominated by the cisplatin-resistant CD10 - /ALDH - CSC. This organisation was found to be hard-wired in a long-term cisplatin-adapted model, where again CD10 - /ALDH - CSCs were the sole cisplatin-resistant component, and all CSC types remained paclitaxel-sensitive. Molecular analysis indicated that cisplatin resistance is associated with inherent- and adaptive-specific drug efflux and DNA-damage repair mechanisms. Clinically, low CD10 expression was consistent with a specific set of ovarian cancer patient samples. Collectively, these data advance our understanding of the relationship between CSC hierarchies and chemoresistance, which was shown to be CSC- and drug-type specific, and facilitated by specific and synergistic inherent and adaptive mechanisms. Furthermore, our data indicate that primary stage targeting of CD10 - /ALDH - CSCs in specific ovarian cancer patients in future may facilitate targeting of recurrent disease, before it ever develops.

  20. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    Science.gov (United States)

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  1. Tyrosine receptor kinase B gene variants (NTRK2 variants) are associated with depressive disorders in temporal lobe epilepsy.

    Science.gov (United States)

    Torres, Carolina Machado; Siebert, Marina; Bock, Hugo; Mota, Suelen Mandelli; Castan, Juliana Unis; Scornavacca, Francisco; de Castro, Luiza Amaral; Saraiva-Pereira, Maria Luiza; Bianchin, Marino Muxfeldt

    2017-06-01

    Psychiatric comorbidities are highly prevalent in epilepsy, adding an important burden to the disease and profoundly affecting the quality of life of these individuals. Patients with temporal lobe epilepsy (TLE) are especially at risk to develop depression and several lines of evidence suggest that the association of depression with epilepsy might be related to common biological substrates. In this study, we test whether NTRK2 allele variants are associated with mood disorders or depressive disorders in patients with TLE. An association study of 163 patients with TLE. The NTRK2 variants studied were rs1867283, rs10868235, rs1147198, rs11140800, rs1187286, rs2289656, rs1624327, rs1443445, rs3780645, and rs2378672. All patients were submitted to the Structured Clinical Interview for DSM-IV (SCID) and epilepsy patients with mood disorders or depressive disorders were compared to epilepsy patients without mood disorders or depressive disorders. In our TLE cohort, 76 patients (46.6%) showed mood disorders. After logistic regression, independent risk factors for mood disorders in TLE were female sex, presence of concomitant anxiety disorders, and genetic variations in rs1867283 and rs10868235 NTRK2 variants. Depressive disorders accounted for this results and independent variables associated with depressive disorders in TLE were female sex (OR=2.59; 95%CI=1.15-5.82; p=0.021), presence of concomitant anxiety disorders (OR=3.72; 95%CI=1.71-8.06; p=0.001) or psychotic disorders (OR=3.86; 95%CI=1.12-13.25; p=0.032), A/A genotype in the rs1867283 NTRK2 gene (OR=3.06; 95%CI=1.25-7.50; p=0.015) and C/C genotype in the rs10868235 NTRK2 gene (OR=3.54; 1.55-8.08; p=0.003). Similarly, these genotypes also remained independently and significantly associated with depressive disorders when patients with depressive disorders were compared to TLE patients without any psychiatric comorbidity. In the present study, female sex, presence of concomitant anxiety or psychotic disorders, and

  2. Spectrum of PAH gene variants among a population of Han Chinese patients with phenylketonuria from northern China.

    Science.gov (United States)

    Liu, Ning; Huang, Qiuying; Li, Qingge; Zhao, Dehua; Li, Xiaole; Cui, Lixia; Bai, Ying; Feng, Yin; Kong, Xiangdong

    2017-10-05

    Phenylketonuria (PKU), which primarily results from a deficiency of phenylalanine hydroxylase (PAH), is one of the most common inherited inborn errors of metabolism that impairs postnatal cognitive development. The incidence of various PAH variations differs by race and ethnicity. The aim of the present study was to characterize the PAH gene variants of a Han population from Northern China. In total, 655 PKU patients and their families were recruited for this study; each proband was diagnosed both clinically and biochemically with phenylketonuria. Subjects were sequentially screened for single-base variants and exon deletions or duplications within PAH via direct Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). A spectrum of 174 distinct PAH variants was identified: 152 previously documented variants and 22 novel variants. While single-base variants were distributed throughout the 13 exons, they were particularly concentrated in exons 7 (33.3%), 11 (14.2%), 6 (13.2%), 12 (11.0%), 3 (10.4%), and 5 (4.4%). The predominant variant was p.Arg243Gln (17.7%), followed by Ex6-96A > G (8.3%), p.Val399 = (6.4%), p.Arg53His (4.7%), p.Tyr356* (4.7%), p.Arg241Cys (4.6%), p.Arg413Pro (4.6%), p.Arg111* (4.4%), and c.442-1G > A (3.4%). Notably, two patients were also identified as carrying de novo variants. The composition of PAH gene variants in this Han population from Northern China was distinct from those of other ethnic groups. As such, the construction of a PAH gene variant database for Northern China is necessary to lay a foundation for genetic-based diagnoses, prenatal diagnoses, and population screening.

  3. Variants of the ADRB2 Gene in COPD

    DEFF Research Database (Denmark)

    Nielsen, Anne Orholm; Steen Jensen, Camilla; Arredouani, Mohamed Simo

    2017-01-01

    The β2-adrenergic receptor (ADRB2) is an important regulator of airway smooth muscle tone in chronic obstructive pulmonary disease (COPD). Variants that impair ADRB2 function could increase disease risk or reduce the response to endogenous and inhaled adrenergic agonists in COPD. We performed...... a systematic review and three meta-analyses to assess whether three functional variants (Thr164Ile, Arg16Gly, and Gln27Glu) in the ADRB2 gene are associated with elevated risk of disease or reduced therapeutic response to inhaled β2-agonists in COPD. We searched the medical literature from 1966 to 2017...... and found 16 relevant studies comprising 85381 study subjects. The meta-analyses found no significant association between ADRB2 genotype and COPD risk. The summary odds ratios (ORs) for COPD in Thr164Ile homozygotes and heterozygotes were 2.57 (95% confidence interval (CI): 0.54-12.4) and 1.17 (95% CI: 0...

  4. Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity

    NARCIS (Netherlands)

    Hendricks, Audrey E.; Bochukova, Elena G.; Marenne, Gaëlle; Keogh, Julia M.; Atanassova, Neli; Bounds, Rebecca; Wheeler, Eleanor; Mistry, Vanisha; Henning, Elana; Körner, Antje; Muddyman, Dawn; McCarthy, Shane; Hinney, Anke; Hebebrand, Johannes; Scott, Robert A.; Langenberg, Claudia; Wareham, Nick J.; Surendran, Praveen; Howson, Joanna M M; Butterworth, Adam S.; Danesh, John; Nordestgaard, Børge G.; Nielsen, Sune F.; Afzal, Shoaib; Papadia, Sofia; Ashford, Sofie; Garg, Sumedha; Millhauser, Glenn L.; Palomino, Rafael I.; Kwasniewska, Alexandra; Tachmazidou, Ioanna; O'Rahilly, Stephen; Zeggini, Eleftheria; Barroso, Inês; Farooqi, I. Sadaf; Benzeval, Michaela; Burton, Jonathan; Buck, Nicholas; Jäckle, Annette; Kumari, Meena; Laurie, Heather; Lynn, Peter; Pudney, Stephen; Rabe, Birgitta; Wolke, Dieter; Overvad, Kim; Tjønneland, Anne; Clavel-Chapelon, Francoise; Kaaks, Rudolf; Boeing, Heiner; Trichopoulou, Antonia; Ferrari, Pietro; Palli, Domenico; Krogha, Vittorio; Panico, Salvatore; Tuminoa, Rosario; Matullo, Giuseppe; Boer, Jolanda Ma; Van Der Schouw, Yvonne; Weiderpass, Elisabete; Quiros, J. Ramon; Sánchez, María José; Navarro, Carmen; Moreno-Iribas, Conchi; Arriola, Larraitz; Melander, Olle; Wennberg, Patrik; Key, Timothy J.; Riboli, Elio; Al-Turki, Saeed; Anderson, Carl A; Anney, Richard; Antony, Dinu; Soler Artigas, María; Ayub, Muhammad; Bala, Senduran; Barrett, Jeffrey C; Beales, Phil; Bentham, Jamie; Bhattacharyaa, Shoumo; Birney, Ewan; Blackwooda, Douglas; Bobrow, Martin; Bolton, Patrick F.; Boustred, Chris; Breen, Gerome; Calissanoa, Mattia; Carss, Keren; Charlton, Ruth; Chatterjee, Krishna; Chen, Lu; Ciampia, Antonio; Cirak, Sebahattin; Clapham, Peter; Clement, Gail; Coates, Guy; Coccaa, Massimiliano; Collier, David A; Cosgrove, Catherine; Coxa, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Curtis, David; Daly, Allan; Danecek, Petr; Day, Ian N M; Day-Williams, Aaron G; Dominiczak, Anna; Down, Thomas; Du, Yuanping; Dunham, Ian; Durbin, Richard; Edkins, Sarah; Ekong, Rosemary; Ellis, Peter; Evansa, David M.; FitzPatrick, David R.; Flicek, Paul; Floyd, James S.; Foley, A. Reghan; Franklin, Christopher S.; Futema, Marta; Gallagher, Louise; Gaunt, Tom R.; Geihs, Matthias; Geschwind, Daniel H.; Greenwood, Celia M.T.; Griffin, Heather; Grozeva, Detelina; Guo, Xiaosen; Guo, Xueqin; Gurling, Hugh; Hart, Deborah J.; Holmans, Peter A; Howie, Bryan; Huang, Jie; Huang, Liren; Hubbard, Tim; Humphries, Steve E.; Hurles, Matthew E.; Hysi, Pirro G.; Iotchkova, Valentina; Jackson, David K.; Jamshidi, Yalda; Joyce, Chris; Karczewski, Konrad J.; Kaye, Jane; Keane, Thomas; Kemp, John P.; Kennedy, Karen; Kent, Alastair; Khawaja, Farrah; Van Kogelenberg, Margriet; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lawson, Daniel; Lee, Irene; Lek, Monkol; Li, Rui; Li, Yingrui; Liang, Jieqin; Lin, Hong; Liu, Ryan; Lönnqvist, Jouko; Lopes, Luis R.; Lopes, Margarida; MacArthur, Daniel G.; Mangino, Massimo; Marchini, Jonathan; Maslen, John; Mathieson, Iain; McGuffin, Peter; McIntosh, Andrew M.; McKechanie, Andrew G.; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Migone, Nicola; Min, Josine L.; Mitchison, Hannah M; Moayyeri, Alireza; Morris, Andrew D.; Morris, James; Muntoni, Francesco; Northstone, Kate; O'Donovan, Michael C.; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael J; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy R.; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Payne, Stewart J.; Perry, John R. B.; Pietilainen, Olli; Plagnol, Vincent; Pollitt, Rebecca C.; Porteous, David J.; Povey, Sue; Quail, Michael A.; Quaye, Lydia; Raymond, F. Lucy; Rehnström, Karola; Richards, J Brent; Ridout, Cheryl K.; Ring, Susan M.; Ritchie, Graham R.S.; Roberts, Nicola; Robinson, Rachel L.; Savage, David B.; Scambler, Peter; Schiffels, Stephan; Schmidts, Miriam; Schoenmakers, Nadia; Scott, Richard H.; Semple, Robert K.; Serra, Eva; Sharp, Sally I.; Shaw, Adam; Shihab, Hashem A.; Shin, So Youn; Skuse, David; Small, Kerrin S; Smee, Carol; Smith, Blair H.; Davey Smith, George; Soranzo, Nicole; Southam, Lorraine; Spasic-Boskovic, Olivera; Spector, Timothy D; St Clair, David; St Pourcain, Beate; Stalker, Jim; Stevens, Elizabeth; Sun, Jianping; Surdulescu, Gabriela L; Suvisaari, Jaana; Syrris, Petros; Taylor, Rohan; Tian, Jing; Timpson, Nicholas J.; Tobin, Martin D; Valdes, Ana M.; Vandersteen, Anthony M.; Vijayarangakannan, Parthiban; Visscher, Peter M.; Wain, Louise V.; Walter, Klaudia; Walters, James T.R.; Wang, Guangbiao; Wang, Jun; Wang, Nai-Yu; Ward, Kirsten; Whyte, Tamieka; Williams, Hywel J.; Williamson, Kathleen A.; Wilson, Crispian; Wilson, Scott G.; Wong, Kim; Xu, Changjiang; Yang, Jian; Zhang, Feng; Zhang, Pingbo; Zheng, Hou Feng

    2017-01-01

    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS,

  5. Rare variant analysis of human and rodent obesity genes in individuals with severe childhood obesity

    DEFF Research Database (Denmark)

    Hendricks, Audrey E.; Bochukova, Elena G.; Marenne, Gaëlle

    2017-01-01

    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GN...

  6. Sequence variants of the LCORL gene and its association with ...

    Indian Academy of Sciences (India)

    Y. J. HAN

    [Han Y. J., Chen Y., Liu Y. and Liu X. L. 2017 Sequence variants of the LCORL gene and its association with growth and carcass traits in. Qinchuan cattle in China. J. Genet. 96, xx–xx]. Introduction. Genetically selecting is a better way to satisfy the growing customer requirement with the development of beef cattle industry ...

  7. Analysis of common SHOX gene sequence variants and ∼4.9-kb ...

    Indian Academy of Sciences (India)

    [Solc R., Hirschfeldova K., Kebrdlova V. and Baxova A. 2014 Analysis of common SHOX gene sequence variants ... based on a Gibbs sampling strategy were done using .... SHOX (short stature homeobox) are an important cause of growth.

  8. Neurexin gene family variants as risk factors for autism spectrum disorder.

    Science.gov (United States)

    Wang, Jia; Gong, Jianhua; Li, Li; Chen, Yanlin; Liu, Lingfei; Gu, HuaiTing; Luo, Xiu; Hou, Fang; Zhang, Jiajia; Song, Ranran

    2018-01-01

    Increasing evidence suggests that abnormal synaptic function leads to neuronal developmental disorders and is an important component of the etiology of autism spectrum disorder (ASD). Neurexins are presynaptic cell-adhesion molecules that affect the function of synapses and mediate the conduction of nerve signals. Thus, neurexins are attractive candidate genes for autism. Since gene families have greater power to reveal genetic association than single genes, we designed this case-control study to investigate six genetic variants in three neurexin genes (NRXN1, NRXN2, and NRXN3) in a Chinese population including 529 ASD patients and 1,923 healthy controls. We found that two SNPs were significantly associated with ASD after false discovery rate (FDR) adjustment for multiple comparisons. The NRXN2 rs12273892 polymorphism T allele and AT genotype were significantly associated with increased risk of ASD (respectively: OR = 1.328, 95% CI = 1.133-1.557, P Autism Res 2018, 11: 37-43. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is highly heritable, and studies have found a number of candidate genes that might contribute to ASD. Neurexins are presynaptic cell-adhesion molecules that affect the function of synapses and mediate the conduction of nerve signals, and they play an important role in normal brain development and become candidate genes for autism. The purpose of our study is to explore the association between variants of the neurexins gene family and ASD in a Chinese population through a case-control study. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  9. Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa.

    OpenAIRE

    Hays, Shan M; Swanson, Johanna; Selker, Eric U

    2002-01-01

    We have identified and characterized the complete complement of genes encoding the core histones of Neurospora crassa. In addition to the previously identified pair of genes that encode histones H3 and H4 (hH3 and hH4-1), we identified a second histone H4 gene (hH4-2), a divergently transcribed pair of genes that encode H2A and H2B (hH2A and hH2B), a homolog of the F/Z family of H2A variants (hH2Az), a homolog of the H3 variant CSE4 from Saccharomyces cerevisiae (hH3v), and a highly diverged ...

  10. Filaggrin gene variants and atopic diseases in early childhood assessed longitudinally from birth

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Pipper, Christian Bressen; Tavendale, Roger

    2010-01-01

    Copenhagen Prospective Study on Asthma in Childhood (COPSAC) was one of the discovery cohorts of the association between eczema and variants in the filaggrin coding gene (FLG). Here, we study the FLG-associated risk of asthma symptoms in early life and describe the temporal relationship in the de......Copenhagen Prospective Study on Asthma in Childhood (COPSAC) was one of the discovery cohorts of the association between eczema and variants in the filaggrin coding gene (FLG). Here, we study the FLG-associated risk of asthma symptoms in early life and describe the temporal relationship...... diagnosed prospectively by the investigators. FLG variants R501X and Del4 were determined in 382 Caucasians. Filaggrin variants increased risk of developing recurrent wheeze, asthma and asthma exacerbations (hazard ratio 1.82 [1.06-3.12], p = 0.03), which was expressed within the first 1.5 yr of life...... fully in the first year of life (point prevalence ratio for age 0-5 was 1.75 [1.29-2.37]; p-value = 0.0003) contrasting the increased risk of specific sensitization by age 4 (odds ratio 3.52 [1.72-7.25], p = 0.0007) but not age 1.5. This study describes a FLG-associated pattern of atopic diseases...

  11. Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease.

    Science.gov (United States)

    Kelsen, Judith R; Dawany, Noor; Moran, Christopher J; Petersen, Britt-Sabina; Sarmady, Mahdi; Sasson, Ariella; Pauly-Hubbard, Helen; Martinez, Alejandro; Maurer, Kelly; Soong, Joanne; Rappaport, Eric; Franke, Andre; Keller, Andreas; Winter, Harland S; Mamula, Petar; Piccoli, David; Artis, David; Sonnenberg, Gregory F; Daly, Mark; Sullivan, Kathleen E; Baldassano, Robert N; Devoto, Marcella

    2015-11-01

    Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed at 5 years of age or younger, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (age, 3 wk to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by postprocessing and variant calling. After functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency less than 0.1%, and scaled combined annotation-dependent depletion scores of 10 or less. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n = 45) or adult-onset Crohn's disease (n = 20) and healthy individuals (controls, n = 145) were obtained from the University of Kiel, Germany, and used as control groups. Four hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling more than 1 Mbp of coding sequence, were selected from the whole-exome data. Our analysis showed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the

  12. Protein aggregates and novel presenilin gene variants in idiopathic dilated cardiomyopathy.

    Science.gov (United States)

    Gianni, Davide; Li, Airong; Tesco, Giuseppina; McKay, Kenneth M; Moore, John; Raygor, Kunal; Rota, Marcello; Gwathmey, Judith K; Dec, G William; Aretz, Thomas; Leri, Annarosa; Semigran, Marc J; Anversa, Piero; Macgillivray, Thomas E; Tanzi, Rudolph E; del Monte, Federica

    2010-03-16

    Heart failure is a debilitating condition resulting in severe disability and death. In a subset of cases, clustered as idiopathic dilated cardiomyopathy (iDCM), the origin of heart failure is unknown. In the brain of patients with dementia, proteinaceous aggregates and abnormal oligomeric assemblies of beta-amyloid impair cell function and lead to cell death. We have similarly characterized fibrillar and oligomeric assemblies in the hearts of iDCM patients, pointing to abnormal protein aggregation as a determinant of iDCM. We also showed that oligomers alter myocyte Ca(2+) homeostasis. Additionally, we have identified 2 new sequence variants in the presenilin-1 (PSEN1) gene promoter leading to reduced gene and protein expression. We also show that presenilin-1 coimmunoprecipitates with SERCA2a. On the basis of these findings, we propose that 2 mechanisms may link protein aggregation and cardiac function: oligomer-induced changes on Ca(2+) handling and a direct effect of PSEN1 sequence variants on excitation-contraction coupling protein function.

  13. Variants in the interleukin 8 gene and the response to inhaled bronchodilators in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Larissa Lazzarini Furlan

    2017-11-01

    Conclusions: This study highlighted the importance of the rs4073 variant of the interleukin 8 gene, regarding response to inhaled bronchodilators, and of the assessment of mutations in the cystic fibrosis transmembrane conductance regulator gene.

  14. A de novo variant in the ASPRV1 gene in a dog with ichthyosis.

    Science.gov (United States)

    Bauer, Anina; Waluk, Dominik P; Galichet, Arnaud; Timm, Katrin; Jagannathan, Vidhya; Sayar, Beyza S; Wiener, Dominique J; Dietschi, Elisabeth; Müller, Eliane J; Roosje, Petra; Welle, Monika M; Leeb, Tosso

    2017-03-01

    Ichthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function. During terminal differentiation of keratinocytes, the precursor profilaggrin is cleaved by several proteases into filaggrin monomers and eventually processed into free amino acids contributing to the hydration of the cornified layer. We studied a German Shepherd dog with a novel form of ichthyosis. Comparing the genome sequence of the affected dog with 288 genomes from genetically diverse non-affected dogs we identified a private heterozygous variant in the ASPRV1 gene encoding "aspartic peptidase, retroviral-like 1", which is also known as skin aspartic protease (SASPase). The variant was absent in both parents and therefore due to a de novo mutation event. It was a missense variant, c.1052T>C, affecting a conserved residue close to an autoprocessing cleavage site, p.(Leu351Pro). ASPRV1 encodes a retroviral-like protease involved in profilaggrin-to-filaggrin processing. By immunofluorescence staining we showed that the filaggrin expression pattern was altered in the affected dog. Thus, our findings provide strong evidence that the identified de novo variant is causative for the ichthyosis in the affected dog and that ASPRV1 plays an essential role in skin barrier formation. ASPRV1 is thus a novel candidate gene for unexplained human forms of ichthyoses.

  15. A de novo variant in the ASPRV1 gene in a dog with ichthyosis.

    Directory of Open Access Journals (Sweden)

    Anina Bauer

    2017-03-01

    Full Text Available Ichthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function. During terminal differentiation of keratinocytes, the precursor profilaggrin is cleaved by several proteases into filaggrin monomers and eventually processed into free amino acids contributing to the hydration of the cornified layer. We studied a German Shepherd dog with a novel form of ichthyosis. Comparing the genome sequence of the affected dog with 288 genomes from genetically diverse non-affected dogs we identified a private heterozygous variant in the ASPRV1 gene encoding "aspartic peptidase, retroviral-like 1", which is also known as skin aspartic protease (SASPase. The variant was absent in both parents and therefore due to a de novo mutation event. It was a missense variant, c.1052T>C, affecting a conserved residue close to an autoprocessing cleavage site, p.(Leu351Pro. ASPRV1 encodes a retroviral-like protease involved in profilaggrin-to-filaggrin processing. By immunofluorescence staining we showed that the filaggrin expression pattern was altered in the affected dog. Thus, our findings provide strong evidence that the identified de novo variant is causative for the ichthyosis in the affected dog and that ASPRV1 plays an essential role in skin barrier formation. ASPRV1 is thus a novel candidate gene for unexplained human forms of ichthyoses.

  16. Clinical Relevance of HLA Gene Variants in HBV Infection

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available Host gene variants may influence the natural history of hepatitis B virus (HBV infection. The human leukocyte antigen (HLA system, the major histocompatibility complex (MHC in humans, is one of the most important host factors that are correlated with the clinical course of HBV infection. Genome-wide association studies (GWASs have shown that single nucleotide polymorphisms (SNPs near certain HLA gene loci are strongly associated with not only persistent HBV infection but also spontaneous HBV clearance and seroconversion, disease progression, and the development of liver cirrhosis and HBV-related hepatocellular carcinoma (HCC in chronic hepatitis B (CHB. These variations also influence the efficacy of interferon (IFN and nucleot(side analogue (NA treatment and response to HBV vaccines. Meanwhile, discrepant conclusions were reached with different patient cohorts. It is therefore essential to identify the associations of specific HLA allele variants with disease progression and viral clearance in chronic HBV infection among different ethnic populations. A better understanding of HLA polymorphism relevance in HBV infection outcome would enable us to elucidate the roles of HLA SNPs in the pathogenesis and clearance of HBV in different areas and ethnic groups, to improve strategies for the prevention and treatment of chronic HBV infection.

  17. Identification of coagulation gene 3′UTR variants that are potentially regulated by microRNAs

    NARCIS (Netherlands)

    Vossen, Carla Y.; van Hylckama Vlieg, Astrid; Teruel-Montoya, Raúl; Salloum-Asfar, Salam; de Haan, Hugoline G.; Corral, Javier; Reitsma, Pieter H.; Koeleman, Bobby P.C.; Martínez, Constantino

    2017-01-01

    MicroRNAs have been recognized as critical regulators of gene expression and might affect the risk of venous thrombosis. We aimed to identify 3′ untranslated region (UTR) variants in coagulation genes that influence coagulation factor levels and venous thrombosis risk. The 3′UTR of coagulation genes

  18. Candidate gene linkage approach to identify DNA variants that predispose to preterm birth

    DEFF Research Database (Denmark)

    Bream, Elise N A; Leppellere, Cara R; Cooper, Margaret E

    2013-01-01

    Background:The aim of this study was to identify genetic variants contributing to preterm birth (PTB) using a linkage candidate gene approach.Methods:We studied 99 single-nucleotide polymorphisms (SNPs) for 33 genes in 257 families with PTBs segregating. Nonparametric and parametric analyses were...... through the infant and/or the mother in the etiology of PTB....

  19. When is it MODY? Challenges in the Interpretation of Sequence Variants in MODY Genes

    Science.gov (United States)

    Althari, Sara; Gloyn, Anna L.

    2015-01-01

    The genomics revolution has raised more questions than it has provided answers. Big data from large population-scale resequencing studies are increasingly deconstructing classic notions of Mendelian disease genetics, which support a simplistic correlation between mutational severity and phenotypic outcome. The boundaries are being blurred as the body of evidence showing monogenic disease-causing alleles in healthy genomes, and in the genomes of individu-als with increased common complex disease risk, continues to grow. In this review, we focus on the newly emerging challenges which pertain to the interpretation of sequence variants in genes implicated in the pathogenesis of maturity-onset diabetes of the young (MODY), a presumed mono-genic form of diabetes characterized by Mendelian inheritance. These challenges highlight the complexities surrounding the assignments of pathogenicity, in particular to rare protein-alerting variants, and bring to the forefront some profound clinical diagnostic implications. As MODY is both genetically and clinically heterogeneous, an accurate molecular diagnosis and cautious extrapolation of sequence data are critical to effective disease management and treatment. The biological and translational value of sequence information can only be attained by adopting a multitude of confirmatory analyses, which interrogate variant implication in disease from every possible angle. Indeed, studies which have effectively detected rare damaging variants in known MODY genes in normoglycemic individuals question the existence of a sin-gle gene mutation scenario: does monogenic diabetes exist when the genetic culprits of MODY have been systematical-ly identified in individuals without MODY? PMID:27111119

  20. Reliable and rapid characterization of functional FCN2 gene variants reveals diverse geographical patterns

    Directory of Open Access Journals (Sweden)

    Ojurongbe Olusola

    2012-05-01

    Full Text Available Abstract Background Ficolin-2 coded by FCN2 gene is a soluble serum protein and an innate immune recognition element of the complement system. FCN2 gene polymorphisms reveal distinct geographical patterns and are documented to alter serum ficolin levels and modulate disease susceptibility. Methods We employed a real-time PCR based on Fluorescence Resonance Energy Transfer (FRET method to genotype four functional SNPs including -986 G > A (#rs3124952, -602 G > A (#rs3124953, -4A > G (#rs17514136 and +6424 G > T (#rs7851696 in the ficolin-2 (FCN2 gene. We characterized the FCN2 variants in individuals representing Brazilian (n = 176, Nigerian (n = 180, Vietnamese (n = 172 and European Caucasian ethnicity (n = 165. Results We observed that the genotype distribution of three functional SNP variants (−986 G > A, -602 G > A and -4A > G differ significantly between the populations investigated (p p  Conclusions The observed distribution of the FCN2 functional SNP variants may likely contribute to altered serum ficolin levels and this may depend on the different disease settings in world populations. To conclude, the use of FRET based real-time PCR especially for FCN2 gene will benefit a larger scientific community who extensively depend on rapid, reliable method for FCN2 genotyping.

  1. Gene variants associated with antisocial behaviour: a latent variable approach.

    Science.gov (United States)

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V; Lee, Maria; Yrigollen, Carolyn M; Pakstis, Andrew J; Katsovich, Liliya; Olds, David L; Grigorenko, Elena L; Leckman, James F

    2013-10-01

    The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a 15-year follow-up of a randomized trial of a prenatal and infancy nurse-home visitation programme in Elmira, New York. We then investigated, via a novel latent variable approach, 450 informative genetic polymorphisms in 71 genes previously associated with antisocial behaviour, drug use, affiliative behaviours and stress response in 241 consenting individuals for whom DNA was available. Haplotype and Pathway analyses were also performed. Eight single-nucleotide polymorphisms (SNPs) from eight genes contributed to the latent genetic variable that in turn accounted for 16.0% of the variance within the latent antisocial phenotype. The number of risk alleles was linearly related to the latent antisocial variable scores. Haplotypes that included the putative risk alleles for all eight genes were also associated with higher latent antisocial variable scores. In addition, 33 SNPs from 63 of the remaining genes were also significant when added to the final model. Many of these genes interact on a molecular level, forming molecular networks. The results support a role for genes related to dopamine, norepinephrine, serotonin, glutamate, opioid and cholinergic signalling as well as stress response pathways in mediating susceptibility to antisocial behaviour. This preliminary study supports use of relevant behavioural indicators and latent variable approaches to study the potential 'co-action' of gene variants associated with antisocial behaviour. It also underscores the cumulative relevance of common genetic variants for understanding the aetiology of complex behaviour. If replicated in future studies, this approach may allow the identification of a

  2. HFE p.C282Y gene variant is associated with varicose veins in Russian population.

    Science.gov (United States)

    Sokolova, Ekaterina A; Shadrina, Alexandra S; Sevost'ianova, Kseniya S; Shevela, Andrey I; Soldatsky, Evgenii Yu; Seliverstov, Evgenii I; Demekhova, Marina Yu; Shonov, Oleg A; Ilyukhin, Evgenii A; Smetanina, Mariya A; Voronina, Elena N; Zolotukhin, Igor A; Filipenko, Maxim L

    2016-08-01

    Recently, the association of polymorphism rs1800562 (p.C282Y) in the hemochromatosis (HFE) gene with the increased risk of venous ulceration was shown. We hypothesized that HFE gene polymorphism might be involved not only in ulceration process, but also in susceptibility to primary varicose veins. We genotyped HFE p.C282Y (rs1800562) and p.H63D (rs1799945) variants in patients with primary varicose veins (n = 463) and in the control group (n = 754). In our study, p.282Y variant (rs1800562 A allele) was significantly associated with the risk of varicose veins (OR 1.79, 95 % CI = 1.11-2.89, P = 0.02). A borderline significant reverse association of p.63D variant (rs1799945 G allele) with venous leg ulcer development was revealed in Russians (OR 0.25, 95 % CI = 0.06-1.00, P = 0.05), but not in the meta-analysis (P = 0.56). We conclude that the HFE gene polymorphism can affect the risk of developing primary varicose veins.

  3. MC1R gene variants involvement in human OCA phenotype

    OpenAIRE

    Saleha Shamim; Khan Taj Ali; Zafar Shaista

    2016-01-01

    Oculocutaneous albinism (OCA) is a genetic disorder of melanin synthesis that results in hypopigmentation in hair, skin and eyes. OCA has been reported in individuals from all ethnic backgrounds but it is more common among those with Europeans ancestry. OCA is heterogeneous group of disorders and seven types of OCA are caused by mutations in TYR (OCA1), OCA2 (OCA2), TYRP1 (OCA3), SLC45A2 (OCA4), SLC24A5 (OCA6) and C10oRF11 (OCA7) genes. However, MC1R gene variants have been reported that modi...

  4. Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: a candidate gene sequencing study.

    Science.gov (United States)

    Dressen, Amy; Abbas, Alexander R; Cabanski, Christopher; Reeder, Janina; Ramalingam, Thirumalai R; Neighbors, Margaret; Bhangale, Tushar R; Brauer, Matthew J; Hunkapiller, Julie; Reeder, Jens; Mukhyala, Kiran; Cuenco, Karen; Tom, Jennifer; Cowgill, Amy; Vogel, Jan; Forrest, William F; Collard, Harold R; Wolters, Paul J; Kropski, Jonathan A; Lancaster, Lisa H; Blackwell, Timothy S; Arron, Joseph R; Yaspan, Brian L

    2018-06-08

    Idiopathic pulmonary fibrosis (IPF) risk has a strong genetic component. Studies have implicated variations at several loci, including TERT, surfactant genes, and a single nucleotide polymorphism at chr11p15 (rs35705950) in the intergenic region between TOLLIP and MUC5B. Patients with IPF who have risk alleles at rs35705950 have longer survival from the time of IPF diagnosis than do patients homozygous for the non-risk allele, whereas patients with shorter telomeres have shorter survival times. We aimed to assess whether rare protein-altering variants in genes regulating telomere length are enriched in patients with IPF homozygous for the non-risk alleles at rs35705950. Between Nov 1, 2014, and Nov 1, 2016, we assessed blood samples from patients aged 40 years or older and of European ancestry with sporadic IPF from three international phase 3 clinical trials (INSPIRE, CAPACITY, ASCEND), one phase 2 study (RIFF), and US-based observational studies (Vanderbilt Clinical Interstitial Lung Disease Registry and the UCSF Interstitial Lung Disease Clinic registry cohorts) at the Broad Institute (Cambridge, MA, USA) and Human Longevity (San Diego, CA, USA). We also assessed blood samples from non-IPF controls in several clinical trials. We did whole-genome sequencing to assess telomere length and identify rare protein-altering variants, stratified by rs35705950 genotype. We also assessed rare functional variation in TERT exons and compared telomere length and disease progression across genotypes. We assessed samples from 1510 patients with IPF and 1874 non-IPF controls. 30 (3%) of 1046 patients with an rs35705950 risk allele had a rare protein-altering variant in TERT compared with 34 (7%) of 464 non-risk allele carriers (odds ratio 0·40 [95% CI 0·24-0·66], p=0·00039). Subsequent analyses identified enrichment of rare protein-altering variants in PARN and RTEL1, and rare variation in TERC in patients with IPF compared with controls. We expanded our study population to

  5. Large-scale gene-centric analysis identifies novel variants for coronary artery disease

    NARCIS (Netherlands)

    Butterworth, A.S.; Braund, P.S.; Hardwick, R.J.; Saleheen, D.; Peden, J.F.; Soranzo, N.; Chambers, J.C.; Kleber, M.E.; Keating, B.; Qasim, A.; Klopp, N.; Erdmann, J.; Basart, H.; Baumert, J.H.; Bezzina, C.R.; Boehm, B.O.; Brocheton, J.; Bugert, P.; Cambien, F.; Collins, R.; Couper, D.; Jong, J.S. de; Diemert, P.; Ejebe, K.; Elbers, C.C.; Elliott, P.; Fornage, M.; Frossard, P.; Garner, S.; Hunt, S.E.; Kastelein, J.J.; Klungel, O.H.; Kluter, H.; Koch, K.; Konig, I.R.; Kooner, A.S.; Liu, K.; McPherson, R.; Musameh, M.D.; Musani, S.; Papanicolaou, G.; Peters, A.; Peters, B.J.; Potter, S.; Psaty, B.M.; Rasheed, A.; Scott, J.; Seedorf, U.; Sehmi, J.S.; Sotoodehnia, N.; Stark, K.; Stephens, J.; Schoot, C.E. van der; Schouw, Y.T. van der; Harst, P. van der; Vasan, R.S.; Wilde, A.A.; Willenborg, C.; Winkelmann, B.R.; Zaidi, M.; Zhang, W.; Ziegler, A.; Koenig, W.; Matz, W.; Trip, M.D.; Reilly, M.P.; Kathiresan, S.; Schunkert, H.; Hamsten, A.; Hall, A.S.; Kooner, J.S.; Thompson, S.G.; Thompson, J.R.; Watkins, H.; Danesh, J.; Barnes, T.; Rafelt, S.; Codd, V.; Bruinsma, N.; Dekker, L.R.; Henriques, J.P.; Koch, K.T.; Winter, R.J. de; Alings, M.; Allaart, C.F.; Gorgels, A.P.; Verheugt, F.W.A.; Mueller, M.; Meisinger, C.; DerOhannessian, S.; Mehta, N.N.; Ferguson, J.; Hakonarson, H.; Matthai, W.; Wilensky, R.; Hopewell, J.C.; Parish, S.; Linksted, P.; Notman, J.; Gonzalez, H.; Young, A.; Ostley, T.; Munday, A.; Goodwin, N.; Verdon, V.; Shah, S.; Edwards, C.; Mathews, C.; Gunter, R.; Benham, J.; Davies, C.; Cobb, M.; Cobb, L.; Crowther, J.; Richards, A.; Silver, M.; Tochlin, S.; Mozley, S.; Clark, S.; Radley, M.; Kourellias, K.; Olsson, P.; Barlera, S.; Tognoni, G.; Rust, S.; Assmann, G.; Heath, S.; Zelenika, D.; Gut, I.; Green, F.; Farrall, M.; Goel, A.; Ongen, H.; Franzosi, M.G.; Lathrop, M.; Clarke, R.; Aly, A.; Anner, K.; Bjorklund, K.; Blomgren, G.; Cederschiold, B.; Danell-Toverud, K.; Eriksson, P.; Grundstedt, U.; Heinonen, M.; Hellenius, M.L.; Hooft, F. van 't; Husman, K.; Lagercrantz, J.; Larsson, A.; Larsson, M.; Mossfeldt, M.; Malarstig, A.; Olsson, G.; Sabater-Lleal, M.; Sennblad, B.; Silveira, A.; Strawbridge, R.; Soderholm, B.; Ohrvik, J.; Zaman, K.S.; Mallick, N.H.; Azhar, M.; Samad, A.; Ishaq, M.; Shah, N.; Samuel, M.; Kathiresan, S.C.; Assimes, T.L.; Holm, H.; Preuss, M.; Stewart, A.F.; Barbalic, M.; Gieger, C.; Absher, D.; Aherrahrou, Z.; Allayee, H.; Altshuler, D.; Anand, S.; Andersen, K.; Anderson, J.L.; Ardissino, D.; Ball, S.G.; Balmforth, A.J.; Barnes, T.A.; Becker, L.C.; Becker, D.M.; Berger, K.; Bis, J.C.; Boekholdt, S.M.; Boerwinkle, E.; Brown, M.J.; Burnett, M.S.; Buysschaert, I.; Carlquist, J.F.; Chen, L.; Davies, R.W.; Dedoussis, G.; Dehghan, A.; Demissie, S.; Devaney, J.; Do, R.; Doering, A.; El Mokhtari, N.E.; Ellis, S.G.; Elosua, R.; Engert, J.C.; Epstein, S.; Faire, U. de; Fischer, M.; Folsom, A.R.; Freyer, J.; Gigante, B.; Girelli, D.; Gretarsdottir, S.; Gudnason, V.; Gulcher, J.R.; Tennstedt, S.; Halperin, E.; Hammond, N.; Hazen, S.L.; Hofman, A.; Horne, B.D.; Illig, T.; Iribarren, C.; Jones, G.T.; Jukema, J.W.; Kaiser, M.A.; Kaplan, L.M.; Khaw, K.T.; Knowles, J.W.; Kolovou, G.; Kong, A.; Laaksonen, R.; Lambrechts, D.; Leander, K.; Li, M.; Lieb, W.; Lettre, G.; Loley, C.; Lotery, A.J.; Mannucci, P.M.; Martinelli, N.; McKeown, P.P.; Meitinger, T.; Melander, O.; Merlini, P.A.; Mooser, V.; Morgan, T.; Muhleisen T.W., .; Muhlestein, J.B.; Musunuru, K.; Nahrstaedt, J.; Nothen, Markus; Olivieri, O.; Peyvandi, F.; Patel, R.S.; Patterson, C.C.; Qu, L.; Quyyumi, A.A.; Rader, D.J.; Rallidis, L.S.; Rice, C.; Roosendaal, F.R.; Rubin, D.; Salomaa, V.; Sampietro, M.L.; Sandhu, M.S.; Schadt, E.; Schafer, A.; Schillert, A.; Schreiber, S.; Schrezenmeir, J.; Schwartz, S.M.; Siscovick, D.S.; Sivananthan, M.; Sivapalaratnam, S.; Smith, A.V.; Smith, T.B.; Snoep, J.D.; Spertus, J.A.; Stefansson, K.; Stirrups, K.; Stoll, M.; Tang, W.H.; Thorgeirsson, G.; Thorleifsson, G.; Tomaszewski, M.; Uitterlinden, A.G.; Rij, A.M. van; Voight, B.F.; Wareham, N.J.; AWells, G.; Wichmann, H.E.; Witteman, J.C.; Wright, B.J.; Ye, S.; Cupples, L.A.; Quertermous, T.; Marz, W.; Blankenberg, S.; Thorsteinsdottir, U.; Roberts, R.; O'Donnell, C.J.; Onland-Moret, N.C.; Setten, J. van; Bakker, P.I. de; Verschuren, W.M.; Boer, J.M.; Wijmenga, C.; Hofker, M.H.; Maitland-van der Zee, A.H.; Boer, A. de; Grobbee, D.E.; Attwood, T.; Belz, S.; Cooper, J.; Crisp-Hihn, A.; Deloukas, P.; Foad, N.; Goodall, A.H.; Gracey, J.; Gray, E.; Gwilliams, R.; Heimerl, S.; Hengstenberg, C.; Jolley, J.; Krishnan, U.; Lloyd-Jones, H.; Lugauer, I.; Lundmark, P.; Maouche, S.; Moore, J.S.; Muir, D.; Murray, E.; Nelson, C.P.; Neudert, J.; Niblett, D.; O'Leary, K.; Ouwehand, W.H.; Pollard, H.; Rankin, A.; Rice, C.M.; Sager, H.; Samani, N.J.; Sambrook, J.; Schmitz, G.; Scholz, M.; Schroeder, L.; Syvannen, A.C.; Wallace, C.

    2011-01-01

    Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants.

  6. Whole-exome sequencing identified a variant in EFTUD2 gene in establishing a genetic diagnosis.

    Science.gov (United States)

    Rengasamy Venugopalan, S; Farrow, E G; Lypka, M

    2017-06-01

    Craniofacial anomalies are complex and have an overlapping phenotype. Mandibulofacial Dysostosis and Oculo-Auriculo-Vertebral Spectrum are conditions that share common craniofacial phenotype and present a challenge in arriving at a diagnosis. In this report, we present a case of female proband who was given a differential diagnosis of Treacher Collins syndrome or Hemifacial Microsomia without certainty. Prior genetic testing reported negative for 22q deletion and FGFR screenings. The objective of this study was to demonstrate the critical role of whole-exome sequencing in establishing a genetic diagnosis of the proband. The participants were 14½-year-old affected female proband/parent trio. Proband/parent trio were enrolled in the study. Surgical tissue sample from the proband and parental blood samples were collected and prepared for whole-exome sequencing. Illumina HiSeq 2500 instrument was used for sequencing (125 nucleotide reads/84X coverage). Analyses of variants were performed using custom-developed software, RUNES and VIKING. Variant analyses following whole-exome sequencing identified a heterozygous de novo pathogenic variant, c.259C>T (p.Gln87*), in EFTUD2 (NM_004247.3) gene in the proband. Previous studies have reported that the variants in EFTUD2 gene were associated with Mandibulofacial Dysostosis with Microcephaly. Patients with facial asymmetry, micrognathia, choanal atresia and microcephaly should be analyzed for variants in EFTUD2 gene. Next-generation sequencing techniques, such as whole-exome sequencing offer great promise to improve the understanding of etiologies of sporadic genetic diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution

    DEFF Research Database (Denmark)

    Helgason, Agnar; Pálsson, Snaebjörn; Thorleifsson, Gudmar

    2007-01-01

    diabetes risk variant, HapB(T2D), to the ancestral T allele of a SNP, rs7903146, through replication in West African and Danish type 2 diabetes case-control studies and an expanded Icelandic study. We also identify another variant of the same gene, HapA, that shows evidence of positive selection in East......We recently described an association between risk of type 2diabetes and variants in the transcription factor 7-like 2 gene (TCF7L2; formerly TCF4), with a population attributable risk (PAR) of 17%-28% in three populations of European ancestry. Here, we refine the definition of the TCF7L2 type 2...

  8. Genetic variants alter T-bet binding and gene expression in mucosal inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Katrina Soderquest

    2017-02-01

    Full Text Available The polarization of CD4+ T cells into distinct T helper cell lineages is essential for protective immunity against infection, but aberrant T cell polarization can cause autoimmunity. The transcription factor T-bet (TBX21 specifies the Th1 lineage and represses alternative T cell fates. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs that may be causative for autoimmune diseases. The majority of these polymorphisms are located within non-coding distal regulatory elements. It is considered that these genetic variants contribute to disease by altering the binding of regulatory proteins and thus gene expression, but whether these variants alter the binding of lineage-specifying transcription factors has not been determined. Here, we show that SNPs associated with the mucosal inflammatory diseases Crohn's disease, ulcerative colitis (UC and celiac disease, but not rheumatoid arthritis or psoriasis, are enriched at T-bet binding sites. Furthermore, we identify disease-associated variants that alter T-bet binding in vitro and in vivo. ChIP-seq for T-bet in individuals heterozygous for the celiac disease-associated SNPs rs1465321 and rs2058622 and the IBD-associated SNPs rs1551398 and rs1551399, reveals decreased binding to the minor disease-associated alleles. Furthermore, we show that rs1465321 is an expression quantitative trait locus (eQTL for the neighboring gene IL18RAP, with decreased T-bet binding associated with decreased expression of this gene. These results suggest that genetic polymorphisms may predispose individuals to mucosal autoimmune disease through alterations in T-bet binding. Other disease-associated variants may similarly act by modulating the binding of lineage-specifying transcription factors in a tissue-selective and disease-specific manner.

  9. Pooled Sequencing of 531 Genes in Inflammatory Bowel Disease Identifies an Associated Rare Variant in BTNL2 and Implicates Other Immune Related Genes

    Science.gov (United States)

    Prescott, Natalie J.; Lehne, Benjamin; Stone, Kristina; Lee, James C.; Taylor, Kirstin; Knight, Jo; Papouli, Efterpi; Mirza, Muddassar M.; Simpson, Michael A.; Spain, Sarah L.; Lu, Grace; Fraternali, Franca; Bumpstead, Suzannah J.; Gray, Emma; Amar, Ariella; Bye, Hannah; Green, Peter; Chung-Faye, Guy; Hayee, Bu’Hussain; Pollok, Richard; Satsangi, Jack; Parkes, Miles; Barrett, Jeffrey C.; Mansfield, John C.; Sanderson, Jeremy; Lewis, Cathryn M.; Weale, Michael E.; Schlitt, Thomas; Mathew, Christopher G.

    2015-01-01

    The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn’s disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10−10, OR = 2.3[95% CI = 1.75–3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis. PMID:25671699

  10. Evaluation of variants of melanoma-associated antigen genes and mRNA transcripts in melanomas of dogs.

    Science.gov (United States)

    Stell, Anneliese J; Dobson, Jane M; Scase, Timothy J; Catchpole, Brian

    2009-12-01

    OBJECTIVE-To characterize variability in melanoma-associated antigen (MAA) genes and gene expression in melanomas of dogs. ANIMALS-18 dogs with malignant melanomas and 8 healthy control dogs. PROCEDURES-cDNA was prepared from malignant melanoma biopsy specimens and from pigmented oral mucocutaneous tissues of healthy control dogs. Genomic DNA was extracted from poorly pigmented melanomas. A PCR assay was performed by use of Melan-A, SILV, or tyrosinase-specific primers. RESULTS-Splice variants of Melan-A and SILV were identified in malignant melanomas and also in healthy pigmented tissues, whereas a tyrosinase splice variant was detected in melanoma tissues only. A short interspersed nuclear element (SINE) insertion mutation was identified in the SILV gene in 1 of 10 poorly pigmented melanomas. Six novel exonic single nucleotide polymorphisms (SNPs; 3 synonymous and 3 nonsynonymous) were detected in the tyrosinase gene, and 1 nonsynonymous exonic SNP was detected in the SILV gene. CONCLUSIONS AND CLINICAL RELEVANCE-Variants of MAA mRNA were detected in malignant melanoma tissues of dogs. The importance of MAA alternative transcripts expressed in melanomas and normal pigmented tissues was unclear, but they may have represented a means of regulating melanin synthesis. The tyrosinase splice variant was detected only in melanomas and could potentially be a tumor-specific target for immunotherapy. A SILV SINE insertion mutation was identified in a melanoma from a Great Dane, a breed known to carry this mutation (associated with merle coat color). The nonsynonymous SNPs detected in tyrosinase and SILV transcripts did not appear to affect tumor pigmentation.

  11. Nonrandom Distribution of miRNAs Genes and Single Nucleotide Variants in Keratoconus Loci.

    Directory of Open Access Journals (Sweden)

    Dorota M Nowak

    Full Text Available Despite numerous studies, the causes of both development and progression of keratoconus remain elusive. Previous studies of this disorder focused mainly on one or two genetic factors only. However, in the analysis of such complex diseases all potential factors should be taken into consideration. The purpose of this study was a comprehensive analysis of known keratoconus loci to uncover genetic factors involved in this disease causation in the general population, which could be omitted in the original studies. In this investigation genomic data available in various databases and experimental own data were assessed. The lists of single nucleotide variants and miRNA genes localized in reported keratoconus loci were obtained from Ensembl and miRBase, respectively. The potential impact of nonsynonymous amino acid substitutions on protein structure and function was assessed with PolyPhen-2 and SIFT. For selected protein genes the ranking was made to choose those most promising for keratoconus development. Ranking results were based on topological features in the protein-protein interaction network. High specificity for the populations in which the causative sequence variants have been identified was found. In addition, the possibility of links between previously analyzed keratoconus loci was confirmed including miRNA-gene interactions. Identified number of genes associated with oxidative stress and inflammatory agents corroborated the hypothesis of their effect on the disease etiology. Distribution of the numerous sequences variants within both exons and mature miRNA which forces you to search for a broader look at the determinants of keratoconus. Our findings highlight the complexity of the keratoconus genetics.

  12. Genetic variants in FGFR2 and FGFR4 genes and skin cancer risk in the Nurses' Health Study

    International Nuclear Information System (INIS)

    Nan, Hongmei; Qureshi, Abrar A; Hunter, David J; Han, Jiali

    2009-01-01

    The human fibroblast growth factor (FGF) and its receptor (FGFR) play an important role in tumorigenesis. Deregulation of the FGFR2 gene has been identified in a number of cancer sites. Overexpression of the FGFR4 protein has been linked to cutaneous melanoma progression. Previous studies reported associations between genetic variants in the FGFR2 and FGFR4 genes and development of various cancers. We evaluated the associations of four genetic variants in the FGFR2 gene highly related to breast cancer risk and the three common tag-SNPs in the FGFR4 gene with skin cancer risk in a nested case-control study of Caucasians within the Nurses' Health Study (NHS) among 218 melanoma cases, 285 squamous cell carcinoma (SCC) cases, 300 basal cell carcinoma (BCC) cases, and 870 controls. We found no evidence for associations between these seven genetic variants and the risks of melanoma and nonmelanocytic skin cancer. Given the power of this study, we did not detect any contribution of genetic variants in the FGFR2 or FGFR4 genes to inherited predisposition to skin cancer among Caucasian women

  13. Allelic variants of melanocortin 3 receptor gene (MC3R) and weight loss in obesity

    DEFF Research Database (Denmark)

    L. Santos, José; De la Cruz, Rolando; Holst, Claus

    2011-01-01

    receptor gene (MC3R) have been associated with childhood obesity, higher BMI Z-score and elevated body fat percentage compared to non-carriers. The aim of this study is to assess the association in adults between allelic variants of MC3R with weight loss induced by energy-restricted diets.......The melanocortin system plays an important role in energy homeostasis. Mice genetically deficient in the melanocortin-3 receptor gene have a normal body weight with increased body fat, mild hypophagia compared to wild-type mice. In humans, Thr6Lys and Val81Ile variants of the melanocortin-3...

  14. FEATURES OF THE CLINICAL SIGNIFICANCE OF POLYMORPHIC VARIANTS OF ENOS AND AGTR2 GENES IN PATIENTS WITH CAD

    Directory of Open Access Journals (Sweden)

    A. L. Khokhlov

    2016-01-01

    Full Text Available Coronary heart disease (CHD is a major cause of mortality. Morphological substrate of CHD in most cases is atherosclerosis, which is based on structural genes polymorphism eNOS and AGTR2. The aim of the study was to study the prevalence of eNOS and AGTR2 genes in patients with coronary artery disease and the association of these genes with coronary heart disease. The study involved 187 patients aged 36 to 86 years (62,2±11,2 with different forms of CHD: stable and unstable angina, myocardial infarction and 45 people without CHD. Determination of gene polymorphisms was performed by real-time PCR analyzer of nucleic acids IQ 5 Bio-Rad. Statistical analysis was performed using Statistica 10.0. The study revealed a significant difference between the incidence of homozygous AA allelic variant gene AGTR2 group of patients with myocardial infarction and the comparison group; polymorphic variant AA AGTR2 gene is associated with earlier onset of coronary artery disease; It found that carriers of the polymorphic variant gene GA AGTR2 beginning statistically CHD occurred significantly later than in carriers of alleles GG and AA; age CHD debut TT allele carriers of the eNOS gene is associated with an earlier onset of the disease and statistically significantly different from the age of first CHD in carriers of alleles of polymorphic variants of GG and GT; revealed a positive correlation between the polymorphic allele AGTR2 gene with the presence of arterial hypertension in patients with coronary artery disease; It determined that the T allele carriers of the polymorphic gene eNOS is associated more early onset of hypertension, found the association of the polymorphic allele gene AGTR2 the need to use higher doses of ACE inhibitor — perindopril.

  15. Human nucleolus organizers on nonhomologous chromosomes can share the same ribosomal gene variants.

    Science.gov (United States)

    Krystal, M; D'Eustachio, P; Ruddle, F H; Arnheim, N

    1981-01-01

    The distributions of three human ribosomal gene polymorphisms among individual chromosomes containing nucleolus organizers were analyzed by using mouse--human hybrid cells. Different nucleolus organizers can contain the same variant, suggesting the occurrence of genetic exchanges among ribosomal gene clusters on nonhomologous chromosomes. Such exchanges appear to occur less frequently in mice. This difference is discussed in terms of the nucleolar organization and chromosomal location of ribosomal gene clusters in humans and mice. Images PMID:6272316

  16. Candidate gene resequencing to identify rare, pedigree-specific variants influencing healthy aging phenotypes in the long life family study

    DEFF Research Database (Denmark)

    Druley, Todd E; Wang, Lihua; Lin, Shiow J

    2016-01-01

    from six pedigrees. OBFC1 (chromosome 10) is involved in telomere maintenance, and falls within a linkage peak recently reported from an analysis of telomere length in LLFS families. Two different algorithms for single gene associations identified three genes with an enrichment of variation......BACKGROUND: The Long Life Family Study (LLFS) is an international study to identify the genetic components of various healthy aging phenotypes. We hypothesized that pedigree-specific rare variants at longevity-associated genes could have a similar functional impact on healthy phenotypes. METHODS......: We performed custom hybridization capture sequencing to identify the functional variants in 464 candidate genes for longevity or the major diseases of aging in 615 pedigrees (4,953 individuals) from the LLFS, using a multiplexed, custom hybridization capture. Variants were analyzed individually...

  17. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk.

    Science.gov (United States)

    Amankwah, Ernest K; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chen, Zhihua; Chen, Y Ann; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Pike, Malcolm C; Poole, Elizabeth M; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Lotte; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vierkant, Robert A; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E; Berchuck, Andrew; Schildkraut, Joellen M; Ramus, Susan J; Goode, Ellen L; Monteiro, Alvaro N A; Gayther, Simon A; Narod, Steven A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    2015-12-01

    Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC. © 2015 WILEY PERIODICALS, INC.

  18. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing.

    Science.gov (United States)

    Schuurs-Hoeijmakers, Janneke H M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; van de Vondervoort, Ilse I G M; van Bon, Bregje W M; de Ligt, Joep; Gilissen, Christian; Hehir-Kwa, Jayne Y; Neveling, Kornelia; del Rosario, Marisol; Hira, Gausiya; Reitano, Santina; Vitello, Aurelio; Failla, Pinella; Greco, Donatella; Fichera, Marco; Galesi, Ornella; Kleefstra, Tjitske; Greally, Marie T; Ockeloen, Charlotte W; Willemsen, Marjolein H; Bongers, Ernie M H F; Janssen, Irene M; Pfundt, Rolph; Veltman, Joris A; Romano, Corrado; Willemsen, Michèl A; van Bokhoven, Hans; Brunner, Han G; de Vries, Bert B A; de Brouwer, Arjan P M

    2013-12-01

    Intellectual disability (ID) is a common neurodevelopmental disorder affecting 1-3% of the general population. Mutations in more than 10% of all human genes are considered to be involved in this disorder, although the majority of these genes are still unknown. We investigated 19 small non-consanguineous families with two to five affected siblings in order to identify pathogenic gene variants in known, novel and potential ID candidate genes. Non-consanguineous families have been largely ignored in gene identification studies as small family size precludes prior mapping of the genetic defect. Using exome sequencing, we identified pathogenic mutations in three genes, DDHD2, SLC6A8, and SLC9A6, of which the latter two have previously been implicated in X-linked ID phenotypes. In addition, we identified potentially pathogenic mutations in BCORL1 on the X-chromosome and in MCM3AP, PTPRT, SYNE1, and ZNF528 on autosomes. We show that potentially pathogenic gene variants can be identified in small, non-consanguineous families with as few as two affected siblings, thus emphasising their value in the identification of syndromic and non-syndromic ID genes.

  19. Cyclin-dependent Kinase 5: Novel role of gene variants identified in ADHD.

    Science.gov (United States)

    Maitra, Subhamita; Chatterjee, Mahasweta; Sinha, Swagata; Mukhopadhyay, Kanchan

    2017-07-28

    Cortical neuronal migration and formation of filamentous actin cytoskeleton, needed for development, normal cell growth and differentiation, are regulated by the cyclin-dependent kinase 5 (Cdk5). Attention deficit hyperactivity disorder (ADHD) is associated with delayed maturation of the brain and hence we hypothesized that cdk5 may have a role in ADHD. Eight functional CDK5 gene variants were analyzed in 848 Indo-Caucasoid individuals including 217 families with ADHD probands and 250 healthy volunteers. Only three variants, rs2069454, rs2069456 and rs2069459, predicted to affect transcription, were found to be bimorphic. Significant difference in rs2069456 "AC" genotype frequency was noticed in the probands, more specifically in the males. Family based analysis revealed over transmission of rs2069454 "C" and rs2069456 "A" to the probands. Quantitative trait analysis exhibited association of haplotypes with inattention, domain specific impulsivity, and behavioral problem, though no significant contribution was noticed on the age of onset of ADHD. Gene variants also showed significant association with cognitive function and co-morbidity. Probands having rs2069459 "TT" showed betterment during follow up. It may be inferred from this pilot study that CDK5 may affect ADHD etiology, possibly by attenuating synaptic neurotransmission and could be a useful target for therapeutic intervention.

  20. Comprehensive evaluation of one-carbon metabolism pathway gene variants and renal cell cancer risk.

    Directory of Open Access Journals (Sweden)

    Todd M Gibson

    Full Text Available Folate and one-carbon metabolism are linked to cancer risk through their integral role in DNA synthesis and methylation. Variation in one-carbon metabolism genes, particularly MTHFR, has been associated with risk of a number of cancers in epidemiologic studies, but little is known regarding renal cancer.Tag single nucleotide polymorphisms (SNPs selected to produce high genomic coverage of 13 gene regions of one-carbon metabolism (ALDH1L1, BHMT, CBS, FOLR1, MTHFR, MTR, MTRR, SHMT1, SLC19A1, TYMS and the closely associated glutathione synthesis pathway (CTH, GGH, GSS were genotyped for 777 renal cell carcinoma (RCC cases and 1,035 controls in the Central and Eastern European Renal Cancer case-control study. Associations of individual SNPs (n = 163 with RCC risk were calculated using unconditional logistic regression adjusted for age, sex and study center. Minimum p-value permutation (Min-P tests were used to identify gene regions associated with risk, and haplotypes were evaluated within these genes.The strongest associations with RCC risk were observed for SLC19A1 (P(min-P = 0.03 and MTHFR (P(min-P = 0.13. A haplotype consisting of four SNPs in SLC19A1 (rs12483553, rs2838950, rs2838951, and rs17004785 was associated with a 37% increased risk (p = 0.02, and exploratory stratified analysis suggested the association was only significant among those in the lowest tertile of vegetable intake.To our knowledge, this is the first study to comprehensively examine variation in one-carbon metabolism genes in relation to RCC risk. We identified a novel association with SLC19A1, which is important for transport of folate into cells. Replication in other populations is required to confirm these findings.

  1. Contributions of Function-Altering Variants in Genes Implicated in Pubertal Timing and Body Mass for Self-Limited Delayed Puberty.

    Science.gov (United States)

    Howard, Sasha R; Guasti, Leonardo; Poliandri, Ariel; David, Alessia; Cabrera, Claudia P; Barnes, Michael R; Wehkalampi, Karoliina; O'Rahilly, Stephen; Aiken, Catherine E; Coll, Anthony P; Ma, Marcella; Rimmington, Debra; Yeo, Giles S H; Dunkel, Leo

    2018-02-01

    Self-limited delayed puberty (DP) is often associated with a delay in physical maturation, but although highly heritable the causal genetic factors remain elusive. Genome-wide association studies of the timing of puberty have identified multiple loci for age at menarche in females and voice break in males, particularly in pathways controlling energy balance. We sought to assess the contribution of rare variants in such genes to the phenotype of familial DP. We performed whole-exome sequencing in 67 pedigrees (125 individuals with DP and 35 unaffected controls) from our unique cohort of familial self-limited DP. Using a whole-exome sequencing filtering pipeline one candidate gene [fat mass and obesity-associated gene (FTO)] was identified. In silico, in vitro, and mouse model studies were performed to investigate the pathogenicity of FTO variants and timing of puberty in FTO+/- mice. We identified potentially pathogenic, rare variants in genes in linkage disequilibrium with genome-wide association studies of age at menarche loci in 283 genes. Of these, five genes were implicated in the control of body mass. After filtering for segregation with trait, one candidate, FTO, was retained. Two FTO variants, found in 14 affected individuals from three families, were also associated with leanness in these patients with DP. One variant (p.Leu44Val) demonstrated altered demethylation activity of the mutant protein in vitro. Fto+/- mice displayed a significantly delayed timing of pubertal onset (P puberty in the general population may contribute to the pathogenesis of self-limited DP. Copyright © 2017 Endocrine Society

  2. Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis.

    Directory of Open Access Journals (Sweden)

    Nada Abdelmagid

    Full Text Available Herpes simplex encephalitis (HSE is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats with the asymptomatic infection of BN (Brown Norway. Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines-generated from the prior two strains, displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus named Hse6 towards the end of chromosome 4 (160.89-174Mb containing the Vwf (von Willebrand factor gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism. Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11-2.02; p-value = 0.008 after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE.

  3. Comprehensive analysis of three TYK2 gene variants in the susceptibility to Chagas disease infection and cardiomyopathy

    Science.gov (United States)

    Carmona, F. David; Dolade, Nuria; Vargas, Sofia; Echeverría, Luis Eduardo; González, Clara Isabel; Martin, Javier

    2018-01-01

    Tyrosine kinase 2 (TYK2) is a member of the Janus kinases family implicated in the signal transduction of type I interferons and several interleukins. It has been described that genetic mutations within TYK2 lead to multiple deleterious effects in the immune response. In this work, we have analyzed three functional independent variants from the frequency spectrum on the TYK2 gene (common and low-frequency variants) suggested to reduce the function of the gene in mediating cytokine signaling and the susceptibility to infections by Trypanosoma cruzi and/or the development of Chagas cardiomyopathy in the Colombian population. A total of 1,323 individuals from a Colombian endemic region for Chagas disease were enrolled in the study. They were classified as seronegative (n = 445), seropositive asymptomatic (n = 336), and chronic Chagas Cardiomyopathy subjects (n = 542). DNA samples were genotyped using TaqMan probes. Our results showed no statistically significant differences between the allelic frequencies of the three analyzed variants when seropositive and seronegative individuals were compared, therefore these variants were not associated with susceptibility to Chagas disease. Moreover, when Chagas cardiomyopathy patients were compared to asymptomatic patients, no significant associations were found. Previous reports highlighted the association of this gene in immune-related disorders under an autoimmunity context, but not predisposing patients to infectious diseases, which is consistent with our findings. Therefore, according to our results, TYK2 gene variants do not seem to play an important role in Chagas disease susceptibility and/or chronic Chagas cardiomyopathy. PMID:29304122

  4. Protein Aggregates and Novel Presenilin Gene Variants in Idiopathic Dilated Cardiomyopathy

    Science.gov (United States)

    Gianni, Davide; Li, Airong; Tesco, Giuseppina; McKay, Kenneth M.; Moore, John; Raygor, Kunal; Rota, Marcello; Gwathmey, Judith K; Dec, G William; Aretz, Thomas; Leri, Annarosa; Semigran, Marc J; Anversa, Piero; Macgillivray, Thomas E; Tanzi, Rudolph E.; Monte, Federica del

    2010-01-01

    Background Heart failure (HF) is a debilitating condition resulting in severe disability and death. In a subset of cases, clustered as Idiopathic Dilated Cardiomyopathy (iDCM), the origin of HF is unknown. In the brain of patients with dementia, proteinaceous aggregates and abnormal oligomeric assemblies of β-amyloid impair cell function and lead to cell death. Methods and Results We have similarly characterized fibrillar and oligomeric assemblies in the hearts of iDCM patients pointing to abnormal protein aggregation as a determinant of iDCM. We also showed that oligomers alter myocyte Ca2+ homeostasis. Additionally, we have identified two new sequence variants in the presenilin-1 (PSEN1) gene promoter leading to reduced gene and protein expression. We also show that presenilin-1 co-immunoprecipitates with SERCA2a. Conclusions Based on these findings we propose that two mechanisms may link protein aggregation and cardiac function: oligomer-induced changes on Ca2+ handling and a direct effect of PSEN1 sequence variants on EC-coupling protein function. PMID:20194882

  5. The influence of the stem cell marker ALDH and the EGFR-PI3 kinase act signaling pathway on the radiation resistance of human tumor cell lines; Der Einfluss des Stammzellmarkers ALDH und des EGFR-PI3 Kinase-Akt Signalwegs auf die Strahlenresistenz humaner Tumorzelllinien

    Energy Technology Data Exchange (ETDEWEB)

    Mihatsch, Julia

    2014-07-14

    present study was to investigate the role of CSCs in resistance of radioselected subclones of non-small cell lung cancer (NSCLC) and breast cancer cells to irradiation. Additionally, the role of EGFR dependent PI3K/Akt/DNA-PKcs signaling in the context of CSC-mediated radiotherapy resistance was investigated. The following major results were obtained: (1) Radioresistant tumor cells from NSCLC-A549 cells as well as SK-BR-3 breast cancer cells could be isolated in vitro by a radioselection process. (2) In line with the proposed CSC biological behaviors radioselected cells presented extended population doubling time and decreased plating efficiency. (3) Among identified potential CSC markers such as CD133, Oct-4, Sox2 or aldehyde dehydrogenase (ALDH) expression, solely expression of the embryonic stem cell marker Oct-4 was increased in the radio-selected SK-BR-3 cells. However, increased ALDH activity but not enhanced ALDH protein expression was associated with radioresis-tance of A549 cells. (4) Respectively, ALDH activity was found to be involved in radio-resistance partially through PI3K pathway. (5) Using an siRNA approach, a differential effect of ALDH1 vs ALDH2 in terms of post-irradiation survival of tumor cells was demonstrated. In this context and in contrast to the role of ALDH2 a prosurvival effect of ALDH1 could be observed. (6) Radioresistance of IR-selected tumor cells was partially mediated through EGFR/PI3K/DNA-PKcs-dependent accelerated repair of DNA-DSBs. Thus, based on the described major findings in this study it is proposed that targeting of PI3K/Akt pathway and ALDH1 might be effective approaches towards overcoming CSC-mediated radiotherapy resistance.

  6. Frequency of the Hemochromatosis Gene (HFE Variants in a Jordanian Arab Population and in Diabetics from the Same Region

    Directory of Open Access Journals (Sweden)

    Asem Alkhateeb

    2009-01-01

    Full Text Available Hereditary HFE-linked hemochromatosis is a frequent recessive disorder among individuals of northern European ancestry. The clinical characteristic of this disease is the gradual accumulation of iron in internal organs, which ultimately may lead to organ damage and death. Three allelic variants of HFE gene have been correlated with hereditary hemochromatosis: C282Y is significantly associated with hereditary hemochromatosis in populations of Celtic origin, H63D and S65C are associated with milder form of iron overload. In this study we performed mutation analysis to identify allele frequency of the three variants of HFE gene in Jordanian Arab population, to assess deviations of these frequencies from those detected elsewhere, and to determine if there is an increased frequency of these variants in a diabetic population (Type 2 diabetes from the same area. DNA was extracted from blood samples of 440 individuals attending King Abdullah University Hospital for ambulatory services. We used polymerase chain reaction (PCR to amplify exons 2 and 4 of the HFE gene then restriction fragment length polymorphism (RFLP method to detect the variants. There were neither homozygous nor heterozygous for C282Y variant. For the H63D variant, 0.68% were homozygous and 21.1% were heterozygous. For the S65C variant, there were no homozygous and 0.23% were heterozygous. Allelic frequencies were, 0%, 11.25%, and 0.11% for C282Y, H63D, and S65C, respectively. Our samples were subdivided into two categories of type 2 diabetic (89 cases and controls (blood donors, 204 cases and compared with regard to the H63D variant. Both groups did not have homozygous H63D variant. H63D heterozygous in diabetics were 23.60% and in blood donor controls 22.55%. Allelic frequency of the mutant H63D allele was 11.80% in diabetics and 11.27% for the blood donor controls. This is the first study to show the frequency of the three hemochromatosis gene variants in Jordan with the interesting

  7. Prescreening whole exome sequencing results from patients with retinal degeneration for variants in genes associated with retinal degeneration

    Directory of Open Access Journals (Sweden)

    Bryant L

    2017-12-01

    Full Text Available Laura Bryant,1 Olga Lozynska,1 Albert M Maguire,1–3 Tomas S Aleman,1–3 Jean Bennett1–3 1Center for Advanced Retinal and Ocular Therapeutics (CAROT, FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 2Department of Ophthalmology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA; 3Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Background: Accurate clinical diagnosis and prognosis of retinal degeneration can be aided by the identification of the disease-causing genetic variant. It can confirm the clinical diagnosis as well as inform the clinician of the risk for potential involvement of other organs such as kidneys. It also aids in genetic counseling for affected individuals who want to have a child. Finally, knowledge of disease-causing variants informs laboratory investigators involved in translational research. With the advent of next-generation sequencing, identifying pathogenic mutations is becoming easier, especially the identification of novel pathogenic variants.Methods: We used whole exome sequencing on a cohort of 69 patients with various forms of retinal degeneration and in whom screens for previously identified disease-causing variants had been inconclusive. All potential pathogenic variants were verified by Sanger sequencing and, when possible, segregation analysis of immediate relatives. Potential variants were identified by using a semi-masked approach in which rare variants in candidate genes were identified without knowledge of the clinical diagnosis (beyond “retinal degeneration” or inheritance pattern. After the initial list of genes was prioritized, genetic diagnosis and inheritance pattern were taken into account.Results: We identified the likely pathogenic variants in 64% of the subjects. Seven percent had a single

  8. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation

    KAUST Repository

    Monies, Dorota

    2017-04-06

    The purpose of this study is to describe recessive alleles in strictly dominant genes. Identifying recessive mutations in genes for which only dominant disease or risk alleles have been reported can expand our understanding of the medical relevance of these genes both phenotypically and mechanistically. The Saudi population is enriched for autozygosity, which enhances the homozygous occurrence of alleles, including pathogenic alleles in genes that have been associated only with a dominant inheritance pattern.Exome sequencing of patients from consanguineous families with likely recessive phenotypes was performed. In one family, the genotype of the deceased children was inferred from their parents due to lack of available samples.We describe the identification of 11 recessive variants (5 of which are reported here for the first time) in 11 genes for which only dominant disease or risk alleles have been reported. The observed phenotypes for these recessive variants were novel (e.g., FBN2-related myopathy and CSF1R-related brain malformation and osteopetrosis), typical (e.g., ACTG2-related visceral myopathy), or an apparently healthy state (e.g., PDE11A), consistent with the corresponding mouse knockout phenotypes.Our results show that, in the era of genomic sequencing and

  9. Analysis of rare variants in the CFH gene in patients with the cuticular drusen subtype of age-related macular degeneration

    NARCIS (Netherlands)

    Duvvari, M.R.; Saksens, N.T.M.; Ven, J.P.H. van de; Jong-Hesse, Y. de; Schick, T.; Nillesen, W.M.; Fauser, S.; Hoefsloot, L.H.; Hoyng, C.B.; Jong, E.K.; Hollander, A.I. den

    2015-01-01

    PURPOSE: Age-related macular degeneration (AMD) and cuticular drusen (CD), a clinical subtype of AMD, have been linked to genetic variants in the complement factor H (CFH) gene. In this study, we aimed to investigate the frequency of rare variants in the CFH gene in 180 cases with CD. In addition,

  10. Characterization of nodal/TGF-lefty signaling pathway gene variants for possible roles in congenital heart diseases.

    Directory of Open Access Journals (Sweden)

    Xia Deng

    Full Text Available BACKGROUND: Nodal/TGF-Lefty signaling pathway has important effects at early stages of differentiation of human embryonic stem cells in directing them to differentiate into different embryonic lineages. LEFTY, one of transforming growth factors in the Nodal/TGF-Lefty signaling pathway, plays an important role in the development of heart. The aim of this work was to find evidence on whether Lefty variations are associated with congenital heart diseases (CHD. METHODS: We sequenced the Lefty gene for 230 Chinese Han CHD patients and evaluated SNPs rs2295418, rs360057 and g.G169A, which are located within the translated regions of the genes. The statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 13.0. The Hardy-Weinberg equilibrium test of the population was carried out using online software OEGE, and multiple-sequence alignments of LEFTY proteins were carried out using the Vector NTI software. RESULTS: Two heterozygous variants in Lefty1 gene, g.G169A and g.A1035C, and one heterozygous variant in Lefty2 gene, g.C925A, were identified. Statistical analyses showed that the rs2295418 (g.C925A variant in Lefty2 gene was obviously associated with the risk of CHD (P value = 0.0160.05. CONCLUSIONS: The SNP rs2295418 in the Lefty2 gene is associated with CHD in Chinese Han populations.

  11. Developing precision medicine for people of East Asian descent.

    Science.gov (United States)

    McAllister, Stacy L; Sun, Katherine; Gross, Eric R

    2016-11-11

    The goal of precision medicine is to separate patient populations into groups to ultimately provide customized care tailored to patients. In terms of precision medicine, ~540 million people in the world have a genetic variant of the aldehyde dehydrogenase 2 (ALDH2) enzyme causing a flushing response and tachycardia after alcohol consumption. The genetic variant is identified as ALDH2*2 and originates from East Asian descendants of the Han Chinese. The variant is particularly important to consider when discussing lifestyle choices with patients in terms of risk for developing specific diseases, preventative screening, and selection of medications for treatment. Here we provide examples why patients with an ALDH2*2 variant need more individualized medical management which is becoming a more standard practice in the precision medicine era.

  12. Alcohol and aldehyde dehydrogenase gene polymorphisms influence susceptibility to esophageal cancer in Japanese alcoholics.

    Science.gov (United States)

    Yokoyama, A; Muramatsu, T; Omori, T; Matsushita, S; Yoshimizu, H; Higuchi, S; Yokoyama, T; Maruyama, K; Ishii, H

    1999-11-01

    screening procedure for the highest risk gene combination (ADH2*1/2*1 and ALDH2*1/2*2) will require further investigation.

  13. Genes y variantes polimórficas asociadas a la enfermedad cardiovascular

    Directory of Open Access Journals (Sweden)

    Eliana C. Portilla

    2014-09-01

    Full Text Available La aterosclerosis se considera como la principal causante de enfermedades cardiovasculares. Es una enfermedad multifactorial, caracterizada por procesos inflamatorios y la internalización continua de moléculas lipídicas al interior del vaso. Los estudios de genes candidato han proporcionado conocimiento acerca de la fisiopatología de esta enfermedad y han permitido la postulación de algunos polimorfismos como responsables de la susceptibilidad genética en diversas poblaciones. En particular, estos polimorfismos que modulan ciertas vías moleculares tales como el estrés oxidativo, el metabolismo lipídico y la trombogénesis se asocian con el desarrollo de las enfermedades cardiovasculares. Se han conducido varios estudios para identificar nuevas variantes asociadas con la enfermedad que han permitido el descubrimiento de nuevas vías de la enfermedad. Aunque el hallazgo de nuevos genes asociados a la enfermedad cardiovascular a través de enfoques como el escaneo global del genoma ha contribuido al entendimiento del desarrollo de esta condición, el conocimiento aún es limitado y poco concluyente. El objetivo de esta revisión es identificar los genes y las variantes polimórficas asociadas a la enfermedad cardiovascular, de acuerdo con los diferentes enfoques de análisis de asociación genética.

  14. Splicing analysis of 14 BRCA1 missense variants classifies nine variants as pathogenic

    DEFF Research Database (Denmark)

    Ahlborn, Lise B; Dandanell, Mette; Steffensen, Ane Y

    2015-01-01

    by functional analysis at the protein level. Results from a validated mini-gene splicing assay indicated that nine BRCA1 variants resulted in splicing aberrations leading to truncated transcripts and thus can be considered pathogenic (c.4987A>T/p.Met1663Leu, c.4988T>A/p.Met1663Lys, c.5072C>T/p.Thr1691Ile, c......Pathogenic germline mutations in the BRCA1 gene predispose carriers to early onset breast and ovarian cancer. Clinical genetic screening of BRCA1 often reveals variants with uncertain clinical significance, complicating patient and family management. Therefore, functional examinations are urgently...... needed to classify whether these uncertain variants are pathogenic or benign. In this study, we investigated 14 BRCA1 variants by in silico splicing analysis and mini-gene splicing assay. All 14 alterations were missense variants located within the BRCT domain of BRCA1 and had previously been examined...

  15. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study.

    Science.gov (United States)

    Fewings, Eleanor; Larionov, Alexey; Redman, James; Goldgraben, Mae A; Scarth, James; Richardson, Susan; Brewer, Carole; Davidson, Rosemarie; Ellis, Ian; Evans, D Gareth; Halliday, Dorothy; Izatt, Louise; Marks, Peter; McConnell, Vivienne; Verbist, Louis; Mayes, Rebecca; Clark, Graeme R; Hadfield, James; Chin, Suet-Feung; Teixeira, Manuel R; Giger, Olivier T; Hardwick, Richard; di Pietro, Massimiliano; O'Donovan, Maria; Pharoah, Paul; Caldas, Carlos; Fitzgerald, Rebecca C; Tischkowitz, Marc

    2018-04-26

    Germline pathogenic variants in the E-cadherin gene (CDH1) are strongly associated with the development of hereditary diffuse gastric cancer. There is a paucity of data to guide risk assessment and management of families with hereditary diffuse gastric cancer that do not carry a CDH1 pathogenic variant, making it difficult to make informed decisions about surveillance and risk-reducing surgery. We aimed to identify new candidate genes associated with predisposition to hereditary diffuse gastric cancer in affected families without pathogenic CDH1 variants. We did whole-exome sequencing on DNA extracted from the blood of 39 individuals (28 individuals diagnosed with hereditary diffuse gastric cancer and 11 unaffected first-degree relatives) in 22 families without pathogenic CDH1 variants. Genes with loss-of-function variants were prioritised using gene-interaction analysis to identify clusters of genes that could be involved in predisposition to hereditary diffuse gastric cancer. Protein-affecting germline variants were identified in probands from six families with hereditary diffuse gastric cancer; variants were found in genes known to predispose to cancer and in lesser-studied DNA repair genes. A frameshift deletion in PALB2 was found in one member of a family with a history of gastric and breast cancer. Two different MSH2 variants were identified in two unrelated affected individuals, including one frameshift insertion and one previously described start-codon loss. One family had a unique combination of variants in the DNA repair genes ATR and NBN. Two variants in the DNA repair gene RECQL5 were identified in two unrelated families: one missense variant and a splice-acceptor variant. The results of this study suggest a role for the known cancer predisposition gene PALB2 in families with hereditary diffuse gastric cancer and no detected pathogenic CDH1 variants. We also identified new candidate genes associated with disease risk in these families. UK Medical

  16. De novo assembly and next-generation sequencing to analyse full-length gene variants from codon-barcoded libraries.

    Science.gov (United States)

    Cho, Namjin; Hwang, Byungjin; Yoon, Jung-ki; Park, Sangun; Lee, Joongoo; Seo, Han Na; Lee, Jeewon; Huh, Sunghoon; Chung, Jinsoo; Bang, Duhee

    2015-09-21

    Interpreting epistatic interactions is crucial for understanding evolutionary dynamics of complex genetic systems and unveiling structure and function of genetic pathways. Although high resolution mapping of en masse variant libraries renders molecular biologists to address genotype-phenotype relationships, long-read sequencing technology remains indispensable to assess functional relationship between mutations that lie far apart. Here, we introduce JigsawSeq for multiplexed sequence identification of pooled gene variant libraries by combining a codon-based molecular barcoding strategy and de novo assembly of short-read data. We first validate JigsawSeq on small sub-pools and observed high precision and recall at various experimental settings. With extensive simulations, we then apply JigsawSeq to large-scale gene variant libraries to show that our method can be reliably scaled using next-generation sequencing. JigsawSeq may serve as a rapid screening tool for functional genomics and offer the opportunity to explore evolutionary trajectories of protein variants.

  17. Prevalence of deleterious germline variants in risk genes including BRCA1/2 in consecutive ovarian cancer patients (AGO-TR-1.

    Directory of Open Access Journals (Sweden)

    Philipp Harter

    Full Text Available Identification of families at risk for ovarian cancer offers the opportunity to consider prophylactic surgery thus reducing ovarian cancer mortality. So far, identification of potentially affected families in Germany was solely performed via family history and numbers of affected family members with breast or ovarian cancer. However, neither the prevalence of deleterious variants in BRCA1/2 in ovarian cancer in Germany nor the reliability of family history as trigger for genetic counselling has ever been evaluated.Prospective counseling and germline testing of consecutive patients with primary diagnosis or with platinum-sensitive relapse of an invasive epithelial ovarian cancer. Testing included 25 candidate and established risk genes. Among these 25 genes, 16 genes (ATM, BRCA1, BRCA2, CDH1, CHEK2, MLH1, MSH2, MSH6, NBN, PMS2, PTEN, PALB2, RAD51C, RAD51D, STK11, TP53 were defined as established cancer risk genes. A positive family history was defined as at least one relative with breast cancer or ovarian cancer or breast cancer in personal history.In total, we analyzed 523 patients: 281 patients with primary diagnosis of ovarian cancer and 242 patients with relapsed disease. Median age at primary diagnosis was 58 years (range 16-93 and 406 patients (77.6% had a high-grade serous ovarian cancer. In total, 27.9% of the patients showed at least one deleterious variant in all 25 investigated genes and 26.4% in the defined 16 risk genes. Deleterious variants were most prevalent in the BRCA1 (15.5%, BRCA2 (5.5%, RAD51C (2.5% and PALB2 (1.1% genes. The prevalence of deleterious variants did not differ significantly between patients at primary diagnosis and relapse. The prevalence of deleterious variants in BRCA1/2 (and in all 16 risk genes in patients <60 years was 30.2% (33.2% versus 10.6% (18.9% in patients ≥60 years. Family history was positive in 43% of all patients. Patients with a positive family history had a prevalence of deleterious variants

  18. An unusual case of an ACTH-secreting macroadenoma with a germline variant in the aryl hydrocarbon receptor-interacting protein (AIP) gene

    DEFF Research Database (Denmark)

    Dinesen, Pia T; Dal, Jakob; Gabrovska, Plamena

    2015-01-01

    growth rather than symptoms of hypersecretion. The particular AIP gene variant identified in our patient is shared by four other reported cases of CD. Future studies are needed to assess whether the reported AIP gene variant is more than just coincidental. LEARNING POINTS: CD is occasionally dominated...

  19. gsSKAT: Rapid gene set analysis and multiple testing correction for rare-variant association studies using weighted linear kernels.

    Science.gov (United States)

    Larson, Nicholas B; McDonnell, Shannon; Cannon Albright, Lisa; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan E; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J

    2017-05-01

    Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results. © 2017 WILEY PERIODICALS, INC.

  20. A missense mutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome.

    Science.gov (United States)

    Bicknell, Louise S; Pitt, James; Aftimos, Salim; Ramadas, Ram; Maw, Marion A; Robertson, Stephen P

    2008-10-01

    There are several rare syndromes combining wrinkled, redundant skin and neurological abnormalities. Although phenotypic overlap between conditions has suggested that some might be allelic to one another, the aetiology for many of them remains unknown. A consanguineous New Zealand Maori family has been characterised that segregates an autosomal recessive connective tissue disorder (joint dislocations, lax skin) associated with neurological abnormalities (severe global developmental delay, choreoathetosis) without metabolic abnormalities in four affected children. A genome-screen performed under a hypothesis of homozygosity by descent for an ancestral mutation, identified a locus at 10q23 (Z = 3.63). One gene within the candidate interval, ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), was considered a plausible disease gene since a missense mutation had previously been shown to cause progressive neurodegeneration, cataracts, skin laxity, joint dislocations and metabolic derangement in a consanguineous Algerian family. A missense mutation, 2350C>T, was identified in ALDH18A1, which predicts the substitution H784Y. H784 is invariant across all phyla and lies within a previously unrecognised, conserved C-terminal motif in P5CS. In an in vivo assay of flux through this metabolic pathway using dermal fibroblasts obtained from an affected individual, proline and ornithine biosynthetic activity of P5CS was not affected by the H784Y substitution. These data suggest that P5CS may possess additional uncharacterised functions that affect connective tissue and central nervous system function.

  1. Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 Activation.

    Science.gov (United States)

    Wang, Jinhan; Wang, Liwen; Ho, Chi-Tang; Zhang, Kunsheng; Liu, Qiang; Zhao, Hui

    2017-05-10

    Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinol's inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.

  2. Association between gene variants and response to buprenorphine maintenance treatment.

    Science.gov (United States)

    Gerra, Gilberto; Somaini, Lorenzo; Leonardi, Claudio; Cortese, Elena; Maremmani, Icro; Manfredini, Matteo; Donnini, Claudia

    2014-01-30

    A variety of studies were addressed to differentiate responders and non-responders to substitution treatment among heroin dependent patients, without conclusive findings. In particular, preliminary pharmacogenetic findings have been reported to predict treatment effectiveness in mental health and substance use disorders. Aim of the present study was to investigate the possible association of buprenorphine (BUP) treatment outcome with gene variants that may affect kappa-opioid receptors and dopamine system function. One hundred and seven heroin addicts (West European, Caucasians) who underwent buprenorphine maintenance treatment were genotyped and classified into two groups (A and B) on the basis of treatment outcome. Non-responders to buprenorphine (group B) have been identified taking into account early drop out, continuous use of heroin, severe behavioral or psychiatric problems, misbehavior and diversion during the 6 months treatment period. No difference was evidenced between responders and non-responders to BUP in the frequency of kappa opioid receptor (OPRK1) 36G>T SNP. The frequency of dopamine transporter (DAT) gene polymorphism (SLC6A3/DAT1), allele 10, was evidently much higher in "non-responder" than in "responder" individuals (64.9% vs. 55.93%) whereas the frequency of the category of other alleles (6, 7 and 11) was higher in responder than in non-responder individuals (11.02% vs. 2.13% respectively). On one hand, the hypothesis that possible gene-related changes in kappa-opioid receptor could consistently affect buprenorphine pharmacological action and clinical effectiveness was not confirmed in our study, at least in relation to the single nucleotide polymorphism 36G>T. On the other hand, the possibility that gene-related dopamine changes could have reduced BUP effectiveness and impaired maintenance treatment outcome was cautiously supported by our findings. DAT1 gene variants such as allele 10, previously reported in association with personality and

  3. Alcohol and aldehyde dehydrogenase gene polymorphisms and oropharyngolaryngeal, esophageal and stomach cancers in Japanese alcoholics.

    Science.gov (United States)

    Yokoyama, A; Muramatsu, T; Omori, T; Yokoyama, T; Matsushita, S; Higuchi, S; Maruyama, K; Ishii, H

    2001-03-01

    Alcohol dehydrogenase-2 (ADH2) and aldehyde dehydrogenase-2 (ALDH2) gene polymorphisms play roles in ethanol metabolism, drinking behavior and esophageal carcinogenesis in Japanese; however, the combined influence of ADH2 and ALDH2 genotypes on other aerodigestive tract cancers have not been investigated. ADH2/ALDH2 genotyping was performed on lymphocyte DNA samples from Japanese alcoholic men (526 cancer-free; 159 with solitary or multiple aerodigestive tract cancers, including 33 oropharyngolaryngeal, 112 esophageal, 38 stomach and 22 multiple primary cancers in two or three organs). After adjustment for age, drinking and smoking habits, and ADH2/ALDH2 genotypes, the presence of either ADH2*1/2*1 or ALDH2*1/2*2 significantly increased the risk for oropharyngolaryngeal cancer [odds ratios (ORs), 6.68 with ADH2*1/2*1 and 18.52 with ALDH2*1/2*2] and esophageal cancer (ORs, 2.64 and 13.50, respectively). For patients with both ADH2*1/2*1 and ALDH2*1/2*2, the risks for oropharyngolaryngeal and esophageal cancers were enhanced in a multiplicative fashion (OR = 121.77 and 40.40, respectively). A positive association with ALDH2*1/2*2 alone was observed for stomach cancer patients who also had oropharyngolaryngeal and/or esophageal cancer (OR = 110.58), but it was not observed for those with stomach cancer alone. Furthermore, in the presence of ALDH2*1/2*2, the risks for multiple intra-esophageal cancers (OR = 3.43) and for esophageal cancer with oropharyngolaryngeal and/or stomach cancer (OR = 3.95) were higher than the risks for solitary intra-esophageal cancer and for esophageal cancer alone, but these tendencies were not observed for ADH2*1/2*1 genotype. Alcoholics' population attributable risks due to ADH2/ALDH2 polymorphisms were estimated to be 82.0% for oropharyngolaryngeal cancer and 63.9% for esophageal cancer.

  4. FTO gene variant modulates the neural correlates of visual food perception.

    Science.gov (United States)

    Kühn, Anne B; Feis, Delia-Lisa; Schilbach, Leonhard; Kracht, Lutz; Hess, Martin E; Mauer, Jan; Brüning, Jens C; Tittgemeyer, Marc

    2016-03-01

    Variations in the fat mass and obesity associated (FTO) gene are currently the strongest known genetic factor predisposing humans to non-monogenic obesity. Recent experiments have linked these variants to a broad spectrum of behavioural alterations, including food choice and substance abuse. Yet, the underlying neurobiological mechanisms by which these genetic variations influence body weight remain elusive. Here, we explore the brain structural substrate of the obesity-predisposing rs9939609 T/A variant of the FTO gene in non-obese subjects by means of multivariate classification and use fMRI to investigate genotype-specific differences in neural food-cue reactivity by analysing correlates of a visual food perception task. Our findings demonstrate that MRI-derived measures of morphology along middle and posterior fusiform gyrus (FFG) are highly predictive for FTO at-risk allele carriers, who also show enhanced neural responses elicited by food cues in the same posterior FFG area. In brief, these findings provide first-time evidence for FTO-specific differences in both brain structure and function already in non-obese individuals, thereby contributing to a mechanistic understanding of why FTO is a predisposing factor for obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A Nonsense Variant in the ACADVL Gene in German Hunting Terriers with Exercise Induced Metabolic Myopathy.

    Science.gov (United States)

    Lepori, Vincent; Mühlhause, Franziska; Sewell, Adrian C; Jagannathan, Vidhya; Janzen, Nils; Rosati, Marco; Alves de Sousa, Filipe Miguel Maximiano; Tschopp, Aurélie; Schüpbach, Gertraud; Matiasek, Kaspar; Tipold, Andrea; Leeb, Tosso; Kornberg, Marion

    2018-05-04

    Several enzymes are involved in fatty acid oxidation, which is a key process in mitochondrial energy production. Inherited defects affecting any step of fatty acid oxidation can result in clinical disease. We present here an extended family of German Hunting Terriers with 10 dogs affected by clinical signs of exercise induced weakness, muscle pain, and suspected rhabdomyolysis. The combination of clinical signs, muscle histopathology and acylcarnitine analysis with an elevated tetradecenoylcarnitine (C14:1) peak suggested a possible diagnosis of acyl-CoA dehydrogenase very long chain deficiency (ACADVLD). Whole genome sequence analysis of one affected dog and 191 controls revealed a nonsense variant in the ACADVL gene encoding acyl-CoA dehydrogenase very long chain, c.1728C>A or p.(Tyr576*). The variant showed perfect association with the phenotype in the 10 affected and more than 500 control dogs of various breeds. Pathogenic variants in the ACADVL gene have been reported in humans with similar myopathic phenotypes. We therefore considered the detected variant to be the most likely candidate causative variant for the observed exercise induced myopathy. To our knowledge, this is the first description of this disease in dogs, which we propose to name exercise induced metabolic myopathy (EIMM), and the identification of the first canine pathogenic ACADVL variant. Our findings provide a large animal model for a known human disease and will enable genetic testing to avoid the unintentional breeding of affected offspring. Copyright © 2018 Lepori et al.

  6. A Nonsense Variant in the ACADVL Gene in German Hunting Terriers with Exercise Induced Metabolic Myopathy

    Directory of Open Access Journals (Sweden)

    Vincent Lepori

    2018-05-01

    Full Text Available Several enzymes are involved in fatty acid oxidation, which is a key process in mitochondrial energy production. Inherited defects affecting any step of fatty acid oxidation can result in clinical disease. We present here an extended family of German Hunting Terriers with 10 dogs affected by clinical signs of exercise induced weakness, muscle pain, and suspected rhabdomyolysis. The combination of clinical signs, muscle histopathology and acylcarnitine analysis with an elevated tetradecenoylcarnitine (C14:1 peak suggested a possible diagnosis of acyl-CoA dehydrogenase very long chain deficiency (ACADVLD. Whole genome sequence analysis of one affected dog and 191 controls revealed a nonsense variant in the ACADVL gene encoding acyl-CoA dehydrogenase very long chain, c.1728C>A or p.(Tyr576*. The variant showed perfect association with the phenotype in the 10 affected and more than 500 control dogs of various breeds. Pathogenic variants in the ACADVL gene have been reported in humans with similar myopathic phenotypes. We therefore considered the detected variant to be the most likely candidate causative variant for the observed exercise induced myopathy. To our knowledge, this is the first description of this disease in dogs, which we propose to name exercise induced metabolic myopathy (EIMM, and the identification of the first canine pathogenic ACADVL variant. Our findings provide a large animal model for a known human disease and will enable genetic testing to avoid the unintentional breeding of affected offspring.

  7. Two splice variants of the bovine lactoferrin gene identified in Staphylococcus aureus isolated from mastitis in dairy cattle.

    Science.gov (United States)

    Huang, J M; Wang, Z Y; Ju, Z H; Wang, C F; Li, Q L; Sun, T; Hou, Q L; Hang, S Q; Hou, M H; Zhong, J F

    2011-12-21

    Bovine lactoferrin (bLF) is a member of the transferrin family; it plays an important role in the innate immune response. We identified novel splice variants of the bLF gene in mastitis-infected and healthy cows. Reverse transcription-polymerase chain reaction (RT-PCR) and clone sequencing analysis were used to screen the splice variants of the bLF gene in the mammary gland, spleen and liver tissues. One main transcript corresponding to the bLF reference sequence was found in three tissues in both healthy and mastitis-infected cows. Quantitative real-time PCR analysis showed that the expression levels of the LF gene's main transcript were not significantly different in tissues from healthy versus mastitis-infected cows. However, the new splice variant, LF-AS2, which has the exon-skipping alternative splicing pattern, was only identified in mammary glands infected with Staphylococcus aureus. Sequencing analysis showed that the new splice variant was 251 bp in length, including exon 1, part of exon 2, part of exon 16, and exon 17. We conclude that bLF may play a role in resistance to mastitis through alternative splicing mechanisms.

  8. Variant of Rett syndrome and CDKL5 gene: clinical and autonomic description of 10 cases.

    Science.gov (United States)

    Pini, Giorgio; Bigoni, Stefania; Engerström, Ingegerd Witt; Calabrese, Olga; Felloni, Beatrice; Scusa, Maria Flora; Di Marco, Pietro; Borelli, Paolo; Bonuccelli, Ubaldo; Julu, Peter O O; Nielsen, Jytte Bieber; Morin, Bodil; Hansen, Stig; Gobbi, Giuseppe; Visconti, Paola; Pintaudi, Maria; Edvige, Veneselli; Romanelli, Anna; Bianchi, Fabrizio; Casarano, Manuela; Battini, Roberta; Cioni, Giovanni; Ariani, Francesca; Renieri, Alessandra; Benincasa, Alberto; Delamont, Robert S; Zappella, Michele

    2012-02-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder affecting almost exclusively females. The Hanefeld variant, or early-onset seizure variant, has been associated with mutations in CDKL5 gene. In recent years more than 60 patients with mutations in the CDKL5 gene have been described in the literature, but the cardiorespiratory phenotype has not been reported. Our aim is to describe clinical and autonomic features of these girls. 10 girls with CDKL5 mutations and a diagnosis of Hanefeld variant have been evaluated on axiological and clinical aspects. In all subjects an evaluation of the autonomic system was performed using the Neuroscope. Common features were gaze avoidance, repetitive head movements and hand stereotypies. The autonomic evaluation disclosed eight cases with the Forceful breather cardiorespiratory phenotype and two cases with the Apneustic breather phenotype. The clinical picture remains within the RTT spectrum but some symptoms are more pronounced in addition to the very early onset of seizures. The cardiorespiratory phenotype was dominated by Forceful breathers, while Feeble breathers were not found, differently from the general Rett population, suggesting a specific behavioral and cardiorespiratory phenotype of the RTT the Hanefeld variant. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Novel factor VIII variants with a modified furin cleavage site improve the efficacy of gene therapy for hemophilia A.

    Science.gov (United States)

    Nguyen, G N; George, L A; Siner, J I; Davidson, R J; Zander, C B; Zheng, X L; Arruda, V R; Camire, R M; Sabatino, D E

    2017-01-01

    Essentials Factor (F) VIII is an inefficiently expressed protein. Furin deletion FVIII variants were purified and characterized using in vitro and in vivo assays. These minimally modified novel FVIII variants have enhanced function. These variants provide a strategy for increasing FVIII expression in hemophilia A gene therapy. Background The major challenge for developing gene-based therapies for hemophilia A is that human factor VIII (hFVIII) has intrinsic properties that result in inefficient biosynthesis. During intracellular processing, hFVIII is predominantly cleaved at a paired basic amino acid cleaving enzyme (PACE) or furin cleavage site to yield a heterodimer that is the major form of secreted protein. Previous studies with B-domain-deleted (BDD) canine FVIII and hFVIII-R1645H, both differing from hFVIII by a single amino acid at this site, suggested that these proteins are secreted mainly in a single polypeptide chain (SC) form and exhibit enhanced function. Objective We hypothesized that deletion(s) of the furin site modulates FVIII biology and may enhance its function. Methods A series of recombinant hFVIII-furin deletion variants were introduced into hFVIII-BDD [Δ1645, 1645-46(Δ2), 1645-47(Δ3), 1645-48(Δ4), or Δ1648] and characterized. Results In vitro, recombinant purified Δ3 and Δ4 were primarily SC and, interestingly, had 2-fold higher procoagulant activity compared with FVIII-BDD. In vivo, the variants also have improved hemostatic function. After adeno-associated viral (AAV) vector delivery, the expression of these variants is 2-4-fold higher than hFVIII-BDD. Protein challenges of each variant in mice tolerant to hFVIII-BDD showed no anti-FVIII immune response. Conclusions These data suggest that the furin deletion hFVIII variants are superior to hFVIII-BDD without increased immunogenicity. In the setting of gene-based therapeutics, these novel variants provide a unique strategy to increase FVIII expression, thus lowering the vector dose, a

  10. The methylenetetrahydrofolate reductase gene variant C677T influences susceptibility to migraine with aura

    Directory of Open Access Journals (Sweden)

    Sundholm James

    2004-02-01

    Full Text Available Abstract Background The C677T variant in the methylenetetrahydrofolate reductase (MTHFR gene is associated with increased levels of circulating homocysteine and is a mild risk factor for vascular disease. Migraine, with and without aura (MA and MO, is a prevalent and complex neurovascular disorder that may also be affected by genetically influenced hyperhomocysteinaemia. To determine whether the C677T variant in the MTHFR gene is associated with migraine susceptibility we utilised unrelated and family-based case-control study designs. Methods A total of 652 Caucasian migraine cases were investigated in this study. The MTHFR C677T variant was genotyped in 270 unrelated migraine cases and 270 controls as well as 382 affected subjects from 92 multiplex pedigrees. Results In the unrelated case-control sample we observed an over-representation of the 677T allele in migraine patients compared to controls, specifically for the MA subtype (40% vs. 33% (χ2 = 5.70, P = 0.017. The Armitage test for trend indicated a significant dosage effect of the risk allele (T for MA (χ2 = 5.72, P = 0.017. This linear trend was also present in the independent family-based sample (χ2 = 4.25, Padjusted = 0.039. Overall, our results indicate that the T/T genotype confers a modest, yet significant, increase in risk for the MA subtype (odds ratio: 2.0 – 2.5. No increased risk for the MO subtype was observed (P > 0.05. Conclusions In Caucasians, the C677T variant in the MTHFR gene influences susceptibility to MA, but not MO. Investigation into the enzyme activity of MTHFR and the role of homocysteine in the pathophysiology of migraine is warranted.

  11. Circadian gene variants and susceptibility to type 2 diabetes: a pilot study.

    Directory of Open Access Journals (Sweden)

    M Ann Kelly

    Full Text Available Disruption of endogenous circadian rhythms has been shown to increase the risk of developing type 2 diabetes, suggesting that circadian genes might play a role in determining disease susceptibility. We present the results of a pilot study investigating the association between type 2 diabetes and selected single nucleotide polymorphisms (SNPs in/near nine circadian genes. The variants were chosen based on their previously reported association with prostate cancer, a disease that has been suggested to have a genetic link with type 2 diabetes through a number of shared inherited risk determinants.The pilot study was performed using two genetically homogeneous Punjabi cohorts, one resident in the United Kingdom and one indigenous to Pakistan. Subjects with (N = 1732 and without (N = 1780 type 2 diabetes were genotyped for thirteen circadian variants using a competitive allele-specific polymerase chain reaction method. Associations between the SNPs and type 2 diabetes were investigated using logistic regression. The results were also combined with in silico data from other South Asian datasets (SAT2D consortium and white European cohorts (DIAGRAM+ using meta-analysis. The rs7602358G allele near PER2 was negatively associated with type 2 diabetes in our Punjabi cohorts (combined odds ratio [OR] = 0.75 [0.66-0.86], p = 3.18 × 10(-5, while the BMAL1 rs11022775T allele was associated with an increased risk of the disease (combined OR = 1.22 [1.07-1.39], p = 0.003. Neither of these associations was replicated in the SAT2D or DIAGRAM+ datasets, however. Meta-analysis of all the cohorts identified disease associations with two variants, rs2292912 in CRY2 and rs12315175 near CRY1, although statistical significance was nominal (combined OR = 1.05 [1.01-1.08], p = 0.008 and OR = 0.95 [0.91-0.99], p = 0.015 respectively.None of the selected circadian gene variants was associated with type 2 diabetes with study-wide significance after meta-analysis. The nominal

  12. Germline heterozygous variants in genes associated with familial hemophagocytic lymphohistiocytosis as a cause of increased bleeding

    DEFF Research Database (Denmark)

    Fager Ferrari, Marcus; Leinoe, Eva; Rossing, Maria

    2018-01-01

    Familial hemophagocytic lymphohistiocytosis (FHL) is caused by biallelic variants in genes regulating granule secretion in cytotoxic lymphocytes. In FHL3-5, the affected genes UNC13D, STX11 and STXBP2 have further been shown to regulate the secretion of platelet granules, giving rise to compromised...

  13. Identification of low-frequency variants associated with gout and serum uric acid levels

    DEFF Research Database (Denmark)

    Sulem, Patrick; Gudbjartsson, Daniel F; Walters, G Bragi

    2011-01-01

    We tested 16 million SNPs, identified through whole-genome sequencing of 457 Icelanders, for association with gout and serum uric acid levels. Genotypes were imputed into 41,675 chip-genotyped Icelanders and their relatives, for effective sample sizes of 968 individuals with gout and 15......,506 individuals for whom serum uric acid measurements were available. We identified a low-frequency missense variant (c.1580C>G) in ALDH16A1 associated with gout (OR = 3.12, P = 1.5 × 10(-16), at-risk allele frequency = 0.019) and serum uric acid levels (effect = 0.36 s.d., P = 4.5 × 10(-21)). We confirmed...... the association with gout by performing Sanger sequencing on 6,017 Icelanders. The association with gout was stronger in males relative to females. We also found a second variant on chromosome 1 associated with gout (OR = 1.92, P = 0.046, at-risk allele frequency = 0.986) and serum uric acid levels (effect = 0...

  14. Gene variants of unknown clinical significance in Lynch syndrome. An introduction for clinicians

    NARCIS (Netherlands)

    Sijmons, Rolf H.; Greenblatt, Marc S.; Genuardi, Maurizio

    Clinicians referring patients for genetic testing for Lynch syndrome will sooner or later receive results for DNA Mismatch Repair (MMR) genes reporting DNA changes that are unclear from a clinical point of view. These changes are referred to as variants of unknown, or unclear, clinical significance

  15. Variants in the ASB10 Gene Are Associated with Primary Open Angle Glaucoma

    NARCIS (Netherlands)

    Micheal, S.; Ayub, H.; Islam, F.; Siddiqui, S.N.; Khan, W.A.; Akhtar, F.; Qamar, R.; Khan, M.I.; Hollander, A.I. den

    2015-01-01

    BACKGROUND: Recently nonsynonymous coding variants in the ankyrin repeats and suppressor of cytokine signaling box-containing protein 10 (ASB10) gene were found to be associated with primary open angle glaucoma (POAG) in cohorts from Oregon and Germany, but this finding was not confirmed in an

  16. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration.

    Science.gov (United States)

    Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka E L M; de Brouwer, Arjan P M; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans

    2016-03-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far.

  17. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration

    Science.gov (United States)

    Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka ELM; de Brouwer, Arjan PM; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans

    2016-01-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far. PMID:26173967

  18. The rs3857059 variant of the SNCA gene is associated with Parkinson’s disease in Mexican Mestizos

    Directory of Open Access Journals (Sweden)

    S. García

    2016-06-01

    Full Text Available ABSTRACT Among the candidate genes for Parkinson’s disease (PD, SNCA has replicated association in different populations. Besides other known mutations in the SNCA gene, the rs3857059 variant has also been linked to various neurodegenerative disorders. Therefore, the aim of the present study was to search for association of this variant and sporadic PD in Mexican Mestizo patients. A case-control study was performed including 241 individuals, 106 patients, and 135 healthy controls. Genotyping was performed using real-time PCR. The rs3857059 variant demonstrated an association with PD in Mexican Mestizos (OR = 2.40, CI, 1.1 to 5.1, p = 0.02 under the recessive model. In addition, a gender effect was found for the GG genotype in females (OR = 1.31, CI, 1.01 to 1.7, p = 0.037. This is the first study to confirm an association of the rs3857059 variant with PD and also to show a gender effect. Our data contribute to the elucidation of the link between rs3857059 and susceptibility to PD observed in the Mexican Mestizo population.

  19. A variant in the fat mass and obesity-associated gene (FTO) and variants near the melanocortin-4 receptor gene (MC4R) do not influence dietary intake

    DEFF Research Database (Denmark)

    Hasselbalch, Ann L; Angquist, Lars; Christiansen, Lene

    2010-01-01

    We investigated the role of the fat mass and obesity associated gene (FTO) and variants near the melanocortin-4 receptor gene (MC4R) in modulating habitual intake of total energy and macronutrients, glycemic index, glycemic load, dietary energy density, and energy from 20 food groups in adults...... with intake of energy from whole grains (P >or= 0.04). These associations did not remain significant after controlling for multiple testing. The outcome of this study indicates that polymorphisms in the FTO gene and near the MC4R gene do not have a role in regulating food intake and preference for specific....... In a population-based sample of 756 healthy adult twin pairs, we studied associations between FTO rs9939609, near-MC4R rs12970134, rs17700633, and rs17782313 single nucleotide polymorphisms (SNP) and habitual dietary intake. Habitual dietary intake was assessed by a 247-question FFQ. Nontransformed variables...

  20. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsang, Matjaz; Comino, Aleksandra; Zupanec, Neja [Department for Biosynthesis and Biotransformation, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana (Slovenia); Hudler, Petra [Medical Center for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana (Slovenia); Komel, Radovan [Department for Biosynthesis and Biotransformation, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana (Slovenia); Medical Center for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana (Slovenia)

    2009-10-28

    Loss of DNA mismatch repair (MMR) in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC). Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T) were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene.

  1. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    Directory of Open Access Journals (Sweden)

    Hudler Petra

    2009-10-01

    Full Text Available Abstract Background Loss of DNA mismatch repair (MMR in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC. Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Methods Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. Results The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Conclusion Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene.

  2. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    International Nuclear Information System (INIS)

    Vogelsang, Matjaz; Comino, Aleksandra; Zupanec, Neja; Hudler, Petra; Komel, Radovan

    2009-01-01

    Loss of DNA mismatch repair (MMR) in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC). Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T) were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene

  3. Interaction between the Gly460Trp alpha-adducin gene variant and diuretics on the risk of myocardial infarction

    NARCIS (Netherlands)

    van Wieren-de Wijer, Diane B M A; Maitland-van der Zee, Anke-Hilse; de Boer, Anthonius; Kroon, Abraham A; de Leeuw, Peter W; Schiffers, Paul; Janssen, Rob G J H; Psaty, Bruce M; van Duijn, Cornelia M; Stricker, Bruno H Ch; Klungel, Olaf H

    INTRODUCTION: The Gly460Trp variant of the alpha-adducin gene has been associated with the salt-sensitive and diuretic responsive form of hypertension. OBJECTIVE: The aim of the study was to determine whether the alpha-adducin 460Trp variant allele modifies the risk-lowering effect of diuretics on

  4. Identification of a novel vga(E) gene variant that confers resistance to pleuromutilins, lincosamides and streptogramin A antibiotics in staphylococci of porcine origin.

    Science.gov (United States)

    Li, Jun; Li, Beibei; Wendlandt, Sarah; Schwarz, Stefan; Wang, Yang; Wu, Congming; Ma, Zhiyong; Shen, Jianzhong

    2014-04-01

    To investigate the genetic basis of pleuromutilin resistance in coagulase-negative staphylococci of porcine origin that do not carry known pleuromutilin resistance genes and to determine the localization and genetic environment of the identified resistance gene. Plasmid DNA of two pleuromutilin-resistant Staphylococcus cohnii and Staphylococcus simulans isolates was transformed into Staphylococcus aureus RN4220. The identified resistance plasmids were sequenced completely. The candidate gene for pleuromutilin resistance was cloned into shuttle vector pAM401. S. aureus RN4220 transformants carrying this recombinant shuttle vector were tested for their MICs. S. cohnii isolate SA-7 and S. simulans isolate SSI1 carried the same plasmid of 5584 bp, designated pSA-7. A variant of the vga(E) gene was detected, which encodes a 524 amino acid ATP-binding cassette protein. The variant gene shared 85.7% nucleotide sequence identity and the variant protein 85.3% amino acid sequence identity with the original vga(E) gene and Vga(E) protein, respectively. The Vga(E) variant conferred cross-resistance to pleuromutilins, lincosamides and streptogramin A antibiotics. Plasmid pSA-7 showed an organization similar to that of the apmA-carrying plasmid pKKS49 from methicillin-resistant S. aureus and the dfrK-carrying plasmid pKKS966 from Staphylococcus hyicus. Sequence comparisons suggested that recombination events may have played a role in the acquisition of this vga(E) variant. A novel vga(E) gene variant was identified, which was located on a small plasmid and was not associated with the transposon Tn6133 [in contrast to the original vga(E) gene]. The plasmid location may enable its further dissemination to other staphylococci and possibly also to other bacteria.

  5. Exomic sequencing of immune-related genes reveals novel candidate variants associated with alopecia universalis.

    Directory of Open Access Journals (Sweden)

    Seungbok Lee

    Full Text Available Alopecia areata (AA is a common autoimmune disorder mostly presented as round patches of hair loss and subclassified into alopecia totalis/alopecia universalis (AT/AU based on the area of alopecia. Although AA is relatively common, only 5% of AA patients progress to AT/AU, which affect the whole scalp and whole body respectively. To determine genetic determinants of this orphan disease, we undertook whole-exome sequencing of 6 samples from AU patients, and 26 variants in immune-related genes were selected as candidates. When an additional 14 AU samples were genotyped for these candidates, 6 of them remained at the level of significance in comparison with 155 Asian controls (p<1.92×10(-3. Linkage disequilibrium was observed between some of the most significant SNPs, including rs41559420 of HLA-DRB5 (p<0.001, OR 44.57 and rs28362679 of BTNL2 (p<0.001, OR 30.21. While BTNL2 was reported as a general susceptibility gene of AA previously, HLA-DRB5 has not been implicated in AA. In addition, we found several genetic variants in novel genes (HLA-DMB, TLR1, and PMS2 and discovered an additional locus on HLA-A, a known susceptibility gene of AA. This study provides further evidence for the association of previously reported genes with AA and novel findings such as HLA-DRB5, which might represent a hidden culprit gene for AU.

  6. Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans.

    Directory of Open Access Journals (Sweden)

    Douglas R Smith

    Full Text Available Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1, were found to be significantly associated with pain sensitivity (especially migraine, sleep and memory disorders-alone or in combination with anxiety-compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.

  7. Assessment of association between lipoxygenase genes variants in elderly Greek population and type 2 diabetes mellitus.

    Science.gov (United States)

    Tsekmekidou, Xanthippi A; Kotsa, Kalliopi D; Tsetsos, Fotis S; Didangelos, Triantafyllos P; Georgitsi, Marianthi A; Roumeliotis, Athanasios K; Panagoutsos, Stylianos A; Thodis, Elias D; Theodoridis, Marios T; Papanas, Nikolaos P; Papazoglou, Dimitrios A; Pasadakis, Ploumis S; Eustratios, Maltezos S; Paschou, Peristera I; Yovos, John G

    2018-02-01

    Inflammation plays a pivotal role in the pathogenesis of diabetes and its complications. Arachidonic acid lipoxygenases have been intensively studied in their role in inflammation in metabolic pathways. Thus, we aimed to explore variants of lipoxygenase genes (arachidonate lipoxygenase genes) in a diabetes adult population using a case-control study design. Study population consisted of 1285 elderly participants, 716 of whom had type 2 diabetes mellitus. The control group consisted of non-diabetes individuals with no history of diabetes history and with a glycated haemoglobin <6.5% (<48 mmol/mol)] and fasting plasma glucose levels <126 mg/dL. Blood samples were genotyped on Illumina Infinium PsychArray. Variants of ALOX5, ALOX5AP, ALOX12, ALOX15 were selected. All statistical analyses were undertaken within PLINK and SPSS packages utilising permutation analysis tests. Our findings showed an association of rs9669952 (odds ratio = 0.738, p = 0.013) and rs1132340 (odds ratio = 0.652, p = 0.008) in ALOX5AP and rs11239524 in ALOX5 gene with disease (odds ratio = 0.808, p = 0.038). Rs9315029 which is located near arachidonate ALOX5AP also associated with type 2 diabetes mellitus ( p = 0.025). No variant of ALOX12 and ALOX15 genes associated with disease. These results indicate a potential protective role of ALOX5AP and 5-arachidonate lipoxygenase gene in diabetes pathogenesis, indicating further the importance of the relationship between diabetes and inflammation. Larger population studies are required to replicate our findings.

  8. Whole genome sequencing reveals a novel deletion variant in the KIT gene in horses with white spotted coat colour phenotypes.

    Science.gov (United States)

    Dürig, N; Jude, R; Holl, H; Brooks, S A; Lafayette, C; Jagannathan, V; Leeb, T

    2017-08-01

    White spotting phenotypes in horses can range in severity from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for such phenotypes in horses. For the present study, we re-investigated a large horse family segregating a variable white spotting phenotype, for which conventional Sanger sequencing of the candidate genes' individual exons had failed to reveal the causative variant. We obtained whole genome sequence data from an affected horse and specifically searched for structural variants in the known candidate genes. This analysis revealed a heterozygous ~1.9-kb deletion spanning exons 10-13 of the KIT gene (chr3:77,740,239_77,742,136del1898insTATAT). In continuity with previously named equine KIT variants we propose to designate the newly identified deletion variant W22. We had access to 21 horses carrying the W22 allele. Four of them were compound heterozygous W20/W22 and had a completely white phenotype. Our data suggest that W22 represents a true null allele of the KIT gene, whereas the previously identified W20 leads to a partial loss of function. These findings will enable more precise genetic testing for depigmentation phenotypes in horses. © 2017 Stichting International Foundation for Animal Genetics.

  9. BRCA1 and BRCA2 missense variants of high and low clinical significance influence lymphoblastoid cell line post-irradiation gene expression.

    Directory of Open Access Journals (Sweden)

    Nic Waddell

    2008-05-01

    Full Text Available The functional consequences of missense variants in disease genes are difficult to predict. We assessed if gene expression profiles could distinguish between BRCA1 or BRCA2 pathogenic truncating and missense mutation carriers and familial breast cancer cases whose disease was not attributable to BRCA1 or BRCA2 mutations (BRCAX cases. 72 cell lines from affected women in high-risk breast ovarian families were assayed after exposure to ionising irradiation, including 23 BRCA1 carriers, 22 BRCA2 carriers, and 27 BRCAX individuals. A subset of 10 BRCAX individuals carried rare BRCA1/2 sequence variants considered to be of low clinical significance (LCS. BRCA1 and BRCA2 mutation carriers had similar expression profiles, with some subclustering of missense mutation carriers. The majority of BRCAX individuals formed a distinct cluster, but BRCAX individuals with LCS variants had expression profiles similar to BRCA1/2 mutation carriers. Gaussian Process Classifier predicted BRCA1, BRCA2 and BRCAX status, with a maximum of 62% accuracy, and prediction accuracy decreased with inclusion of BRCAX samples carrying an LCS variant, and inclusion of pathogenic missense carriers. Similarly, prediction of mutation status with gene lists derived using Support Vector Machines was good for BRCAX samples without an LCS variant (82-94%, poor for BRCAX with an LCS (40-50%, and improved for pathogenic BRCA1/2 mutation carriers when the gene list used for prediction was appropriate to mutation effect being tested (71-100%. This study indicates that mutation effect, and presence of rare variants possibly associated with a low risk of cancer, must be considered in the development of array-based assays of variant pathogenicity.

  10. The expanding spectrum of COL2A1 gene variants IN 136 patients with a skeletal dysplasia phenotype.

    Science.gov (United States)

    Barat-Houari, Mouna; Dumont, Bruno; Fabre, Aurélie; Them, Frédéric Tm; Alembik, Yves; Alessandri, Jean-Luc; Amiel, Jeanne; Audebert, Séverine; Baumann-Morel, Clarisse; Blanchet, Patricia; Bieth, Eric; Brechard, Marie; Busa, Tiffany; Calvas, Patrick; Capri, Yline; Cartault, François; Chassaing, Nicolas; Ciorca, Vidrica; Coubes, Christine; David, Albert; Delezoide, Anne-Lise; Dupin-Deguine, Delphine; El Chehadeh, Salima; Faivre, Laurence; Giuliano, Fabienne; Goldenberg, Alice; Isidor, Bertrand; Jacquemont, Marie-Line; Julia, Sophie; Kaplan, Josseline; Lacombe, Didier; Lebrun, Marine; Marlin, Sandrine; Martin-Coignard, Dominique; Martinovic, Jelena; Masurel, Alice; Melki, Judith; Mozelle-Nivoix, Monique; Nguyen, Karine; Odent, Sylvie; Philip, Nicole; Pinson, Lucile; Plessis, Ghislaine; Quélin, Chloé; Shaeffer, Elise; Sigaudy, Sabine; Thauvin, Christel; Till, Marianne; Touraine, Renaud; Vigneron, Jacqueline; Baujat, Geneviève; Cormier-Daire, Valérie; Le Merrer, Martine; Geneviève, David; Touitou, Isabelle

    2016-07-01

    Heterozygous COL2A1 variants cause a wide spectrum of skeletal dysplasia termed type II collagenopathies. We assessed the impact of this gene in our French series. A decision tree was applied to select 136 probands (71 Stickler cases, 21 Spondyloepiphyseal dysplasia congenita cases, 11 Kniest dysplasia cases, and 34 other dysplasia cases) before molecular diagnosis by Sanger sequencing. We identified 66 different variants among the 71 positive patients. Among those patients, 18 belonged to multiplex families and 53 were sporadic. Most variants (38/44, 86%) were located in the triple helical domain of the collagen chain and glycine substitutions were mainly observed in severe phenotypes, whereas arginine to cysteine changes were more often encountered in moderate phenotypes. This series of skeletal dysplasia is one of the largest reported so far, adding 44 novel variants (15%) to published data. We have confirmed that about half of our Stickler patients (46%) carried a COL2A1 variant, and that the molecular spectrum was different across the phenotypes. To further address the question of genotype-phenotype correlation, we plan to screen our patients for other candidate genes using a targeted next-generation sequencing approach.

  11. ALDH/CD44 identifies uniquely tumorigenic cancer stem cells in salivary gland mucoepidermoid carcinomas.

    Science.gov (United States)

    Adams, April; Warner, Kristy; Pearson, Alexander T; Zhang, Zhaocheng; Kim, Hong Sun; Mochizuki, Daiki; Basura, Gregory; Helman, Joseph; Mantesso, Andrea; Castilho, Rogério M; Wicha, Max S; Nör, Jacques E

    2015-09-29

    A small sub-population of cells characterized by increased tumorigenic potential, ability to self-renew and to differentiate into cells that make up the tumor bulk, has been characterized in some (but not all) tumor types. These unique cells, namedcancer stem cells, are considered drivers of tumor progression in these tumors. The purpose of this work is to understand if cancer stem cells play a functional role in the tumorigenesis of salivary gland mucoepidermoid carcinomas. Here, we investigated the expression of putative cancer stem cell markers (ALDH, CD10, CD24, CD44) in primary human mucoepidermoid carcinomas by immunofluorescence, in vitro salisphere assays, and in vivo tumorigenicity assays in immunodeficient mice. Human mucoepidermoid carcinoma cells (UM-HMC-1, UM-HMC-3A, UM-HMC-3B) sorted for high levels of ALDH activity and CD44 expression (ALDHhighCD44high) consistently formed primary and secondary salispheres in vitro, and showed enhanced tumorigenic potential in vivo (defined as time to tumor palpability, tumor growth after palpability), when compared to ALDHlowCD44low cells. Cells sorted for CD10/CD24, and CD10/CD44 showed varying trends of salisphere formation, but consistently low in vivo tumorigenic potential. And finally, cells sorted for CD44/CD24 showed inconsistent results in salisphere formation and tumorigenic potential assays when different cell lines were evaluated. Collectively, these data demonstrate that salivary gland mucoepidermoid carcinomas contain a small population of cancer stem cells with enhanced tumorigenic potential and that are characterized by high ALDH activity and CD44 expression. These results suggest that patients with mucoepidermoid carcinoma might benefit from therapies that ablate these highly tumorigenic cells.

  12. Mixed Bartter-Gitelman syndrome: an inbred family with a heterogeneous phenotype expression of a novel variant in the CLCNKB gene.

    Science.gov (United States)

    Al-Shibli, Amar; Yusuf, Madinah; Abounajab, Issam; Willems, Patrick J

    2014-01-01

    Patients with renal diseases associated with salt-losing tubulopathies categorized as Gitelman and classic form of Bartter syndrome have undergone genetic screening for possible mutation capture in two different genes: SLC12A3 and CLCNKB. Clinical symptoms of these two diseases may overlap. Bartter syndrome and Gitelman syndrome are autosomal recessive salt-losing tubulopathies with hypokalemia, metabolic alkalosis, hyperreninemia, hyperplasia of the juxtaglomerular apparatus, hyperaldosteronism, and, in some patients, hypomagnesemia. Here we describe four patients from an inbred family with a novel missense variant in the CLCNKB gene. All of patients are asymptomatic; yet they have the typical metabolic abnormality of salt losing tubulopathies. One of those patients had hypomagnesaemia while others not. Clinical and laboratory data of all patients was described. All 4 patients have a homozygous c.490G > T missense variant in exon 5 of the CLCNKB gene. This variant alters a glycine into a cysteine on amino acid position 164 of the resulting protein (p.Gly164Cys). The c.490G > T variant is a novel variant not previously described in other patients nor controls. Polyphen analysis predicts the variation to be possibly damaging. Analysis of SLC12A3 was normal. Here in we are describing a novel homozygous c.490G > T missense variation was identified in exon 5 of the CLCNKB gene was identified in an Emirati patients with a mild manifestation of Bartter - Gitelman syndrome.

  13. Molecular Evolution of the VP1 Gene in Human Norovirus GII.4 Variants in 1974–2015

    Directory of Open Access Journals (Sweden)

    Takumi Motoya

    2017-12-01

    Full Text Available Human norovirus (HuNoV is a leading cause of viral gastroenteritis worldwide, of which GII.4 is the most predominant genotype. Unlike other genotypes, GII.4 has created various variants that escaped from previously acquired immunity of the host and caused repeated epidemics. However, the molecular evolutionary differences among all GII.4 variants, including recently discovered strains, have not been elucidated. Thus, we conducted a series of bioinformatic analyses using numerous, globally collected, full-length GII.4 major capsid (VP1 gene sequences (466 strains to compare the evolutionary patterns among GII.4 variants. The time-scaled phylogenetic tree constructed using the Bayesian Markov chain Monte Carlo (MCMC method showed that the common ancestor of the GII.4 VP1 gene diverged from GII.20 in 1840. The GII.4 genotype emerged in 1932, and then formed seven clusters including 14 known variants after 1980. The evolutionary rate of GII.4 strains was estimated to be 7.68 × 10−3 substitutions/site/year. The evolutionary rates probably differed among variants as well as domains [protruding 1 (P1, shell, and P2 domains]. The Osaka 2007 variant strains probably contained more nucleotide substitutions than any other variant. Few conformational epitopes were located in the shell and P1 domains, although most were contained in the P2 domain, which, as previously established, is associated with attachment to host factors and antigenicity. We found that positive selection sites for the whole GII.4 genotype existed in the shell and P1 domains, while Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants were under positive selection in the P2 domain. Amino acid substitutions overlapped with putative epitopes or were located around the epitopes in the P2 domain. The effective population sizes of the present strains increased stepwise for Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants. These results suggest that HuNoV GII.4 rapidly

  14. Myostatin: genetic variants, therapy and gene doping

    Directory of Open Access Journals (Sweden)

    André Katayama Yamada

    2012-09-01

    Full Text Available Since its discovery, myostatin (MSTN has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.Desde sua descoberta, a miostatina (MSTN entrou na linha de frente em pesquisas relacionadas às terapias musculares porque mutações intrínsecas ou inibição desta proteína tanto por abordagens farmacológicas como genéticas resultam em hipertrofia muscular e hiperplasia. Além do aumento da massa muscular, a inibição de MSTN potencialmente prejudica o tecido conectivo, modula a força muscular, facilita o transplante de mioblastos, promove regeneração tecidual, induz termogênese no tecido adiposo e aumenta a oxidação na musculatura esquelética. É também sabido que os atuais avanços em terapia gênica têm uma relação com o esporte devido ao uso ilícito de tal método. Os efeitos adversos de tal abordagem, seus efeitos no desempenho de atletas e métodos para detectar doping genético s

  15. Screening for coding variants in FTO and SH2B1 genes in Chinese patients with obesity.

    Directory of Open Access Journals (Sweden)

    Zhaojing Zheng

    Full Text Available To investigate potential functional variants in FTO and SH2B1 genes among Chinese children with obesity.Sanger sequencing of PCR products of all FTO and SH2B1 exons and their flanking regions were performed in 338 Chinese Han children with obesity and 221 age- and sex-matched lean controls.A total of seven and five rare non-synonymous variants were identified in FTO and SH2B1, respectively. The overall frequencies of FTO and SH2B1 rare non-synonymous variants were similar in obese and lean children (2.37% and 0.90% vs. 1.81% and 1.36%, P>0.05. However, four out of the seven variants in FTO were novel and all were unique to obese children (p>0.05. None of the novel variants was consistently being predicted to be deleterious. Four out of five variants in SH2B1 were novel and one was unique to obese children (p>0.05. One variant (L293R that was consistently being predicted as deleterious in SH2B1 gene was unique to lean control. While rare missense mutations were more frequently detected in girls from obesity as well as lean control than boys, the difference was not statistically significant. In addition, it's shown that the prevalence of rare missense mutations of FTO as well as SH2B1 was similar across different ethnic groups.The rare missense mutations of FTO and SH2B1 did not confer risks of obesity in Chinese Han children in our cohort.

  16. Rapid Identification of Pathogenic Variants in Two Cases of Charcot-Marie-Tooth Disease by Gene-Panel Sequencing

    Directory of Open Access Journals (Sweden)

    Chi-Chun Ho

    2017-04-01

    Full Text Available Charcot-Marie-Tooth disease (CMT is a common inherited peripheral neuropathy affecting up to 1 in 1214 of the general population with more than 60 nuclear genes implicated in its pathogenesis. Traditional molecular diagnostic pathways based on relative prevalence and clinical phenotyping are limited by long turnaround time, population-specific prevalence of causative variants and inability to assess multiple co-existing variants. In this study, a CMT gene panel comprising 27 genes was used to uncover the pathogenic mutations in two index patients. The first patient is a 15-year-old boy, born of consanguineous parents, who has had frequent trips and falls since infancy, and was later found to have inverted champagne bottle appearance of bilateral legs and foot drop. His elder sister is similarly affected. The second patient is a 37-year-old woman referred for pre-pregnancy genetic diagnosis. During early adulthood, she developed progressive lower limb weakness, difficulties in tip-toe walking and thinning of calf muscles. Both patients are clinically compatible with CMT, have undergone multiple genetic testings and have not previously received a definitive genetic diagnosis. Patients 1 and 2 were found to have pathogenic homozygous HSPB1:NM_001540:c.250G>A (p.G84R variant and heterozygous GDAP1:NM_018972:c.358C>T (p.R120W variant, respectively. Advantages and limitations of the current approach are discussed.

  17. HFE gene variants and iron-induced oxygen radical generation in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Sangiuolo, Federica; Puxeddu, Ermanno; Pezzuto, Gabriella; Cavalli, Francesco; Longo, Giuliana; Comandini, Alessia; Di Pierro, Donato; Pallante, Marco; Sergiacomi, Gianluigi; Simonetti, Giovanni; Zompatori, Maurizio; Orlandi, Augusto; Magrini, Andrea; Amicosante, Massimo; Mariani, Francesca; Losi, Monica; Fraboni, Daniela; Bisetti, Alberto; Saltini, Cesare

    2015-02-01

    In idiopathic pulmonary fibrosis (IPF), lung accumulation of excessive extracellular iron and macrophage haemosiderin may suggest disordered iron homeostasis leading to recurring microscopic injury and fibrosing damage. The current study population comprised 89 consistent IPF patients and 107 controls. 54 patients and 11 controls underwent bronchoalveolar lavage (BAL). Haemosiderin was assessed by Perls' stain, BAL fluid malondialdehyde (MDA) by high-performance liquid chromatography, BAL cell iron-dependent oxygen radical generation by fluorimetry and the frequency of hereditary haemochromatosis HFE gene variants by reverse dot blot hybridisation. Macrophage haemosiderin, BAL fluid MDA and BAL cell unstimulated iron-dependent oxygen radical generation were all significantly increased above controls (pHFE allelic variants was markedly higher in IPF compared with controls (40.4% versus 22.4%, OR 2.35, p=0.008) and was associated with higher iron-dependent oxygen radical generation (HFE variant 107.4±56.0, HFE wild type (wt) 59.4±36.4 and controls 16.7±11.8 fluorescence units per 10(5) BAL cells; p=0.028 HFE variant versus HFE wt, p=0.006 HFE wt versus controls). The data suggest iron dysregulation associated with HFE allelic variants may play an important role in increasing susceptibility to environmental exposures, leading to recurring injury and fibrosis in IPF. Copyright ©ERS 2015.

  18. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells.

    Science.gov (United States)

    Ali-Rahmani, Fatima; Huang, Michael A; Schengrund, C-L; Connor, James R; Lee, Sang Y

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.

  19. Induced pluripotent stem cells derived from a patient with autosomal dominant familial neurohypophyseal diabetes insipidus caused by a variant in the AVP gene

    Directory of Open Access Journals (Sweden)

    Lise Bols Toustrup

    2017-03-01

    Full Text Available Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI is caused by variants in the arginine vasopressin (AVP gene. Here we report the generation of induced pluripotent stem cells (iPSCs from a 42-year-old man carrying an adFNDI causing variant in exon 1 of the AVP gene using lentivirus-mediated nuclear reprogramming. The iPSCs carried the expected variant in the AVP gene. Furthermore, the iPSCs expressed pluripotency markers; displayed in vitro differentiation potential to the three germ layers and had a normal karyotype consistent with the original fibroblasts. This iPSC line is useful in future studies focusing on the pathogenesis of adFNDI.

  20. Induced pluripotent stem cells derived from a patient with autosomal dominant familial neurohypophyseal diabetes insipidus caused by a variant in the AVP gene

    DEFF Research Database (Denmark)

    Toustrup, Lise Bols; Zhou, Yan; Kvistgaard, Helene

    2017-01-01

    Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is caused by variants in the arginine vasopressin (AVP) gene. Here we report the generation of induced pluripotent stem cells (iPSCs) from a 42-year-old man carrying an adFNDI causing variant in exon 1 of the AVP gene using...

  1. Germline variants in MRE11/RAD50/NBN complex genes in childhood leukemia

    International Nuclear Information System (INIS)

    Mosor, Maria; Ziółkowska-Suchanek, Iwona; Nowicka, Karina; Dzikiewicz-Krawczyk, Agnieszka; Januszkiewicz–Lewandowska, Danuta; Nowak, Jerzy

    2013-01-01

    The MRE11, RAD50, and NBN genes encode proteins of the MRE11-RAD50-NBN (MRN) complex involved in cellular response to DNA damage and the maintenance of genome stability. In our previous study we showed that the germline p.I171V mutation in NBN may be considered as a risk factor in the development of childhood acute lymphoblastic leukemia (ALL) and some specific haplotypes of that gene may be associated with childhood leukemia. These findings raise important questions about the role of mutations in others genes of the MRN complex in childhood leukemia. The aim of this study was to answer the question whether MRE11 and RAD50 alterations may be associated with childhood ALL or AML. We estimated the frequency of constitutional mutations and polymorphisms in selected regions of MRE11, RAD50, and NBN in the group of 220 children diagnosed with childhood leukemias and controls (n=504/2200). The analysis was performed by specific amplification of region of interest by PCR and followed by multi-temperature single-strand conformation polymorphism (PCR-MSSCP) technique. We performed two molecular tests to examine any potential function of the detected the c.551+19G>A SNP in RAD50 gene. To our knowledge, this is the first analysis of the MRE11, RAD50 and NBN genes in childhood leukemia. The frequency of either the AA genotype or A allele of RAD50-rs17166050 were significantly different in controls compared to leukemia group (ALL+AML) (p<0.0019 and p<0.0019, respectively). The cDNA analysis of AA or GA genotypes carriers has not revealed evidence of splicing abnormality of RAD50 pre-mRNA. We measured the allelic-specific expression of G and A alleles at c.551+19G>A and the statistically significant overexpression of the G allele has been observed. Additionally we confirmed the higher incidence of the p.I171V mutation in the leukemia group (7/220) than among controls (12/2400) (p<0.0001). The formerly reported sequence variants in the RAD50 and MRE11 gene may not constitute a

  2. A genetic variant of NLRP1 gene is associated with asbestos body burden in patients with malignant pleural mesothelioma.

    Science.gov (United States)

    Crovella, S; Moura, R R; Cappellani, S; Celsi, F; Trevisan, E; Schneider, M; Brollo, A; Nicastro, E M; Vita, F; Finotto, L; Zabucchi, G; Borelli, V

    2018-01-01

    The presence of asbestos bodies (ABs) in lung parenchyma is considered a histopathologic hallmark of past exposure to asbestos fibers, of which there was a population of longer fibers. The mechanisms underlying AB formation are complex, involving inflammatory responses and iron (Fe) metabolism. Thus, the responsiveness to AB formation is variable, with some individuals appearing to be poor AB formers. The aim of this study was to disclose the possible role of genetic variants of genes encoding inflammasome and iron metabolism proteins in the ability to form ABs in a population of 81 individuals from North East Italy, who died after having developed malignant pleural mesothelioma (MPM). This study included 86 genetic variants distributed in 10 genes involved in Fe metabolism and 7 genetic variants in two genes encoding for inflammasome molecules. Genotypes/haplotypes were compared according to the number of lung ABs. Data showed that the NLRP1 rs12150220 missense variant (H155L) was significantly correlated with numbers of ABs in MPM patients. Specifically, a low number of ABs was detected in individuals carrying the NLRP1 rs12150220 A/T genotype. Our findings suggest that the NLRP1 inflammasome might contribute in the development of lung ABs. It is postulated that the NLRP1 missense variant may be considered as one of the possible host genetic factors contributing to individual variability in coating efficiency, which needs to be taken when assessing occupational exposure to asbestos.

  3. Genetic polymorphisms in ALDH2 are associated with drug addiction in a Chinese Han population.

    Science.gov (United States)

    Zhang, Chan; Ding, Heng; Cheng, Yujing; Chen, Wanlu; Li, Qi; Li, Qing; Dai, Run; Luo, Manlin

    2017-01-31

    We investigated the association between single nucleotide polymorphisms (SNPs) in ALDH2, which has been associated with alcohol dependence and several types of diseases, and the risk of drug addiction in a Chinese Han population. In a case-control study that included 692 cases and 700 healthy controls, eight SNPs in ALDH2 were selected and genotyped using the Sequenom MassARRAY platform. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional logistic regression after adjusting for age and gender. We determined that rs671 is significantly associated with a 1.551-fold increased drug addiction risk (95% CI = 1.263-1.903; p drug addiction under additive, dominant and recessive models (p drug addiction risk under additive and recessive model, respectively (p drug addiction risk (OR = 1.668; 95% CI, 1.328-2.094, p drug addiction risk (OR = 0.444; 95% CI, 0.281-0.704, p drug addiction in the Chinese Han population.

  4. Rare Variants in Genes Encoding MuRF1 and MuRF2 Are Modifiers of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ming Su

    2014-05-01

    Full Text Available Modifier genes contribute to the diverse clinical manifestations of hypertrophic cardiomyopathy (HCM, but are still largely unknown. Muscle ring finger (MuRF proteins are a class of muscle-specific ubiquitin E3-ligases that appear to modulate cardiac mass and function by regulating the ubiquitin-proteasome system. In this study we screened all the three members of the MuRF family, MuRF1, MuRF2 and MuRF3, in 594 unrelated HCM patients and 307 healthy controls by targeted resequencing. Identified rare variants were confirmed by capillary Sanger sequencing. The prevalence of rare variants in both MuRF1 and MuRF2 in HCM patients was higher than that in control subjects (MuRF1 13/594 (2.2% vs. 1/307 (0.3%, p = 0.04; MuRF2 22/594 (3.7% vs. 2/307 (0.7%; p = 0.007. Patients with rare variants in MuRF1 or MuRF2 were younger (p = 0.04 and had greater maximum left ventricular wall thickness (p = 0.006 than those without such variants. Mutations in genes encoding sarcomere proteins were present in 19 (55.9% of the 34 HCM patients with rare variants in MuRF1 and MuRF2. These data strongly supported that rare variants in MuRF1 and MuRF2 are associated with higher penetrance and more severe clinical manifestations of HCM. The findings suggest that dysregulation of the ubiquitin-proteasome system contributes to the pathogenesis of HCM.

  5. Role and diagnostic value of gene variants in assessing the risk of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Yan, Z P; Tong, X; Liu, S T; Ma, Y; Peng, S F; Yang, X; Fan, H

    2016-05-13

    Meta-analyses have revealed many positive associations between gene variants and susceptibility to chronic obstructive pulmonary disease (COPD). However, some of those positive results may be false positives. Therefore, we investigated the genetic polymorphisms associated with COPD risk and determined their diagnostic value. We extracted the odds ratio (OR) and 95% confidence interval for each polymorphism from published meta-analyses concerning gene variants and COPD susceptibility in October 2014, subsequently we calculated false-positive report probabilities (FPRPs) for statistically significant associations (P value value of the true positive polymorphisms of COPD using the Meta-DiSc software. Twenty-five gene polymorphisms were significantly associated with COPD risk. The FPRP test results were as follows: 1) when the prior probability was 0.001 and the OR was 1.5, ADAM33 rs612709, CHRNA3/5 rs1051730, CHRNA3/5 rs8034191, CHRNA3/5 rs16969968, and TGFB1 rs1800470 were truly associated with COPD risk (FPRP value for COPD diagnosis.

  6. Association analysis of bitter receptor genes in five isolated populations identifies a significant correlation between TAS2R43 variants and coffee liking.

    Science.gov (United States)

    Pirastu, Nicola; Kooyman, Maarten; Traglia, Michela; Robino, Antonietta; Willems, Sara M; Pistis, Giorgio; d'Adamo, Pio; Amin, Najaf; d'Eustacchio, Angela; Navarini, Luciano; Sala, Cinzia; Karssen, Lennart C; van Duijn, Cornelia; Toniolo, Daniela; Gasparini, Paolo

    2014-01-01

    Coffee, one of the most popular beverages in the world, contains many different physiologically active compounds with a potential impact on people's health. Despite the recent attention given to the genetic basis of its consumption, very little has been done in understanding genes influencing coffee preference among different individuals. Given its markedly bitter taste, we decided to verify if bitter receptor genes (TAS2Rs) variants affect coffee liking. In this light, 4066 people from different parts of Europe and Central Asia filled in a field questionnaire on coffee liking. They have been consequently recruited and included in the study. Eighty-eight SNPs covering the 25 TAS2R genes were selected from the available imputed ones and used to run association analysis for coffee liking. A significant association was detected with three SNP: one synonymous and two functional variants (W35S and H212R) on the TAS2R43 gene. Both variants have been shown to greatly reduce in vitro protein activity. Surprisingly the wild type allele, which corresponds to the functional form of the protein, is associated to higher liking of coffee. Since the hTAS2R43 receptor is sensible to caffeine, we verified if the detected variants produced differences in caffeine bitter perception on a subsample of people coming from the FVG cohort. We found a significant association between differences in caffeine perception and the H212R variant but not with the W35S, which suggests that the effect of the TAS2R43 gene on coffee liking is mediated by caffeine and in particular by the H212R variant. No other significant association was found with other TAS2R genes. In conclusion, the present study opens new perspectives in the understanding of coffee liking. Further studies are needed to clarify the role of the TAS2R43 gene in coffee hedonics and to identify which other genes and pathways are involved in its genetics.

  7. Association analysis of bitter receptor genes in five isolated populations identifies a significant correlation between TAS2R43 variants and coffee liking.

    Directory of Open Access Journals (Sweden)

    Nicola Pirastu

    Full Text Available Coffee, one of the most popular beverages in the world, contains many different physiologically active compounds with a potential impact on people's health. Despite the recent attention given to the genetic basis of its consumption, very little has been done in understanding genes influencing coffee preference among different individuals. Given its markedly bitter taste, we decided to verify if bitter receptor genes (TAS2Rs variants affect coffee liking. In this light, 4066 people from different parts of Europe and Central Asia filled in a field questionnaire on coffee liking. They have been consequently recruited and included in the study. Eighty-eight SNPs covering the 25 TAS2R genes were selected from the available imputed ones and used to run association analysis for coffee liking. A significant association was detected with three SNP: one synonymous and two functional variants (W35S and H212R on the TAS2R43 gene. Both variants have been shown to greatly reduce in vitro protein activity. Surprisingly the wild type allele, which corresponds to the functional form of the protein, is associated to higher liking of coffee. Since the hTAS2R43 receptor is sensible to caffeine, we verified if the detected variants produced differences in caffeine bitter perception on a subsample of people coming from the FVG cohort. We found a significant association between differences in caffeine perception and the H212R variant but not with the W35S, which suggests that the effect of the TAS2R43 gene on coffee liking is mediated by caffeine and in particular by the H212R variant. No other significant association was found with other TAS2R genes. In conclusion, the present study opens new perspectives in the understanding of coffee liking. Further studies are needed to clarify the role of the TAS2R43 gene in coffee hedonics and to identify which other genes and pathways are involved in its genetics.

  8. Comparison of gene-based rare variant association mapping methods for quantitative traits in a bovine population with complex familial relationships.

    Science.gov (United States)

    Zhang, Qianqian; Guldbrandtsen, Bernt; Calus, Mario P L; Lund, Mogens Sandø; Sahana, Goutam

    2016-08-17

    There is growing interest in the role of rare variants in the variation of complex traits due to increasing evidence that rare variants are associated with quantitative traits. However, association methods that are commonly used for mapping common variants are not effective to map rare variants. Besides, livestock populations have large half-sib families and the occurrence of rare variants may be confounded with family structure, which makes it difficult to disentangle their effects from family mean effects. We compared the power of methods that are commonly applied in human genetics to map rare variants in cattle using whole-genome sequence data and simulated phenotypes. We also studied the power of mapping rare variants using linear mixed models (LMM), which are the method of choice to account for both family relationships and population structure in cattle. We observed that the power of the LMM approach was low for mapping a rare variant (defined as those that have frequencies lower than 0.01) with a moderate effect (5 to 8 % of phenotypic variance explained by multiple rare variants that vary from 5 to 21 in number) contributing to a QTL with a sample size of 1000. In contrast, across the scenarios studied, statistical methods that are specialized for mapping rare variants increased power regardless of whether multiple rare variants or a single rare variant underlie a QTL. Different methods for combining rare variants in the test single nucleotide polymorphism set resulted in similar power irrespective of the proportion of total genetic variance explained by the QTL. However, when the QTL variance is very small (only 0.1 % of the total genetic variance), these specialized methods for mapping rare variants and LMM generally had no power to map the variants within a gene with sample sizes of 1000 or 5000. We observed that the methods that combine multiple rare variants within a gene into a meta-variant generally had greater power to map rare variants compared

  9. Variants of Insulin-Signaling Inhibitor Genes in Type 2 Diabetes and Related Metabolic Abnormalities

    Directory of Open Access Journals (Sweden)

    Carlo de Lorenzo

    2013-01-01

    Full Text Available Insulin resistance has a central role in the pathogenesis of several metabolic diseases, including type 2 diabetes, obesity, glucose intolerance, metabolic syndrome, atherosclerosis, and cardiovascular diseases. Insulin resistance and related traits are likely to be caused by abnormalities in the genes encoding for proteins involved in the composite network of insulin-signaling; in this review we have focused our attention on genetic variants of insulin-signaling inhibitor molecules. These proteins interfere with different steps in insulin-signaling: ENPP1/PC-1 and the phosphatases PTP1B and PTPRF/LAR inhibit the insulin receptor activation; INPPL1/SHIP-2 hydrolyzes PI3-kinase products, hampering the phosphoinositide-mediated downstream signaling; and TRIB3 binds the serine-threonine kinase Akt, reducing its phosphorylation levels. While several variants have been described over the years for all these genes, solid evidence of an association with type 2 diabetes and related diseases seems to exist only for rs1044498 of the ENPP1 gene and for rs2295490 of the TRIB3 gene. However, overall the data recapitulated in this Review article may supply useful elements to interpret the results of novel, more technically advanced genetic studies; indeed it is becoming increasingly evident that genetic information on metabolic diseases should be interpreted taking into account the complex biological pathways underlying their pathogenesis.

  10. Locus-Specific Databases and Recommendations to Strengthen Their Contribution to the Classification of Variants in Cancer Susceptibility Genes

    NARCIS (Netherlands)

    Greenblatt, Marc S.; Brody, Lawrence C.; Foulkes, William D.; Genuardi, Maurizio; Hofstra, Robert M. W.; Olivier, Magali; Plon, Sharon E.; Sijmons, Rolf H.; Sinilnikova, Olga; Spurdle, Amanda B.

    2008-01-01

    Locus-specific databases (LSDBs) are curated collections of sequence variants in genes associated with disease. LSDBs of cancer-related genes often serve as a critical resource to researchers, diagnostic laboratories, clinicians, and others in the cancer genetics community. LSDBs are poised to play

  11. Detection and characterization of interleukin-6 gene variants in Canis familiaris: association studies with periodontal disease.

    Science.gov (United States)

    Morinha, Francisco; Albuquerque, Carlos; Requicha, João; Dias, Isabel; Leitão, José; Gut, Ivo; Guedes-Pinto, Henrique; Viegas, Carlos; Bastos, Estela

    2011-10-10

    Periodontal disease (PD) is the most common inflammatory disease of the oral cavity of domestic carnivores. In Human Medicine molecular genetics research showed that several genes play a role in the predisposition and progression of this complex disease, primarily through the regulation of inflammatory mediators, but the exactly mechanisms are poorly understood. This study aims to contribute to the characterization of the genetic basis of PD in the dog, a classically accepted model in Periodontology. We searched for genetic variations in the interleukin-6 (IL6) gene, in order to verify its association with PD in a case-control study including 25 dogs in the PD case group and 45 dogs in the control group. We indentified and characterized three new genetic variations in IL6 gene. No statistically significant differences were detected between the control and PD cases groups. Our results do not support an evidence for a major role contribution of these variants in the susceptibility to PD in the analyzed population. Nevertheless, the sequence variant I/5_g.105G>A leads to an amino acid change (arginine to glutamine) and was predicted to be possibly damaging to the IL6 protein. A larger cohort and functional studies would be of extreme importance in a near future to understand the possible role of IL6 variants in this disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. A Population Based Study of the Genetic Association between Catecholamine Gene Variants and Spontaneous Low-Frequency Fluctuations in Reaction Time.

    Directory of Open Access Journals (Sweden)

    Jojanneke A Bastiaansen

    Full Text Available The catecholamines dopamine and noradrenaline have been implicated in spontaneous low-frequency fluctuations in reaction time, which are associated with attention deficit hyperactivity disorder (ADHD and subclinical attentional problems. The molecular genetic substrates of these behavioral phenotypes, which reflect frequency ranges of intrinsic neuronal oscillations (Slow-4: 0.027-0.073 Hz; Slow-5: 0.010-0.027 Hz, have not yet been investigated. In this study, we performed regression analyses with an additive model to examine associations between low-frequency fluctuations in reaction time during a sustained attention task and genetic markers across 23 autosomal catecholamine genes in a large young adult population cohort (n = 964, which yielded greater than 80% power to detect a small effect size (f(2 = 0.02 and 100% power to detect a small/medium effect size (f(2 = 0.15. At significance levels corrected for multiple comparisons, none of the gene variants were associated with the magnitude of low-frequency fluctuations. Given the study's strong statistical power and dense coverage of the catecholamine genes, this either indicates that associations between low-frequency fluctuation measures and catecholamine gene variants are absent or that they are of very small effect size. Nominally significant associations were observed between variations in the alpha-2A adrenergic receptor gene (ADRA2A and the Slow-5 band. This is in line with previous reports of an association between ADRA2A gene variants and general reaction time variability during response selection tasks, but the specific association of these gene variants and low-frequency fluctuations requires further confirmation. Pharmacological challenge studies could in the future provide convergent evidence for the noradrenergic modulation of both general and time sensitive measures of intra-individual variability in reaction time.

  13. The role of aldehyde dehydrogenase-1 (ALDH1A1 polymorphisms in harmful alcohol consumption in a Finnish population

    Directory of Open Access Journals (Sweden)

    Lind Penelope A

    2008-09-01

    Full Text Available Abstract Liver cystolic aldehyde dehydrogenase 1 (ALDH1A1 has been previously associated with both alcohol dependence and alcohol consumption behaviour, and has been implicated in alcohol-induced flushing and alcohol sensitivity in Caucasians. The present study tested for association between ALDH1A1 and alcohol consumption behaviour and susceptibility to problem drinking or alcohol dependence in Finnish cohorts of unrelated male subjects recruited from alcoholism clinical treatment facilities (n = 104 and from the general population (n = 201. All participants completed the Alcohol Use Disorder Identification Test (AUDIT and were genotyped for eight single nucleotide polymorphisms (SNPs within or flanking ALDH1A1. To test for association between alcohol consumption behaviour and these polymorphisms, we used generalised linear models and haplotypic analysis. Three SNPs were nominally associated (rs348449, p = 0.043; rs610529, p = 0.013; rs348479, p = 0.025 with the quantitative AUDIT score, which evaluates alcohol consumption behaviour. Two-locus (rs6I0529-rs2288087 haplotype analysis increased the strength of association with AUDIT score (p = 0.00I5. Additionally, rs348449 is highly associated with problem drinking (allelic odds ratio [OR] 7.87, 95 per cent confidence interval [CI] 1.67-37.01 but due to the low minor allele frequency (0.01 and 0.07 in controls and problem drinkers, respectively, more samples are required to validate this observation. Conversely, rs348479 (p = 0.019 and rs6I0529 (allelic OR 0.65, 95 per cent CI 0.43-0.98; genotypic OR 0.32, 95 per cent CI 0.12-0.84 are implicated in alcohol dependence status. This study provides further evidence for a role for ALDH1A1 in alcohol consumption behaviour, including problem drinking and possibly alcohol dependence, in our Finnish population.

  14. Association of genetic variants of the incretin-related genes with quantitative traits and occurrence of type 2 diabetes in Japanese

    OpenAIRE

    Mayumi Enya; Yukio Horikawa; Katsumi Iizuka; Jun Takeda

    2014-01-01

    Background: None of the high frequency variants of the incretin-related genes has been found by genome-wide association study (GWAS) for association with occurrence of type 2 diabetes in Japanese. However, low frequency and rare and/or high frequency variants affecting glucose metabolic traits remain to be investigated. Method: We screened all exons of the incretin-related genes (GCG, GLP1R, DPP4, PCSK1, GIP, and GIPR) in 96 patients with type 2 diabetes and investigated for association of...

  15. Screening of SHOX gene sequence variants in Saudi Arabian children with idiopathic short stature.

    Science.gov (United States)

    Alharthi, Abdulla A; El-Hallous, Ehab I; Talaat, Iman M; Alghamdi, Hamed A; Almalki, Matar I; Gaber, Ahmed

    2017-10-01

    Short stature affects approximately 2%-3% of children, representing one of the most frequent disorders for which clinical attention is sought during childhood. Despite assumed genetic heterogeneity, mutations or deletions in the short stature homeobox-containing gene ( SHOX ) are frequently detected in subjects with short stature. Idiopathic short stature (ISS) refers to patients with short stature for various unknown reasons. The goal of this study was to screen all the exons of SHOX to identify related mutations. We screened all the exons of SHOX for mutations analysis in 105 ISS children patients (57 girls and 48 boys) living in Taif governorate, KSA using a direct DNA sequencing method. Height, arm span, and sitting height were recorded, and subischial leg length was calculated. A total of 30 of 105 ISS patients (28%) contained six polymorphic variants in exons 1, 2, 4, and 6. One mutation was found in the DNA domain binding region of exon 4. Three of these polymorphic variants were novel, while the others were reported previously. There were no significant differences in anthropometric measures in ISS patients with and without identifiable polymorphic variants in SHOX . In Saudi Arabia ISS patients, rather than SHOX , it is possible that new genes are involved in longitudinal growth. Additional molecular analysis is required to diagnose and understand the etiology of this disease.

  16. Association between sequence variants in panicle development genes and the number of spikelets per panicle in rice.

    Science.gov (United States)

    Jang, Su; Lee, Yunjoo; Lee, Gileung; Seo, Jeonghwan; Lee, Dongryung; Yu, Yoye; Chin, Joong Hyoun; Koh, Hee-Jong

    2018-01-15

    Balancing panicle-related traits such as panicle length and the numbers of primary and secondary branches per panicle, is key to improving the number of spikelets per panicle in rice. Identifying genetic information contributes to a broader understanding of the roles of gene and provides candidate alleles for use as DNA markers. Discovering relations between panicle-related traits and sequence variants allows opportunity for molecular application in rice breeding to improve the number of spikelets per panicle. In total, 142 polymorphic sites, which constructed 58 haplotypes, were detected in coding regions of ten panicle development gene and 35 sequence variants in six genes were significantly associated with panicle-related traits. Rice cultivars were clustered according to their sequence variant profiles. One of the four resultant clusters, which contained only indica and tong-il varieties, exhibited the largest average number of favorable alleles and highest average number of spikelets per panicle, suggesting that the favorable allele combination found in this cluster was beneficial in increasing the number of spikelets per panicle. Favorable alleles identified in this study can be used to develop functional markers for rice breeding programs. Furthermore, stacking several favorable alleles has the potential to substantially improve the number of spikelets per panicle in rice.

  17. Surfactant proteins gene variants in premature newborn infants with severe respiratory distress syndrome.

    Science.gov (United States)

    Somaschini, Marco; Presi, Silvia; Ferrari, Maurizio; Vergani, Barbara; Carrera, Paola

    2017-12-19

    Genetic surfactant dysfunction causes respiratory failure in term and near-term newborn infants, but little is known of such condition in prematures. We evaluated genetic surfactant dysfunction in premature newborn infants with severe RDS. A total of 68 preterm newborn infants with gestational age ≤32 weeks affected by unusually severe RDS were analysed for mutations in SFTPB, SFTPC and ABCA3. Therapies included oxygen supplementation, nasal CPAP, different modalities of ventilatory support, administration of exogenous surfactant, inhaled nitric oxide and steroids. Molecular analyses were performed on genomic DNA extracted from peripheral blood and Sanger sequencing of whole gene coding regions and intron junctions. In one case histology and electron microscopy on lung tissue was performed. Heterozygous previously described rare or novel variants in surfactant proteins genes ABCA3, SFTPB and SFTPC were identified in 24 newborn infants. In total, 11 infants died at age of 2 to 6 months. Ultrastructural analysis of lung tissue of one infant showed features suggesting ABCA3 dysfunction. Rare or novel genetic variants in genes encoding surfactant proteins were identified in a large proportion (35%) of premature newborn infants with particularly severe RDS. We speculate that interaction of developmental immaturity of surfactant production in association with abnormalities of surfactant metabolism of genetic origin may have a synergic worsening phenotypic effect.

  18. Expression of P. falciparum var Genes Involves Exchange of the Histone Variant H2A.Z at the Promoter

    Science.gov (United States)

    Petter, Michaela; Lee, Chin Chin; Byrne, Timothy J.; Boysen, Katja E.; Volz, Jennifer; Ralph, Stuart A.; Cowman, Alan F.; Brown, Graham V.; Duffy, Michael F.

    2011-01-01

    Plasmodium falciparum employs antigenic variation to evade the human immune response by switching the expression of different variant surface antigens encoded by the var gene family. Epigenetic mechanisms including histone modifications and sub-nuclear compartmentalization contribute to transcriptional regulation in the malaria parasite, in particular to control antigenic variation. Another mechanism of epigenetic control is the exchange of canonical histones with alternative variants to generate functionally specialized chromatin domains. Here we demonstrate that the alternative histone PfH2A.Z is associated with the epigenetic regulation of var genes. In many eukaryotic organisms the histone variant H2A.Z mediates an open chromatin structure at promoters and facilitates diverse levels of regulation, including transcriptional activation. Throughout the asexual, intraerythrocytic lifecycle of P. falciparum we found that the P. falciparum ortholog of H2A.Z (PfH2A.Z) colocalizes with histone modifications that are characteristic of transcriptionally-permissive euchromatin, but not with markers of heterochromatin. Consistent with this finding, antibodies to PfH2A.Z co-precipitate the permissive modification H3K4me3. By chromatin-immunoprecipitation we show that PfH2A.Z is enriched in nucleosomes around the transcription start site (TSS) in both transcriptionally active and silent stage-specific genes. In var genes, however, PfH2A.Z is enriched at the TSS only during active transcription in ring stage parasites. Thus, in contrast to other genes, temporal var gene regulation involves histone variant exchange at promoter nucleosomes. Sir2 histone deacetylases are important for var gene silencing and their yeast ortholog antagonises H2A.Z function in subtelomeric yeast genes. In immature P. falciparum parasites lacking Sir2A or Sir2B high var transcription levels correlate with enrichment of PfH2A.Z at the TSS. As Sir2A knock out parasites mature the var genes are

  19. Selection of Highly Expressed Gene Variants in Escherichia coli Using Translationally Coupled Antibiotic Selection Markers

    DEFF Research Database (Denmark)

    Rennig, Maja; Daley, Daniel O.; Nørholm, Morten H. H.

    2018-01-01

    Strategies to select highly expressed variants of a protein coding sequence are usually based on trial-and-error approaches, which are time-consuming and expensive. We address this problem using translationally coupled antibiotic resistance markers. The system requires that the target gene can...

  20. A targeted genotyping approach enhances identification of variants in taste receptor and appetite/reward genes of potential functional importance for obesity-related porcine traits.

    Science.gov (United States)

    Cirera, S; Clop, A; Jacobsen, M J; Guerin, M; Lesnik, P; Jørgensen, C B; Fredholm, M; Karlskov-Mortensen, P

    2018-04-01

    Taste receptors (TASRs) and appetite and reward (AR) mechanisms influence eating behaviour, which in turn affects food intake and risk of obesity. In a previous study, we used next generation sequencing to identify potentially functional mutations in TASR and AR genes and found indications for genetic associations between identified variants and growth and fat deposition in a subgroup of animals (n = 38) from the UNIK resource pig population. This population was created for studying obesity and obesity-related diseases. In the present study we validated results from our previous study by investigating genetic associations between 24 selected single nucleotide variants in TASR and AR gene variants and 35 phenotypes describing obesity and metabolism in the entire UNIK population (n = 564). Fifteen variants showed significant association with specific obesity-related phenotypes after Bonferroni correction. Six of the 15 genes, namely SIM1, FOS, TAS2R4, TAS2R9, MCHR2 and LEPR, showed good correlation between known biological function and associated phenotype. We verified a genetic association between potentially functional variants in TASR/AR genes and growth/obesity and conclude that the combination of identification of potentially functional variants by next generation sequencing followed by targeted genotyping and association studies is a powerful and cost-effective approach for increasing the power of genetic association studies. © 2018 Stichting International Foundation for Animal Genetics.

  1. Toxin Gene Analysis of a Variant Strain of Clostridium difficile That Causes Human Clinical Disease

    Science.gov (United States)

    Sambol, Susan P.; Merrigan, Michelle M.; Lyerly, David; Gerding, Dale N.; Johnson, Stuart

    2000-01-01

    A toxin variant strain of Clostridium difficile was isolated from two patients with C. difficile-associated disease (CDAD), one of whom died from extensive pseudomembranous colitis. This strain, identified by restriction endonuclease analysis (REA) as type CF2, was not detected by an immunoassay for C. difficile toxin A. Culture supernatants of CF2 failed to elicit significant enterotoxic activity in the rabbit ileal loop assay but did produce atypical cytopathic effects in cell culture assay. Southern hybridization, PCR amplification, and DNA sequence analyses were performed on the toxin A (tcdA) and toxin B (tcdB) genes of type CF2 isolate 5340. Type CF2 5340 tcdA exhibited a 1,821-bp truncation, due to three deletions in the 3′ end of the gene, and a point mutation in the 5′ end of the gene, resulting in a premature stop codon at tcdA position 139. Type CF2 5340 tcdB exhibited multiple nucleotide base substitutions in the 5′ end of the gene compared to tcdB of the standard toxigenic strain VPI 10463. Type CF2 5340 toxin gene nucleotide sequences and deduced amino acid sequences showed a strong resemblance to those of the previously described variant C. difficile strain 1470, a strain reported to have reduced pathogenicity and no association with clinical illness in humans. REA of strain 1470 identified this strain as a distinct type (CF1) within the same REA group as the closely related type CF2. A review of our clinical-isolate collection identified five additional patients infected with type CF2, three of whom had documented CDAD. PCR amplification of the 3′ end of tcdA demonstrated identical 1.8-kb deletions in all seven type CF2 isolates. REA type CF2 is a toxin variant strain of C. difficile that retains the ability to cause disease in humans but is not detected in clinical immunoassays for toxin A. PMID:10992443

  2. Screening for single nucleotide variants, small indels and exon deletions with a next-generation sequencing based gene panel approach for Usher syndrome.

    Science.gov (United States)

    Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred

    2014-09-01

    Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield.

  3. Variants in congenital hypogonadotrophic hypogonadism genes identified in an Indonesian cohort of 46,XY under-virilised boys.

    Science.gov (United States)

    Ayers, Katie L; Bouty, Aurore; Robevska, Gorjana; van den Bergen, Jocelyn A; Juniarto, Achmad Zulfa; Listyasari, Nurin Aisyiyah; Sinclair, Andrew H; Faradz, Sultana M H

    2017-02-16

    Congenital hypogonadotrophic hypogonadism (CHH) and Kallmann syndrome (KS) are caused by disruption to the hypothalamic-pituitary-gonadal (H-P-G) axis. In particular, reduced production, secretion or action of gonadotrophin-releasing hormone (GnRH) is often responsible. Various genes, many of which play a role in the development and function of the GnRH neurons, have been implicated in these disorders. Clinically, CHH and KS are heterogeneous; however, in 46,XY patients, they can be characterised by under-virilisation phenotypes such as cryptorchidism and micropenis or delayed puberty. In rare cases, hypospadias may also be present. Here, we describe genetic mutational analysis of CHH genes in Indonesian 46,XY disorder of sex development patients with under-virilisation. We present 11 male patients with varying degrees of under-virilisation who have rare variants in known CHH genes. Interestingly, many of these patients had hypospadias. We postulate that variants in CHH genes, in particular PROKR2, PROK2, WDR11 and FGFR1 with CHD7, may contribute to under-virilisation phenotypes including hypospadias in Indonesia.

  4. Association study of functional genetic variants of innate immunity related genes in celiac disease

    Directory of Open Access Journals (Sweden)

    Martín J

    2005-08-01

    Full Text Available Abstract Background Recent evidence suggest that the innate immune system is implicated in the early events of celiac disease (CD pathogenesis. In this work for the first time we have assessed the relevance of different proinflammatory mediators typically related to innate immunity in CD predisposition. Methods We performed a familial study in which 105 celiac families characterized by the presence of an affected child with CD were genotyped for functional polymorphisms located at regulatory regions of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes. Familial data was analysed with a transmission disequilibrium test (TDT that revealed no statistically significant differences in the transmission pattern of the different genetic markers considered. Results The TDT analysis for IL-1α, IL-1β, IL-1RN, IL-18, and MCP-1 genes genetic variants did not reveal biased transmission to the affected offspring. Only a borderline association of RANTES promoter genetic variants with CD predisposition was observed. Conclusion Our results suggest that the analysed polymorphisms of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes do not seem to play a major role in CD genetic predisposition in our population.

  5. Characterisation of myosin heavy chain gene variants in the fast and slow muscle fibres of gammarid amphipods.

    Science.gov (United States)

    Whiteley, N M; Magnay, J L; McCleary, S J; Nia, S Khazraee; El Haj, A J; Rock, J

    2010-10-01

    Recent molecular work has revealed a large diversity of myosin heavy chain (MyHC) gene variants in the abdominal musculature of gammarid amphipods. An unusual truncated MyHC transcript from the loop 1 region (Variant A(3)) was consistently observed in multiple species and populations. The current study aimed to determine whether this MyHC variant is specific to a particular muscle fibre type, as a change in net charge to the loop 1 region of Variant A(3) could be functionally significant. The localisation of different fibre types within the abdominal musculature of several gammarid species revealed that the deep flexor and extensor muscles are fast-twitch muscle fibres. The dorsal superficial muscles were identified as slow fibres and the muscles extrinsic to the pleopods were identified as intermediate fibres. Amplification of loop 1 region mRNA from isolated superficial extensor and deep flexor muscles, and subsequent liquid chromatography and sequence analysis revealed that Variant A(3) was the primary MyHC variant in slow muscles, and the conserved A(1) sequence was the primary variant in fast muscles. The specific role of Variant A(3) in the slow muscles remains to be investigated. 2010 Elsevier Inc. All rights reserved.

  6. Studies of metabolic phenotypic correlates of 15 obesity associated gene variants

    DEFF Research Database (Denmark)

    Sandholt, Camilla Helene; Vestmar, Marie Aare; Bille, Dorthe Sadowa

    2011-01-01

    associate with type 2 diabetes and to elucidate potential underlying metabolic mechanisms. Methods: 15 gene variants in 14 loci including TMEM18 (rs7561317), SH2B1 (rs7498665), KCTD15 (rs29941), NEGR1 (rs2568958), ETV5 (rs7647305), BDNF (rs4923461, rs925946), SEC16B (rs10913469), FAIM2 (rs7138803), GNPDA2......, which could suggest neuronal and peripheral distinctive ways of actions for the protein. SH2B1 rs7498665 associated with type 2 diabetes independently of BMI....

  7. Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers

    Directory of Open Access Journals (Sweden)

    Propping Peter

    2004-03-01

    Full Text Available Abstract Background Concentrations of monoamine metabolites in human cerebrospinal fluid (CSF have been used extensively as indirect estimates of monoamine turnover in the brain. CSF monoamine metabolite concentrations are partly determined by genetic influences. Methods We investigated possible relationships between DNA polymorphisms in the serotonin 2C receptor (HTR2C, the serotonin 3A receptor (HTR3A, the dopamine D4 receptor (DRD4, and the dopamine β-hydroxylase (DBH genes and CSF concentrations of 5-hydroxyindolacetic acid (5-HIAA, homovanillic acid (HVA, and 3-methoxy-4-hydroxyphenylglycol (MHPG in healthy volunteers (n = 90. Results The HTR3A 178 C/T variant was associated with 5-HIAA levels (p = 0.02. The DBH-1021 heterozygote genotype was associated with 5-HIAA (p = 0.0005 and HVA (p = 0.009 concentrations. Neither the HTR2C Cys23Ser variant, nor the DRD4 -521 C/T variant were significantly associated with any of the monoamine metabolites. Conclusions The present results suggest that the HTR3A and DBH genes may participate in the regulation of dopamine and serotonin turnover rates in the central nervous system.

  8. Digital PCR (dPCR) analysis reveals that the homozygous c.315-48T>C variant in the FECH gene might cause erythropoietic protoporphyria (EPP).

    Science.gov (United States)

    Brancaleoni, Valentina; Granata, Francesca; Missineo, Pasquale; Fustinoni, Silvia; Graziadei, Giovanna; Di Pierro, Elena

    2018-06-13

    Alterations in the ferrochelatase gene (FECH) are the basis of the phenotypic expressions in erythropoietic protoporphyria. The phenotype is due to the presence of a mutation in the FECH gene associated in trans to the c.315-48 T > C variant in the intron 3. The latter is able to increase the physiological quota of alternative splicing events in the intron 3. Other two variants in the FECH gene (c.1-252A > G and c.68-23C > T) have been found to be associated to the intron 3 variant in some populations and together, they constitute a haplotype (ACT/GTC), but eventually, their role in the alternative splicing event has never been elucidated. The absolute number of the aberrantly spliced FECH mRNA molecules and the absolute expression of the FECH gene were evaluated by digital PCR technique in a comprehensive cohort. The number of splicing events that rose in the presence of the c.315-48 T > C variant, both in the heterozygous and homozygous condition was reported for the first time. Also, the percentage of the inserted FECH mRNA increased, even doubled in the T/C cases, compared to T/T cases. The constant presence of variants in the promoter and intron 2 did not influence or modulate the aberrant splicing. The results of FECH gene expression suggested that the homozygosity for the c.315-48 T > C variant could be considered pathological. Thus, this study identified the homozygotes for the c.315-48 T > C variant as pathological. By extension, when the samples were categorised according to the haplotypes, the GTC haplotype in homozygosis was pathological. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Genetic variants in the choline acetyltransferase (ChAT) gene are modestly associated with normal cognitive function in the elderly

    DEFF Research Database (Denmark)

    Mengel-From, J; Christensen, K; Thinggaard, M

    2011-01-01

    Genetic variants in the choline acetyltransferase (ChAT) gene have been suggested as risk factors for neurodegenerative Alzheimer's disease (AD). Here we tested the importance of genetic variants in the ChAT gene in normal cognitive function of elderly in a study sample of Danish twins...... and singletons (N = 2070). The ChAT rs3810950 A allele, which has been associated with increased risk for AD, was found to be associated with a decrease cognitive status evaluated by a five-component cognitive composite score [P = 0.03, regression coefficient -0.30, 95% confidence interval (CI) -0.57 to -0...

  10. Identification and description of three families with familial Alzheimer disease that segregate variants in the SORL1 gene.

    Science.gov (United States)

    Thonberg, Håkan; Chiang, Huei-Hsin; Lilius, Lena; Forsell, Charlotte; Lindström, Anna-Karin; Johansson, Charlotte; Björkström, Jenny; Thordardottir, Steinunn; Sleegers, Kristel; Van Broeckhoven, Christine; Rönnbäck, Annica; Graff, Caroline

    2017-06-09

    Alzheimer disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. The majority of AD cases are sporadic, while up to 5% are families with an early onset AD (EOAD). Mutations in one of the three genes: amyloid beta precursor protein (APP), presenilin 1 (PSEN1) or presenilin 2 (PSEN2) can be disease causing. However, most EOAD families do not carry mutations in any of these three genes, and candidate genes, such as the sortilin-related receptor 1 (SORL1), have been suggested to be potentially causative. To identify AD causative variants, we performed whole-exome sequencing on five individuals from a family with EOAD and a missense variant, p.Arg1303Cys (c.3907C > T) was identified in SORL1 which segregated with disease and was further characterized with immunohistochemistry on two post mortem autopsy cases from the same family. In a targeted re-sequencing effort on independent index patients from 35 EOAD-families, a second SORL1 variant, c.3050-2A > G, was found which segregated with the disease in 3 affected and was absent in one unaffected family member. The c.3050-2A > G variant is located two nucleotides upstream of exon 22 and was shown to cause exon 22 skipping, resulting in a deletion of amino acids Gly1017- Glu1074 of SORL1. Furthermore, a third SORL1 variant, c.5195G > C, recently identified in a Swedish case control cohort included in the European Early-Onset Dementia (EU EOD) consortium study, was detected in two affected siblings in a third family with familial EOAD. The finding of three SORL1-variants that segregate with disease in three separate families with EOAD supports the involvement of SORL1 in AD pathology. The cause of these rare monogenic forms of EOAD has proven difficult to find and the use of exome and genome sequencing may be a successful route to target them.

  11. A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Je-Hyuk Lee

    2009-11-01

    Full Text Available Normal variation in gene expression due to regulatory polymorphisms is often masked by biological and experimental noise. In addition, some regulatory polymorphisms may become apparent only in specific tissues. We derived human induced pluripotent stem (iPS cells from adult skin primary fibroblasts and attempted to detect tissue-specific cis-regulatory variants using in vitro cell differentiation. We used padlock probes and high-throughput sequencing for digital RNA allelotyping and measured allele-specific gene expression in primary fibroblasts, lymphoblastoid cells, iPS cells, and their differentiated derivatives. We show that allele-specific expression is both cell type and genotype-dependent, but the majority of detectable allele-specific expression loci remains consistent despite large changes in the cell type or the experimental condition following iPS reprogramming, except on the X-chromosome. We show that our approach to mapping cis-regulatory variants reduces in vitro experimental noise and reveals additional tissue-specific variants using skin-derived human iPS cells.

  12. Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available DNA double strand break (DSB repair is the primary defense mechanism against ionizing radiation-induced DNA damage. Ionizing radiation is the only established risk factor for salivary gland carcinoma (SGC. We hypothesized that genetic variants in DSB repair genes contribute to individual variation in susceptibility to SGC. To test this hypothesis, we conducted a case-control study in which we analyzed 415 single nucleotide polymorphisms (SNPs in 45 DSB repair genes in 352 SGC cases and 598 controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs and 95% confidence intervals (CIs. Rs3748522 in RAD52 and rs13180356 in XRCC4 were significantly associated with SGC after Bonferroni adjustment; ORs (95% CIs for the variant alleles of these SNPs were 1.71 (1.40-2.09, P = 1.70 × 10(-7 and 0.58 (0.45-0.74, P = 2.00 × 10(-5 respectively. The genetic effects were modulated by histological subtype. The association of RAD52-rs3748522 with SGC was strongest for mucoepidermoid carcinoma (OR = 2.21, 95% CI: 1.55-3.15, P = 1.25 × 10(-5, n = 74, and the association of XRCC4-rs13180356 with SGC was strongest for adenoid cystic carcinoma (OR = 0.60, 95% CI: 0.42-0.87, P = 6.91 × 10(-3, n = 123. Gene-level association analysis revealed one gene, PRKDC, with a marginally significant association with SGC risk in non-Hispanic whites. To our knowledge, this study is the first to comprehensively evaluate the genetic effect of DSB repair genes on SGC risk. Our results indicate that genetic variants in the DSB repair pathways contribute to inter-individual differences in susceptibility to SGC and show that the impact of genetic variants differs by histological subtype. Independent studies are warranted to confirm these findings.

  13. Association of genetic variants of the incretin-related genes with quantitative traits and occurrence of type 2 diabetes in Japanese.

    Science.gov (United States)

    Enya, Mayumi; Horikawa, Yukio; Iizuka, Katsumi; Takeda, Jun

    2014-01-01

    None of the high frequency variants of the incretin-related genes has been found by genome-wide association study (GWAS) for association with occurrence of type 2 diabetes in Japanese. However, low frequency and rare and/or high frequency variants affecting glucose metabolic traits remain to be investigated. We screened all exons of the incretin-related genes ( GCG , GLP1R , DPP4 , PCSK1 , GIP , and GIPR ) in 96 patients with type 2 diabetes and investigated for association of genetic variants of these genes with quantitative metabolic traits upon test meal with 38 young healthy volunteers and with the occurrence of type 2 diabetes in Japanese subjects comprising 1303 patients with type 2 diabetes and 1014 controls. Two mutations of GIPR , p.Thr3Alafsx21 and Arg183Gln, were found only in patients with type 2 diabetes, and both of them were treated with insulin. Of ten tagSNPs, we found that risk allele C of SNP393 (rs6235) of PCSK1 was nominally associated with higher fasting insulin and HOMA-R ( P  = 0.034 and P  = 0.030), but not with proinsulin level, incretin level or BMI. The variant showed significant association with occurrence of type 2 diabetes after adjustment for age, sex, and BMI ( P  = 0.0043). Rare variants of GIPR may contribute to the development of type 2 diabetes, possibly through insulin secretory defects. Furthermore, the genetic variant of PCSK1 might influence glucose homeostasis by altered insulin resistance independently of BMI, incretin level or proinsulin conversion, and may be associated with the occurrence of type 2 diabetes in Japanese.

  14. 4. Identification of a novel nonsense variant C.1332DUP, P. (D445* in the LDLR gene that causes familial hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Faisal Al-Allaf

    2017-10-01

    Conclusion: The duplication variant results in the production of a defective LDL receptor containing the p. (D445* variant. This variant results in a premature stop codon at position 445 in exon 9 of the LDLR gene, which results in truncation of the protein. The segregation pattern of the variant is consistent with the lipid profile, suggesting a more severe FH phenotype when the variant is in the homozygous state. Finding of this study could be very useful in developing critical genetic screen for potential FH patients. In addition, these data contribute to the understanding of the molecular basis of FH in Saudis.

  15. Variants of Interleukin-22 Gene Confer Predisposition to Autoimmune Thyroid Disease

    Directory of Open Access Journals (Sweden)

    Rong-hua Song

    2017-01-01

    Full Text Available As there are no previous studies on the interleukin-22 (IL-22 variants in autoimmune thyroid disease (AITD, the present study aimed to explore the association between polymorphisms of IL-22 and the predisposition to AITD. The study had 975 AITD patients, including 639 Graves’ disease (GD and 336 Hashimoto’s thyroiditis (HT individuals and 851 healthy cohorts. Ligase detection reaction (LDR and direct sequencing method were used for genotyping the IL-22 gene polymorphisms at rs2046068, rs2227478, rs2227485, rs11611206, and rs1179251. In comparison to female controls, genotype CC of rs1179251 was increased in the female AITD patients. Alleles C at rs2046068, C at rs2227478, and C at rs1179251 linked to the susceptibility of HT males. Genotype CC in rs1179251 was higher in male HT. Variants at rs2046068, rs2227478, and rs1179251 were associated with the AITD teenagers. Besides, genotype GG in rs11611206 was correlated with thyroid-associated ophthalmopathy (TAO. Moreover, allele G at rs11611206 was associated with decreased risk for TAO by 28.9%. Similarly, genotype CC of rs1179251 and genotype GG of rs11611206 were associated with Graves’ ophthalmopathy (GO. Allele G in rs11611206 increased people with HT towards the predisposition of hypothyroidism. In conclusion, genetic variants of IL-22 are associated with the occurrence of AITD.

  16. Association of fat mass and obesity-associated gene variant with lifestyle factors and body fat in Indian Children

    Directory of Open Access Journals (Sweden)

    Lavanya S Parthasarthy

    2017-01-01

    Full Text Available Context: Common intronic variants of the fat mass and obesity-associated (FTO gene have been associated with obesity-related traits in humans. Aims: (1 The aim of this study is to study the distribution of FTO gene variants across different body mass index (BMI categories and (2 to explore the association between FTO gene variants and lifestyle factors in obese and normal weight Indian children. Subjects and Methods: Fifty-six children (26 boys, mean age 10.3 ± 2.2 years were studied. Height, weight, and waist and hip circumference were measured. Physical activity (questionnaire and food intake (food frequency questionnaire were assessed. Body fat percentage (%BF was measured by dual-energy X-ray absorptiometry. FTO allelic variants at rs9939609 site were detected by SYBR Green Amplification Refractory Mutation System real-time polymerase chain reaction using allele-specific primers. Generalized linear model was used to investigate the simultaneous influence of genetic and lifestyle factors on %BF. Results: Mean height, weight, and BMI of normal and obese children were 130.6 ± 7.1 versus 143.2 ± 15.6, 24.0 ± 5.2 versus 53.1 ± 15.8, and 13.9 ± 2.1 versus 25.3 ± 3.2, respectively. The frequency of AA allele was 57% among obese children and 35% in normal weight children. Children with the AA allele who were obese had least physical activity, whereas children with AT allele and obesity had the highest intake of calories when compared to children who had AT allele and were normal. %BF was positively associated with AA alleles and junk food intake and negatively with healthy food intake and moderate physical activity. Conclusions: Healthy lifestyle with high physical activity and diet low in calories and fat may help in modifying the risk imposed by FTO variants in children.

  17. A sex-specific association of common variants of neuroligin genes (NLGN3 and NLGN4X with autism spectrum disorders in a Chinese Han cohort

    Directory of Open Access Journals (Sweden)

    Li Hui

    2011-05-01

    Full Text Available Abstract Background Synaptic genes, NLGN3 and NLGN4X, two homologous members of the neuroligin family, have been supposed as predisposition loci for autism spectrum disorders (ASDs, and defects of these two genes have been identified in a small fraction of individuals with ASDs. But no such rare variant in these two genes has as yet been adequately replicated in Chinese population and no common variant has been further investigated to be associated with ASDs. Methods 7 known ASDs-related rare variants in NLGN3 and NLGN4X genes were screened for replication of the initial findings and 12 intronic tagging single nucleotide polymorphisms (SNPs were genotyped for case-control association analysis in a total of 229 ASDs cases and 184 control individuals in a Chinese Han cohort, using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrometry. Results We found that a common intronic variant, SNP rs4844285 in NLGN3 gene, and a specific 3-marker haplotype XA-XG-XT (rs11795613-rs4844285-rs4844286 containing this individual SNP were associated with ASDs and showed a male bias, even after correction for multiple testing (SNP allele: P = 0.048, haplotype:P = 0.032. Simultaneously, none of these 7 known rare mutation of NLGN3 and NLGN4X genes was identified, neither in our patients with ASDs nor controls, giving further evidence that these known rare variants might be not enriched in Chinese Han cohort. Conclusion The present study provides initial evidence that a common variant in NLGN3 gene may play a role in the etiology of ASDs among affected males in Chinese Han population, and further supports the hypothesis that defect of synapse might involvement in the pathophysiology of ASDs.

  18. Association between Age at Diagnosis of Graves' Disease and Variants in Genes Involved in Immune Response

    Science.gov (United States)

    Jurecka-Lubieniecka, Beata; Ploski, Rafal; Kula, Dorota; Krol, Aleksandra; Bednarczuk, Tomasz; Kolosza, Zofia; Tukiendorf, Andrzej; Szpak-Ulczok, Sylwia; Stanjek-Cichoracka, Anita; Polanska, Joanna; Jarzab, Barbara

    2013-01-01

    Background Graves' disease (GD) is a complex disease in which genetic predisposition is modified by environmental factors. The aim of the study was to examine the association between genetic variants in genes encoding proteins involved in immune response and the age at diagnosis of GD. Methods 735 GD patients and 1216 healthy controls from Poland were included into the study. Eight genetic variants in the HLA-DRB1, TNF, CTLA4, CD40, NFKb, PTPN22, IL4 and IL10 genes were genotyped. Patients were stratified by the age at diagnosis of GD and the association with genotype was analysed. Results Polymorphism in the HLA-DRB1, TNF and CTLA4 genes were associated with GD. The carriers of the HLA DRB1*03 allele were more frequent in patients with age at GD diagnosis ≤30 years than in patients with older age at GD diagnosis. Conclusions HLADRB1*03 allele is associated with young age at diagnosis of Graves' disease in polish population. PMID:23544060

  19. Assessment of Functional Effects of Unclassified Genetic Variants

    NARCIS (Netherlands)

    Couch, Fergus J.; Rasmussen, Lene Juel; Hofstra, Robert; Monteiro, Alvaro N. A.; Greenblatt, Marc S.; de Wind, Niels

    2008-01-01

    Inherited predisposition to disease is often linked to reduced activity of a disease associated gene product. Thus, quantitation of the influence of inherited variants on gene function can potentially be used to predict the disease relevance of these variants. While many disease genes have been

  20. Assessment of Functional Effects of Unclassified Genetic Variants

    NARCIS (Netherlands)

    Couch, Fergus J.; Rasmussen, Lene Juel; Hofstra, Robert; Monteiro, Alvaro N. A.; Greenblatt, Marc S.; de Wind, Niels

    Inherited predisposition to disease is often linked to reduced activity of a disease associated gene product. Thus, quantitation of the influence of inherited variants on gene function can potentially be used to predict the disease relevance of these variants. While many disease genes have been

  1. Variants of opioid system genes are associated with non-dependent opioid use and heroin dependence

    NARCIS (Netherlands)

    Randesi, Matthew; van den Brink, Wim; Levran, Orna; Blanken, Peter; Butelman, Eduardo R; Yuferov, Vadim; da Rosa, Joel Correa; Ott, Jurg; van Ree, Jan M; Kreek, Mary Jeanne

    2016-01-01

    BACKGROUND: Heroin addiction is a chronic, relapsing brain disease. Genetic factors are involved in the development of drug addiction. The aim of this study was to determine whether specific variants in genes of the opioid system are associated with non-dependent opioid use and heroin dependence.

  2. Variants of opioid system genes are associated with non-dependent opioid use and heroin dependence

    NARCIS (Netherlands)

    Randesi, Matthew; van den Brink, Wim; Levran, Orna; Blanken, Peter; Butelman, Eduardo R.; Yuferov, Vadim; da Rosa, Joel Correa; Ott, Jurg; van Ree, Jan M.; Kreek, Mary Jeanne

    2016-01-01

    Heroin addiction is a chronic, relapsing brain disease. Genetic factors are involved in the development of drug addiction. The aim of this study was to determine whether specific variants in genes of the opioid system are associated with non-dependent opioid use and heroin dependence. Genetic

  3. High Prevalence of Diabetes-Predisposing Variants in MODY Genes Among Danish Women With Gestational Diabetes Mellitus

    DEFF Research Database (Denmark)

    Gjesing, Anette Marianne Prior; Rui, Gao; Lauenborg, Jeannet

    2017-01-01

    Context: Gestational diabetes mellitus (GDM), defined as any degree of glucose intolerance with first recognition during pregnancy, is a heterogeneous form of diabetes characterized by various degrees ofβ-cell dysfunction. Objectives: We aimed to estimate the prevalence of possibly pathogenic...... variants in the maturity-onset diabetes of the young genesGCK,HNF1A,HNF4A,HNF1B, andINSamong women with GDM. Furthermore, we examined the glucose tolerance status in variant carriers vs noncarriers at follow-up. Design Setting and Patients: We sequenced the coding regions and intron/exon boundaries of.......9% (95% confidence interval: 3.5% to 8.4%). At follow-up, 15 out of 135 women with diabetes (11%) were carriers of variants inGCK,HNF1A,HNF4A,HNF1B, orINS. Conclusions: Almost 6% of Danish women with diet-treated GDM have possibly pathogenic variants inGCK,HNF1A,HNF4A,HNF1B, orINS. These women...

  4. A novel homozygous variant in the SMOC1 gene underlying Waardenburg anophthalmia syndrome.

    Science.gov (United States)

    Ullah, Asmat; Umair, Muhammad; Ahmad, Farooq; Muhammad, Dost; Basit, Sulman; Ahmad, Wasim

    2017-01-01

    Waardenburg anophthalmia syndrome (WAS), also known as ophthalmo-acromelic syndrome or anophthalmia-syndactyly, is a rare congenital disorder that segregates in an autosomal recessive pattern. Clinical features of the syndrome include malformation of the eyes and the skeleton. Mostly, WAS is caused by mutations in the SMOC-1 gene. The present report describes a large consanguineous family of Pakistani origin segregating Waardenburg anophthalmia syndrome in an autosomal recessive pattern. Genotyping followed by Sanger sequencing was performed to search for a candidate gene. SNP genotyping using AffymetrixGeneChip Human Mapping 250K Nsp array established a single homozygous region among affected members on chromosome 14q23.1-q24.3 harboring the SMOC1 gene. Sequencing of the gene revealed a novel homozygous missense mutation (c.812G>A; p.Cys271Tyr) in the family. This is the first report of Waardenburg anophthalmia syndrome caused by a SMOC1 variant in a Pakistani population. The mutation identified in the present investigation extends the body of evidence implicating the gene SMOC-1 in causing WAS.

  5. Association of dopamine gene variants, emotion dysregulation and ADHD in autism spectrum disorder.

    Science.gov (United States)

    Gadow, Kenneth D; Pinsonneault, Julia K; Perlman, Greg; Sadee, Wolfgang

    2014-07-01

    The aim of the present study was to evaluate the association of dopaminergic gene variants with emotion dysregulation (EMD) and attention-deficit/hyperactivity disorder (ADHD) symptoms in children with autism spectrum disorder (ASD). Three dopamine transporter gene (SLC6A3/DAT1) polymorphisms (intron8 5/6 VNTR, 3'-UTR 9/10 VNTR, rs27072 in the 3'-UTR) and one dopamine D2 receptor gene (DRD2) variant (rs2283265) were selected for genotyping based on à priori evidence of regulatory activity or, in the case of DAT1 9/10 VNTR, commonly reported associations with ADHD. A sample of 110 children with ASD was assessed with a rigorously validated DSM-IV-referenced rating scale. Global EMD severity (parents' ratings) was associated with DAT1 intron8 (ηp(2)=.063) and rs2283265 (ηp(2)=.044). Findings for DAT1 intron8 were also significant for two EMD subscales, generalized anxiety (ηp(2)=.065) and depression (ηp(2)=.059), and for DRD2 rs2283265, depression (ηp(2)=.053). DRD2 rs2283265 was associated with teachers' global ratings of ADHD (ηp(2)=.052). DAT1 intron8 was associated with parent-rated hyperactivity (ηp(2)=.045) and both DAT1 9/10 VNTR (ηp(2)=.105) and DRD2 rs2283265 (ηp(2)=.069) were associated with teacher-rated inattention. These findings suggest that dopaminergic gene polymorphisms may modulate EMD and ADHD symptoms in children with ASD but require replication with larger independent samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Network perturbation by recurrent regulatory variants in cancer.

    Directory of Open Access Journals (Sweden)

    Kiwon Jang

    2017-03-01

    Full Text Available Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes.

  7. Acromegaly Is More Severe in Patients With AHR or AIP Gene Variants Living in Highly Polluted Areas.

    Science.gov (United States)

    Cannavo, S; Ragonese, M; Puglisi, S; Romeo, P D; Torre, M L; Alibrandi, A; Scaroni, C; Occhi, G; Ceccato, F; Regazzo, D; De Menis, E; Sartorato, P; Arnaldi, G; Trementino, L; Trimarchi, F; Ferrau, F

    2016-04-01

    An increased prevalence of acromegaly was found some years ago in a highly polluted area in North-Eastern Sicily, where high concentration of nonmethane hydrocarbons, volatile organic compounds, and cadmium was found. Aryl hydrocarbon receptor (AHR) pathway has a key role in detoxification of these compounds and in tumorigenesis. We correlated the occurrence of AHR and/or AHR-interacting protein (AIP) gene variants with acromegaly severity according to pollution exposition. This was an observational, perspective study conducted over 7 years in four Italian referral centers for pituitary diseases in which 210 patients with acromegaly were enrolled between 2008 and 2015. Genetic screening of patients for AHR and AIP variants. Clinical, biochemical, and radiological data of patients with and without AIP and/or AHR gene variants, living in polluted (high-risk for health, [HR]) or nonpolluted (NP) areas of five Italian regions were evaluated and compared. Among the 23 patients from HR areas, nine showed AHR or AIP variants. Mean IGF-I levels and pituitary tumor diameter were significantly higher in these nine patients (HR/VAR+) than in the other 14 (HR/VAR−) and in the 187 from NP areas (44 NP/VAR+). Somatostatin analogs significantly decreased mean GH and IGF-I levels in patients from NP areas and in HR/VAR− (GH P acromegaly, increased pituitary tumor size, and somatostatin analog resistance in patients living in HR areas.

  8. A functional promoter variant of the human formimidoyltransferase cyclodeaminase (FTCD) gene is associated with working memory performance in young but not older adults.

    Science.gov (United States)

    Greenwood, Pamela M; Schmidt, Kevin; Lin, Ming-Kuan; Lipsky, Robert; Parasuraman, Raja; Jankord, Ryan

    2018-06-21

    The central role of working memory in IQ and the high heritability of working memory performance motivated interest in identifying the specific genes underlying this heritability. The FTCD (formimidoyltransferase cyclodeaminase) gene was identified as a candidate gene for allelic association with working memory in part from genetic mapping studies of mouse Morris water maze performance. The present study tested variants of this gene for effects on a delayed match-to-sample task of a large sample of younger and older participants. The rs914246 variant, but not the rs914245 variant, of the FTCD gene modulated accuracy in the task for younger, but not older, people under high working memory load. The interaction of haplotype × distance × load had a partial eta squared effect size of 0.015. Analysis of simple main effects had partial eta squared effect sizes ranging from 0.012 to 0.040. A reporter gene assay revealed that the C allele of the rs914246 genotype is functional and a main factor regulating FTCD gene expression. This study extends previous work on the genetics of working memory by revealing that a gene in the glutamatergic pathway modulates working memory in young people but not in older people. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Characterization of a rare variant (c.2635-2A>G) of the MSH2 gene in a family with Lynch syndrome.

    Science.gov (United States)

    Cariola, Filomena; Disciglio, Vittoria; Valentini, Anna M; Lotesoriere, Claudio; Fasano, Candida; Forte, Giovanna; Russo, Luciana; Di Carlo, Antonio; Guglielmi, Floranna; Manghisi, Andrea; Lolli, Ivan; Caruso, Maria L; Simone, Cristiano

    2018-04-01

    Lynch syndrome is caused by germline mutations in one of the mismatch repair genes ( MLH1, MSH2, MSH6, and PMS2) or in the EPCAM gene. Lynch syndrome is defined on the basis of clinical, pathological, and genetic findings. Accordingly, the identification of predisposing genes allows for accurate risk assessment and tailored screening protocols. Here, we report a family case with three family members manifesting the Lynch syndrome phenotype, all of which harbor the rare variant c.2635-2A>G affecting the splice site consensus sequence of intron 15 of the MSH2 gene. This mutation was previously described only in one family with Lynch syndrome, in which mismatch repair protein expression in tumor tissues was not assessed. In this study, we report for the first time the molecular characterization of the MSH2 c.2635-2A>G variant through in silico prediction analysis, microsatellite instability, and mismatch repair protein expression experiments on tumor tissues of Lynch syndrome patients. The potential effect of the splice site variant was revealed by three splicing prediction bioinformatics tools, which suggested the generation of a new cryptic splicing site. The potential pathogenic role of this variant was also revealed by the presence of microsatellite instability and the absence of MSH2/MSH6 heterodimer protein expression in the tumor cells of cancer tissues of the affected family members. We provide compelling evidence in favor of the pathogenic role of the MSH2 variant c.2635-2A>G, which could induce an alteration of the canonical splice site and consequently an aberrant form of the protein product (MSH2).

  10. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    LENUS (Irish Health Repository)

    Pangilinan, Faith

    2012-08-02

    AbstractBackgroundNeural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate\\/B12 pathway genes contribute to NTD risk.MethodsA tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate\\/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects.ResultsNearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003–0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing.ConclusionsTo our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the

  11. Heart failure and sudden cardiac death in heritable thoracic aortic disease caused by pathogenic variants in the SMAD3 gene.

    Science.gov (United States)

    Backer, Julie De; Braverman, Alan C

    2018-05-01

    Predominant cardiovascular manifestations in the spectrum of Heritable Thoracic Aortic Disease include by default aortic root aneurysms- and dissections, which may be associated with aortic valve disease. Mitral- and tricuspid valve prolapse are other commonly recognized features. Myocardial disease, characterized by heart failure and/or malignant arrhythmias has been reported in humans and in animal models harboring pathogenic variants in the Fibrillin1 gene. Description of clinical history of three cases from one family in Ghent (Belgium) and one family in St. Louis (US). We report on three cases from two families presenting end-stage heart failure (in two) and lethal arrhythmias associated with moderate left ventricular dilatation (in one). All three cases harbor a pathogenic variant in the SMAD3 gene, known to cause aneurysm osteoarthritis syndrome, Loeys-Dietz syndrome type 3 or isolated Heritable Thoracic Aortic Disease. These unusual presentations warrant awareness for myocardial disease in patients harboring pathogenic variants in genes causing Heritable Thoracic Aortic Disease and indicate the need for prospective studies in larger cohorts. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  12. Comprehensive Pathway-Based Association Study of DNA Repair Gene Variants and the Risk of Nasopharyngeal Carcinoma

    Science.gov (United States)

    Qin, Hai-De; Shugart, Yin Yao; Bei, Jin-Xin; Pan, Qing-Hua; Chen, Lina; Feng, Qi-Sheng; Chen, Li-Zhen; Huang, Wei; Liu, Jian Jun; Jorgensen, Timothy J.; Zeng, Yi-Xin; Jia, Wei-Hua

    2011-01-01

    DNA repair plays a central role in protecting against environmental carcinogenesis, and genetic variants of DNA repair genes have been reported to be associated with several human malignancies. To assess whether DNA gene variants were associated with nasopharyngeal carcinoma (NPC) risk, a candidate gene association study was conducted among the Cantonese population within the Guangdong Province, China --the ethnic group with the highest risk for NPC. A two-stage study design was utilized. In the discovery stage, 676 tagging SNPs covering 88 DNA repair genes were genotyped in a matched case-control study (cases/controls = 755/755). Eleven SNPs with Ptrend Cantonese population (cases/controls = 1,568/1,297). Two of the SNPs (rs927220 and rs11158728) – both in RAD51L1 – remained strongly associated with NPC. The SNP rs927220 had a significant Pcombined of 5.55 × 10−5, with OR = 1.20 (95%CI = 1.10 to 1.30), Bonferroni corrected P = 0.0381. The other SNP (rs11158728), which is in strong LD with rs927220 (r2 = 0.7), had a significant Pcombined of 2.0 × 10−4, Bonferroni corrected P = 0.1372. Gene-environment interaction analysis suggested that the exposures of salted-fish consumption and cigarette smoking had potential interactions with DNA repair gene variations, but need to be further investigated. Our findings support the notion that DNA repair genes, in particular RAD51L1, play a role in NPC etiology and development. PMID:21368091

  13. Germline Variants in Targeted Tumor Sequencing Using Matched Normal DNA.

    Science.gov (United States)

    Schrader, Kasmintan A; Cheng, Donavan T; Joseph, Vijai; Prasad, Meera; Walsh, Michael; Zehir, Ahmet; Ni, Ai; Thomas, Tinu; Benayed, Ryma; Ashraf, Asad; Lincoln, Annie; Arcila, Maria; Stadler, Zsofia; Solit, David; Hyman, David M; Hyman, David; Zhang, Liying; Klimstra, David; Ladanyi, Marc; Offit, Kenneth; Berger, Michael; Robson, Mark

    2016-01-01

    Tumor genetic sequencing identifies potentially targetable genetic alterations with therapeutic implications. Analysis has concentrated on detecting tumor-specific variants, but recognition of germline variants may prove valuable as well. To estimate the burden of germline variants identified through routine clinical tumor sequencing. Patients with advanced cancer diagnoses eligible for studies of targeted agents at Memorial Sloan Kettering Cancer Center are offered tumor-normal sequencing with MSK-IMPACT, a 341-gene panel. We surveyed the germline variants seen in 187 overlapping genes with Mendelian disease associations in 1566 patients who had undergone tumor profiling between March and October 2014. The number of presumed pathogenic germline variants (PPGVs) and variants of uncertain significance per person in 187 genes associated with single-gene disorders and the proportions of individuals with PPGVs in clinically relevant gene subsets, in genes consistent with known tumor phenotypes, and in genes with evidence of second somatic hits in their tumors. The mean age of the 1566 patients was 58 years, and 54% were women. Presumed pathogenic germline variants in known Mendelian disease-associated genes were identified in 246 of 1566 patients (15.7%; 95% CI, 14.0%-17.6%), including 198 individuals with mutations in genes associated with cancer susceptibility. Germline findings in cancer susceptibility genes were concordant with the individual's cancer type in only 81 of 198 cases (40.9%; 95% CI, 34.3%-47.9%). In individuals with PPGVs retained in the tumor, somatic alteration of the other allele was seen in 39 of 182 cases (21.4%; 95% CI, 16.1%-28.0%), of which 13 cases did not show a known correlation of the germline mutation and a known syndrome. Mutations in non-cancer-related Mendelian disease genes were seen in 55 of 1566 cases (3.5%; 95% CI, 27.1%-45.4%). Almost every individual had more than 1 variant of uncertain significance (1565 of 1566 patients; 99

  14. Clinicopathological differences between variants of the NAB2-STAT6 fusion gene in solitary fibrous tumors of the meninges and extra-central nervous system.

    Science.gov (United States)

    Nakada, Satoko; Minato, Hiroshi; Nojima, Takayuki

    2016-07-01

    Investigations on the NAB2-STAT6 fusion gene in solitary fibrous tumors (SFTs) and hemangiopericytomas (HPCs) have increased since its discovery in 2013. Although several SFTs reported without NAB2-STAT6 fusion gene analysis, we reviewed 546 SFTs/HPCs with NAB2-STAT6 fusion gene analysis in this study and investigated differences between the gene variants. In total, 452 cases tested positive for the NAB2-STAT6 fusion gene, with more than 40 variants being detected. The most frequent of these were NAB2 exon 6-STAT6 exon 16/17/18 and NAB2 exon 4-STAT6 exon 2/3, with the former occurring most frequently in SFTs in meninges, soft tissues, and head and neck; the latter predominated in SFTs in the pleura and lung. There was no difference between the histology of SFTs and fusion gene variants. A follow-up analysis of SFTs showed that 51 of 202 cases had a recurrence, with 18 of 53 meningeal SFTs having a local recurrence and/or metastasis within 0-19 years. In meninges and soft tissue, SFTs with the NAB2 exon 6-STAT6 exon 16/17/18 tended to recur more frequently than SFTs with the NAB2 exon 4-STAT6 exon 2/3. Clinicopathological data, including yearly follow-ups, are required for meningeal SFTs/HPCs to define the correlation of variants of NAB2-STAT6 fusion gene.

  15. Levels of Crotonaldehyde and 4-hydroxy-(E-2-nonenal and Expression of Genes Encoding Carbonyl-Scavenging Enzyme at Critical Node During Rice Seed Aging

    Directory of Open Access Journals (Sweden)

    Fu Shenzao

    2018-05-01

    Full Text Available Abstract:: The critical node (CN is an important stage during seed aging, which is related to effective genebank conservation. Previous studies have demonstrated that proteins undergo carbonylated modification at the CN in rice, indicating oxidative damage. However, the levels of reactive carbonyl species (RCS and the associated scavenging system at the CN are largely unknown. In this study, we optimized methods for the extraction and analysis of RCS from dry rice embryos. In order to acquire seeds at the CN, rice seeds were subjected to natural conditions for 7, 9, 11 and 13 months, and the seed germination rates were reduced to 90%, 82%, 71% and 57%, respectively. We chose the stage with seed germination rate of 82% as the CN according to the rice seed vigor loss curve. The levels of crotonaldehyde and 4-hydroxy-(E-2-nonenal (HNE were significantly increased at the CN. In addition, genes encoding carbonyl-scavenging enzyme, including OsALDHs and OsAKRs, were significantly down-regulated at the CN, and reductions in the expression of OsALDH2-2, OsALDH2-5, OsALDH3-4, OsALDH7, OsAKR1 and OsAKR2 in particular could be responsible for RCS accumulation. Thus, the accumulations of crotonaldehyde and HNE and down-regulation of genes encoding carbonyl-scavenging enzyme might be related to an accelerating loss of seed viability at the CN. Key words: carbonyl-scavenging system, reactive carbonyl species, seed aging, crotonaldehyde, critical node, rice storage

  16. Variant in GALNT3 Gene Linked with Reduced Coronary Artery Disease Risk in Chinese Population.

    Science.gov (United States)

    Guo, Liwei; Li, Duan; Li, Mengting; Li, Lin; Huang, Yanmei

    2017-07-01

    Our previous study found expression of GALNT3 gene was reduced in coronary artery disease (CAD) patients, and it contributed to endothelial injury by regulating apoptosis and matrix metalloproteinase (MMP) expression. GALNT3 gene may be a potential target for future therapeutic intervention of CAD. However, none reports linking the GALNT3 gene to susceptibility of CAD. This study investigated the variant associations of GALNT3 gene and CAD. Thirteen single nucleotide polymorphism (SNP) in and around the GALNT3 gene were tagged and analyzed in CAD patients (n = 1515) and control individuals (n = 5019), and the SNPs with CAD were tested with multiple logistic regression analysis in an additive genetic model (with one degree of freedom) after adjusting for age and sex. Expression of GALNT3 gene was detected by real-time PCR and Western blot. Luciferase reporter assays were used to detect the allele-specific effect of rs4621175 on transcriptional activity. Two GALNT3 markers, rs13427924 and rs4621175, were significantly associated with CAD (odds ratio [OR] = 0.87, p = 1.01 × 10 -3 and OR = 0.75, p = 2.51 × 10 -4 , respectively), and the risk A allele of rs4621175 was associated with lower GALNT3 expression in both mRNA and protein level; also, A allele showed decreased reporter activity. In addition, we found the level of GALNT3 negatively correlated with MMP-2 gene expression. This study identified GALNT3 as a novel gene that rendered patients susceptible to CAD, and the A allele of a disease-associated variant rs4621175 linked reduced CAD risk through decreased GALNT3 expression. These results confirmed the role of GALNT3 gene in CAD and provided new insights into the genetic regulation of the GALNT3 gene with respect to the pathogenesis of CAD.

  17. SCARB1 Gene Variants Are Associated With the Phenotype of Combined High High-Density Lipoprotein Cholesterol and High Lipoprotein (a)

    DEFF Research Database (Denmark)

    Yang, Xiaoping; Sethi, Amar A; Yanek, Lisa R

    2016-01-01

    variants in 6. Functional studies with 4 of the SCARB1 variants (c.386C>T, c.631-14T>G, c.4G>A, and c.631-53(m)C>T & c.726+55(m)CG>CA) showed decreased receptor function in vitro. CONCLUSIONS: Human SCARB1 gene variants are associated with a new lipid phenotype, characterized by high levels of both HDL...

  18. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    DEFF Research Database (Denmark)

    Neve, Bernadette; Fernandez-Zapico, Martin E; Ashkenazi-Katalan, Vered

    2005-01-01

    in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1......,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter...... and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting...

  19. ACSS2 gene variant associated with cleft lip and palate in two independent Hispanic populations.

    Science.gov (United States)

    Dodhia, Sonam; Celis, Katrina; Aylward, Alana; Cai, Yi; Fontana, Maria E; Trespalacios, Alberto; Hoffman, David C; Alfonso, Henry Ostos; Eisig, Sidney B; Su, Gloria H; Chung, Wendy K; Haddad, Joseph

    2017-10-01

    A candidate variant (p.Val496Ala) of the ACSS2 gene (T > C missense, rs59088485 variant at chr20: bp37 33509608) was previously found to consistently segregate with nonsyndromic cleft lip and/or palate (NSCLP) in three Honduran families. Objectives of this study were 1) to investigate the frequency of this ACSS2 variant in Honduran unrelated NSCLP patients and unrelated unaffected controls and 2) to investigate the frequency of this variant in Colombian unrelated affected NSCLP patients and unrelated unaffected controls. Case-control studies. Sanger sequencing of 99 unrelated Honduran NSCLP patients and 215 unrelated unaffected controls for the p.Val496Ala ACSS2 variant was used to determine the carrier frequency in NSCLP patients and controls. Sanger sequencing of 230 unrelated Colombian NSCLP patients and 146 unrelated unaffected controls for the p.Val496Ala ACSS2 variant was used to determine the carrier frequency in NSCLP patients and controls. In the Honduran population, the odds ratio of having NSCLP among carriers of the p.Val496Ala ACSS2 variant was 4.0 (P = .03), with a carrier frequency of seven of 99 (7.1%) in unrelated affected and four of 215 (1.9%) in unrelated unaffected individuals. In the Colombian population, the odds ratio of having NSCLP among carriers of the p.Val496Ala ACSS2 variant was 2.6 (P = .04), with a carrier frequency of 23 of 230 (10.0%) in unrelated affected and six of 146 (4.1%) in unrelated unaffected individuals. These findings support the role of ACSS2 in NSCLP in two independent Hispanic populations from Honduras and Colombia. NA Laryngoscope, 127:E336-E339, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Imputing Variants in HLA-DR Beta Genes Reveals That HLA-DRB1 Is Solely Associated with Rheumatoid Arthritis and Systemic Lupus Erythematosus.

    Directory of Open Access Journals (Sweden)

    Kwangwoo Kim

    Full Text Available The genetic association of HLA-DRB1 with rheumatoid arthritis (RA and systemic lupus erythematosus (SLE is well documented, but association with other HLA-DR beta genes (HLA-DRB3, HLA-DRB4 and HLA-DRB5 has not been thoroughly studied, despite their similar functions and chromosomal positions. We examined variants in all functional HLA-DR beta genes in RA and SLE patients and controls, down to the amino-acid level, to better understand disease association with the HLA-DR locus. To this end, we improved an existing HLA reference panel to impute variants in all protein-coding HLA-DR beta genes. Using the reference panel, HLA variants were inferred from high-density SNP data of 9,271 RA-control subjects and 5,342 SLE-control subjects. Disease association tests were performed by logistic regression and log-likelihood ratio tests. After imputation using the newly constructed HLA reference panel and statistical analysis, we observed that HLA-DRB1 variants better accounted for the association between MHC and susceptibility to RA and SLE than did the other three HLA-DRB variants. Moreover, there were no secondary effects in HLA-DRB3, HLA-DRB4, or HLA-DRB5 in RA or SLE. Of all the HLA-DR beta chain paralogs, those encoded by HLA-DRB1 solely or dominantly influence susceptibility to RA and SLE.

  1. Genetic variants of ghrelin in metabolic disorders.

    Science.gov (United States)

    Ukkola, Olavi

    2011-11-01

    An increasing understanding of the role of genes in the development of obesity may reveal genetic variants that, in combination with conventional risk factors, may help to predict an individual's risk for developing metabolic disorders. Accumulating evidence indicates that ghrelin plays a role in regulating food intake and energy homeostasis and it is a reasonable candidate gene for obesity-related co-morbidities. In cross-sectional studies low total ghrelin concentrations and some genetic polymorphisms of ghrelin have been associated with obesity-associated diseases. The present review highlights many of the important problems in association studies of genetic variants and complex diseases. It is known that population-specific differences in reported associations exist. We therefore conclude that more studies on variants of ghrelin gene are needed to perform in different populations to get deeper understanding on the relationship of ghrelin gene and its variants to obesity. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Association of MEP1A gene variants with insulin metabolism in central European women with polycystic ovary syndrome.

    Science.gov (United States)

    Lam, Uyen D P; Lerchbaum, Elisabeth; Schweighofer, Natascha; Trummer, Olivia; Eberhard, Katharina; Genser, Bernd; Pieber, Thomas R; Obermayer-Pietsch, Barbara

    2014-03-10

    Polycystic ovary syndrome (PCOS) shows not only hyperandrogenemia, hirsutism and fertility problems, but also metabolic disturbances including obesity, cardiovascular events and type-2 diabetes. Accumulating evidence suggests some degree of inflammation associated with prominent aspects of PCOS. We aimed to investigate the association of genetic variants 3'UTR rs17468190 (G/T) of the inflammation-associated gene MEP1A (GenBank ID: NM_005588.2) with metabolic disturbances in PCOS and healthy control women. Genetic variants rs17468190 (G/T) of MEP1A gene were analyzed in 576 PCOS women and 206 controls by using the Taqman fluorogenic 5'-exonuclease assay. This polymorphism was tested for association with anthropometric, metabolic, hormonal, and functional parameters of PCOS. There was a borderline significant difference in genotype distribution between PCOS and control women (p=0.046). In overweight/obese PCOS patients, the variants rs17468190 (G/T) in the MEP1A gene are associated with glucose and insulin metabolism. In a dominant model, the GG genotype of the MEP1A gene was more strongly associated with insulin metabolism in overweight/obese PCOS women (body mass index, BMI>25 kg/m(2)), than in GT+TT genotypes. The MEP1A GG-carriers showed a significantly increased homeostatic model assessment - insulin resistance (HOMA-IR) (p=0.003), elevation of fasting insulin (p=0.004) and stimulated insulin (30 min, pdisease modification in PCOS. It might contribute to the abnormalities of glucose metabolism and insulin sensitivity and serve as a diagnostic or therapeutic target gene for PCOS. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Sequencing of sporadic Attention-Deficit Hyperactivity Disorder (ADHD) identifies novel and potentially pathogenic de novo variants and excludes overlap with genes associated with autism spectrum disorder.

    Science.gov (United States)

    Kim, Daniel Seung; Burt, Amber A; Ranchalis, Jane E; Wilmot, Beth; Smith, Joshua D; Patterson, Karynne E; Coe, Bradley P; Li, Yatong K; Bamshad, Michael J; Nikolas, Molly; Eichler, Evan E; Swanson, James M; Nigg, Joel T; Nickerson, Deborah A; Jarvik, Gail P

    2017-06-01

    Attention-Deficit Hyperactivity Disorder (ADHD) has high heritability; however, studies of common variation account for ADHD variance. Using data from affected participants without a family history of ADHD, we sought to identify de novo variants that could account for sporadic ADHD. Considering a total of 128 families, two analyses were conducted in parallel: first, in 11 unaffected parent/affected proband trios (or quads with the addition of an unaffected sibling) we completed exome sequencing. Six de novo missense variants at highly conserved bases were identified and validated from four of the 11 families: the brain-expressed genes TBC1D9, DAGLA, QARS, CSMD2, TRPM2, and WDR83. Separately, in 117 unrelated probands with sporadic ADHD, we sequenced a panel of 26 genes implicated in intellectual disability (ID) and autism spectrum disorder (ASD) to evaluate whether variation in ASD/ID-associated genes were also present in participants with ADHD. Only one putative deleterious variant (Gln600STOP) in CHD1L was identified; this was found in a single proband. Notably, no other nonsense, splice, frameshift, or highly conserved missense variants in the 26 gene panel were identified and validated. These data suggest that de novo variant analysis in families with independently adjudicated sporadic ADHD diagnosis can identify novel genes implicated in ADHD pathogenesis. Moreover, that only one of the 128 cases (0.8%, 11 exome, and 117 MIP sequenced participants) had putative deleterious variants within our data in 26 genes related to ID and ASD suggests significant independence in the genetic pathogenesis of ADHD as compared to ASD and ID phenotypes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. The influence of the stem cell marker ALDH and the EGFR-PI3 kinase act signaling pathway on the radiation resistance of human tumor cell lines

    International Nuclear Information System (INIS)

    Mihatsch, Julia

    2014-01-01

    present study was to investigate the role of CSCs in resistance of radioselected subclones of non-small cell lung cancer (NSCLC) and breast cancer cells to irradiation. Additionally, the role of EGFR dependent PI3K/Akt/DNA-PKcs signaling in the context of CSC-mediated radiotherapy resistance was investigated. The following major results were obtained: (1) Radioresistant tumor cells from NSCLC-A549 cells as well as SK-BR-3 breast cancer cells could be isolated in vitro by a radioselection process. (2) In line with the proposed CSC biological behaviors radioselected cells presented extended population doubling time and decreased plating efficiency. (3) Among identified potential CSC markers such as CD133, Oct-4, Sox2 or aldehyde dehydrogenase (ALDH) expression, solely expression of the embryonic stem cell marker Oct-4 was increased in the radio-selected SK-BR-3 cells. However, increased ALDH activity but not enhanced ALDH protein expression was associated with radioresis-tance of A549 cells. (4) Respectively, ALDH activity was found to be involved in radio-resistance partially through PI3K pathway. (5) Using an siRNA approach, a differential effect of ALDH1 vs ALDH2 in terms of post-irradiation survival of tumor cells was demonstrated. In this context and in contrast to the role of ALDH2 a prosurvival effect of ALDH1 could be observed. (6) Radioresistance of IR-selected tumor cells was partially mediated through EGFR/PI3K/DNA-PKcs-dependent accelerated repair of DNA-DSBs. Thus, based on the described major findings in this study it is proposed that targeting of PI3K/Akt pathway and ALDH1 might be effective approaches towards overcoming CSC-mediated radiotherapy resistance.

  5. Y2 receptor gene variants reduce the risk of hypertension in obese children and adolescents.

    Science.gov (United States)

    Santoro, Nicola; Del Giudice, Emanuele Miraglia; Grandone, Anna; Marzuillo, Pierluigi; Cozzolino, Domenico; Di Salvo, Giovanni; Pacileo, Giuseppe; Calabrò, Raffaele; Perrone, Laura

    2008-08-01

    To verify whether peptide YY (PYY) and its Y2 receptor (Y2R) gene variants can be associated with obesity or hypertension or both in a cohort of obese children and adolescents. Two hundred and twenty-nine obese children (105 girls, mean z-score BMI 5.1 +/- 2.4; mean age 10.5 +/- 2.9 years) and 250 age and sex-matched lean controls (130 women, mean z-score BMI 0.5 +/- 1.1; mean age 10.3 +/- 2.8) were enrolled in the study. Height, weight, BMI, waist circumference and 24-h systolic and diastolic blood pressure were measured. Night-time, day-time and 24-h systolic and diastolic blood pressures were evaluated by 24 h ambulatory blood pressure measurement, and appropriate standard deviation scores according to sex, age and height were calculated. Molecular screening of the PYY and Y2R genes was performed. No new mutations were found. We observed three previously described polymorphisms: G767C on PYY and T585C and T936C on Y2R. An association study was carried out in obese patients. No associations were found between the PYY genotypes and the studied phenotypes. The Y2R gene variants, T585C and T936C, which are in almost complete linkage disequilibrium, were found to be associated with night-time, day-time and 24-h systolic and diastolic blood pressures. In particular, subject homozygotes for the T allele showed lower systolic and diastolic blood pressure values compared with the other genotypes. Moreover, obese children homozygous for the T585 allele showed a lower risk of developing hypertension than patients carrying the CC and CT genotypes (chi 6.9; df = 1, P = 0.03; odds ratio = 0.5, 95% confidence interval: 0.27-0.88). Our results suggest that Y2R gene variants are involved in blood pressure regulation in obese children and adolescents.

  6. Germline variants in the ATM gene and breast cancer susceptibility in Moroccan women: A meta-analysis

    Directory of Open Access Journals (Sweden)

    Chaymaa Marouf

    2017-10-01

    Full Text Available Background: The ATM gene encoding a large protein kinase is mutated in ataxia-telangiectasia (AT, an autosomale recessive disease characterized by neurological and immunological symptoms, and cancer predisposition. Previous studies suggest that heterozygous carriers of ATM mutations have an increased risk of breast cancer compared with non carriers, but the contribution of specific variants has been difficult to estimate. However, two functional ATM variants, c.7271T > G and c.1066–6T > G (IVS10–6T > G, are associated with increased risk for the development of breast cancer. Methods: To investigate the role of ATM in breast cancer susceptibility, we genotyped 163 case patients with breast cancer and 150 healthy control individuals for the c.7271T > G and c.1066–6T > G (IVS10–6T > G ATM variants using polymerase chain reaction (PCR-restriction fragment length polymorphism (RFLP analysis. Results: We did not detect the ATM c.7271T > G and c.1066–6T > G (IVS10–6T > G mutations in any of 150 healthy control individuals and 163 breast cancer patients, including 59 women diagnosed with breast cancer at an early age ( G (IVS10–6T > G mutation and the rare c.7271T > G variant are not a risk factor for developing breast cancer in the Moroccan population. Larger and/or combined association studies are needed to clarify this issue. Keywords: Breast cancers, ATM gene, Germline mutation, Genetic susceptibility, Moroccan population

  7. Common Variants of Homocysteine Metabolism Pathway Genes and Risk of Type 2 Diabetes and Related Traits in Indians

    Directory of Open Access Journals (Sweden)

    Ganesh Chauhan

    2012-01-01

    Full Text Available Hyperhomocysteinemia, a risk factor for cardiovascular disorder, obesity, and type 2 diabetes, is prevalent among Indians who are at high risk of these metabolic disorders. We evaluated association of common variants of genes involved in homocysteine metabolism or its levels with type 2 diabetes, obesity, and related traits in North Indians. We genotyped 90 variants in initial phase (2.115 subjects and replicated top signals in an independent sample set (2.085 subjects. The variant MTHFR-rs1801133 was the top signal for association with type 2 diabetes (OR=0.78 (95%  CI=0.67–0.92, P=0.003 and was also associated with 2 h postload plasma glucose (P=0.04, high-density lipoprotein cholesterol (P=0.004, and total cholesterol (P=0.01 in control subjects. These associations were neither replicated nor significant after meta-analysis. Studies involving a larger study population and different ethnic groups are required before ruling out the role of these important candidate genes in type 2 diabetes, obesity, and related traits.

  8. The 625G>A SCAD gene variant is common but not associated with increased C4-carnitine in newborn blood spots

    NARCIS (Netherlands)

    van Maldegem, B. T.; Waterham, H. R.; Duran, M.; van der Vlies, M.; van Woerden, C. S.; Bobu, L. L.; Wanders, R. J. A.; Wijburg, F. A.

    2005-01-01

    The 625G>A variant of the short-chain acyl-CoA dehydrogenase (SCAD) gene is considered to confer susceptibility for developing 'clinical SCAD deficiency' and appears to be common in the general population. To determine the frequency of the 625G>A variant in The Netherlands, we analysed 1036

  9. Sequence variants of the DFNB31 gene among Usher syndrome patients of diverse origin

    Science.gov (United States)

    Aller, Elena; Jaijo, Teresa; van Wijk, Erwin; Ebermann, Inga; Kersten, Ferry; García-García, Gema; Voesenek, Krysta; Aparisi, María José; Hoefsloot, Lies; Cremers, Cor; Díaz-Llopis, Manuel; Pennings, Ronald; Bolz, Hanno J.; Kremer, Hannie; Millán, José M.

    2010-01-01

    Purpose It has been demonstrated that mutations in deafness, autosomal recessive 31 (DFNB31), the gene encoding whirlin, is responsible for nonsyndromic hearing loss (NSHL; DFNB31) and Usher syndrome type II (USH2D). We screened DFNB31 in a large cohort of patients with different clinical subtypes of Usher syndrome (USH) to determine the prevalence of DFNB31 mutations among USH patients. Methods DFNB31 was screened in 149 USH2, 29 USH1, six atypical USH, and 11 unclassified USH patients from diverse ethnic backgrounds. Mutation detection was performed by direct sequencing of all coding exons. Results We identified 38 different variants among 195 patients. Most variants were clearly polymorphic, but at least two out of the 15 nonsynonymous variants (p.R350W and p.R882S) are predicted to impair whirlin structure and function, suggesting eventual pathogenicity. No putatively pathogenic mutation was found in the second allele of patients with these mutations. Conclusions DFNB31 is not a major cause of USH. PMID:20352026

  10. Variants in the dopamine-4-receptor gene promoter are not associated with sensation seeking in skiers.

    Science.gov (United States)

    Thomson, Cynthia J; Rajala, Amelia K; Carlson, Scott R; Rupert, Jim L

    2014-01-01

    Sensation seeking is a personality trait that has been associated with disinhibited behaviours including substance use and gambling, but also with high-risk sport practices including skydiving, paragliding, and downhill skiing. Twin studies have shown that sensation seeking is moderately heritable, and candidate genes encoding components involved in dopaminergic transmission have been investigated as contributing to this type of behaviour. To determine whether variants in the regulatory regions of the dopamine-4-receptor gene (DRD4) influenced sport-specific sensation seeking, we analyzed five polymorphisms (-1106T/C, -906T/C, -809G/A, -291C/T, 120-bp duplication) in the promoter region of the gene in a cohort of skiers and snowboarders (n = 599) that represented a broad range of sensation seeking behaviours. We grouped subjects by genotype at each of the five loci and compared impulsive sensation seeking and domain-specific (skiing) sensation seeking between groups. There were no significant associations between genotype(s) and general or domain-specific sensation seeking in the skiers and snowboarders, suggesting that while DRD4 has previously been implicated in sensation seeking, the promoter variants investigated in this study do not contribute to sensation seeking in this athlete population.

  11. Haplotype analysis of common variants in the BRCA1 gene and risk of sporadic breast cancer

    International Nuclear Information System (INIS)

    Cox, David G; Kraft, Peter; Hankinson, Susan E; Hunter, David J

    2005-01-01

    Truncation mutations in the BRCA1 gene cause a substantial increase in risk of breast cancer. However, these mutations are rare in the general population and account for little of the overall incidence of sporadic breast cancer. We used whole-gene resequencing data to select haplotype tagging single nucleotide polymorphisms, and examined the association between common haplotypes of BRCA1 and breast cancer in a nested case-control study in the Nurses' Health Study (1323 cases and 1910 controls). One haplotype was associated with a slight increase in risk (odds ratio 1.18, 95% confidence interval 1.02–1.37). A significant interaction (P = 0.05) was seen between this haplotype, positive family history of breast cancer, and breast cancer risk. Although not statistically significant, similar interactions were observed with age at diagnosis and with menopausal status at diagnosis; risk tended to be higher among younger, pre-menopausal women. We have described a haplotype in the BRCA1 gene that was associated with an approximately 20% increase in risk of sporadic breast cancer in the general population. However, the functional variant(s) responsible for the association are unclear

  12. Features of progression of chronic hepatitis C in children with different variants of polymorphism of the gene IL-28B

    Directory of Open Access Journals (Sweden)

    Berezenko V.S.

    2016-03-01

    Full Text Available Purpose. To study the features of the progression of chronic hepatitis C in children with different variants of polymorphism of the gene IL-28B. Materials and methods. The study involved 57 children aged 3–18 years with CHC. All patients were involved in clinical, laboratory and instrumental examination. The stage of fibrosis was assessed morphologicallyon a scale METAVIR, by the calculation method — Fibro Test, on APRI index, and by the concentration of hyaluronic acid (HA, transforming growth factor TGF- β1 in serum usingIFA. The SNP genotypes of rs8099917 and rs12979860 lociin IL-28B were determinedby the method of the polymer chain reaction (PCR. A statistical analysis of the data was conducted. Resume. Most of the patients were children with chronic hepatitis C who had genotype CT at rs12979860 locus of the gene IL-28B (54% and the TT geno-type at rs8099917 locus (60%. It was found that fibrogenesis in the liver of patients with chronic hepatitis C depends on the polymorphism of the gene IL-28B. Unfavorable genotypevariants for the development of liver fibrosis are: TT (rs12979860, CT (rs12979860 and TG/GG (rs8099917. Variants CC (rs12979860 and TT (rs8099917 have a beneficial effect on the course of chronic hepatitis C, including patients with a lower stage of fibrosis. To determine the risk of progression of chronic hepatitis C it may be sufficient to determine the polymorphism of rs12979860locusin the gene IL-28B. Conclusions.The polymorphism variants CC (rs12979860 and TT (rs8099917of the gene IL-28Bare more favorable (lower severity of fibrosis in the progression of chronic hepatitis C in children. Variant TT (rs12979860 in the polymorphism of the gene IL-28B is associated with the progression of hepatitis — faster development of liver fibrosis.

  13. Detection of S-gene 'a' determinant variants in hepatitis B patients with both positive HBsAg and HBsAb markers

    International Nuclear Information System (INIS)

    Wu Yueping; Ling Yongwu; Huang Songping; Wang Shipeng; Chen Yufeng; Mao Liping; Lu Jianrong

    2005-01-01

    Objective: To explore the S-gene 'a' determinant variants in hepatitis B patients with both positive HBsAg and HBsAb markers and the effect on the antigenicity of HBsAg. Methods: Quantitative determination of HBV - DNA with competent PCR microfluidic chit method was performed in eight sera specimens from seven hepatitis B patients with both positive HBsAg and HBsAb markers. HBV S-gene was amplified with nested PCR, the PCR product was directly examined for any sequence variant of the amino acids. HBV markers were tested with the very sensitive ELISA/MEIA method in these seven patients. The above rests were also performed in 15 children after failed immunization with hepatitis B vaccine and 9 recipients of liver transplantation for terminal hepatitis B treated with HBIG and lamivudine, serving as controls. Results: The HBsAb contents in the seven patients were all below 80 mIu/ml. Two of the patients with positive HBV-DNA showed no 'a' determinant variant. Two of the four HBV-DNA negative patients demonstrated amino-acid variants (126, 131). One patients who was originally HBV-DNA positive but later turned negative after treatment with interferon and lamivudine demonstrated variant (126). In the 9 patients after successful liver transplantation, the HBsAb contents were all about 150mIu/ml with negative HBV-DNA and no variant. In the 15 immunization failures, HBV-DNA was positive in 14 of them, with 2 cases of variant at 145, 1 case at 126 and 1 case at 134. Conclusion: In some patients with chronic B hepatitis with both positive HBsAg and HBsAb markers, as well as in some vaccine immunization failures, there were 'a' determinant variants, which might alter the antigenicity of HBsAg with escape from the neutralization of low HBsAb. The 'a' determinant variant might also affect the replication of the virus. In this study, no variant was shown in patients after successful liver transplantation. However, the number of patients was too small and the result was of no

  14. Genetics and alcoholism.

    Science.gov (United States)

    Edenberg, Howard J; Foroud, Tatiana

    2013-08-01

    Alcohol is widely consumed; however, excessive use creates serious physical, psychological and social problems and contributes to the pathogenesis of many diseases. Alcohol use disorders (that is, alcohol dependence and alcohol abuse) are maladaptive patterns of excessive drinking that lead to serious problems. Abundant evidence indicates that alcohol dependence (alcoholism) is a complex genetic disease, with variations in a large number of genes affecting a person's risk of alcoholism. Some of these genes have been identified, including two genes involved in the metabolism of alcohol (ADH1B and ALDH2) that have the strongest known affects on the risk of alcoholism. Studies continue to reveal other genes in which variants affect the risk of alcoholism or related traits, including GABRA2, CHRM2, KCNJ6 and AUTS2. As more variants are analysed and studies are combined for meta-analysis to achieve increased sample sizes, an improved picture of the many genes and pathways that affect the risk of alcoholism will be possible.

  15. Characterisation of the legume SERK-NIK gene superfamily including splice variants: Implications for development and defence

    Directory of Open Access Journals (Sweden)

    Rose Ray J

    2011-03-01

    Full Text Available Abstract Background SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK genes are part of the regulation of diverse signalling events in plants. Current evidence shows SERK proteins function both in developmental and defence signalling pathways, which occur in response to both peptide and steroid ligands. SERKs are generally present as small gene families in plants, with five SERK genes in Arabidopsis. Knowledge gained primarily through work on Arabidopsis SERKs indicates that these proteins probably interact with a wide range of other receptor kinases and form a fundamental part of many essential signalling pathways. The SERK1 gene of the model legume, Medicago truncatula functions in somatic and zygotic embryogenesis, and during many phases of plant development, including nodule and lateral root formation. However, other SERK genes in M. truncatula and other legumes are largely unidentified and their functions unknown. Results To aid the understanding of signalling pathways in M. truncatula, we have identified and annotated the SERK genes in this species. Using degenerate PCR and database mining, eight more SERK-like genes have been identified and these have been shown to be expressed. The amplification and sequencing of several different PCR products from one of these genes is consistent with the presence of splice variants. Four of the eight additional genes identified are upregulated in cultured leaf tissue grown on embryogenic medium. The sequence information obtained from M. truncatula was used to identify SERK family genes in the recently sequenced soybean (Glycine max genome. Conclusions A total of nine SERK or SERK-like genes have been identified in M. truncatula and potentially 17 in soybean. Five M. truncatula SERK genes arose from duplication events not evident in soybean and Lotus. The presence of splice variants has not been previously reported in a SERK gene. Upregulation of four newly identified SERK genes (in addition to the

  16. Iron-related gene variants and brain iron in multiple sclerosis and healthy individuals

    Directory of Open Access Journals (Sweden)

    Jesper Hagemeier

    2018-01-01

    Full Text Available Brain iron homeostasis is known to be disturbed in multiple sclerosis (MS, yet little is known about the association of common gene variants linked to iron regulation and pathological tissue changes in the brain. In this study, we investigated the association of genetic determinants linked to iron regulation with deep gray matter (GM magnetic susceptibility in both healthy controls (HC and MS patients. Four hundred (400 patients with MS and 150 age- and sex-matched HCs were enrolled and obtained 3 T MRI examination. Three (3 single nucleotide polymorphisms (SNPs associated with iron regulation were genotyped: two SNPs in the human hereditary hemochromatosis protein gene HFE: rs1800562 (C282Y mutation and rs1799945 (H63D mutation, as well as the rs1049296 SNP in the transferrin gene (C2 mutation. The effects of disease and genetic status were studied using quantitative susceptibility mapping (QSM voxel-based analysis (VBA and region-of-interest (ROI analysis of the deep GM. The general linear model framework was used to compare groups. Analyses were corrected for age and sex, and adjusted for false discovery rate. We found moderate increases in susceptibility in the right putamen of participants with the C282Y (+6.1 ppb and H63D (+6.9 ppb gene variants vs. non-carriers, as well as a decrease in thalamic susceptibility of progressive MS patients with the C282Y mutation (left: −5.3 ppb, right: −6.7 ppb, p < 0.05. Female MS patients had lower susceptibility in the caudate (−6.0 ppb and putamen (left: −3.9 ppb, right: −4.6 ppb than men, but only when they had a wild-type allele (p < 0.05. Iron-gene linked increases in putamen susceptibility (in HC and relapsing remitting MS and decreases in thalamus susceptibility (in progressive MS, coupled with apparent sex interactions, indicate that brain iron in healthy and disease states may be influenced by genetic factors.

  17. Integrated Enrichment Analysis of Variants and Pathways in Genome-Wide Association Studies Indicates Central Role for IL-2 Signaling Genes in Type 1 Diabetes, and Cytokine Signaling Genes in Crohn's Disease

    Science.gov (United States)

    Carbonetto, Peter; Stephens, Matthew

    2013-01-01

    Pathway analyses of genome-wide association studies aggregate information over sets of related genes, such as genes in common pathways, to identify gene sets that are enriched for variants associated with disease. We develop a model-based approach to pathway analysis, and apply this approach to data from the Wellcome Trust Case Control Consortium (WTCCC) studies. Our method offers several benefits over existing approaches. First, our method not only interrogates pathways for enrichment of disease associations, but also estimates the level of enrichment, which yields a coherent way to promote variants in enriched pathways, enhancing discovery of genes underlying disease. Second, our approach allows for multiple enriched pathways, a feature that leads to novel findings in two diseases where the major histocompatibility complex (MHC) is a major determinant of disease susceptibility. Third, by modeling disease as the combined effect of multiple markers, our method automatically accounts for linkage disequilibrium among variants. Interrogation of pathways from eight pathway databases yields strong support for enriched pathways, indicating links between Crohn's disease (CD) and cytokine-driven networks that modulate immune responses; between rheumatoid arthritis (RA) and “Measles” pathway genes involved in immune responses triggered by measles infection; and between type 1 diabetes (T1D) and IL2-mediated signaling genes. Prioritizing variants in these enriched pathways yields many additional putative disease associations compared to analyses without enrichment. For CD and RA, 7 of 8 additional non-MHC associations are corroborated by other studies, providing validation for our approach. For T1D, prioritization of IL-2 signaling genes yields strong evidence for 7 additional non-MHC candidate disease loci, as well as suggestive evidence for several more. Of the 7 strongest associations, 4 are validated by other studies, and 3 (near IL-2 signaling genes RAF1, MAPK14

  18. Genetic variants in promoters and coding regions of the muscle glycogen synthase and the insulin-responsive GLUT4 genes in NIDDM

    DEFF Research Database (Denmark)

    Bjørbaek, C; Echwald, Søren Morgenthaler; Hubricht, P

    1994-01-01

    To examine the hypothesis that variants in the regulatory or coding regions of the glycogen synthase (GS) and insulin-responsive glucose transporter (GLUT4) genes contribute to insulin-resistant glucose processing of muscle from non-insulin-dependent diabetes mellitus (NIDDM) patients, promoter...... volunteers. By applying inverse polymerase chain reaction and direct DNA sequencing, 532 base pairs (bp) of the GS promoter were identified and the transcriptional start site determined by primer extension. SSCP scanning of the promoter region detected five single nucleotide substitutions, positioned at 42......'-untranslated region, and the coding region of the GLUT4 gene showed four polymorphisms, all single nucleotide substitutions, positioned at -581, 1, 30, and 582. None of the three changes in the regulatory region of the gene had any major influence on expression of the GLUT4 gene in muscle. The variant at 582...

  19. [Association analysis of SNP-63 and indel-19 variant in the calpain-10 gene with polycystic ovary syndrome in women of reproductive age].

    Science.gov (United States)

    Flores-Martínez, Silvia Esperanza; Castro-Martínez, Anna Gabriela; López-Quintero, Andrés; García-Zapién, Alejandra Guadalupe; Torres-Rodríguez, Ruth Noemí; Sánchez-Corona, José

    2015-01-01

    Polycystic ovary syndrome is a complex and heterogeneous disease involving both reproductive and metabolic problems. It has been suggested a genetic predisposition in the etiology of this syndrome. The identification of calpain-10 gene (CAPN10) as the first candidate gene for type 2 diabetes mellitus, has focused the interest in investigating their possible relation with the polycystic ovary syndrome, because this syndrome is associated with hyperinsulinemia and insulin resistance, two metabolic abnormalities associated with type 2 diabetes mellitus. To investigate if there is association between the SNP-63 and the variant indel-19 of the CAPN10 gene and polycystic ovary syndrome in women of reproductive age. This study included 101 women (55 with polycystic ovary syndrome and 46 without polycystic ovary syndrome). The genetic variant indel-19 was identified by electrophoresis of the amplified fragments by PCR, and the SNP-63 by PCR-RFLP. The allele and genotype frequencies of the two variants do not differ significatly between women with polycystic ovary syndrome and control women group. The haplotype 21 (defined by the insertion allele of indel-19 variant and C allele of SNP-63) was found with higher frequency in both study groups, being more frequent in the polycystic ovary syndrome patients group, however, this difference was not statistically significant (p = 0.8353). The results suggest that SNP-63 and indel-19 variant of the CAPN10 gene do not represent a risk factor for polycystic ovary syndrome in our patients group. Copyright © 2015. Published by Masson Doyma México S.A.

  20. A targeted genotyping approach enhances identification of variants in taste receptor and appetite/reward genes of potential functional importance for obesity-related porcine traits

    DEFF Research Database (Denmark)

    Cirera, S.; Clop, A.; Jacobsen, M. J.

    2018-01-01

    Taste receptors (TASRs) and appetite and reward (AR) mechanisms influence eating behaviour, which in turn affects food intake and risk of obesity. In a previous study, we used next generation sequencing to identify potentially functional mutations in TASR and AR genes and found indications...... for genetic associations between identified variants and growth and fat deposition in a subgroup of animals (n = 38) from the UNIK resource pig population. This population was created for studying obesity and obesity-related diseases. In the present study we validated results from our previous study...... by investigating genetic associations between 24 selected single nucleotide variants in TASR and AR gene variants and 35 phenotypes describing obesity and metabolism in the entire UNIK population (n = 564). Fifteen variants showed significant association with specific obesity-related phenotypes after Bonferroni...

  1. Severe hypertriglyceridemia in a patient heterozygous for a lipoprotein lipase gene allele with two novel missense variants.

    Science.gov (United States)

    Kassner, Ursula; Salewsky, Bastian; Wühle-Demuth, Marion; Szijarto, Istvan Andras; Grenkowitz, Thomas; Binner, Priska; März, Winfried; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja

    2015-09-01

    Rare monogenic hyperchylomicronemia is caused by loss-of-function mutations in genes involved in the catabolism of triglyceride-rich lipoproteins, including the lipoprotein lipase gene, LPL. Clinical hallmarks of this condition are eruptive xanthomas, recurrent pancreatitis and abdominal pain. Patients with LPL deficiency and severe or recurrent pancreatitis are eligible for the first gene therapy treatment approved by the European Union. Therefore the precise molecular diagnosis of familial hyperchylomicronemia may affect treatment decisions. We present a 57-year-old male patient with excessive hypertriglyceridemia despite intensive lipid-lowering therapy. Abdominal sonography showed signs of chronic pancreatitis. Direct DNA sequencing and cloning revealed two novel missense variants, c.1302A>T and c.1306G>A, in exon 8 of the LPL gene coexisting on the same allele. The variants result in the amino-acid exchanges p.(Lys434Asn) and p.(Gly436Arg). They are located in the carboxy-terminal domain of lipoprotein lipase that interacts with the glycosylphosphatidylinositol-anchored HDL-binding protein (GPIHBP1) and are likely of functional relevance. No further relevant mutations were found by direct sequencing of the genes for APOA5, APOC2, LMF1 and GPIHBP1. We conclude that heterozygosity for damaging mutations of LPL may be sufficient to produce severe hypertriglyceridemia and that chylomicronemia may be transmitted in a dominant manner, at least in some families.

  2. Characterization of SMAD3 Gene Variants for Possible Roles in Ventricular Septal Defects and Other Congenital Heart Diseases.

    Directory of Open Access Journals (Sweden)

    Fei-Feng Li

    Full Text Available Nodal/TGF signaling pathway has an important effect at early stages of differentiation of human embryonic stem cells in directing them to develop into different embryonic lineages. SMAD3 is a key intracellular messenger regulating factor in the Nodal/TGF signaling pathway, playing important roles in embryonic and, particularly, cardiovascular system development. The aim of this work was to find evidence on whether SMAD3 variations might be associated with ventricular septal defects (VSD or other congenital heart diseases (CHD.We sequenced the SMAD3 gene for 372 Chinese Han CHD patients including 176 VSD patients and evaluated SNP rs2289263, which is located before the 5'UTR sequence of the gene. The statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 13.0. The Hardy-Weinberg equilibrium test of the population was carried out using the online software OEGE.Three heterozygous variants in SMAD3 gene, rs2289263, rs35874463 and rs17228212, were identified. Statistical analyses showed that the rs2289263 variant located before the 5'UTR sequence of SMAD3 gene was associated with the risk of VSD (P value=0.013 <0.05.The SNP rs2289263 in the SMAD3 gene is associated with VSD in Chinese Han populations.

  3. Germline Variants of Prostate Cancer in Japanese Families.

    Directory of Open Access Journals (Sweden)

    Takahide Hayano

    Full Text Available Prostate cancer (PC is the second most common cancer in men. Family history is the major risk factor for PC. Only two susceptibility genes were identified in PC, BRCA2 and HOXB13. A comprehensive search of germline variants for patients with PC has not been reported in Japanese families. In this study, we conducted exome sequencing followed by Sanger sequencing to explore responsible germline variants in 140 Japanese patients with PC from 66 families. In addition to known susceptibility genes, BRCA2 and HOXB13, we identified TRRAP variants in a mutually exclusive manner in seven large PC families (three or four patients per family. We also found shared variants of BRCA2, HOXB13, and TRRAP from 59 additional small PC families (two patients per family. We identified two deleterious HOXB13 variants (F127C and G132E. Further exploration of the shared variants in rest of the families revealed deleterious variants of the so-called cancer genes (ATP1A1, BRIP1, FANCA, FGFR3, FLT3, HOXD11, MUTYH, PDGFRA, SMARCA4, and TCF3. The germline variant profile provides a new insight to clarify the genetic etiology and heterogeneity of PC among Japanese men.

  4. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database

    DEFF Research Database (Denmark)

    Thompson, Bryony A; Spurdle, Amanda B; Plazzer, John-Paul

    2014-01-01

    and apply a standardized classification scheme to constitutional variants in the Lynch syndrome-associated genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist in variant classification and was recognized through microattribution. The scheme was refined by multidisciplinary...... are now possible for 1,370 variants that were not obviously protein truncating from nomenclature. This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation......The clinical classification of hereditary sequence variants identified in disease-related genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test...

  5. Incidental copy-number variants identified by routine genome testing in a clinical population

    Science.gov (United States)

    Boone, Philip M.; Soens, Zachry T.; Campbell, Ian M.; Stankiewicz, Pawel; Cheung, Sau Wai; Patel, Ankita; Beaudet, Arthur L.; Plon, Sharon E.; Shaw, Chad A.; McGuire, Amy L.; Lupski, James R.

    2013-01-01

    Purpose Mutational load of susceptibility variants has not been studied on a genomic scale in a clinical population, nor has the potential to identify these mutations as incidental findings during clinical testing been systematically ascertained. Methods Array comparative genomic hybridization, a method for genome-wide detection of DNA copy-number variants, was performed clinically on DNA from 9,005 individuals. Copy-number variants encompassing or disrupting single genes were identified and analyzed for their potential to confer predisposition to dominant, adult-onset disease. Multigene copy-number variants affecting dominant, adult-onset cancer syndrome genes were also assessed. Results In our cohort, 83 single-gene copy-number variants affected 40 unique genes associated with dominant, adult-onset disorders and unrelated to the patients’ referring diagnoses (i.e., incidental) were found. Fourteen of these copy-number variants are likely disease-predisposing, 25 are likely benign, and 44 are of unknown clinical consequence. When incidental copy-number variants spanning up to 20 genes were considered, 27 copy-number variants affected 17 unique genes associated with dominant, adult-onset cancer predisposition. Conclusion Copy-number variants potentially conferring susceptibility to adult-onset disease can be identified as incidental findings during routine genome-wide testing. Some of these mutations may be medically actionable, enabling disease surveillance or prevention; however, most incidentally observed single-gene copy-number variants are currently of unclear significance to the patient. PMID:22878507

  6. Spectrum and Frequency of the GJB2 Gene Pathogenic Variants in a Large Cohort of Patients with Hearing Impairment Living in a Subarctic Region of Russia (the Sakha Republic.

    Directory of Open Access Journals (Sweden)

    Nikolay A Barashkov

    Full Text Available Pathogenic variants in the GJB2 gene, encoding connexin 26, are known to be a major cause of hearing impairment (HI. More than 300 allelic variants have been identified in the GJB2 gene. Spectrum and allelic frequencies of the GJB2 gene vary significantly among different ethnic groups worldwide. Until now, the spectrum and frequency of the pathogenic variants in exon 1, exon 2 and the flanking intronic regions of the GJB2 gene have not been described thoroughly in the Sakha Republic (Yakutia, which is located in a subarctic region in Russia. The complete sequencing of the non-coding and coding regions of the GJB2 gene was performed in 393 patients with HI (Yakuts-296, Russians-51, mixed and other ethnicities-46 and in 187 normal hearing individuals of Yakut (n = 107 and Russian (n = 80 populations. In the total sample (n = 580, we revealed 12 allelic variants of the GJB2 gene, 8 of which were recessive pathogenic variants. Ten genotypes with biallelic recessive pathogenic variants in the GJB2 gene (in a homozygous or a compound heterozygous state were found in 192 out of 393 patients (48.85%. We found that the most frequent GJB2 pathogenic variant in the Yakut patients was c.-23+1G>A (51.82% and that the second most frequent was c.109G>A (2.37%, followed by c.35delG (1.64%. Pathogenic variants с.35delG (22.34%, c.-23+1G>A (5.31%, and c.313_326del14 (2.12% were found to be the most frequent among the Russian patients. The carrier frequencies of the c.-23+1G>A and с.109G>A pathogenic variants in the Yakut control group were 10.20% and 2.80%, respectively. The carrier frequencies of с.35delG and c.101T>C were identical (2.5% in the Russian control group. We found that the contribution of the GJB2 gene pathogenic variants in HI in the population of the Sakha Republic (48.85% was the highest among all of the previously studied regions of Asia. We suggest that extensive accumulation of the c.-23+1G>A pathogenic variant in the indigenous Yakut

  7. Spectrum and Frequency of the GJB2 Gene Pathogenic Variants in a Large Cohort of Patients with Hearing Impairment Living in a Subarctic Region of Russia (the Sakha Republic).

    Science.gov (United States)

    Barashkov, Nikolay A; Pshennikova, Vera G; Posukh, Olga L; Teryutin, Fedor M; Solovyev, Aisen V; Klarov, Leonid A; Romanov, Georgii P; Gotovtsev, Nyurgun N; Kozhevnikov, Andrey A; Kirillina, Elena V; Sidorova, Oksana G; Vasilyevа, Lena M; Fedotova, Elvira E; Morozov, Igor V; Bondar, Alexander A; Solovyevа, Natalya A; Kononova, Sardana K; Rafailov, Adyum M; Sazonov, Nikolay N; Alekseev, Anatoliy N; Tomsky, Mikhail I; Dzhemileva, Lilya U; Khusnutdinova, Elza K; Fedorova, Sardana A

    2016-01-01

    Pathogenic variants in the GJB2 gene, encoding connexin 26, are known to be a major cause of hearing impairment (HI). More than 300 allelic variants have been identified in the GJB2 gene. Spectrum and allelic frequencies of the GJB2 gene vary significantly among different ethnic groups worldwide. Until now, the spectrum and frequency of the pathogenic variants in exon 1, exon 2 and the flanking intronic regions of the GJB2 gene have not been described thoroughly in the Sakha Republic (Yakutia), which is located in a subarctic region in Russia. The complete sequencing of the non-coding and coding regions of the GJB2 gene was performed in 393 patients with HI (Yakuts-296, Russians-51, mixed and other ethnicities-46) and in 187 normal hearing individuals of Yakut (n = 107) and Russian (n = 80) populations. In the total sample (n = 580), we revealed 12 allelic variants of the GJB2 gene, 8 of which were recessive pathogenic variants. Ten genotypes with biallelic recessive pathogenic variants in the GJB2 gene (in a homozygous or a compound heterozygous state) were found in 192 out of 393 patients (48.85%). We found that the most frequent GJB2 pathogenic variant in the Yakut patients was c.-23+1G>A (51.82%) and that the second most frequent was c.109G>A (2.37%), followed by c.35delG (1.64%). Pathogenic variants с.35delG (22.34%), c.-23+1G>A (5.31%), and c.313_326del14 (2.12%) were found to be the most frequent among the Russian patients. The carrier frequencies of the c.-23+1G>A and с.109G>A pathogenic variants in the Yakut control group were 10.20% and 2.80%, respectively. The carrier frequencies of с.35delG and c.101T>C were identical (2.5%) in the Russian control group. We found that the contribution of the GJB2 gene pathogenic variants in HI in the population of the Sakha Republic (48.85%) was the highest among all of the previously studied regions of Asia. We suggest that extensive accumulation of the c.-23+1G>A pathogenic variant in the indigenous Yakut

  8. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    Science.gov (United States)

    Neve, Bernadette; Fernandez-Zapico, Martin E.; Ashkenazi-Katalan, Vered; Dina, Christian; Hamid, Yasmin H.; Joly, Erik; Vaillant, Emmanuel; Benmezroua, Yamina; Durand, Emmanuelle; Bakaher, Nicolas; Delannoy, Valerie; Vaxillaire, Martine; Cook, Tiffany; Dallinga-Thie, Geesje M.; Jansen, Hans; Charles, Marie-Aline; Clément, Karine; Galan, Pilar; Hercberg, Serge; Helbecque, Nicole; Charpentier, Guillaume; Prentki, Marc; Hansen, Torben; Pedersen, Oluf; Urrutia, Raul; Melloul, Danielle; Froguel, Philippe

    2005-01-01

    KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first time, to our knowledge, the characterization of KLF11 as a glucose-inducible regulator of the insulin gene. A combination of random oligonucleotide binding, EMSA, luciferase reporter, and chromatin immunoprecipitation assays shows that KLF11 binds to the insulin promoter and regulates its activity in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting a role in free radical clearance that may render beta cells more sensitive to oxidative stress. Thus, both functional and genetic analyses reveal that KLF11 plays a role in the regulation of pancreatic beta cell physiology, and its variants may contribute to the development of diabetes. PMID:15774581

  9. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk

    DEFF Research Database (Denmark)

    Amankwah, Ernest K.; Lin, Hui-Yi; Tyrer, Jonathan P.

    2015-01-01

    women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P ....27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471...

  10. Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels

    NARCIS (Netherlands)

    Deelen, Patrick; Zhernakova, Daria V.; de Haan, Mark; van der Sijde, Marijke; Bonder, Marc Jan; Karjalainen, Juha; van der Velde, K. Joeri; Abbott, Kristin M.; Fu, Jingyuan; Wijmenga, Cisca; Sinke, Richard J.; Swertz, Morris A.; Franke, Lude

    2015-01-01

    Background: RNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific expression (ASE) analysis. Given increasing numbers of RNA-seq

  11. Mouse ribosomal RNA genes contain multiple differentially regulated variants.

    Directory of Open Access Journals (Sweden)

    Hung Tseng

    2008-03-01

    Full Text Available Previous cytogenetic studies suggest that various rDNA chromosomal loci are not equally active in different cell types. Consistent with this variability, rDNA polymorphism is well documented in human and mouse. However, attempts to identify molecularly rDNA variant types, which are regulated individually (i.e., independent of other rDNA variants and tissue-specifically, have not been successful. We report here the molecular cloning and characterization of seven mouse rDNA variants (v-rDNA. The identification of these v-rDNAs was based on restriction fragment length polymorphisms (RFLPs, which are conserved among individuals and mouse strains. The total copy number of the identified variants is less than 100 and the copy number of each individual variant ranges from 4 to 15. Sequence analysis of the cloned v-rDNA identified variant-specific single nucleotide polymorphisms (SNPs in the transcribed region. These SNPs were used to develop a set of variant-specific PCR assays, which permitted analysis of the v-rDNAs' expression profiles in various tissues. These profiles show that three v-rDNAs are expressed in all tissues (constitutively active, two are expressed in some tissues (selectively active, and two are not expressed (silent. These expression profiles were observed in six individuals from three mouse strains, suggesting the pattern is not randomly determined. Thus, the mouse rDNA array likely consists of genetically distinct variants, and some are regulated tissue-specifically. Our results provide the first molecular evidence for cell-type-specific regulation of a subset of rDNA.

  12. Ethanol disrupts chondrification of the neurocranial cartilages in medaka embryos without affecting aldehyde dehydrogenase 1A2 (Aldh1A2) promoter methylation

    Science.gov (United States)

    Hu, Yuhui; Willett, Kristine L.; Khan, Ikhlas A.; Scheffler, Brian E.; Dasmahapatra, Asok K.

    2009-01-01

    Medaka (Oryzias latipes) embryos at different developmental stages were exposed to ethanol for 48 h, then allowed to hatch. Teratogenic effects were evaluated in hatchlings after examining chondrocranial cartilage deformities. Ethanol disrupted cartilage development in medaka in a dose and developmental stage-specific manner. Compared to controls, the linear length of the neurocranium and other cartilages were reduced in ethanol-treated groups. Moreover, the chondrification in cartilages, specifically trabeculae and polar cartilages, were inhibited by ethanol. To understand the mechanism of ethanol teratogenesis, NAD+: NADH status during embryogenesis and the methylation pattern of Aldh1A2 promoter in whole embryos and adult tissues (brain, eye, heart and liver) were analyzed. Embryos 6 dpf had higher NAD+ than embryos 0 or 2 dpf. Ethanol (200 or 400 mM) was able to reduce NAD+ content in 2 and 6 dpf embryos. However, in both cases reductions were not significantly different from the controls. Moreover, no significant difference in either NADH content or in NAD+: NADH status of the ethanol-treated embryos, with regard to controls, was observed. The promoter of Aldh1A2 contains 31 CpG dinucleotides (-705 to +154, ATG = +1); none of which were methylated. Compared to controls, embryonic ethanol exposure (100 and 400 mM) was unable to alter Aldh1A2 promoter methylation in embryos or in the tissues of adults (breeding) developmentally exposed to ethanol (300 mM, 48 hpf). From these data we conclude that ethanol teratogenesis in medaka does not induce alteration in the methylation pattern of Aldh1A2 promoter, but does change cartilage development. PMID:19651241

  13. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    Directory of Open Access Journals (Sweden)

    Pangilinan Faith

    2012-08-01

    Full Text Available Abstract Background Neural tube defects (NTDs are common birth defects (~1 in 1000 pregnancies in the US and Europe that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T and MTHFD1 rs2236225 (R653Q have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk. Methods A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents, including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects. Results Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury and included the known NTD risk factor MTHFD1 R653Q (rs2236225. The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele. Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing. Conclusions To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the stringency of correction are likely to have contributed to real associations failing to survive

  14. Apolipoprotein L1 gene variants in deceased organ donors are associated with renal allograft failure.

    Science.gov (United States)

    Freedman, B I; Julian, B A; Pastan, S O; Israni, A K; Schladt, D; Gautreaux, M D; Hauptfeld, V; Bray, R A; Gebel, H M; Kirk, A D; Gaston, R S; Rogers, J; Farney, A C; Orlando, G; Stratta, R J; Mohan, S; Ma, L; Langefeld, C D; Hicks, P J; Palmer, N D; Adams, P L; Palanisamy, A; Reeves-Daniel, A M; Divers, J

    2015-06-01

    Apolipoprotein L1 gene (APOL1) nephropathy variants in African American deceased kidney donors were associated with shorter renal allograft survival in a prior single-center report. APOL1 G1 and G2 variants were genotyped in newly accrued DNA samples from African American deceased donors of kidneys recovered and/or transplanted in Alabama and North Carolina. APOL1 genotypes and allograft outcomes in subsequent transplants from 55 U.S. centers were linked, adjusting for age, sex and race/ethnicity of recipients, HLA match, cold ischemia time, panel reactive antibody levels, and donor type. For 221 transplantations from kidneys recovered in Alabama, there was a statistical trend toward shorter allograft survival in recipients of two-APOL1-nephropathy-variant kidneys (hazard ratio [HR] 2.71; p = 0.06). For all 675 kidneys transplanted from donors at both centers, APOL1 genotype (HR 2.26; p = 0.001) and African American recipient race/ethnicity (HR 1.60; p = 0.03) were associated with allograft failure. Kidneys from African American deceased donors with two APOL1 nephropathy variants reproducibly associate with higher risk for allograft failure after transplantation. These findings warrant consideration of rapidly genotyping deceased African American kidney donors for APOL1 risk variants at organ recovery and incorporation of results into allocation and informed-consent processes. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  15. Sensory Gating and Alpha-7 Nicotinic Receptor Gene Allelic Variants in Schizoaffective Disorder, Bipolar Type

    Science.gov (United States)

    Martin, Laura F.; Leonard, Sherry; Hall, Mei-Hua; Tregellas, Jason R.; Freedman, Robert; Olincy, Ann

    2011-01-01

    Objectives Single nucleotide allelic variants in the promoter region of the chromosome 15 alpha-7 acetylcholine nicotinic receptor gene (CHRNA7) are associated with both schizophrenia and the P50 auditory evoked potential sensory gating deficit. The purpose of this study was to determine if CHRNA7 promoter allelic variants are also associated with abnormal P50 ratios in persons with schizoaffective disorder, bipolar type. Methods P50 auditory evoked potentials were recorded in a paired stimulus paradigm in 17 subjects with schizoaffective disorder, bipolar type. The P50 test to conditioning ratio was used as the measure of sensory gating. Mutation screening of the CHRNA7 promoter region was performed on the subjects’ DNA samples. Comparisons to previously obtained data from persons with schizophrenia and controls were made. Results Subjects with schizophrenia, regardless of allele status, had an abnormal mean P50 ratio. Subjects with schizoaffective disorder, bipolar type and a variant allele had an abnormal mean P50 ratio, whereas those schizoaffective subjects with the common alleles had a normal mean P50 ratio. Normal control subjects had a normal mean ratio, but controls with variant alleles had higher P50 ratios. Conclusions In persons with bipolar type schizoaffective disorder, CHRNA7 promoter region allelic variants are linked to the capacity to inhibit the P50 auditory evoked potential and thus are associated with a type of illness genetically and biologically more similar to schizophrenia. PMID:17192894

  16. Genome-wide local ancestry approach identifies genes and variants associated with chemotherapeutic susceptibility in African Americans.

    Directory of Open Access Journals (Sweden)

    Heather E Wheeler

    Full Text Available Chemotherapeutic agents are used in the treatment of many cancers, yet variable resistance and toxicities among individuals limit successful outcomes. Several studies have indicated outcome differences associated with ancestry among patients with various cancer types. Using both traditional SNP-based and newly developed gene-based genome-wide approaches, we investigated the genetics of chemotherapeutic susceptibility in lymphoblastoid cell lines derived from 83 African Americans, a population for which there is a disparity in the number of genome-wide studies performed. To account for population structure in this admixed population, we incorporated local ancestry information into our association model. We tested over 2 million SNPs and identified 325, 176, 240, and 190 SNPs that were suggestively associated with cytarabine-, 5'-deoxyfluorouridine (5'-DFUR-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (p≤10(-4. Importantly, some of these variants are found only in populations of African descent. We also show that cisplatin-susceptibility SNPs are enriched for carboplatin-susceptibility SNPs. Using a gene-based genome-wide association approach, we identified 26, 11, 20, and 41 suggestive candidate genes for association with cytarabine-, 5'-DFUR-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (p≤10(-3. Fourteen of these genes showed evidence of association with their respective chemotherapeutic phenotypes in the Yoruba from Ibadan, Nigeria (p<0.05, including TP53I11, COPS5 and GAS8, which are known to be involved in tumorigenesis. Although our results require further study, we have identified variants and genes associated with chemotherapeutic susceptibility in African Americans by using an approach that incorporates local ancestry information.

  17. Association analysis of genetic variants in the myosin IXB gene in acute pancreatitis.

    Directory of Open Access Journals (Sweden)

    Rian M Nijmeijer

    Full Text Available INTRODUCTION: Impairment of the mucosal barrier plays an important role in the pathophysiology of acute pancreatitis. The myosin IXB (MYO9B gene and the two tight-junction adaptor genes, PARD3 and MAGI2, have been linked to gastrointestinal permeability. Common variants of these genes are associated with celiac disease and inflammatory bowel disease, two other conditions in which intestinal permeability plays a role. We investigated genetic variation in MYO9B, PARD3 and MAGI2 for association with acute pancreatitis. METHODS: Five single nucleotide polymorphisms (SNPs in MYO9B, two SNPs in PARD3, and three SNPs in MAGI2 were studied in a Dutch cohort of 387 patients with acute pancreatitis and over 800 controls, and in a German cohort of 235 patients and 250 controls. RESULTS: Association to MYO9B and PARD3 was observed in the Dutch cohort, but only one SNP in MYO9B and one in MAGI2 showed association in the German cohort (p < 0.05. Joint analysis of the combined cohorts showed that, after correcting for multiple testing, only two SNPs in MYO9B remained associated (rs7259292, p = 0.0031, odds ratio (OR 1.94, 95% confidence interval (95% CI 1.35-2.78; rs1545620, p = 0.0006, OR 1.33, 95% CI 1.16-1.53. SNP rs1545620 is a non-synonymous SNP previously suspected to impact on ulcerative colitis. None of the SNPs showed association to disease severity or etiology. CONCLUSION: Variants in MYO9B may be involved in acute pancreatitis, but we found no evidence for involvement of PARD3 or MAGI2.

  18. Identification of a Novel De Novo Variant in the PAX3 Gene in Waardenburg Syndrome by Diagnostic Exome Sequencing: The First Molecular Diagnosis in Korea.

    Science.gov (United States)

    Jang, Mi-Ae; Lee, Taeheon; Lee, Junnam; Cho, Eun-Hae; Ki, Chang-Seok

    2015-05-01

    Waardenburg syndrome (WS) is a clinically and genetically heterogeneous hereditary auditory pigmentary disorder characterized by congenital sensorineural hearing loss and iris discoloration. Many genes have been linked to WS, including PAX3, MITF, SNAI2, EDNRB, EDN3, and SOX10, and many additional genes have been associated with disorders with phenotypic overlap with WS. To screen all possible genes associated with WS and congenital deafness simultaneously, we performed diagnostic exome sequencing (DES) in a male patient with clinical features consistent with WS. Using DES, we identified a novel missense variant (c.220C>G; p.Arg74Gly) in exon 2 of the PAX3 gene in the patient. Further analysis by Sanger sequencing of the patient and his parents revealed a de novo occurrence of the variant. Our findings show that DES can be a useful tool for the identification of pathogenic gene variants in WS patients and for differentiation between WS and similar disorders. To the best of our knowledge, this is the first report of genetically confirmed WS in Korea.

  19. Glucose impairment and ghrelin gene variants are associated to cognitive dysfunction.

    Science.gov (United States)

    Mora, M; Mansego, M L; Serra-Prat, M; Palomera, E; Boquet, X; Chaves, J F; Puig-Domingo, M

    2014-04-01

    Cognitive state and brain volume have been related to body mass index, abdominal fat, waist-hip ratio, components of metabolic syndrome (MS) and ghrelin. Genetic variations within the ghrelin gene have been recently associated to MS. The aim of our study was to investigate cognitive state by Mini-Mental State Examination (MMSE) in relation to MS components (ATP-III criteria) and ghrelin gene polymorphisms in dwelling individuals aged ≥70. 280 subjects (137 men/143 women, age 77.03 ± 5.92) from the Mataró Ageing Study were included. Individuals were phenotypically characterized by anthropometric variables, lipids, glucose, blood pressure and MMSE. SNPs -501AC (rs26802), -994CT (rs26312), -604GA (rs27647), M72L (rs696217) and L90G (rs4684677) of the ghrelin gene were studied. Genotypes were determined by polymerase chain reaction and SNapshot minisequencing. 22.1 % had MMSE Ghrelin SNPs were associated to MMSE: M72L C/A genotype showed lower score than C/C (p = 0.032, after adjusting for confounders 0.049); L90G A/T genotype showed lower score than A/A (p = 0.054, after adjusting 0.005). MMSE Ghrelin gene variant influence cognitive function in old dwelling individuals participating in the Mataró Ageing Study.

  20. DNA Fragmentation Factor 45 (DFF45 Gene at 1p36.2 Is Homozygously Deleted and Encodes Variant Transcripts in Neuroblastoma Cell Line

    Directory of Open Access Journals (Sweden)

    Hong Wei Yang

    2001-01-01

    Full Text Available Recently, loss of heterozygosity (LOH studies suggest that more than two tumor suppressor genes lie on the short arm of chromosome 1 (1p in neuroblastoma (NB. To identify candidate tumor suppressor genes in NB, we searched for homozygous deletions in 20 NB cell lines using a high-density STS map spanning chromosome 1 p36, a common LOH region in NB. We found that the 45-kDa subunit of the DNA fragmentation factor (DFF45 gene was homozygously deleted in an NB cell line, NB-1. DFF45 is the chaperon of DFF40, and both molecules are necessary for caspase 3 to induce apoptosis. DFF35, a splicing variant of DFF45, is an inhibitor of DFF40. We examined 20 NB cell lines for expression and mutation of DFF45 gene by reverse transcription (RT-polymerase chain reaction (PCR and RT-PCR-single-strand conformation polymorphism. Some novel variant transcripts of the DFF45 gene were found in NB cell lines, but not in normal adrenal gland and peripheral blood. These variants may not serve as chaperons of DFF40, but as inhibitors like DFF35, thus disrupting the balance between DFF45 and DFF40. No mutations of the DFF45 gene were found in any NB cell line, suggesting that the DFF45 is not a tumor suppressor gene for NB. However, homozygous deletion of the DFF45 gene in the NB-1 cell line may imply the presence of unknown tumor suppressor genes in this region.

  1. Detection of GSTM1, GSTT1 and the Ile105Val GSTP1 gene variants

    DEFF Research Database (Denmark)

    Buchard, Anders; Sanchez, Juan J.; Dalhoff, Kim

    2008-01-01

    We have developed a PCR multiplex method that in a fast, inexpensive and reliable manner can detect if a person has two, one or no GSTM1 and GSTT1 genes and which at the same time can detect the allelic status of the GSTP1 Ile105Val genetic variant. A total of 200 Danes, 100 Somalis and 100...

  2. Variants in the dopamine-4-receptor gene promoter are not associated with sensation seeking in skiers.

    Directory of Open Access Journals (Sweden)

    Cynthia J Thomson

    Full Text Available Sensation seeking is a personality trait that has been associated with disinhibited behaviours including substance use and gambling, but also with high-risk sport practices including skydiving, paragliding, and downhill skiing. Twin studies have shown that sensation seeking is moderately heritable, and candidate genes encoding components involved in dopaminergic transmission have been investigated as contributing to this type of behaviour. To determine whether variants in the regulatory regions of the dopamine-4-receptor gene (DRD4 influenced sport-specific sensation seeking, we analyzed five polymorphisms (-1106T/C, -906T/C, -809G/A, -291C/T, 120-bp duplication in the promoter region of the gene in a cohort of skiers and snowboarders (n = 599 that represented a broad range of sensation seeking behaviours. We grouped subjects by genotype at each of the five loci and compared impulsive sensation seeking and domain-specific (skiing sensation seeking between groups. There were no significant associations between genotype(s and general or domain-specific sensation seeking in the skiers and snowboarders, suggesting that while DRD4 has previously been implicated in sensation seeking, the promoter variants investigated in this study do not contribute to sensation seeking in this athlete population.

  3. Common variants of the genes encoding erythropoietin and its receptor modulate cognitive performance in schizophrenia

    DEFF Research Database (Denmark)

    Kästner, Anne; Grube, Sabrina; El-Kordi, Ahmed

    2012-01-01

    -term memory readouts, with one particular combination of genotypes superior to all others (p 800), these associations were confirmed. A matching preclinical study with mice demonstrated cognitive processing speed and memory enhanced upon transgenic......Erythropoietin (EPO) improves cognitive performance in clinical studies and rodent experiments. We hypothesized that an intrinsic role of EPO for cognition exists, with particular relevance in situations of cognitive decline, which is reflected by associations of EPO and EPO receptor (EPOR......) genotypes with cognitive functions. To prove this hypothesis, schizophrenic patients (N > 1000) were genotyped for 5' upstream-located gene variants, EPO SNP rs1617640 (T/G) and EPORSTR(GA)(n). Associations of these variants were obtained for cognitive processing speed, fine motor skills and short...

  4. Ovarian cancer risk, ALDH2 polymorphism and alcohol drinking: Asian data from the Ovarian Cancer Association Consortium.

    Science.gov (United States)

    Ugai, Tomotaka; Kelemen, Linda E; Mizuno, Mika; Ong, Jue-Sheng; Webb, Penelope M; Chenevix-Trench, Georgia; Wicklund, Kristine G; Doherty, Jennifer Anne; Rossing, Mary Anne; Thompson, Pamela J; Wilkens, Lynne R; Carney, Michael E; Goodman, Marc T; Schildkraut, Joellen M; Berchuck, Andrew; Cramer, Daniel W; Terry, Kathryn L; Cai, Hui; Shu, Xiao-Ou; Gao, Yu-Tang; Xiang, Yong-Bing; Van Den Berg, David; Pike, Malcom C; Wu, Anna H; Pearce, Celeste Leigh; Matsuo, Keitaro

    2018-02-01

    The aldehyde dehydrogenase 2 (ALDH2) polymorphism rs671 (Glu504Lys) causes ALDH2 inactivation and adverse acetaldehyde exposure among Asians, but little is known of the association between alcohol consumption and rs671 and ovarian cancer (OvCa) in Asians. We conducted a pooled analysis of Asian ancestry participants in the Ovarian Cancer Association Consortium. We included seven case-control studies and one cohort study comprising 460 invasive OvCa cases, 37 borderline mucinous OvCa and 1274 controls of Asian descent with information on recent alcohol consumption. Pooled odds ratios (OR) with 95% confidence intervals (CI) for OvCa risk associated with alcohol consumption, rs671 and their interaction were estimated using logistic regression models adjusted for potential confounders. No significant association was observed for daily alcohol intake with invasive OvCa (OR comparing any consumption to none = 0.83; 95% CI = 0.58-1.18) or with individual histotypes. A significant decreased risk was seen for carriers of one or both Lys alleles of rs671 for invasive mucinous OvCa (OR = 0.44; 95% CI = 0.20-0.97) and for invasive and borderline mucinous tumors combined (OR = 0.48; 95% CI = 0.26-0.89). No significant interaction was observed between alcohol consumption and rs671 genotypes. In conclusion, self-reported alcohol consumption at the quantities estimated was not associated with OvCa risk among Asians. Because the rs671 Lys allele causes ALDH2 inactivation leading to increased acetaldehyde exposure, the observed inverse genetic association with mucinous ovarian cancer is inferred to mean that alcohol intake may be a risk factor for this histotype. This association will require replication in a larger sample. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. Retrospective analysis in oculocutaneous albinism patients for the 2.7 kb deletion in the OCA2 gene revealed a co-segregation of the controversial variant, p.R305W.

    Science.gov (United States)

    Gao, Jackson; D'Souza, Leera; Wetherby, Keith; Antolik, Christian; Reeves, Melissa; Adams, David R; Tumminia, Santa; Wang, Xinjing

    2017-01-01

    Oculocutaneous albinism (OCA) is an autosomal recessive disorder. A significant portion of OCA patients has been found with a single pathogenic variant either in the TYR or the OCA2 gene. Diagnostic sequencing of the TYR and OCA2 genes is routinely used for molecular diagnosis of OCA subtypes. To study the possibility that genomic abnormalities with single or multiple exon involvement may account for a portion of the potential missing pathogenic variants (the second), we retrospectively analyzed the TYR gene by long range PCR and analyzed the target 2.7 kb deletion in the OCA2 gene spanning exon 7 in OCA patients with a single pathogenic variant in the target genes. In the 108 patients analyzed, we found that one patient was heterozygous for the 2.7 kb OCA2 gene deletion and this patient was positive with one pathogenic variant and one possibly pathogenic variant [c.1103C>T (p.Ala368Val) + c.913C>T (p.R305W)]. Further analysis of maternal DNA, and two additional OCA DNA homozygous for the 2.7 kb deletion, revealed that the phenotypically normal mother is heterozygous of the 2.7 kb deletion and homozygous of the p.R305W. The two previously reported patients with homozygous of the 2.7 kb deletion are also homozygous of p.R305W. Among the reported pathogenic variants, the pathogenicity of the p.R305W has been discussed intensively in literature. Our results indicate that p.R305W is unlikely a pathogenic variant. The possibility of linkage disequilibrium between p.R305W with the 2.7 kb deletion in OCA2 gene is also suggested.

  6. Identifying pathogenicity of human variants via paralog-based yeast complementation.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2017-05-01

    Full Text Available To better understand the health implications of personal genomes, we now face a largely unmet challenge to identify functional variants within disease-associated genes. Functional variants can be identified by trans-species complementation, e.g., by failure to rescue a yeast strain bearing a mutation in an orthologous human gene. Although orthologous complementation assays are powerful predictors of pathogenic variation, they are available for only a few percent of human disease genes. Here we systematically examine the question of whether complementation assays based on paralogy relationships can expand the number of human disease genes with functional variant detection assays. We tested over 1,000 paralogous human-yeast gene pairs for complementation, yielding 34 complementation relationships, of which 33 (97% were novel. We found that paralog-based assays identified disease variants with success on par with that of orthology-based assays. Combining all homology-based assay results, we found that complementation can often identify pathogenic variants outside the homologous sequence region, presumably because of global effects on protein folding or stability. Within our search space, paralogy-based complementation more than doubled the number of human disease genes with a yeast-based complementation assay for disease variation.

  7. Assessment of polymorphic variants in the melanocortin-1 receptor gene with cutaneous pigmentation using an evolutionary approach.

    Science.gov (United States)

    Kanetsky, Peter A; Ge, Fan; Najarian, Derek; Swoyer, Jennifer; Panossian, Saarene; Schuchter, Lynn; Holmes, Robin; Guerry, DuPont; Rebbeck, Timothy R

    2004-05-01

    The melanocortin-1 receptor gene (MC1R) encodes a membrane-bound receptor protein that is central to melanin synthesis. The coding region of MC1R is highly polymorphic and associations of variants with pigmentation phenotypes and risk for cutaneous neoplasms have been reported. We sought to determine the distribution and frequency of MC1R variants and their relationship to pigmentation characteristics in 179 Caucasian controls from the United States. One hundred thirty-five (75.4%) subjects carried one or more variants, and we determined that carriage of the previously designated "red hair color" (RHC) alleles, R151C, R160W, and D294H was strongly associated with fair pigmentation phenotypes including light hair and eye color, tendency to burn, decreased tendency to tan, and freckling. We used SIFT software to define MC1R protein positions that were predicted intolerant to amino acid substitutions; detected variants that corresponded to intolerant substitutions were D84E, R142H, R151C, I155T, R160W, and D294H. Carriage of one or more of these putative functionally important variants or the frameshift variant ins86A was significantly associated with fair pigmentation phenotypes. Analyses limited to carriage of ins86A and the three non-RHC alleles identified by SIFT were attenuated and no longer reached statistical significance. This is the first study to describe MC1R variants among control subjects from the U.S. Our results indicate that the frequency of variants is similar to that previously observed among non-U.S. Caucasians. Risk variants defined by either the published literature or by evolutionary criteria are strongly and significantly associated with all fair pigmentation phenotypes that were measured.

  8. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans.

    Directory of Open Access Journals (Sweden)

    Paola Di Meglio

    2011-02-01

    Full Text Available IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohn's disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A and common (G allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.

  9. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans.

    Science.gov (United States)

    Di Meglio, Paola; Di Cesare, Antonella; Laggner, Ute; Chu, Chung-Ching; Napolitano, Luca; Villanova, Federica; Tosi, Isabella; Capon, Francesca; Trembath, Richard C; Peris, Ketty; Nestle, Frank O

    2011-02-22

    IL-23 and Th17 cells are key players in tissue immunosurveillance and are implicated in human immune-mediated diseases. Genome-wide association studies have shown that the IL23R R381Q gene variant protects against psoriasis, Crohn's disease and ankylosing spondylitis. We investigated the immunological consequences of the protective IL23R R381Q gene variant in healthy donors. The IL23R R381Q gene variant had no major effect on Th17 cell differentiation as the frequency of circulating Th17 cells was similar in carriers of the IL23R protective (A) and common (G) allele. Accordingly, Th17 cells generated from A and G donors produced similar amounts of Th17 cytokines. However, IL-23-mediated Th17 cell effector function was impaired, as Th17 cells from A allele carriers had significantly reduced IL-23-induced IL-17A production and STAT3 phosphorylation compared to G allele carriers. Our functional analysis of a human disease-associated gene variant demonstrates that IL23R R381Q exerts its protective effects through selective attenuation of IL-23-induced Th17 cell effector function without interfering with Th17 differentiation, and highlights its importance in the protection against IL-23-induced tissue pathologies.

  10. Expression of human placental lactogen and variant growth hormone genes in placentas.

    Science.gov (United States)

    Martinez-Rodriguez, H G; Guerra-Rodriguez, N E; Iturbe-Cantu, M A; Martinez-Torres, A; Barrera-Saldaña, H A

    1997-01-01

    Previous studies comparing the expression levels of human placental lactogen (hPL) genes have shown varying results, due to, perhaps, the fact that in all of them only one placenta was being analyzed. Here, the expression of hPL and growth hormone variant (hGH-V) genes in fifteen term placentas was comparatively analyzed at the RNA level, using reverse transcription coupled to polymerase chain reaction (RT-PCR). The abundance of the combined RNA transcripts derived from these genes varied from one placenta to another. The authors found that hPL-4 transcripts were more abundant than those of hPL-3 in most samples (ratios from 1:1 to 6:1), transcripts from the putative hPL-1 pseudogene were more abundant at the unprocessed stage while those of the hGH-V gene were mostly processed. Again, the authors of this study observed wide variation from placenta to placenta in the abundance of both of these types of transcripts. The same was observed when a group of six placentas from abortuses and nine from pregnancies complicated by preclampsia, diabetes and hypertension was studied. The authors conclude that the disagreeing results reported in the literature which are not in agreement concerning the expression levels of hPL genes could be explained by normal variations of their expression levels among the different placentas analyzed.

  11. Nucleophosmin (NPM1) gene variants in Egyptian patients with acute myeloid leukemia

    International Nuclear Information System (INIS)

    Ibrahim, G.H.

    2012-01-01

    To the editor Kassem et al. [1] described a novel mutational deletion [del 1178 (A)] in the 30 untranslated region of NPM1 gene detected in a heterozygous form in seven de novo acute myeloid leukemia (AML) patients of their study population. The described nucleotide deletion is an NPM1 gene polymorphism recorded in db SNP database (rs34351976; g28027: Genbank accession number NG 0 16018.1) (http://www.ncbi.nlm.nih.gov/projects/SNP/) and was described previously by Do hner et al. [2] and Chou et al. [3]. This variant accounted for 60-70% of AML patients with normal karyotype [2]. The putative deletion was also identified in healthy volunteers and persisted at complete remission and also at relapse of AML patients [3]. This deletion had no effect on the predicted amino acid sequence and is not in linkage disequilibrium with any previously identified NPM1 mutations [2,3]. Analysis of RNA folding at the region surrounding the rs34351976 in the presence or absence of the deletion using Mfold analysis software (http://www.mfold.rna.albany.edu) revealed no RNA folding change that may alter RNA splicing and subsequently gene expression. Furthermore, splicing motifs analysis using Human Splicing Finder software version 2.4.1 showed that the presence of the deletion does not abolish any recognition site of exonic or intronic enhancers or silencer motifs. In general, it seems that the impact of NMP1 polymorphisms on the molecular pathogenesis of AML is not clear yet and needs further investigation. Kassem et al. [1] describes the molecular aspect of de novo AML in the Egyptian population. The previously known NPM1 mutations mentioned in their study are less frequent compared to the figures recorded worldwide. Moreover, the authors wondered whether the NPM1 variants identified in their patients may confer a better outcome of AML. According to the previously mentioned data, one can speculate that the presence of NPM1 gene polymorphism (rs34351976) should not be mistaken as

  12. HFE gene variants, iron, and lipids: a novel connection in Alzheimer's disease.

    Science.gov (United States)

    Ali-Rahmani, Fatima; Schengrund, Cara-Lynne; Connor, James R

    2014-01-01

    Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiological, genetic, and molecular evidence of disruption of cholesterol homeostasis in several neurodegenerative diseases, in particular Alzheimer's disease (AD). Despite the efforts that have been made to identify factors that can trigger the pathological events associated with neurodegenerative diseases they remain mostly unknown. Because molecular phenotypes such as oxidative stress, synaptic failure, neuronal loss, and cognitive decline, characteristics associated with AD, have been shown to result from disruption of a number of pathways, one can easily argue that the phenotype seen may not arise from a linear sequence of events. Therefore, a multi-targeted approach is needed to understand a complex disorder like AD. This can be achieved only when knowledge about interactions between the different pathways and the potential influence of environmental factors on them becomes available. Toward this end, this review discusses what is known about the roles and interactions of iron and cholesterol in neurodegenerative diseases. It highlights the effects of gene variants of HFE (H63D- and C282Y-HFE) on iron and cholesterol metabolism and how they may contribute to understanding the etiology of complex neurodegenerative diseases.

  13. A frequent regulatory variant of the estrogen-related receptor alpha gene associated with BMD in French-Canadian premenopausal women.

    Science.gov (United States)

    Laflamme, Nathalie; Giroux, Sylvie; Loredo-Osti, J Concepción; Elfassihi, Latifa; Dodin, Sylvie; Blanchet, Claudine; Morgan, Kenneth; Giguère, Vincent; Rousseau, François

    2005-06-01

    Genes are important BMD determinants. We studied the association of an ESRRA gene functional variant with BMD in 1335 premenopausal women. The ESRRA genotype was an independent predictor of L2-L4 BMD, with an effect similar to smoking and equivalent to a 10-kg difference in weight. Several genetic polymorphisms have been associated with osteoporosis or osteoporosis fractures, but no functional effect has been shown for most of these gene variants. Because functional studies have implicated estrogen-related receptor alpha (ESRRA) in bone metabolism, we evaluated whether a recently described regulatory variant of the ESRRA gene is associated with lumbar and hip BMD as measured by DXA and with heel bone parameters as measured by quantitative ultrasound (QUS). Heel bone parameters were measured by right calcaneal QUS in 1335 healthy French-Canadian premenopausal women, and one-half of these women also had their BMD evaluated at two sites: femoral neck and lumbar spine (L2-L4) by DXA. All bone measures were tested separately for association with the ESRRA genotype by analysis of covariance. The significance of the ESRRA contribution to the model was also assessed by two different permutation tests. A statistically significant association between ESRRA genotype and lumbar spine BMD was observed: women carrying the long ESRRA genotype had a 3.9% (0.045 g/cm2) higher lumbar spine BMD than those carrying the short ESRRA genotype (p = 0.004), independently of other risk factors measured. This effect of ESRRA genotype is similar to the effect of smoking and equivalent to a 10-kg difference in weight. This association was confirmed by permutation tests (p = 0.004). The same trend was observed for femoral neck BMD (2.6%, p = 0.07). However, no association was observed between ESRRA and QUS heel bone measures. These results support the genetic influence of this ESRRA regulatory variant on BMD.

  14. TNFA gene variants related to the inflammatory status and its association with cellular aging: From the CORDIOPREV study

    Science.gov (United States)

    Background: Several single nucleotide polymorphisms have been proposed as potential predictors of the development of age-related diseases. Objective: To explore whether Tumor Necrosis Factor Alpha (TNFA) gene variants were associated with inflammatory status, thus facilitating the rate of telomere s...

  15. The PTPN22 C1858T gene variant is associated with proinsulin in new-onset type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Vanelli Maurizio

    2011-03-01

    Full Text Available Abstract Background The protein tyrosine phosphatase nonreceptor type 2 (PTPN22 has been established as a type 1 diabetes susceptibility gene. A recent study found the C1858T variant of this gene to be associated with lower residual fasting C-peptide levels and poorer glycemic control in patients with type 1 diabetes. We investigated the association of the C1858T variant with residual beta-cell function (as assessed by stimulated C-peptide, proinsulin and insulin dose-adjusted HbA1c, glycemic control, daily insulin requirements, diabetic ketoacidosis (DKA and diabetes-related autoantibodies (IA-2A, GADA, ICA, ZnT8Ab in children during the first year after diagnosis of type 1 diabetes. Methods The C1858T variant was genotyped in an international cohort of children (n = 257 patients with newly diagnosed type 1 diabetes during 12 months after onset. We investigated the association of this variant with liquid-meal stimulated beta-cell function (proinsulin and C-peptide and antibody status 1, 6 and 12 months after onset. In addition HbA1c and daily insulin requirements were determined 1, 3, 6, 9 and 12 months after diagnosis. DKA was defined at disease onset. Results A repeated measurement model of all time points showed the stimulated proinsulin level is significantly higher (22%, p = 0.03 for the T allele carriers the first year after onset. We also found a significant positive association between proinsulin and IA levels (est.: 1.12, p = 0.002, which did not influence the association between PTPN22 and proinsulin (est.: 1.28, p = 0.03. Conclusions The T allele of the C1858T variant is positively associated with proinsulin levels during the first 12 months in newly diagnosed type 1 diabetes children.

  16. Whole-Exome Sequencing Identifies One De Novo Variant in the FGD6 Gene in a Thai Family with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Chuphong Thongnak

    2018-01-01

    Full Text Available Autism spectrum disorder (ASD has a strong genetic basis, although the genetics of autism is complex and it is unclear. Genetic testing such as microarray or sequencing was widely used to identify autism markers, but they are unsuccessful in several cases. The objective of this study is to identify causative variants of autism in two Thai families by using whole-exome sequencing technique. Whole-exome sequencing was performed with autism-affected children from two unrelated families. Each sample was sequenced on SOLiD 5500xl Genetic Analyzer system followed by combined bioinformatics pipeline including annotation and filtering process to identify candidate variants. Candidate variants were validated, and the segregation study with other family members was performed using Sanger sequencing. This study identified a possible causative variant for ASD, c.2951G>A, in the FGD6 gene. We demonstrated the potential for ASD genetic variants associated with ASD using whole-exome sequencing and a bioinformatics filtering procedure. These techniques could be useful in identifying possible causative ASD variants, especially in cases in which variants cannot be identified by other techniques.

  17. Diagnostic value of post-heparin lipase testing in detecting common genetic variants in the LPL and LIPC genes

    NARCIS (Netherlands)

    van Hoek, Mandy; Dallinga-Thie, Geesje M.; Steyerberg, Ewout W.; Sijbrands, Eric J. G.

    2009-01-01

    Post-heparin lipoprotein lipase and hepatic lipase activities are used to identify primary disorders of triglyceride and HDL-cholesterol metabolism. Their ability to identify common variants in the lipoprotein lipase (LPL) and hepatic lipase (LIPC) genes is unclear. To investigate the ability of

  18. Novel de novo pathogenic variant in the NR2F2 gene in a boy with congenital heart defect and dysmorphic features.

    Science.gov (United States)

    Upadia, Jariya; Gonzales, Patrick R; Robin, Nathaniel H

    2018-04-16

    The NR2F2 gene plays an important role in angiogenesis and heart development. Moreover, this gene is involved in organogenesis in many other organs in mouse models. Variants in this gene have been reported in a number of patients with nonsyndromic atrioventricular septal defect, and in one patient with congenital heart defect and dysmorphic features. Here we report an 11-month-old Caucasian male with global developmental delay, dysmorphic features, coarctation of the aorta, and ventricular septal defect. He was later found to have a pathogenic mutation in the NR2F2 gene by whole exome sequencing. This is the second instance in which an NR2F2 mutation has been identified in a child with a congenital heart defect and other anomalies. This case suggests that some variants in NR2F2 may cause syndromic forms of congenital heart defect. © 2018 Wiley Periodicals, Inc.

  19. Association between a promoter dopamine D2 receptor gene variant and the personality trait detachment.

    Science.gov (United States)

    Jönsson, Erik G; Cichon, Sven; Gustavsson, J Petter; Grünhage, Frank; Forslund, Kaj; Mattila-Evenden, Marja; Rylander, Gunnar; Asberg, Marie; Farde, Lars; Propping, Peter; Nöthen, Markus M

    2003-04-01

    Personality traits have shown considerable heritable components. Striatal dopamine D(2) receptor density, as determined by positron-emission tomography, has been associated with detached personality, as assessed by the Karolinska Scales of Personality. A putative functional promoter polymorphism in the dopamine D(2) receptor gene (DRD2), -141C ins/del, has been associated with dopamine D(2) receptor density. In this study healthy subjects (n = 235) who filled in at least one of several personality questionnaires (Karolinska Scales of Personality, Swedish Universities Scales of Personality, Health-relevant Five-factor Personality Inventory, and Temperament and Character Inventory) were analyzed with regard to the DRD2 -141C ins/del variant. There was an association (p =.001) between the DRD2 -141C ins/del variant and Karolinska Scales of Personality Detachment scale, indicating higher scores in subjects with the -141C del variant. There were also associations between the DRD2 -141C ins/del variant and a number of Karolinska Scales of Personality and Swedish Universities Scales of Personality Neuroticism-related scales, but of these only Swedish Universities Scales of Personality Lack of Assertiveness scale (p =.001) survived correction for multiple testing. These results add further support for the involvement of dopamine D(2) receptor in certain personality traits. The results should be treated with caution until replicated.

  20. The influence of VKORC1 and CYP2C9 gene sequence variants on the stability of maintenance phase warfarin treatment

    DEFF Research Database (Denmark)

    Skov, Jane; Bladbjerg, Else-Marie; Leppin, Anja

    2013-01-01

    alleles require lower doses and have increased risk of overanticoagulation. METHODS: We investigated the influence of the above sequence variants on stability of maintenance phase warfarin therapy in a prospective study of 300 consecutive patients followed for one year at an anticoagulant clinic. RESULTS...... of common gene sequence variants in CYP2C9 and VKORC1 on stability of maintenance phase warfarin therapy. Patients attending an anticoagulant clinic using computer-assisted dosage were safely monitored regardless of these sequence variants, but for the small subgroup of patients with the CYP2C9 genotype *2...

  1. COMT Val[superscript 108/158] Met Gene Variant, Birth Weight, and Conduct Disorder in Children with ADHD

    Science.gov (United States)

    Sengupta, Sarojini M.; Grizenko, Natalie; Schmitz, Norbert; Schwartz, George; Amor, Leila Ben; Bellingham, Johanne; de Guzman, Rosherrie; Polotskaia, Anna; Stepanian, Marina Ter; Thakur, Geeta; Joober, Ridha

    2006-01-01

    Objective: In a recent study, Thapar and colleagues reported that COMT "gene variant and birth weight predict early-onset antisocial behavior in children" with attention-deficit/hyperactivity disorder. We have attempted to replicate these findings in a group of ADHD children using a similar research design. Method: Children (n = 191)…

  2. A genome-wide screen for genetic variants that modify the recruitment of REST to its target genes.

    Directory of Open Access Journals (Sweden)

    Rory Johnson

    Full Text Available Increasing numbers of human diseases are being linked to genetic variants, but our understanding of the mechanistic links leading from DNA sequence to disease phenotype is limited. The majority of disease-causing nucleotide variants fall within the non-protein-coding portion of the genome, making it likely that they act by altering gene regulatory sequences. We hypothesised that SNPs within the binding sites of the transcriptional repressor REST alter the degree of repression of target genes. Given that changes in the effective concentration of REST contribute to several pathologies-various cancers, Huntington's disease, cardiac hypertrophy, vascular smooth muscle proliferation-these SNPs should alter disease-susceptibility in carriers. We devised a strategy to identify SNPs that affect the recruitment of REST to target genes through the alteration of its DNA recognition element, the RE1. A multi-step screen combining genetic, genomic, and experimental filters yielded 56 polymorphic RE1 sequences with robust and statistically significant differences of affinity between alleles. These SNPs have a considerable effect on the the functional recruitment of REST to DNA in a range of in vitro, reporter gene, and in vivo analyses. Furthermore, we observe allele-specific biases in deeply sequenced chromatin immunoprecipitation data, consistent with predicted differenes in RE1 affinity. Amongst the targets of polymorphic RE1 elements are important disease genes including NPPA, PTPRT, and CDH4. Thus, considerable genetic variation exists in the DNA motifs that connect gene regulatory networks. Recently available ChIP-seq data allow the annotation of human genetic polymorphisms with regulatory information to generate prior hypotheses about their disease-causing mechanism.

  3. A Genome-Wide Screen for Genetic Variants That Modify the Recruitment of REST to Its Target Genes

    Science.gov (United States)

    Johnson, Rory; Richter, Nadine; Bogu, Gireesh K.; Bhinge, Akshay; Teng, Siaw Wei; Choo, Siew Hua; Andrieux, Lise O.; de Benedictis, Cinzia; Jauch, Ralf; Stanton, Lawrence W.

    2012-01-01

    Increasing numbers of human diseases are being linked to genetic variants, but our understanding of the mechanistic links leading from DNA sequence to disease phenotype is limited. The majority of disease-causing nucleotide variants fall within the non-protein-coding portion of the genome, making it likely that they act by altering gene regulatory sequences. We hypothesised that SNPs within the binding sites of the transcriptional repressor REST alter the degree of repression of target genes. Given that changes in the effective concentration of REST contribute to several pathologies—various cancers, Huntington's disease, cardiac hypertrophy, vascular smooth muscle proliferation—these SNPs should alter disease-susceptibility in carriers. We devised a strategy to identify SNPs that affect the recruitment of REST to target genes through the alteration of its DNA recognition element, the RE1. A multi-step screen combining genetic, genomic, and experimental filters yielded 56 polymorphic RE1 sequences with robust and statistically significant differences of affinity between alleles. These SNPs have a considerable effect on the the functional recruitment of REST to DNA in a range of in vitro, reporter gene, and in vivo analyses. Furthermore, we observe allele-specific biases in deeply sequenced chromatin immunoprecipitation data, consistent with predicted differenes in RE1 affinity. Amongst the targets of polymorphic RE1 elements are important disease genes including NPPA, PTPRT, and CDH4. Thus, considerable genetic variation exists in the DNA motifs that connect gene regulatory networks. Recently available ChIP–seq data allow the annotation of human genetic polymorphisms with regulatory information to generate prior hypotheses about their disease-causing mechanism. PMID:22496669

  4. Three novel variants (p.Glu178Lys, p.Val245Met, p.Ser250Phe) of the phenylalanine hydroxylase (PAH) gene impair protein expression and function in vitro.

    Science.gov (United States)

    Zong, Yanan; Liu, Ning; Ma, Shanshan; Bai, Ying; Guan, Fangxia; Kong, Xiangdong

    2018-08-20

    Phenylketonuria (PKU) is the most common inherited metabolic disease, an autosomal recessive disorder affecting >10,000 newborns each year globally. It can be caused by over 1000 different naturally occurring mutations in the phenylalanine hydroxylase (PAH) gene. We analyzed three novel naturally occurring PAH gene variants: p.Glu178Lys (c.532G>A), p.Val245Met (c.733G>A) and p.Ser250Phe (c.749C>T). The mutant effect on the PAH enzyme structure and function was predicted by bioinformatics software. Vectors expressing the corresponding PAH variants were generated for expression in E. coli and in HEK293T cells. The RNA expression of the three PAH variants was measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The mutant PAH protein levels were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blot and enzyme-linked immunosorbent assay (ELISA). All three variants were predicted to be pathogenic by bioinformatics analysis. The transcription of the three PAH variants was similar to the wild type PAH gene in HEK293T cells. In contrast, the levels of mutant PAH proteins decreased significantly compared to the wild type control, in both E. coli and HEK293T cells. Our results indicate that the three novel PAH gene variants (p.Glu178Lys, p.Val245Met, p.Ser250Phe) impair PAH protein expression and function in prokaryotic and eukaryotic cells. Copyright © 2018. Published by Elsevier B.V.

  5. Identification of rs671, a common variant of ALDH2, as a gout susceptibility locus

    OpenAIRE

    Sakiyama, Masayuki; Matsuo, Hirotaka; Nakaoka, Hirofumi; Yamamoto, Ken; Nakayama, Akiyoshi; Nakamura, Takahiro; Kawai, Sayo; Okada, Rieko; Ooyama, Hiroshi; Shimizu, Toru; Shinomiya, Nariyoshi

    2016-01-01

    Gout is a common disease resulting from hyperuricemia. Recently, a genome-wide association study identified an association between gout and a single nucleotide polymorphism (SNP) rs2188380, located on an intergenic region between MYL2 and CUX2 on chromosome 12. However, other genes around rs2188380 could possibly be gout susceptibility genes. Therefore, we performed a fine-mapping study of the MYL2-CUX2 region. From 8,595 SNPs in the MYL2-CUX2 region, 9 tag SNPs were selected, and genotyping ...

  6. Prevalence of endothelial nitric oxide synthase (eNOS) gene exon 7 Glu298Asp variant in North Eastern India

    Science.gov (United States)

    Shankarishan, Priyanka; Borah, Prasanta Kumar; Ahmed, Giasuddin; Mahanta, Jagadish

    2011-01-01

    Background & objectives Endothelial nitric oxide is a potent vasodilator and impairment of its generation brought about by gene polymorphism is considered a major predictor for several diseases. A single nucleotide polymorphism G894T within exon 7 of endothelial nitric oxide synthase (eNOS-7) gene, resulting in a replacement of glutamic acid by aspartic acid, has been studied as a putative candidate gene for cardiovascular diseases. The pattern of eNOS-7 Glu298Asp variant in the Indian population is poorly known. The present study was planned to determine the prevalence of the variant of this gene among tea garden community in Assam, North-East India with high prevalence of hypertension. Methods Study participants of both sex aged ≥18 yr were recruited randomly from temporary field clinics established in tea gardens of Dibrugarh, Assam. Genomic DNA was extracted from 409 subjects by the conventional phenol-chloroform method. The prevalence of the eNOS exon 7 Glu298Asp variant was determined by polymerase chain reaction and restriction fragment length polymorphism analysis. Results The study population was in Hardy-Weinberg Equilibrium. The frequency of the eNOS GG, GT and TT genotypes was found to be 75, 22 and 3 per cent respectively and did not show any significant difference in gender wise analysis. Interpretation & conclusions Our results showed that the prevalence of the homozygous GG genotype was high (75%) and the rare mutant genotype (homozygous, TT) was 3 per cent in a population at risk with cardiovascular disease. Such population-based data on various polymorphisms can ultimately be exploited in pharmacogenomics. PMID:21623032

  7. Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5

    DEFF Research Database (Denmark)

    Baker, Peter R; Friederich, Marisa W; Swanson, Michael A

    2014-01-01

    the aetiology involves genetic mutations that result in a deficiency of the cofactor lipoate, and sequenced genes involved in lipoate synthesis and iron-sulphur cluster biogenesis. Of 11 individuals identified with variant nonketotic hyperglycinemia, we were able to determine the genetic aetiology in eight...

  8. A Genetic Biomarker of Oxidative Stress, the Paraoxonase-1 Q192R Gene Variant, Associates with Cardiomyopathy in CKD: A Longitudinal Study

    Directory of Open Access Journals (Sweden)

    E. Dounousi

    2016-01-01

    Full Text Available Background. Oxidative stress is a hallmark of CKD and this alteration is strongly implicated in LV hypertrophy and in LV dysfunction. Methods and Patients. We resorted to the strongest genetic biomarker of paraoxonase-1 (PON1 activity, the Q192R variant in the PON1 gene, to unbiasedly assess (Mendelian randomization the cross-sectional and longitudinal association of this gene-variant with LV mass and function in 206 CKD patients with a 3-year follow-up. Results. The R allele of Q192R polymorphism associated with oxidative stress as assessed by plasma 8-isoPGF2α (P=0.03 and was dose-dependently related in a direct fashion to LVMI (QQ: 131.4 ± 42.6 g/m2; RQ: 147.7 ± 51.1 g/m2; RR: 167.3 ± 41.9 g/m2; P=0.001 and in an inverse fashion to systolic function (LV Ejection Fraction (QQ: 79 ± 12%; RQ: 69 ± 9%; RR: 65 ± 10% P=0.002. On longitudinal observation, this gene variant associated with the evolution of the same echocardiographic indicators [LVMI: 13.40 g/m2 per risk allele, P=0.005; LVEF: −2.96% per risk allele, P=0.001]. Multivariate analyses did not modify these associations. Conclusion. In CKD patients, the R allele of the Q192R variant in the PON1 gene is dose-dependently related to the severity of LVH and LV dysfunction and associates with the longitudinal evolution of these cardiac alterations. These results are compatible with the hypothesis that oxidative stress is implicated in cardiomyopathy in CKD patients.

  9. Complex Landscape of Germline Variants in Brazilian Patients With Hereditary and Early Onset Breast Cancer

    Directory of Open Access Journals (Sweden)

    Giovana T. Torrezan

    2018-05-01

    Full Text Available Pathogenic variants in known breast cancer (BC predisposing genes explain only about 30% of Hereditary Breast Cancer (HBC cases, whereas the underlying genetic factors for most families remain unknown. Here, we used whole-exome sequencing (WES to identify genetic variants associated to HBC in 17 patients of Brazil with familial BC and negative for causal variants in major BC risk genes (BRCA1/2, TP53, and CHEK2 c.1100delC. First, we searched for rare variants in 27 known HBC genes and identified two patients harboring truncating pathogenic variants in ATM and BARD1. For the remaining 15 negative patients, we found a substantial vast number of rare genetic variants. Thus, for selecting the most promising variants we used functional-based variant prioritization, followed by NGS validation, analysis in a control group, cosegregation analysis in one family and comparison with previous WES studies, shrinking our list to 23 novel BC candidate genes, which were evaluated in an independent cohort of 42 high-risk BC patients. Rare and possibly damaging variants were identified in 12 candidate genes in this cohort, including variants in DNA repair genes (ERCC1 and SXL4 and other cancer-related genes (NOTCH2, ERBB2, MST1R, and RAF1. Overall, this is the first WES study applied for identifying novel genes associated to HBC in Brazilian patients, in which we provide a set of putative BC predisposing genes. We also underpin the value of using WES for assessing the complex landscape of HBC susceptibility, especially in less characterized populations.

  10. CDKL5 variants

    Science.gov (United States)

    Kalscheuer, Vera M.; Hennig, Friederike; Leonard, Helen; Downs, Jenny; Clarke, Angus; Benke, Tim A.; Armstrong, Judith; Pineda, Mercedes; Bailey, Mark E.S.; Cobb, Stuart R.

    2017-01-01

    Objective: To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. Methods: We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. Results: The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. Conclusions: These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain. PMID:29264392

  11. Characterization of Epstein-Barr virus (EBV) BZLF1 gene promoter variants and comparison of cellular gene expression profiles in Japanese patients with infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis.

    Science.gov (United States)

    Imajoh, Masayuki; Hashida, Yumiko; Murakami, Masanao; Maeda, Akihiko; Sato, Tetsuya; Fujieda, Mikiya; Wakiguchi, Hiroshi; Daibata, Masanori

    2012-06-01

    Epstein-Barr virus (EBV) genotypes can be distinguished based on gene sequence differences in EBV nuclear antigens 2, 3A, 3B, and 3C, and the BZLF1 promoter zone (Zp). EBV subtypes and BZLF1 Zp variants were examined in Japanese patients with infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis. The results of EBV typing showed that samples of infectious mononucleosis, chronic active EBV infection, and EBV-associated hemophagocytic lymphohistiocytosis all belonged to EBV type 1. However, sequencing analysis of BZLF1 Zp found three polymorphic Zp variants in the same samples. The Zp-P prototype and the Zp-V3 variant were both detected in infectious mononucleosis and chronic active EBV infection. Furthermore, a novel variant previously identified in Chinese children with infectious mononucleosis, Zp-V1, was also found in 3 of 18 samples of infectious mononucleosis, where it coexisted with the Zp-P prototype. This is the first evidence that the EBV variant distribution in Japanese patients resembles that found in other Asian patients. The expression levels of 29 chronic active EBV infection-associated cellular genes were also compared in the three EBV-related disorders, using quantitative real-time reverse transcription polymerase chain reaction analysis. Two upregulated genes, RIPK2 and CDH9, were identified as common specific markers for chronic active EBV infection in both in vitro and in vivo studies. RIPK2 activates apoptosis and autophagy, and could be responsible for the pathogenesis of chronic active EBV infection. Copyright © 2012 Wiley Periodicals, Inc.

  12. Novel cancer gene variants and gene fusions of triple-negative breast cancers (TNBCs) reveal their molecular diversity conserved in the patient-derived xenograft (PDX) model.

    Science.gov (United States)

    Jung, Jaeyun; Jang, Kiwon; Ju, Jung Min; Lee, Eunji; Lee, Jong Won; Kim, Hee Jung; Kim, Jisun; Lee, Sae Byul; Ko, Beom Seok; Son, Byung Ho; Lee, Hee Jin; Gong, Gyungyup; Ahn, Sei Yeon; Choi, Jung Kyoon; Singh, Shree Ram; Chang, Suhwan

    2018-04-20

    Despite the improved 5-year survival rate of breast cancer, triple-negative breast cancer (TNBC) remains a challenge due to lack of effective targeted therapy and higher recurrence and metastasis than other subtypes. To identify novel druggable targets and to understand its unique biology, we tried to implement 24 patient-derived xenografts (PDXs) of TNBC. The overall success rate of PDX implantation was 45%, much higher than estrogen receptor (ER)-positive cases. Immunohistochemical analysis revealed conserved ER/PR/Her2 negativity (with two exceptions) between the original and PDX tumors. Genomic analysis of 10 primary tumor-PDX pairs with Ion AmpliSeq CCP revealed high degree of variant conservation (85.0% to 96.9%) between primary and PDXs. Further analysis showed 44 rare variants with a predicted high impact in 36 genes including Trp53, Pten, Notch1, and Col1a1. Among them, we confirmed frequent Notch1 variant. Furthermore, RNA-seq analysis of 24 PDXs revealed 594 gene fusions, of which 163 were in-frame, including AZGP1-GJC3 and NF1-AARSD1. Finally, western blot analysis of oncogenic signaling proteins supporting molecular diversity of TNBC PDXs. Overall, our report provides a molecular basis for the usefulness of the TNBC PDX model in preclinical study. Copyright © 2018. Published by Elsevier B.V.

  13. A functional brain-derived neurotrophic factor (BDNF) gene variant increases the risk of moderate-to-severe allergic rhinitis.

    Science.gov (United States)

    Jin, Peng; Andiappan, Anand Kumar; Quek, Jia Min; Lee, Bernett; Au, Bijin; Sio, Yang Yie; Irwanto, Astrid; Schurmann, Claudia; Grabe, Hans Jörgen; Suri, Bani Kaur; Matta, Sri Anusha; Westra, Harm-Jan; Franke, Lude; Esko, Tonu; Sun, Liangdan; Zhang, Xuejun; Liu, Hong; Zhang, Furen; Larbi, Anis; Xu, Xin; Poidinger, Michael; Liu, Jianjun; Chew, Fook Tim; Rotzschke, Olaf; Shi, Li; Wang, De Yun

    2015-06-01

    Brain-derived neurotrophic factor (BDNF) is a secretory protein that has been implicated in the pathogenesis of allergic rhinitis (AR), atopic asthma, and eczema, but it is currently unknown whether BDNF polymorphisms influence susceptibility to moderate-to-severe AR. We sought to identify disease associations and the functional effect of BDNF genetic variants in patients with moderate-to-severe AR. Tagging single nucleotide polymorphisms (SNPs) spanning the BDNF gene were selected from the human HapMap Han Chinese from Beijing (CHB) data set, and associations with moderate-to-severe AR were assessed in 2 independent cohorts of Chinese patients (2216 from Shandong province and 1239 living in Singapore). The functional effects of the BDNF genetic variants were determined by using both in vitro and ex vivo assays. The tagging SNP rs10767664 was significantly associated with the risk of moderate-to-severe AR in both Singapore Chinese (P = .0017; odds ratio, 1.324) and Shandong Chinese populations (P = .039; odds ratio, 1.180). The coding nonsynonymous SNP rs6265 was in perfect linkage with rs10767664 and conferred increased BDNF protein secretion by a human cell line in vitro. Subjects bearing the AA genotype of rs10767664 exhibited increased risk of moderate-to-severe AR and displayed increased BDNF protein and total IgE levels in plasma. Using a large-scale expression quantitative trait locus study, we demonstrated that BDNF SNPs are significantly associated with altered BDNF concentrations in peripheral blood. A common genetic variant of the BDNF gene is associated with increased risk of moderate-to-severe AR, and the AA genotype is associated with increased BDNF mRNA levels in peripheral blood. Together, these data indicate that functional BDNF gene variants increase the risk of moderate-to-severe AR. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Targeted Resequencing and Functional Testing Identifies Low-Frequency Missense Variants in the Gene Encoding GARP as Significant Contributors to Atopic Dermatitis Risk.

    Science.gov (United States)

    Manz, Judith; Rodríguez, Elke; ElSharawy, Abdou; Oesau, Eva-Maria; Petersen, Britt-Sabina; Baurecht, Hansjörg; Mayr, Gabriele; Weber, Susanne; Harder, Jürgen; Reischl, Eva; Schwarz, Agatha; Novak, Natalija; Franke, Andre; Weidinger, Stephan

    2016-12-01

    Gene-mapping studies have consistently identified a susceptibility locus for atopic dermatitis and other inflammatory diseases on chromosome band 11q13.5, with the strongest association observed for a common variant located in an intergenic region between the two annotated genes C11orf30 and LRRC32. Using a targeted resequencing approach we identified low-frequency and rare missense mutations within the LRRC32 gene encoding the protein GARP, a receptor on activated regulatory T cells that binds latent transforming growth factor-β. Subsequent association testing in more than 2,000 atopic dermatitis patients and 2,000 control subjects showed a significant excess of these LRRC32 variants in individuals with atopic dermatitis. Structural protein modeling and bioinformatic analysis predicted a disruption of protein transport upon these variants, and overexpression assays in CD4 + CD25 - T cells showed a significant reduction in surface expression of the mutated protein. Consistently, flow cytometric (FACS) analyses of different T-cell subtypes obtained from atopic dermatitis patients showed a significantly reduced surface expression of GARP and a reduced conversion of CD4 + CD25 - T cells into regulatory T cells, along with lower expression of latency-associated protein upon stimulation in carriers of the LRRC32 A407T variant. These results link inherited disturbances of transforming growth factor-β signaling with atopic dermatitis risk. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Integrated analysis of genetic variation and gene expression reveals novel variant for increased warfarin dose requirement in African Americans

    NARCIS (Netherlands)

    Hernandez, W.; Gamazon, E. R.; Aquino-Michaels, K.; Smithberger, E.; O'Brien, T. J.; Harralson, A. F.; Tuck, M.; Barbour, A.; Cavallari, L. H.; Perera, M. A.

    2017-01-01

    Essentials Genetic variants controlling gene regulation have not been explored in pharmacogenomics. We tested liver expression quantitative trait loci for association with warfarin dose response. A novel predictor for increased warfarin dose response in African Americans was identified. Precision

  16. Annotating pathogenic non-coding variants in genic regions.

    Science.gov (United States)

    Gelfman, Sahar; Wang, Quanli; McSweeney, K Melodi; Ren, Zhong; La Carpia, Francesca; Halvorsen, Matt; Schoch, Kelly; Ratzon, Fanni; Heinzen, Erin L; Boland, Michael J; Petrovski, Slavé; Goldstein, David B

    2017-08-09

    Identifying the underlying causes of disease requires accurate interpretation of genetic variants. Current methods ineffectively capture pathogenic non-coding variants in genic regions, resulting in overlooking synonymous and intronic variants when searching for disease risk. Here we present the Transcript-inferred Pathogenicity (TraP) score, which uses sequence context alterations to reliably identify non-coding variation that causes disease. High TraP scores single out extremely rare variants with lower minor allele frequencies than missense variants. TraP accurately distinguishes known pathogenic and benign variants in synonymous (AUC = 0.88) and intronic (AUC = 0.83) public datasets, dismissing benign variants with exceptionally high specificity. TraP analysis of 843 exomes from epilepsy family trios identifies synonymous variants in known epilepsy genes, thus pinpointing risk factors of disease from non-coding sequence data. TraP outperforms leading methods in identifying non-coding variants that are pathogenic and is therefore a valuable tool for use in gene discovery and the interpretation of personal genomes.While non-coding synonymous and intronic variants are often not under strong selective constraint, they can be pathogenic through affecting splicing or transcription. Here, the authors develop a score that uses sequence context alterations to predict pathogenicity of synonymous and non-coding genetic variants, and provide a web server of pre-computed scores.

  17. Regularized rare variant enrichment analysis for case-control exome sequencing data.

    Science.gov (United States)

    Larson, Nicholas B; Schaid, Daniel J

    2014-02-01

    Rare variants have recently garnered an immense amount of attention in genetic association analysis. However, unlike methods traditionally used for single marker analysis in GWAS, rare variant analysis often requires some method of aggregation, since single marker approaches are poorly powered for typical sequencing study sample sizes. Advancements in sequencing technologies have rendered next-generation sequencing platforms a realistic alternative to traditional genotyping arrays. Exome sequencing in particular not only provides base-level resolution of genetic coding regions, but also a natural paradigm for aggregation via genes and exons. Here, we propose the use of penalized regression in combination with variant aggregation measures to identify rare variant enrichment in exome sequencing data. In contrast to marginal gene-level testing, we simultaneously evaluate the effects of rare variants in multiple genes, focusing on gene-based least absolute shrinkage and selection operator (LASSO) and exon-based sparse group LASSO models. By using gene membership as a grouping variable, the sparse group LASSO can be used as a gene-centric analysis of rare variants while also providing a penalized approach toward identifying specific regions of interest. We apply extensive simulations to evaluate the performance of these approaches with respect to specificity and sensitivity, comparing these results to multiple competing marginal testing methods. Finally, we discuss our findings and outline future research. © 2013 WILEY PERIODICALS, INC.

  18. The effect of the Taq1A variant in the dopamine D2 receptor gene and common CYP2D6 alleles on prolactin levels in risperidone-treated boys

    NARCIS (Netherlands)

    Roke, Y.; Harten, P.N. van; Franke, B.; Galesloot, T.E.; Boot, A.M.; Buitelaar, J.K.

    2013-01-01

    OBJECTIVE: To investigate the effect of the Taq1A variant in the Dopamine D2 receptor gene (DRD2) and common functional genetic variants in the cytochrome P450 2D6 gene (CYP2D6) on prolactin levels in risperidone-treated boys with autism spectrum disorders and disruptive behavior disorders. METHODS:

  19. The effect of the Taq1A variant in the dopamine D-2 receptor gene and common CYP2D6 alleles on prolactin levels in risperidone-treated boys

    NARCIS (Netherlands)

    Roke, Yvette; van Harten, Peter N.; Franke, Barbara; Galesloot, Tessel E.; Boot, Annemieke M.; Buitelaar, Jan K.

    Objective To investigate the effect of the Taq1A variant in the Dopamine D2 receptor gene (DRD2) and common functional genetic variants in the cytochrome P450 2D6 gene (CYP2D6) on prolactin levels in risperidone-treated boys with autism spectrum disorders and disruptive behavior disorders.Methods

  20. Variants in the interleukin-1 alpha and beta genes, and the risk for periodontal disease in dogs.

    Science.gov (United States)

    Albuquerque, C; Morinha, F; Magalhães, J; Requicha, J; Dias, I; Guedes-Pinto, H; Bastos, E; Viegas, C

    2015-12-01

    Elevated levels of interleukin-1 (IL-1) have been shown to amplify the inflammatory response against periodontopathogenic bacteria.In humans,polymorphisms in the IL1A and IL1B genes are the most well-studied genetic polymorphisms associated with periodontal disease (PD). In contrast to human, there is a lack of knowledge on the genetic basis of canine PD. A case-control study was conducted in which a molecular analysis of dog IL1A and IL1B genes was performed. Of the eight genetic variants identified, seven in IL1A gene and one in IL1B gene, IL1A/1_g.388A>C and IL1A /1_g.521T>A showed statistically significant differences between groups (adjusted OR (95% CI): 0.15 (0.03-0.76),P=0.022; 5.76 (1.03-32.1),P=0.046, respectively). It suggests that in the studied population the IL1A/1_g.388C allele is associated with a decreased PD risk, whereas the IL1A/1_g.521A allele can confer an increased risk. Additionally, the IL1A/2_g.515G>T variation resulted in a change of amino acid, i.e. glycine to valine. In silico analysis suggests that this change can alter protein structure and function, predicting it to be deleterious or damaging. This work suggests that IL1 genetic variants may be important in PD susceptibility in canines.

  1. Differential expression of splicing variants of the human caldesmon gene (CALD1) in glioma neovascularization versus normal brain microvasculature

    NARCIS (Netherlands)

    P.P. Zheng (Pingpin); A.M. Sieuwerts (Anieta); T.M. Luider (Theo); M.M. van der Weiden (Marcel); J.M. Kros (Johan); P.A.E. Sillevis Smitt (Peter)

    2004-01-01

    textabstractCaldesmon is a cytoskeleton-associated protein which has not yet been related to neoplastic angiogenesis. In this study we investigated the expression of the caldesmon gene (CALD1) splicing variants and the protein expression level in glioma microvessels versus normal

  2. Genetic variants of the MAVS, MITA and MFN2 genes are not associated with leprosy in Han Chinese from Southwest China.

    Science.gov (United States)

    Wang, Dong; Li, Guo-Dong; Zhang, Deng-Feng; Xu, Ling; Li, Xiao-An; Yu, Xiu-Feng; Long, Heng; Li, Yu-Ye; Yao, Yong-Gang

    2016-11-01

    Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae), which has massive genomic decay and dependence on host metabolism. Accumulating evidence showed a crucial role of mitochondria in metabolism and innate immunity. We hypothesized that the mitochondrial-related antimicrobial/antiviral immune genes MAVS (mitochondrial antiviral signaling protein), MITA (mediator of IRF3 activation) and MFN2 (mitofusin 2) would confer a risk to leprosy. In this study, we performed a case-control study to analyze 11 tag and/or non-synonymous SNPs of the MAVS, MITA and MFN2 genes in 527 leprosy patients and 583 healthy individuals, and directly sequenced the three genes in 80 leprosy patients with a family history from Yunnan, Southwest China. We found no association between these SNPs and leprosy (including its subtypes) based on the frequencies of alleles, genotypes and haplotypes between the cases and controls. There was also no enrichment of potential pathogenic variants of the three genes in leprosy patients. Our results suggested that genetic variants of the MAVS, MITA and MFN2 genes might not affect the susceptibility to leprosy. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A multifactorial likelihood model for MMR gene variant classification incorporating probabilities based on sequence bioinformatics and tumor characteristics: a report from the Colon Cancer Family Registry.

    Science.gov (United States)

    Thompson, Bryony A; Goldgar, David E; Paterson, Carol; Clendenning, Mark; Walters, Rhiannon; Arnold, Sven; Parsons, Michael T; Michael D, Walsh; Gallinger, Steven; Haile, Robert W; Hopper, John L; Jenkins, Mark A; Lemarchand, Loic; Lindor, Noralane M; Newcomb, Polly A; Thibodeau, Stephen N; Young, Joanne P; Buchanan, Daniel D; Tavtigian, Sean V; Spurdle, Amanda B

    2013-01-01

    Mismatch repair (MMR) gene sequence variants of uncertain clinical significance are often identified in suspected Lynch syndrome families, and this constitutes a challenge for both researchers and clinicians. Multifactorial likelihood model approaches provide a quantitative measure of MMR variant pathogenicity, but first require input of likelihood ratios (LRs) for different MMR variation-associated characteristics from appropriate, well-characterized reference datasets. Microsatellite instability (MSI) and somatic BRAF tumor data for unselected colorectal cancer probands of known pathogenic variant status were used to derive LRs for tumor characteristics using the Colon Cancer Family Registry (CFR) resource. These tumor LRs were combined with variant segregation within families, and estimates of prior probability of pathogenicity based on sequence conservation and position, to analyze 44 unclassified variants identified initially in Australasian Colon CFR families. In addition, in vitro splicing analyses were conducted on the subset of variants based on bioinformatic splicing predictions. The LR in favor of pathogenicity was estimated to be ~12-fold for a colorectal tumor with a BRAF mutation-negative MSI-H phenotype. For 31 of the 44 variants, the posterior probabilities of pathogenicity were such that altered clinical management would be indicated. Our findings provide a working multifactorial likelihood model for classification that carefully considers mode of ascertainment for gene testing. © 2012 Wiley Periodicals, Inc.

  4. NMNAT1 variants cause cone and cone-rod dystrophy.

    Science.gov (United States)

    Nash, Benjamin M; Symes, Richard; Goel, Himanshu; Dinger, Marcel E; Bennetts, Bruce; Grigg, John R; Jamieson, Robyn V

    2018-03-01

    Cone and cone-rod dystrophies (CD and CRD, respectively) are degenerative retinal diseases that predominantly affect the cone photoreceptors. The underlying disease gene is not known in approximately 75% of autosomal recessive cases. Variants in NMNAT1 cause a severe, early-onset retinal dystrophy called Leber congenital amaurosis (LCA). We report two patients where clinical phenotyping indicated diagnoses of CD and CRD, respectively. NMNAT1 variants were identified, with Case 1 showing an extremely rare homozygous variant c.[271G > A] p.(Glu91Lys) and Case 2 compound heterozygous variants c.[53 A > G];[769G > A] p.(Asn18Ser);(Glu257Lys). The detailed variant analysis, in combination with the observation of an associated macular atrophy phenotype, indicated that these variants were disease-causing. This report demonstrates that the variants in NMNAT1 may cause CD or CRD associated with macular atrophy. Genetic investigations of the patients with CD or CRD should include NMNAT1 in the genes examined.

  5. Large-scale studies of the functional K variant of the butyrylcholinesterase gene in relation to Type 2 diabetes and insulin secretion

    DEFF Research Database (Denmark)

    Johansen, A; Nielsen, E-M D; Andersen, G

    2004-01-01

    Polymorphisms of the butyrylcholinesterase gene (BCHE) are reported to associate with Alzheimer's disease and a recent study found a significant association of the BCHE K variant (G1615A/Ala539Thr) with Type 2 diabetes. The objectives of our study were to examine whether the BCHE K variant is ass...... is associated with Type 2 diabetes or estimates of pancreatic beta cell function in large-scale populations of glucose-tolerant Caucasians....

  6. Genome-wide analysis of Epstein-Barr virus identifies variants and genes associated with gastric carcinoma and population structure.

    Science.gov (United States)

    Yao, Youyuan; Xu, Miao; Liang, Liming; Zhang, Haojiong; Xu, Ruihua; Feng, Qisheng; Feng, Lin; Luo, Bing; Zeng, Yi-Xin

    2017-10-01

    Epstein-Barr virus is a ubiquitous virus and is associated with several human malignances, including the significant subset of gastric carcinoma, Epstein-Barr virus-associated gastric carcinoma. Some Epstein-Barr virus-associated diseases are uniquely prevalent in populations with different geographic origins. However, the features of the disease and geographically associated Epstein-Barr virus genetic variation as well as the roles that the variation plays in carcinogenesis and evolution remain unclear. Therefore, in this study, we sequenced 95 geographically distinct Epstein-Barr virus isolates from Epstein-Barr virus-associated gastric carcinoma biopsies and saliva of healthy donors to detect variants and genes associated with gastric carcinoma and population structure from a genome-wide spectrum. We demonstrated that Epstein-Barr virus revealed the population structure between North China and South China. In addition, we observed population stratification between Epstein-Barr virus strains from gastric carcinoma and healthy controls, indicating that certain Epstein-Barr virus subtypes are associated with different gastric carcinoma risks. We identified that the BRLF1, BBRF3, and BBLF2/BBLF3 genes had significant associations with gastric carcinoma. LMP1 and BNLF2a genes were strongly geographically associated genes in Epstein-Barr virus. Our study provides insights into the genetic basis of oncogenic Epstein-Barr virus for gastric carcinoma, and the genetic variants associated with gastric carcinoma can serve as biomarkers for oncogenic Epstein-Barr virus.

  7. The truncated splice variant of peroxisome proliferator-activated receptor alpha, PPARα-tr, autonomously regulates proliferative and pro-inflammatory genes

    International Nuclear Information System (INIS)

    Thomas, Maria; Bayha, Christine; Klein, Kathrin; Müller, Simon; Weiss, Thomas S.; Schwab, Matthias; Zanger, Ulrich M.

    2015-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) controls lipid/energy homeostasis and inflammatory responses. The truncated splice variant PPARα-tr was suggested to exert a dominant negative function despite being unable to bind consensus PPARα DNA response elements. The distribution and variability factor of each PPARα variant were assessed in the well-characterized cohort of human liver samples (N = 150) on the mRNA and protein levels. Specific siRNA-mediated downregulation of each transcript as well as specific overexpression with subsequent qRT-PCR analysis of downstream genes was used for investigation of specific functional roles of PPARα-wt and PPARα-tr forms in primary human hepatocytes. Bioinformatic analyses of genome-wide liver expression profiling data suggested a possible role of PPARα-tr in downregulating proliferative and pro-inflammatory genes. Specific gene silencing of both forms in primary human hepatocytes showed that induction of metabolic PPARα-target genes by agonist WY14,643 was prevented by PPARα-wt knock-down but neither prevented nor augmented by PPARα-tr knock-down. WY14,643 treatment did not induce proliferative genes including MYC, CDK1, and PCNA, and knock-down of PPARα-wt had no effect, while PPARα-tr knock-down caused up to 3-fold induction of these genes. Similarly, induction of pro-inflammatory genes IL1B, PTGS2, and CCL2 by IL-6 was augmented by knock-down of PPARα-tr but not of PPARα-wt. In contrast to human proliferative genes, orthologous mouse genes were readily inducible by WY14,643 in PPARα-tr non-expressing AML12 mouse hepatocytes. Induction was augmented by overexpression of PPARα-wt and attenuated by overexpression of PPARα-tr. Pro-inflammatory genes including IL-1β, CCL2 and TNFα were induced by WY14,643 in mouse and human cells and both PPARα forms attenuated induction. As potential mechanism of PPARα-tr inhibitory action we suggest crosstalk with WNT/β-catenin pathway. Finally

  8. UMD-USHbases: a comprehensive set of databases to record and analyse pathogenic mutations and unclassified variants in seven Usher syndrome causing genes.

    Science.gov (United States)

    Baux, David; Faugère, Valérie; Larrieu, Lise; Le Guédard-Méreuze, Sandie; Hamroun, Dalil; Béroud, Christophe; Malcolm, Sue; Claustres, Mireille; Roux, Anne-Françoise

    2008-08-01

    Using the Universal Mutation Database (UMD) software, we have constructed "UMD-USHbases", a set of relational databases of nucleotide variations for seven genes involved in Usher syndrome (MYO7A, CDH23, PCDH15, USH1C, USH1G, USH3A and USH2A). Mutations in the Usher syndrome type I causing genes are also recorded in non-syndromic hearing loss cases and mutations in USH2A in non-syndromic retinitis pigmentosa. Usher syndrome provides a particular challenge for molecular diagnostics because of the clinical and molecular heterogeneity. As many mutations are missense changes, and all the genes also contain apparently non-pathogenic polymorphisms, well-curated databases are crucial for accurate interpretation of pathogenicity. Tools are provided to assess the pathogenicity of mutations, including conservation of amino acids and analysis of splice-sites. Reference amino acid alignments are provided. Apparently non-pathogenic variants in patients with Usher syndrome, at both the nucleotide and amino acid level, are included. The UMD-USHbases currently contain more than 2,830 entries including disease causing mutations, unclassified variants or non-pathogenic polymorphisms identified in over 938 patients. In addition to data collected from 89 publications, 15 novel mutations identified in our laboratory are recorded in MYO7A (6), CDH23 (8), or PCDH15 (1) genes. Information is given on the relative involvement of the seven genes, the number and distribution of variants in each gene. UMD-USHbases give access to a software package that provides specific routines and optimized multicriteria research and sorting tools. These databases should assist clinicians and geneticists seeking information about mutations responsible for Usher syndrome.

  9. Genetic variants influencing phenotypic variance heterogeneity.

    Science.gov (United States)

    Ek, Weronica E; Rask-Andersen, Mathias; Karlsson, Torgny; Enroth, Stefan; Gyllensten, Ulf; Johansson, Åsa

    2018-03-01

    Most genetic studies identify genetic variants associated with disease risk or with the mean value of a quantitative trait. More rarely, genetic variants associated with variance heterogeneity are considered. In this study, we have identified such variance single-nucleotide polymorphisms (vSNPs) and examined if these represent biological gene × gene or gene × environment interactions or statistical artifacts caused by multiple linked genetic variants influencing the same phenotype. We have performed a genome-wide study, to identify vSNPs associated with variance heterogeneity in DNA methylation levels. Genotype data from over 10 million single-nucleotide polymorphisms (SNPs), and DNA methylation levels at over 430 000 CpG sites, were analyzed in 729 individuals. We identified vSNPs for 7195 CpG sites (P mean DNA methylation levels. We further showed that variance heterogeneity between genotypes mainly represents additional, often rare, SNPs in linkage disequilibrium (LD) with the respective vSNP and for some vSNPs, multiple low frequency variants co-segregating with one of the vSNP alleles. Therefore, our results suggest that variance heterogeneity of DNA methylation mainly represents phenotypic effects by multiple SNPs, rather than biological interactions. Such effects may also be important for interpreting variance heterogeneity of more complex clinical phenotypes.

  10. Loss aversion and 5HTT gene variants in adolescent anxiety

    Directory of Open Access Journals (Sweden)

    Monique Ernst

    2014-04-01

    Full Text Available Loss aversion, a well-documented behavioral phenomenon, characterizes decisions under risk in adult populations. As such, loss aversion may provide a reliable measure of risky behavior. Surprisingly, little is known about loss aversion in adolescents, a group who manifests risk-taking behavior, or in anxiety disorders, which are associated with risk-avoidance. Finally, loss aversion is expected to be modulated by genotype, particularly the serotonin transporter (SERT gene variant, based on its role in anxiety and impulsivity. This genetic modulation may also differ between anxious and healthy adolescents, given their distinct propensities for risk taking. The present work examines the modulation of loss aversion, an index of risk-taking, and reaction-time to decision, an index of impulsivity, by the serotonin-transporter-gene-linked polymorphisms (5HTTLPR in healthy and clinically anxious adolescents. Findings show that loss aversion (1 does manifest in adolescents, (2 does not differ between healthy and clinically anxious participants, and (3, when stratified by SERT genotype, identifies a subset of anxious adolescents who are high SERT-expressers, and show excessively low loss-aversion and high impulsivity. This last finding may serve as preliminary evidence for 5HTTLPR as a risk factor for the development of comorbid disorders associated with risk-taking and impulsivity in clinically anxious adolescents.

  11. Molecular epidemiology of HFE gene polymorphic variants (C282Y, H63D and S65C) in the population of Espírito Santo, Brazil.

    Science.gov (United States)

    Alves, L N R; Santos, E V W; Stur, E; Silva Conforti, A M A; Louro, I D

    2016-04-27

    Hereditary hemochromatosis (HH) is an autosomal recessive disorder that leads to progressive iron accumulation and may cause cirrhosis, hepatocellular carcinoma, diabetes, and heart failure. Most cases of HH have been linked to mutations in genes associated with iron homeostasis. There have been three major variants in the high Fe (HFE) gene associated with the disease: C282Y, H63D and S65C. In this context, we aimed to evaluate the prevalence of the polymorphic variants (C282Y, H63D and S65C) of the HFE gene in the population of the Espírito Santo State (ES), Brazil by analyzing three different groups: general population (N = 120), Pomeranian descendants (N = 59), and patients with HH (N = 20). Using genomic DNA extracted from peripheral blood, polymorphic variant identification was performed by polymerase chain reaction-restriction fragment length polymorphism. Statistically significant differences were observed for genotype distribution of C282Y (P HFE gene allele frequencies for the general population, Pomeranian subpopulation, and patients with HH of ES, Brazil.

  12. HFE gene variants, iron, and lipids: a novel connection in Alzheimer’s disease

    Science.gov (United States)

    Ali-Rahmani, Fatima; Schengrund, Cara-Lynne; Connor, James R.

    2014-01-01

    Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiological, genetic, and molecular evidence of disruption of cholesterol homeostasis in several neurodegenerative diseases, in particular Alzheimer’s disease (AD). Despite the efforts that have been made to identify factors that can trigger the pathological events associated with neurodegenerative diseases they remain mostly unknown. Because molecular phenotypes such as oxidative stress, synaptic failure, neuronal loss, and cognitive decline, characteristics associated with AD, have been shown to result from disruption of a number of pathways, one can easily argue that the phenotype seen may not arise from a linear sequence of events. Therefore, a multi-targeted approach is needed to understand a complex disorder like AD. This can be achieved only when knowledge about interactions between the different pathways and the potential influence of environmental factors on them becomes available. Toward this end, this review discusses what is known about the roles and interactions of iron and cholesterol in neurodegenerative diseases. It highlights the effects of gene variants of HFE (H63D- and C282Y-HFE) on iron and cholesterol metabolism and how they may contribute to understanding the etiology of complex neurodegenerative diseases. PMID:25071582

  13. [Study of genetic variants in the BDNF, COMT, DAT1 and SERT genes in Colombian children with attention deficit disorder].

    Science.gov (United States)

    Ortega-Rojas, Jenny; Arboleda-Bustos, Carlos E; Morales, Luis; Benítez, Bruno A; Beltrán, Diana; Izquierdo, Álvaro; Arboleda, Humberto; Vásquez, Rafael

    Attention deficit and hyperactive disorder (ADHD) is highly prevalent among children in Bogota City. Both genetic and environmental factors play a very important role in the etiology of ADHD. However, to date few studies have addressed the association of genetic variants and ADHD in the Colombian population. To test the genetic association between polymorphisms in the DAT1, HTTLPR, COMT and BDNF genes and ADHD in a sample from Bogota City. We genotyped the most common polymorphisms in DAT1, SERT, COMT and BDNF genes associated with ADHD using conventional PCR followed by restriction fragment length polymorphism (RFLP) in 97 trios recruited in a medical center in Bogota. The transmission disequilibrium test (TDT) was used to determine the association between such genetic variants and ADHD. The TDT analysis showed that no individual allele of any variant studied has a preferential transmission. Our results suggest that the etiology of the ADHD may be complex and involves several genetic factors. Further studies in other candidate polymorphisms in a larger sample size will improve our knowledge of the ADHD in Colombian population. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  14. Dandy-Walker variant in Coffin-Siris syndrome.

    Science.gov (United States)

    Imai, T; Hattori, H; Miyazaki, M; Higuchi, Y; Adachi, S; Nakahata, T

    2001-04-22

    We describe a five-month-old male infant with Coffin-Siris syndrome, the so-called Dandy-Walker variant (hypoplasia of the cerebellar vermis with cystic dilatation of the fourth ventricle, but without enlargement of the posterior fossa), and partial agenesis of the corpus callosum. Dandy-Walker malformation and mega cisterna magna, but not Dandy-Walker variant, have been reported in Coffin-Siris syndrome. The presence of Dandy-Walker variant in the infant we described confirms that the full continuum of the Dandy-Walker complex can occur in Coffin-Siris syndrome. The yet unidentified gene(s) for the syndrome may be related to the development of the hindbrain. Copyright 2001 Wiley-Liss, Inc.

  15. TCDD dysregulation of 13 AHR-target genes in rat liver

    International Nuclear Information System (INIS)

    Watson, John D.; Prokopec, Stephenie D.; Smith, Ashley B.; Okey, Allan B.; Pohjanvirta, Raimo; Boutros, Paul C.

    2014-01-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluated doses ranging from 0 to 3000 μg/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED 50 equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic mRNA molecules following

  16. TCDD dysregulation of 13 AHR-target genes in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Watson, John D., E-mail: john.watson@oicr.on.ca [Ontario Institute for Cancer Research, Department of Informatics and Bio-computing Program, Toronto (Canada); Prokopec, Stephenie D., E-mail: stephenie.prokopec@oicr.on.ca [Ontario Institute for Cancer Research, Department of Informatics and Bio-computing Program, Toronto (Canada); Smith, Ashley B., E-mail: ashleyblaines@gmail.com [Ontario Institute for Cancer Research, Department of Informatics and Bio-computing Program, Toronto (Canada); Okey, Allan B., E-mail: allan.okey@utoronto.ca [Department of Pharmacology and Toxicology, University of Toronto, Toronto (Canada); Pohjanvirta, Raimo, E-mail: raimo.pohjanvirta@helsinki.fi [Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio (Finland); Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki (Finland); Boutros, Paul C., E-mail: paul.boutros@oicr.on.ca [Ontario Institute for Cancer Research, Department of Informatics and Bio-computing Program, Toronto (Canada); Department of Pharmacology and Toxicology, University of Toronto, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluated doses ranging from 0 to 3000 μg/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED{sub 50} equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic mRNA molecules

  17. Macrophage and dendritic cell subsets in IBD: ALDH+ cells are reduced in colon tissue of patients with ulcerative colitis regardless of inflammation

    DEFF Research Database (Denmark)

    Magnusson, M. K.; Brynjólfsson, S. F.; Dige, A.

    2016-01-01

    Disruption of the homeostatic balance of intestinal dendritic cells (DCs) and macrophages (MQs) may contribute to inflammatory bowel disease. We characterized DC and MQ populations, including their ability to produce retinoic acid, in clinical material encompassing Crohn’s ileitis, Crohn’s colitis....... In MLNs, two CD14− DC populations were identified: CD11cintHLADRhi and CD11chiHLADRint cells. A marked increase of CD11chiHLADRint DC, particularly DRintCD1c+ DCs, characterized MLNs draining inflamed intestine. The fraction of DC and MQ populations expressing aldehyde dehydrogenase (ALDH) activity......, reflecting retinoic acid synthesis, in UC colon, both in active disease and remission, were reduced compared to controls and inflamed Crohn’s colon. In contrast, no difference in the frequency of ALDH+ cells among blood precursors was detected between UC patients and non-inflamed controls. This suggests...

  18. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease.

    Science.gov (United States)

    Ward, Lucas D; Kellis, Manolis

    2016-01-04

    More than 90% of common variants associated with complex traits do not affect proteins directly, but instead the circuits that control gene expression. This has increased the urgency of understanding the regulatory genome as a key component for translating genetic results into mechanistic insights and ultimately therapeutics. To address this challenge, we developed HaploReg (http://compbio.mit.edu/HaploReg) to aid the functional dissection of genome-wide association study (GWAS) results, the prediction of putative causal variants in haplotype blocks, the prediction of likely cell types of action, and the prediction of candidate target genes by systematic mining of comparative, epigenomic and regulatory annotations. Since first launching the website in 2011, we have greatly expanded HaploReg, increasing the number of chromatin state maps to 127 reference epigenomes from ENCODE 2012 and Roadmap Epigenomics, incorporating regulator binding data, expanding regulatory motif disruption annotations, and integrating expression quantitative trait locus (eQTL) variants and their tissue-specific target genes from GTEx, Geuvadis, and other recent studies. We present these updates as HaploReg v4, and illustrate a use case of HaploReg for attention deficit hyperactivity disorder (ADHD)-associated SNPs with putative brain regulatory mechanisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma.

    Directory of Open Access Journals (Sweden)

    Lisa J Martin

    Full Text Available Autophagy is a cellular process directed at eliminating or recycling cellular proteins. Recently, the autophagy pathway has been implicated in immune dysfunction, the pathogenesis of inflammatory disorders, and response to viral infection. Associations between two genes in the autophagy pathway, ATG5 and ATG7, with childhood asthma were investigated.Using genetic and experimental approaches, we examined the association of 13 HapMap-derived tagging SNPs in ATG5 and ATG7 with childhood asthma in 312 asthmatic and 246 non-allergic control children. We confirmed our findings by using independent cohorts and imputation analysis. Finally, we evaluated the functional relevance of a disease associated SNP.We demonstrated that ATG5 single nucleotide polymorphisms rs12201458 and rs510432 were associated with asthma (p = 0.00085 and 0.0025, respectively. In three independent cohorts, additional variants in ATG5 in the same LD block were associated with asthma (p<0.05. We found that rs510432 was functionally relevant and conferred significantly increased promotor activity. Furthermore, Atg5 expression was increased in nasal epithelium of acute asthmatics compared to stable asthmatics and non-asthmatic controls.Genetic variants in ATG5, including a functional promotor variant, are associated with childhood asthma. These results provide novel evidence for a role for ATG5 in childhood asthma.

  20. Cellobiohydrolase I gene and improved variants

    Science.gov (United States)

    Adney, William S [Golden, CO; Decker, Stephen R [Berthoud, CO; Mc Carter, Suzanne [San Carlos, CA; Baker, John O [Golden, CO; Nieves, Raphael [Lakewood, CO; Himmel, Michael E [Littleton, CO; Vinzant, Todd B [Golden, CO

    2008-05-20

    The disclosure provides a method for preparing an active exoglucanase in a heterologous host of eukaryotic origin. The method includes mutagenesis to reduce glycosylation of the exoglucanase when expressed in a heterologous host. It is further disclosed a method to produce variant cellobiohydrolase that is stable at high temperature through mutagenesis.

  1. Characterization of a novel splicing variant in the RAPTOR gene

    International Nuclear Information System (INIS)

    Sun Chang; Southard, Catherine; Di Rienzo, Anna

    2009-01-01

    The mammalian target of rapamycin (mTOR) plays an essential role in the regulation of cell growth, proliferation and apoptosis. Raptor, the regulatory associated protein of mTOR, is an important member in this signaling pathway. In the present report, we identified and characterized a novel splicing variant of this gene, RAPTOR v 2, in which exons 14-17, 474 bp in total, are omitted from the mRNA. This deletion does not change the open reading frame, but causes a nearly complete absence of HEAT repeats, which were shown to be involved in the binding of mTOR substrates. Real time PCR performed on 48 different human tissues demonstrated the ubiquitous presence of this splice variant. Quantification of mRNA levels in lymphoblastoid cell lines (LCL) from 56 unrelated HapMap individuals revealed that the expression of this splicing form is quite variable. One synonymous SNP, rs2289759 in exon 14, was predicted by ESEfinder to cause a significant gain/loss of SRp55 and/or SF2/ASF binding sites, and thus potentially influence splicing. This prediction was confirmed by linear regression analysis between the ratio of RAPTOR v 2 to total RAPTOR mRNA levels and the SNP genotype in the above 56 individuals (r = 0.281 and P = 0.036). Moreover, the functional evaluation indicated that this splicing isoform is expected to retain the ability to bind mTOR, but is unlikely to bind mTOR substrates, hence affecting signal transduction and further cell proliferation

  2. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration

    OpenAIRE

    Iqbal, Zafar; P?ttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka ELM; de Brouwer, Arjan PM; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein

    2015-01-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenti...

  3. Genetic analyses of the NF1 gene in Turkish neurofibromatosis type I patients and definition of three novel variants

    Directory of Open Access Journals (Sweden)

    Ulusal SD

    2017-06-01

    Full Text Available Neurofibromatosis Type I (NF1 is a multi systemic autosomal dominant neurocutaneous disorder predisposing patients to have benign and/or malignant lesions predominantly of the skin, nervous system and bone. Loss of function mutations or deletions of the NF1 gene is responsible for NF1 disease. Involvement of various pathogenic variants, the size of the gene and presence of pseudogenes makes it difficult to analyze. We aimed to report the results of 2 years of multiplex ligation-dependent probe amplification (MLPA and next generation sequencing (NGS for genetic diagnosis of NF1 applied at our genetic diagnosis center. The MLPA, semiconductor sequencing and Sanger sequencing were performed in genomic DNA samples from 24 unrelated patients and their affected family members referred to our center suspected of having NF1. In total, three novel and 12 known pathogenic variants and a whole gene deletion were determined. We suggest that next generation sequencing is a practical tool for genetic analysis of NF1. Deletion/duplication analysis with MLPA may also be helpful for patients clinically diagnosed to carry NF1 but do not have a detectable mutation in NGS.

  4. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium.

    LENUS (Irish Health Repository)

    McKay, James D

    2011-03-01

    Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p ≤ 5 × 10⁻⁷). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10⁻⁸) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p =2 × 10⁻⁸) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 × 10⁻⁸); rs1229984-ADH1B, p = 7 × 10⁻⁹; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

  5. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium.

    Directory of Open Access Journals (Sweden)

    James D McKay

    2011-03-01

    Full Text Available Genome-wide association studies (GWAS have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p ≤ 5 × 10⁻⁷. Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10⁻⁸ located near DNA repair related genes HEL308 and FAM175A (or Abraxas and a 12q24 variant (rs4767364, p =2 × 10⁻⁸ located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2 gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 × 10⁻⁸; rs1229984-ADH1B, p = 7 × 10⁻⁹; and rs698-ADH1C, p = 0.02. These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

  6. A Common Variant in the SETD7 Gene Predicts Serum Lycopene Concentrations.

    Science.gov (United States)

    D'Adamo, Christopher R; D'Urso, Antonietta; Ryan, Kathleen A; Yerges-Armstrong, Laura M; Semba, Richard D; Steinle, Nanette I; Mitchell, Braxton D; Shuldiner, Alan R; McArdle, Patrick F

    2016-02-06

    Dietary intake and higher serum concentrations of lycopene have been associated with lower incidence of prostate cancer and other chronic diseases. Identifying determinants of serum lycopene concentrations may thus have important public health implications. Prior studies have suggested that serum lycopene concentrations are under partial genetic control. The goal of this research was to identify genetic predictors of serum lycopene concentrations using the genome-wide association study (GWAS) approach among a sample of 441 Old Order Amish adults that consumed a controlled diet. Linear regression models were utilized to evaluate associations between genetic variants and serum concentrations of lycopene. Variant rs7680948 on chromosome 4, located in the intron region of the SETD7 gene, was significantly associated with serum lycopene concentrations (p = 3.41 × 10(-9)). Our findings also provided nominal support for the association previously noted between SCARB1 and serum lycopene concentrations, although with a different SNP (rs11057841) in the region. This study identified a novel locus associated with serum lycopene concentrations and our results raise a number of intriguing possibilities regarding the nature of the relationship between SETD7 and lycopene, both of which have been independently associated with prostate cancer. Further investigation into this relationship might help provide greater mechanistic understanding of these associations.

  7. A Common Variant in the SETD7 Gene Predicts Serum Lycopene Concentrations

    Directory of Open Access Journals (Sweden)

    Christopher R. D’Adamo

    2016-02-01

    Full Text Available Dietary intake and higher serum concentrations of lycopene have been associated with lower incidence of prostate cancer and other chronic diseases. Identifying determinants of serum lycopene concentrations may thus have important public health implications. Prior studies have suggested that serum lycopene concentrations are under partial genetic control. The goal of this research was to identify genetic predictors of serum lycopene concentrations using the genome-wide association study (GWAS approach among a sample of 441 Old Order Amish adults that consumed a controlled diet. Linear regression models were utilized to evaluate associations between genetic variants and serum concentrations of lycopene. Variant rs7680948 on chromosome 4, located in the intron region of the SETD7 gene, was significantly associated with serum lycopene concentrations (p = 3.41 × 10−9. Our findings also provided nominal support for the association previously noted between SCARB1 and serum lycopene concentrations, although with a different SNP (rs11057841 in the region. This study identified a novel locus associated with serum lycopene concentrations and our results raise a number of intriguing possibilities regarding the nature of the relationship between SETD7 and lycopene, both of which have been independently associated with prostate cancer. Further investigation into this relationship might help provide greater mechanistic understanding of these associations.

  8. Variants in the Dopamine-4-Receptor Gene Promoter Are Not Associated with Sensation Seeking in Skiers

    OpenAIRE

    Thomson, Cynthia J.; Rajala, Amelia K.; Carlson, Scott R.; Rupert, Jim L.

    2014-01-01

    Sensation seeking is a personality trait that has been associated with disinhibited behaviours including substance use and gambling, but also with high-risk sport practices including skydiving, paragliding, and downhill skiing. Twin studies have shown that sensation seeking is moderately heritable, and candidate genes encoding components involved in dopaminergic transmission have been investigated as contributing to this type of behaviour. To determine whether variants in the regulatory regio...

  9. Pharmacodynamic Impact of Carboxylesterase 1 Gene Variants in Patients with Congestive Heart Failure Treated with Angiotensin-Converting Enzyme Inhibitors

    DEFF Research Database (Denmark)

    Nelveg-Kristensen, Karl Emil; Bie, Peter; Ferrero, Laura

    2016-01-01

    BACKGROUND: Variation in the carboxylesterase 1 gene (CES1) may contribute to the efficacy of ACEIs. Accordingly, we examined the impact of CES1 variants on plasma angiotensin II (ATII)/angiotensin I (ATI) ratio in patients with congestive heart failure (CHF) that underwent ACEI dose titrations. ...

  10. Impact of gene variants on sex-specific regulation of human Scavenger receptor class B type 1 (SR-BI expression in liver and association with lipid levels in a population-based study

    Directory of Open Access Journals (Sweden)

    Barrett-Connor Elizabeth

    2010-01-01

    Full Text Available Abstract Background Several studies have noted that genetic variants of SCARB1, a lipoprotein receptor involved in reverse cholesterol transport, are associated with serum lipid levels in a sex-dependent fashion. However, the mechanism underlying this gene by sex interaction has not been explored. Methods We utilized both epidemiological and molecular methods to study how estrogen and gene variants interact to influence SCARB1 expression and lipid levels. Interaction between 35 SCARB1 haplotype-tagged polymorphisms and endogenous estradiol levels was assessed in 498 postmenopausal Caucasian women from the population-based Rancho Bernardo Study. We further examined associated variants with overall and SCARB1 splice variant (SR-BI and SR-BII expression in 91 human liver tissues using quantitative real-time PCR. Results Several variants on a haplotype block spanning intron 11 to intron 12 of SCARB1 showed significant gene by estradiol interaction affecting serum lipid levels, the strongest for rs838895 with HDL-cholesterol (p = 9.2 × 10-4 and triglycerides (p = 1.3 × 10-3 and the triglyceride:HDL cholesterol ratio (p = 2.7 × 10-4. These same variants were associated with expression of the SR-BI isoform in a sex-specific fashion, with the strongest association found among liver tissue from 52 young women Conclusions Estrogen and SCARB1 genotype may act synergistically to regulate expression of SCARB1 isoforms and impact serum levels of HDL cholesterol and triglycerides. This work highlights the importance of considering sex-dependent effects of gene variants on serum lipid levels.

  11. Human GRIN2B variants in neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Chun Hu

    2016-10-01

    Full Text Available The development of whole exome/genome sequencing technologies has given rise to an unprecedented volume of data linking patient genomic variability to brain disorder phenotypes. A surprising number of variants have been found in the N-methyl-d-aspartate receptor (NMDAR gene family, with the GRIN2B gene encoding the GluN2B subunit being implicated in many cases of neurodevelopmental disorders, which are psychiatric conditions originating in childhood and include language, motor, and learning disorders, autism spectrum disorder (ASD, attention deficit hyperactivity disorder (ADHD, developmental delay, epilepsy, and schizophrenia. The GRIN2B gene plays a crucial role in normal neuronal development and is important for learning and memory. Mutations in human GRIN2B were distributed throughout the entire gene in a number of patients with various neuropsychiatric and developmental disorders. Studies that provide functional analysis of variants are still lacking, however current analysis of de novo variants that segregate with disease cases such as intellectual disability, developmental delay, ASD or epileptic encephalopathies reveal altered NMDAR function. Here, we summarize the current reports of disease-associated variants in GRIN2B from patients with multiple neurodevelopmental disorders, and discuss implications, highlighting the importance of functional analysis and precision medicine therapies.

  12. Common variants in left/right asymmetry genes and pathways are associated with relative hand skill.

    Directory of Open Access Journals (Sweden)

    William M Brandler

    Full Text Available Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD] (n = 728. The most strongly associated variant, rs7182874 (P = 8.68 × 10(-9, is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666. As PCSK6 is known to regulate NODAL in the development of left/right (LR asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR ≤ 5%. We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR ≤ 5%. Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development.

  13. Estimated carrier frequency of creatine transporter deficiency in females in the general population using functional characterization of novel missense variants in the SLC6A8 gene.

    Science.gov (United States)

    DesRoches, Caro-Lyne; Patel, Jaina; Wang, Peixiang; Minassian, Berge; Salomons, Gajja S; Marshall, Christian R; Mercimek-Mahmutoglu, Saadet

    2015-07-10

    Creatine transporter deficiency (CRTR-D) is an X-linked inherited disorder of creatine transport. All males and about 50% of females have intellectual disability or cognitive dysfunction. Creatine deficiency on brain proton magnetic resonance spectroscopy and elevated urinary creatine to creatinine ratio are important biomarkers. Mutations in the SLC6A8 gene occur de novo in 30% of males. Despite reports of high prevalence of CRTR-D in males with intellectual disability, there are no true prevalence studies in the general population. To determine carrier frequency of CRTR-D in the general population we studied the variants in the SLC6A8 gene reported in the Exome Variant Server database and performed functional characterization of missense variants. We also analyzed synonymous and intronic variants for their predicted pathogenicity using in silico analysis tools. Nine missense variants were functionally analyzed using transient transfection by site-directed mutagenesis with In-Fusion HD Cloning in HeLa cells. Creatine uptake was measured by liquid chromatography tandem mass spectrometry for creatine measurement. The c.1654G>T (p.Val552Leu) variant showed low residual creatine uptake activity of 35% of wild type transfected HeLa cells and was classified as pathogenic. Three variants (c.808G>A; p.Val270Met, c.942C>G; p.Phe314Leu and c.952G>A; p.Ala318Thr) were predicted to be pathogenic based on in silico analysis, but proved to be non-pathogenic by our functional analysis. The estimated carrier frequency of CRTR-D was 0.024% in females in the general population. We recommend functional studies for all novel missense variants by transient transfection followed by creatine uptake measurement by liquid chromatography tandem mass spectrometry as fast and cost effective method for the functional analysis of missense variants in the SLC6A8 gene. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  14. Fatty-acid binding protein 4 gene variants and childhood obesity: potential implications for insulin sensitivity and CRP levels

    Directory of Open Access Journals (Sweden)

    Bhattacharjee Rakesh

    2010-02-01

    Full Text Available Abstract Introduction Obesity increases the risk for insulin resistance and metabolic syndrome in both adults and children. FABP4 is a member of the intracellular lipid-binding protein family that is predominantly expressed in adipose tissue, and plays an important role in maintaining glucose and lipid homeostasis. The purpose of this study was to measure FABP4 plasma levels, assess FABP4 allelic variants, and explore potential associations with fasting glucose and insulin levels in young school-age children with and without obesity. Methods A total of 309 consecutive children ages 5-7 years were recruited. Children were divided based on BMI z score into Obese (OB; BMI z score >1.65 and non-obese (NOB. Fasting plasma glucose, lipids, insulin, hsCRP, and FABP4 levels were measured. HOMA was used as correlate of insulin sensitivity. Four SNPs of the human FABP4 gene (rs1051231, rs2303519, rs16909233 and rs1054135, corresponding to several critical regions of the encoding FABP4 gene sequence were genotyped. Results Compared to NOB, circulating FABP4 levels were increased in OB, as were LDL, hsCRP and HOMA. FABP4 levels correlated with BMI, and also contributed to the variance of HOMA and hsCRP, but not serum lipids. The frequency of rs1054135 allelic variant was increased in OB, and was associated with increased FABP4 levels, while the presence of rs16909233 variant allele, although similar in OB and NOB, was associated with increased HOMA values. Conclusions Childhood obesity is associated with higher FABP4 levels that may promote cardiometabolic risk. The presence of selective SNPs in the FABP4 gene may account for increased risk for insulin resistance or systemic inflammation in the context of obesity.

  15. Determination of Stearoyl-Coenzyme A Desaturase 1 Gene Variants in South Anatolian Red and East Anatolian Red Cattle

    Directory of Open Access Journals (Sweden)

    İjlal İpek PAYA

    2015-07-01

    Full Text Available Fat composition in ruminant’s milk is one of the factors that can affect human health in positive or adverse ways. Optimizing ruminant feed to achieve ideal fatty acid composition in milk has been an ongoing area of research in recent years, without satisfactory results to date. It has been argued that in addition to changes in feed, genetic information can also be utilized to improve milk fatty acid composition. The aim of the study is to investigate the incidence of stearoyl-CoA-desaturase 1 (SCD gene variants, which are claimed to affect fat content and quality of milk in Turkish native cattle breeds. Fifty South Anatolian Red (SAR and 50 East Anatolian Red (EAR cattle were used in the study. The 5th exon of SCD gene was amplified using polymerase chain reaction (PCR and the PCR products were subjected to sequencing analysis. Among the samples sequenced polymorphism at three nucleotide positions have been observed on the 5th exon of the SCD gene, namely A702G, T762C and C878T. Of these three, the polymorphic position C878T was utilized to determine peptide variants of A (293Ala or the V (293 Val of individual samples. Frequency of A variant and AA genotype in SAR and EAR cattle breeds was 0.91 and 0.77 as well as 0.43 and 0.29, respectively. In particular the SAR exhibits a very low frequency of the V allele, believed to have been an ancestral allele. In both samples, 2 individuals were identified to have the VV genotype. The results suggested that high frequency of A allele and AA genotype which confers great advantage on milk composition and meat fatty acid composition was present in SAR and EAR cattle breeds

  16. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7.

    Science.gov (United States)

    Končitíková, Radka; Vigouroux, Armelle; Kopečná, Martina; Andree, Tomáš; Bartoš, Jan; Šebela, Marek; Moréra, Solange; Kopečný, David

    2015-05-15

    Aldehyde dehydrogenases (ALDHs) are responsible for oxidation of biogenic aldehyde intermediates as well as for cell detoxification of aldehydes generated during lipid peroxidation. So far, 13 ALDH families have been described in plants. In the present study, we provide a detailed biochemical characterization of plant ALDH2 and ALDH7 families by analysing maize and pea ALDH7 (ZmALDH7 and PsALDH7) and four maize cytosolic ALDH(cALDH)2 isoforms RF2C, RF2D, RF2E and RF2F [the first maize ALDH2 was discovered as a fertility restorer (RF2A)]. We report the crystal structures of ZmALDH7, RF2C and RF2F at high resolution. The ZmALDH7 structure shows that the three conserved residues Glu(120), Arg(300) and Thr(302) in the ALDH7 family are located in the substrate-binding site and are specific to this family. Our kinetic analysis demonstrates that α-aminoadipic semialdehyde, a lysine catabolism intermediate, is the preferred substrate for plant ALDH7. In contrast, aromatic aldehydes including benzaldehyde, anisaldehyde, cinnamaldehyde, coniferaldehyde and sinapaldehyde are the best substrates for cALDH2. In line with these results, the crystal structures of RF2C and RF2F reveal that their substrate-binding sites are similar and are formed by an aromatic cluster mainly composed of phenylalanine residues and several nonpolar residues. Gene expression studies indicate that the RF2C gene, which is strongly expressed in all organs, appears essential, suggesting that the crucial role of the enzyme would certainly be linked to the cell wall formation using aldehydes from phenylpropanoid pathway as substrates. Finally, plant ALDH7 may significantly contribute to osmoprotection because it oxidizes several aminoaldehydes leading to products known as osmolytes.

  17. Discovery of rare variants via sequencing: implications for the design of complex trait association studies.

    Directory of Open Access Journals (Sweden)

    Bingshan Li

    2009-05-01

    Full Text Available There is strong evidence that rare variants are involved in complex disease etiology. The first step in implicating rare variants in disease etiology is their identification through sequencing in both randomly ascertained samples (e.g., the 1,000 Genomes Project and samples ascertained according to disease status. We investigated to what extent rare variants will be observed across the genome and in candidate genes in randomly ascertained samples, the magnitude of variant enrichment in diseased individuals, and biases that can occur due to how variants are discovered. Although sequencing cases can enrich for casual variants, when a gene or genes are not involved in disease etiology, limiting variant discovery to cases can lead to association studies with dramatically inflated false positive rates.

  18. GBA Variants Influence Motor and Non-Motor Features of Parkinson's Disease.

    Science.gov (United States)

    Jesús, Silvia; Huertas, Ismael; Bernal-Bernal, Inmaculada; Bonilla-Toribio, Marta; Cáceres-Redondo, María Teresa; Vargas-González, Laura; Gómez-Llamas, Myriam; Carrillo, Fátima; Calderón, Enrique; Carballo, Manuel; Gómez-Garre, Pilar; Mir, Pablo

    2016-01-01

    The presence of mutations in glucocerebrosidase (GBA) gene is a known factor increasing the risk of developing Parkinson's disease (PD). Mutations carriers have earlier disease onset and are more likely to develop neuropsychiatric symptoms than other sporadic PD cases. These symptoms have primarily been observed in Parkinson's patients carrying the most common pathogenic mutations L444P and N370S. However, recent findings suggest that other variants across the gene may have a different impact on the phenotype as well as on the disease progression. We aimed to explore the influence of variants across GBA gene on the clinical features and treatment related complications in PD. In this study, we screened the GBA gene in a cohort of 532 well-characterised PD patients and 542 controls from southern Spain. The potential pathogeniticy of the identified variants was assessed using in-silico analysis and subsequently classified as benign or deleterious. As a result, we observed a higher frequency of GBA variants in PD patients (12.2% vs. 7.9% in controls, p = 0.021), earlier mean age at disease onset in GBA variant carriers (50.6 vs. 56.6 years; p = 0.013), as well as more prevalent motor and non-motor symptoms in patients carrying deleterious variants. In addition, we found that dopaminergic motor complications are influenced by both benign and deleterious variants. Our results highlight the fact that the impact on the phenotype highly depends on the potential pathogenicity of the carried variants. Therefore, the course of motor and non-motor symptoms as well as treatment-related motor complications could be influenced by GBA variants.

  19. GBA Variants Influence Motor and Non-Motor Features of Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Silvia Jesús

    Full Text Available The presence of mutations in glucocerebrosidase (GBA gene is a known factor increasing the risk of developing Parkinson's disease (PD. Mutations carriers have earlier disease onset and are more likely to develop neuropsychiatric symptoms than other sporadic PD cases. These symptoms have primarily been observed in Parkinson's patients carrying the most common pathogenic mutations L444P and N370S. However, recent findings suggest that other variants across the gene may have a different impact on the phenotype as well as on the disease progression. We aimed to explore the influence of variants across GBA gene on the clinical features and treatment related complications in PD. In this study, we screened the GBA gene in a cohort of 532 well-characterised PD patients and 542 controls from southern Spain. The potential pathogeniticy of the identified variants was assessed using in-silico analysis and subsequently classified as benign or deleterious. As a result, we observed a higher frequency of GBA variants in PD patients (12.2% vs. 7.9% in controls, p = 0.021, earlier mean age at disease onset in GBA variant carriers (50.6 vs. 56.6 years; p = 0.013, as well as more prevalent motor and non-motor symptoms in patients carrying deleterious variants. In addition, we found that dopaminergic motor complications are influenced by both benign and deleterious variants. Our results highlight the fact that the impact on the phenotype highly depends on the potential pathogenicity of the carried variants. Therefore, the course of motor and non-motor symptoms as well as treatment-related motor complications could be influenced by GBA variants.

  20. GATA4 Variants in Individuals With a 46,XY Disorder of Sex Development (DSD May or May Not Be Associated With Cardiac Defects Depending on Second Hits in Other DSD Genes

    Directory of Open Access Journals (Sweden)

    Idoia Martinez de LaPiscina

    2018-04-01

    Full Text Available Disorders of sex development (DSD consist of a wide range of conditions involving numerous genes. Nevertheless, about half of 46,XY individuals remain genetically unsolved. GATA4 gene variants, mainly related to congenital heart defects (CHD, have also been recently associated with 46,XY DSD. In this study, we characterized three individuals presenting with 46,XY DSD with or without CHD and GATA4 variants in order to understand the phenotypical variability. We studied one patient presenting CHD and 46,XY gonadal dysgenesis, and two patients with a history of genetically unsolved 46,XY DSD, also known as male primary hypogonadism. Mutation analysis was carried out by candidate gene approach or targeted gene panel sequencing. Functional activity of GATA4 variants was tested in vitro on the CYP17 promoter involved in sex development using JEG3 cells. We found two novel and one previously described GATA4 variants located in the N-terminal zinc finger domain of the protein. Cys238Arg variant lost transcriptional activity on the CYP17 promoter reporter, while Trp228Cys and Pro226Leu behaved similar to wild type. These results were in line with bioinformatics simulation studies. Additional DSD variations, in the LRP4 and LHCGR genes, respectively, were identified in the two 46,XY individuals without CHD. Overall, our study shows that human GATA4 mutations identified in patients with 46,XY DSD may or may not be associated with CHD. Possible explanations for phenotypical variability may comprise incomplete penetrance, variable sensitivity of partner genes, and oligogenic mechanisms.

  1. Loss aversion and 5HTT gene variants in adolescent anxiety.

    Science.gov (United States)

    Ernst, Monique; Plate, Rista C; Carlisi, Christina O; Gorodetsky, Elena; Goldman, David; Pine, Daniel S

    2014-04-01

    Loss aversion, a well-documented behavioral phenomenon, characterizes decisions under risk in adult populations. As such, loss aversion may provide a reliable measure of risky behavior. Surprisingly, little is known about loss aversion in adolescents, a group who manifests risk-taking behavior, or in anxiety disorders, which are associated with risk-avoidance. Finally, loss aversion is expected to be modulated by genotype, particularly the serotonin transporter (SERT) gene variant, based on its role in anxiety and impulsivity. This genetic modulation may also differ between anxious and healthy adolescents, given their distinct propensities for risk taking. The present work examines the modulation of loss aversion, an index of risk-taking, and reaction-time to decision, an index of impulsivity, by the serotonin-transporter-gene-linked polymorphisms (5HTTLPR) in healthy and clinically anxious adolescents. Findings show that loss aversion (1) does manifest in adolescents, (2) does not differ between healthy and clinically anxious participants, and (3), when stratified by SERT genotype, identifies a subset of anxious adolescents who are high SERT-expressers, and show excessively low loss-aversion and high impulsivity. This last finding may serve as preliminary evidence for 5HTTLPR as a risk factor for the development of comorbid disorders associated with risk-taking and impulsivity in clinically anxious adolescents. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    KAUST Repository

    Dalgleish, Raymond; Flicek, Paul; Cunningham, Fiona; Astashyn, Alex; Tully, Raymond E; Proctor, Glenn; Chen, Yuan; McLaren, William M; Larsson, Pontus; Vaughan, Brendan W; Bé roud, Christophe; Dobson, Glen; Lehvä slaiho, Heikki; Taschner, Peter EM; den Dunnen, Johan T; Devereau, Andrew; Birney, Ewan; Brookes, Anthony J; Maglott, Donna R

    2010-01-01

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  3. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    KAUST Repository

    Dalgleish, Raymond

    2010-04-15

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  4. Ser80Ile mutation and a concurrent Pro25Leu variant of the VHL gene in an extended Hungarian von Hippel-Lindau family

    Directory of Open Access Journals (Sweden)

    Fazakas Ferenc

    2008-04-01

    Full Text Available Abstract Von Hippel-Lindau disease (VHL is a rare autosomal dominant disease characterized by development of cystic and tumorous lesions at multiple sites, including the brain, spinal cord, kidneys, adrenals, pancreas, epididymis and eyes. The clinical phenotype results from molecular abnormalities of the VHL tumor suppressor gene, mapped to human chromosome 3p25-26. The VHL gene encodes two functionally active VHL proteins due to the presence of two translational initiation sites separated by 53 codons. The majority of disease-causing mutations have been detected downstream of the second translational initiation site, but there are conflicting data as to whether few mutations located in the first 53 codons, such as the Pro25Leu could have a pathogenic role. In this paper we report a large Hungarian VHL type 2 family consisting of 32 members in whom a disease-causing AGT80AAT (Ser80Ile c.239G>A, p.Ser80Ile mutation, but not the concurrent CCT25CTT (Pro25Leu c.74C>T, p.Pro25Leu variant co-segregated with the disease. To our knowledge, the Ser80Ile mutation has not been previously described in VHL type 2 patients with high risk of pheochromocytoma and renal cell cancer. Therefore, this finding represents a novel genotype-phenotype association and VHL kindreds with Ser80Ile mutation will require careful surveillance for pheochromocytoma. We concluded that the Pro25Leu variant is a rare, neutral variant, but the presence such a rare gene variant may make genetic counseling difficult.

  5. A variational Bayes discrete mixture test for rare variant association.

    Science.gov (United States)

    Logsdon, Benjamin A; Dai, James Y; Auer, Paul L; Johnsen, Jill M; Ganesh, Santhi K; Smith, Nicholas L; Wilson, James G; Tracy, Russell P; Lange, Leslie A; Jiao, Shuo; Rich, Stephen S; Lettre, Guillaume; Carlson, Christopher S; Jackson, Rebecca D; O'Donnell, Christopher J; Wurfel, Mark M; Nickerson, Deborah A; Tang, Hua; Reiner, Alexander P; Kooperberg, Charles

    2014-01-01

    Recently, many statistical methods have been proposed to test for associations between rare genetic variants and complex traits. Most of these methods test for association by aggregating genetic variations within a predefined region, such as a gene. Although there is evidence that "aggregate" tests are more powerful than the single marker test, these tests generally ignore neutral variants and therefore are unable to identify specific variants driving the association with phenotype. We propose a novel aggregate rare-variant test that explicitly models a fraction of variants as neutral, tests associations at the gene-level, and infers the rare-variants driving the association. Simulations show that in the practical scenario where there are many variants within a given region of the genome with only a fraction causal our approach has greater power compared to other popular tests such as the Sequence Kernel Association Test (SKAT), the Weighted Sum Statistic (WSS), and the collapsing method of Morris and Zeggini (MZ). Our algorithm leverages a fast variational Bayes approximate inference methodology to scale to exome-wide analyses, a significant computational advantage over exact inference model selection methodologies. To demonstrate the efficacy of our methodology we test for associations between von Willebrand Factor (VWF) levels and VWF missense rare-variants imputed from the National Heart, Lung, and Blood Institute's Exome Sequencing project into 2,487 African Americans within the VWF gene. Our method suggests that a relatively small fraction (~10%) of the imputed rare missense variants within VWF are strongly associated with lower VWF levels in African Americans.

  6. Causal and synthetic associations of variants in the SERPINA gene cluster with alpha1-antitrypsin serum levels.

    Directory of Open Access Journals (Sweden)

    Gian Andri Thun

    Full Text Available Several infrequent genetic polymorphisms in the SERPINA1 gene are known to substantially reduce concentration of alpha1-antitrypsin (AAT in the blood. Since low AAT serum levels fail to protect pulmonary tissue from enzymatic degradation, these polymorphisms also increase the risk for early onset chronic obstructive pulmonary disease (COPD. The role of more common SERPINA1 single nucleotide polymorphisms (SNPs in respiratory health remains poorly understood. We present here an agnostic investigation of genetic determinants of circulating AAT levels in a general population sample by performing a genome-wide association study (GWAS in 1392 individuals of the SAPALDIA cohort. Five common SNPs, defined by showing minor allele frequencies (MAFs >5%, reached genome-wide significance, all located in the SERPINA gene cluster at 14q32.13. The top-ranking genotyped SNP rs4905179 was associated with an estimated effect of β = -0.068 g/L per minor allele (P = 1.20*10(-12. But denser SERPINA1 locus genotyping in 5569 participants with subsequent stepwise conditional analysis, as well as exon-sequencing in a subsample (N = 410, suggested that AAT serum level is causally determined at this locus by rare (MAF<1% and low-frequent (MAF 1-5% variants only, in particular by the well-documented protein inhibitor S and Z (PI S, PI Z variants. Replication of the association of rs4905179 with AAT serum levels in the Copenhagen City Heart Study (N = 8273 was successful (P<0.0001, as was the replication of its synthetic nature (the effect disappeared after adjusting for PI S and Z, P = 0.57. Extending the analysis to lung function revealed a more complex situation. Only in individuals with severely compromised pulmonary health (N = 397, associations of common SNPs at this locus with lung function were driven by rarer PI S or Z variants. Overall, our meta-analysis of lung function in ever-smokers does not support a functional role of common SNPs in the SERPINA gene

  7. DAR, a new RhD variant involving exons 4, 5, and 7, often in linkage with ceAR, a new Rhce variant frequently found in African blacks

    NARCIS (Netherlands)

    M.B. Hemker (Mirte); P.C. Ligthart; L. Berger (Loïc); D.J. van Rhenen (Dirk Jan); C.E. van der Schoot (Ellen); P.A. Wijk

    1999-01-01

    textabstractThe highly polymorphic Rh system is encoded by 2 homologous genes RHD and RHCE. Gene rearrangements, deletions, or point mutations may cause partial D and CE antigens. In this study, a new RHD variant, DAR, and a new RHCE variant, ceAR, are described in 4

  8. POLYMORPHIC VARIANTS OF THE GENE OF INTERFERON LAMBDA 3 AND FEATURES OF IMMUNE RESPONSE IN CHILDREN WITH CHRONIC VIRAL HEPATITIS C

    Directory of Open Access Journals (Sweden)

    T. B. Sentsova

    2017-01-01

    Full Text Available To study the immune manifestations of the interferon-lambda 3 genepolymorphism in chronic viral hepatitis C, 110 Russian children (54 girls and 56 boys with chronic HCV infection aged from 3 to 17 years were examined. All children were on combined therapy (pegylated interferon + ribavirin. It was found that among the studied polymorphic variants of the IFN-λ 3 gene in children with chronic HCV infection, T allele of the marker rs12979860 is associated with infection and chronization of HCV. The T/T rs12979860 genotype of the IFN-λ3 gene is unfavorable for the course of chronic HCV infection due to low levels of activated T-lymphocytes, intactness of the proinflammatory cytokines TNF-α, IL-6, IL-1α, and interferon-γ inducible protein IP-10. The revealed relation of the polymorphic variants of C/C + C/T locus rs12979860 of INF-λ3 gene with the expression of activated T-lymphocytes discloses the protective nature of these genotypes to the development of chronic HCV infection in children. 

  9. Single nucleotide polymorphisms at erythropoietin, superoxide dismutase 1, splicing factor, arginine/serin-rich 15 and plasmacytoma variant translocation genes association with diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Maisaa Alwohhaib

    2014-01-01

    Full Text Available A number of genes have been identified in diabetic nephropathy. Association between diabetes-associated nephropathy and polymorphisms in the erythropoietin (EPO gene, variants in the superoxide dismutase 1 (SOD1 gene and plasmacytoma variant translocation 1 (PVT1 gene have been identified. The EPO, SOD1:SFRS15 and PVT1 genes were genotyped using the single nucleotide polymorphism (SNP technique in 38 diabetic nephropathy patients (Group 1 compared with 64 diabetic type 2 subjects without nephropathy (Group 2 at the Mubarak Alkabeer Hospital, Kuwait. The frequency of the risk allele T of the EPO (rs1617640 gene was high in both groups (0.96 in Group 1 and 0.92 in Group 2. Similarly, SNPs of the PVT1 (rs2720709 gene showed a higher frequency of the risk allele G in both groups (0.70 in the Group 1 and 0.68 in Group 2. Although the frequency of the risk allele A was higher than the frequency of the non-risk allele C of the SOD1:SFRS15 gene in both groups, the lowest probability value was observed in those gene SNPs (P = 0.05. We observed that the A allele of the SOD1:SFRS15 gene (rs17880135 was more frequently present in Group 1 (0.75 compared with Group 2 (0.62. Susceptibility to diabetes-associated nephropathy is partially mediated by genetic predisposition, and screening tests may open the gate for new therapeutic approaches.

  10. Frequency of a FAS ligand gene variant associated with inherited feline autoimmune lymphoproliferative syndrome in British shorthair cats in New Zealand.

    Science.gov (United States)

    Aberdein, D; Munday, J S; Dittmer, K E; Heathcott, R W; Lyons, L A

    2017-11-01

    AIMS To determine the frequency of the FAS-ligand gene (FASLG) variant associated with feline autoimmune lymphoproliferative syndrome (FALPS) and the proportion of carriers of the variant in three British shorthair (BSH) breeding catteries in New Zealand. METHODS Buccal swabs were collected from all cats in two BSH breeding catteries from the South Island and one from the North Island of New Zealand. DNA was extracted and was tested for the presence of the FASLG variant using PCR. Cats with the FASLG variant were identified and the frequency of the FASLG variant allele calculated. Pedigree analysis was performed and inbreeding coefficients were calculated for cats with the FASLG variant. RESULTS Of 32 BSH cats successfully tested for the presence of the FASLG variant, one kitten (3%) was homozygous (FALPS-affected), and seven (22%) cats were heterozygous (carriers) for the FASLG variant allele, and 24 (75%) cats were homozygous for the wild type allele. The overall frequency of the FASLG variant allele in these 32 cats was 0.14. Cats carrying the FASLG variant were from all three breeding catteries sampled, including two catteries that had not previously reported cases of FALPS. Pedigree analysis revealed common ancestry of FALPS-affected and carrier cats within six generations, as well as frequent inbreeding, with inbreeding coefficients >0.12 for five cats with the FASLG variant. CONCLUSIONS AND CLINICAL RELEVANCE There was a high frequency of the FASLG variant allele (0.14) in this small sample of BSH cats, with 22% of healthy cats identified as carriers of the FASLG variant. For an inherited disease, lethal at a young age, in a small population in which inbreeding is common, these results are significant. To prevent future cases of disease and stop further spread of the FASLG variant allele within the BSH population in New Zealand, it is recommended that all BSH and BSH-cross cats be tested for the presence of the FASLG variant before mating. Cats identified as

  11. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH+/CD133+ stem cell-like human colon cancer cells

    International Nuclear Information System (INIS)

    Lin, Li; Fuchs, James; Li, Chenglong; Olson, Veronica; Bekaii-Saab, Tanios; Lin, Jiayuh

    2011-01-01

    Highlights: ► The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. ► STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. ► Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. ► STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. ► Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existence of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH + /CD133 + ). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower IC50 in colon cancer stem-like cells. In summary, our results indicate that STAT3 is a novel therapeutic target in colon cancer stem

  12. Spread of a new parasitic B chromosome variant is facilitated by high gene flow.

    Directory of Open Access Journals (Sweden)

    María Inmaculada Manrique-Poyato

    Full Text Available The B24 chromosome variant emerged several decades ago in a Spanish population of the grasshopper Eyprepocnemis plorans and is currently reaching adjacent populations. Here we report, for the first time, how a parasitic B chromosome (a strictly vertically transmitted parasite expands its geographical range aided by high gene flow in the host species. For six years we analyzed B frequency in several populations to the east and west of the original population and found extensive spatial variation, but only a slight temporal trend. The highest B24 frequency was found in its original population (Torrox and it decreased closer to both the eastern and the western populations. The analysis of Inter Simple Sequence Repeat (ISSR markers showed the existence of a low but significant degree of population subdivision, as well as significant isolation by distance (IBD. Pairwise Nem estimates suggested the existence of high gene flow between the four populations located in the Torrox area, with higher values towards the east. No significant barriers to gene flow were found among these four populations, and we conclude that high gene flow is facilitating B24 diffusion both eastward and westward, with minor role for B24 drive due to the arrival of drive suppressor genes which are also frequent in the donor population.

  13. Variants of PLCXD3 are not associated with variant or sporadic Creutzfeldt-Jakob disease in a large international study.

    Science.gov (United States)

    Balendra, Rubika; Uphill, James; Collinson, Claire; Druyeh, Ronald; Adamson, Gary; Hummerich, Holger; Zerr, Inga; Gambetti, Pierluigi; Collinge, John; Mead, Simon

    2016-04-07

    Human prion diseases are relentlessly progressive neurodegenerative disorders which include sporadic Creutzfeldt-Jakob disease (sCJD) and variant CJD (vCJD). Aside from variants of the prion protein gene (PRNP) replicated association at genome-wide levels of significance has proven elusive. A recent association study identified variants in or near to the PLCXD3 gene locus as strong disease risk factors in multiple human prion diseases. This study claimed the first non-PRNP locus to be highly significantly associated with prion disease in genomic studies. A sub-study of a genome-wide association study with imputation aiming to replicate the finding at PLCXD3 including 129 vCJD and 2500 sCJD samples. Whole exome sequencing to identify rare coding variants of PLCXD3. Imputation of relevant polymorphisms was accurate based on wet genotyping of a sample. We found no supportive evidence that PLCXD3 variants are associated with disease. The marked discordance in vCJD genotype frequencies between studies, despite extensive overlap in vCJD cases, and the finding of Hardy-Weinberg disequilibrium in the original study, suggests possible reasons for the discrepancies between studies.

  14. Variant Plasmodium ovale isolated from a patient infected in Ghana

    Directory of Open Access Journals (Sweden)

    Petersen Eskild

    2011-01-01

    Full Text Available Abstract Recent data have found that Plasmodium ovale can be separated in two distinct species: classic and variant P. ovale based on multilocus typing of different genes. This study presents a P. ovale isolate from a patient infected in Ghana together with an analysis of the small subunit RNA, cytochrome b, cytochrome c oxidase I, cysteine protease and lactate dehydrogenase genes, which show that the sample is a variant P. ovale and identical or highly similar to variant P. ovale isolated from humans in South-East Asia and Africa, and from a chimpanzee in Cameroon. The split between the variant and classic P. ovale is estimated to have occurred 1.7 million years ago.

  15. Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes.

    Science.gov (United States)

    Modi, Bhavi P; Teves, Maria E; Pearson, Laurel N; Parikh, Hardik I; Chaemsaithong, Piya; Sheth, Nihar U; York, Timothy P; Romero, Roberto; Strauss, Jerome F

    2017-01-01

    Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm birth with ~ 40% of preterm births being associated with PPROM and occurs in 1% - 2% of all pregnancies. We hypothesized that multiple rare variants in fetal genes involved in extracellular matrix synthesis would associate with PPROM, based on the assumption that impaired elaboration of matrix proteins would reduce fetal membrane tensile strength, predisposing to unscheduled rupture. We performed whole exome sequencing (WES) on neonatal DNA derived from pregnancies complicated by PPROM (49 cases) and healthy term deliveries (20 controls) to identify candidate mutations/variants. Genotyping for selected variants from the WES study was carried out on an additional 188 PPROM cases and 175 controls. All mothers were self-reported African Americans, and a panel of ancestry informative markers was used to control for genetic ancestry in all genetic association tests. In support of the primary hypothesis, a statistically significant genetic burden (all samples combined, SKAT-O p-value = 0.0225) of damaging/potentially damaging rare variants was identified in the genes of interest-fibrillar collagen genes, which contribute to fetal membrane strength and integrity. These findings suggest that the fetal contribution to PPROM is polygenic, and driven by an increased burden of rare variants that may also contribute to the disparities in rates of preterm birth among African Americans.

  16. Genetic and molecular functional characterization of variants within TNFSF13B, a positional candidate preeclampsia susceptibility gene on 13q.

    Directory of Open Access Journals (Sweden)

    Mona H Fenstad

    Full Text Available BACKGROUND: Preeclampsia is a serious pregnancy complication, demonstrating a complex pattern of inheritance. The elucidation of genetic liability to preeclampsia remains a major challenge in obstetric medicine. We have adopted a positional cloning approach to identify maternal genetic components, with linkages previously demonstrated to chromosomes 2q, 5q and 13q in an Australian/New Zealand familial cohort. The current study aimed to identify potential functional and structural variants in the positional candidate gene TNFSF13B under the 13q linkage peak and assess their association status with maternal preeclampsia genetic susceptibility. METHODOLOGY/PRINCIPAL FINDINGS: The proximal promoter and coding regions of the positional candidate gene TNFSF13B residing within the 13q linkage region was sequenced using 48 proband or founder individuals from Australian/New Zealand families. Ten sequence variants (nine SNPs and one single base insertion were identified and seven SNPs were successfully genotyped in the total Australian/New Zealand family cohort (74 families/480 individuals. Borderline association to preeclampsia (p = 0.0153 was observed for three rare SNPs (rs16972194, rs16972197 and rs56124946 in strong linkage disequilibrium with each other. Functional evaluation by electrophoretic mobility shift assays showed differential nuclear factor binding to the minor allele of the rs16972194 SNP, residing upstream of the translation start site, making this a putative functional variant. The observed genetic associations were not replicated in a Norwegian case/control cohort (The Nord-Trøndelag Health Study (HUNT2, 851 preeclamptic and 1,440 non-preeclamptic women. CONCLUSION/SIGNIFICANCE: TNFSF13B has previously been suggested to contribute to the normal immunological adaption crucial for a successful pregnancy. Our observations support TNFSF13B as a potential novel preeclampsia susceptibility gene. We discuss a possible role for TNFSF13B in

  17. Relationship between common lipoprotein lipase gene sequence variants, hyperinsulinemia, and risk of ischemic heart disease: A population-based study

    DEFF Research Database (Denmark)

    Jeppesen, Jørgen; Hansen, Tine Willum; Torp-Pedersen, Christian

    2010-01-01

    Hyperinsulinemia and lipoprotein lipase (LPL) are important determinants of fasting and postprandial plasma triglyceride levels. High insulin and high triglyceride levels are associated with an increased risk of ischemic heart disease (IHD). This study aimed to find out whether common LPL gene se...... sequence variants could change the relationship between insulin and IHD....

  18. Common variants of the TCF7L2 gene are associated with increased risk of type 2 diabetes mellitus in a UK-resident South Asian population

    Directory of Open Access Journals (Sweden)

    Kumar Sudhesh

    2008-02-01

    Full Text Available Abstract Background Recent studies have implicated variants of the transcription factor 7-like 2 (TCF7L2 gene in genetic susceptibility to type 2 diabetes mellitus in several different populations. The aim of this study was to determine whether variants of this gene are also risk factors for type 2 diabetes development in a UK-resident South Asian cohort of Punjabi ancestry. Methods We genotyped four single nucleotide polymorphisms (SNPs of TCF7L2 (rs7901695, rs7903146, rs11196205 and rs12255372 in 831 subjects with diabetes and 437 control subjects. Results The minor allele of each variant was significantly associated with type 2 diabetes; the greatest risk of developing the disease was conferred by rs7903146, with an allelic odds ratio (OR of 1.31 (95% CI: 1.11 – 1.56, p = 1.96 × 10-3. For each variant, disease risk associated with homozygosity for the minor allele was greater than that for heterozygotes, with the exception of rs12255372. To determine the effect on the observed associations of including young control subjects in our data set, we reanalysed the data using subsets of the control group defined by different minimum age thresholds. Increasing the minimum age of our control subjects resulted in a corresponding increase in OR for all variants of the gene (p ≤ 1.04 × 10-7. Conclusion Our results support recent findings that TCF7L2 is an important genetic risk factor for the development of type 2 diabetes in multiple ethnic groups.

  19. Evidence for Association of the E23K Variant of KCNJ11 Gene with Type 2 Diabetes in Tunisian Population: Population-Based Study and Meta-Analysis

    OpenAIRE

    Lasram, Khaled; Ben Halim, Nizar; Hsouna, Sana; Kefi, Rym; Arfa, Imen; Ghazouani, Welid; Jamoussi, Henda; Benrahma, Houda; Kharrat, Najla; Rebai, Ahmed; Ben Ammar, Slim; Bahri, Sonia; Barakat, Abdelhamid; Abid, Abdelmajid; Abdelhak, Sonia

    2014-01-01

    Aims. Genetic association studies have reported the E23K variant of KCNJ11 gene to be associated with Type 2 diabetes. In Arab populations, only four studies have investigated the role of this variant. We aimed to replicate and validate the association between the E23K variant and Type 2 diabetes in Tunisian and Arab populations. Methods. We have performed a case-control association study including 250 Tunisian patients with Type 2 diabetes and 267 controls. Allelic association has also been ...

  20. A variant on promoter of the cannabinoid receptor 1 gene (CNR1) moderates the effect of valence on working memory.

    Science.gov (United States)

    Fairfield, Beth; Mammarella, Nicola; Franzago, Marica; Di Domenico, Alberto; Stuppia, Liborio; Gatta, Valentina

    2018-02-01

    Cannabinoid receptor 1 gene (CNR1) variants have been related to affective information processing and, in particular, to stress release. Here, we aimed to examine whether the endocannabinoid system via CNR1 signaling modulates affective working memory, the memory system that transiently maintains and manipulates emotionally charged material. We focused on rs2180619 (A > G) polymorphism and examined genotype data collected from 231 healthy females. Analyses showed how a general positivity bias in working memory (i.e., better memory for positive words) emerged as task strings lengthened only in carriers of the major allele (AA/AG). Differently, GG carriers showed better memory for affective items in general (i.e., positive and negative words). These findings are some of the first to directly highlight the role of variant on promoter of the CNR1 gene in affective working memory and to evidence a differentiation among CNR1 genotypes in terms of larger difficulties in disengaging from negative stimuli in GG carriers.

  1. DAR, a new RhD variant involving exons 4, 5, and 7, often in linkage with ceAR, a new Rhce variant frequently found in African blacks

    NARCIS (Netherlands)

    Hemker, M. B.; Ligthart, P. C.; Berger, L.; van Rhenen, D. J.; van der Schoot, C. E.; Wijk, P. A.

    1999-01-01

    The highly polymorphic Rh system is encoded by 2 homologous genes RHD and RHCE. Gene rearrangements, deletions, or point mutations may cause partial D and CE antigens. In this study, a new RHD variant, DAR, and a new RHCE variant, ceAR, are described in 4 Dutch African Blacks. Serologically, DAR

  2. Height-reducing variants and selection for short stature in Sardinia

    NARCIS (Netherlands)

    Zoledziewska, Magdalena; Sidore, Carlo; Chiang, Charleston W K; Sanna, Serena; Mulas, Antonella; Steri, Maristella; Busonero, Fabio; Marcus, Joseph H; Marongiu, Michele; Maschio, Andrea; Ortega Del Vecchyo, Diego; Floris, Matteo; Meloni, Antonella; Delitala, Alessandro; Concas, Maria Pina; Murgia, Federico; Biino, Ginevra; Vaccargiu, Simona; Nagaraja, Ramaiah; Lohmueller, Kirk E; Timpson, Nicholas J; Soranzo, Nicole; Tachmazidou, Ioanna; Dedoussis, George; Zeggini, Eleftheria; Uzzau, Sergio; Jones, Chris; Lyons, Robert; Angius, Andrea; Abecasis, Gonçalo R; Novembre, John; Schlessinger, David; Cucca, Francesco

    We report sequencing-based whole-genome association analyses to evaluate the impact of rare and founder variants on stature in 6,307 individuals on the island of Sardinia. We identify two variants with large effects. One variant, which introduces a stop codon in the GHR gene, is relatively frequent

  3. No Evidence That Schizophrenia Candidate Genes Are More Associated With Schizophrenia Than Noncandidate Genes.

    Science.gov (United States)

    Johnson, Emma C; Border, Richard; Melroy-Greif, Whitney E; de Leeuw, Christiaan A; Ehringer, Marissa A; Keller, Matthew C

    2017-11-15

    A recent analysis of 25 historical candidate gene polymorphisms for schizophrenia in the largest genome-wide association study conducted to date suggested that these commonly studied variants were no more associated with the disorder than would be expected by chance. However, the same study identified other variants within those candidate genes that demonstrated genome-wide significant associations with schizophrenia. As such, it is possible that variants within historic schizophrenia candidate genes are associated with schizophrenia at levels above those expected by chance, even if the most-studied specific polymorphisms are not. The present study used association statistics from the largest schizophrenia genome-wide association study conducted to date as input to a gene set analysis to investigate whether variants within schizophrenia candidate genes are enriched for association with schizophrenia. As a group, variants in the most-studied candidate genes were no more associated with schizophrenia than were variants in control sets of noncandidate genes. While a small subset of candidate genes did appear to be significantly associated with schizophrenia, these genes were not particularly noteworthy given the large number of more strongly associated noncandidate genes. The history of schizophrenia research should serve as a cautionary tale to candidate gene investigators examining other phenotypes: our findings indicate that the most investigated candidate gene hypotheses of schizophrenia are not well supported by genome-wide association studies, and it is likely that this will be the case for other complex traits as well. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Prevalence of pathogenic germline variants detected by multigene sequencing in unselected Japanese patients with ovarian cancer.

    Science.gov (United States)

    Hirasawa, Akira; Imoto, Issei; Naruto, Takuya; Akahane, Tomoko; Yamagami, Wataru; Nomura, Hiroyuki; Masuda, Kiyoshi; Susumu, Nobuyuki; Tsuda, Hitoshi; Aoki, Daisuke

    2017-12-22

    Pathogenic germline BRCA1 , BRCA2 ( BRCA1/2 ), and several other gene variants predispose women to primary ovarian, fallopian tube, and peritoneal carcinoma (OC), although variant frequency and relevance information is scarce in Japanese women with OC. Using targeted panel sequencing, we screened 230 unselected Japanese women with OC from our hospital-based cohort for pathogenic germline variants in 75 or 79 OC-associated genes. Pathogenic variants of 11 genes were identified in 41 (17.8%) women: 19 (8.3%; BRCA1 ), 8 (3.5%; BRCA2 ), 6 (2.6%; mismatch repair genes), 3 (1.3%; RAD51D ), 2 (0.9%; ATM ), 1 (0.4%; MRE11A ), 1 ( FANCC ), and 1 ( GABRA6 ). Carriers of BRCA1/2 or any other tested gene pathogenic variants were more likely to be diagnosed younger, have first or second-degree relatives with OC, and have OC classified as high-grade serous carcinoma (HGSC). After adjustment for these variables, all 3 features were independent predictive factors for pathogenic variants in any tested genes whereas only the latter two remained for variants in BRCA1/2 . Our data indicate similar variant prevalence in Japanese patients with OC and other ethnic groups and suggest that HGSC and OC family history may facilitate genetic predisposition prediction in Japanese patients with OC and referring high-risk patients for genetic counseling and testing.

  5. Analysis of association of gene variants with obesity traits in New Zealand European children at 6 years of age.

    Science.gov (United States)

    Krishnan, Mohanraj; Thompson, John M D; Mitchell, Edwin A; Murphy, Rinki; McCowan, Lesley M E; Shelling, Andrew N; On Behalf Of The Children Of Scope Study Group, G

    2017-07-25

    Childhood obesity is a public health problem, which is associated with a long-term increased risk of cardiovascular disease and premature mortality. Several gene variants have previously been identified that have provided novel insights into biological factors that contribute to the development of obesity. As obesity tracks through childhood into adulthood, identification of the genetic factors for obesity in early life is important. The objective of this study was to identify putative associations between genetic variants and obesity traits in children at 6 years of age. We recruited 1208 children of mothers from the New Zealand centre of the international Screening for Pregnancy Endpoints (SCOPE) study. Eighty common genetic variants associated with obesity traits were evaluated by the Sequenom assay. Body mass index standardised scores (BMI z-scores) and percentage body fat (PBF; measured by bio-impedance assay (BIA)) were used as anthropometric measures of obesity. A positive correlation was found between BMI z-scores and PBF (p obesity and obesity traits in New Zealand European children.

  6. Meta-analyses of HFE variants in coronary heart disease.

    Science.gov (United States)

    Lian, Jiangfang; Xu, Limin; Huang, Yi; Le, Yanping; Jiang, Danjie; Yang, Xi; Xu, Weifeng; Huang, Xiaoyan; Dong, Changzheng; Ye, Meng; Zhou, Jianqing; Duan, Shiwei

    2013-09-15

    HFE gene variants can cause hereditary hemochromatosis (HH) that often comes along with an increased risk of coronary heart disease (CHD). The goal of our study is to assess the contribution of four HFE gene variants to the risk of CHD. We conducted four meta-analyses of the studies examining the association between four HFE gene variants and the risk of CHD. A systematic search was conducted using MEDLINE, EMBASE, Web of Science and China National Knowledge Infrastructure (CNKI), Wanfang Chinese Periodical. Meta-analyses showed that HFE rs1799945-G allele was associated with a 6% increased risk of CHD (P=0.02, odds ratio (OR)=1.06, 95% confidence interval (CI)=1.01-1.11). However, no association between the other three HFE gene variants (rs1800562, rs1800730, and rs9366637) and CHD risk was observed by the meta-analyses (all P values>0.05). In addition, the results of our case-control study indicated that rs1800562 and rs1800730 were monomorphic, and that rs1799945 and rs9366637 were not associated with CHD in Han Chinese. Our meta-analysis suggested that a significant association existed between rs1799945 mutation and CHD, although this mutation was rare in Han Chinese. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Human papillomavirus type-16 variants in Quechua aboriginals from Argentina.

    Science.gov (United States)

    Picconi, María Alejandra; Alonio, Lidia Virginia; Sichero, Laura; Mbayed, Viviana; Villa, Luisa Lina; Gronda, Jorge; Campos, Rodolfo; Teyssié, Angélica

    2003-04-01

    Cervical carcinoma is the leading cause of cancer death in Quechua indians from Jujuy (northwestern Argentina). To determine the prevalence of HPV-16 variants, 106 HPV-16 positive cervical samples were studied, including 33 low-grade squamous intraepithelial lesions (LSIL), 28 high-grade squamous intraepithelial lesions (HSIL), 9 invasive cervical cancer (ICC), and 36 samples from women with normal colposcopy and cytology. HPV genome variability was examined in the L1 and E6 genes by PCR-hybridization. In a subset of 20 samples, a LCR fragment was also analyzed by PCR-sequencing. Most variants belonged to the European branch with subtle differences that depended on the viral gene fragment studied. Only about 10% of the specimens had non-European variants, including eight Asian-American, two Asian, and one North-American-1. E6 gene analysis revealed that 43% of the samples were identical to HPV-16 prototype, while 57% corresponded to variants. Interestingly, the majority (87%) of normal smears had HPV-16 prototype, whereas variants were detected mainly in SIL and ICC. LCR sequencing yielded 80% of variants, including 69% of European, 19% Asian-American, and 12% Asian. We identified a new variant, the Argentine Quechua-51 (AQ-51), similar to B-14 plus two additional changes: G7842-->A and A7837-->C; phylogenetic inference allocated it in the Asian-American branch. The high proportion of European variants may reflect Spanish colonial influence on these native Inca descendants. The predominance of HPV-16 variants in pathologic samples when compared to normal controls could have implications for the natural history of cervical lesions. Copyright 2003 Wiley-Liss, Inc.

  8. GBA Variants Influence Motor and Non-Motor Features of Parkinson’s Disease

    Science.gov (United States)

    Jesús, Silvia; Huertas, Ismael; Cáceres-Redondo, María Teresa; Vargas-González, Laura; Gómez-Llamas, Myriam; Carrillo, Fátima; Calderón, Enrique; Carballo, Manuel; Gómez-Garre, Pilar; Mir, Pablo

    2016-01-01

    The presence of mutations in glucocerebrosidase (GBA) gene is a known factor increasing the risk of developing Parkinson’s disease (PD). Mutations carriers have earlier disease onset and are more likely to develop neuropsychiatric symptoms than other sporadic PD cases. These symptoms have primarily been observed in Parkinson’s patients carrying the most common pathogenic mutations L444P and N370S. However, recent findings suggest that other variants across the gene may have a different impact on the phenotype as well as on the disease progression. We aimed to explore the influence of variants across GBA gene on the clinical features and treatment related complications in PD. In this study, we screened the GBA gene in a cohort of 532 well-characterised PD patients and 542 controls from southern Spain. The potential pathogeniticy of the identified variants was assessed using in-silico analysis and subsequently classified as benign or deleterious. As a result, we observed a higher frequency of GBA variants in PD patients (12.2% vs. 7.9% in controls, p = 0.021), earlier mean age at disease onset in GBA variant carriers (50.6 vs. 56.6 years; p = 0.013), as well as more prevalent motor and non-motor symptoms in patients carrying deleterious variants. In addition, we found that dopaminergic motor complications are influenced by both benign and deleterious variants. Our results highlight the fact that the impact on the phenotype highly depends on the potential pathogenicity of the carried variants. Therefore, the course of motor and non-motor symptoms as well as treatment-related motor complications could be influenced by GBA variants. PMID:28030538

  9. Variants at the 9p21 locus and melanoma risk

    International Nuclear Information System (INIS)

    Maccioni, Livia; Rachakonda, Panduranga Sivaramakrishna; Bermejo, Justo Lorenzo; Planelles, Dolores; Requena, Celia; Hemminki, Kari; Nagore, Eduardo; Kumar, Rajiv

    2013-01-01

    The influence of variants at the 9p21 locus on melanoma risk has been reported through investigation of CDKN2A variants through candidate gene approach as well as by genome wide association studies (GWAS). In the present study we genotyped, 25 SNPs that tag 273 variants on chromosome 9p21 in 837 melanoma cases and 1154 controls from Spain. Ten SNPs were selected based on previous associations, reported in GWAS, with either melanocytic nevi or melanoma risk or both. The other 15 SNPs were selected to fine map the CDKN2A gene region. All the 10 variants selected from the GWAS showed statistically significant association with melanoma risk. Statistically significant association with melanoma risk was also observed for the carriers of the variant T-allele of rs3088440 (540 C>T) at the 3’ UTR of CDKN2A gene with an OR 1.52 (95% CI 1.14-2.04). Interaction analysis between risk associated polymorphisms and previously genotyped MC1R variants, in the present study, did not show any statistically significant association. Statistical significant association was observed for the interaction between phototypes and the rs10811629 (located in intron 5 of MTAP). The strongest association was observed between the homozygous carrier of the A–allele and phototype II with an OR of 15.93 (95% CI 5.34-47.54). Our data confirmed the association of different variants at chromosome 9p21 with melanoma risk and we also found an association of a variant with skin phototypes

  10. Association of ARID5B gene variants with acute lymphoblastic leukemia in Yemeni children.

    Science.gov (United States)

    Al-Absi, Boshra; Noor, Suzita M; Saif-Ali, Riyadh; Salem, Sameer D; Ahmed, Radwan H; Razif, Muhammad Fm; Muniandy, Sekaran

    2017-04-01

    Studies have shown an association between ARID5B gene polymorphisms and childhood acute lymphoblastic leukemia. However, the association between ARID5B variants and acute lymphoblastic leukemia among the Arab population still needs to be studied. The aim of this study was to investigate the association between ARID5B variants with acute lymphoblastic leukemia in Yemeni children. A total of 14 ARID5B gene single nucleotide polymorphisms (SNPs) were genotyped in 289 Yemeni children, of whom 136 had acute lymphoblastic leukemia and 153 were controls, using the nanofluidic Dynamic Array (Fluidigm 192.24 Dynamic Array). Using logistic regression adjusted for age and gender, the risks of acute lymphoblastic leukemia were presented as odds ratios and 95% confidence intervals. We found that nine SNPs were associated with acute lymphoblastic leukemia under additive genetic models: rs7073837, rs10740055, rs7089424, rs10821936, rs4506592, rs10994982, rs7896246, rs10821938, and rs7923074. Furthermore, the recessive models revealed that six SNPs were risk factors for acute lymphoblastic leukemia: rs10740055, rs7089424, rs10994982, rs7896246, rs10821938, and rs7923074. The gender-specific impact of these SNPs under the recessive genetic model revealed that SNPs rs10740055, rs10994982, and rs6479779 in females, and rs10821938 and rs7923074 in males were significantly associated with acute lymphoblastic leukemia risk. Under the dominant model, SNPs rs7073837, rs10821936, rs7896246, and rs6479778 in males only showed striking association with acute lymphoblastic leukemia. The additive model revealed that SNPs with significant association with acute lymphoblastic leukemia were rs10821936 (both males and females); rs7073837, rs10740055, rs10994982, and rs4948487 (females only); and rs7089424, rs7896246, rs10821938, and rs7923074 (males only). In addition, the ARID5B haplotype block (CGAACACAA) showed a higher risk for acute lymphoblastic leukemia. The haplotype (CCCGACTGC) was

  11. Detection of copy number variants reveals association of cilia genes with neural tube defects.

    Directory of Open Access Journals (Sweden)

    Xiaoli Chen

    Full Text Available BACKGROUND: Neural tube defects (NTDs are one of the most common birth defects caused by a combination of genetic and environmental factors. Currently, little is known about the genetic basis of NTDs although up to 70% of human NTDs were reported to be attributed to genetic factors. Here we performed genome-wide copy number variants (CNVs detection in a cohort of Chinese NTD patients in order to exam the potential role of CNVs in the pathogenesis of NTDs. METHODS: The genomic DNA from eighty-five NTD cases and seventy-five matched normal controls were subjected for whole genome CNVs analysis. Non-DGV (the Database of Genomic Variants CNVs from each group were further analyzed for their associations with NTDs. Gene content in non-DGV CNVs as well as participating pathways were examined. RESULTS: Fifty-five and twenty-six non-DGV CNVs were detected in cases and controls respectively. Among them, forty and nineteen CNVs involve genes (genic CNV. Significantly more non-DGV CNVs and non-DGV genic CNVs were detected in NTD patients than in control (41.2% vs. 25.3%, p<0.05 and 37.6% vs. 20%, p<0.05. Non-DGV genic CNVs are associated with a 2.65-fold increased risk for NTDs (95% CI: 1.24-5.87. Interestingly, there are 41 cilia genes involved in non-DGV CNVs from NTD patients which is significantly enriched in cases compared with that in controls (24.7% vs. 9.3%, p<0.05, corresponding with a 3.19-fold increased risk for NTDs (95% CI: 1.27-8.01. Pathway analyses further suggested that two ciliogenesis pathways, tight junction and protein kinase A signaling, are top canonical pathways implicated in NTD-specific CNVs, and these two novel pathways interact with known NTD pathways. CONCLUSIONS: Evidence from the genome-wide CNV study suggests that genic CNVs, particularly ciliogenic CNVs are associated with NTDs and two ciliogenesis pathways, tight junction and protein kinase A signaling, are potential pathways involved in NTD pathogenesis.

  12. A statistical method for predicting splice variants between two groups of samples using GeneChip® expression array data

    Directory of Open Access Journals (Sweden)

    Olson James M

    2006-04-01

    Full Text Available Abstract Background Alternative splicing of pre-messenger RNA results in RNA variants with combinations of selected exons. It is one of the essential biological functions and regulatory components in higher eukaryotic cells. Some of these variants are detectable with the Affymetrix GeneChip® that uses multiple oligonucleotide probes (i.e. probe set, since the target sequences for the multiple probes are adjacent within each gene. Hybridization intensity from a probe correlates with abundance of the corresponding transcript. Although the multiple-probe feature in the current GeneChip® was designed to assess expression values of individual genes, it also measures transcriptional abundance for a sub-region of a gene sequence. This additional capacity motivated us to develop a method to predict alternative splicing, taking advance of extensive repositories of GeneChip® gene expression array data. Results We developed a two-step approach to predict alternative splicing from GeneChip® data. First, we clustered the probes from a probe set into pseudo-exons based on similarity of probe intensities and physical adjacency. A pseudo-exon is defined as a sequence in the gene within which multiple probes have comparable probe intensity values. Second, for each pseudo-exon, we assessed the statistical significance of the difference in probe intensity between two groups of samples. Differentially expressed pseudo-exons are predicted to be alternatively spliced. We applied our method to empirical data generated from GeneChip® Hu6800 arrays, which include 7129 probe sets and twenty probes per probe set. The dataset consists of sixty-nine medulloblastoma (27 metastatic and 42 non-metastatic samples and four cerebellum samples as normal controls. We predicted that 577 genes would be alternatively spliced when we compared normal cerebellum samples to medulloblastomas, and predicted that thirteen genes would be alternatively spliced when we compared metastatic

  13. Joint associations between genetic variants and reproductive factors in glioma risk among women.

    Science.gov (United States)

    Wang, Sophia S; Hartge, Patricia; Yeager, Meredith; Carreón, Tania; Ruder, Avima M; Linet, Martha; Inskip, Peter D; Black, Amanda; Hsing, Ann W; Alavanja, Michael; Beane-Freeman, Laura; Safaiean, Mahboobeh; Chanock, Stephen J; Rajaraman, Preetha

    2011-10-15

    In a pooled analysis of 4 US epidemiologic studies (1993-2001), the authors evaluated the role of 5 female reproductive factors in 357 women with glioma and 822 controls. The authors further evaluated the independent association between 5 implicated gene variants and glioma risk among the study population, as well as the joint associations of female reproductive factors (ages at menarche and menopause, menopausal status, use of oral contraceptives, and menopausal hormone therapy) and these gene variants on glioma risk. Risk estimates were calculated as odds ratios and 95% confidence intervals that were adjusted for age, race, and study. Three of the gene variants (rs4295627, a variant of CCDC26; rs4977756, a variant of CDKN2A and CDKN2B; and rs6010620, a variant of RTEL1) were statistically significantly associated with glioma risk in the present population. Compared with women who had an early age at menarche (<12 years of age), those who reported menarche at 12-13 years of age or at 14 years of age or older had a 1.7-fold higher risk and a 1.9-fold higher risk of glioma, respectively (P for trend = 0.009). Postmenopausal women and women who reported ever having used oral contraceptives had a decreased risk of glioma. The authors did not observe joint associations between these reproductive characteristics and the implicated glioma gene variants. These results require replication, but if confirmed, they would suggest that the gene variants that have previously been implicated in the development of glioma are unlikely to act through the same hormonal mechanisms in women.

  14. Two Novel Variants Affecting CDKL5 Transcript Associated with Epileptic Encephalopathy.

    Science.gov (United States)

    Neupauerová, Jana; Štěrbová, Katalin; Vlčková, Markéta; Sebroňová, Věra; Maříková, Tat'ána; Krůtová, Marcela; David, Staněk; Kršek, Pavel; Žaliová, Markéta; Seeman, Pavel; Laššuthová, Petra

    2017-10-01

    Variants in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been reported as being etiologically associated with early infantile epileptic encephalopathy type 2 (EIEE2). We report on two patients, a boy and a girl, with EIEE2 that present with early onset epilepsy, hypotonia, severe intellectual disability, and poor eye contact. Massively parallel sequencing (MPS) of a custom-designed gene panel for epilepsy and epileptic encephalopathy containing 112 epilepsy-related genes was performed. Sanger sequencing was used to confirm the novel variants. For confirmation of the functional consequence of an intronic CDKL5 variant in patient 2, an RNA study was done. DNA sequencing revealed de novo variants in CDKL5, a c.2578C>T (p. Gln860*) present in a hemizygous state in a 3-year-old boy, and a potential splice site variant c.463+5G>A in heterozygous state in a 5-year-old girl. Multiple in silico splicing algorithms predicted a highly reduced splice site score for c.463+5G>A. A subsequent mRNA study confirmed an aberrant shorter transcript lacking exon 7. Our data confirmed that variants in the CDKL5 are associated with EIEE2. There is credible evidence that the novel identified variants are pathogenic and, therefore, are likely the cause of the disease in the presented patients. In one of the patients a stop codon variant is predicted to produce a truncated protein, and in the other patient an intronic variant results in aberrant splicing.

  15. Rare novel variants in the ZIC3 gene cause X-linked heterotaxy

    DEFF Research Database (Denmark)

    Paulussen, Aimee D C; Steyls, Anja; Vanoevelen, Jo

    2016-01-01

    male deaths due to heterotaxy in the family (n=1). All variants were located within the zinc-finger domains or leading to a truncation before these domains. Truncating variants showed abnormal trafficking of mutated ZIC3 proteins, whereas the missense variant showed normal trafficking. Overexpression...

  16. Co-inheritance of the rare β hemoglobin variants Hb Yaounde, Hb Görwihl and Hb City of Hope with other alterations in globin genes: impact in genetic counseling.

    Science.gov (United States)

    Vinciguerra, Margherita; Passarello, Cristina; Leto, Filippo; Cassarà, Filippo; Cannata, Monica; Maggio, Aurelio; Giambona, Antonino

    2015-04-01

    Nearly 1183 different molecular defects of the globin genes leading to hemoglobin variants have been identified (http://globin.bx.psu.edu) over the past decades. The purpose of this study was to report three cases, never described in the literature, of co-inheritance of three β hemoglobin variants with other alterations in globin genes and to evaluate the clinical significance to conduct an appropriate genetic counseling. We report the molecular study performed in three probands and their families, sampling during the screening program conducted at the Laboratory for Molecular Prenatal Diagnosis of Hemoglobinopathies at Villa Sofia-Cervello Hospital in Palermo, Italy. This work allowed us to describe the co-inheritance of three rare β hemoglobin variants with other alterations in globin genes: the β hemoglobin variant Hb Yaounde [β134(H12)Val>Ala], found for the first time in combination with ααα(anti3.7) arrangement, and the β hemoglobin variants Hb Görwihl [β5(A2)Pro>Ala] and Hb City of Hope [β69(E13)Gly>Ser], found both in association with β(0) -thalassemia. The present work emphasizes the importance of a careful evaluation of the hematological data, especially in cases of atypical hematological parameters, to carry out an adequate and complete molecular study and to formulate an appropriate genetic counseling for couples at risk. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Molecular characterization of canine parvovirus variants (CPV-2a, CPV-2b, and CPV-2c) based on the VP2 gene in affected domestic dogs in Ecuador.

    Science.gov (United States)

    la Torre, David De; Mafla, Eulalia; Puga, Byron; Erazo, Linda; Astolfi-Ferreira, Claudete; Ferreira, Antonio Piantino

    2018-04-01

    The objective of this study was to determine the presence of the variants of canine parvovirus (CPV)-2 in the city of Quito, Ecuador, due to the high domestic and street-type canine population, and to identify possible mutations at a genetic level that could be causing structural changes in the virus with a consequent influence on the immune response of the hosts. Thirty-five stool samples from different puppies with characteristic signs of the disease and positives for CPV through immunochromatography kits were collected from different veterinarian clinics of the city. Polymerase chain reaction and DNA sequencing were used to determine the mutations in residue 426 of the VP2 gene, which determines the variants of CPV-2; in addition, four samples were chosen for complete sequencing of the VP2 gene to identify all possible mutations in the circulating strains in this region of the country. The results revealed the presence of the three variants of CPV-2 with a prevalence of 57.1% (20/35) for CPV-2a, 8.5% (3/35) for CPV-2b, and 34.3% (12/35) for CPV-2c. In addition, complete sequencing of the VP2 gene showed amino acid substitutions in residues 87, 101, 139, 219, 297, 300, 305, 322, 324, 375, 386, 426, 440, and 514 of the three Ecuadorian variants when compared with the original CPV-2 sequence. This study describes the detection of CPV variants in the city of Quito, Ecuador. Variants of CPV-2 (2a, 2b, and 2c) have been reported in South America, and there are cases in Ecuador where CVP-2 is affecting even vaccinated puppies.

  18. A power set-based statistical selection procedure to locate susceptible rare variants associated with complex traits with sequencing data.

    Science.gov (United States)

    Sun, Hokeun; Wang, Shuang

    2014-08-15

    Existing association methods for rare variants from sequencing data have focused on aggregating variants in a gene or a genetic region because of the fact that analysing individual rare variants is underpowered. However, these existing rare variant detection methods are not able to identify which rare variants in a gene or a genetic region of all variants are associated with the complex diseases or traits. Once phenotypic associations of a gene or a genetic region are identified, the natural next step in the association study with sequencing data is to locate the susceptible rare variants within the gene or the genetic region. In this article, we propose a power set-based statistical selection procedure that is able to identify the locations of the potentially susceptible rare variants within a disease-related gene or a genetic region. The selection performance of the proposed selection procedure was evaluated through simulation studies, where we demonstrated the feasibility and superior power over several comparable existing methods. In particular, the proposed method is able to handle the mixed effects when both risk and protective variants are present in a gene or a genetic region. The proposed selection procedure was also applied to the sequence data on the ANGPTL gene family from the Dallas Heart Study to identify potentially susceptible rare variants within the trait-related genes. An R package 'rvsel' can be downloaded from http://www.columbia.edu/∼sw2206/ and http://statsun.pusan.ac.kr. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Genetic variants in ATM, H2AFX and MRE11 genes and susceptibility to breast cancer in the polish population.

    Science.gov (United States)

    Podralska, Marta; Ziółkowska-Suchanek, Iwona; Żurawek, Magdalena; Dzikiewicz-Krawczyk, Agnieszka; Słomski, Ryszard; Nowak, Jerzy; Stembalska, Agnieszka; Pesz, Karolina; Mosor, Maria

    2018-04-20

    DNA damage repair is a complex process, which can trigger the development of cancer if disturbed. In this study, we hypothesize a role of variants in the ATM, H2AFX and MRE11 genes in determining breast cancer (BC) susceptibility. We examined the whole sequence of the ATM kinase domain and estimated the frequency of founder mutations in the ATM gene (c.5932G > T, c.6095G > A, and c.7630-2A > C) and single nucleotide polymorphisms (SNPs) in H2AFX (rs643788, rs8551, rs7759, and rs2509049) and MRE11 (rs1061956 and rs2155209) among 315 breast cancer patients and 515 controls. The analysis was performed using high-resolution melting for new variants and the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for recurrent ATM mutations. H2AFX and MRE11 polymorphisms were analyzed using TaqMan assays. The cumulative genetic risk scores (CGRS) were calculated using unweighted and weighted approaches. We identified four mutations (c.6067G > A, c.8314G > A, c.8187A > T, and c.6095G > A) in the ATM gene in three BC cases and two control subjects. We observed a statistically significant association of H2AFX variants with BC. Risk alleles (the G of rs7759 and the T of rs8551 and rs2509049) were observed more frequently in BC cases compared to the control group, with P values, odds ratios (OR) and 95% confidence intervals (CIs) of 0.0018, 1.47 (1.19 to 1.82); 0.018, 1.33 (1.09 to 1.64); and 0.024, 1.3 (1.06 to 1.59), respectively. Haplotype-based tests identified a significant association of the H2AFX CACT haplotype with BC (P ATM gene to the development of breast cancer needs further detailed study.

  20. Functional significance of SPINK1 promoter variants in chronic pancreatitis.

    Science.gov (United States)

    Derikx, Monique H M; Geisz, Andrea; Kereszturi, Éva; Sahin-Tóth, Miklós

    2015-05-01

    Chronic pancreatitis is a progressive inflammatory disorder of the pancreas, which often develops as a result of genetic predisposition. Some of the most frequently identified risk factors affect the serine protease inhibitor Kazal type 1 (SPINK1) gene, which encodes a trypsin inhibitor responsible for protecting the pancreas from premature trypsinogen activation. Recent genetic and functional studies indicated that promoter variants in the SPINK1 gene might contribute to disease risk in carriers. Here, we investigated the functional effects of 17 SPINK1 promoter variants using luciferase reporter gene expression assay in four different cell lines, including three pancreatic acinar cell lines (rat AR42J with or without dexamethasone-induced differentiation and mouse 266-6) and human embryonic kidney 293T cells. We found that most variants caused relatively small changes in promoter activity. Surprisingly, however, we observed significant variations in the effects of the promoter variants in the different cell lines. Only four variants exhibited consistently reduced promoter activity in all acinar cell lines, confirming previous reports that variants c.-108G>T, c.-142T>C, and c.-147A>G are risk factors for chronic pancreatitis and identifying c.-52G>T as a novel risk variant. In contrast, variant c.-215G>A, which is linked with the disease-associated splice-site mutation c.194 + 2T>C, caused increased promoter activity, which may mitigate the overall effect of the pathogenic haplotype. Our study lends further support to the notion that sequence evaluation of the SPINK1 promoter region in patients with chronic pancreatitis is justified as part of the etiological investigation. Copyright © 2015 the American Physiological Society.