WorldWideScience

Sample records for alamos neutron science

  1. Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, and provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.

  2. The Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, Paul W.; Schoenberg, Kurt F.

    2006-01-01

    The Los Alamos Neutron Science Center, or LANSCE, uses the first truly high-current medium-energy proton linear accelerator, which operated originally at a beam power of 1 MW for medium-energy nuclear physics. Today LANSCE continues operation as one of the most versatile accelerator-based user facilities in the world. During eight months of annual operation, scientists from around the world work at LANSCE to execute an extraordinarily broad program of defense and civilian research. Several areas operate simultaneously. The Lujan Neutron Scattering Center (Lujan Center) is a moderated spallation source (meV to keV), the Weapons Neutron Research Facility (WNR) is a bare spallation neutron source (keV to 800 MeV), and a new ultra-cold neutron source will be operational in 2005. These sources give LANSCE the ability to produce and use neutrons with energies that range over 14 orders of magnitude. LANSCE also supplies beam to WNR and two other areas for applications requiring protons. In a proton radiography (pRad) area, a sequence of narrow proton pulses is transmitted through shocked materials and imaged to study dynamic properties. In 2005, LANSCE began operating a facility that uses 100-MeV protons to produce medical radioisotopes. To sustain a vigorous program beyond this decade, LANSCE has embarked on a project to refurbish key elements of the facility and to plan capabilities beyond those that presently exist

  3. The Los Alamos Neutron Science Center

    Science.gov (United States)

    Lisowski, Paul W.; Schoenberg, Kurt F.

    2006-06-01

    The Los Alamos Neutron Science Center, or LANSCE, uses the first truly high-current medium-energy proton linear accelerator, which operated originally at a beam power of 1 MW for medium-energy nuclear physics. Today LANSCE continues operation as one of the most versatile accelerator-based user facilities in the world. During eight months of annual operation, scientists from around the world work at LANSCE to execute an extraordinarily broad program of defense and civilian research. Several areas operate simultaneously. The Lujan Neutron Scattering Center (Lujan Center) is a moderated spallation source (meV to keV), the Weapons Neutron Research Facility (WNR) is a bare spallation neutron source (keV to 800 MeV), and a new ultra-cold neutron source will be operational in 2005. These sources give LANSCE the ability to produce and use neutrons with energies that range over 14 orders of magnitude. LANSCE also supplies beam to WNR and two other areas for applications requiring protons. In a proton radiography (pRad) area, a sequence of narrow proton pulses is transmitted through shocked materials and imaged to study dynamic properties. In 2005, LANSCE began operating a facility that uses 100-MeV protons to produce medical radioisotopes. To sustain a vigorous program beyond this decade, LANSCE has embarked on a project to refurbish key elements of the facility and to plan capabilities beyond those that presently exist.

  4. The Los Alamos Neutron Science Center Spallation Neutron Sources

    Science.gov (United States)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  5. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  6. LANSCE: Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-02

    The principle goals of this project is to increase flux and improve resolution for neutron energies above 1 keV for nuclear physics experiments; and preserve current strong performance at thermal energies for material science.

  7. Operational status of the Los Alamos neutron science center (LANSCE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory; Erickson, John L [Los Alamos National Laboratory; Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources; the thermal and cold source for the Manuel Lujan Jr. Neutron Scattering Center, the Weapons Neutron Research (WNR) high-energy neutron source, and a pulsed Ultra-Cold Neutron Source. These three sources are the foundation of strong and productive multi-disciplinary research programs that serve a diverse and robust user community. The facility also provides multiplexed beams for the production of medical radioisotopes and proton radiography of dynamic events. The recent operating history of these sources will be reviewed and plans for performance improvement will be discussed, together with the underlying drivers for the proposed LANSCE Refurbishment project. The details of this latter project are presented in a separate contribution.

  8. Lujan at Los Alamos Neutron Science Center (LANSCE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Lujan Neutron Scattering Center (Lujan Center) at Los Alamos National Laboratory is an intense pulsed neutrons source operating at a power level of 80 -100 kW....

  9. Scheduling at the Los Alamos Neutron Science Center (LANSCE)

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1999-01-01

    The centerpieces of the Los Alamos Neutron Science Center (LANSCE) are a half-mile long 800-MeV proton linear accelerator and proton storage ring. The accelerator, storage ring, and target stations provide the protons and spallation neutrons that are used in the numerous basic research and applications experimental programs supported by the US Department of Energy. Experimental users, facility maintenance personnel, and operations personnel must work together to achieve the most program benefit within defined budget and resource constraints. In order to satisfy the experimental users programs, operations must provide reliable and high quality beam delivery. Effective and efficient scheduling is a critical component to achieve this goal. This paper will detail how operations scheduling is presently executed at the LANSCE accelerator facility

  10. Scheduling at the Los Alamos Neutron Science Center (LANSCE)

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, F.R.

    1999-02-01

    The centerpieces of the Los Alamos Neutron Science Center (LANSCE) are a half-mile long 800-MeV proton linear accelerator and proton storage ring. The accelerator, storage ring, and target stations provide the protons and spallation neutrons that are used in the numerous basic research and applications experimental programs supported by the US Department of Energy. Experimental users, facility maintenance personnel, and operations personnel must work together to achieve the most program benefit within defined budget and resource constraints. In order to satisfy the experimental users programs, operations must provide reliable and high quality beam delivery. Effective and efficient scheduling is a critical component to achieve this goal. This paper will detail how operations scheduling is presently executed at the LANSCE accelerator facility.

  11. Neutron Tomography at the Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Myers, William Riley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    Neutron imaging is an incredibly powerful tool for non-destructive sample characterization and materials science. Neutron tomography is one technique that results in a three-dimensional model of the sample, representing the interaction of the neutrons with the sample. This relies both on reliable data acquisition and on image processing after acquisition. Over the course of the project, the focus has changed from the former to the latter, culminating in a large-scale reconstruction of a meter-long fossilized skull. The full reconstruction is not yet complete, though tools have been developed to improve the speed and accuracy of the reconstruction. This project helps to improve the capabilities of LANSCE and LANL with regards to imaging large or unwieldy objects.

  12. Electrical Engineering in Los Alamos Neutron Science Center Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Michael James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-30

    The field of electrical engineering plays a significant role in particle accelerator design and operations. Los Alamos National Laboratories LANSCE facility utilizes the electrical energy concepts of power distribution, plasma generation, radio frequency energy, electrostatic acceleration, signals and diagnostics. The culmination of these fields produces a machine of incredible potential with uses such as isotope production, neutron spallation, neutron imaging and particle analysis. The key isotope produced in LANSCE isotope production facility is Strontium-82 which is utilized for medical uses such as cancer treatment and positron emission tomography also known as PET scans. Neutron spallation is one of the very few methods used to produce neutrons for scientific research the other methods are natural decay of transuranic elements from nuclear reactors. Accelerator produce neutrons by accelerating charged particles into neutron dense elements such as tungsten imparting a neutral particle with kinetic energy, this has the benefit of producing a large number of neutrons as well as minimizing the waste generated. Utilizing the accelerator scientist can gain an understanding of how various particles behave and interact with matter to better understand the natural laws of physics and the universe around us.

  13. Los Alamos neutron science user facility - control system risk mitigation & updates

    Energy Technology Data Exchange (ETDEWEB)

    Pieck, Martin [Los Alamos National Laboratory

    2011-01-05

    LANSCE User Facility is seeing continuing support and investments. The investment will sustain reliable facility operations well into the next decade. As a result, the LANSCE User Facility will continue to be a premier Neutron Science Facility at the Los Alamos National Laboratory.

  14. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Longshore, A.; Salgado, K. [comps.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  16. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)

    Science.gov (United States)

    Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; Manning, Brett; Geppert-Kleinrath, Verena

    2017-09-01

    Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incident energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.

  17. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE

    Directory of Open Access Journals (Sweden)

    Tovesson Fredrik

    2017-01-01

    Full Text Available Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE, fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE we are studying neutron-induced fission at incident energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer, the NIFFTE Time Projection Chamber (TPC, and Frisch grid Ionization Chambers (FGIC are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.

  18. Bombs, Bosons and Beer Cans-Research at the Los Alamos Neutron Science Center

    Science.gov (United States)

    Pynn, Roger

    1997-04-01

    The neutron scattering community is justifiably proud of the contributions it has made to basic research in many areas of science. Information obtained using neutrons has contributed strongly to our basic understanding of phenomena in diverse systems of interest to physicists, chemists and biologists - think, for example, of how little we would know about excitations in quantum fluids, the spin-density-wave state of chromium, electronic back-donation in the bonding of organometallic compounds, or the conformation of proteins and DNA in nucleosomes without neutron scattering. However, illustrious as this history of neutron scattering may be, it is not the only type of contribution neutrons have made to our modern scientific and technological enterprise. Increasingly in recent years, we have witnessed the application of neutrons to later parts of the R&D cycle, to problems that have been called ''strategic research'' and even in areas that are ''applied research'' or ''product development''. The purpose of my talk at this meeting is to illustrate this aspect of research at spallation neutron sources, using examples of work that has been done at the Los Alamos Neutron Science Center (LANSCE). Some of this work is driven by the fact that our principal funding agency, the Office of Defense Programs within the U.S. Department of Energy, has a need to master the science behind technologies relevant to nuclear weapons. Even so, most of the examples I have picked are equally relevant to the industrial sector and several would not shame even the most devout proponent of ''pure'' research. To demonstrate the breadth of the research performed at LANSCE, I will describe examples of recent experiments in the following areas: materials texture; temperature and particle velocity measurement in reacting high explosives; radiographic imaging with protons; chemical bonding in metal-dihydride complexes; and the structure of thin adhesive layers. LANSCE operates a user program and

  19. Effects of engineering controls on radioactive air emissions from the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Fuehne, D.P.; Poston, J.W.

    1996-01-01

    Under federal regulations set forth in 40 CFR 61, releases of radioactive airborne effluents from a Department of Energy facility must be limited so that no member of the public receives more than 0.10 mSv (10 mrem) effective dose equivalent annually. At Los Alamos National Laboratory (LANL), the Los Alamos Neutron Science Center (LANSCE) has implemented engineering controls to ensure that emissions remain below this limit. At the accelerator's beam stop, a delay line was constructed to delay radioactivity and allow for decay prior to emission. Also, an air scrubber was built at the beam stop to remove excess water, acids, tritium, and carbon dioxide from the air stream. This paper describes the effectiveness of these emissions control efforts. Using a flow-through ionization chamber and high-purity germanium (HPGe) detector, the delay line was shown to reduce overall facility emissions by 26%. The scrubber effectiveness at removing tritium was found by collecting grab samples of the air stream on silica gel, both upstream and downstream of the scrubber. Preliminary results show this tritium removal effectiveness to be greater than 95%. Removal of carbon dioxide (containing radioactive 11 C) was determined by two Methods. First, a plastic scintillation detector monitored activity absorbed by water in the scrubber. The second method used a small-scale model scrubbing system to analyze scrubber performance with an HPGe detector. Different scenarios were examined with this model system, including varying the pH of the scrubber water and using catalytic conversion to convert all carbon in the air to carbon dioxide form. The highest removal effectiveness of the model system was greater than 95%, under high pH and complete conversion of all carbon forms to CO 2

  20. LOS ALAMOS NEUTRON SCIENCE CENTER CONTRIBUTIONS TO THE DEVELOPMENT OF FUTURE POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    GAVRON, VICTOR I. [Los Alamos National Laboratory; HILL, TONY S. [Los Alamos National Laboratory; PITCHER, ERIC J. [Los Alamos National Laboratory; TOVESSON, FREDERIK K. [Los Alamos National Laboratory

    2007-01-09

    The Los Alamos Neutron Science Center (LANSCE) is a large spallation neutron complex centered around an 800 MeV high-currently proton accelerator. Existing facilities include a highly-moderated neutron facility (Lujan Center) where neutrons between thermal and keV energies are produced, and the Weapons Neutron Research Center (WNR), where a bare spallation target produces neutrons between 0.1 and several hundred MeV.The LANSCE facility offers a unique capability to provide high precision nuclear data over a large energy region, including that for fast reactor systems. In an ongoing experimental program the fission and capture cross sections are being measured for a number of minor actinides relevant for Generation-IV reactors and transmutation technology. Fission experiments makes use of both the highly moderated spallation neutron spectrum at the Lujan Center, and the unmoderated high energy spectrum at WNR. By combininb measurements at these two facilities the differential fission cross section is measured relative to the {sup 235}U(n,f) standard from subthermal energies up to about 200 MeV. An elaborate data acquisition system is designed to deal with all the different types of background present when spanning 10 energy decades. The first isotope to be measured was {sup 237}Np, and the results were used to improve the current ENDF/B-VII evaluation. Partial results have also been obtained for {sup 240}Pu and {sup 242}Pu, and the final results are expected shortly. Capture cross sections are measured at LANSCE using the Detector for Advanced Neutron Capture Experiments (DANCE). This unique instrument is highly efficient in detecting radiative capture events, and can thus handle radioactive samples of half-lives as low as 100 years. A number of capture cross sections important to fast reaction applications have been measured with DANCE. The first measurement was on {sup 237}Np(n,{gamma}), and the results have been submitted for publication. Other capture

  1. Underground science initiatives at Los Alamos

    International Nuclear Information System (INIS)

    Simmons, L.M. Jr.

    1985-01-01

    Recently, the Los Alamos National Laboratory has proposed two major new initiatives in underground science. Following the dissolution of the original gallium solar neutrino collaboration, Los Alamos has formed a new North American collaboration. We briefly review the rationale for solar neutrino research, outline the proposal and new Monte Carlo simulations, and describe the candidate locations for the experiment. Because there is no dedicated deep underground site in North America suitable for a wide range of experiments, Los Alamos has conducted a survey of possible sites and developed a proposal to create a new National Underground Science Facility. This paper also reviews that proposal

  2. Los Alamos National Laboratory Weapons Neutron Research Facility

    International Nuclear Information System (INIS)

    Woods, R.

    1981-01-01

    The Weapons Neutron Research (WNR) spallation neutron source utilizes 800-MeV protons from the Los Alamos Meson Physics linac. The proton beam transport system, the target systems, and the data acquisition and control system are described. Operating experience, present status, and planned improvements are discussed

  3. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    Science.gov (United States)

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  4. Plans for an Ultra Cold Neutron source at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L. [Los Alamos National Lab., NM (United States)

    1996-08-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of be a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors. (author)

  5. Los Alamos science. Volume 4, No. 7

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1983-01-01

    A history of the Los Alamos National Laboratory over its 40 years is presented. The evolution of the laboratory is broken down into the Oppenheimer years, the Bradbury years, the Agnew years and the Kerr years. The weapons program is described including nuclear data, early reactors, computing and computers, plutonium, criticality, weapon design and field testing

  6. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  7. Los Alamos Science, Number 19, 1990

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1990-01-01

    This article explores the physics of various neutron-scattering processes, introduces the experimental techniques and instruments that make neutron scattering so versatile, and discusses the single equation that unifies the interpretation of neutron scattering data. The history of the field, its successes around the world, its present problems in the United States, and the plans for opening it to a wide spectrum of users from academia and industry. This articles traces neutrons from their ''birth'' in the spallation target through beam-tailoring devices and scattering samples to their ''death'' in neutron detectors. Samll-angle neutron-scattering experiments provide evidence that calmodulin, a protein that mediates calcium regulation of biological processes, is flexible in solution. Neutron scattering can detect subtle structures beneath the disorder that give advanced materials their extraordinary combinations of strength, elasticity, and low density. Recent neutron-scattering experiments on model systems are revealing how metal atoms loosen the bonds of hydrogen molecules, and essential first step in hydrogenation reactions. Combining data from neutron and x-ray diffraction is the only way to resolve ambiguities in the crystal structure of various materials, including high-temperature superconductors. Although the Bose condensate cannot be observed directly, an interpretation of neutron-scattering data according to a new first-principles theory of final-state effects has at last confirmed its existence in superfluid helium. The maximum entropy method has been applied successfully to neutron-scattering data and could even influence the design of neutron-scattering instruments

  8. The Los Alamos Science Pillars The Science of Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Joshua E. [Los Alamos National Laboratory; Peterson, Eugene J. [Los Alamos National Laboratory

    2012-09-13

    As a national security science laboratory, Los Alamos is often asked to detect and measure the characteristics of complex systems and to use the resulting information to quantify the system's behavior. The Science of Signatures (SoS) pillar is the broad suite of technical expertise and capability that we use to accomplish this task. With it, we discover new signatures, develop new methods for detecting or measuring signatures, and deploy new detection technologies. The breadth of work at Los Alamos National Laboratory (LANL) in SoS is impressive and spans from the initial understanding of nuclear weapon performance during the Manhattan Project, to unraveling the human genome, to deploying laser spectroscopy instrumentation on Mars. Clearly, SoS is a primary science area for the Laboratory and we foresee that as it matures, new regimes of signatures will be discovered and new ways of extracting information from existing data streams will be developed. These advances will in turn drive the development of sensing instrumentation and sensor deployment. The Science of Signatures is one of three science pillars championed by the Laboratory and vital to supporting our status as a leading national security science laboratory. As with the other two pillars, Materials for the Future and Information Science and Technology for Predictive Science (IS&T), SoS relies on the integration of technical disciplines and the multidisciplinary science and engineering that is our hallmark to tackle the most difficult national security challenges. Over nine months in 2011 and 2012, a team of science leaders from across the Laboratory has worked to develop a SoS strategy that positions us for the future. The crafting of this strategy has been championed by the Chemistry, Life, and Earth Sciences Directorate, but as you will see from this document, SoS is truly an Institution-wide effort and it has engagement from every organization at the Laboratory. This process tapped the insight and

  9. Los Alamos Science, Number 13, Spring 1986

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1986-01-01

    A review of the advances that have been made in the field of x-ray astrophysics is presented. A discussion of the information which can be gleaned from the spectra is also presented. The internal dynamics of neutron stars is discussed. Models of neutron star structure are discussed. A cooperative experiment which measured the spectra of Cygnus X-3 (10 9 to 10 18 hertz) is discussed. The role of angular momentum in the cosmology of the universe is discussed. 33 refs., 40 figs

  10. Bradbury science museum: your window to Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Deck, Linda Theresa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2009-03-05

    The Bradbury Science Museum is the public's window to Los Alamos National Laboratory and supports the Community Program Office's mission to develop community support to accomplish LANL's national security and science mission. It does this by stimulating interest in and increasing basic knowledge of science and technology in northern New Mexico audiences, and increasing public understanding and appreciation of how LANL science and technology solve our global problems. In performing these prime functions, the Museum also preserves the history of scientific accomplishment at the Lab by collecting and preserving artifacts of scientific and historical importance.

  11. Neutron resonance radiography: Report of a workshop, Los Alamos, NM: July 27-29, 1987

    International Nuclear Information System (INIS)

    1988-07-01

    Neutron resonance radiography is a new technique with great potential for non-destructive analysis and testing. This technique has been under research and development in a number of major research laboratories for some time. Unlike thermal neutron radiography, which is primarily oriented towards imaging hydrogen and a number of other highly neutron-absorptive materials without necessarily distinguishing between them, neutron resonance radiography has the capability of uniquely identifying many kinds of chemical elements and their individual isotopes. It also has the potential for temperature imaging in materials containing heavy elements and for certain dynamic features such as stroboscopic imaging. Although neutron resonance radiography has not yet been taken up in a systematic way for technological applications, significant development of ideas and instrumentation at the research level has blossomed. There have also been major developments in the availability of powerful pulsed-neutron sources. In light of these developments, the Los Alamos Neutron Scattering Center sponsored a workshop with the general aims of reviewing scientific and technical progress, discussing and highlighting future developments, and stimulating interest in technological exploitation of the methods. In addition to the techniques and instrumentation required for the field, the applications of neutron resonance radiography in some of the following industrial and manufacturing areas were discussed: nuclear fuel assay; nuclear safeguards in general; aerospace development (aeroengine blade temperature, stroboscopic techniques); diagnostics; non-nuclear industry (especially metallurgy); temperature imaging; use of mobile pulsed-neutron sources; and practical use of major pulsed-neutron facilities

  12. A Long-Pulse Spallation Source at Los Alamos: Facility description and preliminary neutronic performance for cold neutrons

    International Nuclear Information System (INIS)

    Russell, G.J.; Weinacht, D.J.; Pitcher, E.J.; Ferguson, P.D.

    1998-03-01

    The Los Alamos National Laboratory has discussed installing a new 1-MW spallation neutron target station in an existing building at the end of its 800-MeV proton linear accelerator. Because the accelerator provides pulses of protons each about 1 msec in duration, the new source would be a Long Pulse Spallation Source (LPSS). The facility would employ vertical extraction of moderators and reflectors, and horizontal extraction of the spallation target. An LPSS uses coupled moderators rather than decoupled ones. There are potential gains of about a factor of 6 to 7 in the time-averaged neutron brightness for cold-neutron production from a coupled liquid H 2 moderator compared to a decoupled one. However, these gains come at the expense of putting ''tails'' on the neutron pulses. The particulars of the neutron pulses from a moderator (e.g., energy-dependent rise times, peak intensities, pulse widths, and decay constant(s) of the tails) are crucial parameters for designing instruments and estimating their performance at an LPSS. Tungsten is the reference target material. Inconel 718 is the reference target canister and proton beam window material, with Al-6061 being the choice for the liquid H 2 moderator canister and vacuum container. A 1-MW LPSS would have world-class neutronic performance. The authors describe the proposed Los Alamos LPSS facility, and show that, for cold neutrons, the calculated time-averaged neutronic performance of a liquid H 2 moderator at the 1-MW LPSS is equivalent to about 1/4th the calculated neutronic performance of the best liquid D 2 moderator at the Institute Laue-Langevin reactor. They show that the time-averaged moderator neutronic brightness increases as the size of the moderator gets smaller

  13. Opportunities in Neutron Science

    Science.gov (United States)

    Fernandez-Baca, Jaime

    2010-03-01

    National Laboratories often have unique facilities that cannot be normally found at universities, and that provide unique opportunities to perform research using world class instrumentation in collaboration with teams of experts. This synergy of expertise and world-class facilities also offers unique opportunities for mentoring and training of students in settings different from the university environment. In this talk I will discuss the opportunities of scientific research, mentoring and training at the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. The SNS is the world's most intense pulsed accelerator-based neutron source, the HFIR is the highest flux reactor-based neutron source for condensed matter research in the United States, the combination of these provides neutron scattering capabilities unavailable anywhere else in the world. The SNS and the HFIR at ORNL are funded by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US. Department of Energy.

  14. The LANSCE (Los Alamos Neutron Scattering Center) target data collection system

    International Nuclear Information System (INIS)

    Kernodle, A.K.

    1989-01-01

    The Los Alamos Neutron Scattering Center (LANSCE) Target Data Collection System is the result of an effort to provide a base of information from which to draw conclusions on the performance and operational condition of the overall LANSCE target system. During the conceptualization of the system, several goals were defined. A survey was made of both custom-made and off-the-shelf hardware and software that were capable of meeting these goals. The first stage of the system was successfully implemented for the LANSCE run cycle 52. From the operational experience gained thus far, it appears that the LANSCE Target Data Collection System will meet all of the previously defined requirements

  15. Neutron-Induced Failures in Semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  16. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  17. Ultra-Cold Neutrons (UCN)

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers working at the Los Alamos Neutron Science Center and eight other member institutions of an international collaboration are constructing the most intense...

  18. Schlieren diagnostics of the Los Alamos hypersonic gas target neutron generator

    International Nuclear Information System (INIS)

    Haasz, A.A.; Lever, J.H.

    1981-01-01

    The gasdynamic behaviour of a planar model of the Los Alamos geometry hypersonic gas target neutron generator (GTNG) was investigated using Schlieren flow visualization photographs, static and total pressure and spill flow measurements. The model consisted of two symmetrical expansion nozzles with 220 μm throats producing a combined flow of about Mach 4 in the GTNG channel. Stagnation pressures of 100-800 kPa were used. Two basic flow configurations, spill line closed and spill line open, were studied in order to gain insight into the complex boundary layer development near the nozzle exit planes. Both flow configurations are discussed qualitatively, making use of the pressure measurements and theoretical analysis. (orig.)

  19. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Science.gov (United States)

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  20. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N G; Shea, N [eds.

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  1. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N.G. [ed.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  2. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1997-01-01

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos

  3. Neutron scattering science in Australia

    International Nuclear Information System (INIS)

    Knott, Robert

    1999-01-01

    Neutron scattering science in Australia is making an impact on a number of fields in the scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a wide range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans are in progress to replace the present research reactor with a modern multi-purpose research reactor to offer the most advanced neutron scattering facilities. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. (author)

  4. Neutron scattering science in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Robert [Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia)

    1999-10-01

    Neutron scattering science in Australia is making an impact on a number of fields in the scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a wide range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans are in progress to replace the present research reactor with a modern multi-purpose research reactor to offer the most advanced neutron scattering facilities. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. (author)

  5. Neutrons for technology and science

    International Nuclear Information System (INIS)

    Aeppli, G.

    1995-01-01

    We reviewed recent work using neutrons generated at nuclear reactors an accelerator-based spallation sources. Provided that large new sources become available, neutron beams will continue to have as great an impact on technology and science as in the past

  6. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  7. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    International Nuclear Information System (INIS)

    Parkin, D.M.; Boring, A.M.

    1991-01-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory's defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location

  8. Performance of the Los Alamos National Laboratory spallation-driven solid-deuterium ultra-cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, A.; Makela, M.; Bagdasarova, Y.; Boissevain, J.; Bowles, T. J.; Currie, S. A.; Hill, R. E.; Hogan, G.; Morris, C. L.; Mortensen, R. N.; Ramsey, J.; Seestrom, S. J.; Sondheim, W. E.; Teasdale, W.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Back, H. O.; Broussard, L. J.; Hoagland, J.; Holley, A. T.; Pattie, R. W. Jr. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); and others

    2013-01-15

    In this paper, we describe the performance of the Los Alamos spallation-driven solid-deuterium ultra-cold neutron (UCN) source. Measurements of the cold neutron flux, the very low energy neutron production rate, and the UCN rates and density at the exit from the biological shield are presented and compared to Monte Carlo predictions. The cold neutron rates compare well with predictions from the Monte Carlo code MCNPX and the UCN rates agree with our custom UCN Monte Carlo code. The source is shown to perform as modeled. The maximum delivered UCN density at the exit from the biological shield is 52(9) UCN/cc with a solid deuterium volume of {approx}1500 cm{sup 3}.

  9. Neutrons for materials science

    International Nuclear Information System (INIS)

    Windsor, C.G.; Allen, A.J.; Hutchings, M.T.; Sayers, C.M.; Sinclair, R.N.; Schofield, P.; Wright, C.J.

    1984-12-01

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particularly electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Examples are given. Small angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of 'in situ' time dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. High resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasing complex phases. The structure and volume fraction of minority phases can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. (author)

  10. Neutron diffraction in materials science

    International Nuclear Information System (INIS)

    Howard, C.J.

    1996-01-01

    This article deals with applications of neutron diffraction in materials science. Most of the examples presented here involve the use of powder diffraction, which has been described earlier. In most of these, the Rietveld method has been used for neutron diffraction data, using the Rietveld method. This being an application which was largely pioneered at Lucas Heights. Examples involving single crystal diffraction and neutron polarization analysis are also included. Most of the examples are drawn from studies carried out at Lucas Heights where there is diffraction to the study of ceramics, and this will be reflected in the choice of examples to be considered here. (author)

  11. Neutrons for materials science

    International Nuclear Information System (INIS)

    Windsor, C.G.; Allen, A.J.; Hutchings, M.T.; Sayers, C.M.; Sinclair, R.N.; Schofield, P.; Wright, C.J.

    1985-01-01

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particular electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Small-angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of in situ time-dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. Examples will be given of small-angle scattering projects from the nuclear metallurgy, coal, oil, cement, detergent and plastics industries. High-resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasingly complex phases. The structure and volume fraction of minority phase can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Neutron diffraction is unique in being able to measure the full strain tensor from a specified volume within a bulk specimen. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. Examples will be chosen from the field of catalysis where inelastic spectroscopy has revealed the nature of the bonding of hydrocarbon molecules. (author)

  12. Los Alamos National Laboratory A National Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  13. Neutron Science Project at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  14. Neutrons for science

    International Nuclear Information System (INIS)

    Jacrot, B.

    2006-01-01

    In 1967, France and Germany decided to cooperate together for the construction and implementation of a nuclear reactor devoted to research works in physics, chemistry and biology. The Laue-Langevin Institute project was born with the mission of supplying to researchers an intense neutron beam source for the analysis of condensed matter. Great Britain rapidly joined the project, progressively followed by other European countries and making up the Laue-Langevin Institute a successful example of European cooperation. This success demonstrates that such a gathering of forces and competences allow to carry out ambitious projects with the best neutron source in the world. This book tells us the genesis of this project and shows how a suitable organization has permitted to optimize the reactor use. It describes also the portrait of three personalities that have played a key role in this success: J. Horowitz, H. Maier-Leibnitz and L. Neel. (J.S.)

  15. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rich, Bethany M [Los Alamos National Laboratory

    2012-04-02

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

  16. Pulsed Neutron Powder Diffraction for Materials Science

    Science.gov (United States)

    Kamiyama, T.

    2008-03-01

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-1Software group is

  17. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pynn, R.; Weinacht, D.

    1995-01-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the U.S. with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the U.S. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE's Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide U.S. scientists with a complementary pair of high-performance neutron sources to rival the world's leading facilities in Europe. (author) 1 ref

  18. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pynn, R.; Weinacht, D.

    1995-01-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the US with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW, long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the US. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE's Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide US scientists with a complementary pair of high-performance neutron sources to rival the world's leading facilities in Europe

  19. Los Alamos National Laboratory Facility Review

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H+ and H- beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  20. Progress of JAERI neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    1999-03-01

    Neutron Science Project was started at Japan Atomic Energy Research Institute since 1996 for promoting futuristic basic science and nuclear technology utilizing neutrons. For this purpose, research and developments of intense proton accelerator and spallation neutron target were initiated. The present paper describes the current status of such research and developments. (author)

  1. Neutrons in science and technology

    International Nuclear Information System (INIS)

    Bromley, D.A.

    1984-01-01

    Occasionally to the fiftieth anniversy of the discovery of the neutron the author presents a historical review about the impact of this discovery on different fields at physics. Especially considered are nuclear physics, the neutron as an elementary particles, ultracold neutrons, condensed matter physics, radiation damage induced by neutrons, neutron activation analysis, imaging and radiography by neutrons, neutrons in mining operations, track etching, the use of intense gamma sources, gauging systems, neutron holography and neutron stars. (HSI)

  2. Neutron beam instruments for neutron science at HANARO

    International Nuclear Information System (INIS)

    Kim, Y.K.

    2009-01-01

    HANARO (Highly Advanced Neutron Application Reactor) came on line as the first criticality achieved in 1995. Since then a lot of experimental facilities for various utilizations have been gradually installed over the years up until now. Neutron science actually began with the neutron radiography facility completed in 1997. Thereafter, a series of thermal neutron beam instruments have been added and opened for the users. Some of them are high resolution power diffractometer, four circle diffractometer, small angle neutron spectrometer, and vertical-type reflectometer. The cold neutron research facility project was initiated in 2003, which envisions installation of cold neutron source, related systems, 5 neutron guides, and 7 instruments to satisfy the needs of cold neutron beam as the indispensable tool in NT, BT and other emerging technologies. Cold neutron guide building had been completed in October, 2008. Cold neutrons are planned to be produced later this year. Installations of neutron guides and associated instruments are to be finalized by the middle of 2010, ready for use. A 20 m detector vacuum tank and 20 m pre-sample flight path for 40 m SANS are already in place at the guide hall. Currently, there are about 450 users working with thermal neutron instruments. Once cold neutron instruments are available, we expect the number of users will double within next 3 years. (author)

  3. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours for the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.

  4. Pulsed Neutron Powder Diffraction for Materials Science

    International Nuclear Information System (INIS)

    Kamiyama, T.

    2008-01-01

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 A -1 -1 . IPD is fully

  5. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    Science.gov (United States)

    Ito, T. M.; Adamek, E. R.; Callahan, N. B.; Choi, J. H.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Ding, X.; Fellers, D. E.; Geltenbort, P.; Lamoreaux, S. K.; Liu, C.-Y.; MacDonald, S.; Makela, M.; Morris, C. L.; Pattie, R. W.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S.; Sprow, A. P.; Tang, Z.; Weaver, H. L.; Wei, W.; Young, A. R.

    2018-01-01

    The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184 (32 ) UCN /cm3 , a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39 (7 ) UCN /cm3 , which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ (dn) =3 ×10-27e cm .

  6. Workshop on Probing Frontiers in Matter with Neutron Scattering, Wrap-up Session Chaired by John C. Browne on December 14, 1997, at Fuller Lodge, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Mezei, F.; Thompson, J.

    1998-01-01

    The Workshop on Probing Frontiers in Matter with Neutron Scattering consisted of a series of lectures and discussions about recent highlights in neutron scattering. In this report, we present the transcript of the concluding discussion session (wrap-up session) chaired by John C. Browne, Director of Los Alamos National Laboratory. The workshop had covered a spectrum of topics ranging from high T c superconductivity to polymer science, from glasses to molecular biology, a broad review aimed at identifying trends and future needs in condensed matter research. The focus of the wrap-up session was to summarize the workshop participants' views on developments to come. Most of the highlights presented during the workshop were the result of experiments performed at the leading reactor-based neutron scattering facilities. However, recent advances with very high power accelerators open up opportunities to develop new approaches to spallation technique that could decisively advance neutron scattering research in areas for which reactor sources are today by far the best choice. The powerful combination of neutron scattering and increasingly accurate computer modeling emerged as another area of opportunity for research in the coming decades

  7. New sources and instrumentation for neutron science

    Science.gov (United States)

    Gil, Alina

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  8. New sources and instrumentation for neutron science

    International Nuclear Information System (INIS)

    Gil, Alina

    2011-01-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  9. Production Potential of 47Sc Using Spallation Neutron Flux at the Los Alamos Isotope Production Facility

    Science.gov (United States)

    2014-03-27

    up, and high-fidelity delayed-gamma emission. MCNP6 is a fusion of MCNPX and MCNP5. MCNP5 allows for neutral particle and electron transport, while...bins will be listed [20]. This tally, in combination with the eighth entry on MCNPs LCA physics model card entry, NOACT, is very useful in extracting...19 and 23 (K, Ca, Sc, Ti, and V) resulting from direct neutron reactions. The 8th LCA entry of NOACT=-2 forces the model to assume all particles react

  10. Neutron science opportunities at pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1996-01-01

    Using the IPNS Upgrade plan developed at Argonne National Laboratory as a worked example of the design of a pulsed spallation neutron source, this paper explores some of the scientific applications of an advanced facility for materials science studies and the instrumentation for those purposes

  11. Neutron Science TeraGrid Gateway

    International Nuclear Information System (INIS)

    Lynch, Vickie E.; Chen, Meili; Cobb, John W.; Kohl, James Arthur; Miller, Stephen D.; Speirs, David A.; Vazhkudai, Sudharshan S.

    2010-01-01

    The unique contributions of the Neutron Science TeraGrid Gateway (NSTG) are the connection of national user facility instrument data sources to the integrated cyberinfrastructure of the National Science FoundationTeraGrid and the development of a neutron science gateway that allows neutron scientists to use TeraGrid resources to analyze their data, including comparison of experiment with simulation. The NSTG is working in close collaboration with the Spallation Neutron Source (SNS) at Oak Ridge as their principal facility partner. The SNS is a next-generation neutron source. It has completed construction at a cost of $1.4 billion and is ramping up operations. The SNS will provide an order of magnitude greater flux than any previous facility in the world and will be available to all of the nation's scientists, independent of funding source, on a peer-reviewed merit basis. With this new capability, the neutron science community is facing orders of magnitude larger data sets and is at a critical point for data analysis and simulation. There is a recognized need for new ways to manage and analyze data to optimize both beam time and scientific output. The TeraGrid is providing new capabilities in the gateway for simulations using McStas and a fitting service on distributed TeraGrid resources to improved turnaround. NSTG staff are also exploring replicating experimental data in archival storage. As part of the SNS partnership, the NSTG provides access to gateway support, cyberinfrastructure outreach, community development, and user support for the neutron science community. This community includes not only SNS staff and users but extends to all the major worldwide neutron scattering centers.

  12. Development of neutron science and technology

    International Nuclear Information System (INIS)

    Lee, Ki Hong; Seong, Baik Seok; Lee, Jeong Soo

    2012-04-01

    Using various neutron scattering, imaging, and activation analysis instruments and irradiation facility and capsules, the short-term industrial application and mid and long-term basic science with neutrons was carried out. In this regard, we proposed the utilization of the neutron scattering and diffraction techniques to the study of physical, mechanical material properties in industrial components. The nano magnetic thin film structure study using neutron reflectometry, spin structure and dynamics study using neutron scattering, hydrogen combination structure study using single crystal diffraction were carried out. The triple-axis spectrometer has been installed. Also, a new growth facility of single crystal has been developed to supply crystals for the neutron scattering experiment. We have contributed to the performance enhancement of hydrogen fuel cell by the development of quantitative neutron radiography technology and developed the differential phase imaging technology using silicon grating. To perform precise neutron activation analysis, a Compton suppressed gamma-ray spectroscopy system was installed. Through the analysis of actual samples as well as geological and biological reference materials, performance test was carried out. We built up analytical data base and develope integrated analytical program for INAA/PGAA. The analysis and evaluation technology of the irradiation capsule test in HANARO for the commercial and future nuclear reactor systems was improved

  13. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  14. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bardoel, Agatha A [ORNL; Counce, Deborah M [ORNL; Ekkebus, Allen E [ORNL; Horak, Charlie M [ORNL; Nagler, Stephen E [ORNL; Kszos, Lynn A [ORNL

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron

  15. Energy measurement of prompt fission neutrons in 239Pu(n,f) for incident neutron energies from 1 to 200 MeV

    CERN Document Server

    Chatillon, A; Granier, Th; Laurent, B; Taïeb, J; Noda, S; Haight, R C; Devlin, M; Nelson, R O; O’Donnell, J M

    2010-01-01

    Prompt fission neutron spectra in the neutron-induced fission of 239Pu have been measured for incident neutron energies from 1 to 200 MeV at the Los Alamos Neutron Science Center. Preliminary results are discussed and compared to theoretical model calculation.

  16. ORNL Neutron Sciences Annual Report for 2007

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Ian S [ORNL; Horak, Charlie M [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

  17. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  18. Los Alamos National Laboratory Science Education Programs. Progress report, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1995-02-01

    During the 1994 summer institute NTEP teachers worked in coordination with LANL and the Los Alamos Middle School and Mountain Elementary School to gain experience in communicating on-line, to gain further information from the Internet and in using electronic Bulletin Board Systems (BBSs) to exchange ideas with other teachers. To build on their telecommunications skills, NTEP teachers participated in the International Telecommunications In Education Conference (Tel*ED `94) at the Albuquerque Convention Center on November 11 & 12, 1994. They attended the multimedia keynote address, various workshops highlighting many aspects of educational telecommunications skills, and the Telecomm Rodeo sponsored by Los Alamos National Laboratory. The Rodeo featured many presentations by Laboratory personnel and educational institutions on ways in which telecommunications technologies can be use din the classroom. Many were of the `hands-on` type, so that teachers were able to try out methods and equipment and evaluate their usefulness in their own schools and classrooms. Some of the presentations featured were the Geonet educational BBS system, the Supercomputing Challenge, and the Sunrise Project, all sponsored by LANL; the `CU-seeMe` live video software, various simulation software packages, networking help, and many other interesting and useful exhibits.

  19. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  20. Monte Carlo code development in Los Alamos

    International Nuclear Information System (INIS)

    Carter, L.L.; Cashwell, E.D.; Everett, C.J.; Forest, C.A.; Schrandt, R.G.; Taylor, W.M.; Thompson, W.L.; Turner, G.D.

    1974-01-01

    The present status of Monte Carlo code development at Los Alamos Scientific Laboratory is discussed. A brief summary is given of several of the most important neutron, photon, and electron transport codes. 17 references. (U.S.)

  1. LOS ALAMOS

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Following the historic observation of neutrinos in the mid-1950s by two Los Alamos scientists, Fred Reines and Clyde Cowan, Jr, using inverse beta decay, there has been a long and distinguished history of experimental neutrino physics at LAMPF, the Los Alamos Meson Physics Facility. LAMPF is the only meson factory to have had an experimental neutrino programme. In the late 1970s, the first LAMPF neutrino experiment used a 6-tonne water Cherenkov detector 7 metres from the beam stop. A collaboration of Yale, Los Alamos and several other institutions, this experiment searched for the forbidden decay of a muon into an electron and two neutrinos, and measured the reaction rate of a neutrino interacting with a deuteron to give two protons and an electron - the inverse of the reaction that drives the sun's primary energy source. The next LAMPF neutrino experiment, a UC Irvine/Maryland/Los Alamos collaboration, ran from 1982 through 1986 and measured the elastic scattering rate of electron neutrinos and protons, where both neutral and charged weak currents contribute. With its precision of about 15%, the experiment provided the first demonstration of (destructive) interference between the charged and neutral currents. More recent neutrino experiments at LAMPF have searched for neutrino oscillations, especially between muon- and electron-neutrinos. The newest experiment to pursue this physics (as well as oscillations in other channels) is LSND (July/ August, page 10 and cover). In addition to searching for these oscillations, LSND will measure neutrino-proton elastic scattering at low momentum transfer, providing a sensitive measure of the strange quark contribution to the proton spin. LSND began taking data in August. Los Alamos physicists have also been busy in neutrino physics experiments elsewhere. One such experiment looked at the beta decay of free molecular tritium to obtain an essentially model independent determination of the electron-neutrino mass. The

  2. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    International Nuclear Information System (INIS)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base

  3. Recent UCN source developments at Los Alamos

    International Nuclear Information System (INIS)

    Seestrom, S.J.; Anaya, J.M.; Bowles, T.J.

    1998-01-01

    The most intense sources of ultra cold neutrons (UCN) have bee built at reactors where the high average thermal neutron flux can overcome the low UCN production rate to achieve usable densities of UCN. At spallation neutron sources the average flux available is much lower than at a reactor, though the peak flux can be comparable or higher. The authors have built a UCN source that attempts to take advantage of the high peak flux available at the short pulse spallation neutron source at the Los Alamos Neutron Science Center (LANSCE) to generate a useful number of UCN. In the source UCN are produced by Doppler-shifted Bragg scattering of neutrons to convert 400-m/s neutrons down into the UCN regime. This source was initially tested in 1996 and various improvements were made based on the results of the 1996 running. These improvements were implemented and tested in 1997. In sections 2 and 3 they discuss the improvements that have been made and the resulting source performance. Recently an even more interesting concept was put forward by Serebrov et al. This involves combining a solid Deuterium UCN source, previously studied by Serebrov et al., with a pulsed spallation source to achieve world record UCN densities. They have initiated a program of calculations and measurements aimed at verifying the solid Deuterium UCN source concept. The approach has been to develop an analytical capability, combine with Monte Carlo calculations of neutron production, and perform benchmark experiments to verify the validity of the calculations. Based on the calculations and measurements they plan to test a modified version of the Serebrov UCN factory. They estimate that they could produce over 1,000 UCN/cc in a 15 liter volume, using 1 microamp of 800 MeV protons for two seconds every 500 seconds. They will discuss the result UCN production measurements in section 4

  4. Basic and applied life science extended by neutron

    International Nuclear Information System (INIS)

    Nakagawa, Hiroshi; Kataoka, Mikio

    2017-01-01

    Life science is expected to be one of the major subjects of neutron research. The quantum beam properties of neutron, isotope effect and inelastic/quasi-elastic scattering are useful for studying crystal structures, solution structures and dynamic structures of biomolecules. Research on physical properties of biological materials by inelastic scattering is promising as applied research such as food science. The high-intensity pulse neutrons realized by the accelerator not only has developed the life science research so far, but also is opening a gate to the academic field which has never been used before. (author)

  5. Los Alamos personnel and area criticality dosimeter systems

    International Nuclear Information System (INIS)

    Vasilik, D.G.; Martin, R.W.

    1981-06-01

    Fissionable materials are handled and processed at the Los Alamos National Laboratory. Although the probability of a nuclear criticality accident is very remote, it must be considered. Los Alamos maintains a broad spectrum of dose assessment capabilities. This report describes the methods employed for personnel neutron, area neutron, and photon dose evaluations with passive dosimetry systems

  6. Los Alamos personnel and area criticality dosimeter systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasilik, D.G.; Martin, R.W.

    1981-06-01

    Fissionable materials are handled and processed at the Los Alamos National Laboratory. Although the probability of a nuclear criticality accident is very remote, it must be considered. Los Alamos maintains a broad spectrum of dose assessment capabilities. This report describes the methods employed for personnel neutron, area neutron, and photon dose evaluations with passive dosimetry systems.

  7. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Cizewski, J. A. [Rutgers University; Jones, K. L. [University of Tennessee; Kozub, R. L. [Tennessee Technological University; Pain, Steven D [ORNL; Peters, W. A. [Rutgers University; Adekola, Aderemi S [ORNL; Allen, J. [Rutgers University; Bardayan, Daniel W [ORNL; Becker, J. [Lawrence Livermore National Laboratory (LLNL); Blackmon, Jeff C [ORNL; Chae, K. Y. [University of Tennessee; Chipps, K. [Colorado School of Mines, Golden; Erikson, Luke [Colorado School of Mines, Golden; Gaddis, A. L. [Furman University; Harlin, Christopher W [ORNL; Hatarik, Robert [Rutgers University; Howard, Joshua A [ORNL; Jandel, M. [Los Alamos National Laboratory (LANL); Johnson, Micah [ORNL; Kapler, R. [University of Tennessee; Krolas, W. [University of Warsaw; Liang, J Felix [ORNL; Livesay, Jake [ORNL; Ma, Zhanwen [ORNL; Matei, Catalin [Oak Ridge Associated Universities (ORAU); Matthews, C. [Rutgers University; Moazen, Brian [University of Tennessee; Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Patterson, N. P. [University of Surrey, UK; Paulauskas, Stanley [University of Tennessee; Pelham, T. [University of Surrey, UK; Pittman, S. T. [University of Tennessee, Knoxville (UTK); Radford, David C [ORNL; Rogers, J. [Tennessee Technological University; Schmitt, Kyle [University of Tennessee; Shapira, Dan [ORNL; ShrinerJr., J. F. [Tennessee Technological University; Sissom, D. J. [Tennessee Technological University; Smith, Michael Scott [ORNL; Swan, T. P. [University of Surrey, UK; Thomas, J. S. [Rutgers University; Vieira, D. J. [Los Alamos National Laboratory (LANL); Wilhelmy, J. B. [Los Alamos National Laboratory (LANL); Wilson, Gemma L [ORNL

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  8. Small neutron sources as centers for innovation and science

    International Nuclear Information System (INIS)

    Baxter, D.V.

    2009-01-01

    The education and training of the next generation of scientists who will form the user base for the Spallation Neutron Source (SNS) remains a significant issue for the future success of this national facility. These scientists will be drawn from a wide variety of disciplines (physics, chemistry, biology, and engineering) and therefore the development of an effective interdisciplinary training program represents a significant challenge. In addition, effective test facilities to develop the full potential of pulsed neutron sources for science do not exist. Each of these problems represents a significant hurdle for the future health of neutron science in this country. An essential part of the solution to both problems is to get neutron sources of useful intensities into the hands of researchers and students at universities, where faculty can teach students about neutron production and the utility of neutrons for solving scientific problems. Due to a combination of developments in proton accelerator technology, neutron optics, cold neutron moderators, computer technology, and small-angle neutron scattering (SANS) instrumentation, it is now technically possible and cost effective to construct a pulsed cold neutron source suitable for use in a university setting and devoted to studies of nano structures in the fields of materials science, polymers, microemulsions, and biology. Such a source, based on (p,n) reactions in light nuclei induced by a few MeV pulsed proton beam coupled to a cold neutron moderator, would also be ideal for the study of a number of technical issues which are essential for the development of neutron science such as cold and perhaps ultracold neutron moderators, neutron optical devices, neutron detector technology, and transparent DAQ/user interfaces. At the Indiana University Cyclotron Facility (IUCF) we possess almost all of the required instrumentation and expertise to efficiently launch the first serious attempt to develop an intense pulsed cold

  9. J-PARC and the prospective neutron sciences

    Indian Academy of Sciences (India)

    J-PARC is an interdisciplinary facility with high power proton accelerator complex to be completed by 2008 (figure 1). Materials-Life Science Facility (MLF) will be a very intensive pulsed neutron and muon facility at 1 MW of the accelerated proton power. The neutron peak flux will be as high as several hundred times of ...

  10. Neutron radiography with 252Cf in forensic science

    International Nuclear Information System (INIS)

    Cason, J.L.

    1972-01-01

    Equipment and methods for neutron radiographic examination of objects in forensic science are described. Examples discussed include booby-trapped ammunition, bomb in a matchbook, gun barrel analysis, narcotics in pen, and chemicals and metals in body tissue

  11. Neutron scattering treatise on materials science and technology

    CERN Document Server

    Kostorz, G

    1979-01-01

    Treatise on Materials Science and Technology, Volume 15: Neutron Scattering shows how neutron scattering methods can be used to obtain important information on materials. The book discusses the general principles of neutron scattering; the techniques used in neutron crystallography; and the applications of nuclear and magnetic scattering. The text also describes the measurement of phonons, their role in phase transformations, and their behavior in the presence of crystal defects; and quasi-elastic scattering, with its special merits in the study of microscopic dynamical phenomena in solids and

  12. Neutron science and technology on J-PARC

    International Nuclear Information System (INIS)

    Fujii, Yasuhiko

    2007-01-01

    This paper has briefly reviewed a history of neutron sources in Japan and highlighted the 1 MW JSNS (Japan Spallation Neutron Source), which is a central facility of the multi-purposed J-PARC (Japan Proton Accelerator Research Complex) to be completed in 2008. JSNS will provide worldwide users with most intense pulsed neutron beams available for a wide variety of fields ranging from fundamental research of material/life sciences to industrial/medical applications to open up a new era of science and technology

  13. Neutron-emission measurements at a white neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  14. Neutron activation analysis - an aid to forensic science

    International Nuclear Information System (INIS)

    Chattopadhyay, N.; Basu, A.K.; Tripathi, A.B.R.; Bhadkambekar, C.A.; Shukla, S.K.

    2006-01-01

    Forensic Science is oriented towards the examination of evidence specimens, collected from a scene of crime in order to establish the link between the criminal and the crime. This science therefore has a profound role to play in criminal justice delivery system. The importance of neutron activation analysis (NAA) as a specialised technique to aid crime investigation has emerged and has been recognised

  15. Neutron scattering for polymer science at reactor and spallation sources

    International Nuclear Information System (INIS)

    Koizumi, Satoshi

    2009-01-01

    The neutron, having a variety of intrinsic properties (no charge, mass, spin and magnetic moment), is a marvelous probe to explore the structure of polymer materials. We report characteristic methods of small-angle neutron-neutron scattering (SANS), which are performed at reactor and spallation sources. A time-of-flight method at a spallation source employs neutrons of wide wavelength distribution in order to observe a wide length scale from angstrom to nanometer (from small-angle to wide-angle scattering regions). At a reactor source, on the other hand, a monochromatic neutron is utilized for precise observation of ultra-small-angle scattering, corresponding to a range from nano to micron meters. By combining both facilities, polymer science is further improved into exploring hierarchical structures in polymeric materials. (author)

  16. The Energy Science and Technology Database on a local library system: A case study at the Los Alamos National Research Library

    Energy Technology Data Exchange (ETDEWEB)

    Holtkamp, I.S.

    1994-10-01

    This paper presents an overview of efforts at Los Alamos National Laboratory to acquire and mount the Energy Science and Technology Database (EDB) as a citation database on the Research Library`s Geac Advance system. The rationale for undertaking this project and expected benefits are explained. Significant issues explored are loading non-USMARC records into a MARC-based library system, the use of EDB records to replace or supplement in-house cataloging of technical reports, the impact of different cataloging standards and database size on searching and retrieval, and how integrating an external database into the library`s online catalog may affect staffing and workflow.

  17. Latest developments of neutron scattering instrumentation at the Juelich Centre for Neutron Science

    International Nuclear Information System (INIS)

    Ioffe, Alexander

    2013-01-01

    Jülich Centre for Neutron Science (JCNS) is operating a number of world-class neutron scattering instruments situated at the most powerful and advanced neutron sources (FRM II, ILL and SNS) and is continuously undertaking significant efforts in the development and upgrades to keep this instrumentation in line with the continuously changing scientific request. These developments are mostly based upon the latest progress in neutron optics and polarized neutron techniques. For example, the low-Q limit of the suite of small angle-scattering instruments has been extended to 4·10 -5 Å -1 by the successful use of focusing optics. A new generation of correction elements for the neutron spin-echo spectrometer has allowed for the use of the full field integral available, thus pushing further the instrument resolution. A significant progress has been achieved in the developments of 3 He neutron spin filters for purposes of the wide-angle polarization analysis for off-specular reflectometry and (grazing incidence) small-angle neutron scattering, e.g. the on-beam polarization of 3 He in large cells is allowing to achieve a high neutron beam polarization without any degradation in time. The wide Q-range polarization analysis using 3 He neutron spin filters has been implemented for small-angle neutron scattering that lead to the reduction up to 100 times of the intrinsic incoherent background from non-deuterated biological molecules. Also the work on wide-angle XYZ magnetic cavities (Magic PASTIS) will be presented. (author)

  18. Neutron activation analysis at the Californium User Facility for Neutron Science

    International Nuclear Information System (INIS)

    Martin, R.C.; Smith, E.H.; Glasgow, D.C.; Jerde, E.A.; Marsh, D.L.; Zhao, L.

    1997-12-01

    The Californium User Facility (CUF) for Neutron Science has been established to provide 252 Cf-based neutron irradiation services and research capabilities including neutron activation analysis (NAA). A major advantage of the CUF is its accessibility and controlled experimental conditions compared with those of a reactor environment The CUF maintains the world's largest inventory of compact 252 Cf neutron sources. Neutron source intensities of ≤ 10 11 neutrons/s are available for irradiations within a contamination-free hot cell, capable of providing thermal and fast neutron fluxes exceeding 10 8 cm -2 s -1 at the sample. Total flux of ≥10 9 cm -2 s -1 is feasible for large-volume irradiation rabbits within the 252 Cf storage pool. Neutron and gamma transport calculations have been performed using the Monte Carlo transport code MCNP to estimate irradiation fluxes available for sample activation within the hot cell and storage pool and to design and optimize a prompt gamma NAA (PGNAA) configuration for large sample volumes. Confirmatory NAA irradiations have been performed within the pool. Gamma spectroscopy capabilities including PGNAA are being established within the CUF for sample analysis

  19. Study of material science by neutron scattering

    International Nuclear Information System (INIS)

    Kim, H.J.; Yoon, B.K.; Cheon, B.C.; Lee, C.Y.; Kim, C.S.

    1980-01-01

    To develop accurate methods of texture measurement in metallic materials by neutron diffraction, (100),(200),(111) and (310) pole figures have been measured for the oriented silicon steel sheet, and currently study of correction methods for neutron absorption and extinction effects are in progress. For quantitative analysis of texture of polycrystalline material with a cubic structure, a software has been developed to calculate inverse pole figures for arbitrary direction specified in the speciman as well as pole figures for arbitrary chosen crystallographic planes from three experimental pole figures. This work is to be extended for the calculation of three dimensional orientation distribution function and for the evaluation of errors in the quantitative analysis of texture. Work is also for the study of N-H...O hydrogen bond in amino acid by observing molecular motions using neutron inelastic scattering. Measurement of neutron inelastic scattering spectrum of L-Serine is completed at 100 0 K and over the energy transfer range of 20-150 meV. (KAERI INIS Section)

  20. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    Science.gov (United States)

    Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.

    2017-12-01

    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.

  1. Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  2. Progress report on neutron science. April 1, 2006 - March 31, 2007

    International Nuclear Information System (INIS)

    Takeda, Masayasu; Ohhara, Takashi; Moriai, Atsushi

    2008-03-01

    There are 13 research groups in neutron science and technology in the Quantum Beam Science Directorate (QuBS) and Advanced Science Research Center (ASRC) of Japan Atomic Research Agency (JAEA). A wide variety of research is performed by these group: neutron scattering (condensed matter physics, polymer science, biology, and residual stress analysis), prompt gamma-ray analysis, neutron radiography, neutron optics, and development of a neutron spectrometer, neutron beam handling device and neutron detector. This issue summarizes research progress in neutron science and technology including activities of the Nuclear Science and Engineering Directorate of JAEA, and of the COMMON USE PROGRAM of JAEA utilizing the research reactor JRR-3 during the period between April 1, 2006 and March 31, 2007. This report contains highlights of research by these 13 neutron research groups of QuBS and ASRC, introducing 68 experimental reports. (author)

  3. Neutron-Induced Charged Particle Measurements at LANSCE in the Interest of P-Process Nucleosynthesis

    Science.gov (United States)

    Lee, Hye Young; Mosby, Shea; Kawano, Toshihiko; Haight, Robert; Manning, Brett

    A capability of measuring neutron-induced charged particle reactions has been developed at Los Alamos Neutron Science Center for the interest of nuclear applications and nuclear astrophysics. In this paper, we will present the status of this devel opment and plans for measuring reactions relevant to the p-process nucleosynthesis.

  4. Pilot Project on Women and Science. A report on women scientists at the University of New Mexico and Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Salvaggio, R. [New Mexico Univ., Albuquerque, NM (United States)

    1993-08-01

    In the fall of 1991, through the coordinating efforts of the University of New Mexico and Los Alamos National Laboratory, the Pilot Project on Women and Science was initiated as a year-long study of women scientists at both the university and the laboratory. Its purpose was to gather information directly from women scientists in an attempt to analyze and make recommendations concerning the professional and cultural environment for women in the sciences. This report is an initial attempt to understand the ways in which women scientists view themselves, their profession, and the scientific culture they inhabit. By recording what these women say about their backgrounds and educational experiences, their current positions, the difficult negotiations many have made between their personal and professional lives, and their relative positions inside and outside the scientific community, the report calls attention both to the individual perspectives offered by these women and to the common concerns they share.

  5. NNS computing facility manual P-17 Neutron and Nuclear Science

    International Nuclear Information System (INIS)

    Hoeberling, M.; Nelson, R.O.

    1993-11-01

    This document describes basic policies and provides information and examples on using the computing resources provided by P-17, the Neutron and Nuclear Science (NNS) group. Information on user accounts, getting help, network access, electronic mail, disk drives, tape drives, printers, batch processing software, XSYS hints, PC networking hints, and Mac networking hints is given

  6. The Neutrons for Science Facility at SPIRAL-2

    Czech Academy of Sciences Publication Activity Database

    Ledoux, X.; Avrigeanu, M.; Avrigeanu, V.; Bém, Pavel; Fischer, U.; Majerle, Mitja; Mrázek, Jaromír; Negoita, F.; Novák, Jan; Simakov, S. P.; Šimečková, Eva

    2014-01-01

    Roč. 119, MAY (2014), s. 353-356 ISSN 0090-3752 Institutional support: RVO:61389005 Keywords : SPIRAL-2 * Neutron For Science * time-of-flight Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.571, year: 2014

  7. Neutron scattering science at the Australian Nuclear Science and Technology Organisation (ANSTO)

    International Nuclear Information System (INIS)

    Knott, Robert

    2000-01-01

    Neutron scattering science at ANSTO is integrated into a number of fields in the Australian scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans to replace the present research reactor with a modern multi-purpose research reactor are well advanced. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. A brief overview will be presented of all the instruments presently available at ANSTO with emphasis on the SANS instrument. This will be followed by a description of the replacement research reactor and its instruments. (author)

  8. The neutrons for science facility at SPIRAL-2

    Science.gov (United States)

    Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Balanzat, E.; Ban-d'Etat, B.; Ban, G.; Bauge, E.; Bélier, G.; Bém, P.; Borcea, C.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fischer, U.; Frégeau, M. O.; Grinyer, J.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Henning, G.; Jacquot, B.; Jansson, K.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrázek, J.; Negoita, F.; Novák, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Plompen, A. J. M.; Pomp, S.; Prokofiev, A. V.; Ramillon, J. M.; Farget, F.; Ridikas, D.; Rossé, B.; Sérot, O.; Simakov, S. P.; Šimečková, E.; Štefánik, M.; Sublet, J. C.; Taïeb, J.; Tarrío, D.; Tassan-Got, L.; Thfoin, I.; Varignon, C.

    2017-09-01

    Numerous domains, in fundamental research as well as in applications, require the study of reactions induced by neutrons with energies from few MeV up to few tens of MeV. Reliable measurements also are necessary to improve the evaluated databases used by nuclear transport codes. This energy range covers a large number of topics like transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. A new facility called Neutrons For Science (NFS) is being built for this purpose on the GANIL site at Caen (France). NFS is composed of a pulsed neutron beam for time-of-flight facility as well as irradiation stations for cross-section measurements. Neutrons will be produced by the interaction of deuteron and proton beams, delivered by the SPIRAL-2 linear accelerator, with thick or thin converters made of beryllium or lithium. Continuous and quasi-mono-energetic spectra will be available at NFS up to 40 MeV. In this fast energy region, the neutron flux is expected to be up to 2 orders of magnitude higher than at other existing time-of-flight facilities. In addition, irradiation stations for neutron-, proton- and deuteron-induced reactions will allow performing cross-section measurements by the activation technique. After a description of the facility and its characteristics, the experiments to be performed in the short and medium term will be presented.

  9. Los Alamos waste drum shufflers users manual

    Energy Technology Data Exchange (ETDEWEB)

    Rinard, P.M.; Adams, E.L.; Painter, J.

    1993-08-24

    This user manual describes the Los Alamos waste drum shufflers. The primary purpose of the instruments is to assay the mass of {sup 235}U (or other fissile materials) in drums of assorted waste. It can perform passive assays for isotopes that spontaneously emit neutrons or active assays using the shuffler technique as described on this manual.

  10. Los Alamos waste drum shufflers users manual

    International Nuclear Information System (INIS)

    Rinard, P.M.; Adams, E.L.; Painter, J.

    1993-01-01

    This user manual describes the Los Alamos waste drum shufflers. The primary purpose of the instruments is to assay the mass of 235 U (or other fissile materials) in drums of assorted waste. It can perform passive assays for isotopes that spontaneously emit neutrons or active assays using the shuffler technique as described on this manual

  11. Neutron scattering for materials science. Materials Research Society proceedings

    International Nuclear Information System (INIS)

    Shapiro, S.M.; Moss, S.C.; Jorgensen, J.D.

    1990-01-01

    Neutron Scattering is by now a well-established technique which has been used by condensed matter scientists to probe both the structure and the dynamical interactions in solids and liquids. The use of neutron scattering methods in materials science research has in turn increased dramatically in recent years. The symposium presented in this book was assembled to bring together scientists with a wide range of interest, including high-T c superconducting materials, phase transformations, neutron depth profiling, structure and dynamics of glasses and liquids, surfaces and interfaces, porous media, intercalation compounds and lower dimensional systems, structure and dynamics of polymers, residual stress analysis, ordering and phase separation in alloys, and magnetism in alloys and multilayers. The symposium included talks covering the latest advances in broad areas of interest such as Rietveld structure refinement, triple axis spectrometry, quasi elastic scattering and diffusion, small angle scattering and surface scattering

  12. The Neutrons for Science Facility at SPIRAL-2

    Science.gov (United States)

    Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Audouin, L.; Balanzat, E.; Ban-détat, B.; Ban, G.; Barreau, G.; Bauge, E.; Bélier, G.; Bem, P.; Blideanu, V.; Borcea, C.; Bouffard, S.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fallot, M.; Farget, F.; Fischer, U.; Giot, L.; Granier, T.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Jacquot, B.; Jansson, K.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrazek, J.; Negoita, F.; Novak, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Plompen, A. J. M.; Pomp, S.; Ramillon, J. M.; Ridikas, D.; Rossé, B.; Rudolf, G.; Serot, O.; Simakov, S. P.; Simeckova, E.; Smith, A. G.; Sublet, J. C.; Taieb, J.; Tassan-Got, L.; Tarrio, D.; Takibayev, A.; Thfoin, I.; Tsekhanovich, I.; Varignon, C.

    2014-05-01

    The Neutrons For Science (NFS) facility is a component of SPIRAL-2 laboratory under construction at Caen (France). SPIRAL-2 is dedicated to the production of high intensity Radioactive Ions Beams (RIB). It is based on a high-power linear accelerator (LINAG) to accelerate deuterons beams in order to produce neutrons by breakup reactions on a C converter. These neutrons will induce fission in 238U for production of radioactive isotopes. Additionally to the RIB production, the proton and deuteron beams delivered by the accelerator will be used in the NFS facility. NFS is composed of a pulsed neutron beam and irradiation stations for cross-section measurements and material studies. The beams delivered by the LINAG will allow producing intense neutron beams in the 100 keV-40 MeV energy range with either a continuous or quasi-mono-energetic spectrum. At NFS available average fluxes will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV - 40 MeV range. NFS will be a very powerful tool for fundamental physics and application related research in support of the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. The facility and its characteristics are described, and several examples of the first potential experiments are presented.

  13. Los Alamos National Laboratory.

    Science.gov (United States)

    Hammel, Edward F., Jr.

    1982-01-01

    Current and post World War II scientific research at the Los Alamos National Laboratory (New Mexico) is discussed. The operation of the laboratory, the Los Alamos consultant program, and continuation education, and continuing education activities at the laboratory are also discussed. (JN)

  14. Neutron Star Science with the NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  15. Status of Monte Carlo at Los Alamos

    International Nuclear Information System (INIS)

    Thompson, W.L.; Cashwell, E.D.

    1980-01-01

    At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time

  16. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  17. An Overview of the Los Alamos Inertial Confinement Fusion and High-Energy-Density Physics Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Batha, Steven H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Physics Division

    2016-07-15

    The Los Alamos Inertial Confinement Fusion and Science Programs engage in a vigorous array of experiments, theory, and modeling. We use the three major High Energy Density facilities, NIF, Omega, and Z to perform experiments. These include opacity, radiation transport, hydrodynamics, ignition science, and burn experiments to aid the ICF and Science campaigns in reaching their stewardship goals. The ICF program operates two nuclear diagnostics at NIF, the neutron imaging system and the gamma reaction history instruments. Both systems are being expanded with significant capability enhancements.

  18. Neutrons and Nuclear Engineering

    International Nuclear Information System (INIS)

    Ekkebus, Allen E.

    2007-01-01

    Oak Ridge National Laboratory hosted two workshops in April 2007 relevant to nuclear engineering education. In the Neutron Stress, Texture, and Phase Transformation for Industry workshop (http://neutrons.ornl.gov/workshops/nst2/), several invited speakers gave examples of neutron stress mapping for nuclear engineering applications. These included John Root of National Research Council of Canada, Mike Fitzpatrick of the UK's Open University, and Yan Gao of GE Global Research on their experiences with industrial and academic uses of neutron diffraction. Xun-Li Wang and Camden Hubbard described the new instruments at ORNL that can be used for such studies. This was preceded by the Neutrons for Materials Science and Engineering educational symposium (http://neutrons.ornl.gov/workshops/edsym2007). It was directed to the broad materials science and engineering community based in universities, industry and laboratories who wish to learn what the neutron sources in the US can provide for enhancing the understanding of materials behavior, processing and joining. Of particular interest was the presentation of Donald Brown of Los Alamos about using 'Neutron diffraction measurements of strain and texture to study mechanical behavior of structural materials.' At both workshops, the ORNL neutron scattering instruments relevant to nuclear engineering studies were described. The Neutron Residual Stress Mapping Facility (NRSF2) is currently in operation at the High Flux Isotope Reactor; the VULCAN Engineering Materials Diffractometer will begin commissioning in 2008 at the Spallation Neutron Source. For characteristics of these instruments, as well as details of other workshops, meetings, capabilities, and research proposal submissions, please visit http://neutrons.ornl.gov. To submit user proposals for time on NRSF2 contact Hubbard at hubbardcratornl.gov

  19. Other applications of neutron beams in material sciences

    International Nuclear Information System (INIS)

    Novion, C.H. de

    1997-01-01

    The various applications of neutron beams are reviewed. The different mechanisms involved in neutron interaction with matter are explained. We notice that generally neutron radiation effects are unfavorable but can be turned into efficient tools to add new structures or properties to materials, silicon doping is an example. The basis principles of neutron activation analysis and neutron radiography are described. (A.C.)

  20. Total kinetic energy release in 239Pu(n ,f ) post-neutron emission from 0.5 to 50 MeV incident neutron energy

    Science.gov (United States)

    Meierbachtol, K.; Tovesson, F.; Duke, D. L.; Geppert-Kleinrath, V.; Manning, B.; Meharchand, R.; Mosby, S.; Shields, D.

    2016-09-01

    The average total kinetic energy (T K E ¯) in 239Pu(n ,f ) has been measured for incident neutron energies between 0.5 and 50 MeV. The experiment was performed at the Los Alamos Neutron Science Center (LANSCE) using the neutron time-of-flight technique, and the kinetic energy of fission fragments post-neutron emission was measured in a double Frisch-gridded ionization chamber. This represents the first experimental study of the energy dependence of T K E ¯ in 239Pu above neutron energies of 6 MeV.

  1. Characterization of the new neutron imaging and materials science facility IMAT

    Science.gov (United States)

    Minniti, Triestino; Watanabe, Kenichi; Burca, Genoveva; Pooley, Daniel E.; Kockelmann, Winfried

    2018-04-01

    IMAT is a new cold neutron imaging and diffraction instrument located at the second target station of the pulsed neutron spallation source ISIS, UK. A broad range of materials science and materials testing areas will be covered by IMAT. We present the characterization of the imaging part, including the energy-selective and energy-dispersive imaging options, and provide the basic parameters of the radiography and tomography instrument. In particular, detailed studies on mono and bi-dimensional neutron beam flux profiles, neutron flux as a function of the neutron wavelength, spatial and energy dependent neutron beam uniformities, guide artifacts, divergence and spatial resolution, and neutron pulse widths are provided. An accurate characterization of the neutron beam at the sample position, located 56 m from the source, is required to optimize collection of radiographic and tomographic data sets and for performing energy-dispersive neutron imaging via time-of-flight methods in particular.

  2. The Prompt Fission Neutron Spectrum of 235U for Einc 0.7-5.0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jaime A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devlin, Matthew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lee, Hye Young [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taddeucci, Terry Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelly, Keegan John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fotiadis, Nikolaos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Neudecker, Denise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Talou, Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solomon, Clell Jeffrey Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bucher, Brian Michael [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buckner, Matthew Quinn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henderson, Roger Alan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-23

    The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum (PFNS) for the major actinides. At the Los Alamos Neutron Science Center (LANSCE), fission can be induced using the white neutron source. Using a two arm time of flight (T.O.F) technique; Chi-Nu presents a preliminary result of the low energy component of the 235U PFNS measured using an array of 22-Lithium glass scintillators.

  3. The Los Alamos primer

    CERN Document Server

    Serber, Robert

    2018-01-01

    Unabridged declassified value reproduction of The Los Alamos Primer by Robert Serber, in full color with all censor markings. This is the booklet given to new workers at Los Alamos during World War II, to catch them up on how to build a practical fission bomb. The Primer was driven by Robert Oppenheimer asking his protégé Robert Serber to summarize all knowledge and possible solutions known as of April 1943 in a series of lectures. Serber did such an excellent job that the notes from the series was turned into The Los Alamos Primer. Serber was known as an expert that bridged theory and reality, and so was also chosen to be one of the first Americans to enter Hiroshima and Nagasaki to assess the atomic damage in 1945.

  4. Materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Sommer, W.F.; Daemen, L.L.

    1996-03-01

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations

  5. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  6. A feasibility study for a one-megawatt pulsed spallation source at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pynn, R.

    1994-01-01

    Over the past two decades, high-intensity proton accelerators have been designed and developed to support nuclear physics research and defense applications. This technology has now matured to the point where it can support simultaneous and cost-effective exploitation of a number of important areas of both basic and applied science. Examples include neutron scattering, the production of radioisotopes, tests of technologies to transmute nuclear waste, radiation damage studies, nuclear physics, and muon spin research. As part of a larger program involving these and other areas, a team at Los Alamos National Laboratory has undertaken a feasibility study for a 1-MW pulsed spallation neutron source (PSS) based on the use of an 800-MeV proton linac and an accumulator ring. In January 1994, the feasibility study was reviewed by a large, international group of experts in the design of accelerators and neutron spallation targets. This group confirmed the viability of the proposed neutron source. In this paper, I describe the approach Los Alamos has taken to the feasibility study, which has involved a synergistic application of the Laboratory's expertise in nuclear science and technology, computation, and particle-beam technologies. Several examples of problems resolved by the study are described, including chopping of low-energy proton beam, interactions between H - particles and the stripper foil used to produce protons for injection into an accumulator ring, and the inclusion of engineering realities into the design of a neutron production target. These examples are chosen to illustrate the breadth of the expertise that has been brought to bear on the feasibility study and to demonstrate that there are real R ampersand D issues that need to be resolved before a next-generation spoliation source can be built

  7. Los Alamos Critical Experiments Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1991-01-01

    The Critical Experiments Facility of the Los Alamos National Laboratory has been in existence for 45 years. In that period of time, thousands of measurements have been made on assemblies containing every fissionable material in various configurations that included bare metal and compounds of the nitrate, sulfate, fluoride, carbide, and oxide. Techniques developed or applied include Rossi-α, source-jerk, rod oscillator, and replacement measurements. Many of the original measurements of delay neutrons were performed at the site, and a replica of the Hiroshima weapon was operated at steady state to assist in evaluating the relative biological effectiveness (RBE) of neutrons. Solid, liquid, and gas fissioning systems were run at critical. Operation of this original critical facility has demonstrated the margin of safety that can be obtained through remote operation. Eight accidental excursions have occurred on the site, ranging from 1.5 x 10 16 to 1.2 x 10 17 fissions, with no significant exposure to personnel or damage to the facility beyond the machines themselves -- and in only one case was the machine damaged beyond further use. The present status of the facility, operating procedures, and complement of machines will be described in the context of programmatic activity. New programs will focus on training, validation of criticality alarm systems, experimental safety assessment of process applications, and dosimetry. Special emphasis will be placed on the incorporation of experience from 45 years of operation into present procedures and programs. 3 refs

  8. Neutron applications in earth, energy and environmental sciences

    CERN Document Server

    Liang, Liyuan; Schober, Helmut

    2009-01-01

    This text is a comprehensive overview of neutron scattering techniques that enhance the study of materials at the micro and nanoscale. The well structured volume provides introductions to various neutron applications from leading experts in the field.

  9. Notes on Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-05

    In 1954 an unknown author drafted a report, reprinted below, describing the Laboratory and the community as they existed in late 1953. This report, perhaps intended to be crafted into a public relations document, is valuable because it gives us an autobiographical look at Los Alamos during the first half of the 1950s. It has been edited to enhance readability.

  10. LOS ALAMOS: Hadron future

    International Nuclear Information System (INIS)

    Ernst, David J.

    1992-01-01

    At a Workshop on the Future of Hadron Facilities, held on 15-16 August at Los Alamos National Laboratory, several speakers pointed out that the US physics community carrying out fixed target experiments with hadron beam had not been as successful with funding as it deserved. To rectify this, they said, the community should be better organized and present a more united front

  11. Assessment of cold neutron radiography capability

    International Nuclear Information System (INIS)

    McDonald, T.E. Jr.; Roberts, J.A.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors goals were to demonstrate and assess cold neutron radiography techniques at the Los Alamos Neutron Science Center (LANSCE), Manual Lujan Neutron Scattering Center (Lujan Center), and to investigate potential applications of the capability. The authors have obtained images using film and an amorphous silicon detector. In addition, a new technique they have developed allows neutron radiographs to be made using only a narrow range of neutron energies. Employing this approach and the Bragg cut-off phenomena in certain materials, they have demonstrated material discrimination in radiography. They also demonstrated the imaging of cracks in a sample of a fire-set case that was supplied by Sandia National Laboratory, and they investigated whether the capability could be used to determine the extent of coking in jet engine nozzles. The LANSCE neutron radiography capability appears to have applications in the DOE stockpile maintenance and science-based stockpile stewardship (SBSS) programs, and in industry

  12. Smart instrumentation development at Los Alamos

    International Nuclear Information System (INIS)

    Erkkila, B.

    1984-01-01

    For several years Los Alamos has incorporated microprocessors into instruments to expand the capability of portable survey type equipment. Beginning with portable pulse height analyzers, the developments have expanded to small dedicated instruments which handle the measurement and interpretation of various radiation fields. So far, instruments to measure gamma rays, neutrons, and beta particles have been produced. The computer capability built into these instruments provides significant computational power into the instruments. Capability unheard of a few years ago in small portable instruments is routine today. Large computer-based laboratory measurement systems which required much space and electrical power can now be incorporated in a portable hand-held instrument. The microprocessor developments at Los Alamos are now restricted to radiation monitoring equipment but can be expanded to chemical and biological applications as well. Applications for radiation monitoring equipment and others are discussed

  13. Progress report on neutron science. April 1, 2003 - March 31, 2004

    International Nuclear Information System (INIS)

    Matsuda, Masaaki; Kurihara, Kazuo; Moriai, Atsushi

    2005-03-01

    This issue summarizes research progress in neutron science at Japan Atomic Energy Research Institute (JAERI) by utilizing the research reactor JRR-3 during the period between April 1, 2003 and March 31, 2004. This report contains highlights in research from 10 neutron research groups at JAERI and summary reports of 82 papers. (author)

  14. Progress report on neutron science. April 1, 2004 - March 31, 2005

    International Nuclear Information System (INIS)

    Kurihara, Kazuo; Moriai, Atsushi; Matsuda, Masaaki

    2005-09-01

    This issue summarizes research progress in neutron science at Japan Atomic Energy Research Institute (JAERI) by utilizing the research reactor JRR-3 during the period between April 1, 2004 and March 31, 2005. This report contains highlights in research by 13 neutron research groups at JAERI and 91 summary articles. (author)

  15. Progress report on neutron science. April 1, 2005 - March 31, 2006

    International Nuclear Information System (INIS)

    Moriai, Atsushi; Takeda, Masayasu; Kurihara, Kazuo

    2007-03-01

    This issue summarizes research progress in neutron science at Japan Atomic Energy Agency (JAEA) by utilizing the research reactor JRR-3 during the period between April 1, 2005 and March 31, 2006. This report contains highlights in research by 13 neutron research groups at JAEA and 89 summary articles. (author)

  16. Multi-wire proportional chamber for ultra-cold neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.L. [Physics Division, Group P-25, Mail Stop H846, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)], E-mail: cmorris@lanl.gov; Bowles, T.J.; Gonzales, J.; Hill, R.; Hogan, G.; Makela, M.; Mortenson, R.; Ramsey, J.; Saunders, A.; Seestrom, S.J.; Sondheim, W.E.; Teasdale, W. [Physics Division, Group P-25, Mail Stop H846, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Back, H.O.; Pattie, R.W.; Holley, A.T.; Young, A.R. [North Carolina State University, Raleigh, NC 27695 (United States); Broussard, L.J. [Duke University, Durham, NC 27708 (United States); Hickerson, K.P.; Liu, J.; Mendenhall, M.P. [California Institute of Technology, Pasadena, CA 91125 (United States)] (and others)

    2009-02-11

    In this paper we describe the principles that have guided our design and the experience we have gained building multi-wire proportional chambers detectors for the ultra-cold neutron (UCN) source at the Los Alamos Neutron Science Center (LANSCE). Simple robust detectors with 50 cm{sup 2} of active area have been designed. These have been used both in ion chamber and proportional mode for the detection of UCN.

  17. A Kinesthetic Learning Approach to Earth Science for 3rd and 4th Grade Students on the Pajarito Plateau, Los Alamos, NM

    Science.gov (United States)

    Wershow, H. N.; Green, M.; Stocker, A.; Staires, D.

    2010-12-01

    Current efforts towards Earth Science literacy in New Mexico are guided by the New Mexico Science Benchmarks [1]. We are geoscience professionals in Los Alamos, NM who believe there is an important role for non-traditional educators utilizing innovative teaching methods. We propose to further Earth Science literacy for local 3rd and 4th grade students using a kinesthetic learning approach, with the goal of fostering an interactive relationship between the students and their geologic environment. We will be working in partnership with the Pajarito Environmental Education Center (PEEC), which teaches the natural heritage of the Pajarito Plateau to 3rd and 4th grade students from the surrounding area, as well as the Family YMCA’s Adventure Programs Director. The Pajarito Plateau provides a remarkable geologic classroom because minimal structural features complicate the stratigraphy and dramatic volcanic and erosional processes are plainly on display and easily accessible. Our methodology consists of two approaches. First, we will build an interpretive display of the local geology at PEEC that will highlight prominent rock formations and geologic processes seen on a daily basis. It will include a simplified stratigraphic section with field specimens and a map linked to each specimen’s location to encourage further exploration. Second, we will develop and implement a kinesthetic curriculum for an exploratory field class. Active engagement with geologic phenomena will take place in many forms, such as a scavenger hunt for precipitated crystals in the vesicles of basalt flows and a search for progressively smaller rhyodacite clasts scattered along an actively eroding canyon. We believe students will be more receptive to origin explanations when they possess a piece of the story. Students will be provided with field books to make drawings of geologic features. This will encourage independent assessment of phenomena and introduce the skill of scientific observation. We

  18. Neutron capture experiments with 4π DANCE Calorimeter

    Directory of Open Access Journals (Sweden)

    Krtička M.

    2012-02-01

    Full Text Available In recent years we have performed a series of neutron capture experiments with the DANCE detector array located at the Los Alamos Neutron Science Center. The radiative decay spectrum from the compound nucleus contains important information about nuclear structure and the reaction mechanism. The primary goals of the measurements are to obtain improved capture cross sections, to determine properties of the photon strength function, to improve neutron level densities and strength functions by determining the spin and parity of the capturing states. We shall present examples of our recent results.

  19. Actinide neutron-induced fission cross section measurements at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik K [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  20. Los Alamos science, Number 14

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Nine authored articles are included covering: natural heat engine, photoconductivity, the Caribbean Basin, energy in Central America, peat, geothermal energy, and the MANIAC computer. Separate abstracts were prepared for the articles. (DLC)

  1. Los Alamos high-power proton linac designs

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, G.P. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Medium-energy high-power proton linear accelerators have been studied at Los Alamos as drivers for spallation neutron applications requiring large amounts of beam power. Reference designs for such accelerators are discussed, important design factors are reviewed, and issues and concern specific to this unprecedented power regime are discussed.

  2. Fission neutron spectra measurements at LANSCE - status and plans

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory; Noda, Shusaku [Los Alamos National Laboratory; Nelson, Ronald O [Los Alamos National Laboratory; O' Donnell, John M [Los Alamos National Laboratory; Devlin, Matt [Los Alamos National Laboratory; Chatillon, Audrey [CEA-FRANCE; Granier, Thierry [CEA-FRANCE; Taieb, Julien [CEA-FRANCE; Laurent, Benoit [CEA-FRANCE; Belier, Gilbert [CEA-FRANCE; Becker, John A [LLNL; Wu, Ching - Yen [LLNL

    2009-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. The range of outgoing energies measured so far is from 1 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date will be presented and a discussion of uncertainties will be given in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including mea urements of fission neutrons below 1 MeV and improvements in the data above 8 MeV.

  3. The 235U prompt fission neutron spectrum measured by the Chi-Nu project at LANSCE

    Directory of Open Access Journals (Sweden)

    Gomez J.A.

    2017-01-01

    Full Text Available The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum for the major actinides. At the Los Alamos Neutron Science Center (LANSCE, fission can be induced with neutrons ranging from 0.7 MeV and above. Using a two arm time-of-flight (TOF technique, the fission neutrons are measured in one of two arrays: a 22-6Li glass array for lower energies, or a 54-liquid scintillator array for outgoing energies of 0.5 MeV and greater. Presented here are the collaboration's preliminary efforts at measuring the 235U PFNS.

  4. The 235U prompt fission neutron spectrum measured by the Chi-Nu project at LANSCE

    Science.gov (United States)

    Gomez, J. A.; Devlin, M.; Haight, R. C.; O'Donnell, J. M.; Lee, H. Y.; Mosby, S. M.; Taddeucci, T. N.; Kelly, K. J.; Fotiades, N.; Neudecker, D.; White, M. C.; Talou, P.; Rising, M. E.; Solomon, C. J.; Wu, C. Y.; Bucher, B.; Buckner, M. Q.; Henderson, R. A.

    2017-09-01

    The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum for the major actinides. At the Los Alamos Neutron Science Center (LANSCE), fission can be induced with neutrons ranging from 0.7 MeV and above. Using a two arm time-of-flight (TOF) technique, the fission neutrons are measured in one of two arrays: a 22-6Li glass array for lower energies, or a 54-liquid scintillator array for outgoing energies of 0.5 MeV and greater. Presented here are the collaboration's preliminary efforts at measuring the 235U PFNS.

  5. Energy-selective neutron imaging for materials science

    OpenAIRE

    Peetermans, Steven Luc X

    2015-01-01

    Common neutron imaging techniques study the attenuation of a neutron beam penetrating a sample of interest. The recorded radiograph shows a contrast depending on traversed material and its thickness. Tomography allows separating both and obtaining 3D spatial information about the material distribution, solving problems in numerous fields ranging from virtually separating fossils from surrounding rock to water management in fuel cells. It is nowadays routinely performed at PSI¿s neutron imagin...

  6. Los Alamos Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Benjamin Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-07

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  7. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  8. Proposed Californium-252 User Facility for Neutron Science at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Martin, R.C.; Laxson, R.R.; Knauer, J.B.

    1996-01-01

    The Radiochemical Engineering Development Center (REDC) at ORNL has petitioned to establish a Californium-252 User Facility for Neutron Science for academic, industrial, and governmental researchers. The REDC Californium Facility (CF) stores the national inventory of sealed 252 Cf neutron source for university and research loans. Within the CF, the 252 Cf storage pool and two uncontaminated hot cells currently in service for the Californium Program will form the physical basis for the User Facility. Relevant applications include dosimetry and experiments for neutron tumor therapy; fast and thermal neutron activation analysis of materials; experimental configurations for prompt gamma neutron activation analysis; neutron shielding and material damage studies; and hardness testing of radiation detectors, cameras, and electronics. A formal User Facility simplifies working arrangements and agreements between US DOE facilities, academia, and commercial interests

  9. Canadian Neutron Source (CNS): a research reactor solution for medical isotopes and neutrons for science

    International Nuclear Information System (INIS)

    Chapman, D.

    2009-01-01

    This presentation describes a dual purpose research facility at the University of Saskatchewan for Canada for the production of medical isotopes and neutrons for scientific research. The proposed research reactor is intended to supply most of Canada's medical isotope requirements and provide a neutron source for Canada's research community. Scientific research would include materials research, biomedical research and imaging.

  10. Prompt γ rays and neutrons from fission

    Science.gov (United States)

    Kwan, E.; Wu, C. Y.; Chyzh, A.; Gostic, J.; Henderson, R.; Haight, R. C.; Lee, H. Y.; O'Donnell, J. M.; Perdue, B. A.; Taddeucci, T. N.

    2011-10-01

    Nuclear data are needed to test the accuracy of calculations from nuclear reaction codes. Information on the prompt γ-ray distributions from fission is sparse and only a handful of published experiments data that measured the prompt γ-ray distribution above incident neutron energies of 1 MeV can be found. In addition, improvement on the accuracy and shape of neutron spectrum from the fission of actinides been requested by the nuclear data community. An investigation on the shapes of the neutron and γ-ray distributions from the spontaneous fission of 252Cf and the neutron-induced fission of 235U was undertaken using the Chi-Nu detector array at the Weapons Neutron Research Facility of the Los Alamos Neutron Science Center. Preliminary results will be presented. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and the Los Alamos National Laboratory under Contract DE-AC52-06NA25396.

  11. Radiative neutron capture cross sections on 176Lu at DANCE

    Science.gov (United States)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  12. Modeling the New UCN source at Los Alamos National Laboratory for the UCNtau Experiment

    Science.gov (United States)

    Bailey, Thomas; Young, Albert; Clayton, Steven; Makela, Mark; Saunders, Andy

    2017-09-01

    The Los Alamos Neutron Science Center uses a linear proton accelerator to make an ultracold neutron (UCN) source for use in experiments including the UCNtau and the nEDM experiments. The proton beam strikes a tungsten target, producing free neutrons through spallation. The target is embedded in beryllium and graphite moderators, coupling produced neutrons to a bucket-shaped cold moderator of polyethylene beads at 45K that surrounds a solid deuterium converter, where they are down-scattered to ultracold energies. The UCN source was upgraded over the summer of 2016 and Data taken from the 2016-2017 run cycle shows that continuous running decreases the neutron output caused by layers of deuterium frost building up on the surface of the crystal or in the low temperature part of the UCN guide, and/or other possible changes to the shape, temperature profile or energy content of the deuterium. We have simulated the source deterioration with a simple model for surface roughness and deuterium snow, to understand the expected correlations between the UCN flux and spectrum exiting from the source as snow accumulates. We plan to use the output of our simulation to compare a set of monitor detectors used to establish the output of the flux and to monitor spectral changes important for UCNtau.

  13. Inelastic neutron scattering for materials science and engineering

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1995-01-01

    The neutron is the ideal probe for studying the positions and motions of atoms in condensed matter. The main advantage of the neutron in inelastic scattering results from its heavy mass when compared to other particles which are used to probe materials such as the photon (light, x-rays, or γ-rays) or the electron. The author discusses the application of neutron scattering to study a number of different materials related problems, including, hard magnets, shape memory effects, and hydrogen distribution in metals

  14. Status of the WNR/PSR at Los Alamos

    International Nuclear Information System (INIS)

    Silver, R.N.

    1982-01-01

    A proton storage ring is presently under construction at Los Alamos for initial operation in 1985 to provide the world's highest peak neutron flux for neutron scattering experiments. The operational WNR pulsed neutron source is in use for TOF instrument development and condensed matter research. Experimental results have been obtained in incoherent inelastic scattering, liquids and powder diffraction, single crystal diffraction and eV spectroscopy using nuclear resonances. Technical problems being addressed include chopper phasing, scintillator detector development, shielding and collimation. A crystal analyzer spectrometer in the constant Q configuration is being assembled. The long range plan for the WNR/PSR facility is described

  15. X-ray, neutron, and electron scattering. Report of a materials sciences workshop

    International Nuclear Information System (INIS)

    1977-08-01

    The ERDA Workshop on X-ray, Neutron, and Electron Scattering to assess needs and establish priorities for energy-related basic research on materials. The general goals of the Workshop were: (1) to review various energy technologies where x-ray, neutron, and electron scattering techniques might make significant contributions, (2) to identify present and future materials problems in the energy technologies and translate these problems into requirements for basic research by x-ray, neutron, and electron scattering techniques, (3) to recommend research areas utilizing these three scattering techniques that should be supported by the DPR Materials Sciences Program, and (4) to assign priorities to these research areas

  16. In situ and/or time resolved powder neutron scattering for materials science

    International Nuclear Information System (INIS)

    Isnard, O.

    2006-01-01

    In general, neutrons offer the advantage to be weakly absorbed by materials. Consequently neutron scattering is a very efficient tool to probe deeply inside the materials in a non destructive manner. Time resolved neutron scattering is thus widely used by different scientific fields: materials science, physics, chemistry, etc. It is now possible to perform neutron diffraction in situ, in complex environments: electrochemical reaction cells, pressure cells, etc. In situ neutron diffraction has been widely developed on high neutron flux sources such as those of the Institut Laue Langevin (Grenoble). Neutron scattering is a very useful technique for time resolved reaction processes inside materials. The experimental set-up needed for such type of experiments is briefly presented. Thereafter, examples of recent applications of neutron diffraction are described to illustrate the possible use of thermodiffractometry, in situ and/or time resolved to investigate phase transitions of chemical processes. The examples are taken in different scientific fields: metallurgy, electrochemistry, magnetism, solid state chemistry and archeometry. (author)

  17. Immersive Visual Analytics for Transformative Neutron Scattering Science

    Energy Technology Data Exchange (ETDEWEB)

    Steed, Chad A [ORNL; Daniel, Jamison R [ORNL; Drouhard, Margaret [University of Washington, Seattle; Hahn, Steven E [ORNL; Proffen, Thomas E [ORNL

    2016-01-01

    The ORNL Spallation Neutron Source (SNS) provides the most intense pulsed neutron beams in the world for scientific research and development across a broad range of disciplines. SNS experiments produce large volumes of complex data that are analyzed by scientists with varying degrees of experience using 3D visualization and analysis systems. However, it is notoriously difficult to achieve proficiency with 3D visualizations. Because 3D representations are key to understanding the neutron scattering data, scientists are unable to analyze their data in a timely fashion resulting in inefficient use of the limited and expensive SNS beam time. We believe a more intuitive interface for exploring neutron scattering data can be created by combining immersive virtual reality technology with high performance data analytics and human interaction. In this paper, we present our initial investigations of immersive visualization concepts as well as our vision for an immersive visual analytics framework that could lower the barriers to 3D exploratory data analysis of neutron scattering data at the SNS.

  18. The Prompt Fission Neutron Spectrum of 235U(n,f) below 2.5 MeV for Incident Neutrons from 0.7 to 20 MeV

    Science.gov (United States)

    Devlin, M.; Gomez, J. A.; Kelly, K. J.; Haight, R. C.; O'Donnell, J. M.; Taddeucci, T. N.; Lee, H. Y.; Mosby, S. M.; Perdue, B. A.; Fotiades, N.; Ullmann, J. L.; Wu, C. Y.; Bucher, B.; Buckner, M. Q.; Henderson, R. A.; Neudecker, D.; White, M. C.; Talou, P.; Rising, M. E.; Solomon, C. J.

    2018-02-01

    New prompt fission neutron spectrum measurements are reported for 235U(n , f) reactions induced by neutrons with energies from 0.7 to 20 MeV. These measurements cover outgoing neutron energies from 2.5 MeV down to 10 keV, using an array of 6Li-glass scintillators for neutron detection and a double time-of-flight technique. The neutrons were produced at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center. A detailed MCNP® model of the experimental equipment and the surrounding room was used to interpret the experimental results. Backgrounds were measured in situ, making use of the time-dependent singles rates of the various detectors with asynchronous readout from waveform digitizers. The results presented here have been included in a re-evaluation of the fission neutron spectra for this fissioning system, a description of which is presented elsewhere in this issue.

  19. Liquid Li based neutron source for BNCT and science application.

    Science.gov (United States)

    Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S

    2015-12-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Small-angle neutron scattering in materials science - an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Fratzl, P. [Vienna Univ., Inst. fuer Materialphysik, Vienna (Austria)

    1996-12-31

    The basic principles of the application of small-angle neutron scattering to materials research are summarized. The text focusses on the classical methods of data evaluation for isotropic and for anisotropic materials. Some examples of applications to the study of alloys, porous materials, composites and other complex materials are given. (author) 9 figs., 38 refs.

  1. Los Alamos Climatology 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-10

    The Los Alamos National Laboratory (LANL or the Laboratory) operates a meteorology monitoring network to support LANL emergency response, engineering designs, environmental compliance, environmental assessments, safety evaluations, weather forecasting, environmental monitoring, research programs, and environmental restoration. Weather data has been collected in Los Alamos since 1910. Bowen (1990) provided climate statistics (temperature and precipitation) for the 1961– 1990 averaging period, and included other analyses (e.g., wind and relative humidity) based on the available station locations and time periods. This report provides an update to the 1990 publication Los Alamos Climatology (Bowen 1990).

  2. Los Alamos low-level waste performance assessment status

    International Nuclear Information System (INIS)

    Wenzel, W.J.; Purtymun, W.D.; Dewart, J.M.; Rodgers, J.E.

    1986-06-01

    This report reviews the documented Los Alamos studies done to assess the containment of buried hazardous wastes. Five sections logically present the environmental studies, operational source terms, transport pathways, environmental dosimetry, and computer model development and use. This review gives a general picture of the Los Alamos solid waste disposal and liquid effluent sites and is intended for technical readers with waste management and environmental science backgrounds but without a detailed familiarization with Los Alamos. The review begins with a wide perspective on environmental studies at Los Alamos. Hydrology, geology, and meteorology are described for the site and region. The ongoing Laboratory-wide environmental surveillance and waste management environmental studies are presented. The next section describes the waste disposal sites and summarizes the current source terms for these sites. Hazardous chemical wastes and liquid effluents are also addressed by describing the sites and canyons that are impacted. The review then focuses on the transport pathways addressed mainly in reports by Healy and Formerly Utilized Sites Remedial Action Program. Once the source terms and potential transport pathways are described, the dose assessment methods are addressed. Three major studies, the waste alternatives, Hansen and Rogers, and the Pantex Environmental Impact Statement, contributed to the current Los Alamos dose assessment methodology. Finally, the current Los Alamos groundwater, surface water, and environmental assessment models for these mesa top and canyon sites are described

  3. Prompt Fission Neutron Spectrum Study at Lansce:. Chi-Nu Project

    Science.gov (United States)

    Lee, H. Y.; Haight, R. C.; Bredeweg, T. A.; Devlin, M.; Fotiades, N.; Jandel, M.; Laptev, A.; Nelson, R. O.; O'Donnell, J. M.; Perdue, B. A.; Taddeucci, T. N.; Ullmann, J. L.; Wender, S. A.; White, M. C.; Wu, C. Y.; Chyzh, A.; Henderson, R. A.; Kwan, E.

    2014-09-01

    In order to investigate the discrepancy in the available sets of data on 239Pu, Chi-Nu is a program to measure prompt-fission-neutron spectra at the Los Alamos Neutron Science Center (LANSCE). To meet the required accuracy based on the compilations among different theoretical models and sets of data, two different types of neutron detectors, liquid scintillators and 6Li-glass scintillators, are used in conjunction to the actinide Parallel Plate Avalanche Counter by measuring a time of flight. Monte Carlo simulations are used to study detector responses. In this manuscript, we discuss the status of the Chi-Nu project including the commissioning in 2012 summer.

  4. An ultra-cold neutron source at the MLNSC

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J. [Los Alamos National Lab., NM (United States); Crow, L. [Univ. of Rhode Island, Kingston, RI (United States); Serebrov, A. [Petersburg Nuclear Physics Inst. (Russian Federation)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science.

  5. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  6. Small-angle neutron scattering in materials science

    International Nuclear Information System (INIS)

    Fratzl, P.

    1999-01-01

    Small-angle scattering (SAS) in an ideal tool for studying the structure of materials in the mesoscopic size range between 1 and about 100 nanometers. The basic principles of the method are reviewed, with particular emphasis on data evaluation and interpretation for isotropic as well as oriented or single-crystalline materials. Examples include metal alloys, composites and porous materials. The last section gives a comparison between the use of neutrons and (synchrotron) x-rays for small-angle scattering in materials physics. (author)

  7. Los Alamos safeguards program overview and NDA in safeguards

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented

  8. Plans for a new pulsed spallation source at Los Alamos

    International Nuclear Information System (INIS)

    Pynn, R.

    1993-01-01

    Los Alamos National Laboratory has proposed to change the emphasis of research at its Meson Physics Facility (LAWF) by buabg a new pulsed spallation source for neutron scattering research. The new source would have a beam power of about one megawatt shared between two neutron production targets, one operating at 20 Hz and the other at 40 Hz. It would make use of much of the existing proton linac and would be designed to accommodate a later upgrade to a beam power of 5 MW or so. A study of technical feasibility is underway and will be published later this year

  9. The sciences and applications of the Electron LINAC-driven neutron source in Argentina

    Science.gov (United States)

    Granada, J. R.; Mayer, R. E.; Dawidowski, J.; Santisteban, J. R.; Cantargi, F.; Blostein, J. J.; Rodríguez Palomino, L. A.; Tartaglione, A.

    2016-06-01

    The Neutron Physics group at Centro Atómico Bariloche (CNEA, Argentina) has evolved for more than forty five years around a small 25MeV linear electron accelerator. It constitutes our compact accelerator-driven neutron source (CANS), which is dedicated to the use and development of neutronic methods to tackle problems of basic sciences and technological applications. Its historical first commitment has been the determination of the total cross sections of materials as a function of neutron energy by means of transmission experiments for thermal and sub-thermal neutrons. This also allowed testing theoretical models for the generation of scattering kernels and cross sections. Through the years, our interests moved from classic pulsed neutron diffraction, which included the development of high-precision methods for the determination of very low hydrogen content in metals, towards deep inelastic neutron scattering (DINS), a powerful tool for the determination of atomic momentum distribution in condensed matter. More recently non-intrusive techniques aimed at the scanning of large cargo containers have started to be developed with our CANS, testing the capacity and limitations to detect special nuclear material and dangerous substances. Also, the ever-present "bremsstrahlung" radiation has been recognized and tested as a useful complement to instrumental neutron activation, as it permits to detect other nuclear species through high-energy photon activation. The facility is also used for graduate and undergraduate students' experimental work within the frame of Instituto Balseiro Physics and Nuclear Engineering courses of study, and also MSc and PhD theses work.

  10. Polarised nuclei for neutron science: recent applications and perspectives

    International Nuclear Information System (INIS)

    Glaettli, Hans

    2004-01-01

    Neutron scattering on nuclei is spin dependent, particularly strongly for 1 H. The means to achieve large nuclear polarisations and its use for structure analysis or as spin-handling device are reviewed. High resolution (diffraction) as well as low resolution (SANS) measurements can benefit from polarised nuclei by changing selectively the form factors of Bragg reflections or the contrasts (the scattering length density profiles) in SANS. The internal structure of ribosomes and the conformation of polymers in solution have been investigated by this method. A numerical simulation is presented to show the influence of steady-state polarisation of protons on the scattering from a protein-ARN model complex. In addition, a more recent technique, time-resolved SANS is described. It makes use of spatial polarisation gradients created around paramagnetic centres at the onset of nuclear polarisation. Such polarisation domains can enhance considerably the scattering amplitude of free radicals and thus contribute to determine their positions inside a complex protein. Examples of possible future experiments are proposed which combine simultaneously the selectivity of solid-state NMR techniques and neutron scattering

  11. Occurrences at Los Alamos National Laboratory: What can they tell us?

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Reichelt; A. Jeffery Eichorst; Marc E. Clay; Rita J. Henins; Judith D. DeHaven; Richard J. Brake

    2000-03-01

    The authors analyzed the evolution of institutional and facility response to groups of abnormal incidents at Los Alamos National Laboratory (LANL). The analysis is divided into three stages: (1) the LANL response to severe accidents from 1994 to 1996, (2) the LANL response to facility-specific clusters of low-consequence incidents from 1997 to 1999, and (3) the ongoing development of and response to a Laboratory-wide trending and analysis program. The first stage is characterized by five severe accidents at LANL--a shooting fatality, a forklift accident, two electrical shock incidents, and an explosion in a nuclear facility. Each accident caused LANL and the Department of Energy (DOE) to launch in-depth investigations. A recurrent theme of the investigations was the failure of LANL and DOE to identify and act on precursor or low-consequence events that preceded the severe accidents. The second stage is characterized by LANL response to precursor or low-consequence incidents over a two-year period. In this stage, the Chemistry and Metallurgy Research Facility, the Los Alamos Critical Experiments Facility, and the Los Alamos Neutron Science Center responded to an increase in low-consequence events by standing down their facilities. During the restart process, each facility collectively analyzed the low-consequence events and developed systemic corrective actions. The third stage is characterized by the development of a Laboratory-wide trending and analysis program, which involves proactive division-level analysis of incidents and development of systemic actions. The authors conclude that, while the stages show an encouraging evolution, the facility standdowns and restarts are overly costly and that the institutional trending and analysis program is underutilized. The authors therefore recommend the implementation of an institutional, mentored program of trending and analysis that identifies clusters of related low-consequence events, analyzes those events, and

  12. Neutron Imaging at LANSCE—From Cold to Ultrafast

    Directory of Open Access Journals (Sweden)

    Ronald O. Nelson

    2018-02-01

    Full Text Available In recent years, neutron radiography and tomography have been applied at different beam lines at Los Alamos Neutron Science Center (LANSCE, covering a very wide neutron energy range. The field of energy-resolved neutron imaging with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as quantitative density measurements, was pioneered at the Target 1 (Lujan center, Flight Path 5 beam line and continues to be refined. Applications include: imaging of metallic and ceramic nuclear fuels, fission gas measurements, tomography of fossils and studies of dopants in scintillators. The technique provides the ability to characterize materials opaque to thermal neutrons and to utilize neutron resonance analysis codes to quantify isotopes to within 0.1 atom %. The latter also allows measuring fuel enrichment levels or the pressure of fission gas remotely. More recently, the cold neutron spectrum at the ASTERIX beam line, also located at Target 1, was used to demonstrate phase contrast imaging with pulsed neutrons. This extends the capabilities for imaging of thin and transparent materials at LANSCE. In contrast, high-energy neutron imaging at LANSCE, using unmoderated fast spallation neutrons from Target 4 [Weapons Neutron Research (WNR facility] has been developed for applications in imaging of dense, thick objects. Using fast (ns, time-of-flight imaging, enables testing and developing imaging at specific, selected MeV neutron energies. The 4FP-60R beam line has been reconfigured with increased shielding and new, larger collimation dedicated to fast neutron imaging. The exploration of ways in which pulsed neutron beams and the time-of-flight method can provide additional benefits is continuing. We will describe the facilities and instruments, present application examples and recent results of all these efforts at LANSCE.

  13. Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory.

    Science.gov (United States)

    Köhler, J; Ehresmann, B; Zeitlin, C; Wimmer-Schweingruber, R F; Hassler, D M; Reitz, G; Brinza, D E; Appel, J; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Lohf, H; Martin, C; Posner, A; Rafkin, S

    2015-04-01

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011. Although designed for measuring the radiation on the surface of Mars, the Radiation Assessment Detector (RAD) measured the radiation environment inside the spacecraft during most of the 253-day, 560-million-kilometer cruise to Mars. An important factor for determining the biological impact of the radiation environment inside the spacecraft is the specific contribution of neutrons with their high biological effectiveness. We apply an inversion method (based on a maximum-likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. The measured neutron spectrum (12-436 MeV) translates into a radiation dose rate of 3.8±1.2 μGy/day and a dose equivalent of 19±5 μSv/day. Extrapolating the measured spectrum (0.1-1000 MeV), we find that the total neutron-induced dose rate is 6±2 μGy/day and the dose equivalent rate is 30±10 μSv/day. For a 360 day round-trip from Earth to Mars with comparable shielding, this translates into a neutron induced dose equivalent of about 11±4 mSv. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  14. Radiative neutron capture cross section from 236U

    Science.gov (United States)

    Baramsai, B.; Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Roman, A. R.; Rusev, G.; Walker, C. L.; Couture, A.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Kawano, T.

    2017-08-01

    The 236U(n ,γ ) reaction cross section has been measured for the incident neutron energy range from 10 eV to 800 keV by using the Detector for Advanced Neutron Capture Experiments (DANCE) γ -ray calorimeter at the Los Alamos Neutron Science Center. The cross section was determined with the ratio method, which is a technique that uses the 235U(n ,f ) reaction as a reference. The results of the experiment are reported in the resolved and unresolved resonance energy regions. Individual neutron resonance parameters were obtained below 1 keV incident energy by using the R -matrix code sammy. The cross section in the unresolved resonance region is determined with improved experimental uncertainty. It agrees with both ENDF/B-VII.1 and JEFF-3.2 nuclear data libraries. The results above 10 keV agree better with the JEFF-3.2 library.

  15. New neutron physics using spallation sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1988-01-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. The energy range of neutron research which is being explored with these sources extends from thermal energies to almost 800 MeV. The emphasis here is on prospective experiments below 100 keV neutron energy using the intense neutron bursts produced by the Proton Storage Ring (PSR) at Los Alamos. 30 refs., 10 figs

  16. Los Alamos National Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Lab has a proud history and heritage of almost 70 years of science and innovation. The people at the Laboratory work on advanced technologies to provide the best...

  17. ANL--LASL workshop on advanced neutron detection systems

    International Nuclear Information System (INIS)

    Kitchens, T.A.

    1979-06-01

    A two-day workshop on advanced neutron detectors and associated electronics was held in Los Alamos on April 5--6, 1979, as a part of the Argonne National Laboratory--Los Alamos Scientific Laboratory Coordination on neutron scattering instrumentation. This report contains an account of the information presented and conclusions drawn at the workshop

  18. Fail-safe neutron shutter used for thermal neutron radiography

    International Nuclear Information System (INIS)

    Sachs, R.D.; Morris, R.A.

    1976-11-01

    A fail-safe, reliable, easy-to-use neutron shutter was designed, built, and put into operation at the Omega West Reactor, Los Alamos Scientific Laboratory. The neutron shutter will be used primarily to perform thermal neutron radiography, but is also available for a highly collimated source of thermal neutrons [neutron flux = 3.876 x 10 6 (neutrons)/(cm 2 .s)]. Neutron collimator sizes of either 10.16 by 10.16 cm or 10.16 by 30.48 cm are available

  19. Los Alamos National Laboratory: 21st century solutions to urgent national challenges

    Energy Technology Data Exchange (ETDEWEB)

    Mcbranch, Duncan [Los Alamos National Laboratory

    2008-01-01

    Los Alamos National Laboratory has been called upon to meet urgent national challenges for more than 65 years. The people, tools, and technologies at Los Alamos are a world class resource that has proved decisive through our history, and are needed in the future. We offer expertise in nearly every science, technology, and engineering discipline, a unique integrated capability for large-scale computing and experimentation, and the proven ability to deliver solutions involving the most complex and difficult technical systems. This white paper outlines some emerging challenges and why the nation needs Los Alamos, the premier National Security Science Laboratory, to meet these challenges.

  20. Research in an emerging 'big science' discipline. The case of neutron scattering in Spain

    International Nuclear Information System (INIS)

    Borja Gonzalez-Albo; Maria Bordons; Pedro Gorria

    2010-01-01

    Neutron scattering (NS) is a 'big science' discipline whose research spans over a wide spectrum of fields, from fundamental or basic science to technological applications. The objective of this paper is to track the evolution of Spanish research in NS from a bibliometric perspective and to place it in the international context. Scientific publications of Spanish authors included in the Web of Science (WoS 1970-2006) are analysed with respect to five relevant dimensions: volume of research output, impact, disciplinary diversity, structural field features and internationalisation. NS emerges as a highly internationalised fast-growing field whose research is firmly rooted in Physics, Chemistry and Engineering, but with applications in a wide range of fields. International collaboration links -present in around 70% of the documents- and national links have largely contributed to mould the existing structure of research in the area, which evolves around major neutron scattering facilities abroad. The construction of a new European neutron source (ESS) would contribute to the consolidation of the field within the EU, since it will strengthen research and improve current activity. (author)

  1. The Annual Neutron School: Program and Facility for Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Dingle, C.A.M.; Bautista, U.M.; Jecong, J.F.M.; Hila, F.C.; Astronomo, A.A.; Olivares, R.U.; Guillermo, N.R.D.; Ramo, M.E.S.K.V.; Saligan, P.P.

    2015-01-01

    The core realization of the mandate of the Philippine Nuclear Research Institute (PNRI) is the establishment and utilization of major nuclear facilities in lieu of the decommissioned research reactor. To address the need for manpower in the future, the applied physics research section (APRS) of the PNRI has initiated capacity building in the use and operation of small neutron sources which attempts to re-establish, develop and sustain expertise in nuclear science and technology. These activities have provided the theoretical and experimental training of young professionals and scientist of the institute which, consequently, resulted in the conceptualization of the Annual Neutron School (ANS).The ANS provides training and teaching environments for the young generation who will operate, utilize and regulate future nuclear facilities. More importantly, it demonstrates and presents the acquired knowledge and research outputs by the staff via “train a trainer” concept to an audience of junior undergraduate students. The successful implementation of the ANS has been participated by selected universities within Metro Manila and was able to train a number of students since its establishment in 2013. The program offers training, education, and R & D in the basic nuclear instrumentation and techniques which includes (1) characterization of different neutron sources – AmBe, PuBe and Cf-252; (2) development of Neutron Activation Analysis (NAA) technique using a portable neutron source for non-destructive elemental analysis; (3) utilization of MCNP (Monte Carlo N-Particle) code for verification of experimental data on neutron characterization, radiation dosimetry, detector design, calibration and efficiency and TRIGA fuel assembly configuration for sub-critical experiments. (author)

  2. RFQ development at Los Alamos

    International Nuclear Information System (INIS)

    Wangler, T.P.; Crandall, K.R.; Stokes, R.H.

    1982-01-01

    The basic principles of the radio-frequency quadrupole (RFQ) linac are reviewed and a summary of past and present Los Alamos work is presented. Some beam-dynamics effects, important for RFQ design, are discussed. A design example is shown for xenon and a brief discussion of low-frequency RFQ structures is given

  3. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  4. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress

  5. Time-gated energy-selected cold neutron radiography

    CERN Document Server

    McDonald, T E; Claytor, T N; Farnum, E H; Greene, G L; Morris, C

    1999-01-01

    A technique is under development at the Los Alamos Neutron Science Center (LANSCE), Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) for producing neutron radiography using only a narrow energy range of cold neutrons. The technique, referred to as time-gated energy-selected (TGES) neutron radiography, employs the pulsed neutron source at the Lujan Center with time of flight to obtain a neutron pulse having an energy distribution that is a function of the arrival time at the imager. The radiograph is formed on a short persistence scintillator and a gated, intensified, cooled CCD camera is employed to record the images, which are produced at the specific neutron energy range determined by the camera gate. The technique has been used to achieve a degree of material discrimination in radiographic images. For some materials, such as beryllium and carbon, at energies above the Bragg cutoff the neutron scattering cross section is relatively high while at energies below the Bragg cutoff the scattering cross ...

  6. Los Alamos contribution to target diagnostics on the National Ignition Facility

    International Nuclear Information System (INIS)

    Mack, J.M.; Baker, D.A.; Caldwell, S.E.

    1994-01-01

    The National Ignition Facility (NIF) will have a large suite of sophisticated target diagnostics. This will allow thoroughly diagnosed experiments to be performed both at the ignition and pre-ignition levels. As part of the national effort Los Alamos National Laboratory will design, construct and implement a number of diagnostics for the NIF. This paper describes Los Alamos contributions to the ''phase I diagnostics.'' Phase I represents the most fundamental and basic measurement systems that will form the core for most work on the NIF. The Los Alamos effort falls into four categories: moderate to hard X-ray (time resolved imaging neutron spectroscopy- primarily with neutron time of flight devices; burn diagnostics utilizing gamma ray measurements; testing measurement concepts on the TRIDENT laser system at Los Alamos. Because of the high blast, debris and radiation environment, the design of high resolution X-ray imaging systems present significant challenges. Systems with close target proximity require special protection and methods for such protection is described. The system design specifications based on expected target performance parameters is also described. Diagnosis of nuclear yield and burn will be crucial to the NIF operation. Nuclear reaction diagnosis utilizing both neutron and gamma ray detection is discussed. The Los Alamos TRIDENT laser system will be used extensively for the development of new measurement concepts and diagnostic instrumentation. Some its potential roles in the development of diagnostics for NIF are given

  7. Los Alamos contribution to target diagnostics on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mack, J.M.; Baker, D.A.; Caldwell, S.E. [and others

    1994-07-01

    The National Ignition Facility (NIF) will have a large suite of sophisticated target diagnostics. This will allow thoroughly diagnosed experiments to be performed both at the ignition and pre-ignition levels. As part of the national effort Los Alamos National Laboratory will design, construct and implement a number of diagnostics for the NIF. This paper describes Los Alamos contributions to the ``phase I diagnostics.`` Phase I represents the most fundamental and basic measurement systems that will form the core for most work on the NIF. The Los Alamos effort falls into four categories: moderate to hard X-ray (time resolved imaging neutron spectroscopy- primarily with neutron time of flight devices; burn diagnostics utilizing gamma ray measurements; testing measurement concepts on the TRIDENT laser system at Los Alamos. Because of the high blast, debris and radiation environment, the design of high resolution X-ray imaging systems present significant challenges. Systems with close target proximity require special protection and methods for such protection is described. The system design specifications based on expected target performance parameters is also described. Diagnosis of nuclear yield and burn will be crucial to the NIF operation. Nuclear reaction diagnosis utilizing both neutron and gamma ray detection is discussed. The Los Alamos TRIDENT laser system will be used extensively for the development of new measurement concepts and diagnostic instrumentation. Some its potential roles in the development of diagnostics for NIF are given.

  8. Detection system for neutron β decay correlations in the UCNB and Nab experiments

    Energy Technology Data Exchange (ETDEWEB)

    Broussard, L.J., E-mail: broussardlj@ornl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zeck, B.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Adamek, E.R. [Indiana University, Bloomington, IN 47405 (United States); Baeßler, S. [University of Virginia, Charlottesville, VA 22904 (United States); Birge, N. [University of Tennessee, Knoxville, TN 37996 (United States); Blatnik, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cleveland State University, Cleveland, OH 44115 (United States); Bowman, J.D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Brandt, A.E. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Brown, M. [University of Kentucky, Lexington, KY 40506 (United States); Burkhart, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Callahan, N.B. [Indiana University, Bloomington, IN 47405 (United States); Clayton, S.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Cude-Woods, C. [North Carolina State University, Raleigh, NC 27695 (United States); Currie, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dees, E.B. [North Carolina State University, Raleigh, NC 27695 (United States); Ding, X. [Virginia Polytechnic Institute & State University, Blacksburg, VA 24061 (United States); Fomin, N. [University of Tennessee, Knoxville, TN 37996 (United States); Frlez, E.; Fry, J. [University of Virginia, Charlottesville, VA 22904 (United States); and others

    2017-03-21

    We describe a detection system designed for precise measurements of angular correlations in neutron β decay. The system is based on thick, large area, highly segmented silicon detectors developed in collaboration with Micron Semiconductor, Ltd. The prototype system meets specifications for β electron detection with energy thresholds below 10 keV, energy resolution of ∼3 keV FWHM, and rise time of ∼50 ns with 19 of the 127 detector pixels instrumented. Using ultracold neutrons at the Los Alamos Neutron Science Center, we have demonstrated the coincident detection of β particles and recoil protons from neutron β decay. The fully instrumented detection system will be implemented in the UCNB and Nab experiments to determine the neutron β decay parameters B, a, and b.

  9. Cascade γ rays following capture of thermal neutrons on 113Cd

    Science.gov (United States)

    Rusev, G.; Jandel, M.; Krtička, M.; Arnold, C. W.; Bredeweg, T. A.; Couture, A.; Moody, W. A.; Mosby, S. M.; Ullmann, J. L.

    2013-11-01

    Intensity distributions of cascade γ-ray transitions following the capture of thermal neutrons by 113Cd have been measured at the Los Alamos Neutron Science Center for various γ-ray multiplicities. The experiment was carried out at the highly segmented 4π γ-ray calorimeter—Detector for Advanced Neutron Capture Experiments (DANCE). A measured two-dimensional spectrum of counts versus γ-ray energy versus γ-ray multiplicity, from the strongest resonance in the 113Cd(n,γ) reaction at 0.178 eV has been compared to predictions from the statistical model. The best representation of the γ-ray cascades following the capture of thermal neutrons on 113Cd is presented. The intensity distribution of these cascades is of great importance for estimates of response to thermal neutrons of devices that use natural or enriched cadmium.

  10. Quality assessment of neutron delivery system for small-angle neutron scattering diffractometers of the Jülich Centre for Neutron Science at the FRM II

    International Nuclear Information System (INIS)

    Radulescu, Aurel; Pipich, Vitaliy; Ioffe, Alexander

    2012-01-01

    Following the shutdown of FRJ-2 research reactor in Jülich, the pinhole small-angle neutron diffractometers KWS-1 and KWS-2 have been moved to the research reactor FRM II in Garching. The installation of these 40 m long instruments required the design and setup of new neutron guides with geometrical and optical features imposed by the instruments' positioning in the neutron guide hall, such as, the predetermined length and beam height as well as the foreseen improvement of the instrument performance. We report here about the quality assessment of the newly constructed neutron guides with respect to the optical, geometrical and alignment characteristics and the positioning of the velocity selector integrated in the neutron guide system by comparing the features of the measured neutron beams (in terms of neutron flux, intensity distribution and beam profile) with the results of the simulations of optimal neutron guide systems.

  11. Reclamation of greater than Class C sealed sources at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Behrens, R.G.; Jones, S.W.

    1995-01-01

    One of the important overriding themes of the Los Alamos National Laboratory as a world-class scientific institution is to utilize its expertise in enhancing the long-term welfare of society by minimizing negative side effects of nuclear technology over the past five decades. The Los Alamos National Laboratory is therefore committed to the use of its technical competencies and nuclear facilities, developed through programs in the areas of defense and civilian nuclear research, to support activities which will benefit the United States as a whole. As such, this paper discusses the organizational details and requirements of the Neutron Source Reclamation Program at Los Alamos. This program has as its mission the retrieval, interim storage, and chemical reprocessing of 238 PuBe, 239 PuBe and 24l AmBe neutron sources residing in the hands of private companies and industries, academic institutions, and various state and Federal government agencies

  12. Small-angle neutron scattering in materials science: Recent practical applications

    Science.gov (United States)

    Melnichenko, Yuri B.; Wignall, George D.

    2007-07-01

    Modern materials science and engineering relies increasingly on detailed knowledge of the structure and interactions in "soft" and "hard" materials, but there have been surprisingly few microscopic techniques for probing the structures of bulk samples of these substances. Small-angle neutron scattering (SANS) was first recognized in Europe as a major technique for this purpose and, over the past several decades, has been a growth area in both academic and industrial materials research to provide structural information on length scales ˜10-1000Å (or 1-100nm). The technique of ultrahigh resolution small-angle neutron scattering (USANS) raises the upper resolution limit for structural studies by more than two orders of magnitude and (up to ˜30μm) and hence overlaps with light scattering and microscopy. This review illustrates the ongoing vitality of SANS and USANS in materials research via a range of current practical applications from both soft and hard matter nanostructured systems.

  13. High energy neutron dosimetry for the fusion program

    International Nuclear Information System (INIS)

    Barr, D.W.; Norris, A.E.

    1977-01-01

    Neutron dosimetry by the foil activation method offers a flexible technique for characterizing neutron spectra ranging from thermal energies to 30 MeV with the potential for extension to higher neutron energies as investigated by the Los Alamos Radiochemistry Group at the Los Alamos Meson Physics Facility and in the Apollo-Soyuz Test Project. The use of this method for the neutron flux description in thermal, resonance, and fission spectrum assemblies has been demonstrated. An extension of the method to environments involving thermonuclear processes was developed at Los Alamos in the early 1950's to characterize mixed fission-thermonuclear systems

  14. Some nuclear safety aspects of the Los Alamos accelerator based converion concept

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Moeller, E. [Royal Institute of Technology, Stockholm (Sweden); Venneri, F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The detailed analysis of the few parameters important for the safety of the accelerator-driven plutonium burner concept developed at Los Alamos National Laboratory was performed. The plutonium load, optimal thermalization of the neutron spectrum and temperature reactivity coefficients were investigated. The calculations revealed the strong positive temperature reactivity coeffecient. The ways to solve this problem are suggested.

  15. Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments

    Directory of Open Access Journals (Sweden)

    Kenji Nakajima

    2017-11-01

    Full Text Available The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex (J-PARC, is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

  16. Fragment Angular Distributions in Neutron-Induced Fission of w235U and 239Pu using a Time Projection Chamber

    Science.gov (United States)

    Kleinrath, Verena

    2014-09-01

    Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for 235U and even more so for 239Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. Analysis of in-beam data collected at the Los Alamos Neutron Science Center with a 239Pu/235U target will provide angular distributions as a function of incident neutron energy for these isotopes. Preliminary angular distributions for 235U and 239Pu using the NIFFTE time projection chamber will be presented. Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for 235U and even more so for 239Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. Analysis of in-beam data collected at the Los Alamos Neutron Science Center with a 239Pu/235U target will provide angular distributions as a function of incident neutron energy for these isotopes. Preliminary angular distributions for 235U and

  17. Design of the Next Generation Target at the Lujan Neutron Scattering Center, LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Ferres, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); National Graduate School of Engineering and Research Center (ENSICAEN), Caen (France)

    2016-08-03

    Los Alamos National Laboratory (LANL) supports scientific research in many diverse fields such as biology, chemistry, and nuclear science. The Laboratory was established in 1943 during the Second World War to develop nuclear weapons. Today, LANL is one of the largest laboratories dedicated to nuclear defense and operates an 800 MeV proton linear accelerator for basic and applied research including: production of high- and low-energy neutrons beams, isotope production for medical applications and proton radiography. This accelerator is located at the Los Alamos Neutron Science Center (LANSCE). The work performed involved the redesign of the target for the low-energy neutron source at the Lujan Neutron Scattering Center, which is one of the facilities built around the accelerator. The redesign of the target involves modeling various arrangements of the moderator-reflector-shield for the next generation neutron production target. This is done using Monte Carlo N-Particle eXtended (MCNPX), and ROOT analysis framework, a C++ based-software, to analyze the results.

  18. Summary of environmental surveillance at Los Alamos during 1995

    International Nuclear Information System (INIS)

    1996-10-01

    Linking the Rio Grande Valley and the Jemez Mountains, New Mexico's Pajarito Plateau is home to a world-class scientific institution. Los Alamos National Laboratory (or the Laboratory), managed by the Regents of the University of California, is a government-owned, Department of Energy-supervised complex investigating all areas of modern science for the purposes of national defense, health, conservation, and ecology. The Laboratory was founded in 1943 as part of the Manhattan Project, whose members assembled to create the first nuclear weapon. Occupying the campus of the Los Alamos Ranch School, American and British scientists gathered on the isolated mesa tops to harness recently discovered nuclear power with the hope of ending World War II. In July 1945, the initial objective of the Laboratory, a nuclear device, was achieved in Los Alamos and tested in White Sands, New Mexico. Today the Laboratory continues its role in defense, particularly in nuclear weapons, including developing methods for safely handling weapons and managing waste. For the past twenty years, the Laboratory has published an annual environmental report. This pamphlet offers a synopsis that briefly explains important concepts, such as radiation and provides a summary of the monitoring results and regulatory compliance status that are explained at length in the document entitled Environmental Surveillance at Los Alamos during 1995

  19. New instruments and science around SINQ. Lecture notes of the 4. summer school on neutron scattering

    International Nuclear Information System (INIS)

    Furrer, A.

    1996-01-01

    The spallation neutron source at PSI will be commissioned towards the end of this year together with a set of first generation instruments. This facility should then be available for the initial scientific work after spring next year. One of the main goals of this year's summer school for neutron scattering was therefore the preparation of the potential customers at this facility for its scientific exploitation. In order to give them the - so to speak - last finish, we have dedicated the school to the discussion of the instruments at SINQ and their scientific potential. These proceedings are divided into two parts: Part A gives a complete description of the first-generation instruments and sample environment at SINQ. For all the instruments the relevant parameters for planning experiments are listed. Part A is completed by G. Bauer's summary on experimental facilities and future developments at SINQ. Part B presents the lecture notes dealing with relevant applications of neutron based techniques in science and technology. The summary lecture by S.W. Lovesey is also included. (author) figs., tabs., refs

  20. New instruments and science around SINQ. Lecture notes of the 4. summer school on neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Furrer, A. [ed.

    1996-11-01

    The spallation neutron source at PSI will be commissioned towards the end of this year together with a set of first generation instruments. This facility should then be available for the initial scientific work after spring next year. One of the main goals of this year`s summer school for neutron scattering was therefore the preparation of the potential customers at this facility for its scientific exploitation. In order to give them the - so to speak - last finish, we have dedicated the school to the discussion of the instruments at SINQ and their scientific potential. These proceedings are divided into two parts: Part A gives a complete description of the first-generation instruments and sample environment at SINQ. For all the instruments the relevant parameters for planning experiments are listed. Part A is completed by G. Bauer`s summary on experimental facilities and future developments at SINQ. Part B presents the lecture notes dealing with relevant applications of neutron based techniques in science and technology. The summary lecture by S.W. Lovesey is also included. (author) figs., tabs., refs.

  1. Improved neutron capture cross section of Pu239

    Science.gov (United States)

    Mosby, S.; Bredeweg, T. A.; Chyzh, A.; Couture, A.; Henderson, R.; Jandel, M.; Kwan, E.; O'Donnell, J. M.; Ullmann, J.; Wu, C. Y.

    2014-03-01

    The 239Pu(n ,γ) cross section has been measured over the energy range 10 eV to 1 keV using the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center as part of a campaign to produce precision (n ,γ) measurements on 239Pu. Fission coincidences were measured with a parallel-plate avalanche counter and used to measure the prompt fission γ-ray spectrum in this region to accurately characterize background. The resulting (n ,γ) cross section is generally in agreement with current evaluations. The experimental method utilizes much more detailed information than past measurements on 239Pu and can be used to extend the measurement to higher incident neutron energies.

  2. Neutron beam testing of triblades

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  3. Progress at LAMPF [Los Alamos Meson Physics Facility], January-December 1987

    International Nuclear Information System (INIS)

    Poelakker, K.

    1988-09-01

    This report is the annual progress report of MP Division of the Los Alamos National Laboratory. Included are brief reports on research done at LAMPF by researchers from other institutions and other Los Alamos Divisions. These reports included the following topics: Nuclear and particle physics; Atomic and molecular physics; Materials science; Radiation-effects studies; Biomedical research and instrumentation; Nuclear chemistry; Radioisotope production and accelerator facilities development and operation

  4. Summary of environmental surveillance at Los Alamos during 1994

    International Nuclear Information System (INIS)

    1996-03-01

    Linking the Rio Grande Valley and the Jemez Mountains, New Mexico's Pajarito Plateau is home to a world-class scientific institution. Los Alamos National Laboratory (or the Laboratory), managed by the Regents of the University of California, is a government-owned, Department of Energy-supervised complex investigating all areas of modern science for the purposes of national defense, health, conservation, and ecology. This report briefly describes the environmental monitoring program for the Laboratory

  5. Construction and operation of the Spallation Neutron Source: Draft environmental impact statement. Volume 1

    International Nuclear Information System (INIS)

    1998-12-01

    DOE proposes to construct and operate a state-of-the-art, short-pulsed spallation neutron source comprised of an ion source, a linear accelerator, a proton accumulator ring, and an experiment building containing a liquid mercury target and a suite of neutron scattering instrumentation. The proposed Spallation Neutron Source would be designed to operate at a proton beam power of 1 megawatt. The design would accommodate future upgrades to a peak operating power of 4 megawatts. These upgrades may include construction of a second proton accumulation ring and a second target. The US needs a high-flux, short-pulsed neutron source to provide the scientific and industrial research communities with a much more intense source of pulsed neutrons for neutron scattering research than is currently available, and to assure the availability of a state-of-the-art facility in the decades ahead. This next-generation neutron source would create new scientific and engineering opportunities. In addition, it would help replace the neutron science capacity that will be lost by the eventual shutdown of existing sources as they reach the end of their useful operating lives in the first half of the next century. This document analyzes the potential environmental impacts from the proposed action and the alternatives. The analysis assumes a facility operating at a power of 1 MW and 4 MW over the life of the facility. The two primary alternatives analyzed in this EIS are: the proposed action (to proceed with building the Spallation Neutron Source) and the No-Action Alternative. The No-Action Alternative describes the expected condition of the environment if no action were taken. Four siting alternatives for the Spallation Neutron Source are evaluated: Oak Ridge National Laboratory, Oak Ridge, TN, (preferred alternative); Argonne National Laboratory, Argonne, IL (US); Brookhaven National Laboratory, Upton, NY; and Los Alamos National Laboratory, Los Alamos, NM

  6. Los Alamos - A Short History

    Energy Technology Data Exchange (ETDEWEB)

    Meade, Roger A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-12

    At 5:45 am on the morning of July 16, 1945, the world’s first atomic bomb exploded over a remote section of the southern New Mexican desert known as the Jornada del Muerto, the Journey of Death. Three weeks later, the atomic bombs known as Little Boy and Fat Man brought World War II to an end. Working literally around the clock, these first atomic bombs were designed and built in just thirty months by scientists working at a secret scientific laboratory in the mountains of New Mexico known by its codename, Project Y, better known to the world as Los Alamos.

  7. Los Alamos racquetball contamination incident

    International Nuclear Information System (INIS)

    McAtee, J.L.; Stafford, R.G.; Dowdy, E.J.; Prestwood, R.J.

    1985-01-01

    Several employees of the Los Alamos Plutonium Facility were found to have low levels of radioactivity on their hands and clothing when they arrived for work one morning. The initial concern was that the stringent contamination or material controls at the facility had failed, and that one or more of the employees had either accidentally or intentionally removed plutonium from the Laboratory premises. Fortunately, however, an investigation revealed that the source of the radioactivity was radon daughters electrostatically collected upon the surface of the racquetball and transferred by physical contact to the employees during an early morning racquetball game. This paper describes the events leading to the discovery of this phenomenon. 1 figure

  8. The current status and possible future of the Los Alamos spallation radiation effects facility

    Energy Technology Data Exchange (ETDEWEB)

    Borden, M.J.; Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The Los Alamos Spallation Radiation Effects Facility (LASREF) has been configured for both proton and spallation neutron irradiations since 1985. The facility makes use of the Los Alamos Meson Physics Facility 1 mA 800 MeV proton beam. Environment controlled proton and neutron irradiations have been demonstrated over the past nine years. The current copper beam stop configuration produces a maximum measured neutron flux of 4.6 x 10{sup 17} m{sup {minus}2}s{sup {minus}1} for energies greater than 1 KeV. The maximum proton flux at the center of Gaussian shaped beam is 1.2 x 10{sup 14} protons cm{sup {minus}2}s{sup {minus}1} with beam spot diameter of 3.5 cm at 2{sigma}. Previously published work has shown that the neutron flux can be increased by a factor of ten by changing the beam stop to tungsten and decreasing the diameter. Expertise exists at Los Alamos to further optimize this design to tailor neutron production and spectrum. Consideration and preliminary planning has also been done for increasing the LAMPF proton current from 1 mA to a few mA with a possible maximum of 10 mA. An upgrade of this type would produce current densities comparable to those proposed for the Accelerator-Driven Transmutation Technologies (ADTT) programs.

  9. Neutron guide system for small-angle neutron scattering instruments of the Juelich Centre for Neutron Science at the FRM-II

    International Nuclear Information System (INIS)

    Radulescu, A.; Ioffe, A.

    2008-01-01

    Following the shut-down of the FRJ-2 research reactor in Juelich a large part of the neutron scattering instrumentation operating there is currently being moved to the FRM-II research reactor in Garching-Muenchen. The installation of these instruments requires the design and set-up of new neutron guides with geometrical and optical features imposed by the positioning of the instruments in the neutron guide hall and by the foreseen significant improvement of the instrument performance. Particularly three SANS diffractometers require a special approach due to on one hand, their pre-determined size and on the other hand, the demanded neutron wavelength range. Expected characteristics of three neutron guides (currently under construction) optimized using VITESS and McStas simulation packages, namely the vertically 'S-shaped' guides serving the KWS2 and KWS1 conventional SANS instruments and the horizontally 'S-shaped' guide serving the focusing KWS3 instrument, will be reported on

  10. Advanced setup for high-pressure and low-temperature neutron diffraction at hydrostatic conditions

    International Nuclear Information System (INIS)

    Lokshin, Konstantin A.; Zhao Yusheng

    2005-01-01

    We describe a design of the experimental setup for neutron diffraction studies at low temperatures and hydrostatic pressure. The significant benefit of the setup, compared to the previous methods, is that it makes possible the simultaneous collection of neutrons diffracted at the 30 deg. -150 deg. range with no contamination by the primary scattering from the sample surroundings and without cutting out the incident and diffracted beams. The suggested design is most useful for third-generation time-of-flight diffractometers and constant wavelength instruments. Application of the setup expands the capabilities of high-pressure neutron diffraction, allowing time-resolved kinetics and structural studies, multihistogram Rietveld, and pair distribution function and texture analyses. The high efficiency of the setup was proven for the HIPPO diffractometer at Los Alamos Neutron Science Center under pressures up to 10 kbar and temperatures from 4 to 300 K

  11. PREFACE: Buried Interface Sciences with X-rays and Neutrons 2010

    Science.gov (United States)

    Sakurai, Kenji

    2011-09-01

    The 2010 summer workshop on buried interface science with x-rays and neutrons was held at Nagoya University, Japan, on 25-27 July 2010. The workshop was organized by the Japan Applied Physics Society, which established a group to develop the research field of studying buried function interfaces with x-rays and neutrons. The workshop was the latest in a series held since 2001; Tsukuba (December 2001), Niigata (September 2002), Nagoya (July 2003), Tsukuba (July 2004), Saitama (March 2005), Yokohama (July 2006), Kusatsu (August 2006), Tokyo (December 2006), Sendai (July 2007), Sapporo (September 2007), Tokyo (December 2007), Tokyo-Akihabara (July 2009) and Hiratsuka (March 2010). The 2010 summer workshop had 64 participants and 34 presentations. Interfaces mark the boundaries of different material systems at which many interesting phenomena take place, thus making it extremely important to design, fabricate and analyse the structures of interfaces at both the atomic and macroscopic scale. For many applications, devices are prepared in the form of multi-layered thin films, with the result that interfaces are not exposed but buried under multiple layers. Because of such buried conditions, it is generally not easy to analyse such interfaces. In certain cases, for example, when the thin surface layer is not a solid but a liquid such as water, scientists can observe the atomic arrangement of the liquid-solid interface directly by using a scanning probe microscope, of which the tip is soaked in water. However, it has become clear that the use of a stylus tip positioned extremely close to the interface might change the structure of the water molecules. Therefore it is absolutely crucial to develop non-contact, non-destructive probes for buried interfaces. It is known that analysis using x-rays and neutrons is one of the most powerful tools for exploring near-surface structures including interfaces buried under several layers. In particular, x-ray analysis using 3rd

  12. Neutron-induced hydrogen and helium production in iron

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C.

    2004-01-01

    In support of the Advanced Fuel Cycle Initiative, cross sections for hydrogen and helium production by neutrons are being investigated on structural materials from threshold to 100 MeV with the continuous-in-energy spallation neutron source at the Los Alamos Neutron Science Center (LANSCE). The present measurements are for elemental iron. The results are compared with values from the ENDF/B-VI library and its extension with LA150 evaluations. For designs in the Advanced Fuel Cycle Initiative, structural materials will be subjected to very large fluences of neutrons, and the selection of these materials will be guided by their resistance to radiation damage. The macroscopic effects of radiation damage result both from displacement of atoms in the materials as well as nuclear transmutation. We are studying the production of hydrogen and helium by neutrons, because these gases can lead to significant changes in materials properties such as embrittlement and swelling. Our experiments span the full range from threshold to 100 MeV. The lower neutron energies are those characteristic of fission neutrons, whereas the higher energies are relevant for accelerator-based irradiation test facilities. Results for the nickel isotopes, {sup 58,60}Ni, have been reported previously. The present studies are on natural iron.

  13. After the Resistance: The Alamo Today

    Centers for Disease Control (CDC) Podcasts

    2014-09-23

    Byron Breedlove reads his essay After the Resistance: The Alamo Today about the Alamo and emerging disease resistance.  Created: 9/23/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/20/2014.

  14. Total neutron scattering: The key to the local and medium range ...

    Indian Academy of Sciences (India)

    pp. 713–719. Total neutron scattering: The key to the local and medium range structure of complex materials. TH PROFFEN. Los Alamos National Laboratory, Lujan Neutron Scattering Center, Mailstop H805,. Los Alamos, NM 87545, USA. E-mail: tproffen@lanl.gov. Abstract. Structural characterization is mainly based on the ...

  15. Radioisotope research and development at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Peterson, E.J.

    1993-01-01

    Throughout its fifty year history, Los Alamos National Laboratory has conducted research and development in the production, isolation, purification, and application of radioactive isotopes. Initially this work supported the weapons development mission of the Laboratory. Over the years the work has evolved to support basic and applied research in many diverse fields, including nuclear medicine, biomedical studies, materials science, environmental research and the physical sciences. In the early 1970s people in the Medical Radioisotope Research Program began irradiating targets at the Los Alamos Meson Physics Facility (LAMPF) to investigate the production and recovery of medically important radioisotopes. Since then spallation production using the high intensity beam at LAMPF has become a significant source of many important radioisotopes. Los Alamos posesses other facilities with isotope production capabilities. Examples are the Omega West Reactor (OWR) and the Van de Graaf Ion Beam Facility (IBF). Historically these facilities have had limited availability for radioisotope production, but recent developments portend a significant radioisotope production mission in the future

  16. Elastic and Inelastic Neutron Scattering with a C7LYC Array

    Science.gov (United States)

    Wilson, G. L.; Brown, T.; Chowdhury, P.; Doucet, E.; Lister, C. J.; D'Olympia, N.; Devlin, M.; Mosby, S.

    2015-10-01

    A scintillator array of 16 1'' ×1'' Cs2LiYCl6 (CLYC) detectors has been commissioned for low energy nuclear science. Standard CLYC crystals detect both gamma rays and neutrons rays with excellent pulse shape discrimination, with thermal neutrons detected via the 6Li(n, α)t reaction. Our discovery of spectroscopy-grade response of CLYC for fast neutrons via the 35Cl(n,p) reaction, with a pulse height resolution of under 10 % in the < 8 MeV range, led to our present array of 7Li enriched C7LYC detectors, where the large thermal neutron response is essentially eliminated. While the intrinsic efficiency of C7LYC for fast neutron detection is low, the array can be placed near the target since a long TOF arm is no longer needed for neutron energy measurement, thus recovering efficiency through increased solid angle coverage. The array was recently deployed at Los Alamos to test its capability in measuring differential scattering cross sections as a function of energy for 56Fe and 238U. The incident energy from a white neutron source was measured via TOF, and the scattered neutron energy via the pulse height. Techniques, analysis and first results will be discussed. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA00013008.

  17. Los Alamos Science, Fall 1983 No. 9

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N G [ed.

    1983-10-01

    Topics covered in this issue include: cellular automata, gene expression, gen-bank and its promise for molecular genetics, and frontiers of supercomputing. Abstracts have been prepared for the individual items. (GHT)

  18. Los Alamos Science, Summer 1983. No. 8

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1983-01-01

    Topics covered include: nuclear and radiochemistry, past and present (tracking the isotopes and migration of radioisotopes in the earth's crust) and nuclear magnetic resonance studies (metabolism as it happens)

  19. LANSCE nuclear science facilities and activities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald O [Los Alamos National Laboratory

    2010-01-01

    Nuclear science activities at the Los Alamos Neutron Science Center (LANSCE) encompass measurements spanning the neutron energy range from thermal to 600 MeV. The neutron sources use spallation of the LANSCE 800 MeV pulsed proton beam with the time-of-flight technique to measure properties of neutron-induced reactions as a function of energy over this large energy range. Current experiments are conducted at the Lujan Center moderated neutron source, the unmoderated WNR target, and with a lead-slowing-down spectrometer. Instruments in use include the DANCE array of BaF{sub 2} scintillators for neutron capture studies, the FIGARO array of liquid scintillator neutron detectors, the GEANIE array of high-resolution HPGe x-ray and gamma-ray detectors, and a number of fission chambers, and other detectors. The LANL capabilities for production and handling of radioactive materials coupled with the neutron sources and detectors at LANSCE are enabling new and challenging measurements for a variety of applications including nuclear energy and nuclear astrophysics. An overview of recent research and examples of results is presented.

  20. Alamos: An International Collaboration to Provide a Space Based Environmental Monitoring Solution for the Deep Space Network

    Science.gov (United States)

    Kennedy, S. O.; Dunn, A.; Lecomte, J.; Buchheim, K.; Johansson, E.; Berger, T.

    2018-02-01

    This abstract proposes the advantages of an externally mounted instrument in support of the human physiology, space biology, and human health and performance key science area. Alamos provides Space-Based Environmental Monitoring capabilities.

  1. List of publications resulting from the Neutron Beam Scattering Programme supported by the Science and Engineering Research Council for 1984

    International Nuclear Information System (INIS)

    1984-12-01

    The paper lists the references of publications resulting from the Neutron Beam Scattering Programme supported by the Science and Engineering Research Council, covering the year 1984, but also including publications from 1983 not given in the previous issue of this listing. (author)

  2. Proton Radiography at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-28

    The proton radiography (pRad) facility at Los Alamos National Lab uses high energy protons to acquire multiple frame flash radiographic sequences at megahertz speeds: that is, it can make movies of the inside of explosions as they happen. The facility is primarily used to study the damage to and failure of metals subjected to the shock forces of high explosives as well as to study the detonation of the explosives themselves. Applications include improving our understanding of the underlying physical processes that drive the performance of the nuclear weapons in the United States stockpile and developing novel armor technologies in collaboration with the Army Research Lab. The principle and techniques of pRad will be described, and examples of some recent results will be shown.

  3. Environmental surveillance at Los Alamos

    International Nuclear Information System (INIS)

    1979-04-01

    This report documents the environmental surveillance program conducted by the Los Alamos Scientific Laboratory (LASL) in 1978. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of the data for 1978 on penetrating radiation, chemical and radiochemical quality of ambient air, surface and groundwater, municipal water supply, soils and sediments, food, and airborne and liquid effluents are included. Comparisons with appropriate standards and regulations or with background levels from natural or other non-LASL sources provide a basis for concluding that environmental effects attributable to LASL operations are minor and cannot be considered likely to result in any hazard to the population of the area. Results of several special studies provide documentation of some unique environmental conditions in the LASL environs

  4. Fragment Angular Distributions in Neutron-Induced Fission of {sup 235}U and {sup 239}Pu using a Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kleinrath, Verena [NIFFTE collaboration, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-01

    Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for {sup 235}U and even more so for {sup 239}Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. In-beam data collected at the Los Alamos Neutron Science Center with a {sup 235}U/{sup 239}Pu target during the 2014 run-cycle will provide angular distributions as a function of incident neutron energy for these isotopes. (LA-UR-1426972). (authors)

  5. Results from the Argonne, Los Alamos, JAERI collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Meadows, J.; Smith, D.; Greenwood, L. [Argonne National Lab., IL (United States); Haight, R. [Los Alamos National Lab., NM (United States); Ikeda, Y.; Konno, C. [Japan Atomic Energy Research Inst., Ibaraki (Japan)

    1993-07-01

    Four sample packets containing elemental Ti, Fe, Ni, Cu, Nb, Ag, Eu, Tb and Hf have been irradiated in three distinct accelerator neutron fields, at Argonne National Laboratory and Los Alamos National Laboratory, USA, and Japan Atomic Energy Research Institute, Tokai, Japan. The acquired experimental data include differential cross sections and integral cross sections for the continuum neutron spectrum produced by 7-MeV deuterons incident on thick Be-metal target. The U-238(n,f) cross section was also measured at 10.3 MeV as a consistency check on the experimental technique. This the third progress report on a project which has been carried out under the auspices of an IAEA Coordinated Research Program entitled ``Activation Cross Sections for the Generation Of Long-lived Radionuclides of Importance in Fusion Reactor Technology``. The present report provides the latest results from this work. Comparison is made between the 14.7-MeV cross-section values obtained from the separate investigations at Argonne and JAERI. Generally, good agreement observed within the experimental errors when consistent sample parameters, radioactivity decay data and reference cross values are employed. A comparison is also made between the experimental results and those derived from calculations using a nuclear model. Experimental neutron information on the Be(d,n) neutron spectrum was incorporated in the comparisons for the integral results. The agreement is satisfactory considering the various uncertainties that are involved.

  6. PREFACE: Workshop on 'Buried' Interface Science with X-rays and Neutrons

    Science.gov (United States)

    Sakurai, Kenji

    2007-06-01

    The 2007 workshop on `buried' interface science with X-rays and neutrons was held at the Institute of Materials Research, Tohoku University, in Sendai, Japan, on July 22-24, 2007. The workshop was the latest in a series held since 2001; Tsukuba (December 2001), Niigata (September 2002), Nagoya (July 2003), Tsukuba (July 2004), Saitama (March 2005), Yokohama (July 2006), Kusatsu (August 2006) and Tokyo (December 2006). The 2007 workshop had 64 participants and 34 presentations. There are increasing demands for sophisticated metrology in order to observe multilayered materials with nano-structures (dots, wires, etc), which are finding applications in electronic, magnetic, optical and other devices. Unlike many other surface-sensitive methods, X-ray and neutron analysis is known for its ability to see even `buried' function interfaces as well as the surface. It is highly reliable in practice, because the information, which ranges from the atomic to mesoscopic scale, is quantitative and reproducible. The non-destructive nature of this type of analytical method ensures that the same specimen can be measured by other techniques. However, we now realize that the method should be upgraded further to cope with more realistic problems in nano sciences and technologies. In the case of the reflectivity technique and other related methods, which have been the main topics in our workshops over the past 7 years, there are three important directions as illustrated in the Figure. Current X-ray methods can give atomic-scale information for quite a large area on a scale of mm2-cm2. These methods can deliver good statistics for an average, but sometimes we need to be able to see a specific part in nano-scale rather than an average structure. In addition, there is a need to see unstable changing structures and related phenomena in order to understand more about the mechanism of the functioning of nano materials. Quick measurements are therefore important. Furthermore, in order to apply

  7. Fission fragment yields and total kinetic energy release in neutron-induced fission of235,238U,and239Pu

    Science.gov (United States)

    Tovesson, F.; Duke, D.; Geppert-Kleinrath, V.; Manning, B.; Mayorov, D.; Mosby, S.; Schmitt, K.

    2018-03-01

    Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239.

  8. Computer-automated neutron activation analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.

    1983-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. 5 references

  9. Neutron physics

    CERN Document Server

    Reuss, Paul

    2008-01-01

    Originally just an offshoot of nuclear physics, neutron physics soon became a branch of physics in its own right. It deals with the movement of neutrons in nuclear reactors and ail the nuclear reactions they trigger there, particularly the fission of heavy nuclei which starts a chain reaction to produce energy. Neutron Physics covers the whole range of knowledge of this complex science, discussing the basics of neutron physics and some principles of neutron physics calculations. Because neutron physics is the essential part of reactor physics, it is the main subject taught to students of Nuclear Engineering. This book takes an instructional approach for that purpose. Neutron Physics is also intended for ail physicists and engineers involved in development or operational aspects of nuclear power.

  10. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  11. Application and outlook of the pulsed neutron beam at J-PARC (3). Introduction of high-pressure science and surface/interface analysis at J-PARC

    International Nuclear Information System (INIS)

    Hattori, Takanori; Akutsu, Kazuhiro; Suzuki, Junichi

    2015-01-01

    At the MLF (Materials and Life Science Experimental Facility) of J-PARC (Japan Proton Accelerator Research Complex), eighteen neutron beam lines equipped with experimental apparatus are in operation and deliver the world highest intensity pulsed neutron beam for fundamental sciences such as solid state physics, materials science, life science, elementary particle physics, nuclear science, and for industrial applications. We introduce studies using an ultra-high pressure neutron diffractometer 'PLANET' for the structure analysis under high-pressure surroundings and a polarized neutron reflectometer 'SHARAKU' for the analysis of surface/interface structure with scales ranging from nano- to submicron-meter. We also introduce briefly all the apparatus for neuron experiments at the MLF. (J.P.N.)

  12. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    Science.gov (United States)

    Shi, Tan; Venuti, Michael; Fellers, Deion; Martin, Sean; Morris, Chris; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the UCN energy, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, this work has the potential to deconvolve the various damage mechanisms. During the irradiation with UCN, NaI detectors are used to monitor the fission events and were calibrated by monitoring fission fragments with an organic scintillator. Alpha spectroscopy of the ejected actinide material is performed in an ion chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this talk, I will discuss our experimental setup and present the preliminary results from the testing of multiple samples. This work has been supported by Los Alamos National Laboratory and Seaborg Summer Research Fellowship.

  13. 'energy plus transmutation' set-up for neutron production and ...

    Indian Academy of Sciences (India)

    . Keywords. ... large (hundreds and thousands of barns) and the neutron absorption should be taken into account during the ..... tiparticle and High Energy Applications, LANL, Los Alamos, New Mexico (2002). [4] V S Barashenkov, Comp. Phys.

  14. Publications of Los Alamos research 1988

    International Nuclear Information System (INIS)

    Varjabedian, K.; Dussart, S.A.; McClary, W.J.; Rich, J.A.

    1989-12-01

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index

  15. Technical Considerations for Alamo Lake Operation

    National Research Council Canada - National Science Library

    Kirby, Ken

    1998-01-01

    .... The analyses specifically addresses three questions of interest to the District: (1) can Alamo Lake be operated to protect against bald eagle nest inundation and if so, what are the downstream impacts; (2...

  16. Publications of Los Alamos research 1988

    Energy Technology Data Exchange (ETDEWEB)

    Varjabedian, K.; Dussart, S.A.; McClary, W.J.; Rich, J.A. (comps.)

    1989-12-01

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index.

  17. Environmental surveillance at Los Alamos during 1994

    International Nuclear Information System (INIS)

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance

  18. Environmental surveillance at Los Alamos during 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  19. Materials accounting at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Erkkila, B.H.; Roberts, N.J.

    1989-01-01

    This presentation gives an overview of the accounting system used at the Los Alamos National Laboratory by the Los Alamos Nuclear Material Accounting and Safeguards System (MASS). This system processes accounting data in real time for bulk materials, discrete items, and materials undergoing dynamic processing. The following topics are covered in this chapter: definitions; nuclear material storage; nuclear material storage; computer system; measurement control program; inventory differences; and current programs and future plans

  20. Trends in instrumentation for environmental radiation measurements at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Hiebert, R.D.; Wolf, M.A.

    1980-01-01

    Recent instruments developed to fulfill radiation monitoring needs at Los Alamos Scientific Laboratory are described. Laboratory instruments that measure tritium gas effluents alone, or in the presence of activated air from D-T fusion reactors are discussed. Fully portable systems for gamma, x-ray, and alpha analyses in the field are described. Also included are descriptions of survey instruments that measure low levels of transuranic contaminants and that measure pulsed-neutron dose rates

  1. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography.

    Science.gov (United States)

    Chen, Julian C-H; Unkefer, Clifford J

    2017-01-01

    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002-2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo-graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.

  2. Comprehensive Amm242 neutron-induced reaction cross sections and resonance parameters

    Science.gov (United States)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Wimer, N.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.

    2017-06-01

    The 242Am metastable isomer's neutron-induced destruction mechanisms were studied at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array with a compact parallel-plate avalanche counter. New Amm242 neutron-capture cross sections were determined from 100 meV to 10 keV, and the absolute scale was set with respect to a concurrent measurement of the well-known Amm242 neutron-induced-fission cross section. The new fission cross section spans an energy range from 100 meV to 1 MeV and was normalized to the ENDF/B-VII.1 evaluated cross section to set the absolute scale. Our Amm242(n ,f ) cross section agrees well with the cross section of Browne et al. [Phys. Rev. C 29, 2188 (1984)], 10.1103/PhysRevC.29.2188 over this large energy interval. The new neutron-capture cross section measurement complements and agrees well with our recent results reported below 1 eV in Buckner et al. [Phys. Rev. C 95, 024610 (2017)], 10.1103/PhysRevC.95.024610. This new work comprises the most comprehensive study of Amm242(n ,γ ) above thermal energy. Neutron-induced resonance energies and parameters were deduced with the sammy R -matrix code for incident neutron energies up to 45 eV, and the new average Γγ is 13 % higher than the evaluated average γ width.

  3. ICF research at Los Alamos

    International Nuclear Information System (INIS)

    Goldstone, P.D.; Ackerhalt, J.R.; Blair, L.S.

    1987-01-01

    It is apparent that short wavelength lasers (<500 nm) provide efficient coupling of laser energy into ICF target compression. KrF lasers (248 nm) operate at near-optimum wavelength and provide other potential benefits to ICF target coupling (e.g., bandwidth) and applications (high wallplug efficiency and relatively low cost). However, no driver technology has yet been shown to meet all of the requirements for a high-gain ICF capability at a currently acceptable cost, and there are still significant uncertainties in the driver-target coupling and capsule hydrodynamics that must be addressed. The Los Alamos research program is designed to assess the potential of KrF lasers for ICF and to determine the feasibility of achieving high gain in the laboratory with a KrF laser driver. Major efforts in KrF laser development and technology, target fabrication and materials development, and laser-matter interaction and hydrodynamics research are discussed. 27 refs., 10 figs

  4. Measurement of neutron-induced reactions on 242mAm

    Science.gov (United States)

    Buckner, M. Q.; Wu, C.-Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration

    2016-09-01

    Neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined relative to a simultaneous measurement of the well-known 242mAm(n,f) cross section. The (n, γ) cross section was measured from thermal to an incident energy of 1 eV. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 and agreed well with the (n,f) cross section reported in the literature from thermal energy to 1 keV. The capture-to-fission ratio was determined from thermal energy to En = 0.1 eV, and it was found to be (n, γ)/(n,f) = 26(4)% compared to 19% from ENDF/B-VII.1. Our latest results will be reported. US Department of Energy by Lawrence Livermore National Security, LLC Contract DE-AC52-07NA27344 and Los Alamos National Security, LLC Contract DE-AC52-06NA25396 and U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development.

  5. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    International Nuclear Information System (INIS)

    Bond, E.M.; Bredeweg, T.A.; Jandel, Marian; Rusev, G.Y.; Moody, W.A.; Arnold, Charles

    2016-01-01

    The preparation of 191 Ir and 193 Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4-1 mg/cm 2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191 Ir and 193 Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475. (author)

  6. Preliminary neutron and X-ray crystallographic studies of equine cyanomethemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Kovalevsky, A.Y.; Fisher, S.Z.; Seaver, S.; Mustyakimov, M.; Sukumar, N.; Langan, P.; Mueser, T.C.; Hanson, B.L. (Toledo); (Cornell); (LANL)

    2010-08-18

    Room-temperature and 100 K X-ray and room-temperature neutron diffraction data have been measured from equine cyanomethemoglobin to 1.7 {angstrom} resolution using a home source, to 1.6 {angstrom} resolution on NE-CAT at the Advanced Photon Source and to 2.0 {angstrom} resolution on the PCS at Los Alamos Neutron Science Center, respectively. The cyanomethemoglobin is in the R state and preliminary room-temperature electron and neutron scattering density maps clearly show the protonation states of potential Bohr groups. Interestingly, a water molecule that is in the vicinity of the heme group and coordinated to the distal histidine appears to be expelled from this site in the low-temperature structure.

  7. Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex III: Neutron Devices and Computational and Sample Environments

    Directory of Open Access Journals (Sweden)

    Kaoru Sakasai

    2017-08-01

    Full Text Available Neutron devices such as neutron detectors, optical devices including supermirror devices and 3He neutron spin filters, and choppers are successfully developed and installed at the Materials Life Science Facility (MLF of the Japan Proton Accelerator Research Complex (J-PARC, Tokai, Japan. Four software components of MLF computational environment, instrument control, data acquisition, data analysis, and a database, have been developed and equipped at MLF. MLF also provides a wide variety of sample environment options including high and low temperatures, high magnetic fields, and high pressures. This paper describes the current status of neutron devices, computational and sample environments at MLF.

  8. The early development of neutron diffraction: science in the wings of the Manhattan Project.

    Science.gov (United States)

    Mason, T E; Gawne, T J; Nagler, S E; Nestor, M B; Carpenter, J M

    2013-01-01

    Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurement of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor. Subsequent work by Wollan and Clifford G. Shull, who joined Wollan's group at Oak Ridge in 1946, laid the foundations for widespread application of neutron diffraction as an important research tool.

  9. Exciting Science being done on the CG-2 Small Angle Neutron Scattering beam line at HFIR

    Science.gov (United States)

    Debeer-Schmitt, Lisa; Bailey, Kathy; Melnichenko, Yuri; Wignall, George; Littrell, Ken

    2010-03-01

    The small-angle neutron scattering (SANS) beam line, CG-2, has been in operation since 2007. CG-2 has been optimized so that structures from 0.5 to 200 nm can be thoroughly investigated. HFIR's cold source places the flux at CG-2 among the best in the world. Along with high flux, many varied sample environments can easily be integrated into the beam line which gives the user a versatile temperature range from 1.5 K to 1000K. In addition there are two cryomagents (horizontal 4.5 T and vertical 7 T), pressure cells and load frames available to users allowing for the availability of multiple configurations of experimental setups. Due to all the above equipment and the flux at CG-2, there have been many diverse and intriguing scientific developments. One such outcome is the study of flux- line lattices found in Type-II superconductors including the highly touted iron pnictides. Besides superconductors, other science studied on CG2 ranges from molecular self-assembly and interactions in complex fluids to phase separation, grain growth and orientation in metallurgical alloys.

  10. Optimization of a neutron transmission beamline applied to materials science for the CAB linear accelerator

    International Nuclear Information System (INIS)

    Ramirez, S; Santisteban, J.R

    2009-01-01

    The Neutrons and Reactors Laboratory (NYR) of CAB (Centro Atomico Bariloche) is equipped with a linear electron accelerator (LINAC - Linear particle accelerator). This LINAC is used as a neutron source from which two beams are extracted to perform neutron transmission and dispersion experiments. Through these experiments, structural and dynamic properties of materials can be studied. The neutron transmission experiments consist in a collimated neutron beam which interacts with a sample and a detector behind the sample. Important information about the microstructural characteristics of the material can be obtained from the comparison between neutron spectra before and after the interaction with the sample. In the NYR Laboratory, cylindrical samples of one inch of diameter have been traditionally studied. Nonetheless, there is a great motivation for doing systematic research on smaller and with different geometries samples; particularly sheets and samples for tensile tests. Hence, in the NYR Laboratory it has been considered the possibility of incorporating a neutron guide into the existent transmission line. According to all mentioned above, the main objective of this work consisted in the optimization of the flight transmission tube optics of neutrons. This optimization not only improved the existent line but also contributed to an election criterion for the neutron guide acquisition. [es

  11. Proceedings of the 182nd basic science seminar (The workshop on neutron structural biology ) 'New frontiers of structural biology advanced by solution scattering'

    International Nuclear Information System (INIS)

    Fujiwara, Satoru

    2001-03-01

    182nd advanced science seminar (the workshop on neutron structural biology) was held in February 9-10, 2000 at Tokai. Thirty-six participants from universities, research institutes, and private companies took part in the workshop, and total of 24 lectures were given. This proceedings collects abstracts, the figures and tables, which the speakers used in their lectures. The proceedings contains two reviews from the point of view of x-ray and neutron scatterings, and six subjects (21 papers) including neutron and x-ray scattering in the era of structure genomics, structural changes detected with solution scattering, a new way in structural biology opened by neutron crystallography and neutron scattering, x-ray sources and detectors, simulation and solution scattering, and neutron sources and detectors. (Kazumata, Y.)

  12. Digital acquisition development for neutron induced fission studies at LANSCE

    Science.gov (United States)

    Richman, Debra; O'Donnell, John; Couture, Aaron; Mosby, Shea; Wender, Steve

    2013-10-01

    The Los Alamos Neutron Science Center (LANSCE) is a neutron time of flight facility with a diverse group of experiments dedicated to the study of neutron induced reactions. A powerful proton LINAC is used to produce multiple pulsed neutron beams for which monitoring is required to track the neutron flux and energy distribution for each pulse. Digital DAQ techniques lend themselves well to beam monitoring and many of the experiments. Significant effort is being put into transitioning several traditional analog DAQ systems to state of the art digital systems. The Irradiation of Chips and Electronics (ICE House) and the Total Kinetic Energy of Fission (TKE) experiments are both transitioning to digital for the fall 2013 LANSCE run cycle. These new DAQ systems were built using the CAEN VME digitizer family, and both systems will benefit from reduced module count and zero deadtime. The TKE experiment utilizes FPGA firmware to streamline the acquisition system, as well as provide additional data for further analysis. Details of the implementation process along with preliminary data from both experiments will be presented.

  13. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Olga [Los Alamos National Laboratory

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  14. Neutron stars in the light of SKA: Data, statistics, and science

    Indian Academy of Sciences (India)

    8

    2016-09-10

    Sep 10, 2016 ... This is not intended to be an extensive review about the use of statistics in neutron star astrophysics: Through the case studies presented here, we hope to convey the challenges involved in devising or adopting statistical methods in the light of the questions being investigated. 2 Taxonomy of neutron stars.

  15. Total Kinetic Energy and Fragment Mass Distribution of Neutron-Induced Fission of U-233

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Daniel James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schmitt, Kyle Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tovesson, Fredrik [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-29

    Properties of fission in U-233 were studied at the Los Alamos Neutron Science Center (LANSCE) at incident neutron energies from thermal to 40 MeV at both the Lujan Neutron Scattering Center flight path 12 and at WNR flight path 90-Left from Dec 2016 to Jan 2017. Fission fragments are observed in coincidence using a twin ionization chamber with Frisch grids. The average total kinetic energy (TKE) released from fission and fragment mass distributions are calculated from observations of energy deposited in the detector and conservation of mass and momentum. Accurate experimental measurements of these parameters are necessary to better understand the fission process and obtain data necessary for calculating criticality. The average TKE released from fission has been well characterized for several isotopes at thermal neutron energy, however, few measurements have been made at fast neutron energies. This experiment expands on previous successful experiments using an ionization chamber to measure TKE and fragment mass distributions of U-235, U-238, and Pu-239. This experiment requires the full spectrum of neutron energies and can therefore only be performed at a small number of facilities in the world. The required full neutron energy spectrum is obtained by combining measurements from WNR 90L and Lujan FP12 at LANSCE.

  16. A preliminary time-of-flight neutron diffraction study of Streptomyces rubiginosus D-xylose isomerase.

    Science.gov (United States)

    Hanson, B Leif; Langan, Paul; Katz, Amy K; Li, Xinmin; Harp, Joel M; Glusker, Jenny P; Schoenborn, Benno P; Bunick, Gerard J

    2004-02-01

    The metalloenzyme D-xylose isomerase forms well ordered crystals that diffract X-rays to ultrahigh resolution (diffraction data has as yet been unable to differentiate between several postulated mechanisms that describe the catalytic activity of this enzyme. Neutrons, with their greater scattering sensitivity to H atoms, could help to resolve this by determining the protonation states within the active site of the enzyme. As the first step in the process of investigating the mechanism of action of D-xylose isomerase from Streptomyces rubiginosus using neutron diffraction, data to better than 2.0 A were measured from the unliganded protein at the Los Alamos Neutron Science Center Protein Crystallography Station. Measurement of these neutron diffraction data represents several milestones: this is one of the largest biological molecules (a tetramer, MW approximately 160 000 Da, with unit-cell lengths around 100 A) ever studied at high resolution using neutron diffraction. It is also one of the first proteins to be studied using time-of-flight techniques. The success of the initial diffraction experiments with D-xylose isomerase demonstrate the power of spallation neutrons for protein crystallography and should provide further impetus for neutron diffraction studies of biologically active and significant proteins. Further data will be measured from the enzyme with bound substrates and inhibitors in order to provide the specific information needed to clarify the catalytic mechanism of this enzyme.

  17. Publications of Los Alamos Research, 1983

    International Nuclear Information System (INIS)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Rodriguez, L.L.

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them

  18. Publications of Los Alamos research 1980

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, C.A.; Willis, J.K. (comps.)

    1981-09-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1980. Papers published in 1980 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted-even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was pubished more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-laboratory reports, journal articles, books, chapters of books, conference papers published either separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  19. Publications of Los Alamos Research, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Rodriguez, L.L. (comps.)

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  20. Publications of Los Alamos Research 1982

    International Nuclear Information System (INIS)

    McClary, W.J.; Rodriguez, L.L.; Sheridan, C.J.

    1983-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1982. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassfiication of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them

  1. Nuclear accident dosimetry studies at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Casson, W.H.; Buhl, T.E.; Upp, D.L.

    1995-01-01

    Two critical assemblies have been characterized at the Los Alamos Critical Experiments Facility (LACEF) for use in testing nuclear accident dosimeters and related devices. These device, Godiva IV and SHEBA II, have very different characteristics in both operation and emitted neutron energy spectra. The Godiva assembly is a bare metal fast burst device with a hard spectrum. This spectrum can be modified by use of several shields including steel, concrete, and plexiglas. The modified spectra vary in both average neutron energy and in the specific distribution of the neutron energies in the intermediate energy range. This makes for a very favorable test arrangement as the response ratios between different activation foils used in accident dosimeters are significantly altered such as the ratio between gold, copper, and sulfur elements. The SHEBA device is a solution assembly which has both a slow ramp and decay period and a much softer spectrum. The uncertainly introduced in the response of fast decay foils such as indium can therefore be evaluated into the test results. The neutron energy spectrum for each configuration was measured during low power operations with a multisphere system. These measurements were extended to high dose pulsed operation by use of TLDs moderated TLDs, and special activation techniques. The assemblies were used in the testing of several accident dosimetry devices in studies modeled after the Nuclear Accident Dosimetry Studies that were conducted at Oak Ridge National Laboratory for about 25 years using the Health Physics Research Reactor. It is our intention to conduct these studies approximately annually for the evaluation of the nuclear accident dosimeter systems currently in use within the DOE, alternative systems used internationally, and new dosimeter designs being developed or considered for field application. Participation in selected studies will be open to all participants

  2. Environmental surveillance at Los Alamos during 1976

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    This report documents the environmental monitoring program at the Los Alamos Scientific Laboratory (LASL) in 1976. Data are presented for concentrations of radioactivity measured in air, ground and surface waters, sediments, soils, and foodstuffs, and are compared with relevant U.S. Energy Research and Development Administration guides and/or data from other reporting periods. Levels of external penetrating radiation measured in the LASL environs are given. The average whole-body radiation dose to residents of Los Alamos County resulting from LASL operations is calculated. Chemical qualities of surface and ground waters in the LASL environs have been determined and compared to applicable standards. Results of related environmental studies are summarized.

  3. Environmental surveillance at Los Alamos during 1975

    Energy Technology Data Exchange (ETDEWEB)

    Apt, K.E.; Lee, V.J. (comps.)

    1976-04-01

    This report documents the CY 1975 environmental monitoring program of the Los Alamos Scientific Laboratory (LASL). Data are presented for concentrations of radioactivity measured in air, ground and surface waters, sediments, soils, and foodstuffs, and are compared with relevant U.S. Energy Research and Development Administration guides and/or data from other reporting periods. Levels of external penetrating radiation measured in the LASL environs are given. The average whole-body radiation dose to residents of Los Alamos County resulting from LASL operations is calculated. Chemical qualities of surface and ground waters in the LASL environs have been determined and compared to applicable standards. Results of related environmental studies are summarized.

  4. Environmental surveillance at Los Alamos during 1975

    International Nuclear Information System (INIS)

    Apt, K.E.; Lee, V.J.

    1976-04-01

    This report documents the CY 1975 environmental monitoring program of the Los Alamos Scientific Laboratory (LASL). Data are presented for concentrations of radioactivity measured in air, ground and surface waters, sediments, soils, and foodstuffs, and are compared with relevant U.S. Energy Research and Development Administration guides and/or data from other reporting periods. Levels of external penetrating radiation measured in the LASL environs are given. The average whole-body radiation dose to residents of Los Alamos County resulting from LASL operations is calculated. Chemical qualities of surface and ground waters in the LASL environs have been determined and compared to applicable standards. Results of related environmental studies are summarized

  5. Environmental surveillance at Los Alamos during 1976

    International Nuclear Information System (INIS)

    1977-04-01

    This report documents the environmental monitoring program at the Los Alamos Scientific Laboratory (LASL) in 1976. Data are presented for concentrations of radioactivity measured in air, ground and surface waters, sediments, soils, and foodstuffs, and are compared with relevant U.S. Energy Research and Development Administration guides and/or data from other reporting periods. Levels of external penetrating radiation measured in the LASL environs are given. The average whole-body radiation dose to residents of Los Alamos County resulting from LASL operations is calculated. Chemical qualities of surface and ground waters in the LASL environs have been determined and compared to applicable standards. Results of related environmental studies are summarized

  6. Precision Polarization of Neutrons

    Science.gov (United States)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  7. The early development of neutron diffraction: science in the wings of the Manhattan Project

    International Nuclear Information System (INIS)

    Mason, T. E.; Gawne, T. J.; Nagler, S. E.; Nestor, M. B.; Carpenter, J. M.

    2013-01-01

    Early neutron diffraction experiments performed in 1944 using the first nuclear reactors are described. Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurement of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor. Subsequent work by Wollan and Clifford G. Shull, who joined Wollan’s group at Oak Ridge in 1946, laid the foundations for widespread application of neutron diffraction as an important research tool

  8. The neutron

    International Nuclear Information System (INIS)

    Cheetham, A.K.

    1990-01-01

    In 1932, when Chadwick obtained the first unambiguous evidence for the existence of the neutron, his discovery confirmed the widely held belief that there existed a particle with zero charge and a mass similar to that of the proton. Indeed, as early as 1920, Lord Rutherford had suggested such a possibility in a lecture to the Royal Society. The discovery of the neutron had an immediate and dramatic impact in several areas. The nucleus, which had hitherto been regarded, somewhat unsatisfactorily, as a combination of protons and electrons, was now seen as comprising of protons and neutrons. This in turn lead to a proper understanding of the nature of isotopes and provided a fresh basis for nuclear theories. This paper examines the nature and properties of the neutron, and describes some facets of its remarkable role in contemporary science and technology. The aspects covered are its properties, the production and detection of neutrons, the reactions between neutrons and nuclei, fission reactions, neutron scattering, pulsed neutron scattering and neutron spectroscopy. (author)

  9. LANSCE (Los Alamos Neutron Scattering Center) target calculations

    International Nuclear Information System (INIS)

    Grisham, D.L.; Brown, R.D.

    1989-01-01

    The LANSCE target presently operates at a beam current of 30 μA. The authors present here the results of the finite-element calculations for the temperatures and stresses in the present target operated at 100 μA. The calculations were run using the ABAQUS finite-element code. All finite-element codes require as input both the boundary conditions for the material being heated and such material properties as the thermal conductivity, specific heat, and the elastic modulus. For the LANSCE target, the boundary conditions involve knowing the power deposition from the beam, and the heat-transfer coefficients between the tungsten-alloy cylinder and the cooling water. The target material is a powder metallurgy alloy of tungsten, iron, and nickel (96.2% W, 3.8% Fe and Ni). Although the properties of pure tungsten are well known, the properties of this particular alloy have not been found in the literature. 5 refs., 6 figs

  10. Materials performance experience at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    There is a growing, but not yet substantial, data base for materials performance at spallation neutron sources. Specially designed experiments using medium energy protons (650 MeV) have been conducted at the Proton Irradiation Experiment (PIREX) facility at the Swiss Nuclear Institute accelerator (SIN). Specially designed experiments using 760-800 MeV copper target have been completed at the Los Alamos Spallation Radiation Effects Facility (LASREF) at Los Alamos Meson Physics Facility (LAMPF). An extensive material testing program was initiated at LASREF in support of the German spallation neutron source (SNQ) project, before it terminated in 1985.

  11. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    Science.gov (United States)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  12. Next Generation Gamma/Neutron Detectors for Planetary Science., Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gamma ray and neutron spectroscopy are well established techniques for determining the chemical composition of planetary surfaces, and small cosmic bodies such as...

  13. Next Generation Gamma/Neutron Detectors for Planetary Science., Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Gamma-ray and neutron spectroscopy are well established techniques for determining the chemical composition of planetary surfaces, and small cosmic bodies such as...

  14. Nuclear science experiments with a bright neutron source from fusion reactions on the OMEGA Laser System

    Science.gov (United States)

    Forrest, C. J.; Knauer, J. P.; Schroeder, W. U.; Glebov, V. Yu.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Sickles, M.; Stoeckl, C.; Szczepanski, J.

    2018-04-01

    Subnanosecond impulses of 1013 to 1014 neutrons, produced in direct-drive laser inertial confinement fusion implosions, have been used to irradiate deuterated targets at the OMEGA Laser System (Boehly et al., 1997). The target compounds include heavy water (D2O) and deuterated benzene (C6D6). Yields and energy spectra of neutrons from D(n,2n)p to study the breakup reaction have been measured at a forward angle of θlab = 3 .5∘ ± 3.5° with a sensitive, high-dynamic-range neutron time-of-flight spectrometer to infer the double-differential breakup cross section d2 σ/dE d Ω for 14-MeV D-T fusion neutrons.

  15. Device for Writing the Time Tail from Spallation Neutron Pulses

    International Nuclear Information System (INIS)

    Langan, P.; Schoenborn, Benno P.; Daemen, L.L.

    2001-01-01

    Recent work at Los Alamos Neutron Science Center (LANSCE), has shown that there are large gains in neutron beam intensity to be made by using coupled moderators at spallation neutron sources. Most of these gains result from broadening the pulse-width in time. However the accompanying longer exponential tail at large emission times can be a problem in that it introduces relatively large beam-related backgrounds at high resolutions. We have designed a device that can reshape the moderated neutron beam by cutting the time-tail so that a sharp time resolution can be re-established without a significant loss in intensity. In this work the basic principles behind the tail-cutter and some initial results of Monte Carlo simulations are described. Unwanted neutrons in the long time-tail are diffracted out of the transmitted neutron beam by a nested stack of aperiodic multi-layers, rocking at the same frequency as the source. Nested aperiodic multi-layers have recently been used at X-ray sources and as band-pass filters in quasi-Laue neutron experiments at reactor neutron sources. Optical devices that rock in synchronization with a pulsed neutron beam are relatively new but are already under construction at LANSCE. The tail-cutter described here is a novel concept that uses existing multi-layer technology in a new way for spallation neutrons. Coupled moderators in combination with beam shaping devices offer the means of increasing flux whilst maintaining a sharp time distribution. A prototype device is being constructed for the protein crystallography station at LANSCE. The protein crystallography station incorporates a water moderator that has been judiciously coupled in order to increase the flux over neutron energies that are important to structural biology (3-80meV). This development in moderator design is particularly important because protein crystallography is flux limited and because conventional ambient water and cold hydrogen moderators do not provide relatively

  16. Publications of Los Alamos research, 1985

    International Nuclear Information System (INIS)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Dussart, S.A.

    1986-11-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1985, including laboratory reports, papers released as non-laboratory reports, journal articles, books, conference papers, papers published in congrssional hearings, theses, and US patents

  17. Proceedings of the Los Alamos neutrino workshop

    International Nuclear Information System (INIS)

    Boehm, F.; Stephenson, G.J. Jr.

    1982-08-01

    A workshop on neutrino physics was held at Los Alamos from June 8 to 12, 1981. The material presented has been provided in part by the organizers, in part by the chairmen of the working sessions. Closing date for contributions was October 1981

  18. Early history of NMR at Los Alamos

    International Nuclear Information System (INIS)

    Jackson, J.A.

    1985-11-01

    Nuclear magnetic resonance (NMR) spectroscopy has developed into an important research tool in chemistry. More recently, NMR imaging and in vivo spectroscopy promise to produce a revolution in medicine and biochemistry. Early experiments at Los Alamos led to DOE programs involving stable isotopes of importance to biology and to medicine. These events are briefly recounted. 2 refs

  19. A Sailor in the Los Alamos Navy

    Energy Technology Data Exchange (ETDEWEB)

    Judd, D. L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-12-20

    As part of the War Department’s Manhattan Engineer District (MED), Los Alamos was an Army installation during World War II, complete with a base commander and a brace of MPs. But it was a unique Army installation, having more civilian then military personnel. Even more unique was the work performed by the civilian population, work that required highly educated scientists and engineers. As the breadth, scope, and complexity of the Laboratory’s work increased, more and more technically educated and trained personnel were needed. But, the manpower needs of the nation’s war economy had created a shortage of such people. To meet its manpower needs, the MED scoured the ranks of the Army for anyone who had technical training and reassigned these men to its laboratories, including Los Alamos, as part of its Special Engineer Detachment (SED). Among the SEDs assigned to Los Alamos was Val Fitch, who was awarded the Nobel Prize in Physics in 1980. Another was Al Van Vessem, who helped stack the TNT for the 100 ton test, bolted together the Trinity device, and rode shotgun with the bomb has it was driven from Los Alamos to ground zero.

  20. Proceedings of the Los Alamos neutrino workshop

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, F.; Stephenson, G.J. Jr. (comps.)

    1982-08-01

    A workshop on neutrino physics was held at Los Alamos from June 8 to 12, 1981. The material presented has been provided in part by the organizers, in part by the chairmen of the working sessions. Closing date for contributions was October 1981.

  1. Induction inserts at the Los Alamos PSR

    International Nuclear Information System (INIS)

    King-Yuen Ng

    2002-01-01

    Ferrite-loaded induction tuners installed in the Los Alamos Proton Storage Ring have been successful in compensating space-charge effects. However, the resistive part of the ferrite introduces unacceptable microwave instability and severe bunch lengthening. An effective cure was found by heating the ferrite cores up to ∼ 130 C. An understanding of the instability and cure is presented

  2. In-plant experience with passive-active shufflers at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, J.R.; Hsue, F.; Rinard, P.M.

    1995-09-01

    Two Canberra-built passive-active {sup 252}Cf shufflers of Los Alamos hardware and software design have been installed at Los Alamos National Laboratory, one at the Chemistry and Metallurgy Research (CMR) Facility at TA-3 and the other at the Plutonium Facility (PF-4) at TA-55. These instruments fulfill important safeguards and accountability measurement requirements for special nuclear material (SNM) in matrices too dense or otherwise not appropriate for typical gamma-ray or other neutron counting techniques. They support many programmatic requirements including measurements of transuranic (TRU) waste and inventory verification. This paper describes the instrument performance under plant conditions with various background radiations on well-characterized standards to determine long-term stability and establish a calibration. Results are also reported on verification measurements of previously unmeasured inventory items in various matrices and geometric distributions. Preliminary investigative measurements are presented on standards of mixed uranium and plutonium oxide (MOX).

  3. In-plant experience with passive-active shufflers at Los Alamos

    International Nuclear Information System (INIS)

    Hurd, J.R.; Hsue, F.; Rinard, P.M.

    1995-01-01

    Two Canberra-built passive-active 252 Cf shufflers of Los Alamos hardware and software design have been installed at Los Alamos National Laboratory, one at the Chemistry and Metallurgy Research (CMR) Facility at TA-3 and the other at the Plutonium Facility (PF-4) at TA-55. These instruments fulfill important safeguards and accountability measurement requirements for special nuclear material (SNM) in matrices too dense or otherwise not appropriate for typical gamma-ray or other neutron counting techniques. They support many programmatic requirements including measurements of transuranic (TRU) waste and inventory verification. This paper describes the instrument performance under plant conditions with various background radiations on well-characterized standards to determine long-term stability and establish a calibration. Results are also reported on verification measurements of previously unmeasured inventory items in various matrices and geometric distributions. Preliminary investigative measurements are presented on standards of mixed uranium and plutonium oxide (MOX)

  4. Neutron diffraction

    International Nuclear Information System (INIS)

    James, M.; Howard, C.J.; Kennedy, S.

    1999-01-01

    Diffraction methods, especially X-ray diffraction, are widely used in materials science. Neutron diffraction is in many ways similar to X-ray diffraction, but is also complementary to the X-ray technique so that in some cases it yields information not accessible using X-rays. Successes of neutron diffraction include the elucidation of the crystal structures of high temperature superconductors and materials that display colossal magnetoresistance, the phase analysis of zirconia engineering ceramics, in depth stress determination in composites, successful determination of the structures of metal hydrides, transition metal polymer complexes and the determination of magnetic structure. A brief description of current studies, using neutron diffraction is given

  5. Seismic vulnerability study Los Alamos Meson Physics Facility (LAMPF)

    International Nuclear Information System (INIS)

    Salmon, M.; Goen, L.K.

    1995-01-01

    The Los Alamos Meson Physics Facility (LAMPF), located at TA-53 of Los Alamos National Laboratory (LANL), features an 800 MeV proton accelerator used for nuclear physics and materials science research. As part of the implementation of DOE Order 5480.25 and in preparation for DOE Order 5480.28, a seismic vulnerability study of the structures, systems, and components (SSCs) supporting the beam line from the accelerator building through to the ends of die various beam stops at LAMPF has been performed. The study was accomplished using the SQUG GIP methodology to assess the capability of the various SSCs to resist an evaluation basis earthquake. The evaluation basis earthquake was selected from site specific seismic hazard studies. The goals for the study were as follows: (1) identify SSCs which are vulnerable to seismic loads; and (2) ensure that those SSCs screened during die evaluation met the performance goals required for DOE Order 5480.28. The first goal was obtained by applying the SQUG GIP methodology to those SSCS represented in the experience data base. For those SSCs not represented in the data base, information was gathered and a significant amount of engineering judgment applied to determine whether to screen the SSC or to classify it as an outlier. To assure the performance goals required by DOE Order 5480.28 are met, modifications to the SQUG GIP methodology proposed by Salmon and Kennedy were used. The results of this study ire presented in this paper

  6. Total neutron scattering: The key to the local and medium range ...

    Indian Academy of Sciences (India)

    Los Alamos National Laboratory, Lujan Neutron Scattering Center, Mailstop H805,. Los Alamos, NM 87545, USA. E-mail: ... 1b shows chemical short-range order (SRO), in this case the preferred ordering along the x- and ... Here b is the scattering length, the angle brackets denote the average over the sample and dσc/dΩ is ...

  7. High-pressure neutron diffraction studies at LANSCE

    International Nuclear Information System (INIS)

    Zhao, Yusheng; Zhang, Jianzhong; Xu, Hongwu; Lokshin, Konstantin A.; He, Duanwei; Qian, Jiang; Pantea, Cristian; Daemen, Luke L.; Vogel, Sven C.; Ding, Yang; Xu, Jian

    2010-01-01

    The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials science, and earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at the Los Alamos Neutron Science Center (LANSCE) to conduct in situ high-P-T neutron diffraction experiments. We have developed a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high P. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometry. More recently, we have developed high-P low-T gas/liquid cells in conjunction with neutron diffraction. These techniques enable in situ and real-time examination of gas uptake/release processes and allow accurate, time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equations of state, structural phase transitions, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation/decomposition kinetics of methane, CO 2 and hydrogen hydrate clathrates, and hydrogen/CO 2 adsorption of inclusion compounds such as metal-organic frameworks (MOFs). The aim of our research is to accurately map out phase relations and determine structural parameters (lattice constants, atomic positions, atomic thermal parameters, bond lengths, bond angles, etc.) in the P-T-X space. We are developing further high-P-T technology with a new 2000-ton press, TAPLUS-2000, and a ZIA (Deformation-DIA type) cubic anvil package to routinely achieve pressures up to 20 GPa and temperatures up to 2000 K. The design of a dedicated high-P neutron beamline, LAPTRON, is also underway for simultaneous high-P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high

  8. Distinguishing new science from calibration effects in the electron-volt neutron spectrometer VESUVIO at ISIS

    Energy Technology Data Exchange (ETDEWEB)

    Chatzidimitriou-Dreismann, C.A., E-mail: dreismann@chem.tu-berlin.de [Institute of Chemistry (Sekr. C2), Technical University of Berlin, D-10623 Berlin (Germany); Gray, E. MacA., E-mail: e.gray@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane 4111 (Australia); Blach, T.P., E-mail: t.blach@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane 4111 (Australia)

    2012-06-01

    The 'standard' procedure for calibrating the Vesuvio eV neutron spectrometer at the ISIS neutron source, forming the basis for data analysis over at least the last decade, was recently documented in considerable detail by the instrument's scientists. Additionally, we recently derived analytic expressions of the sensitivity of recoil peak positions with respect to fight-path parameters and presented neutron-proton scattering results that together called into question the validity of the 'standard' calibration. These investigations should contribute significantly to the assessment of the experimental results obtained with Vesuvio. Here we present new results of neutron-deuteron scattering from D{sub 2} in the backscattering angular range ({theta}>90 Degree-Sign ) which are accompanied by a striking energy increase that violates the Impulse Approximation, thus leading unequivocally the following dilemma: (A) either the 'standard' calibration is correct and then the experimental results represent a novel quantum dynamical effect of D which stands in blatant contradiction of conventional theoretical expectations; (B) or the present 'standard' calibration procedure is seriously deficient and leads to artificial outcomes. For Case (A), we allude to the topic of attosecond quantum dynamical phenomena and our recent neutron scattering experiments from H{sub 2} molecules. For Case (B), some suggestions as to how the 'standard' calibration could be considerably improved are made.

  9. A New Measurement of Neutron Induced Fission Cross Sections

    Science.gov (United States)

    Magee, Joshua; Niffte Collaboration

    2017-09-01

    Neutron induced fission cross sections of actinides are of great interest in nuclear energy and stockpile stewardship. Traditionally, measurements of these cross sections have been made with fission chambers, which provide limited information on the actual fragments, and ultimately result in uncertainties on the order of several percent. The Neutron Induced Fission ragment Tracking Experiment (NIFFTE) collaboration designed and built a fission Time Projection Chamber (fissionTPC), which provides additional information on these processes, through 3-dimensional tracking, improved particle identification, and in-situ profiles of target and beam non-uniformities. Ultimately, this should provide sub-percent measurements of (n,f) cross-sections. During the 2016 run cycle, measurements of the 238U(n,f)/235U(n,f) cross section shape was performed at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility. An overview of the fission TPC will be given, as well as these recently reported results. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. 242Pu absolute neutron-capture cross section measurement

    Science.gov (United States)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.

    2017-09-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ) cross section could be set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ) cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ) En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ) cross section.

  11. 242Pu absolute neutron-capture cross section measurement

    Directory of Open Access Journals (Sweden)

    Buckner M.Q.

    2017-01-01

    Full Text Available The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ cross section could be set according to the known 239Pu(n,f resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ cross section.

  12. Time-of-flight neutron diffraction study of bovine γ-chymotrypsin at the Protein Crystallography Station.

    Science.gov (United States)

    Lazar, Louis M; Fisher, S Zoe; Moulin, Aaron G; Kovalevsky, Andrey; Novak, Walter R P; Langan, Paul; Petsko, Gregory A; Ringe, Dagmar

    2011-05-01

    The overarching goal of this research project is to determine, for a subset of proteins, exact hydrogen positions using neutron diffraction, thereby improving H-atom placement in proteins so that they may be better used in various computational methods that are critically dependent upon said placement. In order to be considered applicable for neutron diffraction studies, the protein of choice must be amenable to ultrahigh-resolution X-ray crystallography, be able to form large crystals (1 mm(3) or greater) and have a modestly sized unit cell (no dimension longer than 100 Å). As such, γ-chymotrypsin is a perfect candidate for neutron diffraction. To understand and probe the role of specific active-site residues and hydrogen-bonding patterns in γ-chymotrypsin, neutron diffraction studies were initiated at the Protein Crystallography Station (PCS) at Los Alamos Neutron Science Center (LANSCE). A large single crystal was subjected to H/D exchange prior to data collection. Time-of-flight neutron diffraction data were collected to 2.0 Å resolution at the PCS with ~85% completeness. Here, the first time-of-flight neutron data collection from γ-chymotrypsin is reported.

  13. Ground tests with active neutron instrumentation for the planetary science missions

    International Nuclear Information System (INIS)

    Litvak, M.L.; Mitrofanov, I.G.; Sanin, A.B.; Jun, I.; Kozyrev, A.S.; Krylov, A.; Shvetsov, V.N.; Timoshenko, G.N.; Starr, R.; Zontikov, A.

    2015-01-01

    We present results of experimental work performed with a spare flight model of the DAN/MSL instrument in a newly built ground test facility at the Joint Institute for Nuclear Research. This instrument was selected for the tests as a flight prototype of an active neutron spectrometer applicable for future landed missions to various solid solar system bodies. In our experiment we have fabricated simplified samples of planetary material and tested the capability of neutron activation methods to detect thin layers of water/water ice lying on top of planetary dry regolith or buried within a dry regolith at different depths

  14. Electron cloud instabilities in the Proton Storage Ring and Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    M. Blaskiewicz

    2003-01-01

    Full Text Available Electron cloud instabilities in the Los Alamos Proton Storage Ring and those foreseen for the Oak Ridge Spallation Neutron Source are examined theoretically, numerically, and experimentally.

  15. Experience with confirmation measurement at Los Alamos

    International Nuclear Information System (INIS)

    Marshall, R.S.; Wagner, R.P.; Hsue, F.

    1985-01-01

    Confirmation measurements are used at Los Alamos in support of incoming and outgoing shipment accountibility and for support of both at 235 U and Pu inventories. Statistical data are presented to show the consistency of measurements on items of identical composition and on items measured at two facilitis using similar instruments. A description of confirmation measurement techniques used in support of 235 U and Pu inventories and a discussion on the ability of the measurements to identify items with misstated SNM are given

  16. Experience with confirmation measurement at Los Alamos

    International Nuclear Information System (INIS)

    Marshall, R.S.; Wagner, R.P.

    1985-01-01

    Confirmation measurements are used at Los Alamos in support of incoming and outgoing shipment accountability and for support of both 235 U and Pu inventories. Statistical data are presented to show the consistency of measurements on items of identical composition and on items measured at two facilities using similar instruments. A description of confirmation measurement techniques used in support of 235 U and Pu inventories and a discussion on the ability of the measurements to identify items with misstated SNM are given

  17. Amphibians and Reptiles of Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    1999-10-01

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  18. Los Alamos transuranic waste size reduction facility

    International Nuclear Information System (INIS)

    Briesmeister, A.; Harper, J.; Reich, B.; Warren, J.L.

    1982-01-01

    To facilitate disposal of transuranic (TRU) waste, Los Alamos National Laboratory designed and constructed the Size Reduction Facility (SRF) during the period 1977 to 1981. This report summarizes the engineering development, installation, and early test operations of the SRF. The facility incorporates a large stainless steel enclosure fitted with remote handling and cutting equipment to obtain an estimated 4:1 volume reduction of gloveboxes and other bulky metallic wastes

  19. The Los Alamos accelerator code group

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Billen, J.H.; Ryne, R.D.; Takeda, Harunori; Young, L.M.

    1995-01-01

    The Los Alamos Accelerator Code Group (LAACG) is a national resource for members of the accelerator community who use and/or develop software for the design and analysis of particle accelerators, beam transport systems, light sources, storage rings, and components of these systems. Below the authors describe the LAACG's activities in high performance computing, maintenance and enhancement of POISSON/SUPERFISH and related codes and the dissemination of information on the INTERNET

  20. The Los Alamos accelerator code group

    Energy Technology Data Exchange (ETDEWEB)

    Krawczyk, F.L.; Billen, J.H.; Ryne, R.D.; Takeda, Harunori; Young, L.M.

    1995-05-01

    The Los Alamos Accelerator Code Group (LAACG) is a national resource for members of the accelerator community who use and/or develop software for the design and analysis of particle accelerators, beam transport systems, light sources, storage rings, and components of these systems. Below the authors describe the LAACG`s activities in high performance computing, maintenance and enhancement of POISSON/SUPERFISH and related codes and the dissemination of information on the INTERNET.

  1. Critical Infrastructure Protection- Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bofman, Ryan K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-24

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  2. Los Alamos transuranic waste size reduction facility

    International Nuclear Information System (INIS)

    Briesmeister, A.; Harper, J.; Reich, B.; Warren, J.L.

    1982-01-01

    A transuranic (TRU) Waste Size Reduction Facility (SRF) was designed and constructed at the Los Alamos National Laboratory during the period of 1977 to 1981. This paper summarizes the engineering development, installation, and early test operations of the SRF. The facility incorporates a large stainless steel enclosure fitted with remote handling and cutting equipment to obtain an estimated 4:1 volume reduction of gloveboxes and other bulky metallic wastes

  3. Neutron resonance spectroscopy of 106Pd and 108Pd from 20 to 2000 eV

    International Nuclear Information System (INIS)

    Crawford, B.E.; Roberson, N.R.; Bowman, J.D.; Knudson, J.N.; Penttilae, S.I.; Seestrom, S.J.; Yuan, V.W.; Delheij, P.P.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Lowie, L.Y.; Mitchell, G.E.; Stephenson, S.L.; Postma, H.; Sharapov, E.I.

    1998-01-01

    Parity nonconserving asymmetries have been measured in p-wave resonances of 106 Pd and 108 Pd. The data analysis requires knowledge of the neutron resonance parameters. Transmission and capture γ-ray yields were measured for E n =20 - 2000 eV with the time-of-flight method at the Los Alamos Neutron Science Center (LANSCE). A total of 28 resonances in 106 Pd and 32 resonances in 108 Pd were studied. The resonance parameters for 106 Pd are new for all except one resonance. In 108 Pd six new resonances were observed and the precision improved for many of the resonance parameters. A Bayesian analysis was used to assign orbital angular momentum for the resonances studied. copyright 1998 The American Physical Society

  4. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  5. International workshop on cold neutron sources

    International Nuclear Information System (INIS)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources

  6. A Los Alamos concept for accelerator transmutation of waste and energy production (ATW)

    International Nuclear Information System (INIS)

    1990-01-01

    This document contains the diagrams presented at the ATW (Accelerator Transmutation of Waste and Energy Production) External Review, December 10-12, 1990, held at Los Alamos National Laboratory. Included are the charge to the committee and the presentations for the committee's review. Topics of the presentations included an overview of the concept, LINAC technology, near-term application -- high-level defense wastes (intense thermal neutron source, chemistry and materials), advanced application of the ATW concept -- fission energy without a high-level waste stream (overview, advanced technology, and advanced chemistry), and a summary of the research issues

  7. Inventory verification measurements using neutron multiplicity counting

    International Nuclear Information System (INIS)

    Ensslin, N.; Foster, L.A.; Harker, W.C.; Krick, M.S.; Langner, D.G.

    1998-01-01

    This paper describes a series of neutron multiplicity measurements of large plutonium samples at the Los Alamos Plutonium Facility. The measurements were corrected for bias caused by neutron energy spectrum shifts and nonuniform multiplication, and are compared with calorimetry/isotopics. The results show that multiplicity counting can increase measurement throughput and yield good verification results for some inventory categories. The authors provide recommendations on the future application of the technique to inventory verification

  8. A furnace with rotating load frame for in situ high temperature deformation and creep experiments in a neutron diffraction beam line.

    Science.gov (United States)

    Reiche, H M; Vogel, S C; Mosbrucker, P; Larson, E J; Daymond, M R

    2012-05-01

    A resistive furnace combined with a load frame was built that allows for in situ neutron diffraction studies of high temperature deformation, in particular, creep. A maximum force of 2700 N can be applied at temperatures up to 1000 °C. A load control mode permits studies of, e.g., creep or phase transformations under applied uni-axial stress. In position control, a range of high temperature deformation experiments can be achieved. The examined specimen can be rotated up to 80° around the vertical compression axis allowing texture measurements in the neutron time-of-flight diffractometer HIPPO (High Pressure - Preferred Orientation). We present results from the successful commissioning, deforming a Zr-2.5 wt.% Nb cylinder at 975 °C. The device is now available for the user program of the HIPPO diffractometer at the LANSCE (Los Alamos Neutron Science Center) user facility.

  9. A furnace with rotating load frame for in situ high temperature deformation and creep experiments in a neutron diffraction beam line

    International Nuclear Information System (INIS)

    Reiche, H. M.; Vogel, S. C.; Larson, E. J.; Mosbrucker, P.; Daymond, M. R.

    2012-01-01

    A resistive furnace combined with a load frame was built that allows for in situ neutron diffraction studies of high temperature deformation, in particular, creep. A maximum force of 2700 N can be applied at temperatures up to 1000 deg. C. A load control mode permits studies of, e.g., creep or phase transformations under applied uni-axial stress. In position control, a range of high temperature deformation experiments can be achieved. The examined specimen can be rotated up to 80 deg. around the vertical compression axis allowing texture measurements in the neutron time-of-flight diffractometer HIPPO (High Pressure - Preferred Orientation). We present results from the successful commissioning, deforming a Zr-2.5 wt.% Nb cylinder at 975 deg. C. The device is now available for the user program of the HIPPO diffractometer at the LANSCE (Los Alamos Neutron Science Center) user facility.

  10. Installation of passive-active shufflers at Los Alamos plant environments

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, J.R.; Hsue, F.; Rinard, P.M.; Wachter, J.R. [Los Alamos National Lab., NM (United States); Davidson, C. [Canberra Industries, Inc., Meriden, CT (United States)

    1994-08-01

    Two Canberra-built passive-active {sup 252}Cf shufflers of Los Alamos hardware and software design have been installed and are presently undergoing calibration and certification at Los Alamos National Laboratory. These instruments fulfill important safeguards and accountability measurement requirements for special nuclear material in matrices too dense or otherwise not appropriate for typical gamma-ray techniques. The ability of the shuffler to obtain precise assays under conditions of intense passive emissions of neutrons and gamma rays is a valuable asset in plant environments. This paper reports on the procurement process and the various steps involved in the installation of two shufflers at Los Alamos, one at the Chemical Metallurgical Research (CMR) Building Waste Assay Facility at TA-3 and the other at the PF4 Plutonium Facility at TA-55. Details are given on the certification procedure including the development of standards, various expected matrices, and calibration. Some safety issues are addressed, and some preliminary performance characteristics are presented based on measured background rates in the plant environments.

  11. Installation of passive-active shufflers at Los Alamos plant environments

    International Nuclear Information System (INIS)

    Hurd, J.R.; Hsue, F.; Rinard, P.M.; Wachter, J.R.; Davidson, C.

    1994-01-01

    Two Canberra-built passive-active 252 Cf shufflers of Los Alamos hardware and software design have been installed and are presently undergoing calibration and certification at Los Alamos National Laboratory. These instruments fulfill important safeguards and accountability measurement requirements for special nuclear material in matrices too dense or otherwise not appropriate for typical gamma-ray techniques. The ability of the shuffler to obtain precise assays under conditions of intense passive emissions of neutrons and gamma rays is a valuable asset in plant environments. This paper reports on the procurement process and the various steps involved in the installation of two shufflers at Los Alamos, one at the Chemical Metallurgical Research (CMR) Building Waste Assay Facility at TA-3 and the other at the PF4 Plutonium Facility at TA-55. Details are given on the certification procedure including the development of standards, various expected matrices, and calibration. Some safety issues are addressed, and some preliminary performance characteristics are presented based on measured background rates in the plant environments

  12. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.; Kinman, William Scott; LaMont, Stephen Philip; Podlesak, David; Tandon, Lav

    2016-01-01

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  13. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dion, Heather M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  14. The application of neutron diffraction to materials science problems in the Canadian nuclear industry

    International Nuclear Information System (INIS)

    Holden, T.M.; Root, J.H.; Rogge, R.B.; Clarke, A.P.

    1995-01-01

    The main advantage of neutron diffraction over X-ray diffraction is that thermal neutrons easily pass through, for example, 25 mm of steel, so that measurements can be made at depth in engineering components. A program at Chalk River to investigate the industrial applications of neutron diffraction began with measurement on over-rolled Zr-2.5Nb pressure tubes, a topic of major concern in the eighties. It was quickly realized that neutrons could provide measurements of residual stress accurate enough to be of real interest. Over the ensuing period, major contributions have been made in measuring stresses and crystallographic texture in components for the nuclear industry including end-fittings, steam generator tubing, pressure tubes and calandria tubes, and weldments. In addition to work for the nuclear industry, there have been many applications in the aerospace, automotive, defence and pipeline industries in Canada and throughout the world. Residual stresses arise because of inhomogeneous plastic deformation of the material. Inhomogeneous plastic deformation not only occurs on a macroscopic scale but also on the scale of the grain size. The stresses that occur on this scale are called intergranular of type=II stresses. These intergranular effects, taken with the strong crystallographic alignment in zirconium alloy tubing, determine the growth of components in the reactor environment. Systematic studies of the origin of intergranular residual stresses arising from thermal effects and plasticity effects were carried out on Zircaloy-2 and Zr-2.5Nb alloys which have led to a theoretical understanding of component growth. Finally, a very recent texture scanning technique was able to shed light on the microstructure of zirconium alloy components. (author) 17 refs., 14 figs

  15. High intensity proton linac activities at Los Alamos

    International Nuclear Information System (INIS)

    Rusnak, B.; Chan, K.C.; Campbell, B.

    1998-01-01

    High-current proton linear accelerators offer an attractive alternative for generating the intense neutron fluxes needed for transmutations technologies, tritium production and neutron science. To achieve the fluxes required for tritium production, a 100-mA, 1700-MeV cw proton accelerator is being designed that uses superconducting cavities for the high-energy portion of the linac, from 211 to 1,700 MeV. The development work supporting the linac design effort is focused on three areas: superconducting cavity performance for medium-beta cavities at 700 MHz, high power rf coupler development, and cryomodule design. An overview of the progress in these three areas is presented

  16. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Michael Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-10

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  17. Decommissioning the Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I)

    International Nuclear Information System (INIS)

    Harper, J.R.; Garde, R.

    1981-11-01

    The Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I) was decommissioned at the Los Alamos National Laboratory, Los Alamos, New Mexico, in 1980. The LAMPRE I was a sodium-cooled reactor built to develop plutonium fuels for fast breeder applications. It was retired in the mid-1960s. This report describes the decommissioning procedures, the health physics programs, the waste management, and the costs for the operation

  18. UC/Los Alamos Entrepreneurial Postdoctoral Fellowship Pilot Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Mariann R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clow, Shandra Deann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    The UC/Los Alamos Entrepreneurial Postdoctoral Fellowship Pilot Program (Pilot) for existing postdoctoral researchers at Los Alamos National Laboratory (Los Alamos) to gain skills in entrepreneurship and commercializing technology as part of their postdoctoral experience. This program will incorporate training and mentoring during the first 6-month period, culminating in a focused 6-month Fellowship aimed at creating a new business in Northern New Mexico.

  19. Spectral unfolding of fast neutron energy distributions

    Science.gov (United States)

    Mosby, Michelle; Jackman, Kevin; Engle, Jonathan

    2015-10-01

    The characterization of the energy distribution of a neutron flux is difficult in experiments with constrained geometry where techniques such as time of flight cannot be used to resolve the distribution. The measurement of neutron fluxes in reactors, which often present similar challenges, has been accomplished using radioactivation foils as an indirect probe. Spectral unfolding codes use statistical methods to adjust MCNP predictions of neutron energy distributions using quantified radioactive residuals produced in these foils. We have applied a modification of this established neutron flux characterization technique to experimentally characterize the neutron flux in the critical assemblies at the Nevada National Security Site (NNSS) and the spallation neutron flux at the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL). Results of the unfolding procedure are presented and compared with a priori MCNP predictions, and the implications for measurements using the neutron fluxes at these facilities are discussed.

  20. Absolute measurement of the 242Pu neutron-capture cross section

    Science.gov (United States)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Dance Collaboration

    2016-04-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n ,γ ) cross section was made over the incident neutron energy range from thermal to ≈6 keV, and the absolute scale of the (n ,γ ) cross section was set according to the known 239Pu(n ,f ) resonance at En ,R=7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n ,γ ) cross section at the En ,R=2.68 eV resonance is within 2.4 % of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30 % lower than the evaluated data at En≈1 keV and are approximately 2 σ away from the previous measurement at En≈20 keV.

  1. A novel design for scintillator-based neutron and gamma imaging in inertial confinement fusion

    Science.gov (United States)

    Geppert-Kleinrath, Verena; Cutler, Theresa; Danly, Chris; Madden, Amanda; Merrill, Frank; Tybo, Josh; Volegov, Petr; Wilde, Carl

    2017-10-01

    The LANL Advanced Imaging team has been providing reliable 2D neutron imaging of the burning fusion fuel at NIF for years, revealing possible multi-dimensional asymmetries in the fuel shape, and therefore calling for additional views. Adding a passive imaging system using image plate techniques along a new polar line of sight has recently demonstrated the merit of 3D neutron image reconstruction. Now, the team is in the process of designing a new active neutron imaging system for an additional equatorial view. The design will include a gamma imaging system as well, to allow for the imaging of carbon in the ablator of the NIF fuel capsules, constraining the burning fuel shape even further. The selection of ideal scintillator materials for a position-sensitive detector system is the key component for the new design. A comprehensive study of advanced scintillators has been carried out at the Los Alamos Neutron Science Center and the OMEGA Laser Facility in Rochester, NY. Neutron radiography using a fast-gated CCD camera system delivers measurements of resolution, light output and noise characteristics. The measured performance parameters inform the novel design, for which we conclude the feasibility of monolithic scintillators over pixelated counterparts.

  2. LAMPF II workshop, Los Alamos National Laboratory, Los Alamos, New Mexico, February 1-4, 1982

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1982-01-01

    This report contains the proceedings of the first LAMPF II Workshop held at Los Alamos February 1 to 4, 1982. Included are the talks that were available in written form. The conclusion of the participants was that there are many exciting areas of physics that will be addressed by such a machine

  3. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  4. Materials accounting at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Roberts, N.J.; Erkkila, B.H.; Kelso, H.F.

    1985-01-01

    The materials accounting system at Los Alamos has evolved from an ''80-column'' card system to a very sophisticated near-real-time computerized nuclear material accountability and safeguards system (MASS). The present hardware was designed and acquired in the late 70's and is scheduled for a major upgrade in Fiscal Year 1986. The history of the system from 1950 through the DYMAC of the late 70's up to the present will be discussed. The philosophy of the system along with the details of the system will be covered. This system has addressed the integrated problems of management, control, and accounting of nuclear material successfully

  5. Environmental Programs at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Patricia [Los Alamos National Laboratory

    2012-07-11

    Summary of this project is: (1) Teamwork, partnering to meet goals - (a) Building on cleanup successes, (b) Solving legacy waste problems, (c) Protecting the area's environment; (2) Strong performance over the past three years - (a) Credibility from four successful Recovery Act Projects, (b) Met all Consent Order milestones, (c) Successful ramp-up of TRU program; (3) Partnership between the National Nuclear Security Administration's Los Alamos Site Office, DOE Carlsbad Field Office, New Mexico Environment Department, and contractor staff enables unprecedented cleanup progress; (4) Continued focus on protecting water resources; and (5) All consent order commitments delivered on time or ahead of schedule.

  6. Fluctuations in three Los Alamos experiments

    International Nuclear Information System (INIS)

    Wright, B.L.

    1983-01-01

    We review results from three magnetic fusion experiments at Los Alamos: the ZT-40M, a reversed-field toroidal pinch; the CTX, a spheromak produced by a magnetized coaxial source; and the FRX-C, a field-reversed configuration generated by theta-pinch techniques. These experiments share the common feature that a major fraction of the confining magnetic field is associated with currents carried by the plasma. We emphasize here the important role that fluctuations play in the maintenance and evolution of these configurations

  7. The Los Alamos foil implosion project

    International Nuclear Information System (INIS)

    Brownell, J.; Parker, J.; Bartsch, R.; Benage, J.; Bowers, R.; Cochrane, J.; Forman, P.; Goforth, J.; Greene, A.; Kruse, H.

    1993-01-01

    The goal of the Los Alamos foil implosion project is to produce an intense (>100 TW), multi-megajoule, laboratory soft x-ray source for material studies and fusion experiments. The concept involves the implosion of annular, current-carrying, cylindrical metallic plasmas via their self-magnetic forces. The project features inductive storage systems using both capacitor banks and high explosive-driven flux compression generators as prime energy sources. Fast opening switches are employed to shorten the electrical pulses. The program will be described and activities to date will be summarized

  8. Los Alamos, Hiroshima, Nagasaki - a personal recollection

    International Nuclear Information System (INIS)

    Morrison, P.

    1995-01-01

    The author, a physicist participating in the Manhattan Project, recalls his experiences and work in the laboratories at the time which marked the onset of the nuclear era, the construction of the first uranium and plutonium bombs in Los Alamos, and the hidious effects shown to the world by the nuclear bombing of Japan. His thoughts and memories presented 50 years after the nuclear destruction of Hiroshima and Nagasaki, and now that the Cold War has ended, call for a global ban of nuclear weapons. (orig.) [de

  9. Optics code development at Los Alamos

    International Nuclear Information System (INIS)

    Mottershead, C.T.; Lysenko, W.P.

    1988-01-01

    This paper is an overview of part of the beam optics code development effort in the Accelerator Technology Division at Los Alamos National Laboratory. The aim of this effort is to improve our capability to design advanced beam optics systems. The work reported is being carried out by a collaboration of permanent staff members, visiting consultants, and student research assistants. The main components of the effort are: building a new framework of common supporting utilities and software tools to facilitate further development; research and development on basic computational techniques in classical mechanics and electrodynamics; and evaluation and comparison of existing beam optics codes, and support for their continuing development. 17 refs

  10. DOE Los Alamos National Laboratory – PV Feasibility Assessment, 2015 Update, NREL Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Witt, Monica Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This report summarizes solar and wind potential for Los Alamos National Laboratory (LANL). This report is part of the “Los Alamos National Laboratory and Los Alamos County Renewable Generation” study.

  11. Neutron physics

    International Nuclear Information System (INIS)

    Beckurts, K.H.; Wirtz, K.

    1974-01-01

    This textbook consists of four sections which deal with the following subjects: 1. Production of neutrons and their interactions with the nuclei; neutron sources; neutron detectors; cross-section measurements. 2. Theory of neutron interactions with macroscopic media; neutron slowing down; space distribution of moderated neutrons; neutron thermalization; neutron scattering. 3. Radioactive probe measurements of thermal neutron fluxes; activation by means of epithermal neutrons; threshold detectors of fast neutrons; neutron calibration. 4. Neutron energy; slowing down kernels; neutron age; diffusion length and absorption of neutrons

  12. CICE, The Los Alamos Sea Ice Model

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-12

    The Los Alamos sea ice model (CICE) is the result of an effort to develop a computationally efficient sea ice component for a fully coupled atmosphere–land–ocean–ice global climate model. It was originally designed to be compatible with the Parallel Ocean Program (POP), an ocean circulation model developed at Los Alamos National Laboratory for use on massively parallel computers. CICE has several interacting components: a vertical thermodynamic model that computes local growth rates of snow and ice due to vertical conductive, radiative and turbulent fluxes, along with snowfall; an elastic-viscous-plastic model of ice dynamics, which predicts the velocity field of the ice pack based on a model of the material strength of the ice; an incremental remapping transport model that describes horizontal advection of the areal concentration, ice and snow volume and other state variables; and a ridging parameterization that transfers ice among thickness categories based on energetic balances and rates of strain. It also includes a biogeochemical model that describes evolution of the ice ecosystem. The CICE sea ice model is used for climate research as one component of complex global earth system models that include atmosphere, land, ocean and biogeochemistry components. It is also used for operational sea ice forecasting in the polar regions and in numerical weather prediction models.

  13. Los Alamos Waste Management Cost Estimation Model

    International Nuclear Information System (INIS)

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs

  14. 'Big science' forum gets a broader role and warns of a need for more neutron sources

    CERN Document Server

    Dickson, D

    1998-01-01

    After a positive external review, the intergovernmental Megascience Forum set up by OECD to discuss issues concerning funding of major science facilities, is now likely to continue its work under a new name and with a wider mandate (1 page).

  15. Neutrons and synchrotron radiation in engineering materials science from fundamentals to applications

    CERN Document Server

    Schreyer, Andreas; Clemens, Helmut; Mayer, Svea

    2017-01-01

    Retaining its proven concept, the second edition of this ready reference specifically addresses the need of materials engineers for reliable, detailed information on modern material characterization methods. As such, it provides a systematic overview of the increasingly important field of characterization of engineering materials with the help of neutrons and synchrotron radiation. The first part introduces readers to the fundamentals of structure-property relationships in materials and the radiation sources suitable for materials characterization. The second part then focuses on such characterization techniques as diffraction and scattering methods, as well as direct imaging and tomography. The third part presents new and emerging methods of materials characterization in the field of 3D characterization techniques like three-dimensional X-ray diffraction microscopy. The fourth and final part is a collection of examples that demonstrate the application of the methods introduced in the first parts to probl...

  16. Linac design study for an intense neutron-source driver

    International Nuclear Information System (INIS)

    Lynch, M.T.; Browman, A.; DeHaven, R.; Jameson, R.; Jason, A.; Neuschaefer, G.; Tallerico, P.; Regan, A.

    1993-01-01

    The 1-MW spallation-neutron source under design study at Los Alamos is driven by a linac-compressor-ring scheme that utilizes a large portion of the existing Los Alamos Meson Physics Facility (LAMPF) linac, as well as the facility infrastructure. The project is referred to as the National Center for Neutron Research (NCNR). A second phase of the proposal will upgrade the driver power to 5 MW. A description of the 1-MW scheme is given in this paper. In addition, the upgrade path to the substantial increase of beam power required for the 5 MW scenario is discussed

  17. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  18. Fission-fragment total kinetic energy and mass yields for neutron-induced fission of 235U and 238U with En =200 keV - 30 MeV

    Science.gov (United States)

    Duke, D. L.; Tovesson, F.; Brys, T.; Geppert-Kleinrath, V.; Hambsch, F.-J.; Laptev, A.; Meharchand, R.; Manning, B.; Mayorov, D.; Meierbachtol, K.; Mosby, S.; Perdue, B.; Richman, D.; Shields, D.; Vidali, M.

    2017-09-01

    The average Total Kinetic Energy (TKE) release and fission-fragment yields in neutron-induced fission of 235U and 238U was measured using a Frisch-gridded ionization chamber. These observables are important nuclear data quantites that are relevant to applications and for informing the next generation of fission models. The measurements were performed a the Los Alamos Neutron Science Center and cover En = 200 keV - 30 MeV. The double-energy (2E) method was used to determine the fission-fragment yields and two methods of correcting for prompt-neutron emission were explored. The results of this study are correlated mass and TKE data.

  19. Fission-fragment total kinetic energy and mass yields for neutron-induced fission of 235U and 238U with En =200 keV – 30 MeV

    Directory of Open Access Journals (Sweden)

    Duke D.L.

    2017-01-01

    Full Text Available The average Total Kinetic Energy (TKE release and fission-fragment yields in neutron-induced fission of 235U and 238U was measured using a Frisch-gridded ionization chamber. These observables are important nuclear data quantites that are relevant to applications and for informing the next generation of fission models. The measurements were performed a the Los Alamos Neutron Science Center and cover En = 200 keV – 30 MeV. The double-energy (2E method was used to determine the fission-fragment yields and two methods of correcting for prompt-neutron emission were explored. The results of this study are correlated mass and TKE data.

  20. Neutron structural biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1999-01-01

    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  1. Los Alamos National Laboratory scientific interactions with the Former Soviet Union

    International Nuclear Information System (INIS)

    White, P.C.

    1995-01-01

    The Los Alamos National Laboratory has a wide-ranging set of scientific interactions with technical institutes in the Former Soviet Union (FSU). Many of these collaborations, especially those in pure science, began long before the end of the Cold War and the breakup of the Soviet Union. This overview will, however, focus for the most part on those activities that were initiated in the last few years. This review may also serve both to indicate the broad spectrum of US government interests that are served, at least in part, through these laboratory initiatives, and to suggest ways in which additional collaborations with the FSU may be developed to serve similar mutual interests of the countries involved. While most of the examples represent programs carried out by Los Alamos, they are also indicative of similar efforts by Lawrence Livermore National Laboratory and Sandia National Laboratories. There are indeed other Department of Energy (DOE) laboratories, and many of them have active collaborative programs with FSU institutes. However, the laboratories specifically identified above are those with special nuclear weapons responsibilities, and thus have unique technical capabilities to address certain issues of some importance to the continuing interests of the United States and the states of the Former Soviet Union. Building on pre-collapse scientific collaborations and contacts, Los Alamos has used the shared language of science to build institutional and personal relationships and to pursue common interests. It is important to understand that Los Alamos, and the other DOE weapons laboratories are federal institutions, working with federal funds, and thus every undertaking has a definite relationship to some national objective. The fertile areas for collaboration are obviously those where US and Russian interests coincide

  2. Los Alamos Transuranic Waste Size Reduction Facility

    International Nuclear Information System (INIS)

    Harper, J.; Warren, J.

    1987-06-01

    The Los Alamos Transuranic (TRU) Waste Size Reduction Facility (SRF) is a production oriented prototype. The facility is operated to remotely cut and repackage TRU contaminated metallic wastes (e.g., glove boxes, ducting and pipes) for eventual disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The resulting flat sections are packaged into a tested Department of Transportation Type 7A metal container. To date, the facility has successfully processed stainless steel glove boxes (with and without lead shielding construction) and retention tanks. We have found that used glove boxes generate more cutting fumes than do unused glove boxes or metal plates - possibly due to deeply embedded chemical residues from years of service. Water used as a secondary fluid with the plasma arc cutting system significantly reduces visible fume generation during the cutting of used glove boxes and lead-lined glove boxes. 2 figs., 1 tab

  3. Los Alamos Transuranic Waste Size Reduction Facility

    International Nuclear Information System (INIS)

    Harper, J.; Warren, J.

    1987-01-01

    The Los Alamos Transuranic (TRU) Waste Size Reduction Facility (SRF) is a production oriented prototype completed in 1981 and later modified during 1986 to enhance production. The facility is operated to remotely cut (with a plasma arc torch) and repackage TRU contaminated metallic wastes (e.g., glove boxes, ducting and pipes) for eventual disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The resulting flat sections are packaged into a tested Department of Transportation Type 7A metal container. To date, the facility has successfully processed stainless steel glove boxes (with and without lead shielding construction) and retention tanks. It was found that used glove boxes generate more cutting fumes than do unused glove boxes or metal plates - possibly due to deeply embedded chemical residues from years of service. Water used as a secondary fluid with the plasma arc cutting system significantly reduces visible fume generation during the cutting of used glove boxes and lead-lined glove boxes

  4. Environmental surveillance at Los Alamos during 1992

    International Nuclear Information System (INIS)

    Kohen, K.; Stoker, A.; Stone, G.

    1994-07-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory during 1992. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1992 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, laboratory employees, or the environment

  5. Los Alamos controlled-air incineration studies

    International Nuclear Information System (INIS)

    Koenig, R.A.; Warner, C.L.

    1983-01-01

    Current regulations of the Environmental Protection Agency (EPA) require that PCBs in concentrations greater than 500 ppM be disposed of in EPA-permitted incinerators. Four commercial incineration systems in the United States have EPA operating permits for receiving and disposing of concentrated PCBs, but none can accept PCBs contaminated with nuclear materials. The first section of this report presents an overview of an EPA-sponsored program for studying PCB destruction in the large-scale Los Alamos controlled-air incinerator. A second major FY 1983 program, sponsored by the Naval Weapons Support Center, Crane, Indiana, is designed to determine operating conditions that will destroy marker smoke compounds without also forming polycyclic aromatic hydrocarbons (PAHs), some of which are known or suspected to be carcinogenic. We discuss the results of preliminary trial burns in which various equipment and feed formulations were tested. We present qualitative analyses for PAHs in the incinerator offgas as a result of these tests

  6. Environmental surveillance at Los Alamos during 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    This report documents the environmental surveillance program conducted by the Los Alamos Scientific Laboratory (LASL) in 1979. Routine monitoring for radiation and radioactive or chemical substances was conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of the data for 1979 on penetrating radiation, chemical and radiochemical quality of ambient air, surface and ground water, municipal water supply, soils and sediments, food, and airborne and liquid effluents are included. Comparisons with appropriate standards and regulations or with background levels from natural or other non-LASL sources provide a basis for concluding that environmental effects attributable to LASL operations are minor and cannot be considered likely to result in any hazard to the population of the area. Results of several special studies provide documentation of some unique environmental conditions in the LASL environs.

  7. Environmental surveillance at Los Alamos during 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory (LANL or the Laboratory) during 1995. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring result to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1995 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment.

  8. Environmental surveillance at Los Alamos during 1990

    International Nuclear Information System (INIS)

    1992-03-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1990. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1990 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment

  9. Environmental surveillance at Los Alamos during 1979

    International Nuclear Information System (INIS)

    1980-04-01

    This report documents the environmental surveillance program conducted by the Los Alamos Scientific Laboratory (LASL) in 1979. Routine monitoring for radiation and radioactive or chemical substances was conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of the data for 1979 on penetrating radiation, chemical and radiochemical quality of ambient air, surface and ground water, municipal water supply, soils and sediments, food, and airborne and liquid effluents are included. Comparisons with appropriate standards and regulations or with background levels from natural or other non-LASL sources provide a basis for concluding that environmental effects attributable to LASL operations are minor and cannot be considered likely to result in any hazard to the population of the area. Results of several special studies provide documentation of some unique environmental conditions in the LASL environs

  10. Environmental surveillance at Los Alamos during 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kohen, K.; Stoker, A.; Stone, G. [and others

    1994-07-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory during 1992. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1992 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, laboratory employees, or the environment.

  11. Optical engineering at Los Alamos: a history

    International Nuclear Information System (INIS)

    Brixner, B.

    1983-01-01

    Optical engineering at Los Alamos, which began in 1943, has continued because scientific researchers usually want more resolving power than commercially available optical instruments provide. In addition, in-house engineering is often advantageous - when the technology for designing and making improved instrumentation is available locally - because of our remote location and the frequent need for accurate data. As a consequence, a number of improved research cameras and lens systems have been developed locally - especially for explosion and implosion photography, but even for oscilloscope photography. The development of high-speed cameras led to the ultimate in practical high-speed rotating mirrors and to the invention of a rapid, precise, and effective lens design procedure that has produced more than a hundred lens system that gives improved imaging in special conditions of use. Representative examples of this work are described

  12. Los Alamos advanced free-electron laser

    Science.gov (United States)

    Chan, K. C. D.; Kraus, R. H.; Ledford, J.; Meier, K. L.; Meyer, R. E.; Nguyen, D.; Sheffield, R. L.; Sigler, F. L.; Young, L. M.; Wang, T. S.; Wilson, W. L.; Wood, R. L.

    1992-07-01

    Los Alamos researchers are building a free-electron laser (FEL) for industrial, medical, and research applications. This FEL, which will incorporate many of the new technologies developed over the last decade, will be compact, robust, and user-friendly. Electrons produced by a photocathode will be accelerated to 20 MeV by a high-brightness accelerator and transported by permanent-magnet quadrupoles and dipoles. The resulting electron beam will have an excellent instantaneous beam quality of 10πmm mrad in transverse emittance and 0.3% in energy spread at a peak current up to 300 A. Including operation at higher harmonics, the laser wavelength extends from 3.7 μm to 0.4 μm.

  13. Environmental surveillance at Los Alamos during 1984

    International Nuclear Information System (INIS)

    1985-04-01

    This report describes the environmental surveillance program conducted by the Los Alamos National Laboratory during 1984. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of data for 1984 are included on external penetrating radiation; on the chemical and radiochemical quality of ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and on the quantities of airborne emissions and liquid effluents. Comparisons with appropriate standards, regulations, and background levels from natural or other non-Laboratory sources provide a basis for concluding that environmental effects attributable to Laboratory operations are insignificant and are not considered hazardous to the population of the area or Laboratory employees. 8 refs., 38 figs., 57 tabs

  14. Environmental surveillance at Los Alamos during 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1987. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1987 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not pose a threat to the public, Laboratory employees, or the environment. 113 refs., 33 figs., 120 tabs.

  15. Environmental surveillance at Los Alamos during 1985

    International Nuclear Information System (INIS)

    1986-04-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1985. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of possible undesirable trends. Results and interpretation of data for 1985 cover: external penetrating radiation; chemical and radiochemical quality of ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; quantities of airborne emissions and liquid effluents; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels from natural or other non-Laboratory sources provide the basis for concluding that environmental effects attributable to Laboratory operations are insignificant and are not considered hazardous to the population of the area or Laboratory employees

  16. Environmental surveillance at Los Alamos during 1986

    International Nuclear Information System (INIS)

    1987-04-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1986. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit eartly identification of potentially undesirable trends. Results and interpertation of data for 1986 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparison with appropriate standards, regulations, and backgound levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not impact the public, Laboratory employees, or the environment. 52 refs., 32 figs., 117 tabs

  17. Environmental surveillance at Los Alamos during 1989

    International Nuclear Information System (INIS)

    1990-12-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1989. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1989 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment. 58 refs., 31 figs., 39 tabs

  18. Environmental surveillance at Los Alamos during 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1989. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1989 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment. 58 refs., 31 figs., 39 tabs.

  19. Environmental surveillance at Los Alamos during 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory (LANL or the Laboratory) during 1995. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring result to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1995 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment

  20. Los Alamos Plutonium Facility Waste Management System

    International Nuclear Information System (INIS)

    Smith, K.; Montoya, A.; Wieneke, R.; Wulff, D.; Smith, C.; Gruetzmacher, K.

    1997-01-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facility on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process

  1. Environmental surveillance at Los Alamos during 1983

    International Nuclear Information System (INIS)

    1984-04-01

    This report documents the environmental surveillance program conducted by the Los Alamos National Laboratory during 1983. Routine monitoring for radiation and radioactive or chemical substances is conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of data for 1983 are included on external penetrating radiation; on the chemical and radiochemical quality of ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and on the quantities of airborne emissions and liquid effluents. Comparisons with appropriate standards, regulations, and background levels from natural or other non-Laboratory sources provide a basis for concluding that environmental effects attributable to Laboratory operations are insignificant and are not considered hazardous to the population of the area of Laboratory employees. 61 references, 34 figures, 22 tables

  2. Environmental surveillance at Los Alamos during 1987

    International Nuclear Information System (INIS)

    1988-05-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1987. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1987 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not pose a threat to the public, Laboratory employees, or the environment. 113 refs., 33 figs., 120 tabs

  3. Environmental surveillance at Los Alamos during 1991

    International Nuclear Information System (INIS)

    Dewart, J.; Kohen, K.L.

    1993-08-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1991. Routine monitoring for radiation and for radioactive and chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1991 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment

  4. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative

  5. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.

  6. Environmental surveillance at Los Alamos during 2005

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (LANL or the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.IA, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory's efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory's major environmental programs. Chapter 2 reports the Laboratory's compliance status for 2005. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, Air; Chapters 5 and 6, Water and Sediments; Chapter 7, Soils; and Chapter 8, Foodstuffs and Biota) in a format to meet the needs of a general and scientific audience. Chapter 9, new for this year, provides a summary of the status of environmental restoration work around LANL. A glossary and a list ofacronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory's technical areas and their associated programs, and Appendix D provides web links to more information.

  7. Environmental surveillance at Los Alamos during 2008

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gallagher, Pat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hjeresen, Denny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Isaacson, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johson, Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, Terry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Paulson, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2009-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Programs Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information.

  8. Environmental surveillance at Los Alamos during 2009

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poff, Ben [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hjeresen, Denny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Isaacson, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, Terry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Paulson, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Salzman, Sonja [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2009. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (air in Chapter 4; water and sediments in Chapters 5 and 6; soils in Chapter 7; and foodstuffs and biota in Chapter 8) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. The new Chapter 10 describes the Laboratory’s environmental stewardship efforts and provides an overview of the health of the Rio Grande. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical

  9. Search for neutrons from deuterated palladium subject to high electrical currents

    International Nuclear Information System (INIS)

    Taylor, S.F.; Claytor, T.N.; Tuggle, D.G.; Jones, S.E.

    1994-01-01

    Tritium has been detected evolving from samples of deuteriated palladium wires and powders subject to pulsed high voltage at Los Alamos. They wanted to measure whether these samples were emitting neutrons. The idea of pulsing current through the wires and powders was to drive the deuterium in and out by rapid electrical heating. With promising tritium results in hand, the experiments were prepared at Los Alamos, and then taken to BYU and run in the neutron detector located in a tunnel in Provo canyon under 35 m of rock and dirt overburden. The neutrons detector and sample setup are described. Results including total neutron counts, time distributions, and an indication of the energy distributions are discussed. The results do not provide compelling evidence of neutron production, but are not inconsistent with earlier measurements of neutrons and tritium. Difficulties in explaining the difference in tritium and neutron measurements are also discussed. Plans for further work are presented

  10. In situ deformation apparatus for time-of-flight neutron diffraction: Texture development of polycrystalline ice Ih

    International Nuclear Information System (INIS)

    McDaniel, S.; Bennett, K.; Durham, W. B.; Waddington, E. D.

    2006-01-01

    This article documents a new in situ deformation apparatus built for neutron diffraction investigations of polycrystalline materials in low-temperature environments and the first experiment in which it was used. We performed texture analysis of fine-grained polycrystalline D 2 O ice I h deformed uniaxially between 230 and 240 K using time-of-flight neutron diffraction on the high-pressure preferred orientation diffractometer at the Manuel Lujan, Jr. Neutron Scattering Center at Los Alamos National Laboratory. The new deformation apparatus operates at 1 atm of ambient pressure and over temperatures in the range of 77 K< T<298 K, and accommodates up to 667 N of uniaxially applied load. It is suitable for diffraction studies of any bulk polycrystalline material, ideally cylindrical in shape, and is adaptable to multiple neutron spectrometers, including those at other polychromatic and monochromatic neutron facilities. The first experiment on a hexagonal ice sample demonstrates development of fiber texture in the direction of the applied load. The equipment has many applications to earth science, glaciology, and ice engineering

  11. Radiological and Nuclear Detection Material Science: Novel Rare-Earth Semiconductors for Solid-State Neutron Detectors and Thin High-k Dielectrics

    Science.gov (United States)

    2017-11-01

    6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-15-82 Radiological and Nuclear Detection Material Science: Novel...Background: Specifically, the goals have been to investigate new materials based primarily on rare- earth semiconductors, and explore new solid state...detector configurations of these materials as neutron detectors. Seven materials (monoclinic and cubic Gd/HfO2 alloys, monoclinic and cubic Gd2O3

  12. Measurement of the Amm242 neutron-induced reaction cross sections

    Science.gov (United States)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Wimer, N.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration

    2017-02-01

    The neutron-induced reaction cross sections of Amm242 were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known Amm242(n ,f ) cross section. The (n ,γ ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new Amm242 fission cross section was normalized to ENDF/B-VII.1 to set the absolute scale, and it agreed well with the (n ,f ) cross section reported by Browne et al. (1984) from thermal energy to 1 keV. The average absolute capture-to-fission ratio was determined from thermal energy to En=0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19 % from the ENDF/B-VII.1 evaluation.

  13. Proceedings of the 1986 workshop on advanced time-of-flight neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, A.C.; Smith, K. (comps.)

    1986-09-01

    This report contains abstracts of talks and summaries of discussions from a small workshop held to discuss the future of time-of-flight neutron powder diffraction and its implementation at the Los Alamos Neutron Scattering Center. 47 refs., 3 figs.

  14. Proceedings of the 1986 workshop on advanced time-of-flight neutron powder diffraction

    International Nuclear Information System (INIS)

    Lawson, A.C.; Smith, K.

    1986-09-01

    This report contains abstracts of talks and summaries of discussions from a small workshop held to discuss the future of time-of-flight neutron powder diffraction and its implementation at the Los Alamos Neutron Scattering Center. 47 refs., 3 figs

  15. Neutrons as a probe

    International Nuclear Information System (INIS)

    Iizumi, Masashi

    1993-01-01

    As an introduction to the symposium a brief overview will be given about the features of neutrons as a probe. First it will be pointed out that the utilization of neutrons as a probe for investigating the structural and dynamical properties of condensed matters is a benign gift eventuated from the release of atomic energy initiated by Enrico Fermi exactly half century ago. Features of neutrons as a probe are discussed in accordance with the four basic physical properties of neutrons as an elementary particle; (1) no electric charge (the interaction with matter is nuclear), (2) the mass of neutron is 1 amu, (3) spin is 1/2 and (4) neutrons have magnetic dipole moment. Overview will be given on the uniqueness of neutrons as a probe and on the variety in the way they are used in the wide research area from the pure science to the industrial applications. (author)

  16. AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    International Nuclear Information System (INIS)

    Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Loesche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.

    2006-01-01

    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 A -1 . A detailed description of this flexible instrument and its performance characteristics in various operating modes are given

  17. AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    Science.gov (United States)

    Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Lösche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.

    2011-01-01

    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å−1. A detailed description of this flexible instrument and its performance characteristics in various operating modes are given. PMID:21892232

  18. 2015 Los Alamos Space Weather Summer School Research Reports

    International Nuclear Information System (INIS)

    Cowee, Misa; Chen, Yuxi; Desai, Ravindra; Hassan, Ehab; Kalmoni, Nadine; Lin, Dong; Depascuale, Sebastian; Hughes, Randall Scott; Zhou, Hong

    2015-01-01

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student's PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfv@@nic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a

  19. 2015 Los Alamos Space Weather Summer School Research Reports

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Yuxi [Univ. of Michigan, Ann Arbor, MI (United States); Desai, Ravindra [Univ. College London, Bloomsbury (United Kingdom); Hassan, Ehab [Univ. of Texas, Austin, TX (United States); Kalmoni, Nadine [Univ. College London, Bloomsbury (United Kingdom); Lin, Dong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Depascuale, Sebastian [Univ. of Iowa, Iowa City, IA (United States); Hughes, Randall Scott [Univ. of Southern California, Los Angeles, CA (United States); Zhou, Hong [Univ. of Colorado, Boulder, CO (United States)

    2015-11-24

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student’s PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfvénic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a two

  20. FY results for the Los Alamos large scale demonstration and deployment project

    International Nuclear Information System (INIS)

    Stallings, E.; McFee, J.

    2000-01-01

    The Los Alamos Large Scale Demonstration and Deployment Project (LSDDP) in support of the US Department of Energy (DOE) Deactivation and Decommissioning Focus Area (DDFA) is identifying and demonstrating technologies to reduce the cost and risk of management of transuranic element contaminated large metal objects, i.e. gloveboxes. DOE must dispose of hundreds of gloveboxes from Rocky Flats, Los Alamos and other DOE sites. Current practices for removal, decontamination and size reduction of large metal objects translates to a DOE system-wide cost in excess of $800 million, without disposal costs. In FY99 and FY00 the Los Alamos LSDDP performed several demonstrations on cost/risk savings technologies. Commercial air pallets were demonstrated for movement and positioning of the oversized crates in neutron counting equipment. The air pallets are able to cost effectively address the complete waste management inventory, whereas the baseline wheeled carts could address only 25% of the inventory with higher manpower costs. A gamma interrogation radiography technology was demonstrated to support characterization of the crates. The technology was developed for radiography of trucks for identification of contraband. The radiographs were extremely useful in guiding the selection and method for opening very large crated metal objects. The cost of the radiography was small and the operating benefit is high. Another demonstration compared a Blade Cutting Plunger and reciprocating saw for removal of glovebox legs and appurtenances. The cost comparison showed that the Blade Cutting Plunger costs were comparable, and a significant safety advantage was reported. A second radiography demonstration was conducted evaluation of a technology based on WIPP-type x-ray characterization of large boxes. This technology provides considerable detail of the contents of the crates. The technology identified details as small as the fasteners in the crates, an unpunctured aerosol can, and a vessel

  1. A high power accelerator driver system for spallation neutron sources

    International Nuclear Information System (INIS)

    Jason, A.; Blind, B.; Channell, P.

    1996-01-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). For several years, the Los Alamos Meson Physics Facility (LAMPF) and the Proton Storage Ring (PSR) have provided a successful driver for the nearly 100-kW Los Alamos Neutron Scattering Center (LANSCE) source. The authors have studied an upgrade to this system. The goal of this effort was to establish a credible design for the accelerator driver of a next-generation source providing 1-MW of beam power. They have explored a limited subset of the possible approaches to a driver and have considered only the low 1-MW beam power. The next-generation source must utilize the optimum technology and may require larger neutron intensities than they now envision

  2. Small-Angle Neutron Scattering (SANS) Facility at BATAN for Nanostructure Studies in Materials Science and Biology

    Science.gov (United States)

    Putra, E. Giri Rachman

    2010-01-01

    A 36 meter small-angle neutron scattering (SANS) BATAN spectrometer (SMARTer) which is the second largest SANS spectrometer nowadays in the Asia-Oceania region was constructed at the neutron scattering laboratory (NSL) in Serpong, Indonesia. Lots of works on replacing, upgrading and improving the control system, experimental methods, data collection and reduction in the last three years have been carried out to revitalize and then optimize the performance of SMARTer. At first, some standard samples were measured for the inter-laboratory comparison and several kinds of substances such as liquid, gel, powder, and solid-state thin film have been investigated recently of proposed research interest. The morphological changes from ellipsoidal into cylindrical (worm-like) micelles of self-assembly amphiphilic molecules, sodium dodecyl sulfate (SDS) and transformation of disordered into ordered spherical micelle system from unimer Gaussian coils of PEO-PPO-PEO triblock copolymers (Pluronics) in solution by salt addition were also observed. Particle size and its distribution of spherical polystyrene latex and silica nanoparticles in dilute solution have been simply distinguished by applying a spherical calculation model. Bragg peaks which correspond to a lamellar structure was revealed from a powder sample of silver behenate [CH3(CH2)20COOAg] nanoparticle and a solid-state PS-PEP, polystyrene-b-poly(ethylene-alt-propylene), diblock copolymer film. The growth mechanism and fractal structures from aggregation of nanoparticles such as Fe3O4 ferrofluids or titanium-silica aerogels were investigated directly using a SANS technique through a power-law scattering of fractal structures approximation fitted at their scattering profiles. Meanwhile, magnetic structure from metal-alloys, CuNiFe showing anisotropic magnetic scattering structure properties up to 1 Tesla of external magnetic field was also accomplished confirming the nanocrystalline and magnetic domain sizes. The detail

  3. Los Alamos loses physics archive as preprint pioneer heads east

    CERN Multimedia

    Butler, D

    2001-01-01

    The Los Alamos preprint server is to move to Cornell University. Paul Ginsparg who created the server cites a lack of enthusiasm among senior staff at LANL as a major reason for his departure (1/2 page).

  4. Review of liquid metal heat pipe work at Los Alamos

    International Nuclear Information System (INIS)

    Reid, R.S.; Merrigan, M.A.; Sena, J.T.

    1990-01-01

    A survey of space-power related liquid metal heat pipe work at Los Alamos National Laboratory is presented. Heat pipe development at Los Alamos has been on-going since 1963. Heat pipes were initially developed for thermionic nuclear-electrical power production in space. Since then Los Alamos has developed liquid metal heat pipes for numerous applications related to high temperature systems in both the space and terrestrial environments. Some of these applications include thermionic electrical generators, thermoelectric energy conversion (both in-core and direct radiation), thermal energy storage, hypersonic vehicle leading edge cooling, and heat pipe vapor laser cells. Some of the work performed at Los Alamos has been documented in internal reports that are often little-known. A representative description and summary of progress in space-related liquid metal heat pipe technology is provided followed by a reference section citing sources where these works may be found. 53 refs

  5. Environmental Surveillance at Los Alamos during 2007

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information. In printed copies of this report or Executive Summary, we have

  6. Los Alamos nEDM Experiment and Demonstration of Ramsey's Method on Stored UCNs at the LANL UCN Source

    Science.gov (United States)

    Clayton, Steven; Chupp, Tim; Cude-Woods, Christopher; Currie, Scott; Ito, Takeyasu; Liu, Chen-Yu; Long, Joshua; MacDonald, Stephen; Makela, Mark; O'Shaughnessy, Christopher; Plaster, Brad; Ramsey, John; Saunders, Andy; LANL nEDM Collaboration

    2017-09-01

    The Los Alamos National Laboratory ultracold neutron (UCN) source was recently upgraded for a factor of 5 improvement in stored density, providing the statistical precision needed for a room temperature neutron electric dipole moment measurement with sensitivity 3 ×10-27 e . cm, a factor 10 better than the limit set by the Sussex-RAL-ILL experiment. Here, we show results of a demonstration of Ramsey's separated oscillatory fields method on stored UCNs at the LANL UCN source and in a geometry relevant for a nEDM measurement. We argue a world-leading nEDM experiment could be performed at LANL with existing technology and a short lead time, providing a physics result with sensitivity intermediate between the current limit set by Sussex-RAL-ILL, and the anticipated limit from the complex, cryogenic nEDM experiment planned for the next decade at the ORNL Spallation Neutron Source (SNS-nEDM). This work was supported by the Los Alamos LDRD Program, Project 20140015DR.

  7. Delayed neutron spectra from short pulse fission of uranium-235

    International Nuclear Information System (INIS)

    Atwater, H.F.; Goulding, C.A.; Moss, C.E.; Pederson, R.A.; Robba, A.A.; Wimett, T.F.; Reeder, P.; Warner, R.

    1986-01-01

    Delayed neutron spectra from individual short pulse (∼50 μs) fission of small 235 U samples (50 mg) were measured using a small (5 cm OD x 5 cm length) NE 213 neutron spectrometer. The irradiating fast neutron flux (∼10 13 neutrons/cm 2 ) for these measurements was provided by the Godiva fast burst reactor at the Los Alamos Critical Experiment Facility (LACEF). A high speed pneumatic transfer system was used to transfer the 50 mg 235 U samples from the irradiation position near the Godiva assembly to a remote shielded counting room containing the NE 213 spectrometer and associated electronics. Data were acquired in sixty-four 0.5 s time bins and over an energy range 1 to 7 MeV. Comparisons between these measurements and a detailed model calculation performed at Los Alamos is presented

  8. Neutron β Decay: Status and Future of the Asymmetry Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Takeyasu M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2007-04-04

    With more intense sources of cold and ultracold neutrons becoming available and with improved experimental techniques being developed, determination of ΙVud l from neutron β decay with a similar precision to that from from superallowed β decays is within reach. Determination of IVud l from neutron β decay, free from nuclear corrections, holds the most promise for a further improvement of the determination of IVud l· The current and future neutron β decay correlation experiments including the UCNA experiment at Los Alamos National Laboratory are reviewed.

  9. Determination of spallation neutron flux through spectral adjustment techniques

    Science.gov (United States)

    Mosby, M. A.; Engle, J. W.; Jackman, K. R.; Nortier, F. M.; Birnbaum, E. R.

    2016-08-01

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  10. Determination of spallation neutron flux through spectral adjustment techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, M.A., E-mail: mosbym@lanl.gov; Engle, J.W.; Jackman, K.R.; Nortier, F.M.; Birnbaum, E.R.

    2016-08-15

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  11. Neutron resonance spectroscopy of 113In and 115In

    International Nuclear Information System (INIS)

    Frankle, C.M.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Gould, C.R.; Haase, D.G.; Knudson, J.N.; Mitchell, G.E.; Patterson, S.S.; Penttilae, S.I.; Popov, Y.P.; Roberson, N.R.; Seestrom, S.J.; Sharapov, E.I.; Yen, Y.; Yoo, S.H.; Yuan, V.W.; Zhu, X.

    1993-01-01

    The neutron total cross section for natural indium was measured for E n =25--500 eV with the time-of-flight method at the Los Alamos Neutron Scattering Center. The neutron capture reaction was studied on a highly enriched sample (99.99%) of 115 In. A total of 47 previously unreported resonances were observed. The combination of the two measurements allowed assignment of the new resonances to 113 In or 115 In. Resonance parameters were extracted for all of the neutron resonances observed

  12. Time-of-Flight Neutron Imaging on IMAT@ISIS: A New User Facility for Materials Science

    Directory of Open Access Journals (Sweden)

    Winfried Kockelmann

    2018-02-01

    Full Text Available The cold neutron imaging and diffraction instrument IMAT at the second target station of the pulsed neutron source ISIS is currently being commissioned and prepared for user operation. IMAT will enable white-beam neutron radiography and tomography. One of the benefits of operating on a pulsed source is to determine the neutron energy via a time of flight measurement, thus enabling energy-selective and energy-dispersive neutron imaging, for maximizing image contrasts between given materials and for mapping structure and microstructure properties. We survey the hardware and software components for data collection and image analysis on IMAT, and provide a step-by-step procedure for operating the instrument for energy-dispersive imaging using a two-phase metal test object as an example.

  13. The Los Alamos high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, P.G.

    1991-01-01

    For a number of years Los Alamos National Laboratory has been developing photocathode RF guns for high-brightness electron beam applications such as free-electron lasers (FELs). Previously thermionic high-voltage guns have been the source of choice for the electron accelerators used to drive FELs. The performance of such FELs is severely limited by the emittance growth produced by the subharmonic bunching process and also by the low peak current of the source. In a photoinjector, a laser driven photocathode is placed directly in a high-gradient RF accelerating cavity. A photocathode allows unsurpassed control over the current, and the spatial and temporal profile of the beam. In addition the electrodeless emission'' avoids many of the difficulties associated with multi-electrode guns, i.e. the electrons are accelerated very rapidly to relativistic energies, and there are no electrodes to distort the accelerating fields. For the past two years we have been integrating a photocathode into our existing FEL facility by replacing our thermionic gun and subharmonic bunchers with a high-gradient 1.3 GHz photoinjector. The photoinjector, which is approximately 0.6 m in length, produces 6 MeV, 300 A, 15 ps linac, and accelerated to a final energy of 40 MeV. We have recently begun lasing at wavelengths near 3 {mu}m. 16 refs., 2 figs., 5 tabs.

  14. Expanded recycling at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Betschart, J.F.; Malinauskas, L.; Burns, M.

    1996-01-01

    The Pollution Prevention Program Office has increased recycling activities, reuse, and options to reduce the solid waste streams through streamlining efforts that applied best management practices. The program has prioritized efforts based on volume and economic considerations and has greatly increased Los Alamos National Laboratory's (LANL's) recycle volumes. The Pollution Prevention Program established and chairs a Solid Waste Management Solutions Group to specifically address and solve problems in nonradioactive, Resource Conservation and Recovery Act (RCRA), state-regulated, and sanitary and industrial waste streams (henceforth referred to as sanitary waste in this paper). By identifying materials with recycling potential, identifying best management practices and pathways to return materials for reuse, and introducing the concept and practice of open-quotes asset management,open-quotes the Group will divert much of the current waste stream from disposal. This Group is developing procedures, agreements, and contracts to stage, collect, sort, segregate, transport and process materials, and is also garnering support for the program through the involvement of upper management, facility managers, and generators

  15. Los Alamos KrF laser program

    International Nuclear Information System (INIS)

    Jensen, R.J.; Cartwright, D.C.

    1985-01-01

    Los Alamos is currently developing the krypton fluoride (KrF) laser - a highly efficient laser able to emit very intense bursts of short-wavelength photons - as a research tool for the general study of high-density matter, as well as for use in laser fusion. The KrF laser operates at 1/4 μm, close to the short-wavelength limit for conventional optical material, but still in the region where standard optical techniques can be used. The excited-state lifetime of the KrF lasing medium is short - as a result of both spontaneous emission and deactivation from collisions - making it impossible to store energy within the lasing medium for times significant to electrical pumping. However, an optical multiplexing scheme is being developed that will generate short, intense pulses of 1/4-μm light by overcoming the short storage time of the laser and taking advantage of the high gain of the KrF medium

  16. Beam funneling studies at Los Alamos

    International Nuclear Information System (INIS)

    Stovall, J.E.; Guy, F.W.; Stokes, R.H.; Wangler, T.P.

    1989-01-01

    Funneling two ion beams by interlacing their bunches can reduce the cost and complexity of systems producing intense beams. Applications of funneling could include accelerators for heavy-ion inertial fusion, electronuclear breeding and fusion materials irradiation. Funneling in an RFQ-like structure is an elegant solution at low energy where electric fields are needed to provide strong focusing. Discrete-element funnels, with separate focusing elements, bending magnets, rebunchers and rf deflectors, are more flexible. At sufficiently high energies magnetic-quadrupole lenses can provide strong focusing in a discrete-element funnel. Such a funnel has been designed as a preliminary example of a second funnel in the HIBALL-II accelerator system. In a simulation, two Bi 1+ (mass = 209 amu) beams at 0.5 MeV/A, 20 MHz and 40 mA, separated by 55 cm and angled at ±6 0 were combined into a single 80 mA beam at 40 MHz. Emittance growth was calculated, by a modified version of the PIC (particle-in-cell) code PARMILA, to be about 1%. Funnel design experience at Los Alamos has evolved rules of thumb that reduce emittance growth. Some of these are to maintain focusing periodicity and strength in both transverse and longitudinal directions; use strong focusing so that the bunch will be small; minimize angles of bend and rf deflection; adjust longitudinal focusing to produce a short bunch at the rf deflector; and design rf deflectors for a uniform electrical field. (orig.)

  17. Los Alamos Scientific Laboratory building cost index

    International Nuclear Information System (INIS)

    Lemon, G.D.; Morris, D.W.; McConnell, P.H.

    1977-11-01

    The Controller's budget request for FY-1979 established guidance for escalation rates at 6 to 8 percent for construction projects beyond FY-1976. The Los Alamos Scientific Laboratory (LASL) has chosen to use an annual construction escalation rate of 10 percent. Results of this study should contribute toward the establishment of realistic construction cost estimate totals and estimates of annual construction funding requirements. Many methods were used to arrive at the LASL escalation rate recommendation. First, a computer program was developed which greatly expanded the number of materials previously analyzed. The program calculated the 1970 to 76 weighted averages for labor, materials, and equipment for the base line project. It also plotted graphs for each category and composite indexes for labor and material/equipment. Second, estimated increases for 1977 were obtained from several sources. The Zia Company provided labor cost estimates. Projected increases for material and equipment were obtained through conversations with vendors and analysis of trade publications. Third, economic forecast reports and the Wall Street Journal were used for source material, narrative, and forecast support. Finally, we compared LASL Building Cost Index with the effects of escalation associated with three recently developed projects at LASL

  18. Status of the development of electron volt inelastic neutron spectroscopy

    International Nuclear Information System (INIS)

    Newport, R.J.; Taylor, A.D.; Williams, W.G.

    1984-05-01

    High energy inelastic neutron scattering spectroscopy is reviewed in the light of material presented at the 'High Energy Excitations in Condensed Matter' (HEECM) Workshop, held at Los Alamos National Laboratory 13-15 February 1984. Particular attention is paid to the development of instrumentation based on nuclear resonance analysers. (author)

  19. Science policy in changing times

    International Nuclear Information System (INIS)

    Greenwood, M.R.C.

    1995-01-01

    Like many scientists who were born right after World War II and who have learned a lot about physics, physical sciences, and biology from some of the incredible discoveries that were made in the defense laboratories, I have always been fascinated with Los Alamos. One of the marvelous opportunities that my job in Washington presented was to get to know a good deal more about the physical science world and the Department of Energy (DOE) laboratories, particularly Los Alamos since the Manhattan Project

  20. Accelerator technology for Los Alamos nuclear-waste-transmutation and energy-production concepts

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Jameson, R.A.; Schriber, S.O.

    1991-01-01

    Powerful proton linacs are being studied at Los Alamos as drivers for high-flux neutron sources that can transmute long-lived fission products and actinides in defense nuclear waste, and also as drivers of advanced fission-energy systems that could generate electric power with no long-term waste legacy. A transmuter fed by an 800-MeV, 140-mA cw conventional copper linac could destroy the accumulated 99 Tc and 129 I at the DOE's Hanford site within 30 years. A high-efficiency 1200-MeV, 140-mA niobium superconducting linac could drive an energy-producing system generating 1-GWe electric power. Preliminary design concepts for these different high-power linacs are discussed, along with the principal technical issues and the status of the technology base. 9 refs., 5 figs., 4 tabs

  1. Seismic engineering for an expanded tritium facility at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Volkman, D.E.; Olive, W.B.; Endebrocid, E.E.; Khan, P.K.; Rebillet, W.R.

    1997-10-01

    An existing complex of three single story concrete and masonry shear wall buildings will be integrated into an expanded tritium facility for neutron tube target loading. Known as the NTTL Project, the expanded plant is a major element of the Department of Energy's tritium program at the Los Alamos National Laboratory. This paper describes seismic evaluation and upgrade modifications for the 1950's concrete shear wall building; drift analyses of two 1980's CMU [concrete masonry unit] shear wall buildings; design of a new CMU shear wall building linking existing structures and providing personnel change room services; and design of a new steel frame building housing HVAC and electrical power and communication equipment for the complex. All buildings are closely adjacent and drift analysis to establish separation to prevent pounding is a major seismic engineering concern for the project

  2. Modern neutron diffraction methods as a complementary tool to X-ray crystallography for structure research in materials science

    International Nuclear Information System (INIS)

    Heger, Gernot

    2011-01-01

    Neutron diffraction is a well established method in structure research of crystal structures and magnetic ordering. Whereas X-ray diffraction is the standard method for crystal structure determination yielding the total electron density distribution of crystalline materials, neutron diffraction by their nuclear interaction provides the nuclear density distribution and by magnetic dipole interaction the partial electron density distribution of unpaired electrons. Hence neutron crystallography is of special importance for detailed investigations of light elements with few electrons (most prominent example is the hydrogen distribution), to discriminate between different isotopes (e.g. between H and D), and for the determination of magnetic structures and spin density distributions. But neutrons are rare and expensive. There are only a few reactor and spallation sources around the world and the flux of neutron beams is almost 10 -3 smaller than that of a conventional X-ray tube. Therefore, neutron diffractometers and the strategy of data acquisition have to be optimized. Suitable samples, e.g. mm 3 large single crystals are needed, have to be prepared. Examples of modern instrumentation and methods are presented together with results from investigations on structural phase transitions induced by hydrogen-bond ordering (ferroelectric and proton conductor materials) and on complex magnetic systems. It is shown that the combination of X-ray/synchrotron and neutron diffraction is an important tool for a microscopic understanding of physical properties of crystalline materials. (author)

  3. Beam funneling studies at Los Alamos

    International Nuclear Information System (INIS)

    Stovall, J.E.; Guy, F.W.; Stokes, R.H.; Wangler, T.P.

    1988-01-01

    Funneling two ion beams by interlacing their bunches can reduce the cost and complexity of systems producing intense beams. Applications of funneling could include accelerators for heavy ion inertial fusion, electronuclear breeding, and fusion materials irradiation. Funneling in an RFQ-like structure is an elegant solution at low energy where electric fields are needed to provide strong focusing. Discrete-element funnels, with separate focusing elements, bending magnets, rebunchers and if deflectors, are more flexible. At sufficiently high energies, magnetic-quadrupole lenses can provide strong focusing in a discrete-element funnel. Such a funnel has been designed as a preliminary example of a second funnel in the HIBALL-II accelerator system. In a simulation, two Bi +1 (mass = 209 amu) beams at 0.5 MeV/A, 20 MHz, 40-mA, separated by 55 cm and angled at +-6/degree/ were combined into a single 80-mA beam at 40 MHz. Emittance growth was calculated, by a modified version of the PIC (particle-in-cell) code PARMILA, to be about 1%. Funnel design experience at Los Alamos has evolved rules-of-thumb that reduce emittance growth. Some of these are to maintain focusing periodicity and strength in both transverse and longitudinal directions; use strong focusing so that the bunch will be small; minimize angles of bend and rf deflection; adjust longitudinal focusing to produce a short bunch at the rf deflector; and design rf deflectors for a uniform electrical field. 4 refs., 3 figs., 2 tabs

  4. Performance of Large Neutron Detectors Containing Lithium-Gadolinium-Borate Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, David M.; Stuart, Cory R.; Klaass, R. Fred; Merrill, David B. [MSI/Photogenics Division, Orem, Utah (United States)

    2015-07-01

    at the Los Alamos Neutron Science Center (LANSCE), Edwards Accelerator Laboratory (EAL) at Ohio University and the Radiation Center at University of Massachusetts-Lowell has demonstrated that the instrument can measure neutrons and their spectra over the range between 0.8 MeV and 150 MeV with an uncertainty of only ± 8%. An independent test of the LGB:Ce neutron spectrometer was conducted by a US Defense Threat Reduction Agency (DTRA) team at the Idaho National Laboratory (INL). The results of this evaluation showed that the neutron spectrometer accurately identified bare radioactive isotopes by their spectra. Further, masking and shielding materials alter those spectra in predictable ways that permit an extrapolation from the observed spectra back to the identity of the isotopic spectrum. (authors)

  5. A medium energy neutron deep penetration experiment

    International Nuclear Information System (INIS)

    Amian, W.; Cloth, P.; Druecke, V.; Filges, D.; Paul, N.; Schaal, H.

    1986-11-01

    A deep penetration experiment conducted at the Los Alamos WNR facility's Spallation Neutron Target is compared with calculations using intra-nuclear-cascade and S N -transport codes installed at KFA-IRE. In the experiment medium energy reactions induced by neutrons between 15 MeV and about 150 MeV inside a quasi infinite slab of iron have been measured using copper foil monitors. Details of the experimental procedure and the theoretical methods are described. A comparison of absolute reaction rates for both experimentally and theoretically derived reactions is given. The present knowledge of the corresponding monitor reaction cross sections is discussed. (orig.)

  6. Digital Acquisition Development for Fast Neutron Detectors

    Science.gov (United States)

    Seagren, T.; Mosby, S.; Mona Collaboration; Lansce P-27 Team

    2015-10-01

    The use of the Modular Neutron Array (MoNA) at FRIB requires a thorough understanding of how neutrons propagate through the array. This leads to the increasing importance of accuracy in detector response simulations, particularly in the case of FRIB's higher beam energies. An upcoming experiment at the LANSCE facility at Los Alamos National Lab will benchmark neutron propagation through the MoNA array and provide a more complete validation of the simulation software. LANSCE also hosts the Chi-Nu experiment, which seeks to measure fission output neutrons using the high-intensity neutron beams there. In both experiments, the instantaneous rate on the detectors involved is expected to be very high, due to the LANSCE/WNR beam structure. Therefore, waveform digitizers with on-board processing are required in order for the experiments to succeed. These digitizers provide on-board timing algorithms using FPGA firmware, and several tests were preformed in order to determine what the optimal timing filter settings were for a variety of detectors, including the plastic and liquid scintillators to be used in MoNA and Chi-Nu respectively. This work will inform the execution of the MoNA and Chi-Nu experiments at LANSCE. The details of the methods used and results will be presented. Supported by funding through Los Alamos National Lab and NSF Grant PHY-1506402.

  7. 1993 Northern goshawk inventory on portions of Los Alamos National Laboratory, Los Alamos, NM. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, D.T.; Kennedy, P.L. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

    1994-06-01

    Northern goshawks (Accipiter gentilis) (hereafter referred to as goshawk) is a large forest dwelling hawk. Goshawks may be declining in population and reproduction in the southwestern United States. Reasons for the possible decline in goshawk populations include timber harvesting resulting in the loss of nesting habitat, toxic chemicals, and the effects of drought, fire, and disease. Thus, there is a need to determine their population status and assess impacts of management activities in potential goshawk habitat. Inventory for the goshawk was conducted on 2,254 ha of Los Alamos National Laboratory (LANL) to determine the presence of nesting goshawks on LANL lands. This information can be incorporated into LANL`s environmental management program. The inventory was conducted by Colorado State University personnel from May 12 to July 30, 1993. This report summarizes the results of this inventory.

  8. The economic impact of Los Alamos National Laboratory on North-Central New Mexico and the state of New Mexico. Fiscal Year 1995

    International Nuclear Information System (INIS)

    Lansford, R.R.; Ben-David, S.

    1996-08-01

    Los Alamos National Laboratory is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation's nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote U.S. industrial competitiveness by working with U.S. companies in technology transfer and technology development partnerships. Los Alamos has provided technical assistance to over 70 small New Mexico businesses enabling economic development activities in the region and state

  9. Evaluation of commercial nickel-phosphorus coating for ultracold neutron guides using a pinhole bottling method

    Science.gov (United States)

    Pattie, R. W.; Adamek, E. R.; Brenner, T.; Brandt, A.; Broussard, L. J.; Callahan, N. B.; Clayton, S. M.; Cude-Woods, C.; Currie, S. A.; Geltenbort, P.; Ito, T. M.; Lauer, T.; Liu, C. Y.; Majewski, J.; Makela, M.; Masuda, Y.; Morris, C. L.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Schroffenegger, J.; Tang, Z.; Wei, W.; Wang, Z.; Watkins, E.; Young, A. R.; Zeck, B. A.

    2017-11-01

    We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50 μm thick NiP coatings on stainless steel and aluminum substrates was measured to be VF = 213(5 . 2) neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle was interpreted in terms of an energy independent effective loss per bounce, which is the appropriate model when gaps in the system and upscattering are the dominate loss mechanisms, yielding a loss per bounce of 1 . 3(1) × 10-4. We also present a detailed discussion of the pinhole bottling methodology and an energy dependent analysis of the experimental results.

  10. Publications of Los Alamos research, 1977-1981

    International Nuclear Information System (INIS)

    Sheridan, C.J.; Garcia, C.A.

    1983-03-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1977-1981. Papers published in those years are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them

  11. Publications of Los Alamos research, 1977-1981

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, C.J.; Garcia, C.A. (comps.)

    1983-03-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1977-1981. Papers published in those years are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  12. Research possibilities with an intense neutron generator

    International Nuclear Information System (INIS)

    Bartholomew, G.A.

    1966-01-01

    As the title suggests this paper will depart somewhat from the general topic of this session and will be concerned more with applications of accelerators than with accelerators them elves. The particular application of interest at our laboratory concerns the use of a high current intermediate energy proton accelerator as the basis for a versatile intense neutron source. Chalk River's entry into the intermediate energy accelerator field with neutron production as the primary motivation is somewhat unusual. Although neutron production is also being explored by other laboratories interested in intermediate energy accelerators, e.g., Oak Ridge National Laboratory and Los Alamos Scientific Laboratory, it has not been the major motivation. Our initial motivation was in fact the production of thermal neutrons and this interest has remained foremost in our ING program. We are currently writing a proposal for this project. Our target is to have a proton beam in 1973. (author)

  13. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Anne C. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsible for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to

  14. Neutrons in biology

    International Nuclear Information System (INIS)

    Funahashi, Satoru; Niimura, Nobuo.

    1993-01-01

    The start of JRR-3M in 1990 was a great epoch to the neutron scattering research in Japan. Abundant neutron beam generated by the JRR-3M made it possible to widen the research field of neutron scattering in Japan. In the early days of neutron scattering, biological materials were too difficult object to be studied by neutrons not only because of their complexity but also because of the strong incoherent scattering by hydrogen. However, the remarkable development of the recent neutron scattering and its related sciences, as well as the availability of higher flux, has made the biological materials one of the most attractive subjects to be studied by neutrons. In early September 1992, an intensive workshop titled 'Neutrons in Biology' was held in Hitachi City by making use of the opportunity of the 4th International Conference on Biophysics and Synchrotron Radiation (BSR92) held in Tsukuba. The workshop was organized by volunteers who are eager to develop the researches in this field in Japan. Numbers of outstanding neutron scattering biologists from U.S., Europe and Asian countries met together and enthusiastic discussions were held all day long. The editors believe that the presentations at the workshop were so invaluable that it is absolutely adequate to put them on record as an issue of JAERI-M and to make them available for scientists to refer to in order to further promote the research in the future. (author)

  15. The development of the atomic bomb, Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W.

    1993-11-01

    The historical presentation begins with details of the selection of Los Alamos as the site of the Army installation. Wartime efforts of the Army Corps of Engineers, and scientists to include the leader of Los Alamos, Robert Oppenheimer are presented. The layout and construction of the facilities are discussed. The monumental design requirements of the bombs are discussed, including but not limited to the utilization of the second choice implosion method of detonation, and the production of bomb-grade nuclear explosives. The paper ends with a philosophical discussion on the use of nuclear weapons.

  16. A physicists guide to The Los Alamos Primer

    International Nuclear Information System (INIS)

    Reed, B Cameron

    2016-01-01

    In April 1943, a group of scientists at the newly established Los Alamos Laboratory were given a series of lectures by Robert Serber on what was then known of the physics and engineering issues involved in developing fission bombs. Serber’s lectures were recorded in a 24 page report titled The Los Alamos Primer , which was subsequently declassified and published in book form. This paper describes the background to the Primer and analyzes the physics contained in its 22 sections. The motivation for this paper is to provide a firm foundation of the background and contents of the Primer for physicists interested in the Manhattan Project and nuclear weapons. (invited comment)

  17. Fifty-one years of Los Alamos Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  18. Los Alamos DP West Plutonium Facility decontamination project

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-01-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico, was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  19. Needs assessment for fire department services and resources for the Los Alamos National Laboratory, Los Alamos, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-15

    This report has been developed in response to a request from the Los Alamos National Laboratory (LANL) to evaluate the need for fire department services so as to enable the Laboratory to plan effective fire protection and thereby: meet LANL`s regulatory and contractual obligations; interface with the Department of Energy (DOE) and other agencies on matters relating to fire and emergency services; and ensure appropriate protection of the community and environment. This study is an outgrowth of the 1993 Fire Department Needs Assessment (prepared for DOE) but is developed from the LANL perspective. Input has been received from cognizant and responsible representatives at LANL, DOE, Los Alamos County (LAC) and the Los Alamos Fire Department (LAFD).

  20. A survey of macromycete diversity at Los Alamos National Laboratory, Bandelier National Monument, and Los Alamos County; A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Jarmie, N.; Rogers, F.J. [Mycology Associates, Los Alamos, NM (United States)

    1997-11-01

    The authors have completed a 5-year survey (1991--1995) of macromycetes found in Los Alamos County, Los Alamos National Laboratory, and Bandelier National Monument. The authors have compiled a database of 1,048 collections, their characteristics, and identifications. The database represents 123 (98%) genera and 175 (73%) species reliably identified. Issues of habitat loss, species extinction, and ecological relationships are addressed, and comparisons with other surveys are made. With this baseline information and modeling of this baseline data, one can begin to understand more about the fungal flora of the area.

  1. Standardization of portable assay instrumentation: the neutron-coincidence tree

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1983-01-01

    Standardization of portable neutron assay instrumentation has been achieved by using the neutron coincidence technique as a common basis for a wide range of instruments and applications. The electronics originally developed for the High-Level Neutron Coincidence Counter has been adapted to both passive- and active-assay instrumentation for field verification of bulk plutonium, inventory samples, pellets, powders, nitrates, high-enriched uranium, and materials-testing-reactor, light-water-reactor, and mixed-oxide fuel assemblies. The family of detectors developed at Los Alamos National Laboratory and their performance under in-field conditions are described. 16 figures, 3 tables

  2. What has happened to the survivors of the early Los Alamos nuclear accidents

    International Nuclear Information System (INIS)

    Hempelman, L.H.; Lushbaugh, C.C.; Voelz, G.L.

    1979-01-01

    Two nuclear accidents involving a plutonium sphere just subcritical in size occurred at the Los Alamos Laboratory, LA-1 in 1945 and LA-2 in 1946. Because remote control devices were deemed unreliable at the time, the tamper material (tungsten carbide bricks in LA-1 and beryllium hemispheres in LA-2) was added by hand with the operator standing next to the assembly. In each case the critical size of the assembly was accidentally exceeded and the resultant exponentially increasing chain reaction emitted a burst of neutrons and gamma rays. Ten persons were exposed to the radiation bursts which were largely composed of neutrons. The doses ranged from fatal in the case of the two operators, to small in the case of some survivors. The two operators died within weeks as a result of acute radiation injury. Only six of the eight survivors were available for follow-up study ten or more years after the accident. Four of these six survivors are now dead, but the two living survivors are in excellent health with no clinical or laboratory evidence of late radiation injury. Two of the deceased died of acute myelogenous leukemia, another died at age 83 of refractory anemia, and the fourth of myocardial infarction. The heart attack could have been precipitated by the myxedema assumed to have been the result of the radiation exposure

  3. Neutron flux enhancement at LASREF

    International Nuclear Information System (INIS)

    Sommer, W.F.; Ferguson, P.D.; Wechsler, M.S.

    1991-01-01

    The accelerator at the Los Alamos Meson Physics Facility produces a 1-mA beam of protons at an energy of 800 MeV. Since 1985, the Los Alamos Spallation Radiation Effects Facility (LASREF) has made use of the neutron flux that is generated as the incident protons interact with the nuclei in targets and a copper beam stop. A variety of basic and applied experiments in radiation damage and radiation effects have been completed. Recent studies indicate that the flux at LASREF can be increased by at least a factor of ten from the present level of about 5 E+17 m -2 s -1 . This requires changing the beam-stop material from Cu to W and optimizing the geometry of the beam-target interaction region. These studies are motivated by the need for a large volume, high energy, and high intensity neutron source in the development of materials for advanced energy concepts such as fusion reactors. 18 refs., 7 figs., 2 tabs

  4. Materials Capability Review Los Alamos National Laboratory April 29-May 2, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette J [Los Alamos National Laboratory

    2012-04-20

    Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.

  5. Neutron resonance spectroscopy of 107Ag and 109Ag

    International Nuclear Information System (INIS)

    Lowie, L.Y.; Mitchell, G.E.; Stephenson, S.L.; Bowman, J.D.; Knudson, J.N.; Penttila, S.I.; Seestrom, S.J.; Yen, Y.; Yuan, V.W.; Crawford, B.E.; Roberson, N.R.; Delheij, P.P.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Sharapov, E.I.

    1997-01-01

    Parity violation has been observed in a number of previously unreported neutron resonances in silver. Analysis of these parity violation data requires improved neutron resonance spectroscopy. The neutron total cross section for natural silver was measured for E n =10 - 800 eV with the time-of-flight method at the Los Alamos Neutron Scattering Center. The neutron capture reaction was studied with both a natural silver target and a highly enriched sample (98.29%) of 107 Ag. A total of 38 previously unreported resonances were observed. The combination of the two measurements allowed assignment of the newly observed resonances to 107 Ag or to 109 Ag. Resonance parameters were determined for almost all of the neutron resonances observed. copyright 1997 The American Physical Society

  6. A Simple Correlation for Neutron Capture Rates from Nuclear Masses

    Energy Technology Data Exchange (ETDEWEB)

    Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-30

    Recent studies of neutron capture performed at LANL have revealed a previously unrecognized connection between nuclear masses and the average neutron capture cross section. A team of three scientists from Los Alamos (P-27), Yale Univ., and Istanbul Univ. (Turkey) recently discovered this connection and have published their results as a Rapid Communication in Physical Review C. Neutron capture is a reaction in which a free neutron is absorbed by the nucleus, keeping the element unchanged, but changing isotopes. This reaction is typically exothermic. As a result, the reaction can proceed even when many other reaction channels are closed. In an astrophysical environment, this means that neutron capture is the primary mechanism by which all of the elements with atomic number greater than nickel are produced is neutron capture.

  7. Direct-current proton-beam measurements at Los Alamos

    International Nuclear Information System (INIS)

    Sherman, J.; Stevens, R.R.; Schneider, J.D.; Zaugg, T.

    1994-01-01

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H 2 gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos is given

  8. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Finstad, Casey Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  9. Mercury: The Los Alamos ICF KrF laser system

    International Nuclear Information System (INIS)

    Czuchlewski, S.J.; York, G.W.; Bigio, I.J.; Brucker, J.; Hanson, D.; Honig, E.M.; Kurnit, N.; Leland, W.; McCown, A.W.; McLeod, J.; Rose, E.; Thomas, S.; Thompson, D.

    1993-01-01

    The Mercury KrF laser facility at Los Alamos is being built with the benefit of lessons learned from the Aurora system. An increased understanding of KrF laser engineering, and the designed implementation of system flexibility, will permit Mercury to serve as a tested for a variety of advanced KrF technology concepts

  10. Waste management at Los Alamos: Protecting our environment

    International Nuclear Information System (INIS)

    1993-01-01

    This report consists of a broad overview of activities at Los Alamos National Laboratory (LANL). The following topics are discussed: The growth of the waste management group; what we do today; the mission of the waste management group; the liquid waste treatment section; the radioactive liquid waste project office; the chemical waste section; the radioactive waste section; and the technical support section

  11. Brief history of the Los Alamos laser programs

    International Nuclear Information System (INIS)

    Boyer, K.

    1983-01-01

    The laser programs at Los Alamos began in 1969 to investigate the feasibility of laser-induced fusion. However, within a year they had been expanded to include a number of other applications including laser isotope separation. These programs now compose a substantial part of the Laboratory's research programs

  12. Inertial confinement fusion at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Lindman, E.; Baker, D.; Barnes, C.; Bauer, B.; Beck, J.B.

    1997-01-01

    The Los Alamos National Laboratory is contributing to the resolution of key issues in the US Inertial-Confinement-Fusion Program and plans to play a strong role in the experimental program at the National Ignition Facility when it is completed

  13. Some history of liquid scintillator development at Los Alamos

    International Nuclear Information System (INIS)

    Ott, D.G.

    1979-01-01

    The early developments in liquid scintillation counting made at Los Alamos Scientific Laboratory are reviewed. Most of the work was under the direction of F.N. Hayes and included counter development and applications as well as synthesis and chemistry of liquid scintillators

  14. Working with Fermi at Chicago and Los Alamos

    Science.gov (United States)

    Garwin, Richard L.

    2010-02-01

    I discuss my experience with Enrico Fermi as student and fellow faculty member at Chicago and with him as consultants to the Los Alamos Scientific Laboratory in 1950-1952. The talk shares observations about this great physicist and exemplary human being. )

  15. Inertial confinement fusion at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lindman, E.; Baker, D.; Barnes, C.; Bauer, B.; Beck, J.B. [and others

    1997-11-01

    The Los Alamos National Laboratory is contributing to the resolution of key issues in the US Inertial-Confinement-Fusion Program and plans to play a strong role in the experimental program at the National Ignition Facility when it is completed.

  16. History of remote handling at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Wilson, M.T.; Wood, W.T.; Barnes, J.W.

    1979-01-01

    The handling of high levels of radioactive materials began at Los Alamos in 1944 with the receipt of 140 Ba sources that were milked to extract the 140 La daughter for use as a tracer in hydrodynamical experiments. Remote-handling techniques and facilities have been used to support research programs in reactor development and radiochemistry, and in support of an accelerator

  17. Equilibrium and stability of the Los Alamos spheromak

    International Nuclear Information System (INIS)

    Marklin, G.

    1984-01-01

    The open mesh flux conserver (MFC) on the Los Alamos spheromak (CTX) has been equipped with a large number of Rogowski loops measuring the current in the individual segments of the MFC, providing a complete picture of the surface current pattern induced by the equilibrium and oscillations of the confined plasma. An analysis was made of the data from these Rogowski loops

  18. Pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1996-01-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology

  19. Pulsed spallation Neutron Sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1994-01-01

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology

  20. Inertial Confinement Fusion at Los Alamos

    International Nuclear Information System (INIS)

    Cartwright, D.C.

    1989-09-01

    This report discusses the following topics on Inertial Confinement Fusion: ICF contributions to science and technology; target fabrication; laser-target interaction; KrF laser development; advanced KrF lasers; KrF laser technology; and plasma physics for light-ion program

  1. Neutrons in soft matter

    CERN Document Server

    Imae, Toyoko; Furusaka, Michihiro; Torikai, Naoya

    2011-01-01

    Neutron and synchrotron facilities, which are beyond the scale of the laboratory, and supported on a national level in countries throughout the world.  These tools for probing micro- and nano-structure research and on fast dynamics research of atomic location in materials have been key in the development of new polymer-based materials. Different from several existing professional books on neutron science, this book focuses on theory, instrumentation, an applications. The book is divided into five parts: Part 1 describes the underlying theory of neutron scattering. Part 2 desc

  2. Spallation production of neutron deficient radioisotopes in North America

    Energy Technology Data Exchange (ETDEWEB)

    Jamriska, D.J.; Peterson, E.J. [Los Alamos National Lab., NM (United States); Carty, J. [Dept. of Energy, Germantown, MD (United States). Office of Isotope Production and Distribution

    1997-12-31

    The US Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 and RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Al-26, Mg-28, Si-32, Ti-44, Fe-52, Gd-148, and Hg-194. The authors will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes will be described.

  3. Spallation production of neutron deficient radioisotopes in North America

    International Nuclear Information System (INIS)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-01-01

    The US Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 and RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Al-26, Mg-28, Si-32, Ti-44, Fe-52, Gd-148, and Hg-194. The authors will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes will be described

  4. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Monahan, S.P.; McLaughlin, T.P.

    1997-01-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory's Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ''Conduct of Business in the Nuclear Criticality Safety Group.'' There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets

  5. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs

  6. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-11

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.

  7. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1996-01-01

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL's sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL's outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE's purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives

  8. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs.

  9. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Carton, D.; Rhyne, T. [and others

    1997-06-01

    Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

  10. Recent high-accuracy measurements of the 1S0 neutron-neutron scattering length

    International Nuclear Information System (INIS)

    Howell, C.R.; Chen, Q.; Gonzalez Trotter, D.E.; Salinas, F.; Crowell, A.S.; Roper, C.D.; Tornow, W.; Walter, R.L.; Carman, T.S.; Hussein, A.; Gibbs, W.R.; Gibson, B.F.; Morris, C.; Obst, A.; Sterbenz, S.; Whitton, M.; Mertens, G.; Moore, C.F.; Whiteley, C.R.; Pasyuk, E.; Slaus, I.; Tang, H.; Zhou, Z.; Gloeckle, W.; Witala, H.

    2000-01-01

    This paper reports two recent high-accuracy determinations of the 1 S 0 neutron-neutron scattering length, a nn . One was done at the Los Alamos National Laboratory using the π - d capture reaction to produce two neutrons with low relative momentum. The neutron-deuteron (nd) breakup reaction was used in other measurement, which was conducted at the Triangle Universities Nuclear Laboratory. The results from the two determinations were consistent with each other and with previous values obtained using the π - d capture reaction. The value obtained from the nd breakup measurements is a nn = -18.7 ± 0.1 (statistical) ± 0.6 (systematic) fm, and the value from the π - d capture experiment is a nn = -18.50 ± 0.05 ± 0.53 fm. The recommended value is a nn = -18.5 ± 0.3 fm. (author)

  11. Ion-Neutron Irradiated BOR60 Sample Preparation and Characterization: Nuclear Science User Facility 2017 Milestone Report

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Quinlan B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This document outlines the results obtained by Oak Ridge National Laboratory (ORNL) in collaboration with the University of Michigan-led Consolidated Innovative Nuclear Research project, “Feasibility of combined ion-neutron irradiation for accessing high dose levels.” In this reporting period, neutron irradiated were prepared and shipped to the University of Michigan for subsequent ion irradiation. The specimens were returned to ORNL’s Low Activation Materials Development and Analysis facility, prepared via focused ion beam for examination using scanning/transmission electron microscopy (S/TEM), and then examined using S/TEM to measure the as-irradiated microstructure. This report briefly summarizes the S/TEM results obtained at ORNL’s Low Activation Materials Development and Analysis facility.

  12. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the Protein Crystallography Station.

    Science.gov (United States)

    Sippel, K H; Bacik, J; Quiocho, F A; Fisher, S Z

    2014-06-01

    Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP-phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4-) and dibasic (HPO4(2-)) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily.

  13. In-situ Time-Resolved Neutron Diffraction Measurements of Microstructure Variations during Friction Stir Welding in a 6061-T6 Aluminum Alloy

    International Nuclear Information System (INIS)

    Woo, Wan Chuck; Wang, Xun-Li; Ungar, Prof Tomas; Feng, Zhili; David, Stan A.; Clausen, B.; Hubbard, Camden R.

    2008-01-01

    The microstructure change is one of the most important research areas in the friction stir welding (FSW). However, direct observation of microstructure changes during FSW has been extremely challenging because many measurement techniques are inapplicable. Recently developed in-situ time-resolved neutron diffraction methodology, which drastically improves the temporal resolution of neutron diffraction, enables to observe the transient microstructure changes during FSW. We installed a portable FSW system in the Spectrometer for MAterials Research at Temperature and Stress (SMARTS) at Los Alamos Neutron Science Center and the FSW was made on 6.35mm-thickness 6061-T6 Al alloy plate. At the same time, the neutron beam was centered on the mid-plane of the Al plate at 8 mm from the tool center (underneath the tool shoulder) and the diffraction peak was continuously measured during welding. The peak broadening analysis has been performed using the Williamson-Hall Method. The result shows that the dislocation density of about 3.2 x 10 15 m -2 during FSW, which is the significant increase compared to the before (4.5 x 10 14 m -2 ) and after (4.0 x 10 14 m -2 ) the FSW. The quantitatively analysis of the grain structure can provide an insight to understand the transient variation of the microstructure during FSW

  14. Radioactive source recovery program responses to neutron source emergencies

    International Nuclear Information System (INIS)

    Dinehart, S.M.; Hatler, V.A.; Gray, D.W.; Guillen, A.D.

    1997-01-01

    Recovery of neutron sources containing Pu 239 and Be is currently taking place at Los Alamos National Laboratory. The program was initiated in 1979 by the Department of Energy (DOE) to dismantle and recover sources owned primarily by universities and the Department of Defense. Since the inception of this program, Los Alamos has dismantled and recovered more than 1000 sources. The dismantlement and recovery process involves the removal of source cladding and the chemical separation of the source materials to eliminate neutron emissions. While this program continues for the disposal of 239 Pu/Be sources, there is currently no avenue for the disposition of any sources other than those containing Pu 239 . Increasingly, there have been demands from agencies both inside and outside the Federal Government and from the public to dispose of unwanted sources containing 238 Pu/Be and 241 Am/Be. DOE is attempting to establish a formal program to recover these sources and is working closely with the Nuclear Regulatory Commission (NRC) on a proposed Memorandum of Understanding to formalize an Acceptance Program. In the absence of a formal program to handle 238 Pu/Be and 241 Am/Be neutron sources, Los Alamos has responded to several emergency requests to receive and recover sources that have been determined to be a threat to public health and safety. This presentation will: (1) review the established 239 Pu neutron source recovery program at Los Alamos, (2) detail plans for a more extensive neutron source disposal program, and (3) focus on recent emergency responses

  15. Fast-neutron coincidence-counter manual

    International Nuclear Information System (INIS)

    Ensslin, N.; Atwell, T.L.; Lee, D.M.; Erkkila, B.; Marshall, R.S.; Morgan, A.; Shonrock, C.; Tippens, B.; Van Lyssel, T.

    1982-03-01

    The fast neutron counter (FNC) described in this report is a computer-based assay system employing fast-pulse counting instrumentation. It is installed below a glove box in the metal electrorefining area of the Los Alamos National Laboratory Plutonium Processing Facility. The instrument was designed to assay plutonium salts and residues from this process and to verify the mass of electrorefined metal. Los Alamos National Laboratory Groups Q-1, Q-3, and CMB-11 carried out a joint test and evaluation plan of this instrument between May 1978 and May 1979. The results of that evaluation, a description of the FNC, and operating instructions for further use are given in this report

  16. Outline of spallation neutron source engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noboru [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science-technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R and D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources. The present review was prepare aiming at giving a better understanding on pulsed spallation neutron sources not only to neutron source researchers but also more widely to neutron scattering researchers and accelerator scientists in this field. The contents involve, starting from what is neutron scattering and what neutrons are necessary for neutron scattering, what is the spallation reaction, how to produce neutrons required for neutron scattering more efficiently, target-moderator-reflector neutronics and its engineering, shielding, target station, material issues, etc. The author have engaged in R and D of pulsed apallation neutron sources and neutron scattering research using them over 30 years. The present review is prepared based on the author's experiences with useful information obtained through ICANS collaboration and recent data from the JSNS (Japanese Spallation Neutron Source) design team. (author)

  17. A scintillating fission detector for neutron flux measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Laboratory; Esch, Ernst I [Los Alamos National Laboratory; Burgett, Eric A [Los Alamos National Laboratory; May, Iain [Los Alamos National Laboratory; Muenchausen, Ross E [Los Alamos National Laboratory; Taw, Felicia [Los Alamos National Laboratory; Tovesson, Fredrik K [Los Alamos National Laboratory

    2010-01-01

    Neutron flux monitors are commonly used for a variety of nuclear physics applications. A scintillating neutron detector, consisting of a liquid scintillator loaded with fissionable material, has been developed, characterized, and tested in the beam line at the Los Alamos Neutron Science Center, and shows a significant improvement in neutron sensitivity compared with a conventional fission chamber. Recent research on nanocomposite-based scintillators for gamma-ray detection indicates that this approach can be extended to load nanoparticles of fissionable material into a scintillating matrix, with up to three orders of magnitude higher loading than typical fission chambers. This will result in a rugged, cost-efficient detector with high efficiency, a short signal rise time, and the ability to be used in low neutron-flux environments. Initial efforts to utilize the luminescence of uranyl oxide to eliminate the need for wavelength-shifting dyes were unsuccessful. Excitation of uranyl compounds has been reported at wavelengths ranging from 266 nm to 532 nm. However, neither the 300 nm emission of toluene, nor the 350 nm emission of PPO, nor the 410 nm emission of POPOP resulted in significant excitation of and emission by uranyl oxide. As indicated by UV/visible spectroscopy, light emitted at these wavelengths was absorbed by the colored solution. {sup 235}U remains the most attractive candidate for a fissionable scintillator, due to its high fission cross-section and lack of a threshold fission energy, but all solutions containing molecular uranium compounds will be colored, most more highly than the U{sup 6+} compounds used here. Research is therefore continuing toward the fabrication of uranium nanoparticles, in which, due to Rayleigh scattering, the coloration should be less pronounced. The characterization of the thorium-loaded liquid scintillator and the fabrication of the 100 mL detectors for use at LANSCE demonstrated the feasibility of loading fissionable

  18. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, Michelle Jean [Univ. of California, Berkeley, CA (United States)

    2008-10-01

    Neutrinoless double beta decay (0vDBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0vDBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0vDBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0vDBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0vDBD of 130Te with a ton-scale array of unenriched TeO2 bolometers. By increasing mass and decreasing the background for 0vDBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10-6. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0vDBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by (α,n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE

  19. A multi-purpose robotic sample changer for texture and powder measurements on the HIPPO neutron diffractometer

    Science.gov (United States)

    Losko, Adrian; Vogel, Sven

    2012-10-01

    Automation of sample changes is essential on neutron diffractometers with short count times per sample (as little as 1min for steel samples), such as the high pressure preferred orientation (HIPPO) instrument at the Los Alamos Neutron Science Center (LANSCE), to allow for a high sample throughput. Efficient use of available neutron flux is indispensable and reduces the instrument downtime and workload of beamline personnel. High precision motion in cartesian coordinates permits accurate sample alignment and increased coverage of sample directions for texture measurements. Using geometrical properties of diffraction by crystals, corrections in sample displacements in strain measurements will minimize the artificial strain due to misalignment of the sample position to determine the center of ``gravity'' of the diffraction signal by utilizing a sample rotation that will ensure that the same grain population will diffract in two different detectors, allowing to determine any sample position offset. Those corrections are only achievable with a combination of high precision sample positioning and a large detector coverage as on HIPPO. Here we present the capabilities of the new robotic sample changer to help improve texture and strain measurements on the HIPPO instrument.

  20. Spallation production of neutron deficient radioisotopes in North America

    International Nuclear Information System (INIS)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-01-01

    The United States Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 from RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Be-10, Al-26, Mg-28, Si-32, El-44, Fe-52, Gd-248, and Hg-194. We will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes from Los Alamos and Brookhaven will be described. Chemical separation techniques have been developed to recover the radioisotopes of interest in both high radiochemical purity and yield and at the same time trying to reduce or eliminate the generation of mixed waste. nearly 75 neutron deficient radioisotopes produced in spallation targets have been produced and distributed to researchers around the world since the inception of the program in 1974

  1. Neutron capture by hook or by crook

    Science.gov (United States)

    Mosby, Shea

    2016-03-01

    The neutron capture reaction is a topic of fundamental interest for both heavy element (A>60) nucleosynthesis and applications in such fields as nuclear energy and defense. The full suite of interesting isotopes ranges from stable nuclei to the most exotic, and it is not possible to directly measure all the relevant reaction rates. The DANCE instrument at Los Alamos provides direct access to the neutron capture reaction for stable and long-lived nuclei, while Apollo coupled to HELIOS at Argonne has been developed as an indirect probe for cases where a direct measurement is impossible. The basic techniques and their implications will be presented, and the status of ongoing experimental campaigns to address neutron capture in the A=60 and A=100 mass regions will be discussed.

  2. Neutron diffraction principles

    International Nuclear Information System (INIS)

    Granada, Jose R.

    1998-01-01

    Neutron as research element contributes at present to the understanding and development of almost all aspects related to basic and applied science, even with the relative inaccessibility of neutron sources and the fact that the most intense sources still provide relatively weak neutron beams. The initial discovery of these potentialities and the first works that allowed to convert the neutronic techniques into the actual powerful experimental tool, have been recognized by the adjudication of the Nobel Prize in Physics 1994 to Professors B. Brockhouse and C. Shull. Unfortunately, these tools have not been exploited neither in our country, nor in the Latin American area, with the exception of very limited applications in Materials Science. Although the theoretical principles of neutron scattering techniques have been treated in texts and review works, the aim of this work is to present a compact set of expressions, oriented to sustain and explain the basic forms or the most frequent use for the interpretation of experimental results. The formulation, mostly based on the initial chapters of the Ph.D. Thesis of G.J. Cuello (Instituto Balseiro, 1996), only considers nuclear scattering of neutrons for extension reasons, but it must be taken into account that the experiments designed for the study of the magnetic properties of materials currently play a rol of importance equal to those

  3. Volume 15. Neutron scattering

    International Nuclear Information System (INIS)

    Kostorz, G.

    1979-01-01

    This volume of the Treatise on Materials Science and Technology shows how neutron scattering methods can be used to obtain important information on materials, by guiding the reader through the principles and describing recent applications. Materials scientists, but also solid state physicists, physical chemists, and metallurgists interested in this field, will find a completely referenced survey of the ''classical topics'' of neutron scattering and a more detailed presentation of methods and techniques that are more specifically related to materials science. After a brief review of the general principles in the first chapter, subsequent chapters concentrate on particular methods and problems. The techniques used in neutron crystallography are presented, and selected applications of nuclear and magnetic scattering are discussed. The measurement of phonons, their role in phase transformations, and their behavior in the presence of crystal defects are considered, and quasi-elastic scattering is given detailed treatment. The methods of small-angle scattering and diffuse scattering have been developed to a considerable perfection in recent years and are presented in detail. The structure and dynamics of hydrogen dissolved in metals and the conformation and dynamics of polymers are two outstanding subjects to which neutron scattering has contributed so much in recent years that separate chapters are devoted to covering these fields. Finally, the choice of the appropriate materials is also becoming increasingly crucial in the design and construction of neutron spectrometers. Therefore, the last chapter deals with special materials problems in neutron devices

  4. Tiger Team Assessment of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1991-11-01

    This report documents the Tiger Team Assessment of the Los Alamos National Laboratory (LANL) located in Los Alamos, New Mexico. LANL is operated for the US Department of Energy (DOE) by the University of California. The Tiger Team Assessment was conducted from September 23 to November 8, 1991, under the auspices of the DOE Office of Special Projects, Office of Assistant Secretary for Environment, Safety and Health. The assessment was comprehensive, encompassing environmental, safety, and health (ES ampersand H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal LANL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors' management of ES ampersand H/quality assurance programs was conducted. This volume discusses findings concerning the environmental assessment

  5. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report documents the Tiger Team Assessment of the Los Alamos National Laboratory (LANL) located in Los Alamos, New Mexico. LANL is operated for the US Department of Energy (DOE) by the University of California. The Tiger Team Assessment was conducted from September 23 to November 8, 1991, under the auspices of the DOE Office of Special Projects, Office of Assistant Secretary for Environment, Safety and Health. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal LANL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors' management of ES H/quality assurance programs was conducted. This volume discusses findings concerning the environmental assessment.

  6. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  7. Peculiarities of the modern neutron spectrometry

    Indian Academy of Sciences (India)

    Abstract. Neutron spectrometry provides many branches of science and technology with the necessary data. Usually the main part of the data is supplied by powerful neutron time-of-flight spectrometers. Nevertheless there are many other very effective but simpler and cheaper neutron spectroscopy methods on accelerators, ...

  8. Peculiarities of the modern neutron spectrometry

    Indian Academy of Sciences (India)

    Neutron spectrometry provides many branches of science and technology with the necessary data. Usually the main part of the data is supplied by powerful neutron time-of-flight spectrometers. Nevertheless there are many other very effective but simpler and cheaper neutron spectroscopy methods on accelerators, suitable ...

  9. Neutron capture reactions on Lu isotopes at DANCE

    Directory of Open Access Journals (Sweden)

    Wouters J.M.

    2010-03-01

    Full Text Available The DANCE (Detector for Advanced Neutron Capture Experiments array located at the Los Alamos national laboratory has been used to obtain the neutron capture cross sections for the 175Lu and 176Lu isotopes with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process in astrophysics and for applications as in reactor physics or in nuclear medicine. Three targets were used to perform these measurements. One was natLu foil and the other two were isotope-enriched targets of 175Lu and 176Lu. The cross sections are obtained for now through a precise neutron flux determination and a normalization at the thermal neutron cross section value. A comparison with the recent experimental data and the evaluated data of ENDF/B-VII.0 will be presented. In addition, resonances parameters and spin assignments for some resonances will be featured.

  10. Neutron capture reactions on Lu isotopes at DANCE

    CERN Document Server

    Roig, O

    2010-01-01

    The DANCE (Detector for Advanced Neutron Capture Experiments) array located at the Los Alamos national laboratory has been used to obtain the neutron capture cross sections for 175Lu and 176Lu with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process in astrophysics and for applications as in reactor physics or in nuclear medicine. Three targets were used to perform these measurements. One was natLu foil and the other two were isotope-enriched targets of 175Lu and 176Lu. The cross sections are obtained for now through a precise neutron flux determination and a normalization at the thermal neutron cross section value. A comparison with the recent experimental data and the evaluated data of ENDF/B-VII.0 will be presented. In addition, resonances parameters and spin assignments for some resonances will be featured.

  11. HTGR safety research at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stroh, K.R.; Anderson, C.A.; Kirk, W.L.

    1982-01-01

    This paper summarizes activities undertaken at the Los Alamos National Laboratory as part of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Program sponsored by the US Nuclear Regulatory Commission. Technical accomplishments and analysis capabilities in six broad-based task areas are described. These tasks are: fission-product technology, primary-coolant impurities, structural investigations, safety instrumentation and control systems, accident delineation, and phenomena modeling and systems analysis

  12. High-energy density physics at Los Alamos

    International Nuclear Information System (INIS)

    Byrnes, P.; Younger, S.M.

    1993-03-01

    This brochure describes the facilities of the Above Ground Experiments II (AGEX II) and the Inertial Confinement Fusion (ICF) programs at Los Alamo. Combined, these programs represent, an unparalleled capability to address important issues in high-energy density physics that are critical to the future defense, energy, and research needs of th e United States. The mission of the AGEX II program at Los Alamos is to provide additional experimental opportunities for the nuclear weapons program. For this purpose we have assembled at Los Alamos the broadest array of high-energy density physics facilities of any laboratory in the world. Inertial confinement fusion seeks to achieve thermonuclear burn on a laboratory scale through the implosion of a small quantity of deuterium and tritium fuel to very high Pressure and temperature.The Los Alamos ICF program is focused on target physics. With the largest scientific computing center in the world, We can perform calculations of unprecedented sophistication and precision. We field experiments at facilities worldwide-including our own Trident and Mercury lasers-to confirm our understanding and to provide the necessary data base to proceed toward the historic goal of controlled fusion in the laboratory. In addition to direct programmatic high-energy density physics is a nc scientific endeavor in itself. The ultrahigh magnetic fields produced in our high explosive pulsed-power generators can be used in awide variety of solid state physics and temperature superconductor studies. The structure and dynamics of planetary atmospheres can be simulated through the compression of gas mixtures

  13. Decommissioning three nuclear reactors at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Montoya, G.M.; Salazar, M.

    1992-01-01

    Three nuclear reactors, including the historic water boiler reactor, were decommissioned at Los Alamos National Laboratory (LANL). The decommissioning of the facilities involved removing the reactors and their associated components. Planning for the decommissioning operation included characterizing the facilities, estimating the costs of decommissioning operations, preparing environmental documentation, establishing systems to track costs and work progress, and preplanning to correct health and safety concerns in each facility

  14. Medical record automation at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Hogle, G.O.; Grier, R.S.

    1979-01-01

    With the increase in population at the Los Alamos Scientific Laboratory and the growing concern over employee health, especially concerning the effects of the work environment, the Occupational Medicine Group decided to automate its medical record keeping system to meet these growing demands. With this computer system came not only the ability for long-term study of the work environment verses employee health, but other benefits such as more comprehensive records, increased legibility, reduced physician time, and better records management

  15. Evolution of the Field of Statistics at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Picard, Richard Roy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-24

    Through years of technological improvements, cultural change, advances in statistical theory, revisions of federal government structure and policies, Laboratory re-organizations, offce re-locations, and so on, the practice of statistics at Los Alamos has evolved from its origins in the early 1950s, with a handful of statisticians working in LASL group T-1, to present-day group CCS-6. This report chronicles that history.

  16. The intense neutron generator

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1966-01-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through μ-, π- and K-meson production. Isotope production enters many fields of applied research. (author)

  17. Neutrons for industry

    International Nuclear Information System (INIS)

    Petry, W.

    2015-01-01

    Neutrons are a unique tool for materials science, from hard to soft matter. This uniqueness relies on the privileged penetration of neutrons in any kind of matter, their particular contrast for different elements/isotopes, their capability to characterize in situ, in operation and in real time. Often enough neutron research explains the functionality of materials and work pieces by their atomistic foundation and opens the way for optimization of the functionality. In this paper the author reviews some new applications of neutron irradiation in industry: homogenous doping for power electronics; the selection of the right candidates for hydrogen storage materials; the optimization of Li-ion batteries and organic solar cells; the 3-dimensional determination of residual stresses without damaging the specimen. Concerning medicine there were some advances for the production of some isotopes like Lu 177 or Mo 99 -Tc 99m

  18. James L. Tuck Los Alamos ball lightning pioneer

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A.

    1999-07-01

    James Tuck was well known for starting the Project Sherwood group at Los Alamos Scientific Laboratory in 1952. This group was formed to study and develop concepts for controlled fusion energy. In his later years after retiring from Controlled Fusion Division, he continued research at Los Alamos on the topic of ball lightning. He traveled widely giving lectures on both observations of others and his own experimental efforts. He collected anecdotal observations obtained from those in his lecture audiences during his travels and from responses from newspaper articles where he asked for specific information from ball lightning observers. He finally cut off this collection of data when the number of responses became overwhelming. The author's primary publication on ball lightning was a short laboratory report. He planned on publishing a book on the subject but this was never completed before his death. Tuck focused his experimental effort on attempting to duplicate the production of plasma balls claimed to be observed in US Navy submarines when a switch was opened under overload conditions with battery power. During lunch breaks he made use of a Los Alamos N-division battery bank facility to mock up a submarine power pack and switch gear. This non-funded effort was abruptly terminated when an explosion occurred in the facility. An overview of Tuck's research and views will be given. The flavor Jim's personality as well as a ball produced with his experimental apparatus will be shown using video chips.

  19. Water supply at Los Alamos during 1996. Progress report

    International Nuclear Information System (INIS)

    McLin, S.G.; Purtymun, W.D.; Maes, M.N.; Longmire, P.A.

    1997-12-01

    Production of potable municipal water supplies during 1996 totaled about 1,368.1 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from either the spring gallery in Water Canyon or from Guaje Reservoir during 1996. About 2.6 million gallons of water from Los Alamos Reservoir was used for lawn irrigation. The total water usage in 1996 was about 1,370.7 million gallons, or about 131 gallons per day per person living in Los Alamos County. Groundwater pumpage was up about 12.0 million gallons in 1996 compared with the pumpage in 1995. This report fulfills requirements specified in US Department of Energy (DOE) Order 5400.1 (Groundwater Protection Management Program), which requires the Los Alamos National Laboratory (LANL) to monitor and document groundwater conditions below Pajarito Plateau and to protect the regional aquifer from contamination associated with Laboratory operations. Furthermore, this report also fulfills special conditions by providing information on hydrologic characteristics of the regional aquifer, including operating conditions of the municipal water supply system

  20. Neutron protein crystallography in JAERI

    Indian Academy of Sciences (India)

    Author Affiliations. I Tanaka1 2. Neutron Science Research Center, Japan Atomic Energy Research Institute (JAERI), Tokai, Ibaraki 319-1195, Japan; Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan ...

  1. The performance of neutron scattering spectrometers at a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.

    1997-01-01

    In this document the author considers the performance of a long pulse spallation source for those neutron scattering experiments that are usually performed with a monochromatic beam at a continuous wave (CW) source such as a nuclear reactor. The first conclusion drawn is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons

  2. Measurement of the neutron spectrum of the Big Ten critical assembly by lithium-6 spectrometry

    International Nuclear Information System (INIS)

    De Leeuw-Gierts, G.; De Leeuw, S.; Hansen, G.E.; Helmick, H.H.

    1979-01-01

    The central neutron-flux spectrum of the Los Alamos Scientific Laboratory's critical assembly, Big Ten, was measured with a 6 Li spectrometer and techniques developed at the Centre d'Etude de L'Energie Nucleaire, Mol, as part of an experimental program to establish the characteristics of Big Ten

  3. Measurement of the neutron spectrum of the Big Ten critical assembly by lithium-6 spectrometry

    International Nuclear Information System (INIS)

    Leeuw-Gierts, G. de; Leeuw, S. de

    1980-01-01

    The central neutron-flux spectrum of the Los Alamos Scientific Laboratory's critical assembly, Big Ten, was measured with a 6 Li spectrometer and techniques developed at the Centre d'Etude de l'Energie Nucleaire, Mol, as part of an experimental program to establish the characteristics of Big Ten

  4. Advances in neutron scattering spectroscopy

    International Nuclear Information System (INIS)

    White, J.W.

    1977-01-01

    Some aspects of the application of neutron scattering to problems in polymer science, surface chemistry, and adsorption phenomena, as well as molecular biology, are reviewed. In all these areas, very significant work has been carried out using the medium flux reactors at Harwell, Juelich and Risoe, even without the use of advanced multidetector techniques or of a neutron cold source. A general tendency can also be distinguished in that, for each of these new fields, a distinct preference for colder neutrons rather than thermal neutron beams can be seen. (author)

  5. High-level neutron coincidence counter (HLNCC): users' manual

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1979-06-01

    This manual describes the portable High-Level Neutron Coincidence Counter (HLNCC) developed at the Los Alamos Scientific Laboratory (LASL) for the assay of plutonium, particularly by inspectors of the International Atomic Energy Agency (IAEA). The counter is designed for the measurement of the effective 240 Pu mass in plutonium samples which may have a high plutonium content. The following topics are discussed: principle of operation, description of the system, operating procedures, and applications

  6. Neutron Capture Experiments on Unstable Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Jon M. Schwantes; Ralf Sudowe; Heino Nitsche; Darleane C. Hoffman

    2003-12-16

    A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. The information obtained will also be important in astrophysical modeling of nucleosynthesis. During this reporting period, the emphasis has been on preparing a radioactive target of {sup 155}Eu (half-life = 4.7 years), and several stable targets, including isotopically separated {sup 154}Sm, {sup 151}Eu, and {sup 153}Eu. Measurements of their neutron capture cross sections will be conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the Detector for Advanced Neutron Capture Experiments (DANCE). A suitable backing material (beryllium) for the targets has been selected after careful calculations of its contribution to the background of the measurements. In addition, a high voltage plating procedure has been developed and optimized. Stable targets of {sup 151}Eu and {sup 153}Eu and a target of natural Eu ({approx}50% {sup 151}Eu and {approx}50% {sup 153}Eu) have each been plated to a mass thickness of >1 mg/cm{sup 2} and delivered to the DANCE collaboration at Los Alamos National Laboratory (LANL). Natural Eu targets will be tested first to confirm that the target dimensions and backing are appropriate prior to performing measurements on the extremely valuable targets of separated isotopes. In order to prepare a target of the radioactive {sup 155}Eu, it must first be separated from the {sup 154}Sm target material that was irradiated in a very high neutron flux of 1.5x1015 neutrons/cm{sup 2}/s for 50 days. The reaction is {sup 154}Sm (n,f){sup 155}Sm (half-life = 22 minutes) {sup 155}Eu. Considerable progress has been made in developing a suitable high-yield and high-purity separation method for separating Eu from targets

  7. Probabilistic risk assessment for the Los Alamos Meson Physics Facility worst-case design-basis accident

    International Nuclear Information System (INIS)

    Sharirli, M.; Butner, J.M.; Rand, J.L.; Macek, R.J.; McKinney, S.J.; Roush, M.L.

    1992-01-01

    This paper presents results from a Los Alamos National Laboratory Engineering and Safety Analysis Group assessment of the worse-case design-basis accident associated with the Clinton P. Anderson Meson Physics Facility (LAMPF)/Weapons Neutron Research (WNR) Facility. The primary goal of the analysis was to quantify the accident sequences that result in personnel radiation exposure in the WNR Experimental Hall following the worst-case design-basis accident, a complete spill of the LAMPF accelerator 1L beam. This study also provides information regarding the roles of hardware systems and operators in these sequences, and insights regarding the areas where improvements can increase facility-operation safety. Results also include confidence ranges to incorporate combined effects of uncertainties in probability estimates and importance measures to determine how variations in individual events affect the frequencies in accident sequences

  8. Experimental Physical Sciences Vistas Performance through Science Winter 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cruz, James Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hockaday, Mary Yvonne P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lacerda, Alex Hugo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilburn, Wesley Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Batha, Steven H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carnes, Jay Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Del Mauro, Diana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); DeYoung, Anemarie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Freibert, Franz Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fronzak, Hannah Kristina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gray, III, George Thompson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hooks, Daniel Edwin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martineau, Rick Lorne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martz, Joseph Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Migliori, Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poling, Charles C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Prestridge, Katherine Philomena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schraad, Mark William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Michael Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-23

    This issue of Experimental Physical Sciences Vistas focuses on the integrated science that plays a critical role in Los Alamos National Laboratory’s support of the nation’s nuclear deterrent. I hope you will enjoy reading about these accomplishments, opportunities, and challenges.

  9. Neutron guide

    Science.gov (United States)

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  10. Analysis results from the Los Alamos 2D/3D program

    International Nuclear Information System (INIS)

    Boyack, B.E.; Cappiello, M.W.; Harmony, S.C.; Shire, P.R.; Siebe, D.A.

    1987-01-01

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, The Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 will be summarized; several significant accomplishments will be described in more detail to illustrate the work activities at Los Alamos

  11. Basic to industrial research on neutron platform in Japan

    Indian Academy of Sciences (India)

    The co-location of reactor- and accelerator-based neutron sources offers a great opportunity for complementary use of steady and pulsed neutron beams in a wide variety of neutron science and technology areas ranging from basic research to industrial applications. In Japan, such a balance of two kinds of neutron sources ...

  12. Los Alamos Scientific Laboratory approach to hydrogeochemical and stream sediment reconnaissance for uranium in the United States

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-01-01

    The Los Alamos Scientific Laboratory of the United States is conducting a geochemical survey for uranium in the Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in Alaska. This survey is part of a national hydrogeochemical and stream sediment reconnaissance in which four Department of Energy laboratories will study the uranium resources of the United States to provide data for the National Uranium Resource Evaluation program. The reconnaissance will identify areas having higher than background concentrations of uranium in ground waters, surface waters, and water-transported sediments. The reconnaissance data will be combined with data from airborne radiometric surveys and geological and geophysical investigations to provide an improved estimate for the economics and availability of nuclear fuel resources in the United States and to make information available to industry for use in the exploration and development of uranium resources. Water samples are analyzed for uranium by fluorometry which has a 0.02 parts per billion lower limit of detection. Concentrations of 12 additional elements in water are determined by plasma-source emission spectrography. All sediments are analyzed for uranium by delayed-neutron counting and a 20 parts per billion lower limit of detection. Elemental concentrations in sediments are also determined by neutron activation analysis, x-ray fluorescence, and by arc-source emission spectrography. To date, all of four Rocky Mountain states and about 80% of Alaska have been sampled. About 220,000 samples have been collected from an area of nearly 2,500,000 km 2 . The philosophy, sampling methodology, analytical techniques, and progress of the reconnaissance are described in several published pilot study, reconnaissance, and technical reports. The Los Alamos program was designed to maximize the identification of uranium in terrains of varied geography, geology, and climate

  13. Dissolved Pesticides in the Alamo River and the Salton Sea, California, 1996-1997

    National Research Council Canada - National Science Library

    Crepeau, Kathryn L; Kuivila, Kathryn M; Bergamaschi, Brian

    2002-01-01

    .... Generally, the highest concentrations were measured in the Alamo River. The concentrations of carbaryl, chlorpyrifos, cycloate, dacthal, diazinon, and eptam were highest in samples collected in autumn 1996...

  14. Physics at the proposed National Underground Science Facility

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1983-01-01

    The scientific, technical, and financial reasons for building a National Underground Science Facility are discussed. After reviewing examples of other underground facilities, we focus on the Los Alamos proposal and the national for its choice of site

  15. Materials Capability Review Los Alamos National Laboratory May 4-7, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoniette J [Los Alamos National Laboratory

    2009-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g ., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors. LANL has defined fourteen

  16. Groundwater level status report for 2010, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2011-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

  17. Groundwater level status report for 2008, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2009-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2008 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 45 regional aquifer wells, 28 intermediate wells, 8 regional/intermediate wells, 106 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 166 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  18. Groundwater level status report for 2009, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2010-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  19. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  20. Tiger Team Assessment of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services