WorldWideScience

Sample records for alamos neutron science

  1. Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, and provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.

  2. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  3. Operational status of the Los Alamos neutron science center (LANSCE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory; Erickson, John L [Los Alamos National Laboratory; Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources; the thermal and cold source for the Manuel Lujan Jr. Neutron Scattering Center, the Weapons Neutron Research (WNR) high-energy neutron source, and a pulsed Ultra-Cold Neutron Source. These three sources are the foundation of strong and productive multi-disciplinary research programs that serve a diverse and robust user community. The facility also provides multiplexed beams for the production of medical radioisotopes and proton radiography of dynamic events. The recent operating history of these sources will be reviewed and plans for performance improvement will be discussed, together with the underlying drivers for the proposed LANSCE Refurbishment project. The details of this latter project are presented in a separate contribution.

  4. Lujan at Los Alamos Neutron Science Center (LANSCE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Lujan Neutron Scattering Center (Lujan Center) at Los Alamos National Laboratory is an intense pulsed neutrons source operating at a power level of 80 -100 kW....

  5. Commissioning of the upgraded ultracold neutron source at Los Alamos Neutron Science Center

    Science.gov (United States)

    Pattie, Robert; LANL-UCN Team Team

    2016-09-01

    The spallation-driven solid-deuterium ultracold neutron (UCN) source at Los Alamos Neutron Science Center (LANSCE) has provided a facility for precision measurements of fundamental symmetries via the decay observables from neutron beta decay for nearly a decade. In preparation for a new room temperature neutron electric dipole moment (nEDM) experiment and to increase the statistical sensitivity of all experiments using the source an effort to upgrade the existing source has been carried out during 2016. This upgrade includes installing a redesigned cold neutron moderator and with optimized UCN converter geometries, improved coupling and nickel-phosphorus coating of the UCN transport system through the biological shielding, optimization of beam timing structure, and increase of the proton beam current. We will present the result of the commissioning run of the new source.

  6. Upgrades to the ultracold neutron source at the Los Alamos Neutron Science Center

    Science.gov (United States)

    Pattie, Robert; LANL-nEDM Collaboration

    2015-10-01

    The spallation-driven solid deutrium-based ultracold neutron (UCN) source at the Los Alamos Neutron Science Center (LANSCE) has provided a facility for precision measurements of fundamental symmetries via the decay observables from neutron beta decay for nearly a decade. In preparation for a new room temperature neutron electric dipole moment (nEDM) experiment and to increase the statistical sensitivity of all experiments using the source an effort to increase the UCN output is underway. The ultimate goal is to provide a density of 100 UCN/cc or greater in the nEDM storage cell. This upgrade includes redesign of the cold neutron moderator and UCN converter geometries, improved coupling and coating of the UCN transport system through the biological shielding, optimization of beam timing structure, and increase of the proton beam current. We will present the results of the MCNP and UCN transport simulations that led to the new design, which will be installed spring 2016, and UCN guide tests performed at LANSCE and the Institut Laue-Langevin to study the UCN transport properties of a new nickel-based guide coating.

  7. Los Alamos neutron science user facility - control system risk mitigation & updates

    Energy Technology Data Exchange (ETDEWEB)

    Pieck, Martin [Los Alamos National Laboratory

    2011-01-05

    LANSCE User Facility is seeing continuing support and investments. The investment will sustain reliable facility operations well into the next decade. As a result, the LANSCE User Facility will continue to be a premier Neutron Science Facility at the Los Alamos National Laboratory.

  8. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Longshore, A.; Salgado, K. [comps.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  10. Klystron Modulator Design for the Los Alamos Neutron Science Center Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A. [Los Alamos National Laboratory; Baca, David M. [Los Alamos National Laboratory; Partridge, Edward R. [retired; Rees, Daniel E. [Los Alamos National Laboratory

    2012-06-22

    This paper will describe the design of the 44 modulator systems that will be installed to upgrade the Los Alamos Neutron Science Center (LANSCE) accelerator RF system. The klystrons can operate up to 86 kV with a nominal 32 Amp beam current with a 120 Hz repetition rate and 15% duty cycle. The klystrons are a mod-anode design. The modulator is designed with analog feedback control to ensure the klystron beam current is flat-top regulated. To achieve fast switching while maintaining linear feedback control, a grid-clamp, totem-pole modulator configuration is used with an 'on' deck and an 'off' deck. The on and off deck modulators are of identical design and utilize a cascode connected planar triode, cathode driven with a high speed MOSFET. The derived feedback is connected to the planar triode grid to enable the flat-top control. Although modern design approaches suggest solid state designs may be considered, the planar triode (Eimac Y-847B) is very cost effective, is easy to integrate with the existing hardware, and provides a simplified linear feedback control mechanism. The design is very compact and fault tolerant. This paper will review the complete electrical design, operational performance, and system characterization as applied to the LANSCE installation.

  11. LOS ALAMOS NEUTRON SCIENCE CENTER CONTRIBUTIONS TO THE DEVELOPMENT OF FUTURE POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    GAVRON, VICTOR I. [Los Alamos National Laboratory; HILL, TONY S. [Los Alamos National Laboratory; PITCHER, ERIC J. [Los Alamos National Laboratory; TOVESSON, FREDERIK K. [Los Alamos National Laboratory

    2007-01-09

    The Los Alamos Neutron Science Center (LANSCE) is a large spallation neutron complex centered around an 800 MeV high-currently proton accelerator. Existing facilities include a highly-moderated neutron facility (Lujan Center) where neutrons between thermal and keV energies are produced, and the Weapons Neutron Research Center (WNR), where a bare spallation target produces neutrons between 0.1 and several hundred MeV.The LANSCE facility offers a unique capability to provide high precision nuclear data over a large energy region, including that for fast reactor systems. In an ongoing experimental program the fission and capture cross sections are being measured for a number of minor actinides relevant for Generation-IV reactors and transmutation technology. Fission experiments makes use of both the highly moderated spallation neutron spectrum at the Lujan Center, and the unmoderated high energy spectrum at WNR. By combininb measurements at these two facilities the differential fission cross section is measured relative to the {sup 235}U(n,f) standard from subthermal energies up to about 200 MeV. An elaborate data acquisition system is designed to deal with all the different types of background present when spanning 10 energy decades. The first isotope to be measured was {sup 237}Np, and the results were used to improve the current ENDF/B-VII evaluation. Partial results have also been obtained for {sup 240}Pu and {sup 242}Pu, and the final results are expected shortly. Capture cross sections are measured at LANSCE using the Detector for Advanced Neutron Capture Experiments (DANCE). This unique instrument is highly efficient in detecting radiative capture events, and can thus handle radioactive samples of half-lives as low as 100 years. A number of capture cross sections important to fast reaction applications have been measured with DANCE. The first measurement was on {sup 237}Np(n,{gamma}), and the results have been submitted for publication. Other capture

  12. Stripping of H- beams by residual gas in the linac at the Los Alamos neutron science center

    Energy Technology Data Exchange (ETDEWEB)

    Mccrady, Rodney C [Los Alamos National Laboratory; Ito, Takeyasu [Los Alamos National Laboratory; Cooper, Martin D [Los Alamos National Laboratory; Alexander, Saunders [Los Alamos National Laboratory

    2010-09-07

    The linear accelerator at the Los Alamos Neutron Science Center (LANSCE) accelerates both protons and H{sup -} ions using Cockroft-Walton-type injectors, a drift-tube linac and a coupled-cavity linac. The vacuum is maintained in the range of 10{sup -6} to 10{sup -7} Torr; the residual gas in the vacuum system results in some stripping of the electrons from the H{sup -} ions resulting in beam spill and the potential for unwanted proton beams delivered to experiments. We have measured the amount of fully-stripped H{sup -} beam (protons) that end up at approximately 800 MeV in the beam switchyard at LANSCE using image plates as very sensitive detectors. We present here the motivation for the measurement, the measurement technique and results.

  13. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    Science.gov (United States)

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.; Chyzh, A.; Walker, C.; Agvaanluvsan, U.; Becker, J. A.; Parker, W.; Sleaford, B.; Wu, C. Y.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Krtička, M.; Bečvář, F.

    2009-03-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF2 scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectra for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.

  14. Plans for an Ultra Cold Neutron source at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L. [Los Alamos National Lab., NM (United States)

    1996-08-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of be a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors. (author)

  15. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  16. The Los Alamos Science Pillars The Science of Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Joshua E. [Los Alamos National Laboratory; Peterson, Eugene J. [Los Alamos National Laboratory

    2012-09-13

    As a national security science laboratory, Los Alamos is often asked to detect and measure the characteristics of complex systems and to use the resulting information to quantify the system's behavior. The Science of Signatures (SoS) pillar is the broad suite of technical expertise and capability that we use to accomplish this task. With it, we discover new signatures, develop new methods for detecting or measuring signatures, and deploy new detection technologies. The breadth of work at Los Alamos National Laboratory (LANL) in SoS is impressive and spans from the initial understanding of nuclear weapon performance during the Manhattan Project, to unraveling the human genome, to deploying laser spectroscopy instrumentation on Mars. Clearly, SoS is a primary science area for the Laboratory and we foresee that as it matures, new regimes of signatures will be discovered and new ways of extracting information from existing data streams will be developed. These advances will in turn drive the development of sensing instrumentation and sensor deployment. The Science of Signatures is one of three science pillars championed by the Laboratory and vital to supporting our status as a leading national security science laboratory. As with the other two pillars, Materials for the Future and Information Science and Technology for Predictive Science (IS&T), SoS relies on the integration of technical disciplines and the multidisciplinary science and engineering that is our hallmark to tackle the most difficult national security challenges. Over nine months in 2011 and 2012, a team of science leaders from across the Laboratory has worked to develop a SoS strategy that positions us for the future. The crafting of this strategy has been championed by the Chemistry, Life, and Earth Sciences Directorate, but as you will see from this document, SoS is truly an Institution-wide effort and it has engagement from every organization at the Laboratory. This process tapped the insight and

  17. Cross section and γ-ray spectra for U238(n,γ) measured with the DANCE detector array at the Los Alamos Neutron Science Center

    Science.gov (United States)

    Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.

    2014-03-01

    Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where has not been measured.

  18. Production Potential of 47Sc Using Spallation Neutron Flux at the Los Alamos Isotope Production Facility

    Science.gov (United States)

    2014-03-27

    Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this document are those of the author and do...targets at the Los Alamos National Laboratory ( LANL ) Isotope Production Facility (IPF). Targets were activated for 1 hr using an average proton beam...for 47SC production is the unique neutron flux that results from this unique beam/target structure [8]. 1.3 Summary The remainder of this document is

  19. Priorities and strategies, Los Alamos computer science institute.

    Energy Technology Data Exchange (ETDEWEB)

    Oldehoeft, R. R. (Rodney R.)

    2004-01-01

    On March 18-19, 2002 the Los Alamos Computer Science Institute (LACSI) Executive Committee and Principal Investigators met to discuss methods of addressing issues raised in the 2001 LACSI Contract Review. The body was tasked to develop priorities and strategies to meet future programmatic and LANL computer science needs. A framework was developed to address long-term strategic thrust areas. Specific objectives were called out as near-term priorities. The objectives were folded into the framework to form a coherent planning view. On both April 8-9, 2003 and February 19-20, 2004, the LACSI Executive Committee and Principal Investigators met with senior LANL personnel to revise the framework, priorities, and strategies established at the planning meeting in 2002. The current framework outlines five strategic thrust areas: Components, Systems, Computational Science, Application and System Performance, and Computer Science Community Interaction. This document presents the research vision and implementation strategy in each of these areas. The goal of the component architectures effort is to make application development easier through the use of modular codes that integrate powerful components at a high level of abstraction. Through modularization and the existence of well-defined component boundaries (specified by programming interfaces), components allow scientists and software developers to focus on a their own areas of expertise. For example, components and modern scripting languages enable physicists to program at a high level of abstraction (by composing off-the-shelf components into an application), leaving the development of components to expert programmers. In addition, because components foster a higher level of code reuse, components provide an increased economy of scale, making it possible for resources to be shifted to areas such as performance, testing, and platform dependencies, thus improving software quality, portability, and application performance. A

  20. Neutron-Induced Failures in Semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  1. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  2. Chromosome Aberrations in Human Epithelial Cells Exposed Los Alamos High-Energy Secondary Neutrons: M-BAND Analysis

    Science.gov (United States)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays (GCR) with the atmosphere, spacecraft structure and planetary surfaces, contribute a significant fraction to the dose equivalent radiation measurement in crew members and passengers of commercial aviation travel as well as astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's 30L beam line (4FP30L-A/ICE House) is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecrafts like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams with an entrance dose rate of 2.5 cGy/hr, and studied the induction of chromosome aberrations that were identified with multicolor-banding in situ hybridization (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results with gamma-rays and 600 MeV/nucleon Fe ions of high dose rate at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory), the neutron data from the LANSCE experiments showed significantly higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intrachromosomal aberrations but few inversions were accompanied by interchromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both

  3. Neutrons for technology and science

    Energy Technology Data Exchange (ETDEWEB)

    Aeppli, G.

    1995-10-01

    We reviewed recent work using neutrons generated at nuclear reactors an accelerator-based spallation sources. Provided that large new sources become available, neutron beams will continue to have as great an impact on technology and science as in the past.

  4. Ultra-Cold Neutrons (UCN)

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers working at the Los Alamos Neutron Science Center and eight other member institutions of an international collaboration are constructing the most intense...

  5. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N G; Shea, N [eds.

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  6. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Science.gov (United States)

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  7. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N.G. [ed.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  8. Neutron Science Project at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  9. Calculation of Prompt Fission Neutron from 233U(n, f) Reaction by Multi-Modal Los Alamos Model%Calculation of Prompt Fission Neutron from 233U(n, f) Reaction by Multi-Modal Los Alamos Model

    Institute of Scientific and Technical Information of China (English)

    郑娜; 钟春来; 樊铁栓

    2012-01-01

    An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved version of Los Alamos model and the point by point model. The prompt fission neutron spectra and the prompt fission neutron as a function of fragment mass (usually named "sawtooth" data) v(A) are calculated independently for the three most dominant fission modes (standard I, standard II and superlong), and the total spectra and v(A) are syn- thesized. The multi-modal parameters are determined on the basis of experimental data of fission fragment mass distributions. The present calculation results can describe the experimental data very well, and the proposed treatment is thus a useful tool for prompt fission neutron emission prediction.

  10. Scientific Advancements and Technological Developments of High P-T Neutron Diffraction at LANSCE, Los Alamos

    Science.gov (United States)

    Zhao, Y.; Daemen, L. L.; Zhang, J.

    2003-12-01

    In-situ high P-T neutron diffraction experiments provide unique opportunities to study the crystal structure, hydrogen bonding, magnetism, and thermal parameters of light elements (eg. H, Li, B) and heavy elements (eg. Ta, U, Pu,), that are virtually impossible to determine with x-ray diffraction techniques. For example, thermoelasticity and Debye-Waller factor as function of pressure and temperature can be derived using in-situ high P-T neutron diffraction techniques. These applications can also be extended to a much broader spectrum of scientific problems. For instance, puzzles in Earth science such as the carbon cycle and the role of hydrous minerals for water exchange between lithosphere and biosphere can be directly addressed. Moreover, by introducing in-situ shear, texture of metals and minerals accompanied with phase transitions at high P-T conditions can also be studied by high P-T neutron diffraction. We have successfully conducted high P-T neutron diffraction experiments at LANSCE and achieved simultaneous high pressures and temperatures of 10 GPa and 1500 K. With an average 3-6 hours of data collection, the diffraction data are of sufficiently high quality for the determination of structural parameters and thermal vibrations. We have studied hydrous mineral (MgOD), perovskite (K.15,Na.85)MgF3, clathrate hydrates (CH4-, CO2-, and H2-), metals (Mo, Al, Zr), and amorphous materials (carbon black, BMG). The aim of our research is to accurately map bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. Studies based on high-pressure neutron diffraction are important for multi-disciplinary science and we welcome researchers from all fields to use this advanced technique. We have developed a 500-ton toroidal press, TAP-98, to conduct simultaneous high P-T neutron diffraction experiments inside of HIPPO (High-Pressure and Preferred-Orientation diffractometer). We have also developed a large gem-crystal anvil cell, ZAP-01

  11. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  12. Los Alamos National Laboratory A National Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  13. GEANIE at WNR/LANSCE -- A new instrument for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.O.; Becker, J.A.; Archer, D.E. [and others

    1997-09-01

    GEANIE, an array of escape-suppressed high-resolution Ge detectors now installed at the white-neutron source at the Los Alamos Neutron Science Center, is the first large Ge detector array to be used at a high-energy spallation neutron source. GEANIE consists of 20 Ge detectors including both coaxial Ge detectors and planar Ge detectors to enhance capabilities for low-energy {gamma}-ray spectroscopy. The array is located on a 20 m flight path with a neutron flux spanning the energy range from 1 to over 200 MeV. Installation of the first phase of GEANIE was recently completed and data were acquired on a number of samples, including actinides. The unique combination of GEANIE with the neutron source at LANSCE provides new capabilities for neutron science. The status of the array and recent results are presented, and new opportunities for physics and nuclear data are discussed.

  14. Science-based stockpile stewardship at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Immele, J. [Los Alamos National Lab., NM (United States)

    1995-10-01

    I would like to start by working from Vic Reis`s total quality management diagram in which he began with the strategy and then worked through the customer requirements-what the Department of Defense (DoD) is hoping for from the science-based stockpile stewardship program. Maybe our customer`s requirements will help guide some of the issues that we should be working on. ONe quick answer to {open_quotes}why have we adopted a science-based strategy{close_quotes} is that nuclear weapons are a 50-year responsibility, not just a 5-year responsibility, and stewardship without testing is a grand challenge. While we can do engineering maintenance and turn over and remake a few things on the short time scale, without nuclear testing, without new weapons development, and without much of the manufacturing base that we had in the past, we need to learn better just how these weapons are actually working.

  15. Los Alamos National Laboratory Facility Review

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H+ and H- beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  16. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours for the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.

  17. Neutron Science TeraGrid Gateway

    Science.gov (United States)

    Lynch, Vickie; Chen, Meili; Cobb, John; Kohl, Jim; Miller, Steve; Speirs, David; Vazhkudai, Sudharshan

    2010-11-01

    The unique contributions of the Neutron Science TeraGrid Gateway (NSTG) are the connection of national user facility instrument data sources to the integrated cyberinfrastructure of the National Science FoundationTeraGrid and the development of a neutron science gateway that allows neutron scientists to use TeraGrid resources to analyze their data, including comparison of experiment with simulation. The NSTG is working in close collaboration with the Spallation Neutron Source (SNS) at Oak Ridge as their principal facility partner. The SNS is a next-generation neutron source. It has completed construction at a cost of 1.4 billion and is ramping up operations. The SNS will provide an order of magnitude greater flux than any previous facility in the world and will be available to all of the nation's scientists, independent of funding source, on a peer-reviewed merit basis. With this new capability, the neutron science community is facing orders of magnitude larger data sets and is at a critical point for data analysis and simulation. There is a recognized need for new ways to manage and analyze data to optimize both beam time and scientific output. The TeraGrid is providing new capabilities in the gateway for simulations using McStas and a fitting service on distributed TeraGrid resources to improved turnaround. NSTG staff are also exploring replicating experimental data in archival storage. As part of the SNS partnership, the NSTG provides access to gateway support, cyberinfrastructure outreach, community development, and user support for the neutron science community. This community includes not only SNS staff and users but extends to all the major worldwide neutron scattering centers.

  18. Neutron Science TeraGrid Gateway

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Vickie E [ORNL; Chen, Meili [ORNL; Cobb, John W [ORNL; Kohl, James Arthur [ORNL; Miller, Stephen D [ORNL; Speirs, David A [ORNL; Vazhkudai, Sudharshan S [ORNL

    2010-01-01

    The unique contributions of the Neutron Science TeraGrid Gateway (NSTG) are the connection of national user facility instrument data sources to the integrated cyberinfrastructure of the National Science FoundationTeraGrid and the development of a neutron science gateway that allows neutron scientists to use TeraGrid resources to analyze their data, including comparison of experiment with simulation. The NSTG is working in close collaboration with the Spallation Neutron Source (SNS) at Oak Ridge as their principal facility partner. The SNS is a next-generation neutron source. It has completed construction at a cost of $1.4 billion and is ramping up operations. The SNS will provide an order of magnitude greater flux than any previous facility in the world and will be available to all of the nation's scientists, independent of funding source, on a peer-reviewed merit basis. With this new capability, the neutron science community is facing orders of magnitude larger data sets and is at a critical point for data analysis and simulation. There is a recognized need for new ways to manage and analyze data to optimize both beam time and scientific output. The TeraGrid is providing new capabilities in the gateway for simulations using McStas and a fitting service on distributed TeraGrid resources to improved turnaround. NSTG staff are also exploring replicating experimental data in archival storage. As part of the SNS partnership, the NSTG provides access to gateway support, cyberinfrastructure outreach, community development, and user support for the neutron science community. This community includes not only SNS staff and users but extends to all the major worldwide neutron scattering centers.

  19. Neutron Science TeraGrid Gateway

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Vickie; Chen Meili; Cobb, John; Kohl, Jim; Miller, Steve; Speirs, David; Vazhkudai, Sudharshan, E-mail: lynchve@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2010-11-01

    The unique contributions of the Neutron Science TeraGrid Gateway (NSTG) are the connection of national user facility instrument data sources to the integrated cyberinfrastructure of the National Science FoundationTeraGrid and the development of a neutron science gateway that allows neutron scientists to use TeraGrid resources to analyze their data, including comparison of experiment with simulation. The NSTG is working in close collaboration with the Spallation Neutron Source (SNS) at Oak Ridge as their principal facility partner. The SNS is a next-generation neutron source. It has completed construction at a cost of $1.4 billion and is ramping up operations. The SNS will provide an order of magnitude greater flux than any previous facility in the world and will be available to all of the nation's scientists, independent of funding source, on a peer-reviewed merit basis. With this new capability, the neutron science community is facing orders of magnitude larger data sets and is at a critical point for data analysis and simulation. There is a recognized need for new ways to manage and analyze data to optimize both beam time and scientific output. The TeraGrid is providing new capabilities in the gateway for simulations using McStas and a fitting service on distributed TeraGrid resources to improved turnaround. NSTG staff are also exploring replicating experimental data in archival storage. As part of the SNS partnership, the NSTG provides access to gateway support, cyberinfrastructure outreach, community development, and user support for the neutron science community. This community includes not only SNS staff and users but extends to all the major worldwide neutron scattering centers.

  20. Workshop on Probing Frontiers in Matter with Neutron Scattering, Wrap-up Session Chaired by John C. Browne on December 14, 1997, at Fuller Lodge, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mezei, F.; Thompson, J.

    1998-12-01

    The Workshop on Probing Frontiers in Matter with Neutron Scattering consisted of a series of lectures and discussions about recent highlights in neutron scattering. In this report, we present the transcript of the concluding discussion session (wrap-up session) chaired by John C. Browne, Director of Los Alamos National Laboratory. The workshop had covered a spectrum of topics ranging from high T{sub c} superconductivity to polymer science, from glasses to molecular biology, a broad review aimed at identifying trends and future needs in condensed matter research. The focus of the wrap-up session was to summarize the workshop participants' views on developments to come. Most of the highlights presented during the workshop were the result of experiments performed at the leading reactor-based neutron scattering facilities. However, recent advances with very high power accelerators open up opportunities to develop new approaches to spallation technique that could decisively advance neutron scattering research in areas for which reactor sources are today by far the best choice. The powerful combination of neutron scattering and increasingly accurate computer modeling emerged as another area of opportunity for research in the coming decades.

  1. Los Alamos National Laboratory strategic directions

    Energy Technology Data Exchange (ETDEWEB)

    Hecker, S. [Los Alamos National Lab., NM (United States)

    1995-10-01

    It is my pleasure to welcome you to Los Alamos. I like the idea of bringing together all aspects of the research community-defense, basic science, and industrial. It is particularly important in today`s times of constrained budgets and in fields such as neutron research because I am convinced that the best science and the best applications will come from their interplay. If we do the science well, then we will do good applications. Keeping our eye focused on interesting applications will spawn new areas of science. This interplay is especially critical, and it is good to have these communities represented here today.

  2. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  3. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bardoel, Agatha A [ORNL; Counce, Deborah M [ORNL; Ekkebus, Allen E [ORNL; Horak, Charlie M [ORNL; Nagler, Stephen E [ORNL; Kszos, Lynn A [ORNL

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron

  4. J-PARC and the prospective neutron sciences

    Indian Academy of Sciences (India)

    Masatoshi Arai

    2008-10-01

    Overview of the neutron target system, instrument suite and perspective neutron sciences of J-PARC are described. The neutron facility of J-PARC, JSNS, will be operated from May 2008. JSNS will be a 1 MW pulsed spallation neutron source. About 10 high performance instruments are under construction to be ready by the Day-One.

  5. ORNL Neutron Sciences Annual Report for 2007

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Ian S [ORNL; Horak, Charlie M [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

  6. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Bardoel, Agatha A [ORNL; Counce, Deborah M [ORNL; Ekkebus, Allen E [ORNL; Horak, Charlie M [ORNL; Nagler, Stephen E [ORNL; Kszos, Lynn A [ORNL

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron

  7. The second workshop of neutron science research program

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tone, Tatsuzo [eds.

    1997-11-01

    The Japan Atomic Energy Research Institute(JAERI) has been proposing the Neutron Science Research Program to explore a broad range of basic research and the nuclear technology including actinide transmutation with use of powerful spallation neutron sources. For this purpose, the JAERI is conducting the research and development of an intense proton linac, the development of targets, as well as the conceptual design study of experimental facilities required for applications of spallation neutrons and secondary particle beams. The Special Task Force for Neutron Science Initiative was established in May 1996 to promote aggressively and systematically the Neutron Science Research Program. The second workshop on neutron science research program was held at the JAERI Tokai Research Establishment on 13 and 14 March 1997 for the purpose of discussing the results obtained since the first workshop in March 1996. The 27 of the presented papers are indexed individually. (J.P.N.)

  8. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  9. Los Alamos National Laboratory Science Education Programs. Progress report, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1995-02-01

    During the 1994 summer institute NTEP teachers worked in coordination with LANL and the Los Alamos Middle School and Mountain Elementary School to gain experience in communicating on-line, to gain further information from the Internet and in using electronic Bulletin Board Systems (BBSs) to exchange ideas with other teachers. To build on their telecommunications skills, NTEP teachers participated in the International Telecommunications In Education Conference (Tel*ED `94) at the Albuquerque Convention Center on November 11 & 12, 1994. They attended the multimedia keynote address, various workshops highlighting many aspects of educational telecommunications skills, and the Telecomm Rodeo sponsored by Los Alamos National Laboratory. The Rodeo featured many presentations by Laboratory personnel and educational institutions on ways in which telecommunications technologies can be use din the classroom. Many were of the `hands-on` type, so that teachers were able to try out methods and equipment and evaluate their usefulness in their own schools and classrooms. Some of the presentations featured were the Geonet educational BBS system, the Supercomputing Challenge, and the Sunrise Project, all sponsored by LANL; the `CU-seeMe` live video software, various simulation software packages, networking help, and many other interesting and useful exhibits.

  10. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  11. Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science

    Science.gov (United States)

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, S. D.; Peters, W. A.; Adekola, A.; Allen, J.; Bardayan, D. W.; Becker, J. A.; Blackmon, J. C.; Chae, K. Y.; Chipps, K. A.; Erikson, L.; Gaddis, A.; Harlin, C.; Hatarik, R.; Howard, J.; Jandel, M.; Johnson, M. S.; Kapler, R.; Krolas, W.; Liang, F.; Livesay, R. J.; Ma, Z.; Matei, C.; Matthews, C.; Moazen, B.; Nesaraja, C. D.; O'Malley, P.; Patterson, N.; Paulauskas, S. V.; Pelham, T.; Pittman, S. T.; Radford, D.; Rogers, J.; Schmitt, K.; Shapira, D.; Shriner, J. F.; Sissom, D. J.; Smith, M. S.; Swan, T.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, G. L.

    2009-03-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on 130,132Sn, 134Te and 75As are discussed.

  12. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Cizewski, J. A. [Rutgers University; Jones, K. L. [University of Tennessee; Kozub, R. L. [Tennessee Technological University; Pain, Steven D [ORNL; Peters, W. A. [Rutgers University; Adekola, Aderemi S [ORNL; Allen, J. [Rutgers University; Bardayan, Daniel W [ORNL; Becker, J. [Lawrence Livermore National Laboratory (LLNL); Blackmon, Jeff C [ORNL; Chae, K. Y. [University of Tennessee; Chipps, K. [Colorado School of Mines, Golden; Erikson, Luke [Colorado School of Mines, Golden; Gaddis, A. L. [Furman University; Harlin, Christopher W [ORNL; Hatarik, Robert [Rutgers University; Howard, Joshua A [ORNL; Jandel, M. [Los Alamos National Laboratory (LANL); Johnson, Micah [ORNL; Kapler, R. [University of Tennessee; Krolas, W. [University of Warsaw; Liang, J Felix [ORNL; Livesay, Jake [ORNL; Ma, Zhanwen [ORNL; Matei, Catalin [Oak Ridge Associated Universities (ORAU); Matthews, C. [Rutgers University; Moazen, Brian [University of Tennessee; Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Patterson, N. P. [University of Surrey, UK; Paulauskas, Stanley [University of Tennessee; Pelham, T. [University of Surrey, UK; Pittman, S. T. [University of Tennessee, Knoxville (UTK); Radford, David C [ORNL; Rogers, J. [Tennessee Technological University; Schmitt, Kyle [University of Tennessee; Shapira, Dan [ORNL; ShrinerJr., J. F. [Tennessee Technological University; Sissom, D. J. [Tennessee Technological University; Smith, Michael Scott [ORNL; Swan, T. P. [University of Surrey, UK; Thomas, J. S. [Rutgers University; Vieira, D. J. [Los Alamos National Laboratory (LANL); Wilhelmy, J. B. [Los Alamos National Laboratory (LANL); Wilson, Gemma L [ORNL

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  13. Neutron scattering treatise on materials science and technology

    CERN Document Server

    Kostorz, G

    1979-01-01

    Treatise on Materials Science and Technology, Volume 15: Neutron Scattering shows how neutron scattering methods can be used to obtain important information on materials. The book discusses the general principles of neutron scattering; the techniques used in neutron crystallography; and the applications of nuclear and magnetic scattering. The text also describes the measurement of phonons, their role in phase transformations, and their behavior in the presence of crystal defects; and quasi-elastic scattering, with its special merits in the study of microscopic dynamical phenomena in solids and

  14. The FIGARO facility at Los Alamos. Capabilities and first results

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert; Devlin, Matthew; Zanini, Luca; O' donnell, John [Los Alamos National Laboratory, Los Alamos, NM (United States); Aprahamian, Ani [University of Notre Dame, Notre Dame, IN (United States); Saladin, Juerg [University of Pittsburgh, Pittsburgh, PA (United States)

    2002-08-01

    A new beam line at the fast neutron spallation source at Los Alamos Neutron Science Center has been constructed for studies of neutron-induced reactions producing gamma rays, internal conversion electrons or neutrons. This facility, called FIGARO (Fast neutron-Induced GAmma-Ray Observer), follows on the great successes of GEANIE (described in other contributions to this Conference), by detecting de-excitation gamma rays with high-resolution germanium detectors. FIGARO has fewer gamma-ray detectors than GEANIE, but instead offers other features including: extremely good collimation of the neutron beam for background reduction, a flexible experimental area to optimize detection efficiency and to allow evaluation of other detectors such as ICEBALL-II for internal conversion electrons, inclusion of neutron detectors for the study of neutron-gamma coincidences, beam time to relieve the scheduling pressure on GEANIE, and a PC-based data acquisition system. Our initial measurements include level density studies through {sup 59}Co(n, xgamma) reactions to complement our previous {sup 59}Co(n, xalpha) measurements, reaction studies of MeV neutrons on {sup 99}Tc with the goal of determining cross sections relevant to transmutation and neutron transport in the design of facilities to incinerate nuclear waste, and an assessment of measuring internal conversion electrons, rather than gamma rays, produced by neutron excitation of actinides. (author)

  15. The FIGARO Facility at Los Alamos : capabilities and first results /

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, M. J. (Matthew J.); Zanini, L.; O' Donnell, J. M.; Aprahamian, A. (Ani); Saladin, J. X.; Haight, Robert C.

    2001-01-01

    A new beam line at the fast neutron spallation source at Los Alamos Neutron Science Center has been constructed for studies of neutron-induced reactions producing gamma rays, internal conversion electrons or neutrons. This facility, called FIGARO (Fast neutron-Induced GAmma-Ray Observer), follows on the great successes of GEANIE (described in other contributions to this Conference), by detecting de-excitation gamma rays with high-resolution germanium detectors. FIGARO has fewer gamma-ray detectors than GEANIE, but instead offers other features including: extremely good collimation of the neutron beam for background reduction, a flexible experimental area to optimize detection efficiency and to allow evaluation of other detectors such as ICEBALL-II for internal conversion electrons, inclusion of neutron detectors for the study of neutron-gamma coincidences, beam time to relieve the scheduling pressure on GEANIE, and a PC-based data acquisition system. Our initial measurements include level density studies through 59Co(n,xgamma) reactions to complement our previous 59Co(n,xalpha) measurements, reaction studies of MeV neutrons on 99Tc with the goal of determining cross sections relevant to transmutation and neutron transport in the design of facilities to incinerate nuclear waste, and an assessment of measuring internal conversion electrons, rather than gamma rays, produced by neutron excitation of actinides.

  16. A Fast Neutron Spectrometer for Underground Science

    Science.gov (United States)

    Langford, Thomas; Beise, Elizabeth; Breuer, Herbert; Erwin, Dylan; Bass, Christopher; Heimbach, Craig; Nico, Jeff

    2010-02-01

    The characterization of the fast neutron fluence has become a critical issue for experiments that require extreme low-background environments, such as neutrino-less double-beta decay, dark matter searches, and solar neutrino experiments. In such experiments, fast neutrons may be the dominant and a potentially irreducible background, thus necessitating precise information about the fast neutron fluence and energy spectrum. The most reasonable approach to addressing the problem is through the complete characterization of the neutrons through both site-specific measurement and benchmarking of simulation codes. We will discuss the progress toward the development of a large-volume, segmented detector consisting of plastic scintillator and ^3He proportional counters. The detector will be placed in an underground environment to measure the fast neutron flux and energy spectrum. A prototype detector has been constructed and testing is in progress. We will discuss the status of the project and present data from the prototype detector. )

  17. Neutron proton crystallography station (PCS)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory

    2009-01-01

    The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

  18. Welcome to Los Alamos National Laboratory: A premier national security science laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry [Los Alamos National Laboratory

    2012-06-25

    Dr Wallace presents visitors with an overview of LANL's national security science mission: stockpile stewardship, protecting against the nuclear threat, and energy security & emerging threats, which are underpinned by excellence in science/technology/engineering capabilities. He shows visitors a general Lab overview of budget, staff, and facilities before providing a more in-depth look at recent Global Security accomplishments and current programs.

  19. Neutron-emission measurements at a white neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  20. Neutron scattering science at the Australian Nuclear Science and Technology Organisation (ANSTO)

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Robert [Australian Nuclear Science and Technology Organisation (Australia)

    2000-10-01

    Neutron scattering science at ANSTO is integrated into a number of fields in the Australian scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans to replace the present research reactor with a modern multi-purpose research reactor are well advanced. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. A brief overview will be presented of all the instruments presently available at ANSTO with emphasis on the SANS instrument. This will be followed by a description of the replacement research reactor and its instruments. (author)

  1. Neutron capture cross section of Am241

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-01

    The neutron capture cross section of Am241 for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665±33 b. Our result is in good agreement with other recent measurements. Resonance parameters for Enwell with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  2. The Energy Science and Technology Database on a local library system: A case study at the Los Alamos National Research Library

    Energy Technology Data Exchange (ETDEWEB)

    Holtkamp, I.S.

    1994-10-01

    This paper presents an overview of efforts at Los Alamos National Laboratory to acquire and mount the Energy Science and Technology Database (EDB) as a citation database on the Research Library`s Geac Advance system. The rationale for undertaking this project and expected benefits are explained. Significant issues explored are loading non-USMARC records into a MARC-based library system, the use of EDB records to replace or supplement in-house cataloging of technical reports, the impact of different cataloging standards and database size on searching and retrieval, and how integrating an external database into the library`s online catalog may affect staffing and workflow.

  3. Detector for advanced neutron capture experiments at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, J. L. (John L.); Reifarth, R. (Rene); Haight, Robert C.; Hunt, L. F. (Lloyd F.); O' Donnell, J. M.; Bredeweg, T. A. (Todd A); Wilhelmy, J. B. (Jerry B.); Fowler, Malcolm M.; Vieira, D. J. (David J.); Wouters, J. M. (Jan Marc); Strottman, D.; Kaeppeler, F. (Franz K.); Heil, M.; Chamberlin, E. P. (Edwin P.)

    2002-01-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 159-element 4x barium fluoride array designed to study neutron capture on small quantities, 1 mg or less, of radioactive nuclides. It is being built on a 20 m neutron flight path which views the 'upper tier' water moderator at the Manuel J. Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. The detector design is based on Monte Carlo calculations which have suggested ways to minimize backgrounds due to neutron scattering events. A data acquisition system based on fast transient digitizers is bcing implemented

  4. Application of neutron activation tracer sediment technique on environmental science

    Institute of Scientific and Technical Information of China (English)

    YinYi; ZhongWei-Ni; 等

    1997-01-01

    Field and laboratory inverstigations were carried out to study the transport and dispersion law of polluted sediments near wastewater outlet using neutron activation tracer technique.The direction of transport and dispersion of polluted sediments,dispersion amount in different directions,sedimentary region of polluted sediment and evaluation of polluted risk are given.This provided a new test method for the study of environmental science and added a new forecasted content for the evaluation of environmental influence.

  5. Neutron Star Science with the X-ray Surveyor

    Science.gov (United States)

    Ozel, Feryal

    2015-10-01

    Probing the interiors and magnetic fields of neutron stars and characterizing their populations in the Galaxy is an important science goal for the next generation X-ray telescopes. I will discuss how the capabilities of the X-ray Surveyor Mission are crucial for making significant advances in these fields and how we can address the open questions with a dataset that will become available with such a mission.

  6. Novel Boron-10-based detectors for Neutron Scattering Science

    CERN Document Server

    Piscitelli, Francesco

    2015-01-01

    Nowadays neutron scattering science is increasing its instrumental power. Most of the neutron sources in the world are pushing the development of their technologies to be more performing. The neutron scattering development is also pushed by the European Spallation Source (ESS) in Sweden, a neutron facility which has just started construction. Concerning small area detectors (1m^2), the 3He technology, which is today cutting edge, is reaching fundamental limits in its development. Counting rate capability, spatial resolution and cost-e?ectiveness, are only a few examples of the features that must be improved to ful?fill the new requirements. On the other hand, 3He technology could still satisfy the detector requirements for large area applications (50m^2), however, because of the present 3He shortage that the world is experiencing, this is not practical anymore. The recent detector advances (the Multi-Grid and the Multi-Blade prototypes) developed in the framework of the collaboration between the Institut Laue...

  7. Neutron Star Science with the NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  8. Pilot Project on Women and Science. A report on women scientists at the University of New Mexico and Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Salvaggio, R. [New Mexico Univ., Albuquerque, NM (United States)

    1993-08-01

    In the fall of 1991, through the coordinating efforts of the University of New Mexico and Los Alamos National Laboratory, the Pilot Project on Women and Science was initiated as a year-long study of women scientists at both the university and the laboratory. Its purpose was to gather information directly from women scientists in an attempt to analyze and make recommendations concerning the professional and cultural environment for women in the sciences. This report is an initial attempt to understand the ways in which women scientists view themselves, their profession, and the scientific culture they inhabit. By recording what these women say about their backgrounds and educational experiences, their current positions, the difficult negotiations many have made between their personal and professional lives, and their relative positions inside and outside the scientific community, the report calls attention both to the individual perspectives offered by these women and to the common concerns they share.

  9. Precision Measurement of Parity Violation in Polarized Cold Neutron Capture on the Proton the NPD $\\gamma$ Experiment

    CERN Document Server

    Lauss, Bernhard; Carlini, R D; Chupp, T E; Chen, W; Corvig, S; Dabaghyan, M; Desai, D; Freedman, S J; Gentile, T R; Gericke, M T; Gillis, R C; Greene, G L; Hersman, F W; Ino, T; Ito, T; Jones, G L; Kandes, M; Leuschner, M; Lozowski, B; Mahurin, R; Mason, M; Masuda, Y; Mei, J; Mitchell, G S; Muto, S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Santra, S; Seo, P -N; Sharapov, E I; Smith, T B; Snow, W M; Wilburn, W S; Yuan, V; Zhu, H; Bernhard, Lauss

    2006-01-01

    The NPDGamma experiment at the Los Alamos Neutron Science Center (LANSCE) is dedicated to measure with high precision the parity violating asymmetry in the $\\gamma$ emission after capture of spin polarized cold neutrons in para-hydrogen. The measurement will determine unambiguously the weak pion-nucleon-nucleon ($\\pi NN$) coupling constant {\\it f$^1_{\\pi}$}

  10. Other applications of neutron beams in material sciences; Autres utilisations des faisceaux de neutrons en science des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Novion, C.H. de

    1997-12-31

    The various applications of neutron beams are reviewed. The different mechanisms involved in neutron interaction with matter are explained. We notice that generally neutron radiation effects are unfavorable but can be turned into efficient tools to add new structures or properties to materials, silicon doping is an example. The basis principles of neutron activation analysis and neutron radiography are described. (A.C.)

  11. Los Alamos waste drum shufflers users manual

    Energy Technology Data Exchange (ETDEWEB)

    Rinard, P.M.; Adams, E.L.; Painter, J.

    1993-08-24

    This user manual describes the Los Alamos waste drum shufflers. The primary purpose of the instruments is to assay the mass of {sup 235}U (or other fissile materials) in drums of assorted waste. It can perform passive assays for isotopes that spontaneously emit neutrons or active assays using the shuffler technique as described on this manual.

  12. Helium 3 neutron precision polarimetry

    Science.gov (United States)

    Menard, Christopher

    2009-10-01

    Measuring neutron polarization to a high degree of precision is critical for the next generation of neutron decay correlation experiments. Polarized neutrons are also used in experiments to probe the hadronic weak interaction which contributes a small portion (˜10-7) of the force between nucleons. Using a beam of cold neutrons at Los Alamos Neutron Science Center (LANSCE), we polarized neutrons and measured their absolute polarization to ˜0.1%. Neutrons were polarized by passing them through a ^3He spin filter, relying on the maximally spin dependent 3He neutron absorption cross section. The neutron polarization can be determined by measuring the wavelength-dependent neutron transmission through the ^3He cell. An independent measurement of the neutron polarization was also obtained by passing the polarized beam through an RF spin flipper and a second polarized ^3He cell, used as an analyzer. To measure the efficiency of the spin flipper, the same measurements were made after reversing the ^3He polarization in the polarizer by using NMR techniques (adiabatic fast passage). We will show the consistency of these two measurements and the resulting precision of neutron polarimetry using these techniques.

  13. Nuclear Science with Thermal and Fast Neutrons at UMass Lowell

    Science.gov (United States)

    Guess, C. J.; Chowdhury, P.; Borges, N.; D'Olympia, N.; Deo, A. Y.; Harrington, T.; Hota, S.; Jackson, E. G.; Kegel, G.; Lakshmi, S.; Parker, G.; Prasher, V. S.; Recca, K.; Regan, T.; Thomas, J.; Yuan, Q.

    2011-10-01

    Increased interest in improving nuclear data for applied nuclear science has prompted new research activity at the UMass Lowell Radiation Laboratory. At the 5.5-MV CN Van de Graaff accelerator facility, the beamline for precision (n, γ) and (n,n' γ) measurements with sub-nanosecond proton beam bunches is being refurbished. A proton microbeam facility is being installed for interdisciplinary studies of materials using applied nuclear techniques. In addition, the thermal column of the 1-MW research reactor will be fitted with a new shielded area for thermal (n, γ) measurements. Neutron flux measurements, shielding calculations, and simulations are underway. Progress, status and research plans with these facilities will be discussed. This work is supported by the US Department of Energy.

  14. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  15. An Overview of the Los Alamos Inertial Confinement Fusion and High-Energy-Density Physics Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Batha, Steven H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Physics Division

    2016-07-15

    The Los Alamos Inertial Confinement Fusion and Science Programs engage in a vigorous array of experiments, theory, and modeling. We use the three major High Energy Density facilities, NIF, Omega, and Z to perform experiments. These include opacity, radiation transport, hydrodynamics, ignition science, and burn experiments to aid the ICF and Science campaigns in reaching their stewardship goals. The ICF program operates two nuclear diagnostics at NIF, the neutron imaging system and the gamma reaction history instruments. Both systems are being expanded with significant capability enhancements.

  16. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  17. Commissioning and initial operation of the Isotope Production Facility at the Los Alamos Neutron Science Center (LANSCE).

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. F. (Kenneth F.); Alvestad, H. W. (Henry W.); Barkley, W. C. (Walter C.); Barlow, D. B. (David B.); Barr, D. S. (Dean S.); Bennett, L. S. (Langdon S.); Bitteker, L. J. (Leo J.); Bjorklund, E. A. (Eric A.); Boedeker, W.; Borden, M. J. (Michael J.); Cardon, R.; Carr, G. (Gary); Casados, J. L. (Jeffrey L.); Cohen, Stanley; Cordova, J. F. (Justo J.; Faucett, John Allen,; Fresquez, M. (Matthew); Gallegos, F. R. (Floyd R.); Gilpatrick, J. D. (John Douglas); Gonzales, F. (Fermin); Gorman, F. W. (Frederick W.); Gulley, M. S. (Mark S.); Hall, M. J. (Michael J.); Hayden, D. J. (David J.); Heaton, R. C. (Richard C.); Henderson, D. B. (Dale B.); Ireland, D. B. (David B.); Jacobson, E. G. (Edward G.); Johns, G. D. (Glen D.); Kersteins, D. M. (Debora M.); Maestas, A. J. (Alfred J.); Martinez, A. M. (Alexandra M.); Martinez, D. G. (Derwin G.); Martinez, G.; Martinez, J.; Martinez, M. P. (Martin P.); Merl, R. B. (Robert B.); Merrill, J. B. (John B.); Meyer, B. J. (Bruce J.); Meyer, R., Sr.; Milder, M.; Morgan, E.; Nortier, M.; O' Hara, J. F. (James F.); Olivas, F. R. (Felix R.); Oothoudt, Michael; Pence, T. D. (Tim D.); Perets, Mikhaʾel ben Yosef; Peterson, E.; Pillai, C. (Chandra); Romero, F.; Rose, C.; Rybarcyk, L. J. (Lawrence J.); Sanchez, G. (Gary); Sandoval, J. B. (Jacob B.); Schaller, S. (Stuart); Shelley, F. E. (Fred E.); Shurter, R. B. (Robert B.); Sommer, Walter F.; Stettler, M. W. (Matthew W.); Stockton, J. L. (Jerry L.); Sturrock, J. C. (James C.); Tomei, T. L. (Tony L.); Valdez, F.; Vigil, V. P. (Victor P.); Walstrom, P. L. (Peter L.); Wanco, P. M. (Peter M.); Wilmarth, J.

    2004-01-01

    The recently completed 100-MeV H{sup +} Isotope Production Facility (IPF) at the LANSCE will provide radioisotopes for medical research and diagnosis, for basic research and for commercial use. A change to the LANSCE accelerator facility allowed for the installation of the IPF. Three components make up the LANSCE accelerator: an injector that accelerates the H{sup +} beam to 750-KeV, a drift-tube linac (DTL) that increases the beam energy to 100-MeV, and a side-coupled cavity linac (SCCL) that accelerates the beam to 800-MeV. The transition region, a space between the DTL and the SCCL, was modified to permit the insertion of a kicker magnet (23{sup o} kick angle) for the purpose of extracting a portion of the 100-MeV H{sup +} beam. A new beam line was installed to transport the extracted H{sup +} beam to the radioisotope production target chamber. This paper will describe the commissioning and initial operating experiences of IPF.

  18. Materials for spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F.; Daemen, L.L. [comps.

    1996-03-01

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations.

  19. Assessment of cold neutron radiography capability

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E. Jr.; Roberts, J.A.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors goals were to demonstrate and assess cold neutron radiography techniques at the Los Alamos Neutron Science Center (LANSCE), Manual Lujan Neutron Scattering Center (Lujan Center), and to investigate potential applications of the capability. The authors have obtained images using film and an amorphous silicon detector. In addition, a new technique they have developed allows neutron radiographs to be made using only a narrow range of neutron energies. Employing this approach and the Bragg cut-off phenomena in certain materials, they have demonstrated material discrimination in radiography. They also demonstrated the imaging of cracks in a sample of a fire-set case that was supplied by Sandia National Laboratory, and they investigated whether the capability could be used to determine the extent of coking in jet engine nozzles. The LANSCE neutron radiography capability appears to have applications in the DOE stockpile maintenance and science-based stockpile stewardship (SBSS) programs, and in industry.

  20. Next Generation Gamma/Neutron Detectors for Planetary Science. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gamma-ray and neutron spectroscopy are well established techniques for determining the chemical composition of planetary surfaces, and small cosmic bodies such as...

  1. Next Generation Gamma/Neutron Detectors for Planetary Science. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gamma ray and neutron spectroscopy are well established techniques for determining the chemical composition of planetary surfaces, and small cosmic bodies such as...

  2. Neutron capture measurement on {sup 173}Lu at LANSCE with DANCE detector

    Energy Technology Data Exchange (ETDEWEB)

    Theroine, C.; Ebran, A.; Meot, V.; Roig, O. [CEA DAM DIF, F-91297 Arpajon (France); Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Nortier, F. M.; O' Donnell, J. M.; Rundberg, R. S.; Taylor, W. A.; Ullmann, J. L.; Viera, D. J.; Wilhelmy, J. B.; Wouters, J. M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2013-06-10

    The (n,{gamma}) cross section on the unstable {sup 173}Lu(t{sub 1/2} = 1.37y) has been measured from thermal energy up to 200 eV at Los Alamos Neutron Science Center (LANSCE) with The Detector for Advanced Neutron Capture Experiements (DANCE). The main aim of this study is to validate and optimize reaction models for unstable nucleus. A preliminary capture yield will be presented in this paper.

  3. Neutron capture measurement on 173Lu at LANSCE with DANCE detector

    Science.gov (United States)

    Theroine, C.; Ebran, A.; Méot, V.; Roig, O.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Nortier, F. M.; O'Donnell, J. M.; Rundberg, R. S.; Taylor, W. A.; Ullmann, J. L.; Viera, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2013-06-01

    The (n,γ) cross section on the unstable 173Lu(t1/2 = 1.37y) has been measured from thermal energy up to 200 eV at Los Alamos Neutron Science Center (LANSCE) with The Detector for Advanced Neutron Capture Experiements (DANCE). The main aim of this study is to validate and optimize reaction models for unstable nucleus. A preliminary capture yield will be presented in this paper.

  4. Spin measurement and neutron resonance spectroscopy for ^155Gd

    Science.gov (United States)

    Baramsai, Bayarbadrakh; Mitchell, G. E.; Chyzh, A.; Dashdorj, D.; Walker, C.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Wouters, J. M.; Ullmann, J. L.; Viera, D. J.; Agvaanluvsan, U.; Becvar, F.; Krticka, M.

    2009-05-01

    The ^155Gd(n,γ) reaction has been measured with the DANCE calorimeter at Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture γ - rays. With this information the spins of the neutron capture resonances have been determined. The improved sensitivity of this method allowed the determination of the spins of even weak and unresolved resonances. With these new spin assignments as well as previously determined resonance parameters, level spacings and neutron strength functions are determined separately for s-wave resonances with J = 1 and 2.

  5. Fission neutron spectra measurements at LANSCE - status and plans

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory; Noda, Shusaku [Los Alamos National Laboratory; Nelson, Ronald O [Los Alamos National Laboratory; O' Donnell, John M [Los Alamos National Laboratory; Devlin, Matt [Los Alamos National Laboratory; Chatillon, Audrey [CEA-FRANCE; Granier, Thierry [CEA-FRANCE; Taieb, Julien [CEA-FRANCE; Laurent, Benoit [CEA-FRANCE; Belier, Gilbert [CEA-FRANCE; Becker, John A [LLNL; Wu, Ching - Yen [LLNL

    2009-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. The range of outgoing energies measured so far is from 1 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date will be presented and a discussion of uncertainties will be given in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including mea urements of fission neutrons below 1 MeV and improvements in the data above 8 MeV.

  6. Immersive Visual Analytics for Transformative Neutron Scattering Science

    Energy Technology Data Exchange (ETDEWEB)

    Steed, Chad A [ORNL; Daniel, Jamison R [ORNL; Drouhard, Margaret [University of Washington, Seattle; Hahn, Steven E [ORNL; Proffen, Thomas E [ORNL

    2016-01-01

    The ORNL Spallation Neutron Source (SNS) provides the most intense pulsed neutron beams in the world for scientific research and development across a broad range of disciplines. SNS experiments produce large volumes of complex data that are analyzed by scientists with varying degrees of experience using 3D visualization and analysis systems. However, it is notoriously difficult to achieve proficiency with 3D visualizations. Because 3D representations are key to understanding the neutron scattering data, scientists are unable to analyze their data in a timely fashion resulting in inefficient use of the limited and expensive SNS beam time. We believe a more intuitive interface for exploring neutron scattering data can be created by combining immersive virtual reality technology with high performance data analytics and human interaction. In this paper, we present our initial investigations of immersive visualization concepts as well as our vision for an immersive visual analytics framework that could lower the barriers to 3D exploratory data analysis of neutron scattering data at the SNS.

  7. A Kinesthetic Learning Approach to Earth Science for 3rd and 4th Grade Students on the Pajarito Plateau, Los Alamos, NM

    Science.gov (United States)

    Wershow, H. N.; Green, M.; Stocker, A.; Staires, D.

    2010-12-01

    Current efforts towards Earth Science literacy in New Mexico are guided by the New Mexico Science Benchmarks [1]. We are geoscience professionals in Los Alamos, NM who believe there is an important role for non-traditional educators utilizing innovative teaching methods. We propose to further Earth Science literacy for local 3rd and 4th grade students using a kinesthetic learning approach, with the goal of fostering an interactive relationship between the students and their geologic environment. We will be working in partnership with the Pajarito Environmental Education Center (PEEC), which teaches the natural heritage of the Pajarito Plateau to 3rd and 4th grade students from the surrounding area, as well as the Family YMCA’s Adventure Programs Director. The Pajarito Plateau provides a remarkable geologic classroom because minimal structural features complicate the stratigraphy and dramatic volcanic and erosional processes are plainly on display and easily accessible. Our methodology consists of two approaches. First, we will build an interpretive display of the local geology at PEEC that will highlight prominent rock formations and geologic processes seen on a daily basis. It will include a simplified stratigraphic section with field specimens and a map linked to each specimen’s location to encourage further exploration. Second, we will develop and implement a kinesthetic curriculum for an exploratory field class. Active engagement with geologic phenomena will take place in many forms, such as a scavenger hunt for precipitated crystals in the vesicles of basalt flows and a search for progressively smaller rhyodacite clasts scattered along an actively eroding canyon. We believe students will be more receptive to origin explanations when they possess a piece of the story. Students will be provided with field books to make drawings of geologic features. This will encourage independent assessment of phenomena and introduce the skill of scientific observation. We

  8. MCNP modeling of a neutron generator and its shielding at Missouri University of Science and Technology

    Science.gov (United States)

    Sharma, Manish K.; Alajo, Ayodeji Babatunde; Liu, Xin

    2014-12-01

    The shielding of a neutron generator producing fast neutrons should be sufficient to limit the dose rates to the prescribed values. A deuterium-deuterium neutron generator has been installed in the Nuclear Engineering Department at Missouri University of Science and Technology (Missouri S&T). The generator produces fast neutrons with an approximate energy of 2.5 MeV. The generator is currently shielded with different materials like lead, high-density polyethylene, and borated polyethylene. An MCNP transport simulation has been performed to estimate the dose rates at various places in and around the facility. The simulations incorporated the geometric and composition information of these shielding materials to determine neutron and photon dose rates at three central planes passing through the neutron source. Neutron and photon dose rate contour plots at these planes were provided using a MATLAB program. Furthermore, the maximum dose rates in the vicinity of the facility were used to estimate the annual limit for the generator's hours of operation. A successful operation of this generator will provide a convenient neutron source for basic and applied research at the Nuclear Engineering Department of Missouri S&T.

  9. A boron-coated ionization chamber for ultra-cold neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, D.J., E-mail: dsalvat@indiana.edu [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Morris, C.L.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Adamek, E.R. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Bacon, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Hickerson, K.P. [California Institute of Technology, Pasadena, CA 91125 (United States); Hoagland, J.; Holley, A.T. [North Carolina State University, Raleigh, NC 27695 (United States); Liu, C.-Y. [Indiana University Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Makela, M.; Ramsey, J. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Reid, A. [North Carolina State University, Raleigh, NC 27695 (United States); Rios, R. [Idaho State University, Pocatello, ID 83209 (United States); Saunders, A.; Sjue, S.K.L. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); VornDick, B.; Young, A.R. [North Carolina State University, Raleigh, NC 27695 (United States)

    2012-11-01

    The design and performance of a boron-coated ionization chamber for the detection of ultra-cold neutrons (UCN) are presented. We detect UCN from the solid deuterium-based UCN source at the Los Alamos Neutron Science Center. Our results indicate comparable efficiency to {sup 3}He ionization chambers and proportional counters currently used at the UCN source. In addition, the ion chamber is used to detect thermal neutrons; a comparison of the thermal neutron and UCN pulse-height spectra indicates that UCN mostly capture near the layer surface.

  10. Science underground (Los Alamos, 1982)

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, M.M.; Haxton, W.C.; Hoffman, C.M.; Kolb, E.W.; Sandberg, V.D.; Toevs, J.W. (eds.)

    1983-01-01

    Topics covered include solar neutrinos, proton decay, cosmic rays, geophysics, gravity waves, double beta decay, and possible future research directions with underground detectors. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  11. Los Alamos science, Number 14

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Nine authored articles are included covering: natural heat engine, photoconductivity, the Caribbean Basin, energy in Central America, peat, geothermal energy, and the MANIAC computer. Separate abstracts were prepared for the articles. (DLC)

  12. Small-angle neutron scattering in materials science - an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Fratzl, P. [Vienna Univ., Inst. fuer Materialphysik, Vienna (Austria)

    1996-12-31

    The basic principles of the application of small-angle neutron scattering to materials research are summarized. The text focusses on the classical methods of data evaluation for isotropic and for anisotropic materials. Some examples of applications to the study of alloys, porous materials, composites and other complex materials are given. (author) 9 figs., 38 refs.

  13. Los Alamos National Laboratory Fission Basis

    Energy Technology Data Exchange (ETDEWEB)

    Keksis, A.L.; Chadwick, M.B.; Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Meade, R.A.; Burns, C.J.; Wallstrom, T.C. [Los Alamos National Laboratory, NM 87545 (United States)

    2011-07-01

    This report is an overview of two main publications that provide a comprehensive review of the Los Alamos National Laboratory (LANL) Fission Basis. The first is the experimental paper, {sup F}ission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on {sup 239}Pu, {sup 235}U, {sup 238}U, [Selby, H. D., et al., Nucl. Data Sheets, Vol. 111 2010, pp. 2891-2922] and the second is the theoretical paper, Fission Product Yields from Fission Spectrum n+ {sup 239}Pu for ENDF/B-VII.1, [Chadwick, M. B., et al., Nucl. Data Sheets, Vol. 111, 2010, pp. 2923-2964]. One important note is that none of this work would have been possible without the great documentation of the experimental details and results by G.W. Knobeloch, G. Butler, C.I. Browne, B. Erdal, B. Bayhurst, R. Prestwood, V. Armijo, J. Hasty and many others. (authors)

  14. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  15. Los Alamos Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Benjamin Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-07

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  16. The sciences and applications of the Electron LINAC-driven neutron source in Argentina

    Science.gov (United States)

    Granada, J. R.; Mayer, R. E.; Dawidowski, J.; Santisteban, J. R.; Cantargi, F.; Blostein, J. J.; Rodríguez Palomino, L. A.; Tartaglione, A.

    2016-06-01

    The Neutron Physics group at Centro Atómico Bariloche (CNEA, Argentina) has evolved for more than forty five years around a small 25MeV linear electron accelerator. It constitutes our compact accelerator-driven neutron source (CANS), which is dedicated to the use and development of neutronic methods to tackle problems of basic sciences and technological applications. Its historical first commitment has been the determination of the total cross sections of materials as a function of neutron energy by means of transmission experiments for thermal and sub-thermal neutrons. This also allowed testing theoretical models for the generation of scattering kernels and cross sections. Through the years, our interests moved from classic pulsed neutron diffraction, which included the development of high-precision methods for the determination of very low hydrogen content in metals, towards deep inelastic neutron scattering (DINS), a powerful tool for the determination of atomic momentum distribution in condensed matter. More recently non-intrusive techniques aimed at the scanning of large cargo containers have started to be developed with our CANS, testing the capacity and limitations to detect special nuclear material and dangerous substances. Also, the ever-present "bremsstrahlung" radiation has been recognized and tested as a useful complement to instrumental neutron activation, as it permits to detect other nuclear species through high-energy photon activation. The facility is also used for graduate and undergraduate students' experimental work within the frame of Instituto Balseiro Physics and Nuclear Engineering courses of study, and also MSc and PhD theses work.

  17. Spin distribution in neutron induced preequilibrium reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dashdorj, D; Kawano, T; Chadwick, M; Devlin, M; Fotiades, N; Nelson, R O; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Macri, R; Younes, W

    2005-10-04

    The preequilibrium reaction mechanism makes an important contribution to neutron-induced reactions above E{sub n} {approx} 10 MeV. The preequilibrium process has been studied exclusively via the characteristic high energy neutrons produced at bombarding energies greater than 10 MeV. They are expanding the study of the preequilibrium reaction mechanism through {gamma}-ray spectroscopy. Cross-section measurements were made of prompt {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 250 MeV) on a {sup 48}Ti sample. Energetic neutrons were delivered by the Los Alamos National Laboratory spallation neutron source located at the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the large-scale Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections taking into account the dead-time correction, target thickness, detector efficiency and neutron flux (monitored with an in-line fission chamber). Residual state population was predicted using the GNASH reaction code, enhanced for preequilibrium. The preequilibrium reaction spin distribution was calculated using the quantum mechanical theory of Feshback, Kerman, and Koonin (FKK). The multistep direct part of the FKK theory was calculated for a one-step process. The FKK preequilibrium spin distribution was incorporated into the GNASH calculations and the {gamma}-ray production cross sections were calculated and compared with experimental data. The difference in the partial {gamma}-ray cross sections using spin distributions with and without preequilibrium effects is significant.

  18. Science-based stockpile stewardship at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Browne, J. [Los Alamos National Lab., NM (United States)

    1995-10-01

    Let me tell you a little about the Los Alamos Neutron Science Center (LANSCE) and how some of the examples you heard about from Sig Hecker and John Immele fit together in this view of a different world in the future where defense, basic and industrial research overlap. I am going to talk about science-based stockpile stewardship at LANSCE; the accelerator production of tritium (APT), which I think has a real bearing on the neutron road map; the world-class neutron science user facility, for which I will provide some examples so you can see the connection with defense science; and lastly, testing concepts for a high-power spallation neutron target and waste transmutation.

  19. Measuring neutron-induced fission cross-section of shortlived actinides using a lead neutron-slowing-down spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Granier, T. E-mail: thierry.granier@cea.fr; Pangault, L.; Ethvignot, T.; Haight, R.C.; Ledoux, X.; Meot, V.; Patin, Y.; Pras, P.; Szmigiel, M.; Rundberg, R.S.; Wilhelmy, J.B

    2003-06-21

    The 'lead-slowing-down-spectrometer' method is an established technique for measuring neutron-induced reaction cross-sections. It is known to provide high neutron fluences below 100 keV. In this work, the possibility of applying this method to the measurement of the neutron-induced fission cross-section of shortlived actinides and in particular of the 77 eV isomer of {sup 235}U is investigated. Numerical simulations and a test-experiment using a photovaltaic cell fission detector demonstrate the feasibility of such a measurement at the Los Alamos Neutron Science Center using 800 MeV proton-induced spallation to provide source neutrons.

  20. Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory.

    Science.gov (United States)

    Köhler, J; Ehresmann, B; Zeitlin, C; Wimmer-Schweingruber, R F; Hassler, D M; Reitz, G; Brinza, D E; Appel, J; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Lohf, H; Martin, C; Posner, A; Rafkin, S

    2015-04-01

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011. Although designed for measuring the radiation on the surface of Mars, the Radiation Assessment Detector (RAD) measured the radiation environment inside the spacecraft during most of the 253-day, 560-million-kilometer cruise to Mars. An important factor for determining the biological impact of the radiation environment inside the spacecraft is the specific contribution of neutrons with their high biological effectiveness. We apply an inversion method (based on a maximum-likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. The measured neutron spectrum (12-436 MeV) translates into a radiation dose rate of 3.8±1.2 μGy/day and a dose equivalent of 19±5 μSv/day. Extrapolating the measured spectrum (0.1-1000 MeV), we find that the total neutron-induced dose rate is 6±2 μGy/day and the dose equivalent rate is 30±10 μSv/day. For a 360 day round-trip from Earth to Mars with comparable shielding, this translates into a neutron induced dose equivalent of about 11±4 mSv.

  1. An ultra-cold neutron source at the MLNSC

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J. [Los Alamos National Lab., NM (United States); Crow, L. [Univ. of Rhode Island, Kingston, RI (United States); Serebrov, A. [Petersburg Nuclear Physics Inst. (Russian Federation)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science.

  2. Materials science and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Holden, T.M.

    1995-10-01

    The science-based stockpile stewardship program emphasizes a better understanding of how complex components function through advanced computer calculations. Many of the problem areas are in the behavior of materials making up the equipment. The Los Alamos Neutron Science Center (LANSCE) can contribute to solving these problems by providing diagnostic tools to examine parts noninvasively and by providing the experimental tools to understand material behavior in terms of both the atomic structure and the microstructure. Advanced computer codes need experimental information on material behavior in response to stress, temperature, and pressure as input, and they need benchmarking experiments to test the model predictions for the finished part.

  3. Los Alamos Climatology 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-10

    The Los Alamos National Laboratory (LANL or the Laboratory) operates a meteorology monitoring network to support LANL emergency response, engineering designs, environmental compliance, environmental assessments, safety evaluations, weather forecasting, environmental monitoring, research programs, and environmental restoration. Weather data has been collected in Los Alamos since 1910. Bowen (1990) provided climate statistics (temperature and precipitation) for the 1961– 1990 averaging period, and included other analyses (e.g., wind and relative humidity) based on the available station locations and time periods. This report provides an update to the 1990 publication Los Alamos Climatology (Bowen 1990).

  4. Los Alamos low-level waste performance assessment status

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, W.J.; Purtymun, W.D.; Dewart, J.M.; Rodgers, J.E. (comps.)

    1986-06-01

    This report reviews the documented Los Alamos studies done to assess the containment of buried hazardous wastes. Five sections logically present the environmental studies, operational source terms, transport pathways, environmental dosimetry, and computer model development and use. This review gives a general picture of the Los Alamos solid waste disposal and liquid effluent sites and is intended for technical readers with waste management and environmental science backgrounds but without a detailed familiarization with Los Alamos. The review begins with a wide perspective on environmental studies at Los Alamos. Hydrology, geology, and meteorology are described for the site and region. The ongoing Laboratory-wide environmental surveillance and waste management environmental studies are presented. The next section describes the waste disposal sites and summarizes the current source terms for these sites. Hazardous chemical wastes and liquid effluents are also addressed by describing the sites and canyons that are impacted. The review then focuses on the transport pathways addressed mainly in reports by Healy and Formerly Utilized Sites Remedial Action Program. Once the source terms and potential transport pathways are described, the dose assessment methods are addressed. Three major studies, the waste alternatives, Hansen and Rogers, and the Pantex Environmental Impact Statement, contributed to the current Los Alamos dose assessment methodology. Finally, the current Los Alamos groundwater, surface water, and environmental assessment models for these mesa top and canyon sites are described.

  5. Radonuclide concentrations in bees and honey in the vicinity of Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Armstrong, D.R. [Los Alamos National Laboratory, NM (United States)

    1996-06-01

    Honeybees are effective monitors of environmental pollution; they forage for P len and nectar over a large area ({congruent}7 km{sup 2}), accumulate contaminants from air, water, plants, and soil, and return to a fixed location (the hive) for sampling. Los Alamos National Laboratory (LANL), in fact, has maintained a network of honeybee colonies within and around LANL for 16 years (1979 to 1994); the objectives for maintaining this honeybee network were to (1) determine the bioavailability of radionuclides in the environment, and (2) the committed effective dose equivalent (CEDE) to people who may consume honey from these beehives (Los Alamos and White Rock/Pajarito Acres lownsites). Of all the radionuclides studied over the years, tritium (314) was consistently picked up by the bees and was most readily transferred to the honey. Tritium in honey collected from hives located within LANL, for example, ranged in concentration from 0.07 Bq mL{sup -1} (1.9 pCi mL{sup -1}) to 27.75 Bq mL{sup -1} (749.9 pCi mL{sup -1}) (LANL Neutron Science Center); the average concentration of {sup 3}H in honey Collected from hives located around the LANL area (perimeter) ranged in concentration from 0.34 Bq mL{sup -1} (9.3 pCi mL{sup -1}) (White Rock/Pajarito Acres townsite) to 3.67 Bq mL{sup -1} (99.3 pCi mL{sup -1}) (Los Alamos townsite). Overall, the CEDE-based on the average concentration of all radionuclides measured over the years-from consuming 5 kg (11 lbs) of honey collected from hives located within the townsites of Los Alamos and White Rock/Pajarito Acres, after regional (background) as been subtracted, was 0.074 {mu}Sv y{sup -1} (0.0074 mrem y{sup -1}) and 0.024 pSv y{sup -1} (0.0024 mrem y{sup -1}), respectively. The highest CEDE, based on the mean + 2 standard deviations (95% confidence level), was 0.334 fiSv y{sup -1} (0.0334 mrem y{sup -1}) (Los Alamos townsitc).

  6. Progress on the europium neutron capture study using DANCE

    Science.gov (United States)

    Agvaanluvsan, U.; Becker, J. A.; Macri, R. A.; Parker, W.; Wilk, P.; Wu, C. Y.; Bredeweg, T. A.; Esch, E.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Mitchell, G. E.; Sheets, S.; Bečvář, F.; Krtička, M.

    2007-08-01

    The accurate measurement of neutron capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of 151,153Eu targets were measured recently using a 4π γ-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for En = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The γ-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The γ-ray multiplicity distribution is found to be the same for different neutron energies for both 151Eu and 153Eu. The statistical simulation to model the γ-ray decay cascade is summarized.

  7. Progress on the Europium Neutron-Capture Study using DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Agvaanluvsan, U; Becker, J A; Macri, R A; Parker, W; Wilk, P; Wu, C Y; Bredeweg, T A; Esch, E; Haight, R C; O' Donnell, J M; Reifarth, R; Rundberg, R S; Schwantes, J M; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wouters, J M; Mitchell, G E; Sheets, S A; Becvar, F; Krticka, M

    2006-09-05

    The accurate measurement of neutron-capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E{sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu and {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.

  8. Progress on the europium neutron capture study using DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Agvaanluvsan, U. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States)]. E-mail: agvaanluvsan1@llnl.gov; Becker, J.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Macri, R.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Parker, W. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Wilk, P. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Wu, C.Y. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Bredeweg, T.A.; Esch, E.; Haight, R.C.; O' Donnell, J.M.; Reifarth, R.; Rundberg, R.S.; Schwantes, J.M.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B.; Wouters, J.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mitchell, G.E.; Sheets, S. [North Carolina State University, Raleigh, NC 27695 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Becvar, F.; Krticka, M. [Charles University in Prague, CZ 180 00 Prague 8 (Czech Republic)

    2007-08-15

    The accurate measurement of neutron capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E {sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu and {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.

  9. New instruments and science around SINQ. Lecture notes of the 4. summer school on neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Furrer, A. [ed.

    1996-11-01

    The spallation neutron source at PSI will be commissioned towards the end of this year together with a set of first generation instruments. This facility should then be available for the initial scientific work after spring next year. One of the main goals of this year`s summer school for neutron scattering was therefore the preparation of the potential customers at this facility for its scientific exploitation. In order to give them the - so to speak - last finish, we have dedicated the school to the discussion of the instruments at SINQ and their scientific potential. These proceedings are divided into two parts: Part A gives a complete description of the first-generation instruments and sample environment at SINQ. For all the instruments the relevant parameters for planning experiments are listed. Part A is completed by G. Bauer`s summary on experimental facilities and future developments at SINQ. Part B presents the lecture notes dealing with relevant applications of neutron based techniques in science and technology. The summary lecture by S.W. Lovesey is also included. (author) figs., tabs., refs.

  10. Multi-Grid Boron-10 detector for large area applications in neutron scattering science

    CERN Document Server

    Andersen, Ken; Birch, Jens; Buffet, Jean-Claude; Correa, Jonathan; van Esch, Patrick; Guerard, Bruno; Hall-Wilton, Richard; Hultman, Lars; Höglund, Carina; Jensen, Jens; Khaplanov, Anton; Kirstein, Oliver; Piscitelli, Francesco; Vettier, Christian

    2012-01-01

    The present supply of 3He can no longer meet the detector demands of the upcoming ESS facility and continued detector upgrades at current neutron sources. Therefore viable alternative technologies are required to support the development of cutting-edge instrumentation for neutron scattering science. In this context, 10B-based detectors are being developed by collaboration between the ESS, ILL, and Link\\"{o}ping University. This paper reports on progress of this technology and the prospects applying it in modern neutron scattering experiments. The detector is made-up of multiple rectangular gas counter tubes coated with B4C, enriched in 10B. An anode wire reads out each tube, thereby giving position of conversion in one of the lateral co-ordinates as well as in depth of the detector. Position resolution in the remaining co-ordinate is obtained by segmenting the cathode tube itself. Boron carbide films have been produced at Link\\"{o}ping University and a detector built at ILL. The characterization study is pres...

  11. Los Alamos safeguards program overview and NDA in safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented.

  12. Occurrences at Los Alamos National Laboratory: What can they tell us?

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Reichelt; A. Jeffery Eichorst; Marc E. Clay; Rita J. Henins; Judith D. DeHaven; Richard J. Brake

    2000-03-01

    The authors analyzed the evolution of institutional and facility response to groups of abnormal incidents at Los Alamos National Laboratory (LANL). The analysis is divided into three stages: (1) the LANL response to severe accidents from 1994 to 1996, (2) the LANL response to facility-specific clusters of low-consequence incidents from 1997 to 1999, and (3) the ongoing development of and response to a Laboratory-wide trending and analysis program. The first stage is characterized by five severe accidents at LANL--a shooting fatality, a forklift accident, two electrical shock incidents, and an explosion in a nuclear facility. Each accident caused LANL and the Department of Energy (DOE) to launch in-depth investigations. A recurrent theme of the investigations was the failure of LANL and DOE to identify and act on precursor or low-consequence events that preceded the severe accidents. The second stage is characterized by LANL response to precursor or low-consequence incidents over a two-year period. In this stage, the Chemistry and Metallurgy Research Facility, the Los Alamos Critical Experiments Facility, and the Los Alamos Neutron Science Center responded to an increase in low-consequence events by standing down their facilities. During the restart process, each facility collectively analyzed the low-consequence events and developed systemic corrective actions. The third stage is characterized by the development of a Laboratory-wide trending and analysis program, which involves proactive division-level analysis of incidents and development of systemic actions. The authors conclude that, while the stages show an encouraging evolution, the facility standdowns and restarts are overly costly and that the institutional trending and analysis program is underutilized. The authors therefore recommend the implementation of an institutional, mentored program of trending and analysis that identifies clusters of related low-consequence events, analyzes those events, and

  13. Detection System for Neutron $\\beta$ Decay Correlations in the UCNB and Nab experiments

    CERN Document Server

    Broussard, L J; Adamek, E R; Baeßler, S; Birge, N; Blatnik, M; Bowman, J D; Brandt, A E; Brown, M; Burkhart, J; Callahan, N B; Clayton, S M; Crawford, C; Cude-Woods, C; Currie, S; Dees, E B; Ding, X; Fomin, N; Frlez, E; Fry, J; Gray, F E; Hasan, S; Hickerson, K P; Hoagland, J; Holley, A T; Ito, T M; Klein, A; Li, H; Liu, C -Y; Makela, M F; McGaughey, P L; Mirabal-Martinez, J; Morris, C L; Ortiz, J D; Pattie, R W; Penttilä, S I; Plaster, B; Počanić, D; Ramsey, J C; Salas-Bacci, A; Salvat, D J; Saunders, A; Seestrom, S J; Sjue, S K L; Sprow, A P; Tang, Z; Vogelaar, R B; Vorndick, B; Wang, Z; Wei, W; Wexler, J; Wilburn, W S; Womack, T L; Young, A R

    2016-01-01

    We describe a detection system designed for precise measurements of angular correlations in neutron $\\beta$ decay. The system is based on thick, large area, highly segmented silicon detectors developed in collaboration with Micron Semiconductor, Ltd. The prototype system meets specifications for $\\beta$ electron detection with energy thresholds below 10 keV, energy resolution of $\\sim$3 keV FWHM, and rise time of $\\sim$50 ns with 19 of the 127 detector pixels instrumented. Using ultracold neutrons at the Los Alamos Neutron Science Center, we have demonstrated the coincident detection of $\\beta$ particles and recoil protons from neutron $\\beta$ decay. The fully instrumented detection system will be implemented in the UCNB and Nab experiments, to determine the neutron $\\beta$ decay parameters $B$, $a$, and $b$.

  14. Detection system for neutron β decay correlations in the UCNB and Nab experiments

    Science.gov (United States)

    Broussard, L. J.; Zeck, B. A.; Adamek, E. R.; Baeßler, S.; Birge, N.; Blatnik, M.; Bowman, J. D.; Brandt, A. E.; Brown, M.; Burkhart, J.; Callahan, N. B.; Clayton, S. M.; Crawford, C.; Cude-Woods, C.; Currie, S.; Dees, E. B.; Ding, X.; Fomin, N.; Frlez, E.; Fry, J.; Gray, F. E.; Hasan, S.; Hickerson, K. P.; Hoagland, J.; Holley, A. T.; Ito, T. M.; Klein, A.; Li, H.; Liu, C.-Y.; Makela, M. F.; McGaughey, P. L.; Mirabal-Martinez, J.; Morris, C. L.; Ortiz, J. D.; Pattie, R. W.; Penttilä, S. I.; Plaster, B.; Počanić, D.; Ramsey, J. C.; Salas-Bacci, A.; Salvat, D. J.; Saunders, A.; Seestrom, S. J.; Sjue, S. K. L.; Sprow, A. P.; Tang, Z.; Vogelaar, R. B.; Vorndick, B.; Wang, Z.; Wei, W.; Wexler, J.; Wilburn, W. S.; Womack, T. L.; Young, A. R.

    2017-03-01

    We describe a detection system designed for precise measurements of angular correlations in neutron β decay. The system is based on thick, large area, highly segmented silicon detectors developed in collaboration with Micron Semiconductor, Ltd. The prototype system meets specifications for β electron detection with energy thresholds below 10 keV, energy resolution of ∼3 keV FWHM, and rise time of ∼50 ns with 19 of the 127 detector pixels instrumented. Using ultracold neutrons at the Los Alamos Neutron Science Center, we have demonstrated the coincident detection of β particles and recoil protons from neutron β decay. The fully instrumented detection system will be implemented in the UCNB and Nab experiments to determine the neutron β decay parameters B, a, and b.

  15. Overview of Neutron Beta Correlation Parameter Analysis from the UCNA Experiment

    Science.gov (United States)

    Sun, Xuan; UCNA Collaboration

    2017-01-01

    The UCNA experiment, operated at the Ultracold Neutron Facility at the Los Alamos Neutron Science Center, uses ultracold neutrons (UCN) to measure the free-neutron β-decay correlation parameter, A, between the neutron spin direction and β momentum direction. Measurements of A presently provide the most precise value of gA /gV , the ratio of the axial-vector and vector coupling constants of the nucleon weak interaction. The UCNA experiment has previously analyzed and reported on a measurement of A from a 2010 dataset. Additional datasets were also taken in 2011-2012 and 2012-2013. Improvements in energy calibrations, polarimetry, and statistics are expected to provide a more precise measurement of A from the later datasets. We provide a review of the experimental apparatus and give an updated overview on the state of the 2011-2012 and 2012-2013 dataset analysis with respect to the A measurement.

  16. Investigation of the Statistical Properties of Stable Eu Nuclei using Neutron-Capture Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Agvaanluvsan, U; Alpizar-Vicente, A; Becker, J A; Becvar, F; Bredeweg, T A; Clement, R; Esch, E; Folden, III, C M; Hatarik, R; Haight, R C; Hoffman, D C; Krticka, M; Macri, R A; Mitchell, G E; Nitsche, H; O' Donnell, J M; Parker, W; Reifarth, R; Rundberg, R S; Schwantes, J M; Sheets, S A; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wilk, P; Wouters, J M; Wu, C Y

    2005-10-04

    Neutron capture for incident neutron energies <1eV up to 100 keV has been measured for {sup 151,153}Eu targets. The highly efficient DANCE (Detector for Advanced Neutron Capture Experiments) array coupled with the intense neutron beam at Los Alamos Neutron Science Center is used for the experiment. Stable Eu isotopes mass separated and electroplated on Be backings were used. Properties of well-resolved, strong resonances in two Eu nuclei are examined. The parameters for most of these resonances are known. Detailed multiplicity information for each resonance is obtained employing the high granularity of the DANCE array. The radiative decay cascades corresponding to each resonance are obtained in the experiment. The measurements are compared to simulation of these cascades which calculated with various models for the radiative strength function. Comparison between the experimental data and simulation provides an opportunity to investigate the average quantities.

  17. Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

  18. PREFACE: Buried Interface Sciences with X-rays and Neutrons 2010

    Science.gov (United States)

    Sakurai, Kenji

    2011-09-01

    The 2010 summer workshop on buried interface science with x-rays and neutrons was held at Nagoya University, Japan, on 25-27 July 2010. The workshop was organized by the Japan Applied Physics Society, which established a group to develop the research field of studying buried function interfaces with x-rays and neutrons. The workshop was the latest in a series held since 2001; Tsukuba (December 2001), Niigata (September 2002), Nagoya (July 2003), Tsukuba (July 2004), Saitama (March 2005), Yokohama (July 2006), Kusatsu (August 2006), Tokyo (December 2006), Sendai (July 2007), Sapporo (September 2007), Tokyo (December 2007), Tokyo-Akihabara (July 2009) and Hiratsuka (March 2010). The 2010 summer workshop had 64 participants and 34 presentations. Interfaces mark the boundaries of different material systems at which many interesting phenomena take place, thus making it extremely important to design, fabricate and analyse the structures of interfaces at both the atomic and macroscopic scale. For many applications, devices are prepared in the form of multi-layered thin films, with the result that interfaces are not exposed but buried under multiple layers. Because of such buried conditions, it is generally not easy to analyse such interfaces. In certain cases, for example, when the thin surface layer is not a solid but a liquid such as water, scientists can observe the atomic arrangement of the liquid-solid interface directly by using a scanning probe microscope, of which the tip is soaked in water. However, it has become clear that the use of a stylus tip positioned extremely close to the interface might change the structure of the water molecules. Therefore it is absolutely crucial to develop non-contact, non-destructive probes for buried interfaces. It is known that analysis using x-rays and neutrons is one of the most powerful tools for exploring near-surface structures including interfaces buried under several layers. In particular, x-ray analysis using 3rd

  19. Los Alamos National Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Lab has a proud history and heritage of almost 70 years of science and innovation. The people at the Laboratory work on advanced technologies to provide the best...

  20. Los Alamos National Laboratory: 21st century solutions to urgent national challenges

    Energy Technology Data Exchange (ETDEWEB)

    Mcbranch, Duncan [Los Alamos National Laboratory

    2008-01-01

    Los Alamos National Laboratory has been called upon to meet urgent national challenges for more than 65 years. The people, tools, and technologies at Los Alamos are a world class resource that has proved decisive through our history, and are needed in the future. We offer expertise in nearly every science, technology, and engineering discipline, a unique integrated capability for large-scale computing and experimentation, and the proven ability to deliver solutions involving the most complex and difficult technical systems. This white paper outlines some emerging challenges and why the nation needs Los Alamos, the premier National Security Science Laboratory, to meet these challenges.

  1. A Preliminary Assessment of Radiation and Air Activation for the Neutron Science Facility in RAON

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S. C.; Lee, C. W.; Lee, E. J.; Lee, Y. O. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, J. C. [Institute for Basic Science, Daejeon (Korea, Republic of)

    2015-05-15

    The works will stay in the DAQ room during an operation for about 1 month. In order to test the characteristics of the detector, the workers are also possible to access the TOF hall after a shutdown. Therefore, the shielding analysis of the NSF is required to meet the above purpose. In view of this, we performed the calculation of the shielding concrete thickness required for a target room by using MCNPX code with a neutron source obtained from Institute for Basic Science (IBS). In addition, the dose distribution and air activation for the entire space in NSF were evaluated using MCNPX and SP-FISPACT 2010 codes. We have performed the shielding calculation with the neutron source produced from the C(d,n) reactions. The concrete thickness was evaluated for all directions of the target room, and it was confirmed by performing the calculation of dose distribution to the entire space. However, the dose rate for the beam line was high. The radioactivity of radionuclides at TOF hall do not exceeded the air concentration and release limits.

  2. Second Einstein Telescope mock data and science challenge: Low frequency binary neutron star data analysis

    Science.gov (United States)

    Meacher, Duncan; Cannon, Kipp; Hanna, Chad; Regimbau, Tania; Sathyaprakash, B. S.

    2016-01-01

    The Einstein Telescope is a conceived third-generation gravitational-wave detector that is envisioned to be an order of magnitude more sensitive than advanced LIGO, Virgo, and Kagra, which would be able to detect gravitational-wave signals from the coalescence of compact objects with waveforms starting as low as 1 Hz. With this level of sensitivity, we expect to detect sources at cosmological distances. In this paper we introduce an improved method for the generation of mock data and analyze it with a new low-latency compact binary search pipeline called gstlal. We present the results from this analysis with a focus on low-frequency analysis of binary neutron stars. Despite compact binary coalescence signals lasting hours in the Einstein Telescope sensitivity band when starting at 5 Hz, we show that we are able to discern various overlapping signals from one another. We also determine the detection efficiency for each of the analysis runs conducted and show a proof of concept method for estimating the number signals as a function of redshift. Finally, we show that our ability to recover the signal parameters has improved by an order of magnitude when compared to the results of the first mock data and science challenge. For binary neutron stars we are able to recover the total mass and chirp mass to within 0.5% and 0.05%, respectively.

  3. Neutron stars in the light of SKA: Data, statistics, and science

    CERN Document Server

    Arjunwadkar, Mihir; Bagchi, Manjari

    2016-01-01

    The Square Kilometre Array (SKA), when it becomes functional, is expected to enrich neutron star (NS) catalogues by at least an order of magnitude over their current state. This includes the discovery of new NS objects leading to better sampling of under-represented NS categories, precision measurements of intrinsic properties such as spin period and magnetic field, as also data on related phenomena such as microstructure, nulling, glitching, etc. This will present a unique opportunity to seek answers to interesting and fundamental questions about the extreme physics underlying these exotic objects in the universe. In this paper, we first present a meta-analysis (from a methodological viewpoint) of statistical analyses performed using existing NS data, with a two-fold goal: First, this should bring out how statistical models and methods are shaped and dictated by the science problem being addressed. Second, it is hoped that these analyses will provide useful starting points for deeper analyses involving riche...

  4. Design of the Next Generation Target at the Lujan Neutron Scattering Center, LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Ferres, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); National Graduate School of Engineering and Research Center (ENSICAEN), Caen (France)

    2016-08-03

    Los Alamos National Laboratory (LANL) supports scientific research in many diverse fields such as biology, chemistry, and nuclear science. The Laboratory was established in 1943 during the Second World War to develop nuclear weapons. Today, LANL is one of the largest laboratories dedicated to nuclear defense and operates an 800 MeV proton linear accelerator for basic and applied research including: production of high- and low-energy neutrons beams, isotope production for medical applications and proton radiography. This accelerator is located at the Los Alamos Neutron Science Center (LANSCE). The work performed involved the redesign of the target for the low-energy neutron source at the Lujan Neutron Scattering Center, which is one of the facilities built around the accelerator. The redesign of the target involves modeling various arrangements of the moderator-reflector-shield for the next generation neutron production target. This is done using Monte Carlo N-Particle eXtended (MCNPX), and ROOT analysis framework, a C++ based-software, to analyze the results.

  5. Neutron capture measurements on unstable nuclei at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, J.L.; Haight, R.C. [LANSCE-3, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Fowler, M.M.; Miller, G.G.; Rundberg, R.S.; Wilhelmy, J.B. [CST-11, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1999-06-01

    Although neutron capture by stable isotopes has been extensively measured, there are very few measurements on unstable isotopes. The intense neutron flux at the Manual Lujan Jr. Neutron Scattering Center at LANSCE enables us to measure capture on targets with masses of about 1 mg over the energy range from 1 eV to 100 keV. These measurements are important not only for understanding the basic physics, but also for calculations of stellar nucleosynthesis and Science-Based Stockpile Stewardship. Preliminary measurements on {sup 169}Tm and {sup 171}Tm have been made with deuterated benzene detectors. A new detector array at the Lujan center and a new radioactive isotope separator will combine to give Los Alamos a unique capability for making these measurements. {copyright} {ital 1999 American Institute of Physics.}

  6. Parity violation in p-wave neutron resonances

    CERN Document Server

    Sharapov, E I; Penttilae, S I; Mitchell, G E

    2001-01-01

    Parity violation in p-wave resonances has been studied by measuring the cross section longitudinal asymmetries at neutron energies up to 300-2000 eV. The measurements were performed using the polarization set-up at the pulsed spallation neutron source of the Los Alamos Neutron Science Centre. Parity violations were observed in 75 resonances of Br, Rh, Pd, Ag, Sn, In, Sb, I, Cs, Xe, La, Th, and U. Statistical methods were developed to determine the weak interaction r. m. s. matrix elements and the corresponding widths GAMMA subomega. The average value of GAMMA subomega is about 1.8 x 10 sup - sup 7 eV. The individual GAMMA subomega are consistent with a constant varying mass dependence at the availability of fluctuations

  7. Neutron Capture Measurements on Unstable Nuclei at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, J.; Haight, R.; Wilhelmy, J.; Fowler, M.; Rundberg, R.; Miller, G.

    1998-11-04

    Although neutron capture by stable isotopes has been extensively measured, there are very few measurements on unstable isotopes. The intense neutron flux at the Manual Lujan Jr. Neutron Scattering Center at LANSCE enables us to measure capture on targets with masses of about 1 mg over the energy range from 1 eV to 100 keV. These measurements are important not only for understanding the basic physics, but also for calculations of stellar nucleosynthesis and Science-Based Stockpile Stewardship. Preliminary measurements on {sup 169}Tm and {sup 171}Tm have been made with deuterated benzene detectors. A new detector array at the Lujan center and a new radioactive isotope separator will combine to give Los Alamos a unique capability for making these measurements.

  8. Neutron beam testing of triblades

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  9. PREFACE: Workshop on 'Buried' Interface Science with X-rays and Neutrons

    Science.gov (United States)

    Sakurai, Kenji

    2007-06-01

    The 2007 workshop on `buried' interface science with X-rays and neutrons was held at the Institute of Materials Research, Tohoku University, in Sendai, Japan, on July 22-24, 2007. The workshop was the latest in a series held since 2001; Tsukuba (December 2001), Niigata (September 2002), Nagoya (July 2003), Tsukuba (July 2004), Saitama (March 2005), Yokohama (July 2006), Kusatsu (August 2006) and Tokyo (December 2006). The 2007 workshop had 64 participants and 34 presentations. There are increasing demands for sophisticated metrology in order to observe multilayered materials with nano-structures (dots, wires, etc), which are finding applications in electronic, magnetic, optical and other devices. Unlike many other surface-sensitive methods, X-ray and neutron analysis is known for its ability to see even `buried' function interfaces as well as the surface. It is highly reliable in practice, because the information, which ranges from the atomic to mesoscopic scale, is quantitative and reproducible. The non-destructive nature of this type of analytical method ensures that the same specimen can be measured by other techniques. However, we now realize that the method should be upgraded further to cope with more realistic problems in nano sciences and technologies. In the case of the reflectivity technique and other related methods, which have been the main topics in our workshops over the past 7 years, there are three important directions as illustrated in the Figure. Current X-ray methods can give atomic-scale information for quite a large area on a scale of mm2-cm2. These methods can deliver good statistics for an average, but sometimes we need to be able to see a specific part in nano-scale rather than an average structure. In addition, there is a need to see unstable changing structures and related phenomena in order to understand more about the mechanism of the functioning of nano materials. Quick measurements are therefore important. Furthermore, in order to apply

  10. Neutron guide system for small-angle neutron scattering instruments of the Jülich Centre for Neutron Science at the FRM-II

    Science.gov (United States)

    Radulescu, A.; Ioffe, A.

    2008-02-01

    Following the shut-down of the FRJ-2 research reactor in Jülich a large part of the neutron scattering instrumentation operating there is currently being moved to the FRM-II research reactor in Garching-München. The installation of these instruments requires the design and set-up of new neutron guides with geometrical and optical features imposed by the positioning of the instruments in the neutron guide hall and by the foreseen significant improvement of the instrument performance. Particularly three SANS diffractometers require a special approach due to on one hand, their pre-determined size and on the other hand, the demanded neutron wavelength range. Expected characteristics of three neutron guides (currently under construction) optimized using VITESS and McStas simulation packages, namely the vertically "S-shaped" guides serving the KWS2 and KWS1 conventional SANS instruments and the horizontally "S-shaped" guide serving the focusing KWS3 instrument, will be reported on.

  11. Neutron guide system for small-angle neutron scattering instruments of the Juelich Centre for Neutron Science at the FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Radulescu, A. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich GmbH, Juelich Centre for Neutron Science at FRM II, Lichtenbergstr. 1, 85747 Garching (Germany)], E-mail: a.radulescu@fz-juelich.de; Ioffe, A. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich GmbH, Juelich Centre for Neutron Science at FRM II, Lichtenbergstr. 1, 85747 Garching (Germany)

    2008-02-11

    Following the shut-down of the FRJ-2 research reactor in Juelich a large part of the neutron scattering instrumentation operating there is currently being moved to the FRM-II research reactor in Garching-Muenchen. The installation of these instruments requires the design and set-up of new neutron guides with geometrical and optical features imposed by the positioning of the instruments in the neutron guide hall and by the foreseen significant improvement of the instrument performance. Particularly three SANS diffractometers require a special approach due to on one hand, their pre-determined size and on the other hand, the demanded neutron wavelength range. Expected characteristics of three neutron guides (currently under construction) optimized using VITESS and McStas simulation packages, namely the vertically 'S-shaped' guides serving the KWS2 and KWS1 conventional SANS instruments and the horizontally 'S-shaped' guide serving the focusing KWS3 instrument, will be reported on.

  12. LANSCE nuclear science facilities and activities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald O [Los Alamos National Laboratory

    2010-01-01

    Nuclear science activities at the Los Alamos Neutron Science Center (LANSCE) encompass measurements spanning the neutron energy range from thermal to 600 MeV. The neutron sources use spallation of the LANSCE 800 MeV pulsed proton beam with the time-of-flight technique to measure properties of neutron-induced reactions as a function of energy over this large energy range. Current experiments are conducted at the Lujan Center moderated neutron source, the unmoderated WNR target, and with a lead-slowing-down spectrometer. Instruments in use include the DANCE array of BaF{sub 2} scintillators for neutron capture studies, the FIGARO array of liquid scintillator neutron detectors, the GEANIE array of high-resolution HPGe x-ray and gamma-ray detectors, and a number of fission chambers, and other detectors. The LANL capabilities for production and handling of radioactive materials coupled with the neutron sources and detectors at LANSCE are enabling new and challenging measurements for a variety of applications including nuclear energy and nuclear astrophysics. An overview of recent research and examples of results is presented.

  13. Neutron Stars in the Light of Square Kilometre Array: Data, Statistics and Science

    Indian Academy of Sciences (India)

    Mihir Arjunwadkar; Akanksha Kashikar; Manjari Bagchi

    2016-12-01

    The Square Kilometre Array (SKA), when it becomes functional, is expected to enrich Neutron Star (NS) catalogues by at least an order of magnitude over their current state. This includes the discovery of new NS objects leading to better sampling of under-represented NS categories, precision measurements of intrinsic properties such as spin period and magnetic field, as also data on related phenomena such as microstructure, nulling, glitching, etc. This will present a unique opportunity to seek answers to interesting and fundamental questions about the extreme physics underlying these exotic objects in the Universe. In this paper, we first present a meta-analysis (from a methodological viewpoint) of statistical analyses performed using existing NS data, with a two-fold goal. First, this should bring out how statistical models and methods are shaped and dictated by the science problem being addressed. Second, it is hoped that these analyses will provide useful starting points for deeper analyses involving richer data from SKA whenever it becomes available. We also describe a few other areas of NS science which we believe will benefit from SKA which are of interest to the Indian NS community.

  14. Measurement of Neutron Capture Cross Section of 62Ni in the keV-Region

    Science.gov (United States)

    Alpizar-Vicente, A. M.; Bredeweg, T. A.; Esch, E.-I.; Greife, U.; Haight, R. C.; Hatarik, R.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2006-03-01

    The neutron capture cross section of 62Ni, relative to gold as a standard, was determined in the energy range from 250 eV to 100 keV. This energy range covers the region between 5 keV to 20 keV, which is not available in ENDF. Capture events are detected with the 160-fold 4π BaF2 Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. One of the challenges was to process the high count rate of 4 MHz, which required an optimization of the data acquisition software. The neutron energy was determined by the time-of-flight technique using a flight path of 20.25 m. The sample mass of the 96% enriched 62Ni target was 210 mg and it was mounted in a 1.5 μm thick Mylar foil.

  15. "Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory", Köhler et al.

    Science.gov (United States)

    Miller, Jack

    2015-04-01

    The Mars Science Laboratory (MSL) spacecraft carried the Curiosity rover to Mars. While the dramatic, successful landing of Curiosity and its subsequent exploration of the Martian surface have justifiably generated great excitement, from the standpoint of the health of crewmembers on missions to Mars, knowledge of the environment between Earth and Mars is critical. This paper reports data taken during the cruise phase of the MSL by the Radiation Assessment Detector (RAD). The results are of great interest for several reasons. They are a direct measurement of the radiation environment during what will be a significant fraction of the duration of a proposed human mission to Mars; they were made behind the de facto shielding provided by various spacecraft components; and, in particular, they are a measurement of the contribution to radiation dose by neutrons. The neutron environment inside spacecraft is produced primarily by galactic cosmic ray ions interacting in shielding materials, and given the high biological effectiveness of neutrons and the increased contribution of neutrons to dose with increased depth in shielding, accurate knowledge of the neutron energy spectrum behind shielding is vital. The results show a relatively modest contribution from neutrons and gammas compared to that from charged particles, but also a discrepancy in both dose and dose rate between the data and simulations. The failure of the calculations to accurately reproduce the data is significant, given that future manned spacecraft will be more heavily shielded (and thus produce more secondary neutrons) and that spacecraft design will rely on simulations and model calculations of radiation transport. The methodology of risk estimation continues to evolve, and incorporates our knowledge of both the physical and biological effects of radiation. The relatively large uncertainties in the biological data, and the difficulties in reducing those uncertainties, makes it all the more important to

  16. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  17. Los Alamos Science, Fall 1983 No. 9

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N G [ed.

    1983-10-01

    Topics covered in this issue include: cellular automata, gene expression, gen-bank and its promise for molecular genetics, and frontiers of supercomputing. Abstracts have been prepared for the individual items. (GHT)

  18. Proceedings of the 182nd basic science seminar (The workshop on neutron structural biology ) 'New frontiers of structural biology advanced by solution scattering'

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Satoru (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    182nd advanced science seminar (the workshop on neutron structural biology) was held in February 9-10, 2000 at Tokai. Thirty-six participants from universities, research institutes, and private companies took part in the workshop, and total of 24 lectures were given. This proceedings collects abstracts, the figures and tables, which the speakers used in their lectures. The proceedings contains two reviews from the point of view of x-ray and neutron scatterings, and six subjects (21 papers) including neutron and x-ray scattering in the era of structure genomics, structural changes detected with solution scattering, a new way in structural biology opened by neutron crystallography and neutron scattering, x-ray sources and detectors, simulation and solution scattering, and neutron sources and detectors. (Kazumata, Y.)

  19. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography

    Directory of Open Access Journals (Sweden)

    Julian C.-H. Chen

    2017-01-01

    Full Text Available The Protein Crystallography Station (PCS, located at the Los Alamos Neutron Scattering Center (LANSCE, was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER for 13 years (2002–2014. The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallography in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.

  20. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography.

    Science.gov (United States)

    Chen, Julian C-H; Unkefer, Clifford J

    2017-01-01

    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002-2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo-graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.

  1. After the Resistance: The Alamo Today

    Centers for Disease Control (CDC) Podcasts

    2014-09-23

    Byron Breedlove reads his essay After the Resistance: The Alamo Today about the Alamo and emerging disease resistance.  Created: 9/23/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/20/2014.

  2. LENS: A new university-based neutron source for science and education

    Energy Technology Data Exchange (ETDEWEB)

    Leuschner, M.B. [Indiana University Cyclotron Facility, 2401 Milo B Sampson Lane, Bloomington, IN 47408 (United States)]. E-mail: mleuschn@indiana.edu; Baxter, D.V. [Indiana University Cyclotron Facility, 2401 Milo B Sampson Lane, Bloomington, IN 47408 (United States); Derunchuk, V.P. [Indiana University Cyclotron Facility, 2401 Milo B Sampson Lane, Bloomington, IN 47408 (United States); Kaiser, H. [Indiana University Cyclotron Facility, 2401 Milo B Sampson Lane, Bloomington, IN 47408 (United States); Lavelle, C.M. [Indiana University Cyclotron Facility, 2401 Milo B Sampson Lane, Bloomington, IN 47408 (United States); Nann, H. [Indiana University Cyclotron Facility, 2401 Milo B Sampson Lane, Bloomington, IN 47408 (United States); Remmes, N.B. [Indiana University Cyclotron Facility, 2401 Milo B Sampson Lane, Bloomington, IN 47408 (United States); Rinckel, T. [Indiana University Cyclotron Facility, 2401 Milo B Sampson Lane, Bloomington, IN 47408 (United States); Snow, W.M. [Indiana University Cyclotron Facility, 2401 Milo B Sampson Lane, Bloomington, IN 47408 (United States); Sokol, P.E. [Indiana University Cyclotron Facility, 2401 Milo B Sampson Lane, Bloomington, IN 47408 (United States)

    2007-08-15

    The low-energy neutron source (LENS) is currently under construction at the Indiana University Cyclotron Facility. LENS is a long-pulse neutron source utilizing low-energy (p,xn) reactions on a beryllium target to produce neutrons. There are several unique features of the LENS facility. The low proton beam energy of 13 MeV results in a low heat load on the moderator system, enabling the operation of the moderator at temperatures lower than 10 K. The low beam energies also result in relatively low activation of the materials surrounding the target and moderator, thus enabling rapid prototyping and turnaround times for a moderator studies program.

  3. Spin and parity assignments for Mo94,95 neutron resonances

    Science.gov (United States)

    Sheets, S. A.; Agvaanluvsan, U.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Krtička, M.; Jandel, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W. E.; Reifarth, R.; Rundberg, R. S.; Sharapov, E. I.; Tomandl, I.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Wilhelmy, J. B.; Wu, C. Y.

    2007-12-01

    The γ rays following the Mo94,95(n,γ) reactions were measured as a function of incident neutron energy by the time-of-flight method with the DANCE (Detector for Advanced Neutron Capture Experiments) array of 160 BaF2 scintillation detectors at the Los Alamos Neutron Science Center. The targets were enriched samples: 91.59% Mo94 and 96.47% Mo95. The γ-ray multiplicities and energy spectra for different multiplicities were measured in s- and p-wave resonances up to En=10 keV for Mo94 and up to En=2 keV for Mo95. Definite spins and parities were assigned in Mo96 for about 60% of the resonances, and tentative spins and parities were assigned for the remaining resonances. In Mo95 the parities were determined for the observed resonances, confirming previously known assignments.

  4. Non-Statistical Effects in Neutron Capture

    Science.gov (United States)

    Koehler, P. E.; Bredeweg, T. A.; Guber, K. H.; Harvey, J. A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wiarda, D.; Wouters, J. M.

    2009-01-01

    There have been many reports of non-statistical effects in neutron-capture measurements. However, reports of deviations of reduced-neutron-width (Γn0) distributions from the expected Porter-Thomas (PT) shape largely have been ignored. Most of these deviations have been reported for odd-A nuclides. Because reliable spin (J) assignments have been absent for most resonances for such nuclides, it is possible that reported deviations from PT might be due to incorrect J assignments. We recently developed a new method for measuring spins of neutron resonances by using the DANCE detector at the Los Alamos Neutron Science Center (LANSCE). Measurements made with a 147Sm sample allowed us to determine spins of almost all known resonances below 1 keV. Furthermore, analysis of these data revealed that the Γn0 distribution was in good agreement with PT for resonances below 350 eV, but in disagreement with PT for resonances between 350 and 700 eV. Our previous (n,α) measurements had revealed that the α strength function also changes abruptly at this energy. There currently is no known explanation for these two non-statistical effects. Recently, we have developed another new method for determining the spins of neutron resonances. To implement this technique required a small change (to record pulse-height information for coincidence events) to a much simpler apparatus: A pair of C6D6 γ-ray detectors which we have employed for many years to measure neutron-capture cross sections at the Oak Ridge Electron Linear Accelerator (ORELA). Measurements with a 95Mo sample revealed that not only does the method work very well for determining spins, but it also makes possible parity assignments. Taken together, these new techniques at LANSCE and ORELA could be very useful for further elucidation of non-statistical effects.

  5. Proton Radiography at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-28

    The proton radiography (pRad) facility at Los Alamos National Lab uses high energy protons to acquire multiple frame flash radiographic sequences at megahertz speeds: that is, it can make movies of the inside of explosions as they happen. The facility is primarily used to study the damage to and failure of metals subjected to the shock forces of high explosives as well as to study the detonation of the explosives themselves. Applications include improving our understanding of the underlying physical processes that drive the performance of the nuclear weapons in the United States stockpile and developing novel armor technologies in collaboration with the Army Research Lab. The principle and techniques of pRad will be described, and examples of some recent results will be shown.

  6. Overview of laser technology at Los Alamos National Laboratory

    Science.gov (United States)

    Lewis, G. K.; Cremers, D. A.

    Los Alamos National Laboratory has had a long history of involvement in laser sciences and has been recognized both for its large laser programs and smaller scale developments in laser technology and applications. The first significant program was with the Rover nuclear-based rocket propulsion system in 1968 to study laser initiated fusion. From here applications spread to programs in laser isotope separation and development of large lasers for fusion. These programs established the technological human resource base of highly trained laser physicists, engineers, and chemists that remain at the Laboratory today. Almost every technical division at Los Alamos now has some laser capability ranging from laser development, applications, studies on nonlinear processes, modeling and materials processing. During the past six years over eight R&D-100 Awards have been received by Los Alamos for development of laser-based techniques and instrumentation. Outstanding examples of technology developed include LIDAR applications to environmental monitoring, single molecule detection using fluorescence spectroscopy, a laser-based high kinetic energy source of oxygen atoms produced by a laser-sustained plasma, laser-induced breakdown spectroscopy (LIBS) for compositional, analysis, thin film high temperature superconductor deposition, multi-station laser welding, and direct metal deposition and build-up of components by fusing powder particles with a laser beam.

  7. Operational comparison of bubble (super heated drop) dosimetry with routine albedo TLD for a selected group of Pu-238 workers at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.L.; Hoffman, J.M.; Foltyn, E.M.; Buhl, T.E.

    1998-09-01

    Personnel neutron dosimetry continues to be a difficult science due to the lack of availability of robust passive dosimeters that exhibit tissue- or near-tissue- equivalent response. This paper is an operational study that compares the use of albedo thermoluminescent dosimeters with bubble dosimeters to determine whether bubble dosimeters do provide a useful daily ALARA tool that can yield measurements close to the dose-of-record. A group of workers at Los Alamos National Laboratory (LANL) working on the Radioisotopic Thermoelectric Generators (RTG) for the NASA Cassini space mission wore both bubble dosimeters and albedo dosimeters over a period from 1993 through 1996. The personal albedo dosimeter was processed on a monthly basis and used as the dose-of-record. The results of this study indicated that cumulative daily bubble dosimetry results agreed with whole-body albedo dosimetry results within about 37% on average.

  8. Ground tests with active neutron instrumentation for the planetary science missions

    Energy Technology Data Exchange (ETDEWEB)

    Litvak, M.L., E-mail: litvak@mx.iki.rssi.ru [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Mitrofanov, I.G.; Sanin, A.B. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Jun, I. [Jet Propulsion Laboratory, Pasadena, CA USA (United States); Kozyrev, A.S. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Krylov, A.; Shvetsov, V.N.; Timoshenko, G.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Starr, R. [Catholic University of America, Washington DC (United States); Zontikov, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2015-07-11

    We present results of experimental work performed with a spare flight model of the DAN/MSL instrument in a newly built ground test facility at the Joint Institute for Nuclear Research. This instrument was selected for the tests as a flight prototype of an active neutron spectrometer applicable for future landed missions to various solid solar system bodies. In our experiment we have fabricated simplified samples of planetary material and tested the capability of neutron activation methods to detect thin layers of water/water ice lying on top of planetary dry regolith or buried within a dry regolith at different depths.

  9. Publications of Los Alamos research 1988

    Energy Technology Data Exchange (ETDEWEB)

    Varjabedian, K.; Dussart, S.A.; McClary, W.J.; Rich, J.A. (comps.)

    1989-12-01

    This bibliography lists unclassified publications of work done at the Los Alamos National Laboratory for 1988. The entries, which are subdivided by broad subject categories, are cross-referenced with an author index and a numeric index.

  10. Environmental surveillance at Los Alamos during 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  11. Determination of the parahydrogen fraction in a liquid hydrogen target using energy-dependent slow neutron transmission

    Energy Technology Data Exchange (ETDEWEB)

    Barron-Palos, L., E-mail: libertad@fisica.unam.mx [Arizona State University, Tempe, AZ 85287 (United States); Alarcon, R.; Balascuta, S. [Arizona State University, Tempe, AZ 85287 (United States); Blessinger, C. [Indiana University, Bloomington, IN 47405 (United States); Bowman, J.D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chupp, T.E. [University of Michigan, Ann Arbor, MI 48104 (United States); Covrig, S. [University of New Hampshire, Durham, NH 03824 (United States); Crawford, C.B. [University of Tennessee, Knoxville, TN 37996 (United States); Dabaghyan, M. [University of New Hampshire, Durham, NH 03824 (United States); Dadras, J. [University of Tennessee, Knoxville, TN 37996 (United States); Dawkins, M.; Fox, W. [Indiana University, Bloomington, IN 47405 (United States); Gericke, M.T. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Gillis, R.C. [University of Manitoba, Winnipeg, MB, Canada R3T 2N2 (Canada); Lauss, B. [University of California, Berkeley, CA 94720 (United States); Leuschner, M.B.; Lozowski, B. [Indiana University, Bloomington, IN 47405 (United States); Mahurin, R. [University of Tennessee, Knoxville, TN 37996 (United States); Mason, M. [University of New Hampshire, Durham, NH 03824 (United States); Mei, J. [Indiana University, Bloomington, IN 47405 (United States); and others

    2011-12-11

    The NPDGamma collaboration is performing a measurement of the very small parity-violating asymmetry in the angular distribution of the 2.2 MeV {gamma}-rays from the capture of polarized cold neutrons on protons (A{sub {gamma}}). The estimated size of A{sub {gamma}} is 5 Multiplication-Sign 10{sup -8}, and the measured asymmetry is proportional to the neutron polarization upon capture. Since the interaction of polarized neutrons with one of the two hydrogen molecular states (orthohydrogen) can lead to neutron spin-flip scattering, it is essential that the hydrogen in the target is mostly in the molecular state that will not depolarize the neutrons ({>=}99.8% parahydrogen). For that purpose, in the first stage of the NPDGamma experiment at the Los Alamos Neutron Science Center (LANSCE), we operated a 16-l liquid hydrogen target, which was filled in two different occasions. The parahydrogen fraction in the target was accurately determined in situ by relative neutron transmission measurements. The result of these measurements indicate that the fraction of parahydrogen in equilibrium was 0.9998{+-}0.0002 in the first data taking run and 0.9956{+-}0.0002 in the second. We describe the parahydrogen monitor system, relevant aspects of the hydrogen target, and the procedure to determine the fraction of parahydrogen in the target. Also assuming thermal equilibrium of the target, we extract the scattering cross-section for neutrons on parahydrogen.

  12. Device for Writing the Time Tail from Spallation Neutron Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Langan, P. (Paul); Schoenborn, Benno P.; Langan, P. (Paul); Schoenborn, Benno P.; Daemen, L. L. (Luc L.)

    2001-01-01

    Recent work at Los Alamos Neutron Science Center (LANSCE), has shown that there are large gains in neutron beam intensity to be made by using coupled moderators at spallation neutron sources. Most of these gains result from broadening the pulse-width in time. However the accompanying longer exponential tail at large emission times can be a problem in that it introduces relatively large beam-related backgrounds at high resolutions. We have designed a device that can reshape the moderated neutron beam by cutting the time-tail so that a sharp time resolution can be re-established without a significant loss in intensity. In this work the basic principles behind the tail-cutter and some initial results of Monte Carlo simulations are described. Unwanted neutrons in the long time-tail are diffracted out of the transmitted neutron beam by a nested stack of aperiodic multi-layers, rocking at the same frequency as the source. Nested aperiodic multi-layers have recently been used at X-ray sources and as band-pass filters in quasi-Laue neutron experiments at reactor neutron sources. Optical devices that rock in synchronization with a pulsed neutron beam are relatively new but are already under construction at LANSCE. The tail-cutter described here is a novel concept that uses existing multi-layer technology in a new way for spallation neutrons. Coupled moderators in combination with beam shaping devices offer the means of increasing flux whilst maintaining a sharp time distribution. A prototype device is being constructed for the protein crystallography station at LANSCE. The protein crystallography station incorporates a water moderator that has been judiciously coupled in order to increase the flux over neutron energies that are important to structural biology (3-80meV). This development in moderator design is particularly important because protein crystallography is flux limited and because conventional ambient water and cold hydrogen moderators do not provide relatively

  13. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    Science.gov (United States)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  14. Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Olga [Los Alamos National Laboratory

    2012-06-04

    The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

  15. Measuring Neutrons and Gamma Rays on Mars - The Mars Science Laboratory Radiation Assessment Detector MSL/RAD

    Science.gov (United States)

    Wimmer-Schweingruber, R. F.; Martin, C.; Kortmann, O.; Boehm, E.; Kharytonov, A.; Ehresmann, B.; Hassler, D. M.; Zeitlin, C.; Rad Team

    2010-12-01

    The Mars Science Laboratory (MSL) missions Radiation Assessment Detector (RAD) will measure the radiation environment on the Martian surface. One of the difficult measurements is that of the neutral radiation component consisting of neutrons and gamma rays. Different from Earth, this neutral component contributes substantially to the total dose on the planetary surface, principally because the Martian atmosphere is so thin. The RAD instrument is capable of measuring neutral particles through a combination of sensitive anti-coincidence and organic and inorganic scintillator materials. In this work, we will explain how RAD will measure the neutral particle radiation on Mars and compare with calibration results. The problem of inverting measured neutron and gamma data is a non-trivial task. For all inversions, one generally assumes that the measurement process can be described by a system of linear equations, A ěc{f} = ěc{z}, where the matrix A describes the instrument response function (IRF), ěc{f} the underlying, but unknown, ``real'' physical parameters, and ěc{z} the measured data. The inversion of this deceptively simple-looking set of equations is in fact a key example of an ill-posed or inverse problem. Such problems are notoriously difficult to solve.

  16. Developing an in-situ Detector of Neutron-Induced Fission for Actinide Sputtering Characterization

    Science.gov (United States)

    Fellers, Deion

    2016-09-01

    The physical mechanism describing the transfer of large amounts of energy due to fission in a material is not well understood and represents one of the modern challenges facing nuclear scientists, with applications including nuclear energy and national defense. Fission fragments cause damage to the material from sputtering of matter as they pass through or near the material's surface. We have developed a new technique at the Los Alamos Neutron Science Center for characterizing the ejecta by using ultracold neutrons (neutrons with kinetic energy less than 300 neV) to induce fission at finely controlled depths in an actinide. This program will ultimately provide a detailed description of the properties of the sputtered particles as a function of the depth of the fission in the material. A key component of this project is accurately quantifying the number of neutron induced fissions in the sample. This poster depicts the development of an in-situ detector of neutron-induced fission for the AShES (Actinide Sputtering from ultracold neutron Exposure at the Surface) experiment.

  17. Testing Monte Carlo Simulations for Neutron Scattering in MoNA

    Science.gov (United States)

    Hamann, A.; Garrett, S.; Seagren, T.; Taylor, N. E.; Rogers, W. F.; MoNA Collaboration

    2015-10-01

    Monte Carlo simulations provide an important tool for nuclear physics research, both in preparing for experiments, and in interpreting experimental data. The Modular Neutron Array (MoNA) and the Large area multi-Institutional Scintillator Array (LISA) are used in conjunction with the Sweeper Magnet and charged particle detector chamber at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University to study the properties of exotic, neutron-rich nuclei. We use simulations to model our BC408 scintillator detectors and extract physics results from experimental data. We have developed specific simulations in preparation for an experiment we will conduct at the Los Alamos Neutron Science Center (LANSCE), where we will direct a well-defined neutron beam onto a cluster of 16 MoNA detector bars and observe the scattering patterns of single neutrons. Simulations enable us to study the predicted light output generated by individual neutron scattering channels from Carbon and Hydrogen. The data we will generate in the LANSCE experiment will provide a large experimental database with which to test the reliability of our simulations. This is important since our understanding of nuclei far from stability is becoming increasingly reliant on simulations. this work supported by NSF Grants PHY-1101745 and PHY-1506402.

  18. Publications of Los Alamos Research, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.; Rodriguez, L.L. (comps.)

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  19. Publications of Los Alamos research 1980

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, C.A.; Willis, J.K. (comps.)

    1981-09-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1980. Papers published in 1980 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted-even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was pubished more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-laboratory reports, journal articles, books, chapters of books, conference papers published either separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  20. New Generation of Los Alamos Opacity Tables

    Science.gov (United States)

    Colgan, James; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.

    2016-05-01

    We present a new generation of Los Alamos OPLIB opacity tables that have been computed using the ATOMIC code. Our tables have been calculated for all 30 elements from hydrogen through zinc and are publicly available through our website. In this poster we discuss the details of the calculations that underpin the new opacity tables. We also show several recent applications of the use of our opacity tables to solar modeling and other astrophysical applications. In particular, we demonstrate that use of the new opacities improves the agreement between solar models and helioseismology, but does not fully resolve the long-standing `solar abundance' problem. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  1. 'Big science' forum gets a broader role and warns of a need for more neutron sources

    CERN Multimedia

    Dickson, D

    1998-01-01

    After a positive external review, the intergovernmental Megascience Forum set up by OECD to discuss issues concerning funding of major science facilities, is now likely to continue its work under a new name and with a wider mandate (1 page).

  2. Proposal for a New Integrated Circuit and Electronics Neutron Experiment Source at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Phillip D [ORNL

    2009-01-01

    Government and customer specifications increasingly require assessments of the single event effects probability in electronics from atmospheric neutrons. The accelerator that best simulates this neutron spectrum is the WNR facility (Los Alamos), but it is underfunded and oversubscribed for present and future needs. A new beam-line is proposed at the Oak Ridge National Laboratory, as part of the Spallation Neutron Source (SNS).

  3. Neutrons and synchrotron radiation in engineering materials science from fundamentals to applications

    CERN Document Server

    Schreyer, Andreas; Clemens, Helmut; Mayer, Svea

    2017-01-01

    Retaining its proven concept, the second edition of this ready reference specifically addresses the need of materials engineers for reliable, detailed information on modern material characterization methods. As such, it provides a systematic overview of the increasingly important field of characterization of engineering materials with the help of neutrons and synchrotron radiation. The first part introduces readers to the fundamentals of structure-property relationships in materials and the radiation sources suitable for materials characterization. The second part then focuses on such characterization techniques as diffraction and scattering methods, as well as direct imaging and tomography. The third part presents new and emerging methods of materials characterization in the field of 3D characterization techniques like three-dimensional X-ray diffraction microscopy. The fourth and final part is a collection of examples that demonstrate the application of the methods introduced in the first parts to probl...

  4. HEIMDAL: A thermal neutron powder diffractometer with high and flexible resolution combined with SANS and neutron imaging - Designed for materials science studies at the European Spallation Source

    Science.gov (United States)

    Holm, Sonja L.; Lefmann, Kim; Henry, Paul F.; Bertelsen, Mads; Schefer, Jürg; Christensen, Mogens

    2016-08-01

    HEIMDAL will be a multi length scale neutron scattering instrument for the study of structures covering almost nine orders of magnitude from 0.01 nm to 50 mm. The instrument is accepted for construction at the European Spallation Source (ESS) and features a variable resolution thermal neutron powder diffractometer (TNPD), combined with small angle neutron scattering (SANS) and neutron imaging (NI). The instrument uses a novel combination of a cold and a thermal guide to fulfill the diverse requirements for diffraction and SANS. With an instrument length of 170 m, HEIMDAL will take advantage of the high neutron flux of the long pulse at ESS, whilst maintaining a high q-resolution due to the long flight path. The q-range coverage is up to 20 Å-1 allowing low-resolution PDF analysis. With the addition of SANS, HEIMDAL will be able to cover a uniquely broad length scale within a single instrumental set-up. HEIMDAL will be able to accommodate modern materials research in a broad variety of fields, and the task of the instrument will be to study advanced functional materials in action, as in situ and in operandi at multiple length scales (0.01-100 nm) quasi simultaneously. The instrument combines state-of-the-art neutron scattering techniques (TNPD, SANS, and NI) with the goal of studying real materials, in real time, under real conditions. This article describes the instrument design ideas, calculations and results of simulations and virtual experiments.

  5. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  6. A Sailor in the Los Alamos Navy

    Energy Technology Data Exchange (ETDEWEB)

    Judd, D. L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-12-20

    As part of the War Department’s Manhattan Engineer District (MED), Los Alamos was an Army installation during World War II, complete with a base commander and a brace of MPs. But it was a unique Army installation, having more civilian then military personnel. Even more unique was the work performed by the civilian population, work that required highly educated scientists and engineers. As the breadth, scope, and complexity of the Laboratory’s work increased, more and more technically educated and trained personnel were needed. But, the manpower needs of the nation’s war economy had created a shortage of such people. To meet its manpower needs, the MED scoured the ranks of the Army for anyone who had technical training and reassigned these men to its laboratories, including Los Alamos, as part of its Special Engineer Detachment (SED). Among the SEDs assigned to Los Alamos was Val Fitch, who was awarded the Nobel Prize in Physics in 1980. Another was Al Van Vessem, who helped stack the TNT for the 100 ton test, bolted together the Trinity device, and rode shotgun with the bomb has it was driven from Los Alamos to ground zero.

  7. Proceedings of the Los Alamos neutrino workshop

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, F.; Stephenson, G.J. Jr. (comps.)

    1982-08-01

    A workshop on neutrino physics was held at Los Alamos from June 8 to 12, 1981. The material presented has been provided in part by the organizers, in part by the chairmen of the working sessions. Closing date for contributions was October 1981.

  8. Seismic vulnerability study Los Alamos Meson Physics Facility (LAMPF)

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, M. [EQE International, Inc., Irvine, CA (United States); Goen, L.K. [Los Alamos National Lab., NM (United States)

    1995-12-01

    The Los Alamos Meson Physics Facility (LAMPF), located at TA-53 of Los Alamos National Laboratory (LANL), features an 800 MeV proton accelerator used for nuclear physics and materials science research. As part of the implementation of DOE Order 5480.25 and in preparation for DOE Order 5480.28, a seismic vulnerability study of the structures, systems, and components (SSCs) supporting the beam line from the accelerator building through to the ends of die various beam stops at LAMPF has been performed. The study was accomplished using the SQUG GIP methodology to assess the capability of the various SSCs to resist an evaluation basis earthquake. The evaluation basis earthquake was selected from site specific seismic hazard studies. The goals for the study were as follows: (1) identify SSCs which are vulnerable to seismic loads; and (2) ensure that those SSCs screened during die evaluation met the performance goals required for DOE Order 5480.28. The first goal was obtained by applying the SQUG GIP methodology to those SSCS represented in the experience data base. For those SSCs not represented in the data base, information was gathered and a significant amount of engineering judgment applied to determine whether to screen the SSC or to classify it as an outlier. To assure the performance goals required by DOE Order 5480.28 are met, modifications to the SQUG GIP methodology proposed by Salmon and Kennedy were used. The results of this study ire presented in this paper.

  9. Fundamental neutron physics at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  10. A system of materials composition and geometry arrangement for fast neutron beam thermalization: An MCNP study

    Science.gov (United States)

    Uhlář, Radim; Alexa, Petr; Pištora, Jaromír

    2013-03-01

    Compact deuterium-tritium neutron generators emit fast neutrons (14.2 MeV) that have to be thermalized for neutron activation analysis experiments. To maximize thermal neutron flux and minimize epithermal and fast neutron fluxes across the output surface of the neutron generator facility, Monte Carlo calculations (MCNP5; Los Alamos National Laboratory) for different moderator types and widths and collimator and reflector designs have been performed. A thin lead layer close to the neutron generator as neutron multiplier followed by polyethylene moderator and surrounded by a massive lead and nickel collimator and reflector was obtained as the optimum setup.

  11. A high-rate detection system to study parity violation with polarized epithermal neutrons at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Knudson, J.N.; Bowman, J.D. [Los Alamos National Lab., NM (United States); Crawford, B.E. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC (United States)

    1995-07-01

    We describe an apparatus for studies of parity violation in neutron-nucleus scattering. This experiment requires longitudinally polarized neutrons from the Los Alamos Neutron Scattering Center over the energy-range from 1 to 1000 eV, the ability to reverse the neutron spin without otherwise affecting the apparatus, the ability to detect neutrons at rates up to 500 MHz, and an appropriate data acquisition system. We will discuss the neutron polarizer, fast neutron spin reverser, detector for transmitted neutrons, and high rate data acquisition system.

  12. Second Einstein Telescope Mock Data and Science Challenge: Low Frequency Binary Neutron Star Data Analysis

    CERN Document Server

    Meacher, Duncan; Hanna, Chad; Regimbau, Tania; Sathyaprakash, B S

    2016-01-01

    The Einstein Telescope is a conceived third generation gravitational-wave detector that is envisioned to be an order of magnitude more sensitive than advanced LIGO, Virgo and Kagra, which would be able to detect gravitational-wave signals from the coalescence of compact objects with waveforms starting as low as 1Hz. With this level of sensitivity, we expect to detect sources at cosmological distances. In this paper we introduce an improved method for the generation of mock data and analyse it with a new low latency compact binary search pipeline called gstlal. We present the results from this analysis with a focus on low frequency analysis of binary neutron stars. Despite compact binary coalescence signals lasting hours in the Einstein Telescope sensitivity band when starting at 5 Hz, we show that we are able to discern various overlapping signals from one another. We also determine the detection efficiency for each of the analysis runs conducted and and show a proof of concept method for estimating the numbe...

  13. Spectral unfolding of fast neutron energy distributions

    Science.gov (United States)

    Mosby, Michelle; Jackman, Kevin; Engle, Jonathan

    2015-10-01

    The characterization of the energy distribution of a neutron flux is difficult in experiments with constrained geometry where techniques such as time of flight cannot be used to resolve the distribution. The measurement of neutron fluxes in reactors, which often present similar challenges, has been accomplished using radioactivation foils as an indirect probe. Spectral unfolding codes use statistical methods to adjust MCNP predictions of neutron energy distributions using quantified radioactive residuals produced in these foils. We have applied a modification of this established neutron flux characterization technique to experimentally characterize the neutron flux in the critical assemblies at the Nevada National Security Site (NNSS) and the spallation neutron flux at the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL). Results of the unfolding procedure are presented and compared with a priori MCNP predictions, and the implications for measurements using the neutron fluxes at these facilities are discussed.

  14. Neutron-Induced Fission Cross Section Measurements for Full Suite of Uranium Isotopes

    Science.gov (United States)

    Laptev, Alexander; Tovesson, Fredrik; Hill, Tony

    2010-11-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans energies from sub-thermal energies up to 200 MeV by measuring both the Lujan Center and the Weapons Neutron Research center (WNR). Conventional parallel-plate fission ionization chambers with actinide deposited foils are used as a fission detector. The time-of-flight method is implemented to measure neutron energy. Counting rate ratio from investigated and standard U-235 foils is translated into fission cross section ratio. Different methods of normalization for measured ratio are employed, namely, using of actinide deposit thicknesses, normalization to evaluated data, etc. Finally, ratios are converted to cross sections based on the standard U-235 fission cross section data file. Preliminary data for newly investigated isotopes U-236 and U-234 will be reported. Those new data complete a full suite of Uranium isotopes, which were investigated with presented experimental approach. When analysis of the new measured data will is completed, data will be delivered to evaluators. Having data for full set of Uranium isotopes will increase theoretical modeling capabilities and make new data evaluations much more reliable.

  15. DANCEing with the Stars: Measuring Neutron Capture on Unstable Isotopes with DANCE

    Science.gov (United States)

    Couture, A.; Agvaanluvsan, U.; Baker, J. D.; Bayarbadrahk, B.; Becker, J. A.; Bond, E.; Bredeweg, T. A.; Chyzh, A.; Dashdorj, D.; Fowler, M.; Haight, R. C.; Jandel, M.; Keksis, A. L.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.

    2009-03-01

    Isotopes heavier than iron are known to be produced in stars through neutron capture processes. Two major processes, the slow (s) and rapid (r) processes are each responsible for 50% of the abundances of the heavy isotopes. The neutron capture cross sections of the isotopes on the s process path reveal information about the expected abundances of the elements as well as stellar conditions and dynamics. Until recently, measurements on unstable isotopes, which are most important for determining stellar temperatures and reaction flow, have not been experimentally feasible. The Detector for Advance Neutron Capture Experiments (DANCE) located at the Los Alamos Neutron Science Center (LANSCE) was designed to perform time-of-flight neutron capture measurements on unstable isotopes for nuclear astrophysics, stockpile stewardship, and reactor development. DANCE is a 4-π BaF2 scintillator array which can perform measurements on sub-milligram samples of isotopes with half-lives as short as a few hundred days. These cross sections are critical for advancing our understanding of the production of the heavy isotopes.

  16. Measurement of neutron attenuation through thick shields and comparison with calculation

    Energy Technology Data Exchange (ETDEWEB)

    Bull, J.S.; Donahue, J.B.; Burman, R.L.

    1998-12-31

    The large neutrino experiments conducted over the last several years at the Los Alamos Neutron Science Center (LANSCE) have provided the opportunity to measure the effects of neutron attenuation in very thick shields. These experiments have featured detectors with active masses of 6 to 150 tons and shield thicknesses ranging from 3000 to 5280 g/cm{sup 2}. An absolute measurement of the high-energy neutron flux was made from the beam stop in a neutrino cave at ninety degrees and nine meters from the beam stop. Differential neutron shielding measurements in iron were also performed, resulting in an attenuation length of 148 g/cm{sup 2}. These measurements allow for the testing of radiation shielding codes for deep penetration problems. The measured flux and attenuation length is compared to calculations using the LAHET Code System (LCS). These codes incorporate biasing techniques, allowing for direct calculation of deep penetration shielding problems. Calculations of the neutron current and attenuation length are presented and compared with measured values. Results from the shielding codes show good agreement with the measured values.

  17. Cross Section Measurements at LANSCE for Defense, Science and Applications

    Science.gov (United States)

    Nelson, Ronald O.

    2015-05-01

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays, fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. Highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.

  18. Cross Section Measurements at LANSCE for Defense, Science and Applications

    Directory of Open Access Journals (Sweden)

    Nelson Ronald O.

    2015-01-01

    Full Text Available The Los Alamos Neutron Science Center (LANSCE has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays, fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. Highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.

  19. Critical Infrastructure Protection- Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bofman, Ryan K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-24

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  20. Amphibians and Reptiles of Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    1999-10-01

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  1. A Los Alamos concept for accelerator transmutation of waste and energy production (ATW)

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This document contains the diagrams presented at the ATW (Accelerator Transmutation of Waste and Energy Production) External Review, December 10-12, 1990, held at Los Alamos National Laboratory. Included are the charge to the committee and the presentations for the committee`s review. Topics of the presentations included an overview of the concept, LINAC technology, near-term application -- high-level defense wastes (intense thermal neutron source, chemistry and materials), advanced application of the ATW concept -- fission energy without a high-level waste stream (overview, advanced technology, and advanced chemistry), and a summary of the research issues.

  2. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dion, Heather M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  3. Integrating the digital library puzzle: The library without walls at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Luce, R. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    1998-01-01

    Current efforts at the Research Library, Los Alamos National Laboratory (LANL), to develop digital library services are described. A key principle of LANL`s approach to delivering library information is the integration of products into a common interface and the use of the Web as the medium of service provision. Products described include science databases such as the SciSearch at LANL and electronic journals. Project developments described have significant ramifications for delivering library services over the Internet.

  4. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Michael Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-10

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  5. DETERMINISTIC TRANSPORT METHODS AND CODES AT LOS ALAMOS

    Energy Technology Data Exchange (ETDEWEB)

    J. E. MOREL

    1999-06-01

    The purposes of this paper are to: Present a brief history of deterministic transport methods development at Los Alamos National Laboratory from the 1950's to the present; Discuss the current status and capabilities of deterministic transport codes at Los Alamos; and Discuss future transport needs and possible future research directions. Our discussion of methods research necessarily includes only a small fraction of the total research actually done. The works that have been included represent a very subjective choice on the part of the author that was strongly influenced by his personal knowledge and experience. The remainder of this paper is organized in four sections: the first relates to deterministic methods research performed at Los Alamos, the second relates to production codes developed at Los Alamos, the third relates to the current status of transport codes at Los Alamos, and the fourth relates to future research directions at Los Alamos.

  6. FY07 LDRD Final Report Neutron Capture Cross-Section Measurements at DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W; Agvaanluvsan, U; Wilk, P; Becker, J; Wang, T

    2008-02-08

    We have measured neutron capture cross sections intended to address defense science problems including mix and the Quantification of Margins and Uncertainties (QMU), and provide details about statistical decay of excited nuclei. A major part of this project included developing the ability to produce radioactive targets. The cross-section measurements were made using the white neutron source at the Los Alamos Neutron Science Center, the detector array called DANCE (The Detector for Advanced Neutron Capture Experiments) and targets important for astrophysics and stockpile stewardship. DANCE is at the leading edge of neutron capture physics and represents a major leap forward in capability. The detector array was recently built with LDRD money. Our measurements are a significant part of the early results from the new experimental DANCE facility. Neutron capture reactions are important for basic nuclear science, including astrophysics and the statistics of the {gamma}-ray cascades, and for applied science, including stockpile science and technology. We were most interested in neutron capture with neutron energies in the range between 1 eV and a few hundred keV, with targets important to basic science, and the s-process in particular. Of particular interest were neutron capture cross-section measurements of rare isotopes, especially radioactive isotopes. A strong collaboration between universities and Los Alamos due to the Academic Alliance was in place at the start of our project. Our project gave Livermore leverage in focusing on Livermore interests. The Lawrence Livermore Laboratory did not have a resident expert in cross-section measurements; this project allowed us to develop this expertise. For many radionuclides, the cross sections for destruction, especially (n,{gamma}), are not well known, and there is no adequate model that describes neutron capture. The modeling problem is significant because, at low energies where capture reactions are important, the neutron

  7. UC/Los Alamos Entrepreneurial Postdoctoral Fellowship Pilot Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Mariann R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clow, Shandra Deann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    The UC/Los Alamos Entrepreneurial Postdoctoral Fellowship Pilot Program (Pilot) for existing postdoctoral researchers at Los Alamos National Laboratory (Los Alamos) to gain skills in entrepreneurship and commercializing technology as part of their postdoctoral experience. This program will incorporate training and mentoring during the first 6-month period, culminating in a focused 6-month Fellowship aimed at creating a new business in Northern New Mexico.

  8. The unclosed circle: Los Alamos and the human and environmental legacy of the atom, 1943--1963

    Science.gov (United States)

    Hughes, Scott Daniel

    2000-12-01

    This dissertation examines the application of nuclear technology at Los Alamos Scientific Laboratory and the legacy this technology wrought on humans and the environment during the period from 1943 to 1963. Through a focus directed primarily on the Health Division, the study considers various dimensions of the Los Alamos Laboratory including radioactive waste management, human subject experimentation, and nuclear weapons testing. Since its inception in 1943, Los Alamos has held a central role in the research and development of nuclear weapons for the United States. In relation to this central mission, the Laboratory produced various types of radioactive wastes, conducted human subject experiments, and participated in hundreds of nuclear weapons tests. All of these functions resulted in a myriad legacy of human and environmental effects whose consequences have not yet been fully assessed. This investigation, using primary, secondary, and recently declassified documents, discusses the development of nuclear physics and radiological health practices in the half-century prior to World War Two and the American reactions in the realms of science and politics to the news concerning nuclear fission. It then moves to a discussion of the emergence of Los Alamos and analyzes how personnel addressed the attendant hazards of nuclear technology and some of the implications of these past practices. Furthermore, the dissertation discusses human subject experimentation conducted at Los Alamos. The final part of the study investigates the multiple roles played by Los Alamos personnel in the testing of nuclear weapons, the attempts to understand and minimize the hazards of such testing, and the Ra-La sub-critical detonations conducted within the geographical boundaries at the Laboratory between 1943-1963. By focusing on a long-neglected part of the American West. Cold War Los Alamos, this dissertation will contribute to the study of the effects that both World War Two and the Cold

  9. LAMPF II workshop, Los Alamos National Laboratory, Los Alamos, New Mexico, February 1-4, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Thiessen, H.A. (comp.)

    1982-01-01

    This report contains the proceedings of the first LAMPF II Workshop held at Los Alamos February 1 to 4, 1982. Included are the talks that were available in written form. The conclusion of the participants was that there are many exciting areas of physics that will be addressed by such a machine.

  10. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  11. Experience at Los Alamos with use of the optical model for applied nuclear data calculations

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.G.

    1994-10-01

    While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, {sup 3}He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei.

  12. DOE Los Alamos National Laboratory – PV Feasibility Assessment, 2015 Update, NREL Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Witt, Monica Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This report summarizes solar and wind potential for Los Alamos National Laboratory (LANL). This report is part of the “Los Alamos National Laboratory and Los Alamos County Renewable Generation” study.

  13. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  14. First record of single event upset on the ground, Cray-1 computer memory at Los Alamos in 1976

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Grider, Gary A [Los Alamos National Laboratory; Iwanchuk, Paul N [Los Alamos National Laboratory; Morrison, John F [Los Alamos National Laboratory; Wender, Stephen A [Los Alamos National Laboratory; Normand, Eugene [EN ASSOCIATES, LLC; Wert, Jerry L [BOEING RESEARCH AND TEC; Johnson, Steve [CRAY, INC.

    2010-01-01

    Records of bit flips in the Cray-1 computer installed at Los Alamos in 1976 lead to an upset rate in the Cray-1 's bipolar SRAMs that correlates with the SEUs being induced by the atmospheric neutrons. In 1976 the Cray Research Company delivered its first supercomputer, the Cray-1, installing it at Los Alamos National Laboratory. Los Alamos had competed with the Lawrence Livermore National Laboratory for the Cray-1 and won, reaching an agreement with Seymour Cray to install the machine for a period of six months for free, after which they could decide whether to buy, lease or return it. As a result, Los Alamos personnel kept track of the computer reliability and performance and so we know that during those six months of operation, 152 memory parity errors were recorded. The computer memory consisted of approximately 70,000 1Kx1 bipolar ECL static RAMs, the Fairchild 10415. What the Los Alamos engineers didn't know is that those bit flips were the result of single event upsets (SEUs) caused by the atmospheric neutrons. Thus, these 152 bit flips were the first recorded SEUs on the earth, and were observed 2 years before the SEUs in the Intel DRAMs that had been found by May and Woods in 1978. The upsets in the DRAMs were shown to have been caused by alpha particles from the chip packaging material. In this paper we will demonstrate that the Cray-1 bit flips, which were found through the use of parity bits in the Cray-1, were likely due to atmospheric neutrons. This paper will follow the same approach as that of the very first paper to demonstrate single event effects, which occurred in satellite flip-flop circuits in 1975. The main difference is that in the four events that occurred over the course of 17 satellite years of operation were shown to be due to single event effects just a few years after those satellite anomalies were recorded. In the case of the Cray-1 bit flips, there has been a delay of more than 30 years between the occurrence of the bit

  15. Atmospheres of Quiescent Low-Mass Neutron Stars

    Science.gov (United States)

    Karpov, Platon; Medin, Zachary; Calder, Alan; Lattimer, James M.

    2016-01-01

    Observations of the neutron stars in quiescent low-mass X-ray binaries are important for determining their masses and radii which can lead to powerful constraints on the dense matter nuclear equation of state. The interpretation of these sources is complex and their spectra differ appreciably from blackbodies. Further progress hinges on reducing the uncertainties stemming from models of neutron star atmospheres. We present a suite of low-temperature neutron star atmospheres of different chemical compositions (pure H and He). Our models are constructed over a range of temperatures [log(T/1 K)=5.3, 5.6, 5.9, 6.2, 6.5] and surface gravities [log(g/1 cm/s2)=14.0, 14.2, 14.4, 14.6]. We generated model atmospheres using zcode - a radiation transfer code developed at Los Alamos National Laboratory. In order to facilitate analytic studies, we developed three-parameter fits to our models, and also compared them to diluted blackbodies in the energy range of 0.4-5 keV (CXO/MGE). From the latter, we extract color-correction factors (fc), which represent the shift of the spectra as compared to a blackbody with the same effective temperature. These diluted blackbodies are also useful for studies of photspheric expansion X-ray bursts. We provide a comparison of our models to previous calculations using the McGill Planar Hydrogen Atmosphere Code (McPHAC). These results enhance our ability to interpret thermal emission from neutron stars and to constrain the mass-radius relationship of these exotic objects.This research was supported in part by the U.S. Department of Energy under grant DE-FG02-87ER40317 and by resources at the Institute for Advanced Computational Science at Stony Brook University. This research was carried out in part under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory and supported by Contract No. DE-AC52-06NA25396.

  16. Science policy in changing times

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, M.R.C.

    1995-10-01

    Like many scientists who were born right after World War II and who have learned a lot about physics, physical sciences, and biology from some of the incredible discoveries that were made in the defense laboratories, I have always been fascinated with Los Alamos. One of the marvelous opportunities that my job in Washington presented was to get to know a good deal more about the physical science world and the Department of Energy (DOE) laboratories, particularly Los Alamos since the Manhattan Project.

  17. Plastic fiber scintillator response to fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-11-15

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  18. Determination of spallation neutron flux through spectral adjustment techniques

    Science.gov (United States)

    Mosby, M. A.; Engle, J. W.; Jackman, K. R.; Nortier, F. M.; Birnbaum, E. R.

    2016-08-01

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  19. Determination of spallation neutron flux through spectral adjustment techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, M.A., E-mail: mosbym@lanl.gov; Engle, J.W.; Jackman, K.R.; Nortier, F.M.; Birnbaum, E.R.

    2016-08-15

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  20. Environmental surveillance at Los Alamos during 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1987. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1987 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not pose a threat to the public, Laboratory employees, or the environment. 113 refs., 33 figs., 120 tabs.

  1. Environmental surveillance at Los Alamos during 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    This report documents the environmental surveillance program conducted by the Los Alamos Scientific Laboratory (LASL) in 1979. Routine monitoring for radiation and radioactive or chemical substances was conducted on the Laboratory site and in the surrounding region to determine compliance with appropriate standards and permit early identification of possible undesirable trends. Results and interpretation of the data for 1979 on penetrating radiation, chemical and radiochemical quality of ambient air, surface and ground water, municipal water supply, soils and sediments, food, and airborne and liquid effluents are included. Comparisons with appropriate standards and regulations or with background levels from natural or other non-LASL sources provide a basis for concluding that environmental effects attributable to LASL operations are minor and cannot be considered likely to result in any hazard to the population of the area. Results of several special studies provide documentation of some unique environmental conditions in the LASL environs.

  2. Environmental surveillance at Los Alamos during 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kohen, K.; Stoker, A.; Stone, G. [and others

    1994-07-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory during 1992. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1992 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, laboratory employees, or the environment.

  3. Environmental surveillance at Los Alamos during 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory (LANL or the Laboratory) during 1995. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring result to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1995 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment.

  4. Environmental surveillance at Los Alamos during 2005

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (LANL or the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.IA, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory's efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory's major environmental programs. Chapter 2 reports the Laboratory's compliance status for 2005. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, Air; Chapters 5 and 6, Water and Sediments; Chapter 7, Soils; and Chapter 8, Foodstuffs and Biota) in a format to meet the needs of a general and scientific audience. Chapter 9, new for this year, provides a summary of the status of environmental restoration work around LANL. A glossary and a list ofacronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory's technical areas and their associated programs, and Appendix D provides web links to more information.

  5. Environmental surveillance at Los Alamos during 2009

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poff, Ben [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hjeresen, Denny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Isaacson, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, Terry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Paulson, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Salzman, Sonja [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2009. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (air in Chapter 4; water and sediments in Chapters 5 and 6; soils in Chapter 7; and foodstuffs and biota in Chapter 8) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. The new Chapter 10 describes the Laboratory’s environmental stewardship efforts and provides an overview of the health of the Rio Grande. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical

  6. Environmental surveillance at Los Alamos during 2008

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gallagher, Pat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hjeresen, Denny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Isaacson, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johson, Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morgan, Terry [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Paulson, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2009-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Programs Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information.

  7. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.

  8. Performance of Large Neutron Detectors Containing Lithium-Gadolinium-Borate Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, David M.; Stuart, Cory R.; Klaass, R. Fred; Merrill, David B. [MSI/Photogenics Division, Orem, Utah (United States)

    2015-07-01

    at the Los Alamos Neutron Science Center (LANSCE), Edwards Accelerator Laboratory (EAL) at Ohio University and the Radiation Center at University of Massachusetts-Lowell has demonstrated that the instrument can measure neutrons and their spectra over the range between 0.8 MeV and 150 MeV with an uncertainty of only ± 8%. An independent test of the LGB:Ce neutron spectrometer was conducted by a US Defense Threat Reduction Agency (DTRA) team at the Idaho National Laboratory (INL). The results of this evaluation showed that the neutron spectrometer accurately identified bare radioactive isotopes by their spectra. Further, masking and shielding materials alter those spectra in predictable ways that permit an extrapolation from the observed spectra back to the identity of the isotopic spectrum. (authors)

  9. Neutron Imaging Developments at LANSCE

    Science.gov (United States)

    Nelson, Ron; Hunter, James; Schirato, Richard; Vogel, Sven; Swift, Alicia; Ickes, Tim; Ward, Bill; Losko, Adrian; Tremsin, Anton

    2015-10-01

    Neutron imaging is complementary to x-ray imaging because of its sensitivity to light elements and greater penetration of high-Z materials. Energy-resolved neutron imaging can provide contrast enhancements for elements and isotopes due to the variations with energy in scattering cross sections due to nuclear resonances. These cross section differences exist due to compound nuclear resonances that are characteristic of each element and isotope, as well as broader resonances at higher energies. In addition, multi-probe imaging, such as combined photon and neutron imaging, is a powerful tool for discerning properties and features in materials that cannot be observed with a single probe. Recently, we have demonstrated neutron imaging, both radiography and computed tomography, using the moderated (Lujan Center) and high-energy (WNR facility) neutron sources at LANSCE. Flat panel x-ray detectors with suitable scintillator-converter screens provide good sensitivity for both low and high neutron energies. Micro-Channel-Plate detectors and iCCD scintillator camera systems that provide the fast time gating needed for energy-resolved imaging have been demonstrated as well. Examples of recent work will be shown including fluid flow in plants and imaging through dense thick objects. This work is funded by the US Department of Energy, National Nuclear Security Administration, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  10. Neutron Particle Effects on a Quad-Redundant Flight Control Computer

    Science.gov (United States)

    Eure, Kenneth; Belcastro, Celeste M.; Gray, W Steven; Gonzalex, Oscar

    2003-01-01

    This paper describes a single-event upset experiment performed at the Los Alamos National Laboratory. A closed-loop control system consisting of a Quad-Redundant Flight Control Computer (FCC) and a B737 simulator was operated while the FCC was exposed to a neutron beam. The purpose of this test was to analyze the effects of neutron bombardment on avionics control systems operating at altitudes where neutron strikes are probable. The neutron energy spectrum produced at the Los Alamos National Laboratory is similar in shape to the spectrum of atmospheric neutrons but much more intense. The higher intensity results in accelerated life tests that are representative of the actual neutron radiation that a FCC may receive over a period of years.

  11. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E [Los Alamos National Laboratory

    2008-01-01

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernando Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.

  12. 2015 Los Alamos Space Weather Summer School Research Reports

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Yuxi [Univ. of Michigan, Ann Arbor, MI (United States); Desai, Ravindra [Univ. College London, Bloomsbury (United Kingdom); Hassan, Ehab [Univ. of Texas, Austin, TX (United States); Kalmoni, Nadine [Univ. College London, Bloomsbury (United Kingdom); Lin, Dong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Depascuale, Sebastian [Univ. of Iowa, Iowa City, IA (United States); Hughes, Randall Scott [Univ. of Southern California, Los Angeles, CA (United States); Zhou, Hong [Univ. of Colorado, Boulder, CO (United States)

    2015-11-24

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student’s PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfvénic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a two

  13. Facility for parity and time reversal experiments with intense epithermal (eV) neutron beams

    Science.gov (United States)

    Bowman, C. D.; Bowman, J. D.; Herczeg, P.; Szymanski, J.; Yuan, V. W.; Anaya, J. M.; Mortensen, R.; Postma, H.; Delheij, P. P. J.; Baker, O. K.; Gould, C. R.; Haase, D. G.; Mitchell, G. E.; Roberson, N. R.; Zhu, X.; McDonald, A. B.; Benton, D.; Tippens, B.; Chupp, T. E.

    1988-12-01

    A facility for polarized epithermal neutrons of high intensity is set up at the Los Alamos National Laboratory for parityviolation and time reversal experiments at neutron resonances over a wide range of neutron energies. The beam is polarized with the aid of a polarized proton target used as a neutronspin filter. Total cross section measurements as well as capture gamma-ray experiments will be carried out. The main features of this system will be discussed.

  14. FY results for the Los Alamos large scale demonstration and deployment project

    Energy Technology Data Exchange (ETDEWEB)

    Stallings, E.; McFee, J. [and others

    2000-11-01

    The Los Alamos Large Scale Demonstration and Deployment Project (LSDDP) in support of the US Department of Energy (DOE) Deactivation and Decommissioning Focus Area (DDFA) is identifying and demonstrating technologies to reduce the cost and risk of management of transuranic element contaminated large metal objects, i.e. gloveboxes. DOE must dispose of hundreds of gloveboxes from Rocky Flats, Los Alamos and other DOE sites. Current practices for removal, decontamination and size reduction of large metal objects translates to a DOE system-wide cost in excess of $800 million, without disposal costs. In FY99 and FY00 the Los Alamos LSDDP performed several demonstrations on cost/risk savings technologies. Commercial air pallets were demonstrated for movement and positioning of the oversized crates in neutron counting equipment. The air pallets are able to cost effectively address the complete waste management inventory, whereas the baseline wheeled carts could address only 25% of the inventory with higher manpower costs. A gamma interrogation radiography technology was demonstrated to support characterization of the crates. The technology was developed for radiography of trucks for identification of contraband. The radiographs were extremely useful in guiding the selection and method for opening very large crated metal objects. The cost of the radiography was small and the operating benefit is high. Another demonstration compared a Blade Cutting Plunger and reciprocating saw for removal of glovebox legs and appurtenances. The cost comparison showed that the Blade Cutting Plunger costs were comparable, and a significant safety advantage was reported. A second radiography demonstration was conducted evaluation of a technology based on WIPP-type x-ray characterization of large boxes. This technology provides considerable detail of the contents of the crates. The technology identified details as small as the fasteners in the crates, an unpunctured aerosol can, and a vessel

  15. Environmental Surveillance at Los Alamos during 2007

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information. In printed copies of this report or Executive Summary, we have

  16. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  17. Oedometric Small Angle Neutron Scattering: In-Situ Observation of Deformation Partitioning in Clay-rich Samples

    Science.gov (United States)

    Bryan, C. R.; Heath, J. E.; Hjelm, R.; Taylor, M.; Olds, D.; Dewers, T. A.

    2014-12-01

    We present novel oedometric small angle neutron scattering (SANS) on deforming clay-rich materials. Oedometric SANS involves a non-hydrostatic pressure vessel (i.e., the oedometer) that places a porous sample under uniaxial strain with control of applied pore pressure. The oedometer is optimized for neutron optics of SANS on the Low-Q Diffractometer of the Los Alamos Neutron Science Center. The device enables normal oedometric measurements of time-dependent compaction, but with SANS for in situ observation of pore structure evolution under uniaxial strain as a function of effective stress and pore fluid compositions. We present preliminary examination of clay compaction and testing of the device. Funding from the DOE Basic Energy Sciences Geosciences Program is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Los Alamos loses physics archive as preprint pioneer heads east

    CERN Multimedia

    Butler, D

    2001-01-01

    The Los Alamos preprint server is to move to Cornell University. Paul Ginsparg who created the server cites a lack of enthusiasm among senior staff at LANL as a major reason for his departure (1/2 page).

  19. Explosive Flux Compression: 50 Years of Los Alamos Activities

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, C.M.; Thomson, D.B.; Garn, W.B.

    1998-10-18

    Los Alamos flux compression activities are surveyed, mainly through references in view of space limitations. However, two plasma physics programs done with Sandia National Laboratory are discussed in more detail.

  20. Neutrons in soft matter

    CERN Document Server

    Imae, Toyoko; Furusaka, Michihiro; Torikai, Naoya

    2011-01-01

    Neutron and synchrotron facilities, which are beyond the scale of the laboratory, and supported on a national level in countries throughout the world.  These tools for probing micro- and nano-structure research and on fast dynamics research of atomic location in materials have been key in the development of new polymer-based materials. Different from several existing professional books on neutron science, this book focuses on theory, instrumentation, an applications. The book is divided into five parts: Part 1 describes the underlying theory of neutron scattering. Part 2 desc

  1. Digital Acquisition Development for Fast Neutron Detectors

    Science.gov (United States)

    Seagren, T.; Mosby, S.; Mona Collaboration; Lansce P-27 Team

    2015-10-01

    The use of the Modular Neutron Array (MoNA) at FRIB requires a thorough understanding of how neutrons propagate through the array. This leads to the increasing importance of accuracy in detector response simulations, particularly in the case of FRIB's higher beam energies. An upcoming experiment at the LANSCE facility at Los Alamos National Lab will benchmark neutron propagation through the MoNA array and provide a more complete validation of the simulation software. LANSCE also hosts the Chi-Nu experiment, which seeks to measure fission output neutrons using the high-intensity neutron beams there. In both experiments, the instantaneous rate on the detectors involved is expected to be very high, due to the LANSCE/WNR beam structure. Therefore, waveform digitizers with on-board processing are required in order for the experiments to succeed. These digitizers provide on-board timing algorithms using FPGA firmware, and several tests were preformed in order to determine what the optimal timing filter settings were for a variety of detectors, including the plastic and liquid scintillators to be used in MoNA and Chi-Nu respectively. This work will inform the execution of the MoNA and Chi-Nu experiments at LANSCE. The details of the methods used and results will be presented. Supported by funding through Los Alamos National Lab and NSF Grant PHY-1506402.

  2. Surface water data at Los Alamos National Laboratory: 1997 water year. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.; McLean, C.T.

    1998-01-01

    This annual water data report from Los Alamos National Laboratory (LANL) contains flow data from 19 stream-gaging stations that cover most of the Laboratory`s property. The authors focused data collection on the Laboratory`s downstream boundary, approximated by New Mexico State Highway 4; the upstream boundary is approximated by New Mexico State Highway 501. Some of the gaging stations are within Laboratory boundaries and were originally installed to assist groups other than the Water Quality and Hydrology Group (ESH-18) that also conduct site-specific earth science research. Also included are discharge data from three springs that flow into Canon de Valle.

  3. Oxidative lime pretreatment of Alamo switchgrass.

    Science.gov (United States)

    Falls, Matthew; Holtzapple, Mark T

    2011-09-01

    Previous studies have shown that oxidative lime pretreatment is an effective delignification method that improves the enzymatic digestibility of many biomass feedstocks. The purpose of this work is to determine the recommended oxidative lime pretreatment conditions (reaction temperature, time, pressure, and lime loading) for Alamo switchgrass (Panicum virgatum). Enzymatic hydrolysis of glucan and xylan was used to determine the performance of the 52 studied pretreatment conditions. The recommended condition (110°C, 6.89 bar O(2), 240 min, 0.248 g Ca(OH)(2)/g biomass) achieved glucan and xylan overall yields (grams of sugar hydrolyzed/100 g sugar in raw biomass, 15 filter paper units (FPU)/g raw glucan) of 85.9 and 52.2, respectively. In addition, some glucan oligomers (2.6 g glucan recovered/100 g glucan in raw biomass) and significant levels of xylan oligomers (26.0 g xylan recovered/100 g xylan in raw biomass) were recovered from the pretreatment liquor. Combining a decrystallization technique (ball milling) with oxidative lime pretreatment further improved the overall glucan yield to 90.0 (7 FPU/g raw glucan).

  4. The Los Alamos high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, P.G.

    1991-01-01

    For a number of years Los Alamos National Laboratory has been developing photocathode RF guns for high-brightness electron beam applications such as free-electron lasers (FELs). Previously thermionic high-voltage guns have been the source of choice for the electron accelerators used to drive FELs. The performance of such FELs is severely limited by the emittance growth produced by the subharmonic bunching process and also by the low peak current of the source. In a photoinjector, a laser driven photocathode is placed directly in a high-gradient RF accelerating cavity. A photocathode allows unsurpassed control over the current, and the spatial and temporal profile of the beam. In addition the electrodeless emission'' avoids many of the difficulties associated with multi-electrode guns, i.e. the electrons are accelerated very rapidly to relativistic energies, and there are no electrodes to distort the accelerating fields. For the past two years we have been integrating a photocathode into our existing FEL facility by replacing our thermionic gun and subharmonic bunchers with a high-gradient 1.3 GHz photoinjector. The photoinjector, which is approximately 0.6 m in length, produces 6 MeV, 300 A, 15 ps linac, and accelerated to a final energy of 40 MeV. We have recently begun lasing at wavelengths near 3 {mu}m. 16 refs., 2 figs., 5 tabs.

  5. Advanced modeling of prompt fission neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Talou, Patrick [Los Alamos National Laboratory

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  6. Development of Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S. (and others)

    2007-06-15

    Neutron spectrometers which are used in the basic researches such as physics, chemistry and materials science and applied in the industry were developed at the horizontal beam port of HANARO reactor. In addition, the development of core components for neutron scattering and the upgrade of existing facilities are also performed. The vertical neutron reflectometer was fabricated and installed at ST3 beam port. The performance test of the reflectometer was completed and the reflectometer was opened to users. The several core parts and options were added in the polarized neutron spectrometer. The horizontal neutron reflectometer from Brookhaven National Laboratory was moved to HANARO and installed, and the performance of the reflectometer was examined. The HIPD was developed and the performance test was completed. The base shielding for TAS was fabricated. The soller collimator, Cu mosaic monochromator, Si BPC monochromator and position sensitive detector were developed and applied in the neutron spectrometer as part of core component development activities. In addition, the sputtering machine for mirror device are fabricated and the neutron mirror is made using the sputtering machine. The FCD was upgraded and the performance of the FCD are improved over the factor of 10. The integration and upgrade of the neutron detection system were also performed.

  7. Prompt Fission Neutron Spectra of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.

    2016-01-01

    The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data

  8. Outline of spallation neutron source engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noboru [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science-technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R and D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources. The present review was prepare aiming at giving a better understanding on pulsed spallation neutron sources not only to neutron source researchers but also more widely to neutron scattering researchers and accelerator scientists in this field. The contents involve, starting from what is neutron scattering and what neutrons are necessary for neutron scattering, what is the spallation reaction, how to produce neutrons required for neutron scattering more efficiently, target-moderator-reflector neutronics and its engineering, shielding, target station, material issues, etc. The author have engaged in R and D of pulsed apallation neutron sources and neutron scattering research using them over 30 years. The present review is prepared based on the author's experiences with useful information obtained through ICANS collaboration and recent data from the JSNS (Japanese Spallation Neutron Source) design team. (author)

  9. Simulations of flow interactions near Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Costigan, K. R. (Keeley R.); Winterkamp, Judy; Bossert, J. E. (James E.); Langley, D. L. (David L.)

    2002-01-01

    The Pajarito Plateau is located on the eastern flank of the Jemez Mountains and the west side of the Rio Grande Valley, in north-central New Mexico, where the river runs roughly north to south. On the Pajarito Plateau, a network of surface meteorological stations has been routinely maintained by Los Alamos National Laboratory. This network includes five instrumented towers, within an approximately 10 km by 15 km area. The towers stand from 23 m to 92 m tall, with multiple wind measurement heights. Investigation of the station records indicates that the wind fields can be quite complicated and may be the result of interactions of thermally and/or dynamically driven flows of many scales. Slope flows are often found on the plateau during the morning and evening transition times, but it is not unusual to find wind directions that are inconsistent with slope flows at some or all of the stations. It has been speculated that valley circulations, as well as synoptically driven winds, interact with the slope flows, but the mesonet measurements alone, with no measurements in the remainder of the valley, were not sufficient to investigate this hypothesis. Thus, during October of 1995, supplemental meteorological instrumentation was placed in the Rio Grande basin to study the complex interaction of flows in the area. A sodar was added near the 92 m tower and a radar wind profiler was placed in the Rio Grande Valley, just east of the plateau and near the river. Measurements were also added at the top of Pajarito Mountain, just west of the plateau, and across the valley, to the east, on top of Tesuque Peak (in the Sangre de Cristo Mountains). Two surface stations were also added to the north-facing slopes of Pajarito Mountain. This paper will present observations from October 1995 and results of simulations of this area that are used in the study of the complex interaction of dynamically and thermally driven flows on multiple scales.

  10. Neutron Capture Reactions on lu Isotopes at Dance

    Science.gov (United States)

    Roig, O.; Meot, V.; Daugas, J.-M.; Morel, P.; Jandel, M.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Wouters, J. M.

    2013-03-01

    The DANCE1 (Detector for Advanced Neutron Capture Experiments) array at LANSCE spallation neutron source in Los Alamos has been used to obtain the neutron radiative capture cross sections for 175Lu and 176Lu with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process.2,3 Three targets were used to perform these measurements. One was natural Lu foil of 31 mg/cm2 and the other two were isotope-enriched targets of 175Lu and 176Lu. Firstly, the cross sections were obtained by normalizing yield to a well-known cross section at the thermal neutron energy. Now, we want to obtain absolute cross sections of radiative capture through a precise neutron flux determination, an accurate target mass measurement and an efficiency determination of the DANCE array.

  11. An Overview of the Los Alamos Program on Asteroid Mitigation by a Nuclear Explosion

    Science.gov (United States)

    Weaver, R.; Gisler, G. R.; Plesko, C. S.; Ferguson, J.

    2014-12-01

    Los Alamos National Laboratory is standing up a new program to address the mitigation of a potentially hazardous objects (PHO) by using nuclear explosives. A series of efforts at Los Alamos have been working this problem for the last few years in an informal fashion. We now have a funded program to dedicate time to this important mission. The goal of our project is to study the effectiveness of using a nuclear explosive to mitigate (alter orbit or destroy) an PHO on an Earth crossing path. We are also pursuing studies of impact hazards should the international leadership decide not to organize a mission for active mitigation of a PHO. Such impact hazards are characterized as local, regional or global. Impact hazards include: a direct hit in an urban area (potentially catastrophic but highly unlikely); the generation a significant tsunami from an ocean impact close to a coastline and regional and global effects from medium to large impactors. Previous studies at Los Alamos have looked at 2D and 3D simulations in the deep ocean from large bolides, as well as impacts that have global consequences. More recent work has included radiation-hydrodynamic simulations of momentum transfer (and enhancement) from a low energy (10 kt) stand-off source, as well as surface and subsurface high energy explosions (100 kt - 10 Mt) for example PHOs. The current program will carefully look at two main aspects of using a standoff nuclear source: 1) a computational study for the optimum height-of-burst (HOB) of a stand-off burst using our best energy coupling techniques for both neutrons and x-rays; and 2) as a function of the nuclear energy produced and the HOB what is the optimum energy field: neutrons or x-rays. This team is also working with NNSA and NASA Goddard to compare numerical results for these complicated simulations on a well defined series of test problems involving both kinetic impactors and stand-off nuclear energy sources. Results will be shown by the co-authors on

  12. Los Alamos National Laboratory W76 Pit Tube Lifetime Study

    Energy Technology Data Exchange (ETDEWEB)

    Abeln, Terri G. [Los Alamos National Laboratory

    2012-04-25

    A metallurgical study was requested as part of the Los Alamos National Laboratory (LANL) W76-1 life-extension program (LEP) involving a lifetime analysis of type 304 stainless steel pit tubes subject to repeat bending loads during assembly and disassembly operations at BWXT/Pantex. This initial test phase was completed during the calendar years of 2004-2006 and the report not issued until additional recommended tests could be performed. These tests have not been funded to this date and therefore this report is considered final. Tubes were reportedly fabricated according to Rocky Flats specification P14548 - Seamless Type 304 VIM/VAR Stainless Steel Tubing. Tube diameter was specified as 0.125 inches and wall thickness as 0.028 inches. A heat treat condition is not specified and the hardness range specification can be characteristic of both 1/8 and 1/4 hard conditions. Properties of all tubes tested were within specification. Metallographic analysis could not conclusively determine a specified limit to number of bends allowable. A statistical analysis suggests a range of 5-7 bends with a 99.95% confidence limit. See the 'Statistical Analysis' section of this report. The initial phase of this study involved two separate sets of test specimens. The first group was part of an investigation originating in the ESA-GTS [now Gas Transfer Systems (W-7) Group]. After the bend cycle test parameters were chosen (all three required bends subjected to the same amount of bend cycles) and the tubes bent, the investigation was transferred to Terri Abeln (Metallurgical Science and Engineering) for analysis. Subsequently, another limited quantity of tubes became available for testing and were cycled with the same bending fixture, but with different test parameters determined by T. Abeln.

  13. Life Sciences Division and Center for Human Genome Studies

    Energy Technology Data Exchange (ETDEWEB)

    Spitzmiller, D.; Bradbury, M.; Cram, S. (comps.)

    1992-05-01

    This report summarizes the research and development activities of Los Alamos National Laboratories Life Sciences Division and biological aspects of the Center for Human Genome Studies for the calendar year 1991. Selected research highlights include: yeast artificial chromosome libraries from flow sorted human chromosomes 16 and 21; distances between the antigen binding sites of three murine antibody subclasses measured using neutron and x-ray scattering; NFCR 10th anniversary highlights; kinase-mediated differences found in the cell cycle regulation of normal and transformed cells; and detecting mutations that cause Gaucher's disease by denaturing gradient gel electrophoresis. Project descriptions include: genomic structure and regulation, molecular structure, cytometry, cell growth and differentiation, radiation biology and carcinogenesis, and pulmonary biology.

  14. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Stoyer, M. A.; Wu, C. Y.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Couture, A.; Haight, R. C.; Haslett, R. J.; Henderson, R. A.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2009-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for 241Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for 243Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on 242mAm will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,γ) events from (n,f) events. The first direct observation of neutron capture on 242mAm in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  15. The intense neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.B

    1966-07-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through {mu}-, {pi}- and K-meson production. Isotope production enters many fields of applied research. (author)

  16. Neutron Resonance Data Exclude Random Matrix Theory

    CERN Document Server

    Koehler, P E; Krtička, M; Guber, K H; Ullmann, J L

    2012-01-01

    Almost since the time it was formulated, the overwhelming consensus has been that random matrix theory (RMT) is in excellent agreement with neutron resonance data. However, over the past few years, we have obtained new neutron-width data at Oak Ridge and Los Alamos National Laboratories that are in stark disagreement with this theory. We also have reanalyzed neutron widths in the most famous data set, the nuclear data ensemble (NDE), and found that it is seriously flawed, and, when analyzed carefully, excludes RMT with high confidence. More recently, we carefully examined energy spacings for these same resonances in the NDE using the $\\Delta_{3}$ statistic. We conclude that the data can be found to either confirm or refute the theory depending on which nuclides and whether known or suspected p-wave resonances are included in the analysis, in essence confirming results of our neutron-width analysis of the NDE. We also have examined radiation widths resulting from our Oak Ridge and Los Alamos measurements, and ...

  17. Neutron resonance data exclude random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, P.E. [Physics Division, Oak Ridge National Laboratory, MailStop 6356, Oak Ridge, Tennessee 37831 (United States); Becvar, F.; Krticka, M. [Charles University, Faculty of Mathematics and Physics, 180 00 Prague 8 (Czech Republic); Guber, K.H. [Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, Mail Stop 6356, Oak Ridge, Tennessee 37831 (United States); Ullmann, J.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2013-02-15

    Almost since the time it was formulated, the overwhelming consensus has been that random matrix theory (RMT) is in excellent agreement with neutron resonance data. However, over the past few years, we have obtained new neutron-width data at Oak Ridge and Los Alamos National Laboratories that are in stark disagreement with this theory. We also have reanalyzed neutron widths in the most famous data set, the nuclear data ensemble (NDE), and found that it is seriously flawed, and, when analyzed carefully, excludes RMT with high confidence. More recently, we carefully examined energy spacings for these same resonances in the NDE using the {Delta}{sub 3} statistic. We conclude that the data can be found to either confirm or refute the theory depending on which nuclides and whether known or suspected p-wave resonances are included in the analysis, in essence confirming results of our neutron-width analysis of the NDE. We also have examined radiation widths resulting from our Oak Ridge and Los Alamos measurements, and find that in some cases they do not agree with RMT. Although these disagreements presently are not understood, they could have broad impact on basic and applied nuclear physics, from nuclear astrophysics to nuclear criticality safety. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Neutron resonance data exclude random matrix theory

    Science.gov (United States)

    Koehler, P. E.; Bečvář, F.; Krtička, M.; Guber, K. H.; Ullmann, J. L.

    2013-02-01

    Almost since the time it was formulated, the overwhelming consensus has been that random matrix theory (RMT) is in excellent agreement with neutron resonance data. However, over the past few years, we have obtained new neutron-width data at Oak Ridge and Los Alamos National Laboratories that are in stark disagreement with this theory. We also have reanalyzed neutron widths in the most famous data set, the nuclear data ensemble (NDE), and found that it is seriously flawed, and, when analyzed carefully, excludes RMT with high confidence. More recently, we carefully examined energy spacings for these same resonances in the NDE using the $\\Delta_{3}$ statistic. We conclude that the data can be found to either confirm or refute the theory depending on which nuclides and whether known or suspected p-wave resonances are included in the analysis, in essence confirming results of our neutron-width analysis of the NDE. We also have examined radiation widths resulting from our Oak Ridge and Los Alamos measurements, and find that in some cases they do not agree with RMT. Although these disagreements presently are not understood, they could have broad impact on basic and applied nuclear physics, from nuclear astrophysics to nuclear criticality safety.

  19. Neutron Transport Simulations for NIST Neutron Lifetime Experiment

    Science.gov (United States)

    Li, Fangchen; BL2 Collaboration Collaboration

    2016-09-01

    Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

  20. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Anne C. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsible for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to

  1. A progress report on UNICOS misuse detection at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.L.; Jackson, K.A.; Stallings, C.A.; Simmonds, D.D.; Siciliano, C.L.B.; Pedicini, G.A. [Los Alamos National Lab., NM (United States). Computing, Information and Communications Div.

    1995-10-01

    An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. During the past year, Los Alamos enhanced its Network Anomaly Detection and Intrusion Reporter (NADIR) to include analysis of user activity on Los Alamos` UNICOS Crays. In near real-time, NADIR compares user activity to historical profiles and tests activity against expert rules. The expert rules express Los Alamos` security policy and define improper or suspicious behavior. NADIR reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. This paper describes the implementation to date of the UNICOS component of NADIR, along with the operational experiences and future plans for the system.

  2. Water Supply at Los Alamos 1998-2001

    Energy Technology Data Exchange (ETDEWEB)

    Richard J. Koch; David B. Rogers

    2003-03-01

    For the period 1998 through 2001, the total water used at Los Alamos from all sources ranged from 1325 million gallons (Mg) in 1999 to 1515 Mg in 2000. Groundwater production ranged from 1323 Mg in 1999 to 1506 Mg in 2000 from the Guaje, Pajarito, and Otowi fields. Nonpotable surface water used from Los Alamos reservoir ranged from zero gallons in 2001 to 9.3 Mg in 2000. For years 1998 through 2001, over 99% of all water used at Los Alamos was groundwater. Water use by Los Alamos National Laboratory (LANL) between 1998 and 2001 ranged from 379 Mg in 2000 to 461 Mg in 1998. The LANL water use in 2001 was 393 Mg or 27% of the total water use at Los Alamos. Water use by Los Alamos County ranged from 872 Mg in 1999 to 1137 Mg in 2000, and averaged 1006 Mg/yr. Four new replacement wells in the Guaje field (G-2A, G-3A, G-4A, and G-5A) were drilled in 1998 and began production in 1999; with existing well G-1A, the Guaje field currently has five producing wells. Five of the old Guaje wells (G-1, G-2, G-4, G-5, and G-6) were plugged and abandoned in 1999, and one well (G-3) was abandoned but remains as an observation well for the Guaje field. The long-term water level observations in production and observation (test) wells at Los Alamos are consistent with the formation of a cone of depression in response to water production. The water level decline is gradual and at most has been about 0.7 to 2 ft per year for production wells and from 0.4 to 0.9 ft/yr for observation (test) wells. The largest water level declines have been in the Guaje field where nonpumping water levels were about 91 ft lower in 2001 than in 1951. The initial water levels of the Guaje replacement wells were 32 to 57 ft lower than the initial water levels of adjacent original Guaje wells. When production wells are taken off-line for pump replacement or repair, water levels have returned to within about 25 ft of initial static levels within 6 to 12 months. Thus, the water-level trends suggest no adverse

  3. Publications of Los Alamos research, 1977-1981

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, C.J.; Garcia, C.A. (comps.)

    1983-03-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1977-1981. Papers published in those years are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers released as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers published in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.

  4. Materials Capability Review Los Alamos National Laboratory April 29-May 2, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette J [Los Alamos National Laboratory

    2012-04-20

    Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.

  5. Neutron Repulsion

    OpenAIRE

    Manuel, Oliver K.

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch...

  6. Measurement of neutron scattering lengths using neutron interferometry

    Science.gov (United States)

    Shahi, Chandra B.

    This thesis describes the details on building a new Neutron Interferometry and Optics Facility (NIOFa), the measurement of the incoherent neutron scattering length bi of 3He, and the measurement of the coherent neutron scattering length bc of 4He at National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). A new monochromatic beamline and facility has been installed at the NCNR devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. This new facility, NIOFa, is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The measurement of the incoherent neutron scattering length bi of 3He was done using a (220) single silicon crystal skew symmetric interferometer. This experiment requires both a polarized beam and a polarized target. We report bi = -2.35 +/- 0.014 (stat.) +/- 0.014 (syst.). This experiment is a revision of the previous experiment which was done in 2008, and partially explains the non-zero phase shift seen in 2008 experiment even if target cell was completely unpolarized. The measurement of the coherent neutron scattering length b c of the 4He was done using a (111) single silicon crystal interferometer. The neutron interferometry and optics facility at NIST had been used previously to determine the coherent scattering lengths for n- 1H, n-2H, and n-3He to less than 1% relative uncertainty. We report bc of the 4He

  7. Fifty-one years of Los Alamos Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  8. The development of the atomic bomb, Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W.

    1993-11-01

    The historical presentation begins with details of the selection of Los Alamos as the site of the Army installation. Wartime efforts of the Army Corps of Engineers, and scientists to include the leader of Los Alamos, Robert Oppenheimer are presented. The layout and construction of the facilities are discussed. The monumental design requirements of the bombs are discussed, including but not limited to the utilization of the second choice implosion method of detonation, and the production of bomb-grade nuclear explosives. The paper ends with a philosophical discussion on the use of nuclear weapons.

  9. A physicists guide to The Los Alamos Primer

    Science.gov (United States)

    Reed, B. Cameron

    2016-11-01

    In April 1943, a group of scientists at the newly established Los Alamos Laboratory were given a series of lectures by Robert Serber on what was then known of the physics and engineering issues involved in developing fission bombs. Serber’s lectures were recorded in a 24 page report titled The Los Alamos Primer, which was subsequently declassified and published in book form. This paper describes the background to the Primer and analyzes the physics contained in its 22 sections. The motivation for this paper is to provide a firm foundation of the background and contents of the Primer for physicists interested in the Manhattan Project and nuclear weapons.

  10. Neutron multiplication error in TRU waste measurements

    Energy Technology Data Exchange (ETDEWEB)

    Veilleux, John [Los Alamos National Laboratory; Stanfield, Sean B [CCP; Wachter, Joe [CCP; Ceo, Bob [CCP

    2009-01-01

    more realistic and accurate. To do so, measurements of standards and waste drums were performed with High Efficiency Neutron Counters (HENC) located at Los Alamos National Laboratory (LANL). The data were analyzed for multiplication effects and new estimates of the multiplication error were computed. A concluding section will present alternatives for reducing the number of rejections of TRU waste containers due to neutron multiplication error.

  11. Experimental Physical Sciences Vistas Performance through Science Winter 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cruz, James Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hockaday, Mary Yvonne P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lacerda, Alex Hugo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilburn, Wesley Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Batha, Steven H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carnes, Jay Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Del Mauro, Diana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); DeYoung, Anemarie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Freibert, Franz Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fronzak, Hannah Kristina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gray, III, George Thompson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hooks, Daniel Edwin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martineau, Rick Lorne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martz, Joseph Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Migliori, Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poling, Charles C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Prestridge, Katherine Philomena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schraad, Mark William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Michael Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-23

    This issue of Experimental Physical Sciences Vistas focuses on the integrated science that plays a critical role in Los Alamos National Laboratory’s support of the nation’s nuclear deterrent. I hope you will enjoy reading about these accomplishments, opportunities, and challenges.

  12. A survey of macromycete diversity at Los Alamos National Laboratory, Bandelier National Monument, and Los Alamos County; A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Jarmie, N.; Rogers, F.J. [Mycology Associates, Los Alamos, NM (United States)

    1997-11-01

    The authors have completed a 5-year survey (1991--1995) of macromycetes found in Los Alamos County, Los Alamos National Laboratory, and Bandelier National Monument. The authors have compiled a database of 1,048 collections, their characteristics, and identifications. The database represents 123 (98%) genera and 175 (73%) species reliably identified. Issues of habitat loss, species extinction, and ecological relationships are addressed, and comparisons with other surveys are made. With this baseline information and modeling of this baseline data, one can begin to understand more about the fungal flora of the area.

  13. Characteristics of the WNR: a pulsed spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; Lisowski, P.W.; Howe, S.D.; King, N.S.P.; Meier, M.M.

    1982-01-01

    The Weapons Neutron Research facility (WNR) is a pulsed spallation neutron source in operation at the Los Alamos National Laboratory. The WNR uses part of the 800-MeV proton beam from the Clinton P. Anderson Meson Physics Facility accelerator. By choosing different target and moderator configurations and varying the proton pulse structure, the WNR can provide a white neutron source spanning the energy range from a few MeV to 800 MeV. The neutron spectrum from a bare target has been measured and is compared with predictions using an Intranuclear Cascade model coupled to a Monte Carlo transport code. Calculations and measurements of the neutronics of WNR target-moderator assemblies are presented.

  14. Neutron capture reactions on Lu isotopes at DANCE

    Directory of Open Access Journals (Sweden)

    Wouters J.M.

    2010-03-01

    Full Text Available The DANCE (Detector for Advanced Neutron Capture Experiments array located at the Los Alamos national laboratory has been used to obtain the neutron capture cross sections for the 175Lu and 176Lu isotopes with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process in astrophysics and for applications as in reactor physics or in nuclear medicine. Three targets were used to perform these measurements. One was natLu foil and the other two were isotope-enriched targets of 175Lu and 176Lu. The cross sections are obtained for now through a precise neutron flux determination and a normalization at the thermal neutron cross section value. A comparison with the recent experimental data and the evaluated data of ENDF/B-VII.0 will be presented. In addition, resonances parameters and spin assignments for some resonances will be featured.

  15. Calibration of a Bonner sphere extension (BSE) for high-energy neutron spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Howell, R.M., E-mail: rhowell@mdanderson.or [UT M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Burgett, E.A. [Georgia Institute of Technology, 900 Atlantic Drive, Atlanta, GA (United States); Wiegel, B. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Hertel, N.E. [Georgia Institute of Technology, 900 Atlantic Drive, Atlanta, GA (United States)

    2010-12-15

    In a recent work, we constructed modular multisphere system which expands upon the design of an existing, commercially available Bonner sphere system by adding concentric shells of copper, tungsten, or lead. Our modular multisphere system is referred to as the Bonner Sphere Extension (BSE). The BSE was tested in a high energy neutron beam (thermal to 800 MeV) at Los Alamos Neutron Science Center and provided improvement in the measurement of the neutron spectrum in the energy regions above 20 MeV when compared to the standard BSS (and). However, when the initial test of the system was carried out at LANSCE, the BSE had not yet been calibrated. Therefore the objective of the present study was to perform calibration measurements. These calibration measurements were carried-out using monoenergetic neutron ISO 8529-1 reference beams at the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany. The following monoenergetic reference beams were used for these experiments: 14.8 MeV, 1.2 MeV, 565 keV, and 144 keV. Response functions for the BSE were calculated using the Monte Carlo N-Particle Code, eXtended (MCNPX). The percent difference between the measured and calculated responses was calculated for each sphere and energy. The difference between measured and calculated responses for individual spheres ranged between 7.9% and 16.7% and the arithmetic mean for all spheres was (10.9 {+-} 1.8)%. These sphere specific correction factors will be applied for all future measurements carried out with the BSE.

  16. Calibration of a Bonner sphere extension (BSE) for high-energy neutron spectrometry.

    Science.gov (United States)

    Howell, R M; Burgett, E A; Wiegel, B; Hertel, N E

    2010-12-01

    In a recent work, we constructed modular multisphere system which expands upon the design of an existing, commercially available Bonner sphere system by adding concentric shells of copper, tungsten, or lead. Our modular multisphere system is referred to as the Bonner Sphere Extension (BSE). The BSE was tested in a high energy neutron beam (thermal to 800 MeV) at Los Alamos Neutron Science Center and provided improvement in the measurement of the neutron spectrum in the energy regions above 20 MeV when compared to the standard BSS (Burgett, 2008 and Howell et al., 2009).However, when the initial test of the system was carried-out at LANSCE, the BSE had not yet been calibrated. Therefore the objective of the present study was to perform calibration measurements. These calibration measurements were carried out using monoenergetic neutron ISO 8529-1 reference beams at the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany. The following monoenergetic reference beams were used for these experiments: 14.8 MeV, 1.2 MeV, 565 keV, and 144 keV. Response functions for the BSE were calculated using the Monte Carlo N-Particle Code, eXtended (MCNPX). The percent difference between the measured and calculated responses was calculated for each sphere and energy. The difference between measured and calculated responses for individual spheres ranged between 7.9 % and 16.7 % and the arithmetic mean for all spheres was (10.9 ± 1.8) %. These sphere specific correction factors will be applied for all future measurements carried-out with the BSE.

  17. Elastic and Inelastic Scattering of Neutrons from Neon and Argon: Impact on Neutrinoless Double-Beta Decay and Dark Matter Experimental Programs

    Science.gov (United States)

    MacMullin, Sean Patrick

    In underground physics experiments, such as neutrinoless double-beta decay and dark matter searches, fast neutrons may be the dominant and potentially irreducible source of background. Experimental data for the elastic and inelastic scattering cross sections of neutrons from argon and neon, which are target and shielding materials of interest to the dark matter and neutrinoless double-beta decay communities, were previously unavailable. Unmeasured neutron scattering cross sections are often accounted for incorrectly in Monte-Carlo simulations. Elastic scattering cross sections were measured at the Triangle Universities Nuclear Laboratory (TUNL) using the neutron time-of-flight technique. Angular distributions for neon were measured at 5.0 and 8.0 MeV. One full angular distribution was measured for argon at 6.0 MeV. The cross-section data were compared to calculations using a global optical model. Data were also fit using the spherical optical model. These model fits were used to predict the elastic scattering cross section at unmeasured energies and also provide a benchmark where the global optical models are not well constrained. Partial gamma-ray production cross sections for (n,xngamma ) reactions in natural argon and neon were measured using the broad spectrum neutron beam at the Los Alamos Neutron Science Center (LANSCE). Neutron energies were determined using time of flight and resulting gamma rays from neutron-induced reactions were detected using the GErmanium Array for Neutron Induced Excitations (GEANIE). Partial gamma-ray production cross sections for six transitions in 40Ar, two transitions in 39Ar and the first excited state transitions is 20Ne and 22Ne were measured from threshold to a neutron energy where the gamma-ray yield dropped below the detection sensitivity. Measured (n,xngamma) cross sections were compared with calculations using the TALYS and CoH3 nuclear reaction codes. These new measurements will help to identify potential backgrounds in

  18. Neutron Capture Experiments on Unstable Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Jon M. Schwantes; Ralf Sudowe; Heino Nitsche; Darleane C. Hoffman

    2003-12-16

    A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. The information obtained will also be important in astrophysical modeling of nucleosynthesis. During this reporting period, the emphasis has been on preparing a radioactive target of {sup 155}Eu (half-life = 4.7 years), and several stable targets, including isotopically separated {sup 154}Sm, {sup 151}Eu, and {sup 153}Eu. Measurements of their neutron capture cross sections will be conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the Detector for Advanced Neutron Capture Experiments (DANCE). A suitable backing material (beryllium) for the targets has been selected after careful calculations of its contribution to the background of the measurements. In addition, a high voltage plating procedure has been developed and optimized. Stable targets of {sup 151}Eu and {sup 153}Eu and a target of natural Eu ({approx}50% {sup 151}Eu and {approx}50% {sup 153}Eu) have each been plated to a mass thickness of >1 mg/cm{sup 2} and delivered to the DANCE collaboration at Los Alamos National Laboratory (LANL). Natural Eu targets will be tested first to confirm that the target dimensions and backing are appropriate prior to performing measurements on the extremely valuable targets of separated isotopes. In order to prepare a target of the radioactive {sup 155}Eu, it must first be separated from the {sup 154}Sm target material that was irradiated in a very high neutron flux of 1.5x1015 neutrons/cm{sup 2}/s for 50 days. The reaction is {sup 154}Sm (n,f){sup 155}Sm (half-life = 22 minutes) {sup 155}Eu. Considerable progress has been made in developing a suitable high-yield and high-purity separation method for separating Eu from targets

  19. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Finstad, Casey Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  20. Installation of a cw radiofrequency quadrupole accelerator at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.D.; Bolme, J.; Brown, V. [and others

    1994-09-01

    Chalk River Laboratories (CRL) has had a long history of cw proton beam development for production of intense neutron sources and fissile fuel breeders. In 1986 CRL and Los Alamos National Laboratory (LANL) entered into a collaborative effort to establish a base technologies program for the development of a cw radiofrequency quadrupole (RFQ). The initial cw RFQ design had 50-keV proton injection energy with 600-keV output energy. The 75-mA design current at 600-keV beam energy was obtained in 1990. Subsequently, the RFQ output energy was increased to 1250 keV by replacing the RFQ vanes, still maintaining the 75-m A design current. A new 250-kW cw klystrode rf power source at 267-MHz was installed at CRL. By April of 1993, 55-mA proton beams had been accelerated to 1250 keV. Concurrent developments were taking place on proton source development and on 50-keV low-energy beam transport (LEBT) systems. Development of a dc, high-proton fraction ({ge} 70%) microwave ion source led to utilization of a single-solenoid RFQ direct injection scheme. It was decided to continue this cw RFQ demonstration project at Los Alamos when the CRL project was terminated in April 1993. The LANL goals are to find the current limit of the 1250-keV RFQ, better understand the beam transport properties through the single-solenoid focusing LEBT, continue the application of the cw klystrode tube technology to accelerators, and develop a two-solenoid LEBT which could be the front end of an Accelerator-Driven Transmutation Technologies (ADTT) linear accelerator.

  1. Improved Modeling of Prompt Fission Neutron Spectra for Nuclear Data Evaluations

    Science.gov (United States)

    Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko; Kahler, Albert C.; White, Morgan C.

    2015-10-01

    The prompt fission neutron spectra (PFNS) of major actinides such as 239Pu and 235U are quantities of interest for nuclear physics application areas including reactor physics and national security. Nuclear data evaluations provide recommended data for those application areas based on nuclear theory and experiments. Here, we present improvements made to the effective models predicting the PFNS up to incident neutron energies of 30 MeV and their impact on evaluations. These models describe relevant physics processes better than those used for the current US nuclear data library ENDF/B-VII.1. In addition, the use of higher-fidelity models such as Monte Carlo Hauser-Feshbach calculations will be discussed in the context of future PFNS evaluations. (LA-UR-15-24763) This work was carried out under the auspices of the US Department of Energy, National Nuclear Security Administration and Office of Science, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  2. Environmental Survey preliminary report, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Los Alamos National Laboratory (LANL), conducted March 29, 1987 through April 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the LANL, and interviews with site personnel. The Survey team developed Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by the Idaho National Engineering Laboratory. When completed, the results will be incorporated into the LANL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the Survey for the LANL. 65 refs., 68 figs., 73 tabs.

  3. Environmental assessment for effluent reduction, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-11

    The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent. After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.

  4. Linac-driven spallation-neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Jason, A.J.

    1995-05-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications.

  5. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Carton, D.; Rhyne, T. [and others

    1997-06-01

    Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

  6. Ukraine experimental neutron source facility.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Bolshinsky, I.; Nekludov, I.; Karnaukhov, I. (Nuclear Engineering Division); (INL); (Kharkov Institute of Physics and Technology)

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an experimental neutron source facility. The facility has been developed for producing medical isotopes, training young nuclear professionals, supporting the Ukraine nuclear industry, providing capability for performing reactor physics, material research, and basic science experiments. Argonne National Laboratory (ANL) of USA is collaborating with KIPT on developing this facility. A driven subcritical assembly utilizing the KIPT electron accelerator with a target assembly is used to generate the neutron source. The target assembly utilizes tungsten or uranium for neutron production through photonuclear reactions with 100-KW of electron beam power. The neutron source intensity, spectrum, and spatial distribution have been studied to maximize the neutron yield and satisfy different engineering requirements. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with a subcriticality of 0.98. Low enrichment uranium is used for the fuel material because it enhances the neutron source performance. Safety, reliability, and environmental considerations are included in the facility conceptual design. Horizontal neutron channels are incorporated for performing basic research including cold neutron source. This paper describes the conceptual design and summarizes some of the related analyses.

  7. Neutron-Activated Gamma-Emission: Technology Review

    Science.gov (United States)

    2012-01-01

    defined in MCNPX to simulate the -spectra collected by NaI detectors (cell 6) from target (cell 3...numerical simulation. Safety issues are of great interest to users and are calculated in section 6. Ideas to increase target distance and reduce...neutron emission, target scatter, and gamma collection processes were simulated using MCNPX . MCNPX is a legacy code from Los Alamos National

  8. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  9. Peculiarities of the modern neutron spectrometry

    Indian Academy of Sciences (India)

    Yu P Popov

    2001-08-01

    Neutron spectrometry provides many branches of science and technology with the necessary data. Usually the main part of the data is supplied by powerful neutron time-of-flight spectrometers. Nevertheless there are many other very effective but simpler and cheaper neutron spectroscopy methods on accelerators, suitable for solution of plenty of scientific and applied problems (for example, in astrophysics and radioactive waste transmutation). The methods of slowing-down spectrometry in lead and graphite, generating of neutron spectra, characteristic for nucleosynthesis in the stars, and neutron spectrometry by means of primary -transition shift are discussed in the report.

  10. Spin flip loss in magnetic confinement of ultracold neutrons for neutron lifetime experiments

    CERN Document Server

    Steyerl, A; Kaufman, C; Müller, G; Malik, S S

    2016-01-01

    We analyze the spin flip loss for ultracold neutrons in magnetic bottles of the type used in experiments aiming at a precise measurement of the neutron lifetime, extending the one-dimensional field model used previously by Steyerl $\\textit{et al.}$ [Phys.Rev.C $\\mathbf{86}$, 065501 (2012)] to two dimensions for cylindrical multipole fields. We also develop a general analysis applicable to three dimensions. Here we apply it to multipole fields and to the bowl-type field configuration used for the Los Alamos UCN$\\tau$ experiment. In all cases considered the spin flip loss calculated exceeds the Majorana estimate by many orders of magnitude but can be suppressed sufficiently by applying a holding field of appropriate magnitude to allow high-precision neutron lifetime measurements, provided other possible sources of systematic error are under control.

  11. Characterization of emergent leakage neutrons from multiple layers of hydrogen/water in the lunar regolith by Monte Carlo simulation

    Science.gov (United States)

    SU, J.; Sagdeev, R.; Usikov, D.; Chin, G.; Boyer, L.; Livengood, T. A.; McClanahan, T. P.; Murray, J.; Starr, R. D.

    2013-12-01

    CSETN from the leakage neutron spectrum, emission angle, detector energy sensitivity and angular response. Reference: [1] W. C. Feldman, et al., Science 4 September 1998: Vol. 281 no. 5382 pp. 1496-1500. [2] Gasnault, O., et al., (2000) J. Geophys. Res., 105(E2), 4263-4271. [3] Little, R. C., et al. (2003), J. Geophys. Res., 108(E5), 5046. [4] McKinney et al., (2006), J. Geophys. Res., 111, E06004. [5] Lawrence et al., (2006), J. Geophys. Res., 111, E08001. [6] Looper et al, (2013), Space Weather, VOL. 11, 142-152. [7] J. Allison, et al, (2006) IEEE TRANS. ON NUCL SCI, VOL. 53, NO. 1. [8] J. Masarik and R. Reedy (1996), J. Geophys. Res., 101, 18,891-18,912. [9] P. O'Neil (2010) IEEE Trans. Nucl. Sci., 57(6), 3148-3153. [10] D. Pelowitz, (2005), Rep. LA-CP-05-0369, LANL, Los Alamos, NM.

  12. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  13. German neutron scattering conference. Programme and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas (ed.)

    2012-07-01

    The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.

  14. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report documents the Tiger Team Assessment of the Los Alamos National Laboratory (LANL) located in Los Alamos, New Mexico. LANL is operated for the US Department of Energy (DOE) by the University of California. The Tiger Team Assessment was conducted from September 23 to November 8, 1991, under the auspices of the DOE Office of Special Projects, Office of Assistant Secretary for Environment, Safety and Health. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal LANL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors' management of ES H/quality assurance programs was conducted. This volume discusses findings concerning the environmental assessment.

  15. A New Generation of Los Alamos Opacity Tables

    CERN Document Server

    Colgan, J; Magee, N H; Sherrill, M E; Abdallah,, J; Hakel, P; Fontes, C J; Guzik, J A; Mussack, K A

    2016-01-01

    We present a new, publicly available, set of Los Alamos OPLIB opacity tables for the elements hydrogen through zinc. Our tables are computed using the Los Alamos ATOMIC opacity and plasma modeling code, and make use of atomic structure calculations that use fine-structure detail for all the elements considered. Our equation-of-state (EOS) model, known as ChemEOS, is based on the minimization of free energy in a chemical picture and appears to be a reasonable and robust approach to determining atomic state populations over a wide range of temperatures and densities. In this paper we discuss in detail the calculations that we have performed for the 30 elements considered, and present some comparisons of our monochromatic opacities with measurements and other opacity codes. We also use our new opacity tables in solar modeling calculations and compare and contrast such modeling with previous work.

  16. The engineering institute of Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles R [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Cornwell, Phillip J [Los Alamos National Laboratory; Todd, Michael D [UCSD

    2008-01-01

    Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD) have taken the unprecedented step of creating a collaborative, multi-disciplinary graduate education program and associated research agenda called the Engineering Institute. The mission of the Engineering Institute is to develop a comprehensive approach for conducting LANL mission-driven, multidisciplinary engineering research and to improve recruiting, revitalization, and retention of the current and future staff necessary to support the LANL' s national security responsibilities. The components of the Engineering Institute are (1) a joint LANL/UCSD degree program, (2) joint LANL/UCSD research projects, (3) the Los Alamos Dynamic Summer School, (4) an annual workshop, and (5) industry short courses. This program is a possible model for future industry/government interactions with university partners.

  17. Penetrating radiation: applications at Los Alamos National Laboratory

    Science.gov (United States)

    Watson, Scott; Hunter, James; Morris, Christopher

    2013-09-01

    Los Alamos has used penetrating radiography extensively throughout its history dating back to the Manhattan Project where imaging dense, imploding objects was the subject of intense interest. This interest continues today as major facilities like DARHT1 have become the mainstay of the US Stockpile Stewardship Program2 and the cornerstone of nuclear weapons certification. Meanwhile, emerging threats to national security from cargo containers and improvised explosive devices (IEDs) have invigorated inspection efforts using muon tomography, and compact x-ray radiography. Additionally, unusual environmental threats, like those from underwater oil spills and nuclear power plant accidents, have caused renewed interest in fielding radiography in severe operating conditions. We review the history of penetrating radiography at Los Alamos and survey technologies as presently applied to these important problems.

  18. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

  19. Los Alamos Canyon Ice Rink Parking Flood Plain Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Keller, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2015-02-10

    The project location is in Los Alamos Canyon east of the ice rink facility at the intersection of West and Omega roads (Figure 1). Forty eight parking spaces will be constructed on the north and south side of Omega Road, and a lighted walking path will be constructed to the ice rink. Some trees will be removed during this action. A guardrail of approximately 400 feet will be constructed along the north side of West Road to prevent unsafe parking in that area.

  20. Multiwell Ojo Alamo development advancing in San Juan basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-27

    Commercial production from a new formation is rare in a basin as mature as the San Juan. Such a development can be economically attractive because with so many existing wellbores, behind pipe formations can be placed on production quickly and inexpensively. That is happening on the east side of the San Juan, where what appears to be the first significant commercial gas production from Tertiary Ojo Alamo sandstone started last year. The deposit is briefly described.

  1. Evolution of some Los Alamos flux compression programs

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, C.M.; Goforth, J.H.

    1996-12-31

    When we were approached to give a general discussion of some aspects of the Los Alamos flux compression program, we decided to present historical backgrounds of a few topics that have some relevance to programs that we very much In the forefront of activities going on today. Of some thirty abstracts collected at Los Alamos for this conference, ten of them dealt with electromagnetic acceleration of materials, notably the compression of heavy liners, and five dealt with plasma compression. Both of these topics have been under investigation, off and on, from the time a formal flux compression program was organized at Los Alamos. We decided that a short overview of work done In these areas would be of some interest. Some of the work described below has been discussed in Laboratory reports that, while referenced and available, are not readily accessible. For completeness, some previously published, accessible work Is also discussed but much more briefly. Perhaps the most striking thing about the early work In these two areas is how primitive much of it was when compared to the far more sophisticated, related activities of today. Another feature of these programs, actually for most programs, Is their cyclic nature. Their relevance and/or funding seems to come land go. Eventually, many of the older programs come back into favor. Activities Involving the dense plasma focus (DPF), about which some discussions will be given later, furnish a classic example of this kind, coming Into and then out of periods of heightened interest. We devote the next two sections of this paper to a review of our work In magnetic acceleration of solids and of plasma compression. A final section gives a survey of our work In which thin foils are imploded to produce intense quantities of son x-rays. The authors are well aware of much excellent work done elsewhere In all of these topics, but partly because of space limitations, have confined this discussion to work done at Los Alamos.

  2. Recent results in the Los Alamos compact torus program

    Energy Technology Data Exchange (ETDEWEB)

    Tuszewski, M.; Armstrong, W.T.; Barnes, C.W.

    1983-01-01

    A Compact Toroid is a toroidal magnetic-plasma-containment geometry in which no conductors or vacuum-chamber walls pass through the hole in the torus. Two types of compact toroids are studied experimentally and theoretically at Los Alamos: spheromaks that are oblate in shape and contain both toroidal and poloidal magnetic fields, and field-reversed configurations (FRC) that are very prolate and contain poloidal field only.

  3. Life Sciences Division and Center for Human Genome Studies. Annual report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Spitzmiller, D.; Bradbury, M.; Cram, S. [comps.

    1992-05-01

    This report summarizes the research and development activities of Los Alamos National Laboratories Life Sciences Division and biological aspects of the Center for Human Genome Studies for the calendar year 1991. Selected research highlights include: yeast artificial chromosome libraries from flow sorted human chromosomes 16 and 21; distances between the antigen binding sites of three murine antibody subclasses measured using neutron and x-ray scattering; NFCR 10th anniversary highlights; kinase-mediated differences found in the cell cycle regulation of normal and transformed cells; and detecting mutations that cause Gaucher`s disease by denaturing gradient gel electrophoresis. Project descriptions include: genomic structure and regulation, molecular structure, cytometry, cell growth and differentiation, radiation biology and carcinogenesis, and pulmonary biology.

  4. Comparison of Fast Neutron Detector Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mckigney, Edward Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-09

    This report documents the work performed for the Department of Homeland Security Domestic Nuclear Detection O ce as the project Fast Neutron Detection Evaluation under contract HSHQDC-14-X-00022. This study was performed as a follow-on to the project Study of Fast Neutron Signatures and Measurement Techniques for SNM Detection - DNDO CFP11-100 STA-01. That work compared various detector technologies in a portal monitor con guration, focusing on a comparison between a number of fast neutron detection techniques and two standard thermal neutron detection technologies. The conclusions of the earlier work are contained in the report Comparison of Fast Neutron Detector Technologies. This work is designed to address questions raised about assumptions underlying the models built for the earlier project. To that end, liquid scintillators of two di erent sizes{ one a commercial, o -the-shelf (COTS) model of standard dimensions and the other a large, planer module{were characterized at Los Alamos National Laboratory. The results of those measurements were combined with the results of the earlier models to gain a more complete picture of the performance of liquid scintillator as a portal monitor technology.

  5. Optimization of Shielded Scintillator for Neutron Detection

    Science.gov (United States)

    Belancourt, Patrick; Morrison, John; Akli, Kramer; Freeman, Richard; High Energy Density Physics Team

    2011-10-01

    The High Energy Density Physics group is interested in the basic science of creating a neutron and gamma ray source. The neutrons and gamma rays are produced by accelerating ions via a laser into a target and creating fusion neutrons and gamma rays. A scintillator and photomultiplier tube will be used to detect these neutrons. Neutrons and photons produce ionizing radiation in the scintillator which then activates metastable states. These metastable states have both short and long decay rates. The initial photon count is orders of magnitude higher than the neutron count and poses problems for accurately detecting the neutrons due to the long decay state that is activated by the photons. The effects of adding lead shielding on the temporal response and signal level of the neutron detector will be studied in an effort to minimize the photon count without significant reduction to the temporal resolution of the detector. MCNP5 will be used to find the temporal response and energy deposition into the scintillator by adding lead shielding. Results from the simulations will be shown. Optimization of our scintillator neutron detection system is needed to resolve the neutron energies and neutron count of a novel neutron and gamma ray source.

  6. Parity Violation in Neutron Capture Reactions

    CERN Document Server

    Hayes, A C; Zanini, Luca

    2001-01-01

    In the last decade, the scattering of polarized neutrons on compound nucleus resonances proved to be a powerful experimental technique for probing nuclear parity violation. Longitudinal analyzing powers in neutron transmission measurements on p-wave resonances in nuclei such as $^{139}$La and $^{232}$Th were found to be as large as 10%. Here we examine the possibilities of carrying out a parallel program to measure asymmetries in the $(n,\\gamma$) reaction on these same compound nuclear resonances. Symmetry-violating $(n,\\gamma$) studies can also show asymmetries as large as 10%, and have the advantage over transmission experiments of allowing parity-odd asymmetries in several different gamma-decay branches from the same resonance. Thus, studies of parity violation in the $(n,\\gamma)$ reaction using high efficiency germanium detectors at the Los Alamos Lujan facility, for example, could determine the parity-odd nucleon-nucleon matrix elements in complex nuclei with high accuracy. Additionally, simultaneous stu...

  7. American Conference on Neutron Scattering 2014

    Energy Technology Data Exchange (ETDEWEB)

    Dillen, J. Ardie [Materials Research Society, Warrendale, PA (United States)

    2014-12-31

    Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics – confirming the great diversity of science that is enabled by neutron scattering.

  8. Instruments and accessories for neutron scattering research

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yoshinobu; Morii, Yukio [eds.] [Advanced Science Research Center (Tokai Site), Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-04-01

    This report describes neutron scattering instruments and accessories installed by four neutron scattering research groups at the ASRC (Advanced Science Research Center) of the JAERI and the recent topics of neutron scattering research using these instruments. The specifications of nine instruments (HRPD, BIX-I, TAS-1 and PNO in the reactor hall, RESA, BIX-II, TAS-2, LTAS and SANS-J in the guide hall of the JRR-3M) are summarized in this booklet. (author)

  9. (n,2n) and (n,3n) cross sections of neutron-induced reactions on 150Sm for En from threshold to 35 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dashdorj, D; Mitchell, G; Kawano, T; Becker, J; Wu, C; Devlin, M; Fotiades, N; Nelson, R; Kunieda, S

    2009-03-16

    Cross-section measurements were made of prompt discrete {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 35 MeV) on a {sup 150}Sm sample fo 1550 mg/cm{sup 2} of Sm{sub 2}O{sub 3} enriched to 95.6% in {sup 150}Sm. Results are compared with enhanced Hauser-Feshbach model calculations including the pre-equilibrium reactions. Energetic neutrons were delivered by the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Incident neutron energies were determined by the time-of-flight technique. Excitation functions for thirteen individual {gamma}-rays up to E{sub x} = 0.8 MeV in {sup 149}Sm and one {gamma}-ray transition between the first excited and ground state in {sup 148}Sm were measured. Partial {gamma}-ray cross sections were calculated using GNASH, an enhanced Hauser-Feshbach statistical nuclear reaction model code, and compared with the experimental results. The particle transmission coefficients were calculated with new systematic 'global' optical model potential parameters. The coupled-channel optical model based on the soft rotor model was employed to calculate the particle transmission coefficients. The pre-equilibrium part of the spin distribution in {sup 150}Sm was calculated using the quantum mechanical theory of Feshbach, Kerman, and Koonin (FKK) and incorporated into the GNASH reaction model code. the partial cross sections for discrete {gamma}-ray cascade paths leading to the ground state in {sup 149}Sm and {sup 148}Sm have been summed (without double counting) to estimate lower limits for reaction cross sections. These lower limits are combined with Hauser-Feshbach model calculations to deduce the reaction channel cross sections. These reaction channel cross sections agree with previously measured experimental and ENDF/B-VII evaluations.

  10. Materials Capability Review Los Alamos National Laboratory May 4-7, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoniette J [Los Alamos National Laboratory

    2009-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g ., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors. LANL has defined fourteen

  11. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    Science.gov (United States)

    Simpson, R.; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G.

    2016-11-01

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  12. MCNP-REN a Monte Carlo tool for neutron detector design

    CERN Document Server

    Abhold, M E

    2002-01-01

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo code developed at Los Alamos National Laboratory, Monte Carlo N-Particle (MCNP), was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP-Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program, predicts neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of mixed oxide fresh fuel w...

  13. Characterization and application of a laser-driven intense pulsed neutron source using Trident

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    A team of Los Alamos researchers supported a final campaign to use the Trident laser to produce neutrons, contributed their multidisciplinary expertise to experimentally assess if laser-driven neutron sources can be useful for MaRIE. MaRIE is the Laboratory’s proposed experimental facility for the study of matter-radiation interactions in extremes. Neutrons provide a radiographic probe that is complementary to x-rays and protons, and can address imaging challenges not amenable to those beams. The team's efforts characterize the Laboratory’s responsiveness, flexibility, and ability to apply diverse expertise where needed to perform successful complex experiments.

  14. Prompt fission neutron spectrum of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)

    2016-01-06

    Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  15. The accelerator neutron source for boron neutron capture therapy

    Science.gov (United States)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  16. Modulating the Neutron Flux from a Mirror Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D D

    2011-09-01

    A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

  17. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  18. Groundwater level status report for 2010, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2011-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

  19. Groundwater level status report for 2009, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2010-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  20. Groundwater level status report for 2008, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2009-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2008 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 45 regional aquifer wells, 28 intermediate wells, 8 regional/intermediate wells, 106 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 166 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  1. Mac configuration management at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Allan B [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos National Laboratory (LANL) had a need for central configuration management of non-Windows computers. LANL has three to five thousand Macs and an equal number of Linux based systems. The primary goal was to be able to inventory all non-windows systems and patch Mc OS X systems. LANL examined a number of commercial and open source solutions and ultimately selected Puppet. This paper will discuss why we chose Puppet, how we implemented it, and some lessons we learned along the way.

  2. Auditing nuclear weapons quality programs at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.H.

    1988-01-01

    Some of the problems involved in introducing quality assurance on a broad scale in a national laboratory are discussed. A philosophy of how QA can be utilized beneficially in research and development activities is described briefly, and our experiences at Los Alamos in applying QA to nuclear weapons activities are outlines. The important role of audits is emphasized; audits are used not merely to determine the effectiveness of QA programs but also to explain and demonstrate the usefulness of QA to a generally sceptical body of engineers and scientists. Finally, some ways of easing the application of QA in the future are proposed. 1 ref.

  3. Los Alamos National Laboratory Economic Analysis Capability Overview

    Energy Technology Data Exchange (ETDEWEB)

    Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group; Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Information Systems and Modeling Group

    2016-04-19

    Los Alamos National Laboratory has developed two types of models to compute the economic impact of infrastructure disruptions. FastEcon is a fast running model that estimates first-­order economic impacts of large scale events such as hurricanes and floods and can be used to identify the amount of economic activity that occurs in a specific area. LANL’s Computable General Equilibrium (CGE) model estimates more comprehensive static and dynamic economic impacts of a broader array of events and captures the interactions between sectors and industries when estimating economic impacts.

  4. Recent developments in the Los Alamos radiation transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Forster, R.A.; Parsons, K. [Los Alamos National Lab., NM (United States)

    1997-06-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results.

  5. Neutron-based land mine detection system development

    Energy Technology Data Exchange (ETDEWEB)

    Davis, H.A.; McDonald, T.E. Jr.; Nebel, R.A.; Pickrell, M.M.

    1997-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to examine the feasibility of developing a land mine detection system that can detect nonmetallic (plastic) mines using the detection and analysis of prompt gamma neutron activation analysis (PGNAA). The authors approached this study by first carrying out a review of other nonmetallic land mine detection methods for comparison with the PGNAA concept. They reviewed issues associated with detecting and recording the return gamma signal resulting from neutrons interacting with high explosive in mines and they examined two neutron source technologies that have been under development at Los Alamos for the past several years for possible application to a PGNAA system. A major advantage of the PGNAA approach is it`s ability to discriminate detection speed and need for close proximity. The authors identified approaches to solving these problems through development of improved neutron sources and detection sensors.

  6. Moisture Monitoring at Area G, Technical Area 54, Los Alamos National Laboratory, 2016 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, Daniel Glenn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jennings, Terry L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); French, Sean B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-17

    Hydrological characterization and moisture monitoring activities provide data required for evaluating the transport of subsurface contaminants in the unsaturated and saturated zones beneath Area G, and for the Area G Performance Assessment and Composite Analysis. These activities have been ongoing at Area G, Technical Area 54 of the Los Alamos National Laboratory since waste disposal operations began in 1957. This report summarizes the hydrological characterization and moisture monitoring activities conducted at Area G. It includes moisture monitoring data collected from 1986 through 2016 from numerous boreholes and access tubes with neutron moisture meters, as well as data collected by automated dataloggers for water content measurement sensors installed in a waste disposal pit cover, and buried beneath the floor of a waste disposal pit. This report is an update of a nearly identical report by Levitt et al., (2015) that summarized data collected through early 2015; this report includes additional moisture monitoring data collected at Pit 31 and the Pit 38 extension through December, 2016. It also includes information from the Jennings and French (2009) moisture monitoring report and includes all data from Jennings and French (2009) and the Draft 2010 Addendum moisture monitoring report (Jennings and French, 2010). For the 2015 version of this report, all neutron logging data, including neutron probe calibrations, were investigated for quality and pedigree. Some data were recalculated using more defensible calibration data. Therefore, some water content profiles are different from those in the Jennings and French (2009) report. All of that information is repeated in this report for completeness. Monitoring and characterization data generally indicate that some areas of the Area G vadose zone are consistent with undisturbed conditions, with water contents of less than five percent by volume in the top two layers of the Bandelier tuff at Area G. These data also

  7. Future opportunities with pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.D. [Rutherford Appleton Lab., Chilton (United Kingdom)

    1996-05-01

    ISIS is the world`s most powerful pulsed spallation source and in the past ten years has demonstrated the scientific potential of accelerator-driven pulsed neutron sources in fields as diverse as physics, earth sciences, chemistry, materials science, engineering and biology. The Japan Hadron Project gives the opportunity to build on this development and to further realize the potential of neutrons as a microscopic probe of the condensed state. (author)

  8. 14 MeV neutrons physics and applications

    CERN Document Server

    Valkovic, Vladivoj

    2015-01-01

    Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the environment, and security.Drawing on his more than 50 years of experience working with 14 MeV neutrons, the author focuses on:Sources of 14 MeV neutrons, including laboratory size accelerators, small and sealed tube generators, well logging sealed tube ac

  9. Neutron Repulsion

    CERN Document Server

    Manuel, Oliver K

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding...

  10. Los Alamos Center for Computer Security formal computer security model

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, J.S.; Hunteman, W.J.; Markin, J.T.

    1989-01-01

    This paper provides a brief presentation of the formal computer security model currently being developed at the Los Alamos Department of Energy (DOE) Center for Computer Security (CCS). The need to test and verify DOE computer security policy implementation first motivated this effort. The actual analytical model was a result of the integration of current research in computer security and previous modeling and research experiences. The model is being developed to define a generic view of the computer and network security domains, to provide a theoretical basis for the design of a security model, and to address the limitations of present formal mathematical models for computer security. The fundamental objective of computer security is to prevent the unauthorized and unaccountable access to a system. The inherent vulnerabilities of computer systems result in various threats from unauthorized access. The foundation of the Los Alamos DOE CCS model is a series of functionally dependent probability equations, relations, and expressions. The model is undergoing continued discrimination and evolution. We expect to apply the model to the discipline of the Bell and LaPadula abstract sets of objects and subjects. 6 refs.

  11. Investigation of excess thyroid cancer incidence in Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Athas, W.F.

    1996-04-01

    Los Alamos County (LAC) is home to the Los Alamos National Laboratory, a U.S. Department of Energy (DOE) nuclear research and design facility. In 1991, the DOE funded the New Mexico Department of Health to conduct a review of cancer incidence rates in LAC in response to citizen concerns over what was perceived as a large excess of brain tumors and a possible relationship to radiological contaminants from the Laboratory. The study found no unusual or alarming pattern in the incidence of brain cancer, however, a fourfold excess of thyroid cancer was observed during the late-1980`s. A rapid review of the medical records for cases diagnosed between 1986 and 1990 failed to demonstrate that the thyroid cancer excess had resulted from enhanced detection. Surveillance activities subsequently undertaken to monitor the trend revealed that the excess persisted into 1993. A feasibility assessment of further studies was made, and ultimately, an investigation was conducted to document the epidemiologic characteristics of the excess in detail and to explore possible causes through a case-series records review. Findings from the investigation are the subject of this report.

  12. Fuels Inventories in the Los Alamos National Laboratory Region: 1997

    Energy Technology Data Exchange (ETDEWEB)

    Balice, R.G.; Oswald, B.P.; Martin, C.

    1999-03-01

    Fifty-four sites were surveyed for fuel levels, vegetational structures, and topographic characteristics. Most of the surveyed sites were on Los Alamos National Laboratory property, however, some surveys were also conducted on U.S. Forest Service property. The overall vegetation of these sites ranged from pinon-juniper woodlands to ponderosa pine forests to mixed conifer forests, and the topographic positions included canyons, mesas, and mountains. The results of these surveys indicate that the understory fuels are the greatest in mixed conifer forests and that overstory fuels are greatest in both mixed conifer forests and ponderosa pine forests on mesas. The geographic distribution of these fuels would suggest a most credible wildfire scenario for the Los Alamos region. Three major fires have occurred since 1954 and these fires behaved in a manner that is consistent with this scenario. The most credible wildfire scenario was also supported by the results of BEHAVE modeling that used the fuels inventory data as inputs. Output from the BEHAVE model suggested that catastrophic wildfires would continue to occur during any season with sufficiently dry, windy weather.

  13. An organizational survey of the Los Alamos Site

    Energy Technology Data Exchange (ETDEWEB)

    Shurberg, D.A.; Haber, S.B.

    1991-11-01

    An Organizational Survey (OS) was administered at the Los Alamos Site that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental, safety, and health concern, hazardous nature of work, safety and overall job satisfaction. The purpose of the OS is to measure in a quantitative and objective way the notion of ``culture;`` that is, the values, attitudes, and beliefs of the individuals working within the organization. In addition, through the OS, a broad sample of individuals can be reached that would probably not be interviewed or observed during the course of a typical assessment. The OS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization. While comparisons among groups are made, it is not the purpose of this report to make evaluative statements of which profile may be positive or negative. However, using the data presented in this report in conjunction with other evaluative activities, may provide useful insight into the organization. The OS administration at the Los Alamos Site was the ninth to occur at a Department of Energy (DOE) facility. All data from the OS is presented in group summaries, by organization, department or directorate within organization, supervisory level both overall and within organization, and staff classification within organization. Statistically significant differences between groups are identified and discussed. 9 refs., 94 figs., 11 tabs.

  14. Cleanup at Los Alamos National Laboratory - the challenges - 9493

    Energy Technology Data Exchange (ETDEWEB)

    Stiger, Susan G [Los Alamos National Laboratory; Hargis, Kenneth M [Los Alamos National Laboratory; Graham, Michael J [Los Alamos National Laboratory; Rael, George J [NNSL/LASO

    2008-01-01

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy Laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup -- the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: Plans to retrieve buried waste at Material Disposal Area B, across the street from oen of Los Alamos' commercial districts and the local newspaper; Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL.

  15. The Los Alamos universe: Using multimedia to promote laboratory capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Kindel, J.

    2000-03-01

    This project consists of a multimedia presentation that explains the technological capabilities of Los Alamos National Laboratory. It takes the form of a human-computer interface built around the metaphor of the universe. The project is intended promote Laboratory capabilities to a wide audience. Multimedia is simply a means of communicating information through a diverse set of tools--be they text, sound, animation, video, etc. Likewise, Los Alamos National Laboratory is a collection of diverse technologies, projects, and people. Given the ample material available at the Laboratory, there are tangible benefits to be gained by communicating across media. This paper consists of three parts. The first section provides some basic information about the Laboratory, its mission, and its needs. The second section introduces this multimedia presentation and the metaphor it is based on along with some basic concepts of color and user interaction used in the building of this project. The final section covers construction of the project, pitfalls, and future improvements.

  16. Basic Design of the Cold Neutron Research Facility in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K. (and others)

    2005-09-15

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments.

  17. Energy, information science, and systems science

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry C [Los Alamos National Laboratory; Mercer - Smith, Janet A [Los Alamos National Laboratory

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  18. Basic to industrial research on neutron platform in Japan

    Indian Academy of Sciences (India)

    Yasuhiko Fujii

    2008-10-01

    The co-location of reactor- and accelerator-based neutron sources offers a great opportunity for complementary use of steady and pulsed neutron beams in a wide variety of neutron science and technology areas ranging from basic research to industrial applications. In Japan, such a balance of two kinds of neutron sources has a long tradition and now we are entering into a new era with the commissioning of the world’s most intense pulsed neutron beams at JSNS/J-PARC plus the existing JRR-3 reactor both co-located within 1 km of each other in Tokai. The joint operation of these neutron facilities in close proximity under a program called `neutron platform', will allow neutron beam access not only to professional users, familiar with both pulsed and steady state techniques but also to first-time academics and industrial researchers to neutron scattering.

  19. Isentropic Compression Studies at the Los Alamos National High Magnetic Field Laboratory

    Science.gov (United States)

    2011-06-01

    D.G. Tasker, C.H. Mielke , G. Rodriguez, and D.W. Rickel Los Alamos National Laboratory, WX-6, MS J566 Los Alamos, NM 87545, USA Abstract...07E108-3. [3] D. G. Tasker, C. H. Mielke , G. Rodriguez, and D. G. Rickel, "A Simple Isentropic Compression Experiment (ICE) Machine," presented at

  20. A New Neutron Interferometry Facility at NCNR

    Science.gov (United States)

    Shahi, Chandra; Wietfeldt, Fred; Huber, Michael; Pushin, Dmitry; Arif, Muhammad

    2013-10-01

    A neutron interferometer splits an incoming neutron beam into two coherent partial beams, which travel on different paths and then recombine to form an interference pattern. This pattern is used to precisely determine the phase shift of a sample in one of the paths, thus the neutron interaction potential in the sample can be measured with high precision. A new neutron interferometry setup (NIOFa) has been constructed at the NIST Center for Neutron Research (NCNR). This new facility is mainly focused on spin based interferometry, which will expand its applications in both quantum computation and material research. New spin-control mechanisms are being tested; including thin-film spin flippers and efficient polarizing double cavity super mirrors. Doubling the neutron's degrees of freedom inside the interferometer promises exciting new quantum mechanical experiments and research capabilities. This work is supported by the National Science Foundation.

  1. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  2. Development of detector technologies for neutron beta decay measurements

    Science.gov (United States)

    Choi, Jin Ha; Cude-Woods, Chris; Young, Albert; Los Alamos UCN Collaboration Collaboration

    2016-09-01

    In the past year we have developed two detector technologies for neutron beta decay measurements. The first is designed specifically to detect the recoil proton from neutron decay. In particular, the PERKEO III experiments planned for the Institut Laue Langevin require detectors with active area greater than about 600 cm2 area to achieve the targeted statistical sensitivity. We have developed an implementation of transmission foil detectors utilizing free standing foils of roughly 100 nm thickness and 700 cm2 area, coated with LiF converting crystal. These foils are placed in an accelerating electric field geometry to first accelerate the protons to 30 kV and then convert them to an electron shower which can be detected with conventional semiconductor or scintillator detectors. We've also begun development of technology that is designed to detect charged particles from neutron-capture reaction on 10B. The UCNtau experiment at the Los Alamos National Laboratories requires non-magnetic neutron sensors that can be used to measure the density of neutrons in a magnetic trap. We are employing a multilayer surface detector recently developed at Los Alamos for the UCN flux monitoring, adapting it for a compact, 1 cm2 detector and ultralow dark rates. The detector consists of 10B on ZnS scintillating sheet that will be adhered to both faces of an acrylic plate with scintillating optical fibers embedded into it. The optical fibers will be coupled to 2, Hamamatsu micro-PMTs for coincident detection of a neutron event.

  3. Uranium and Plutonium Average Prompt-fission Neutron Energy Spectra (PFNS) from the Analysis of NTS NUEX Data

    Science.gov (United States)

    Lestone, J. P.; Shores, E. F.

    2014-05-01

    In neutron experiments (NUEX) conducted at the Nevada Test Site (NTS) by Los Alamos National Laboratory, the time-of-flight of fission-neutrons emitted from nuclear tests were observed by measuring the current generated by the collection of protons scattered from a thin CH2 foil many meters from the nuclear device into a Faraday cup. The time dependence of the Faraday cup current is a measure of the energy spectrum of the neutrons that leak from the device. With good device models and accurate neutron-transport codes, the leakage spectra can be converted into prompt fast-neutron-induced fission-neutron energy spectra. This has been done for two events containing plutonium, and for an earlier event containing uranium. The prompt-fission neutron spectra have been inferred for 1.5-MeV 239Pu(n,f) and 235U(n,f) reactions for outgoing neutron energies from 1.5 to ∼10.5 MeV, in 1-MeV steps. These spectra are in good agreement with the Los Alamos fission model.

  4. Neutron tomography

    Science.gov (United States)

    Crump, James C., III; Richards, Wade J.; Shields, Kevin C.

    1995-07-01

    The McClellan Nuclear Radiation Center's (MNRC) staff in conjunction with a Cooperative Research and Development Agreement (CRDA) with the U.C. Santa Barbara facility has developed a system that can be used for aircraft inspection of jet engine blades. The problem was to develop an inspection system that can detect very low concentrations of hydrogen (i.e., greater than 100 ppm) in metal matricies. Specifically in Titanium alloy jet engine blades. Entrapment and precipitation of hydrogen in metals is an undesirable phenomenon which occurs in many alloys of steel and titanium. In general, metals suffer a loss of mechanical properties after long exposures to hydrogen, especially at high temperatures and pressures, thereby becoming embrittled. Neutron radiography has been used as a nondestructive testing technique for many years. Neutrons, because of their unique interactions with materials, are especially useful in the detection of hydrogen. They have an extremely high interaction cross section for low atomic number nuclei (i.e., hydrogen). Thus hydrogen in a metal matrix can be visualized using neutrons. Traditional radiography is sensitive to the total attenuation integrated over the path of radiation through the material. Increased sensitivity and quantitative cross section resolution can be obtained using three-dimensional volumetric imaging techniques such as tomography. The solution used to solve the problem was to develop a neutron tomography system. The neutron source is the McClellan Nuclear Radiation Center's 1 MW TRIGA reactor. This paper describes the hardware used in the system as well as some of the preliminary results.

  5. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  6. Los Alamos National Laboratory support to IAEA environmental safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert E [Los Alamos National Laboratory; Dry, Don E [Los Alamos National Laboratory; Roensch, Fred R [Los Alamos National Laboratory; Kinman, Will S [Los Alamos National Laboratory; Roach, Jeff L [Los Alamos National Laboratory; La Mont, Stephen P [Los Alamos National Laboratory

    2010-12-01

    The nuclear and radiochemistry group provides sample preparation and analysis support to the International Atomic Energy Agency (IAEA) Network of Analytical Laboratories (NWAL). These analyses include both non-destructive (alpha and gamma-ray spectrometry) and destructive (thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry) methods. On a bi-annual basis the NWAL laboratories are invited to meet to discuss program evolution and issues. During this meeting each participating laboratory summarizes their efforts over the previous two years. This presentation will present Los Alamos National Laboratories efforts in support of this program. Data showing results from sample and blank analysis will be presented along with capability enhancement and issues that arose over the previous two years.

  7. Misuse and intrusion detection at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.A.; Neuman, M.C.; Simmonds, D.D.; Stallings, C.A.; Thompson, J.L.; Christoph, G.G.

    1995-04-01

    An effective method for detecting computer misuse is the automatic auditing and analysis of on-line user activity. This activity is reflected in system audit records, in system vulnerability postures, and in other evidence found through active system testing. Since 1989 we have implemented a misuse and intrusion detection system at Los Alamos. This is the Network Anomaly Detection and Intrusion Reporter, or NADIR. NADIR currently audits a Kerberos distributed authentication system, file activity on a mass, storage system, and four Cray supercomputers that run the UNICOS operating system. NADIR summarizes user activity and system configuration in statistical profiles. It compares these profiles to expert rules that define security policy and improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations, As NADIR is constantly evolving, this paper reports its development to date.

  8. Decommissioning the UHTREX Reactor Facility at Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.; Elder, J.

    1992-08-01

    The Ultra-High Temperature Reactor Experiment (UHTREX) facility was constructed in the late 1960s to advance high-temperature and gas-cooled reactor technology. The 3-MW reactor was graphite moderated and helium cooled and used 93% enriched uranium as its fuel. The reactor was run for approximately one year and was shut down in February 1970. The decommissioning of the facility involved removing the reactor and its associated components. This document details planning for the decommissioning operations which included characterizing the facility, estimating the costs of decommissioning, preparing environmental documentation, establishing a system to track costs and work progress, and preplanning to correct health and safety concerns in the facility. Work to decommission the facility began in 1988 and was completed in September 1990 at a cost of $2.9 million. The facility was released to Department of Energy for other uses in its Los Alamos program.

  9. Defense programs industrial partnerships at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Freese, K.B. [Los Alamos National Lab., NM (United States). Industrial Partnership Office

    1996-10-01

    The US Department of Energy`s Defense Programs face unprecedented challenges of stewardship for an aging nuclear stockpile, cessation of nuclear testing, reduced federal budgets, and a smaller manufacturing complex. Partnerships with industry are essential in developing technology, modernizing the manufacturing complex, and maintaining the safety and reliability of the nation`s nuclear capability. The past decade of federal support for industrial partnerships has promoted benefits to US industrial competitiveness. Recent shifts in government policy have re-emphasized the importance of industrial partnerships in accomplishing agency missions. Nevertheless, abundant opportunities exist for dual-benefit, mission-driven partnerships between the national laboratories and industry. Experience at Los Alamos National Laboratory with this transition is presented.

  10. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. Below is the transcript of his talk.

  11. Environmental surveillance and compliance at Los Alamos during 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report presents environmental data that characterize environmental performance and addresses compliance with environmental standards and requirements at Los Alamos National Laboratory (LANL or the Laboratory) during 1996. The Laboratory routinely monitors for radiation and for radioactive nonradioactive materials at Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1996 to assess external penetrating radiation; quantities of airborne emissions; and concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, the municipal water supply, soils and sediments, and foodstuffs. Using comparisons with standards and regulations, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment. Laboratory operations were in compliance with all major environmental regulations.

  12. Pajarito Plateau archaeological survey and excavations. [Los Alamos Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Steen, C.R.

    1977-05-01

    Los Alamos Scientific Laboratory lands were surveyed to locate pre-Columbian Indian ruins. The survey results will permit future construction to be planned so that most of the ancient sites in the area can be preserved. Indian occupation of the area occurred principally from late Pueblo III times (late 13th century) until early Pueblo V (about the middle of the 16th century). There are evidences of sporadic Indian use of the area for some 10,000 years. One Folsom point has been found, as well as many other archaic varieties of projectile points. Continued use of the region well into the historic period is indicated by pictographic art that portrays horses. In addition to an account of the survey, the report contains summaries of excavations made on Laboratory lands between 1950 and 1975.

  13. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The Management Subteam conducted a management and organization assessment of environment, safety, and health (ES H) activities performed by the Los Alamos National Laboratory (LANL) and onsite contractor personnel. The objectives of the assessment were to (1) evaluate the effectiveness of management systems and practices in terms of ensuring environmental compliance and the safety and health of workers and the general public, (2) identify key findings, and (3) identify root causes for all ES H findings and concerns. The scope of the assessment included examinations of the following from an ES H perspective: (1) strategic and program planning; (2) organizational structure and management configuration; (3) human resource management, including training and staffing; (4) management systems, including performance monitoring and assessment; (5) conduct of operations; (6) public and institutional interactions; and (7) corporate'' parent support.

  14. Environmental surveillance at Los Alamos during 1991. Environmental protection group

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, J.; Kohen, K.L. [comps.

    1993-08-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1991. Routine monitoring for radiation and for radioactive and chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1991 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriate standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment.

  15. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  16. An organizational survey of the Los Alamos Site

    Energy Technology Data Exchange (ETDEWEB)

    Shurberg, D.A.; Haber, S.B.

    1991-11-01

    An Organizational Survey (OS) was administered at the Los Alamos Site that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental, safety, and health concern, hazardous nature of work, safety and overall job satisfaction. The purpose of the OS is to measure in a quantitative and objective way the notion of culture;'' that is, the values, attitudes, and beliefs of the individuals working within the organization. In addition, through the OS, a broad sample of individuals can be reached that would probably not be interviewed or observed during the course of a typical assessment. The OS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization. While comparisons among groups are made, it is not the purpose of this report to make evaluative statements of which profile may be positive or negative. However, using the data presented in this report in conjunction with other evaluative activities, may provide useful insight into the organization. The OS administration at the Los Alamos Site was the ninth to occur at a Department of Energy (DOE) facility. All data from the OS is presented in group summaries, by organization, department or directorate within organization, supervisory level both overall and within organization, and staff classification within organization. Statistically significant differences between groups are identified and discussed. 9 refs., 94 figs., 11 tabs.

  17. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  18. Pinon Pine Tree Study, Los Alamos National Laboratory: Source document

    Energy Technology Data Exchange (ETDEWEB)

    P. R. Fresquez; J. D. Huchton; M. A. Mullen; L. Naranjo, Jr.

    2000-01-01

    One of the dominant tree species growing within and around Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis) tree. Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food--the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup tot}U, {sup 238}Pu, {sup 239,240}Pu, and {sup 241}Am in soils (0- to 12-in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) concentrations of radionuclides in PPN collected in 1977 to present data, (3) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (4) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of {sup 3}H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 {micro}Sv). Soil-to-nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.

  19. High-pressure neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu [Los Alamos National Laboratory

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  20. Experimental Physical Sciences Vistas: MaRIE (draft)

    Energy Technology Data Exchange (ETDEWEB)

    Shlachter, Jack [Los Alamos National Laboratory

    2010-09-08

    security science challenges. Our first issue of Vistas focused on our current national user facilities (the Los Alamos Neutron Science Center [LANSCE], the National High Magnetic Field Laboratory-Pulsed Field Facility, and the Center for Integrated Nanotechnologies) and the vitality they bring to our Laboratory. These facilities are a magnet for students, postdoctoral researchers, and staff members from all over the world. This, in turn, allows us to continue to develop and maintain our strong staff across the relevant disciplines and conduct world-class discovery science. The second issue of Vistas was devoted entirely to the Laboratory's materials strategy - one of the three strategic science thrusts for the Laboratory. This strategy has helped focus our thinking for MaRIE. We believe there is a bright future in cutting-edge experimental materials research, and that a 21st-century facility with unique capability is necessary to fulfill this goal. The Laboratory has spent the last several years defining MaRIE, and this issue of Vistas presents our current vision of that facility. MaRIE will leverage LANSCE and our other user facilities, as well as our internal and external materials community for decades to come, giving Los Alamos a unique competitive advantage, advancing materials science for the Laboratory's missions and attracting and recruiting scientists of international stature. MaRIE will give the international materials research community a suite of tools capable of meeting a broad range of outstanding grand challenges.

  1. NEPA and NHPA- successful decommissioning of historic Manhattan Project properties at Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, E.D.; Pendergrass, A.K.

    1997-05-21

    This paper describes experiences at Los Alamos National Laboratory during the process of planning and executing decommissioning and decontamination activities on a number of properties constructed as part of the Manhattan project. Many of these buildings had been abandoned for many years and were in deteriorating condition, in addition to being contaminated with asbestos, lead based paints and high explosive residues. Due to the age and use of the structures they were evaluated against criteria for the National Register of Historic Places. This process is briefly reviewed, along with the results, as well as actions implemented as a result of the condition and safety of the structures. A number of the structures have been decontaminated and demolished. Planning is still ongoing for the renovation of one structure, and the photographic and drawing records of the properties is near completion.

  2. Ecological baseline studies in Los Alamos and Guaje Canyons County of Los Alamos, New Mexico. A two-year study

    Energy Technology Data Exchange (ETDEWEB)

    Foxx, T.S. [comp.

    1995-11-01

    During the summers of 1993 and 1994, the Biological Resource Evaluations Team (BRET) of the Environmental Protection Group (ESH-8) conducted baseline studies within two canyon systems, Los Alamos and Guaje Canyons. Biological data was collected within each canyon to provide background and baseline information for Ecological Risk models. Baseline studies included establishment of permanent vegetation plots within each canyon along the elevational gradient. Then, in association with the various vegetation types, surveys were conducted for ground dwelling insects, birds, and small mammals. The stream channels associated with the permanent vegetation plots were characterized and aquatic macroinvertebrates collected within the stream monthly throughout a six-month period. The Geographic Position System (GPS) in combination with ARC INFO was used to map the study areas. Considerable data was collected during these surveys and are summarized in individual chapters.

  3. Materials capability review Los Alamos National Laboratory, May 3-6, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette [Los Alamos National Laboratory

    2010-01-01

    , environment for conducting science, technology and engineering. The specific charge for the Materials Capability Review is to assess the Los Alamos Laboratory Directed Research and Development project titled, 'First Principles Predictive Capabilities for Transuranic Materials: Mott Insulators to Correlated Metals' using the criteria performance, quality, and relevance for the current status of the project. The committee is requested to provide advice on future direction of the project.

  4. Radionuclide concentrations in pinto beans, sweet corn, and zucchini squash grown in Los Alamos Canyon at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Mullen, M.A.; Naranjo, L. Jr.; Armstrong, D.R.

    1997-05-01

    Pinto beans, sweet corn, and zucchini squash (Cucurbita pepo var. black beauty) were grown in a randomized complete-block field/pot experiment at a site that contained the highest observed levels of surface gross gamma radioactivity within Los Alamos Canyon (LAC) at Los Alamos National Laboratory. Soils as well as washed edible and nonedible crop tissues were analyzed for various radionuclides and heavy metals . Most radionuclides, with the exception of {sup 3}H and {sup tot}U, in soil from LAC were detected in significantly higher concentrations (p <0.01) than in soil collected from regional background (RBG) locations. Similarly, most radionuclides in edible crop portions of beans, squash, and corn were detected in significantly higher (p <0.01 and 0.05) concentrations than RBG. Most soil-to-plant concentration ratios for radionuclides in edible and nonedible crop tissues from LAC were within the default values given by the Nuclear Regulatory Commission and Environmental Protection Agency. All heavy metals in soils, as well as edible and nonedible crop tissues grown in soils from LAC, were within RBG concentrations. Overall, the total maximum net positive committed effective dose equivalent (CEDE)--the CEDE plus two sigma for each radioisotope minus background and then all positive doses summed--to a hypothetical 50-year resident that ingested 160 kg of beans, corn, and squash in equal proportions, was 74 mrem y{sup -1}. This dose was below the International Commission on Radiological Protection permissible dose limit (PDL) of 100 mrem y{sup -1} from all pathways; however, the addition of other internal and external exposure route factors may increase the overall dose over the PDL. Also, the risk of an excess cancer fatality, based on 74 mrem y{sup -1}, was 3.7 x 10{sup -5} (37 in a million), which is above the Environmental Protection Agency`s (acceptable) guideline of one in a million. 31 refs., 15 tabs.

  5. Experimental Software Design of the Neutron Texture Diffractometer at China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Neutron scattering lab is building our country's first neutron texture diffractometer, which will be used for the texture measurement and analysis in the materials science and engineering applications. The sample table and its measurement and control

  6. Audit of the radioactive liquid waste treatment facility operations at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-19

    Los Alamos National Laboratory (Los Alamos) generates radioactive and liquid wastes that must be treated before being discharged to the environment. Presently, the liquid wastes are treated in the Radioactive Liquid Waste Treatment Facility (Treatment Facility), which is over 30 years old and in need of repair or replacement. However, there are various ways to satisfy the treatment need. The objective of the audit was to determine whether Los Alamos cost effectively managed its Treatment Facility operations. The audit determined that Los Alamos` treatment costs were significantly higher when compared to similar costs incurred by the private sector. This situation occurred because Los Alamos did not perform a complete analysis of privatization or prepare a {open_quotes}make-or-buy{close_quotes} plan for its treatment operations, although a {open_quotes}make-or-buy{close_quotes} plan requirement was incorporated into the contract in 1996. As a result, Los Alamos may be spending $2.15 million more than necessary each year and could needlessly spend $10.75 million over the next five years to treat its radioactive liquid waste. In addition, Los Alamos has proposed to spend $13 million for a new treatment facility that may not be needed if privatization proves to be a cost effective alternative. We recommended that the Manager, Albuquerque Operations Office (Albuquerque), (1) require Los Alamos to prepare a {open_quotes}make-or-buy{close_quotes} plan for its radioactive liquid waste treatment operations, (2) review the plan for approval, and (3) direct Los Alamos to select the most cost effective method of operations while also considering other factors such as mission support, reliability, and long-term program needs. Albuquerque concurred with the recommendations.

  7. Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion

    Science.gov (United States)

    Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl

    2016-10-01

    The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.

  8. PRODUCTION AND APPLICATIONS OF NEUTRONS USING PARTICLE ACCELERATORS

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  9. Production and applications of neutrons using particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  10. Neutron induced bystander effect among zebrafish embryos

    Science.gov (United States)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  11. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.L.

    1995-12-31

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research.

  12. High-level neutron coincidence counter (HLNCC): users' manual

    Energy Technology Data Exchange (ETDEWEB)

    Krick, M.S.; Menlove, H.O.

    1979-06-01

    This manual describes the portable High-Level Neutron Coincidence Counter (HLNCC) developed at the Los Alamos Scientific Laboratory (LASL) for the assay of plutonium, particularly by inspectors of the International Atomic Energy Agency (IAEA). The counter is designed for the measurement of the effective /sup 240/Pu mass in plutonium samples which may have a high plutonium content. The following topics are discussed: principle of operation, description of the system, operating procedures, and applications.

  13. Neutron physics for nuclear reactors unpublished writings by Enrico Fermi

    CERN Document Server

    Fermi, Enrico; Pisanti, O

    2010-01-01

    This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on

  14. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  15. C7LYC Scintillators and Fast Neutron Spectroscopy

    Science.gov (United States)

    Chowdhury, P.; Brown, T.; Doucet, E.; Lister, C. J.; Wilson, G. L.; D'Olympia, N.; Devlin, M.; Mosby, S.

    2016-09-01

    Cs2 LiYCl6 (CLYC) scintillators detect both gammas and neutrons with excellent pulse shape discrimination. At UML, fast neutron measurements with a 16-element 1''x1'' CLYC array show promise for low energy nuclear science. CLYC detects fast neutrons via the 35Cl (n,p) reaction (resolution UML. Results will be discussed in the context of constructing a C7LYC array at FRIB for reaction and decay spectroscopy of neutron-rich fragments. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA00013008.

  16. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  17. Small Mammal Sampling in Mortandad and Los Alamos Canyons, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Kathy; Sherwood, Sherri; Robinson, Rhonda

    2006-08-15

    As part of an ongoing ecological field investigation at Los Alamos National Laboratory, a study was conducted that compared measured contaminant concentrations in sediment to population parameters for small mammals in the Mortandad Canyon watershed. Mortandad Canyon and its tributary canyons have received contaminants from multiple solid waste management units and areas of concern since establishment of the Laboratory in the 1940s. The study included three reaches within Effluent and Mortandad canyons (E-1W, M-2W, and M-3) that had a spread in the concentrations of metals and radionuclides and included locations where polychlorinated biphenyls and perchlorate had been detected. A reference location, reach LA-BKG in upper Los Alamos Canyon, was also included in the study for comparison purposes. A small mammal study was initiated to assess whether potential adverse effects were evident in Mortandad Canyon due to the presence of contaminants, designated as contaminants of potential ecological concern, in the terrestrial media. Study sites, including the reference site, were sampled in late July/early August. Species diversity and the mean daily capture rate were the highest for E-1W reach and the lowest for the reference site. Species composition among the three reaches in Mortandad was similar with very little overlap with the reference canyon. Differences in species composition and diversity were most likely due to differences in habitat. Sex ratios, body weights, and reproductive status of small mammals were also evaluated. However, small sample sizes of some species within some sites affected the analysis. Ratios of males to females by species of each site (n = 5) were tested using a Chi-square analysis. No differences were detected. Where there was sufficient sample size, body weights of adult small mammals were compared between sites. No differences in body weights were found. Reproductive status of species appears to be similar across sites. However, sample

  18. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility

    Science.gov (United States)

    Guler, N.; Volegov, P.; Favalli, A.; Merrill, F. E.; Falk, K.; Jung, D.; Tybo, J. L.; Wilde, C. H.; Croft, S.; Danly, C.; Deppert, O.; Devlin, M.; Fernandez, J.; Gautier, D. C.; Geissel, M.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Henzlova, D.; Johnson, R. P.; Schaumann, G.; Schoenberg, K.; Schollmeier, M.; Shimada, T.; Swinhoe, M. T.; Taddeucci, T.; Wender, S. A.; Wurden, G. A.; Roth, M.

    2016-10-01

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at the laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ˜5 × 109 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5-35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ˜1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. These experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the

  19. Conceptual design of a polarized 3He neutron spin filter for polarized neutron spectrometer POLANO at J-PARC

    Science.gov (United States)

    Ino, T.; Ohoyama, K.; Yokoo, T.; Itoh, S.; Ohkawara, M.; Kira, H.; Hayashida, H.; Sakai, K.; Hiroi, K.; Oku, T.; Kakurai, K.; Chang, L. J.

    2016-04-01

    A 3He neutron spin filter (NSF) has been designed for a new polarized neutron chopper spectrometer called the Polarization Analysis Neutron Spectrometer with Correlation Method (POLANO) at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex. It is designed to fit in a limited space on the spectrometer as an initial neutron beam polarizer and is polarized in situ by spin exchange optical pumping. This will be the first generation 3He NSF on POLANO, and a polarized neutron beam up to 100 meV with a diameter of 50 mm will be available for research on magnetism, hydrogen materials, and strongly correlated electron systems.

  20. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  1. NM - Risk and injury assessment of radionuclides to Los Alamos fauna

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is an assessment of environmental contaminants associated with the Los Alamos National Laboratory. One objective of the study is to determine if a significant...

  2. Architect and engineering costs at Los Alamos and Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The objective of this audit was to determine whether architect and engineering (A-E) costs at Los Alamos National Laboratory and Sandia National Laboratories were reasonable in comparison with industry standards.

  3. Surface Water Data at Los Alamos National Laboratory 1998 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Shaull; M. R. Alexander; R. P. Reynolds; C. T. McLean; R. P. Romero

    1999-02-01

    The principal investigators collected and computed surface water discharge data from 19 stream-gaging stations that cover most of Los Alamos National Laboratory. Also included are discharge data from three springs that flow into Caiion de Vane.

  4. Activities at Los Alamos for the optical model segment of the RIPL CRP

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.G.

    1997-05-10

    This report discusses activity at Los Alamos on the nuclear optical model. In particular, the following topics are discussed: format of the optical model parameter library; contents of the library; validation of the optical model library; and conclusions and recommendations.

  5. Optimizing Crystal Volume for Neutron Diffraction Studies

    Science.gov (United States)

    Snell, E. H.

    2003-01-01

    For structural studies with neutron diffraction more intense neutron sources, improved sensitivity detector and larger volume crystals are all means by which the science is being advanced to enable studies on a wider range of samples. We have chosen a simplistic approach using a well understood crystallization method, with minimal amounts of sample and using design of experiment techniques to maximize the crystal volume all for minimum effort. Examples of the application are given.

  6. Surface water data at Los Alamos National Laboratory: 1995 water year. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barks, R. [ed.; Shaull, D.A.; Alexander, M.R.; Reynolds, R.P.

    1996-08-01

    The principle investigators collected and computed surface water discharge data from 15 stream-gaging stations that cover most of Los Alamos National Laboratory. The United States Department of Interior Geological Survey, Water Resources Division, operates two of the stations under a subcontract; these are identified in the station manuscripts. Included in this report are data from one seepage run conducted in Los Alamos Canyon during the 1995 water year.

  7. Environmental Assessment for Electrical Power System Upgrades at Los Alamos National Laboratory, Los Alamos, New Mexico - Final Document

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-03-09

    The ''National Environmental Policy Act of 1969'' (NEPA) requires Federal agency officials to consider the environmental consequences of their proposed actions before decisions are made. In complying with NEPA, the United States (U.S.) Department of Energy (DOE) follows the Council on Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508) and DOE's NEPA implementing procedures (10 CFR 1021). The purpose of an Environmental Assessment (EA) is to provide Federal decision makers with sufficient evidence and analysis to determine whether to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact. In this case, the DOE decision to be made is whether to construct and operate a 19.5-mile (mi) (31-kilometer [km]) electric transmission line (power line) reaching from the Norton Substation, west across the Rio Grande, to locations within the Los Alamos National Laboratory (LANL) Technical Areas (TAs) 3 and 5 at Los Alamos, New Mexico. The construction of one electric substation at LANL would be included in the project as would the construction of two line segments less than 1,200 feet (ft) (366 meters [m]) long that would allow for the uncrossing of a portion of two existing power lines. Additionally, a fiber optics communications line would be included and installed concurrently as part of the required overhead ground conductor for the power line. The new power line would improve the reliability of electric service in the LANL and Los Aktrnos County areas as would the uncrossing of the crossed segments of the existing lines. Additionally, installation of the new power line would enable the LANL and the Los Alamos County electric grid, which is a shared resource, to be adapted to accommodate the future import of increased power when additional power service becomes available in the northern New Mexico area. Similarly, the fiber optics line would allow DOE to take advantage of

  8. Progress on the Los Alamos heavy-ion injector

    Science.gov (United States)

    Wilson, D. C.; Riepe, K. B.; Ballard, E. O.; Meyer, E. A.; Shurter, R. P.; Van Haaften, F. W.; Humphries, S.

    1986-01-01

    Heavy-ion fusion using an induction linac requires injection of multiple high-current beams from a pulsed electrostatic accelerator at as high a voltage as practical. Los Alamos National Laboratory is developing a 16-beam, 2-MeV, pulsed electrostatic accelerator for Al+ ions. The ion source will use a pulsed metal vapor arc plasma. A biased grid wil control plasma flux into the ion extraction region. This source has achieved a normalized emittance of ɛnlaser fired diverter is being assembled. The ceramic accelerating column sections have been brazed and leak tested. Voltage hold off on a brazed sample was more than doubled by selective removal of the Ticusil braze fillet extending along the ceramic. A scaled test module held 250 kV for 50 μs, giving confidence that the full module can hold 175 kV per section. The pressure vessel should be received in June 1986. High-voltage testing of a 1 MV column will begin by early 1987.

  9. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    O' LEARY, GERALD A. [Los Alamos National Laboratory

    2007-01-04

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with

  10. Final Progress Report: Internship at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Ryan Q. [Los Alamos National Laboratory

    2012-08-10

    Originally I was tasked fluidized bed modeling, however, I changed projects. While still working with ANSYS Fluent, I performed a study of particle tracks in glove boxes. This is useful from a Health-Physics perspective, dealing respirable particles that can be hazardous to the human body. I iteratively tested different amounts of turbulent particles in a steady-state flow. The goal of this testing was to discover how Fluent handles built-in Rosin-Rammler distributions for particle injections. I worked on the health physics flow problems and distribution analysis under the direction of two mentors, Bruce Letellier and Dave Decroix. I set up and ran particle injection calculations using Fluent. I tried different combinations of input parameters to produce sets of 500,000, 1 million, and 1.5 million particles to determine what a good test case would be for future experiments. I performed a variety of tasks in my work as an Undergraduate Student Intern at LANL this summer, and learned how to use a powerful CFD application in addition to expanding my skills in MATLAB. I enjoyed my work at LANL and hope to be able to use the experience here to further my career in the future working in a security-conscious environment. My mentors provided guidance and help with all of my projects and I am grateful for the opportunity to work at Los Alamos National Laboratory.

  11. Population Files for use with CAP88 at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    McNaughton, Michael W [Los Alamos National Laboratory; Brock, Burgandy R [Los Alamos National Laboratory

    2012-07-10

    CAP88 (Clean Air Act Assessment Package 1988) is a computer model developed for the US Environmental Protection Agency to assess the potential dose from radionuclide emissions to air and to demonstrate compliance with the Clean Air Act. It has options to calculate either individual doses, in units of mrem, or a collective dose, also called population dose, in units of person-rem. To calculate the collective dose, CAP88 uses a population file such as LANL.pop, that lists the number of people in each sector (N, NNE, NE, etc.) as a function of distance (1 to 2 km, etc.) out to a maximum radius of 80 km. Early population files are described in the Los Alamos National Laboratory (LANL) Environmental Reports for 1985 (page 14) and subsequent years. LA-13469-MS describes a population file based on the 1990 census. These files have been updated several times, most recently in 2006 for CAP88 version 3. The 2006 version used the US census for 2000. The present paper describes the 2012 updates, using the 2010 census.

  12. Atlas - a new pulsed power tool at Los Alamos

    CERN Document Server

    Scudder, D W; Ballard, E O; Barr, G W; Cochrane, J C; Davis, H A; Griego, J R; Hadden, E S; Hinckley, W B; Hosack, K W; Martínez, J E; Mills, D; Padilla, J N; Parker, J V; Parsons, W M; Reinovsky, R E; Stokes, J L; Thompson, M C; Tom, C Y; Wysocki, F J; Vigil, B N; Elizondo, J; Miller, R B; Anderson, H D; Campbell, T N; Owens, R S

    2001-01-01

    Summary form only given, as follows. The Atlas pulsed power driver has recently been commissioned at Los Alamos National Laboratory. The paper provides an overview of the Atlas facility, its initial experimental program and plans for the future. The reader desiring more detailed information is referred to papers in this conference by Keinigs et al. on materials studies, Cochrane et al. on machine performance and Ballard et al. on fabrication and assembly. Atlas is a high current generator capable of driving 30 megamps through a low- inductance load. It has been designed to require minimal maintenance, provide excellent diagnostic access, and rapid turnaround. Its capacitor bank stores 23.5 megajoules in a four-stage Marx configuration which erects to 240 kV at maximum charge. It has a quarter-cycle time of 4.5 microseconds. It will typically drive cylindrical aluminum liners in a z-pinch configuration to velocities up to 10 mm/msec while maintaining the inner surface in the solid state. Diagnostic access incl...

  13. Wildlife use of NPDES outfalls at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Foxx, T.; Blea-Edeskuty, B.

    1995-09-01

    From July through October of 1991, the Biological Resources Evaluation Team (BRET) surveyed 133 of the 140 National Pollutant Discharge and Elimination System outfalls at Los Alamos National Laboratory (LANL). The purpose of the survey was to determine the use of these wastewater outfalls by wildlife. BRET observed wildlife or evidence of wildlife (scat, tracks, or bedding) by 35 vertebrate species in the vicinity of the outfalls, suggesting these animals could be using water from outfalls. Approximately 56% of the outfalls are probably used or are suitable for use by large mammals as sources of drinking water. Additionally, hydrophytic vegetation grows in association with approximately 40% of the outfalls-a characteristic that could make these areas eligible for wetland status. BRET recommends further study to accurately characterize the use of outfalls by small and medium-sized mammals and amphibians. The team also recommends systematic aquatic macroinvertebrate studies to provide information on resident communities and water quality. Wetland assessments may be necessary to ensure compliance with wetland regulations if LANL activities affect any of the outfalls supporting hydrophytic vegetation.

  14. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  15. A new polarized neutron interferometry facility at the NCNR

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: michael.huber@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: dmitry.pushin@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)

    2016-03-21

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  16. A new polarized neutron interferometry facility at the NCNR

    Science.gov (United States)

    Shahi, C. B.; Arif, M.; Cory, D. G.; Mineeva, T.; Nsofini, J.; Sarenac, D.; Williams, C. J.; Huber, M. G.; Pushin, D. A.

    2016-03-01

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  17. Measurements of ultracold neutron upscattering and absorption in polyethylene and vanadium

    CERN Document Server

    Sharapov, E I; Makela, M; Saunders, A; Adamek, Evan R; Bagdasarova, Yelena; Broussard, L J; Cude-Woods, C B; Fellers, Deon E; Geltenbort, Peter; Hasan, S I; Hickerson, K P; Hogan, G; Holley, A T; Liu, Chen-Yu; Mendenhall, M P; Ortiz, J; Pattie, R W; Phillips, D G; Ramsey, J; Salvat, D J; Seestrom, S J; Shaw, E; Sjue, Sky; Sondheim, W E; VornDick, B; Wang, Z; Womack, T L; Young, A R; Zeck, B A

    2013-01-01

    The study of neutron cross sections for elements used as efficient ``absorbers'' of ultracold neutrons (UCN) is crucial for many precision experiments in nuclear and particle physics, cosmology and gravity. In this context, ``absorption'' includes both the capture and upscattering of neutrons to the energies above the UCN energy region. The available data, especially for hydrogen, do not agree between themselves or with the theory. In this report we describe measurements performed at the Los Alamos National Laboratory UCN facility of the UCN upscattering cross sections for vanadium and for hydrogen in CH$_2$ using simultaneous measurements of the radiative capture cross sections for these elements. We measured $\\sigma_{up}=1972\\pm130$ b for hydrogen in CH$_2$, which is below theoretical expectations, and $\\sigma_{up} < 25\\pm9$ b for vanadium, in agreement with the expectation for the neutron heating by thermal excitations in solids.

  18. PREFACE: IUMRS-ICA 2008 Symposium, Sessions 'X. Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' and 'Y. Frontier of Polymeric Nano-Soft-Materials - Precision Polymer Synthesis, Self-assembling and Their Functionalization'

    Science.gov (United States)

    Takahara, Atsushi; Kawahara, Seiichi

    2009-09-01

    Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science (Symposium X of IUMRS-ICA2008) Toshiji Kanaya, Kohji Tashiro, Kazuo Sakura Keiji Tanaka, Sono Sasaki, Naoya Torikai, Moonhor Ree, Kookheon Char, Charles C Han, Atsushi Takahara This volume contains peer-reviewed invited and contributed papers that were presented in Symposium X 'Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Structure analyses of soft materials based on synchrotron radiation (SR) and neutron beam have been developed steadily. Small-angle scattering and wide-angle diffraction techniques clarified the higher-order structure as well as time dependence of structure development such as crystallization and microphase-separation. On the other hand, reflectivity, grazing-incidence scattering and diffraction techniques revealed the surface and interface structural features of soft materials. From the viewpoint of strong interests on the development of SR and neutron beam techniques for soft materials, the objective of this symposium is to provide an interdisciplinary forum for the discussion of recent advances in research, development, and applications of SR and neutron beams to soft matter science. In this symposium, 21 oral papers containing 16 invited papers and 14 poster papers from China, India, Korea, Taiwan, and Japan were presented during the three-day symposium. As a result of the review of poster and oral presentations of young scientists by symposium chairs, Dr Kummetha Raghunatha Reddy (Toyota Technological Institute) received the IUMRS-ICA 2008 Young Researcher Award. We are grateful to all invited speakers and many participants for valuable contributions and active discussions. Organizing committee of Symposium (IUMRS-ICA 2008) Professor Toshiji Kanaya (Kyoto University) Professor Kohji

  19. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-04

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

  20. Neutron capture and (n,2n) measurements on 241Am

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D; Jandel, M; Bredeweg, T; Bond, E; Clement, R; Couture, A; Haight, R; O' Donnell, J; Reifarth, R; Ullmann, J; Wilhelmy, J; Wouters, J; Tonchev, A; Hutcheson, A; Angell, C; Crowell, A; Fallin, B; Hammond, S; Howell, C; Karowowski, H; Kelley, J; Pedroni, R; Tornow, W; Macri, R; Agvaanluvsan, U; Becker, J; Dashdorj, D; Stoyer, M; Wu, C

    2007-07-18

    We report on a set of neutron-induced reaction measurements on {sup 241}Am which are important for nuclear forensics and advanced nuclear reactor design. Neutron capture measurements have been performed on the DANCE detector array at the Los Alamos Neutron Scattering CEnter (LANSCE). In general, good agreement is found with the most recent data evaluations up to an incident neutron energy of {approx} 300 keV where background limits the measurement. Using mono-energetic neutrons produced in the {sup 2}H(d,n){sup 3}He reaction at Triangle University Nuclear Laboratory (TUNL), we have measured the {sup 241}Am(n,2n) excitation function from threshold (6.7 MeV) to 14.5 MeV using the activation method. Good agreement is found with previous measurements, with the exception of the three data points reported by Perdikakis et al. around 11 MeV, where we obtain a much lower cross section that is more consistent with theoretical estimates.

  1. A workshop on enhanced national capability for neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    This two-day workshop will engage the international neutron scattering community to vet and improve the Lujan Center Strategic Plan 2007-2013 (SP07). Sponsored by the LANL SC Program Office and the University of California, the workshop will be hosted by LANSCE Professor Sunny Sinha (UCSD). Endorsement by the Spallation Neutron Source will be requested. The discussion will focus on the role that the Lujan Center will play in the national neutron scattering landscape assuming full utilization of beamlines, a refurbished LANSCE, and a 1.4-MW SNS. Because the Lujan Strategic Plan is intended to set the stage for the Signature Facility era at LANSCE, there will be some discussion of the long-pulse spallation source at Los Alamos. Breakout groups will cover several new instrument concepts, upgrades to present instruments, expanded sample environment capabilities, and a look to the future. The workshop is in keeping with a request by BES to update the Lujan strategic plan in coordination with the SNS and the broader neutron community. Workshop invitees will be drawn from the LANSCE User Group and a broad cross section of the US, European, and Pacific Rim neutron scattering research communities.

  2. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  3. Scissors Mode of 162Dy Studied from Resonance Neutron Capture

    Directory of Open Access Journals (Sweden)

    Baramsai B.

    2015-01-01

    Full Text Available Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ experiments on Gd isotopes, and (γ,γ’ reactions.

  4. Scissors Mode of 162Dy Studied from Resonance Neutron Capture

    Science.gov (United States)

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-05-01

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ') reactions.

  5. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  6. Study on the energy response to neutrons for a new scintillating-fiber-array neutron detector

    CERN Document Server

    Zhang Qi; Wang Qun; Xie Zhong Shen

    2003-01-01

    The energy response of a new scintillating-fiber-array neutron detector to neutrons in the energy range 0.01 MeV<=E sub n<=14 MeV was modeled by combining a simplified Monte Carlo model and the MCNP 4b code. In order to test the model and get the absolute sensitivity of the detector to neutrons, one experiment was carried out for 2.5 and 14 MeV neutrons from T(p,n) sup 3 He and T(d,n) sup 4 He reactions at the Neutron Generator Laboratory at the Institute of Modern Physics, the Chinese Academy of Science. The absolute neutron fluence was obtained with a relative standard uncertainty 4.5% or 2.0% by monitoring the associated protons or sup 4 He particles, respectively. Another experiment was carried out for 0.5, 1.0, 1.5, 2.0, 2.5 MeV neutrons from T(p,n) sup 3 He reaction, and for 3.28, 3.50, 4.83, 5.74 MeV neutrons from D(d,n) sup 3 He reaction on the Model 5SDH-2 accelerator at China Institute of Atomic Energy. The absolute neutron fluence was obtained with a relative standard uncertainty 5.0% by usin...

  7. 2011 Los Alamos National Laboratory Riparian Inventory Results

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Elizabeth J. [Los Alamos National Laboratory; Hansen, Leslie A. [Los Alamos National Laboratory; Hathcock, Charles D. [Los Alamos National Laboratory; Keller, David C. [Los Alamos National Laboratory; Zemlick, Catherine M. [Los Alamos National Laboratory

    2012-03-29

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed but no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.

  8. Los Alamos National Laboratory considers the use of biodiesel.

    Energy Technology Data Exchange (ETDEWEB)

    Matlin, M. K. (Marla K.)

    2002-01-01

    A new EPA-approved alternative fuel, called biodiesel, may soon be used at Los Alamos National Laboratory in everything from diesel trucks to laboratory equipment. Biodiesel transforms vegetable oils into a renewable, cleaner energy source that can be used in any machinery that uses diesel fuel. For the past couple years, the Laboratory has been exploring the possibility of switching over to soybean-based biodiesel. This change could lead to many health and environmental benefits, as well as help reduce the nation's dependence on foreign oil. Biodiesel is a clean, renewable diesel fuel substitute made from soybean and other vegetable oil crops, as well as from recycled cooking oils. A chemical process breaks down the vegetable oil into a usable form. Vegetable oil has a chain of about 18 carbons and ordinary diesel has about 12 or 13 carbons. The process breaks the carbon chains of the vegetable oil and separates out the glycerin (a fatty substance used in creams and soaps). The co-product of glycerin can be used by pharmaceutical and cosmetic companies, as well as many other markets. Once the chains are shortened and the glycerin is removed from the oil, the remaining liquid is similar to petroleum diesel fuel. It can be burned in pure form or in a blend of any proportion with petroleum diesel. To be considered an alternative fuel source by the EPA, the blend must be at least 20 percent biodiesel (B20). According to the U.S. Department of Energy (DOE), biodiesel is America's fastest growing alternative fuel.

  9. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... of new material. Understanding self-assembly of 2D-3D nanostructures at surfaces and the related interfaces in layered films is a precondition for the development of tailored tools with distributed functions, like new clothes (self-cleaning surfaces combined with mechanical resistance, low permeability...... of polar molecules like water and high permeability for gases), films to be applied as specific sensors or for packaging, surface coverage for implants with incorporated antibiotics, thin magnetic material with designed domain distributions, … . The structures of interest range from a few Ǻngstrøm up...

  10. Development of advanced neutron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Seong, B. S.; Lee, J. S.; Sim, C. M. (and others)

    2007-06-15

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility.

  11. Multimedia contaminant environmental exposure assessment methodology as applied to Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, G.; Thompson, F.L.; Yabusaki, S.B.

    1983-02-01

    The MCEA (Multimedia Contaminant Environmental Exposure Assessment) methodology assesses exposures to air, water, soil, and plants from contaminants released into the environment by simulating dominant mechanisms of contaminant migration and fate. The methodology encompasses five different pathways (i.e., atmospheric, terrestrial, overland, subsurface, and surface water) and combines them into a highly flexible tool. The flexibility of the MCEA methodology is demonstrated by encompassing two of the pathways (i.e., overland and surface water) into an effective tool for simulating the migration and fate of radionuclides released into the Los Alamos, New Mexico region. The study revealed that: (a) the /sup 239/Pu inventory in lower Los Alamos Canyon increased by approximately 1.1 times for the 50-y flood event; (b) the average contaminant /sup 239/Pu concentrations (i.e., weighted according to the depth of the respective bed layer) in lower Los Alamos Canyon for the 50-y flood event decreased by 5.4%; (c) approx. 27% of the total /sup 239/Pu contamination resuspended from the entire bed (based on the assumed cross sections) for the 50-y flood event originated from lower Pueblo Canyon; (d) an increase in the /sup 239/Pu contamination of the bed followed the general deposition patterns experienced by the sediment in Pueblo-lower Los Alamos Canyon; likewise, a decrease in the /sup 239/Pu contamination of the bed followed general sediment resuspension patterns in the canyon; (e) 55% of the /sup 239/Pu reaching the San Ildefonso Pueblo in lower Los Alamos Canyon originated from lower Los Alamos Canyon; and (f) 56% of the /sup 239/Pu contamination reaching the San Ildefonso Pueblo in lower Los Alamos Canyon was carried through towards the Rio Grande. 47 references, 41 figures, 29 tables.

  12. Review of Indirect Methods Used to Determine the $^1S_0$ Neutron-Neutron Scattering Length

    CERN Document Server

    Howell, C R

    2008-01-01

    We have determined a value for the $^1S_0$ neutron-neutron scattering length ($a_{nn}$) from high-precision measurements of time-of-flight spectra of neutrons from the $^2H(\\pi^-,n \\gamma)n$ capture reaction. The measurements were done at the Los Alamos Meson Physics Facility by the E1286 collaboration. The high spatial resolution of our gamma-ray detector enabled us to make a detailed assessment of the systematic uncertainties in our techniques. The value obtained in the present work is $a_{nn} = -18$.63 $\\pm $0.10 (statistical) $\\pm$ 0.44 (systematic) $\\pm$ 0.30 (theoretical) fm. This result is consistent with previous determinations of $a_{nn}$ from the $\\pi^-d$ capture reaction. We found that the analysis of the data with calculations that use a relativistic phase-space factor gives a more negative value for $a_{nn}$ by 0.33 fm over the analysis done using a nonrelativistic phase-space factor. Combining the present result with the previous ones from $\\pi^-d$ capture gives: $a_{nn} = - 18$.63 $\\pm$ 0.27 (e...

  13. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory

    Science.gov (United States)

    Ren, Xiaoming; Zelenay, Piotr; Thomas, Sharon; Davey, John; Gottesfeld, Shimshon

    This paper describes recent advances in the science and technology of direct methanol fuel cells (DMFCs) made at Los Alamos National Laboratory (LANL). The effort on DMFCs at LANL includes work devoted to portable power applications, funded by the Defense Advanced Research Project Agency (DARPA), and work devoted to potential transport applications, funded by the US DOE. We describe recent results with a new type of DMFC stack hardware that allows to lower the pitch per cell to 2 mm while allowing low air flow and air pressure drops. Such stack technology lends itself to both portable power and potential transport applications. Power densities of 300 W/l and 1 kW/l seem achievable under conditions applicable to portable power and transport applications, respectively. DMFC power system analysis based on the performance of this stack, under conditions applying to transport applications (joint effort with U.C. Davis), has shown that, in terms of overall system efficiency and system packaging requirements, a power source for a passenger vehicle based on a DMFC could compete favorably with a hydrogen-fueled fuel cell system, as well as with fuel cell systems based on fuel processing on board. As part of more fundamental studies performed, we describe optimization of anode catalyst layers in terms of PtRu catalyst nature, loading and catalyst layer composition and structure. We specifically show that, optimized content of recast ionic conductor added to the catalyst layer is a sensitive function of the nature of the catalyst. Other elements of membrane/electrode assembly (MEA) optimization efforts are also described, highlighting our ability to resolve, to a large degree, a well-documented problem of polymer electrolyte DMFCs, namely "methanol crossover". This was achieved by appropriate cell design, enabling fuel utilization as high as 90% in highly performing DMFCs.

  14. Large-scale demonstration and deployment project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.; McFee, J. [IT Corp. (United States); Broom, C. [Florida International Univ., Miami, FL (United States); Dugger, H. [ICF Inc. (United States); Stallings, E. [Los Alamos National Lab., NM (United States)

    1999-04-01

    Established by the US Department of Energy (DOE) Environmental Management program through its Office of Science and Technology, the Deactivation and Decommissioning Focus Area is developing answers to the technological problems that hinder Environmental Management`s extensive cleanup efforts. The optimized application of technologies to ongoing nuclear facility decontamination and dismantlement is critical in meeting the challenge of decommissioning approximately 9,000 buildings and structures within the DOE complex. The significant technical and economic concerns in this area underscore a national imperative for the qualification and timely delivery of cost-reduction technologies and management approaches to meet federal and private needs. At Los Alamos National Laboratory (LANL), a Large-Scale Demonstration and Deployment Project (LSDDP) has been established to facilitate demonstration and deployment of technologies for the characterization, decontamination, and volume reduction of oversized metallic waste, mostly in the form of gloveboxes contaminated with transuranic radionuclides. The LANL LSDDP is being managed by an integrated contractor team (ICT) consisting of IT Corporation, ICF Incorporated, and Florida International University and includes representation from LANL`s Environmental Management Program Office. The ICT published in the Commerce Business Daily a solicitation for interest for innovative technologies capable of improving cost and performance of the baseline process. Each expression of interest response was evaluated and demonstration contract negotiations are under way for those technologies expected to be capable of meeting the project objectives. This paper discusses management organization and approach, the results of the technology search, the technology selection methodology, the results of the selection process, and future plans for the program.

  15. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  16. Neutron imaging and applications a reference for the imaging community

    CERN Document Server

    McGreevy, Robert L; Bilheux, Hassina Z

    2009-01-01

    Offers an introduction to the basics of neutron beam production in addition to the wide scope of techniques that enhance imaging application capabilities. This title features a section that describes imaging single grains in polycrystalline materials, neutron imaging of geological materials and other materials science and engineering areas.

  17. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-03

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL`s current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency`s (EPA`s) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL`s existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility.

  18. The bidimensional neutron transport code TWOTRAN-GG. Users manual and input data TWOTRAN-TRACA version; El codigo de transporte bidimensional TWOTRAN-GG. Manual de usuario y datos de entrada version TWOTRAN-TRACA

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, C.; Aragones, J. M.

    1981-07-01

    This Is a users manual of the neutron transport code TWOTRAN-TRACA, which is a version of the original TWOTRAN-GG from the Los Alamos Laboratory, with some modifications made at JEN. A detailed input data description is given as well as the new modifications developed at JEN. (Author) 8 refs.

  19. Neutronic Analyses in Support of the HFIR Beamline Modifications and Lifetime Extension

    Science.gov (United States)

    Remec, I.; Blakeman, E. D.

    2009-08-01

    At the High Flux Isotope Reactor, in operation since 1966 at the Oak Ridge National Laboratory, a larger HB-2 beam tube was installed to enhance capabilities for neutron science research. Neutronic analyses, including dosimetry measurements, radiation transport simulations, and simultaneous neutron and gamma spectrum adjustment calculations, performed to assess the impact of modifications on the PV lifetime are presented.

  20. A neutron portal monitor for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Coop, K.L.; Fehlau, P.E.; Atwater, H.F.

    1987-07-12

    We have designed and built a portal vehicle monitoring systems for detecting neutron-emitting special nuclear material (SNM) such as plutonium. Monte Carlo calculations were used to optimize the design of the 15-cm-deep x 122-cm-high x 244-cm-long detector chambers, which utilize /sup 3/He proportional counters inside a hollow polyethylene box. Results for a variety of parametric studies, including polyethylene thickness and detector number, are described. Our experimental measurements are in good agreement with the computer calculations. The monitor's decision logic uses the Sequential Probability Ratio Test (SPRT) on Poisson distributed counting data, which is superior to other statistical tests in many applications. We performed computer simulations of the SPRT logic to determine expected false-positive decision rates. A controller unit of our design that uses this SPRT was built commercially. The cost of the complete monitoring system is similar to that of vehicle portal monitors that detect gamma rays. This new neutron monitor can serve as an addition to standard gamma-ray vehicle portals or as a stand-alone portal monitor in particular safeguards monitoring situations. The monitor is being tested at Los Alamos and is scheduled for in-plant evaluation of another DOE facility in 1987. 7 refs.

  1. Monitoring Sensitive Bat Species at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Kari M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-15

    Bats play a critical role in ecosystems and are vulnerable to disturbance and disruption by human activities. In recent decades, bat populations in the United States and elsewhere have decreased tremendously. There are 47 different species of bat in the United States and 28 of these occur in New Mexico with 15 different species documented at the Los Alamos National Laboratory (LANL) and surrounding areas. Euderma maculatum(the spotted bat) is listed as “threatened” by the state of New Mexico and is known to occur at LANL. Four other species of bats are listed as “sensitive” and also occur here. In 1995, a four year study was initiated at LANL to assess the status of bat species of concern, elucidate distribution and relative abundance, and obtain information on roosting sites. There have been no definitive studies since then. Biologists in the Environmental Protection Division at LANL initiated a multi-year monitoring program for bats in May 2013 to implement the Biological Resources Management Plan. The objective of this ongoing study is to monitor bat species diversity and seasonal activity over time at LANL. Bat species diversity and seasonal activity were measured using an acoustic bat detector, the Pettersson D500X. This ultrasound recording unit is intended for long-term, unattended recording of bat and other high frequency animal calls. During 2013, the detector was deployed at two locations around LANL. Study sites were selected based on proximity to water where bats may be foraging. Recorded bat calls were analyzed using Sonobat, software that can help determine specific species of bat through their calls. A list of bat species at the two sites was developed and compared to lists from previous studies. Species diversity and seasonal activity, measured as the number of call sequences recorded each month, were compared between sites and among months. A total of 17,923 bat calls were recorded representing 15 species. Results indicate that there is a

  2. Performance study of the neutron-TPC

    Science.gov (United States)

    Huang, Meng; Li, Yulan; Niu, Libo; Deng, Zhi; Cheng, Xiaolei; He, Li; Zhang, Hongyan; Fu, Jianqiang; Yan, Yangyang; Cai, Yiming; Li, Yuanjing

    2017-02-01

    Fast neutron spectrometers will play an important role in the future of the nuclear industry and nuclear physics experiments, in tasks such as fast neutron reactor monitoring, thermo-nuclear fusion plasma diagnostics, nuclear reaction cross-section measurement, and special nuclear material detection. Recently, a new fast neutron spectrometer based on a GEM (Gas Electron Multiplier amplification)-TPC (Time Projection Chamber), named the neutron-TPC, has been under development at Tsinghua University. It is designed to have a high energy resolution, high detection efficiency, easy access to the medium material, an outstanding n/γ suppression ratio, and a wide range of applications. This paper presents the design, test, and experimental study of the neutron-TPC. Based on the experimental results, the energy resolution (FWHM) of the neutron-TPC can reach 15.7%, 10.3% and 7.0% with detection efficiency higher than 10‑5 for 1.2 MeV, 1.81 MeV and 2.5 MeV neutrons respectively. Supported by National Natural Science Foundation of China (11275109)

  3. Superheated drop neutron spectrometer

    CERN Document Server

    Das, M; Roy, B; Roy, S C; Das, Mala

    2000-01-01

    Superheated drops are known to detect neutrons through the nucleation caused by the recoil nuclei produced by the interactions of neutrons with the atoms constituting the superheated liquid molecule. A novel method of finding the neutron energy from the temperature dependence response of SDD has been developed. From the equivalence between the dependence of threshold energy for nucleation on temperature of SDD and the dependence of dE/dx of the recoil ions with the energy of the neutron, a new method of finding the neutron energy spectrum of a polychromatic as well as monochromatic neutron source has been developed.

  4. Neutron streak camera

    Science.gov (United States)

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  5. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    Energy Technology Data Exchange (ETDEWEB)

    McAlpine, Bradley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclear capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.

  6. Sound speed and oscillation frequencies for solar models evolved with Los Alamos ATOMIC opacities

    CERN Document Server

    Guzik, Joyce A; Walczak, P; Wood, S R; Mussack, K; Farag, E

    2016-01-01

    Los Alamos National Laboratory has calculated a new generation of radiative opacities (OPLIB data using the ATOMIC code) for elements with atomic number Z=1-30 with improved physics input, updated atomic data, and finer temperature grid to replace the Los Alamos LEDCOP opacities released in the year 2000. We calculate the evolution of standard solar models including these new opacities, and compare with models evolved using the Lawrence Livermore National Laboratory OPAL (Iglesias and Rogers 1996) opacities. We use the solar abundance mixture of Asplund et al. (2009). The new Los Alamos ATOMIC opacities have steeper opacity derivatives than those of OPAL for temperatures and densities of the solar interior radiative zone. We compare the calculated nonadiabatic solar oscillation frequencies and solar interior sound speed to observed frequencies and helioseismic inferences. The calculated sound-speed profiles are similar for models evolved using either the updated Iben evolution code (see \\cite{Guzik2010}), or ...

  7. Wide-area Gigabit networking: Los Alamos HIPPI-SONET Gateway

    Energy Technology Data Exchange (ETDEWEB)

    St. John, W.B.; DuBois, D.H.

    1995-05-01

    This paper describes a HIPPI-SONET Gateway which has been designed by members of the Computer Network Engineering Group at Los Alamos National Laboratory. The Gateway has been used in the CASA Gigabit Testbed at Caltech, Los Alamos National Laboratory, and the San Diego Supercomputer Center to provide communications between the sites. This paper will also make some qualitative statements as to lessons learned during the deployment and maintenance of this wide area network. We report record throughput for transmission of data across a wide area network. We have sustained data rates using the TCP/IP protocol of 550 Mbits/second and the rate of 792 Mbits/second for raw HIPPI data transfer over the 2,000 kilometers from the San Diego Supercomputer Center to the Los Alamos National Laboratory.

  8. Neutron studies of amorphous solids

    CERN Document Server

    Stone, C E

    2001-01-01

    of both three and four coordinated boron. Superstructural units were found to be present even at high Cs sub 2 O contents. The above results have shown that superstructural units are found in many borate glasses. The thesis begins with an introduction to glass and glass science, followed by a brief overview of the theory of neutron scattering. A background to neutron experiments is given and a more detailed description of the sources and instruments used. Subsequent chapters are then devoted to lead and zinc phosphate glasses, iron phosphate glasses, ultra low expansion glass, boron sulphide glass, bismuth containing glasses, pressure compacted glasses and cesium borate glasses. Lead and zinc phosphate glasses were found to have a coordination number of four for Pb or Zn and the lead and zinc were both incorporated into the network structure. In ultra low expansion glass the titania was found to be four fold coordinated. Vitreous boron sulphide gives results consistent with borsulphol superstructural units. D...

  9. Overview of recent tritium target filling, layering, and material testing at Los Alamos national laboratory in support of inertial fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ebey, P. S.; Dole, J. M.; Geller, D. A.; Hoffer, J. K.; Morris, J.; Nobile, A.; Schoonover, J. R.; Wilson, D. [MS-C927, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bonino, M.; Harding, D.; Sangster, C.; Shmayda, W. [Laboratory for Laser Energetics LLE, Univ. of Rochester, 250 East River Road, Rochester, NY 14623 (United States); Nikroo, A.; Sheliak, J. D. [General Atomics GA (United States); Burmann, J.; Cook, B.; Letts, S.; Sanchez, J. [Lawrence Livermore National Laboratory LLNL (United States)

    2008-07-15

    The Tritium Science and Engineering (AET-3) Group at Los Alamos National Laboratory (LANL) performs a variety of activities to support Inertial Fusion (IF) research - both to further fundamental fusion science and to develop technologies in support of Inertial Fusion Energy (IFE) power generation. Inertial fusion ignition target designs have a smooth spherical shell of cryogenic Deuterium-Tritium (DT) solid contained within a metal or plastic shell that is a few mm in diameter. Fusion is attained by imploding these shells under the symmetric application of energy beams. For IFE targets the DT solid must also survive the process of injecting it into the power plant reactor. Non-ignition IF targets often require a non-cryogenic DT gas fill of a glass or polymeric shell. In this paper an overview will be given of recent LANL activities to study cryogenic DT layering, observe tritium exposure effects on IF relevant materials, and fill targets in support of IF implosion experiments. (authors)

  10. Neutron anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, G.E. [Univ. of Sheffield (United Kingdom)

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  11. Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Herrera, Gary D. [Los Alamos National Laboratory; McLaughlin, Anastasia D. [Los Alamos National Laboratory; Montoya, Charles M. [Los Alamos National Laboratory; Quihuis, Becky A. [Los Alamos National Laboratory; Trujillo, Julio B. [Los Alamos National Laboratory; Van Pelt, Craig E. [Los Alamos National Laboratory; Wenz, Tracy R. [Los Alamos National Laboratory

    2012-07-13

    The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

  12. Los Alamos Air Monitoring Data Related to the Fukushima Daiichi Reactor

    Energy Technology Data Exchange (ETDEWEB)

    McNaughton, Michael [Los Alamos National Laboratory

    2011-01-01

    In response to the disasters in Japan on March 11, 2011, Los Alamos National Laboratory (LANL) is collecting air data and analyzing the data for fission products. At present, we report preliminary data from three high-volume air samplers and one stack sampler. Iodine-131 (I-131) is not optimally measured by our standard polypropylene filters. In addition to the filter data, we have one measurement obtained from a charcoal cartridge. These data, together with measurements of other radionuclides are adequate for a preliminary assessment and assure us that radionuclides from Fukushima Daiichi do not present a threat to human health at or near Los Alamos.

  13. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  14. Concentration Ratios for Cesium and Strontium in Produce Near Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    S. Salazar, M.McNaughton, P.R. Fresquez

    2006-03-01

    The ratios of the concentrations of radionuclides in produce (fruits, vegetables, and grains) to the concentrations in the soil have been measured for cesium and strontium at locations near Los Alamos. The Soil, Foodstuffs, and Biota Team of the Meteorology and Air Quality Group of the Los Alamos National Laboratory (LANL) obtained the data at locations within a radius of 50 miles of LANL. The concentration ratios are in good agreement with previous measurements: 0.01 to 0.06 for cesium-137 and 0.1 to 0.5 for strontium-90 (wet-weight basis).

  15. Heat Source Neutron Emission Rate Reduction Studies - Water Induced HF Liberation

    Science.gov (United States)

    Matonic, John; Brown, John; Foltyn, Liz; Garcia, Lawrence; Hart, Ron; Herman, David; Huling, Jeff; Pansoy-Hjelvik, M. E. Lisa; Sandoval, Fritz; Spengler, Diane

    2004-02-01

    Plutonium-238 oxide (238PuO2) is used in the fabrication of general purpose heat sources (GPHS) or light-weight radioisotope heater units (LWRHUs). The heat sources supply the thermal energy used in radioisotope thermoelectric generators to power spacecraft for deep space missions and to heat critical components in the cold environs of space. Los Alamos National Laboratory has manufactured heat sources for approximately two decades. The aqueous purification of 238PuO2 is required, due to rigorous total Pu-content, actinide and non-actinide metal impurity, and neutron emission rate specifications. The 238PuO2 aqueous purification process is a new capability at Los Alamos National Laboratory as previously, aqueous purified 238PuO2 occurred at other DOE complexes. The Pu-content and actinide and non-actinide metal impurity specifications are met well within specification in the Los Alamos process, though reduction in neutron emission rates have been challenging. High neutron emission rates are typically attributed to fluoride content in the oxide. The alpha decay from 238Pu results in α,n reactions with light elements such as 17O, 18O, and 19F resulting in high neutron emission rates in the purified 238PuO2. Simple 16O-exchange takes care of the high NER due to 17O, and 18O. A new method to reduce the NER due to 19F in the purified 238PuO2 is presented in this paper. The method involves addition of water to purified 238PuO2, followed by heating to remove the water and liberating fluoride as HF.

  16. Science Based Stockpile Stewardship

    Science.gov (United States)

    1994-11-01

    available on NOVA. Further, the NIF is designed with 192 bea&Adpts (48 indepen- 37 The National Ignition Facility - 192 Beam Amplifier columns Main amplifier...science (- 5-500 MeV) and directed to the neutron target. The epithermal neutrons are still tightly bunched in time (some tens of u sec), so that the...is useful as a test-bed to address: "* beam intercept and other orbit dynamics issues for an APT "* more precise measurements of neutron yield and

  17. Imaging with Scattered Neutrons

    OpenAIRE

    Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M.; Van Overberghe, A.

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...

  18. Los Alamos National Laboratory Prototype Fabrication Division CNM Briefing

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, Stephen P. [Los Alamos National Laboratory; Keyser, Richard J. [Los Alamos National Laboratory

    2012-06-18

    Prototype Fabrication Division designs, programs, manufactures, and inspects on-site high quality, diverse material parts and components that can be delivered at the pace the customer needs to meet their mission. Our goal is to bring vision to reality in the name of science.

  19. Los Alamos Science: Number 23, 1995. Radiation protection and the human radiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N.G. [ed.

    1995-12-31

    There are a variety of myths and misconceptions about the ionizing radiation that surrounds and penetrates us all. Dispel a few of these by taking a leisurely tour of radiation and its properties, of the natural and man-made sources of ionizing radiation, and of the way doses are calculated. By damaging DNA and inducing genetic mutations, ionizing radiation can potentially initiate a cell on the road to cancer. The authors review what is currently known about regulation of cellular reproduction, DNA damage and repair, cellular defense mechanisms, and the specific cancer-causing genes that are susceptible to ionizing radiation. A rapid survey of the data on radiation effects in humans shows that high radiation doses increase the risk of cancer, whereas the effects of low doses are very difficult to detect. The hypothetical risks at low doses, which are estimated from the atomic-bomb survivors, are compared to the low-dose data so that the reader can assess the present level of uncertainty. As part of the openness initiative, ten individuals who have worked with plutonium during various periods in the Laboratory`s history were asked to share their experiences including their accidental intakes. The history and prognosis of people who have had plutonium exposures is discussed by the Laboratory`s leading epidemiologist.

  20. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  1. Advanced neutron absorber materials

    Science.gov (United States)

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  2. Calculation of prompt fission neutron spectra for 235U(n,f)

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Jing; JIA Min; TAO Xi; QIAN Jing; LIU Ting-Jin; SHU Neng-Chuan

    2012-01-01

    The prompt fission neutron spectra for the neutron-induced fission of 235U at En < 5 MeV are calculated using nuclear evaporation theory with a semi-empirical model,in which the nonconstant and constant temperatures related to the Fermi gas model are taken into account. The calculated prompt fission neutron spectra reproduce the experimental data well.For the n(thermal)+235U reaction,the average nuclear temperature of the fission fragment,and the probability distribution of the nuclear temperature,are discussed and compared with the Los Alamos model.The energy carried away by γ rays emitted from each fragment is also obtained and the results are in good agreement with the existing experimental data.

  3. Neutron Instrumentation and Neutron Investigation of Archaeometallurgical Arms and Armours

    DEFF Research Database (Denmark)

    Fedrigo, Anna

    and a system of optical blind choppers, which make it possible to trade flux for energy resolution. The application of neutron diffraction and imaging techniques have long demonstrated their potential in the characterisation of dense materials in engineering and material science. In this project they have been...... used as a non-destructive analytical tool for the study of metallic artefacts of archaeometric interest. Three “pattern-welded” sword blades from the Viking age, provided by the National Museum of Denmark, have been fully characterised in terms of composition, manufacturing processes, and conservation...

  4. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  5. Grazing Incidence Neutron Optics

    Science.gov (United States)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  6. Neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  7. Los Alamos flux comperssion systems, ASI focus area I program plan

    Energy Technology Data Exchange (ETDEWEB)

    Goforth, James H [Los Alamos National Laboratory; Heger, Sharif [Los Alamos National Laboratory

    2010-12-14

    This document is a final summary of an original plan submitted as LA-UR 10-06693. There are minor revisions, some new items have been completed, and there is a statement of some funding shortfalls. Program plan focuses on using Ranchero Technology for the ASI 43 cm Ranchero generators are being fabricated to provide a small scale load and diagnostics test capability at Los Alamos - LLNL loads and Los Alamos multi-shell loads. 43 cm Ranchero tests continue as long as they are useful. 1 or 1.4 m Ranchero tests follow in the out years - Multi-shell loads have identified needs for full length generators and one 1.4 m generator is on hand. Both LLNL and Los Alamos loads will require larger current capability, and Ranchero will be scaled up in diameter when full scale current is defined. Increased scale tests expected in FY-12. The bulk of the Los Alamos Effort will be directed toward two thrusts: (1) Perform tests for LLNL load development and (2) explore multi-shell loads. ASC program assesses development against ASI results then provides new designs.

  8. 77 FR 3257 - Transfer of Land Tracts Located at Los Alamos National Laboratory, New Mexico

    Science.gov (United States)

    2012-01-23

    ... (Conveyance and Transfer EIS) to address the remaining acreage of Los Alamos National Laboratory's (LANL's...) 472-2756. Additional information regarding DOE NEPA activities and access to many DOE NEPA documents.../ . SUPPLEMENTARY INFORMATION: Background LANL is a multidisciplinary, multipurpose research institution in...

  9. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    Energy Technology Data Exchange (ETDEWEB)

    Orndoff, J.D.; Paxton, H.C.; Wimett, T.F.

    1980-12-01

    Detailed consideration of the Skua burst assembly is provided, thereby supplementing the facility Safety Analysis Report covering the operation of other critical assemblies at the Los Alamos Scientific Laboratory. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public.

  10. Simplifying Complexity: Miriam Blake--Los Alamos National Laboratory Research Library, NM

    Science.gov (United States)

    Library Journal, 2004

    2004-01-01

    The holy grail for many research librarians is one-stop searching: seamless access to all the library's resources on a topic, regardless of the source. Miriam Blake, Library Without Walls Project Leader at Los Alamos National laboratory (LANL), is making this vision a reality. Blake is part of a growing cadre of experts: a techie who is becoming a…

  11. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  12. Surface water data at Los Alamos National Laboratory: 2008 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  13. Surface water data at Los Alamos National Laboratory: 2009 water year

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, David; McCullough, Betsy

    2010-05-01

    The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  14. A Wildfire Behavior Modeling System at Los Alamos National Laboratory for Operational Applications

    Energy Technology Data Exchange (ETDEWEB)

    S.W. Koch; R.G.Balice

    2004-11-01

    To support efforts to protect facilities and property at Los Alamos National Laboratory from damages caused by wildfire, we completed a multiyear project to develop a system for modeling the behavior of wildfires in the Los Alamos region. This was accomplished by parameterizing the FARSITE wildfire behavior model with locally gathered data representing topography, fuels, and weather conditions from throughout the Los Alamos region. Detailed parameterization was made possible by an extensive monitoring network of permanent plots, weather towers, and other data collection facilities. We also incorporated a database of lightning strikes that can be used individually as repeatable ignition points or can be used as a group in Monte Carlo simulation exercises and in other randomization procedures. The assembled modeling system was subjected to sensitivity analyses and was validated against documented fires, including the Cerro Grande Fire. The resulting modeling system is a valuable tool for research and management. It also complements knowledge based on professional expertise and information gathered from other modeling technologies. However, the modeling system requires frequent updates of the input data layers to produce currently valid results, to adapt to changes in environmental conditions within the Los Alamos region, and to allow for the quick production of model outputs during emergency operations.

  15. Surface Water Data at Los Alamos National Laboratory 2000 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D.A.Shaull; M.R.Alexander; R.P.Reynolds; R.P.Romero; E.T.Riebsomer; C.T.McLean

    2001-06-02

    The principal investigators collected and computed surface water discharge data from 23 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs, two that flow into Canon del Valle and one that flows into Water Canyon.

  16. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Shaull; D. Ortiz; M.R. Alexander; R.P. Romero

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  17. Surface Water Data at Los Alamos National Laboratory: 1999 Water Year

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Shaull; M. R. Alexander; R. P. Reynolds; C. T. McLean; R. P. Romero

    2000-04-01

    The principal investigators collected and computed surface water discharge data from 22 stream-gaging stations that cover most of Los Alamos National Laboratory with one at Bandelier National Monument. Also included are discharge data from three springs that flow into Canon de Valle and nine partial-record storm water stations.

  18. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1995 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-07-01

    This status report summarizes the activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project`s (YMP`s) quality assurance program for January 1 to September 30, 1995. The report includes major sections on program activities and trend analysis.

  19. Mapping the future of CIC Division, Los Alamos National Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report summarizes three scenario-based strategic planning workshops run for the CIC Division of the Los Alamos National Laboratory during November and December, 1995. Each of the two-day meetings was facilitated by Northeast Consulting Resources, Inc. (NCRI) of Boston, MA. using the Future Mapping{reg_sign} methodology.

  20. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brice, R.; Cartron, D.; Rhyne, T.; Schulze, M.; Welty, L.

    1997-06-01

    Over the past decade, numerous companies have been formed to commercialize research results from leading U.S. academic and research institutions. Emerging small businesses in areas such as Silicon Valley, Boston`s Route 128 corridor, and North Carolina`s Research Triangle have been especially effective in moving promising technologies from the laboratory bench to the commercial marketplace--creating new jobs and economic expansion in the process. Unfortunately, many of the U.S. national laboratories have not been major participants in this technology/commercialization activity, a result of a wide variety of factors which, until recently, acted against successful commercialization. This {open_quotes}commercialization gap{close_quotes} exists partly due to a lack, within Los Alamos in particular and the DOE in general, of in-depth expertise and experience in such business areas as new business development, securities regulation, market research and the determination of commercial potential, the identification of entrepreneurial management, marketing and distribution, and venture capital sources. The immediate consequence of these factors is the disappointingly small number of start-up companies based on technologies from Los Alamos National Laboratory that have been attempted, the modest financial return Los Alamos has received from these start-ups, and the lack of significant national recognition that Los Alamos has received for creating and commercializing these technologies.

  1. 2015 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caldwell, Wendy [Arizona State Univ., Mesa, AZ (United States); Brown, Barton Jed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pederson, Clark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Justin [Univ. of California, Santa Cruz, CA (United States); Burrill, Daniel [Univ. of Vermont, Burlington, VT (United States); Feinblum, David [Univ. of California, Irvine, CA (United States); Hyde, David [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Levick, Nathan [Univ. of New Mexico, Albuquerque, NM (United States); Lyngaas, Isaac [Florida State Univ., Tallahassee, FL (United States); Maeng, Brad [Univ. of Michigan, Ann Arbor, MI (United States); Reed, Richard LeRoy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarno-Smith, Lois [Univ. of Michigan, Ann Arbor, MI (United States); Shohet, Gil [Univ. of Illinois, Urbana-Champaign, IL (United States); Skarda, Jinhie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Josey [Missouri Univ. of Science and Technology, Rolla, MO (United States); Zeppetello, Lucas [Columbia Univ., New York, NY (United States); Grossman-Ponemon, Benjamin [Stanford Univ., CA (United States); Bottini, Joseph Larkin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Loudon, Tyson Shane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); VanGessel, Francis Gilbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagaraj, Sriram [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Price, Jacob [Univ. of Washington, Seattle, WA (United States)

    2015-10-15

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.

  2. 2016 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bachrach, Harrison Ian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Nils [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Collier, Angela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dumas, William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fankell, Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ferris, Natalie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Francisco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griffith, Alec [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guston, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kenyon, Connor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Benson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mookerjee, Adaleena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parkinson, Christian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peck, Hailee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peters, Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poondla, Yasvanth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shaffer, Nathaniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trettel, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valaitis, Sonata Mae [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venzke, Joel Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Black, Mason [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demircan, Samet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holladay, Robert Tyler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.

  3. Advances in neutron tomography

    Indian Academy of Sciences (India)

    W Treimer

    2008-11-01

    In the last decade neutron radiography (NR) and tomography (NCT) have experienced a number of improvements, due to the well-known properties of neutrons interacting with matter, i.e. the low attenuation by many materials, the strong attenuation by hydrogenous constituent in samples, the wavelength-dependent attenuation in the neighbourhood of Bragg edges and due to better 2D neutron detectors. So NR and NCT were improved by sophisticated techniques that are based on the attenuation of neutrons or on phase changes of the associated neutron waves if they pass through structured materials. Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works. Now one can present much improved test experiments using polarized neutrons for radiographic imaging. For this purpose the CONRAD instrument of the HMI was equipped with polarizing and analysing benders very similar to conventional scattering experiments using polarized neutrons. Magnetic fields in different coils and in samples (superconductors) at low temperatures could be visualized. In this lecture a summary about standard signals (attenuation) and the more `sophisticated' imaging signals as refraction, small angle scattering and polarized neutrons will be given.

  4. The economic impact of Los Alamos National Laboratory on north-central New Mexico and the state of New Mexico fiscal year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R.R. [New Mexico State Univ., Las Cruces, NM (US); Adcock, L.D.; Gentry, L.M. [Albuquerque Operations Office, Dept. of Energy, Albuquerque, NM (US); Ben-David, S. [Univ. of New Mexico, Albuquerque, NM (US). Dept. of Economics; Temple, J. [Temple (John), Albuquerque, NM (US)

    1999-08-05

    Los Alamos National Laboratory (LANL) is a multidisciplinary, multiprogram laboratory with a mission to enhance national military and economic security through science and technology. Its mission is to reduce the nuclear danger through stewardship of the nation`s nuclear stockpile and through its nonproliferation and verification activities. An important secondary mission is to promote US industrial competitiveness by working with US companies in technology transfer and technology development partnerships. Los Alamos is involved in partnerships and collaborations with other federal agencies, with industry (including New Mexico businesses), and with universities worldwide. For this report, the reference period is FY 1998 (October 1, 1997, through September 30, 1998). It includes two major impact analysis: the impact of LANL activities on north-central New Mexico and the economic impacts of LANL on the state of New Mexico. Total impact represents both direct and indirect responding by business, including induced effects (responding by households). The standard multipliers used in determining impacts result from the inter-industry, input-output models developed for the three-county region and the state of New Mexico.

  5. Neutronic Reactor Shield

    Science.gov (United States)

    Fermi, Enrico; Zinn, Walter H.

    The argument of the present Patent is a radiation shield suitable for protection of personnel from both gamma rays and neutrons. Such a shield from dangerous radiations is achieved to the best by the combined action of a neutron slowing material (a moderator) and a neutron absorbing material. Hydrogen is particularly effective for this shield since it is a good absorber of slow neutrons and a good moderator of fast neutrons. The neutrons slowed down by hydrogen may, then, be absorbed by other materials such as boron, cadmium, gadolinium, samarium or steel. Steel is particularly convenient for the purpose, given its effectiveness in absorbing also the gamma rays from the reactor (both primary gamma rays and secondary ones produced by the moderation of neutrons). In particular, in the present Patent a shield is described, made of alternate layers of steel and Masonite (an hydrolized ligno-cellulose material). The object of the present Patent is not discussed in any other published paper.

  6. Abraham Pais Prize for History of Physics Lecture: Big, Bigger, Too Big? From Los Alamos to Fermilab and the SSC

    Science.gov (United States)

    Hoddeson, Lillian

    2012-03-01

    The modern era of big science emerged during World War II. Oppenheimer's Los Alamos laboratory offered the quintessential model of a government-funded, mission-oriented facility directed by a strong charismatic leader. The postwar beneficiaries of this model included the increasingly ambitious large laboratories that participated in particle physics--in particular, Brookhaven, SLAC, and Fermilab. They carried the big science they practiced into a new realm where experiments eventually became as large and costly as entire laboratories had been. Meanwhile the available funding grew more limited causing the physics research to be concentrated into fewer and bigger experiments that appeared never to end. The next phase in American high-energy physics was the Superconducting Super Collider, the most costly pure physics project ever attempted. The SSC's termination was a tragedy for American science, but for historians it offers an opportunity to understand what made the success of earlier large high-energy physics laboratories possible, and what made the continuation of the SSC impossible. The most obvious reason for the SSC's failure was its enormous and escalating budget, which Congress would no longer support. Other factors need to be recognized however: no leader could be found with directing skills as strong as those of Wilson, Panofsky, Lederman, or Richter; the scale of the project subjected it to uncomfortable public and Congressional scrutiny; and the DOE's enforcement of management procedures of the military-industrial complex that clashed with those typical of the scientific community led to the alienation and withdrawal of many of the most creative scientists, and to the perception and the reality of poor management. These factors, exacerbated by negative pressure from scientists in other fields and a post-Cold War climate in which physicists had little of their earlier cultural prestige, discouraged efforts to gain international support. They made the SSC

  7. Evaluation of Macroinvertebrate Communities and Habitat for Selected Stream Reaches at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    L.J. Henne; K.J. Buckley

    2005-08-12

    This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquatic habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.

  8. Characterization of neutron yield and x-ray spectra of a High Flux Neutron Generator (HFNG)

    Science.gov (United States)

    Nnamani, Nnaemeka; HFNG Collaboration

    2015-04-01

    The High Flux Neutron Generator (HFNG) is a DD plasma-based source, with a self-loading target intended for fundamental science and engineering applications, including 40 Ar/39 Ar geochronology, neutron cross section measurements, and radiation hardness testing of electronics. Our first estimate of the neutron yield, based on the population of the 4.486 hour 115 In isomer gave a neutron yield of the order 108 n/sec; optimization is ongoing to achieve the design target of 1011 n/sec. Preliminary x-ray spectra showed prominent energy peaks which are likely due to atomic line-emission from back-streaming electrons accelerated up to 100 keV impinging on various components of the HFNG chamber. Our x-ray and neutron diagnostics will aid us as we continue to evolve the design to suppress back-streaming electrons, necessary to achieve higher plasma beam currents, and thus higher neutron flux. This talk will focus on the characterization of the neutron yield and x-ray spectra during our tests. A collimation system is being installed near one of the chamber ports for improved observation of the x-ray spectra. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and the UC Office of the President Award 12-LR-238745.

  9. Neutron field produced by 25 MeV deuteron on thick beryllium for radiobiological study; energy spectrum.

    Science.gov (United States)

    Takada, Masashi; Mihara, Erika; Sasaki, Michiya; Nakamura, Takashi; Honma, Toshihiko; Kono, Koji; Fujitaka, Kazunobu

    2004-01-01

    Biological data is necessary for estimation of protection from neutrons, but there is a lack of data on biological effects of neutrons for radiation protection. Radiological study on fast neutrons has been done at the National Institute of Radiological Sciences. An intense neutron source has been produced by 25 MeV deuterons on a thick beryllium target. The neutron energy spectrum, which is essential for neutron energy deposition calculation, was measured from thermal to maximum energy range by using an organic liquid scintillator and multi-sphere moderated 3He proportional counters. The spectrum of the gamma rays accompanying the neutron beam was measured simultaneously with the neutron spectrum using the organic liquid scintillator. The transmission by the shield of the spurious neutrons originating from the target was measured to be less than 1% by using the organic liquid scintillator placed behind the collimator. The measured neutron energy spectrum is useful in dose calculations for radiobiology studies.

  10. [Fast neutron cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  11. Experimental Physics Division of the Los Alamos Project. Progress report No. 4

    Energy Technology Data Exchange (ETDEWEB)

    1943-09-01

    Included in this semi-monthly report written in 1943 are progress with neutron beams, neutron absorption in enriched materials, equipment operation and maintenance reports of the cyclotron neutron source facility, and instrumentation maintenance activities of individuals in the cyclotron group. (GHT)

  12. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, Roger [ORNL; Baker, Shenda Mary [ORNL; Louca, Despo A [ORNL; McGreevy, Robert L [ORNL; Ekkebus, Allen E [ORNL; Kszos, Lynn A [ORNL; Anderson, Ian S [ORNL

    2008-10-01

    In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron

  13. Characterization of neutron reference fields at US Department of Energy calibration fields.

    Science.gov (United States)

    Olsher, R H; McLean, T D; Mallett, M W; Seagraves, D T; Gadd, M S; Markham, Robin L; Murphy, R O; Devine, R T

    2007-01-01

    The Health Physics Measurements Group at the Los Alamos National Laboratory (LANL) has initiated a study of neutron reference fields at selected US Department of Energy (DOE) calibration facilities. To date, field characterisation has been completed at five facilities. These fields are traceable to the National Institute for Standards and Technology (NIST) through either a primary calibration of the source emission rate or through the use of a secondary standard. However, neutron spectral variation is caused by factors such as room return, scatter from positioning tables and fixtures, source anisotropy and spectral degradation due to source rabbits and guide tubes. Perturbations from the ideal isotropic point source field may impact the accuracy of instrument calibrations. In particular, the thermal neutron component of the spectrum, while contributing only a small fraction of the conventionally true dose, can contribute a significant fraction of a dosemeter's response with the result that the calibration becomes facility-specific. A protocol has been developed to characterise neutron fields that relies primarily on spectral measurements with the Bubble Technology Industries (BTI) rotating neutron spectrometer (ROSPEC) and the LANL Bonner sphere spectrometer. The ROSPEC measurements were supplemented at several sites by the BTI Simple Scintillation Spectrometer probe, which is designed to extend the ROSPEC upper energy range from 5 to 15 MeV. In addition, measurements were performed with several rem meters and neutron dosemeters. Detailed simulations were performed using the LANL MCNPX Monte Carlo code to calculate the magnitude of source anisotropy and scatter factors.

  14. Direct Observation of Neutron Scattering in MoNA Scintillator Detectors

    Science.gov (United States)

    Rogers, W. F.; Mosby, S.; Frank, N.; Kuchera, A. N.; Thoennessen, M.; MoNA Collaboration

    2017-01-01

    Monte Carlo simulations provide an important tool for the interpretation of neutron scattering data in the MoNA and LISA arrays at NSCL. Neutron energy and trajectory are determined by time of flight and position of first light produced in the array. Neutrons elastically scattered from H and inelastically from C typically produce light above detector threshold, while those elastically scattered from C produce light below threshold (``dark scattering'') and are redirected in flight, thus lowering energy and trajectory resolution. In order to test the effectiveness of our Geant4/MENATE_R simulations, we conducted an experiment at the LANSCE facility at Los Alamos National Laboratory to observe scattering of individual neutrons with well defined energy and trajectory in 16 MoNA detector bars arranged in two different stack geometries. Neutrons with energies ranging from 0.5 to 800 MeV emerged from a 3 mm collimator in the 90m shed on the WNR 4FP15L flight path to enter the array at a well defined point. Several features of neutron scattering are compared with simulation predictions, including hit multiplicity, scattering angle, mean distance between scatters, and the effect of dark scatter redirection. Results to date will be presented. Work supported by NSF Grant PHY-1506402.

  15. Neutronic calculations for a final focus system

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, E. E-mail: enrico@nuc.berkeley.edu; Premuda, F.; Lee, E

    2001-05-21

    For heavy-ion fusion and for 'liquid-protected' reactor designs such as HYLIFE-II (Moir et al., Fusion Technol. 25 (1994); HYLIFE-II-Progress Report, UCID-21816, 4-82-100), a mixture of molten salts made of F{sup 10}, Li{sup 6}, Li{sup 7}, Be{sup 9} called flibe allows highly compact target chambers. Smaller chambers will have lower costs and will allow the final-focus magnets to be closer to the target with decreased size of the focus spot and of the driver, as well as drastically reduced costs of IFE electricity. Consequently the superconducting coils of the magnets closer to the chamber will suffer higher radiation damage though they can stand only a certain amount of energy deposited before quenching. The scope of our calculations is essentially the total energy deposited on the magnetic lens system by fusion neutrons and induced {gamma}-rays. Such a study is important for the design of the final focus system itself from the neutronic point of view and indicates some guidelines for a design with six magnets in the beam line. The entire chamber consists of 192 beam lines to provide access of heavy ions that will implode the pellet. A 3-D transport calculation of the radiation penetrating through ducts that takes into account the complexity of the system, requires Monte Carlo methods. The development of efficient and precise models for geometric representation and nuclear analysis is necessary. The parameters are optimized thanks to an accurate analysis of six geometrical models that are developed starting from the simplest. Different configurations are examined employing TART 98 (D.E. Cullen, Lawrence Livermore National Laboratory, UCRL-ID-126455, Rev. 1, November, 1997) and MCNP 4B (Briesmeister (Ed.), Version 4B, La-12625-m, March 1997, Los Alamos National Laboratory): two Monte Carlo codes for neutrons and photons. The quantities analyzed include: energy deposited by neutrons and gamma photons, values of the total fluence integrated on the whole

  16. Los Alamos NEP research in advanced plasma thrusters

    Science.gov (United States)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  17. FNIT: the fast neutron imaging telescope for SNM detection

    Science.gov (United States)

    Bravar, Ulisse; Bruillard, Paul J.; Flückiger, Erwin O.; Macri, John R.; McConnell, Mark L.; Moser, Michael R.; Ryan, James M.

    2006-05-01

    We report on recent progress in the development of the Fast Neutron Imaging Telescope (FNIT), a detector with both imaging and energy measurement capabilities, sensitive to neutrons in the 2-20 MeV range. FNIT was initially conceived to study solar neutrons as a candidate design for the Solar Sentinels program under formulation at NASA. This instrument is now being configured to locate fission neutron sources for homeland security purposes. By accurately identifying the position of the neutron source with imaging techniques and reconstructing the energy spectrum of fission neutrons, FNIT can locate problematic amounts of Special Nuclear Material (SNM), including heavily shielded and masked samples. The detection principle is based on multiple elastic neutron-proton (n-p) scatterings in organic scintillators. By reconstructing the n-p event locations and sequence and measuring the recoil proton energies, the direction and energy spectrum of the primary neutron flux can be determined and neutron point sources identified. The performance of FNIT is being evaluated through a series of Monte Carlo simulations and lab tests of detector prototypes. The Science Model One (SM1) of this instrument was recently assembled and is presently undergoing performance testing.

  18. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  19. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  20. DOE - BES Nanoscale Science Research Centers (NSRCs)

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, Cathy Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  1. The DIORAMA Neutron Emitter

    Energy Technology Data Exchange (ETDEWEB)

    Terry, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    Emission of neutrons in a given event is modeled by the DioramaEmitterNeutron object, a subclass of the abstract DioramaEmitterModule object. The GenerateEmission method of this object is the entry point for generation of a neutron population for a given event. Shown in table 1, this method requires a number of parameters to be defined in the event definition.

  2. Neutron tomography instrument CONRAD at HZB

    Energy Technology Data Exchange (ETDEWEB)

    Kardjilov, N., E-mail: kardjilov@helmholtz-berlin.de [Helmholtz Centre Berlin, Hahn-Meitner Pl. 1, 14109 Berlin (Germany); Hilger, A.; Manke, I.; Strobl, M. [Helmholtz Centre Berlin, Hahn-Meitner Pl. 1, 14109 Berlin (Germany); Dawson, M. [Helmholtz Centre Berlin, Hahn-Meitner Pl. 1, 14109 Berlin (Germany); University of Salford, Salford M5 4WT (United Kingdom); Williams, S.; Banhart, J. [Helmholtz Centre Berlin, Hahn-Meitner Pl. 1, 14109 Berlin (Germany)

    2011-09-21

    The neutron tomography instrument CONRAD has been in operation since 2005 at the Hahn-Meitner research reactor at Helmholtz-Zentrum Berlin (HZB). Over the last 5 years, significant developmental work has been performed to expand the radiographic and tomographic capabilities of the beamline . New techniques have been implemented, including imaging with polarized neutrons , Bragg-edge mapping , high-resolution neutron imaging and grating interferometry . These methods have been provided to the user community as tools to help address scientific problems over a broad range of topics such as superconductivity, materials research, life sciences , cultural heritage and paleontology . Industrial applications including fuel cell research have also been improved through these new developments. Descriptions and parameters of the developed options will be presented, along with prominent examples.

  3. Optical absorption of neutron-irradiated silica fibers

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, D.W.; Farnum, E.H.; Bennett, B.L. [Los Alamos National Lab., NM (United States)

    1996-10-01

    Induced-loss spectra of silica-based optical fibers exposed to high (10{sup 23} n-m{sup {minus}2}) and low (10{sup 21} n-m{sup {minus}2}) fluences of neutrons at the Los Alamos Spallation Radiation Effects Facility (LASREF) have been measured. Two types of fibers consisting of a pure fused silica core with fluorine-doped ({approximately}4 mole %) cladding were obtained from Fiberguide Industries and used in the as-received condition. Anhydroguide{trademark} and superguide{trademark} fibers contained less than 1 ppm, and 600 to 800 ppm of OH, respectively. The data suggest that presently available silica fibers can be used in plasma diagnostics, but the choice and suitability depends upon the spectral region of interest. Low-OH content fibers can be used for diagnostic purposes in the interval {approximately}800 to 1400 mn if the exposure is to high-fluence neutrons. For low-fluence neutron exposures, the low-OH content fibers are best suited for use in the interval {approximately}800 to 2000 nm, and the high-OH content fibers are the choice for the interval {approximately}400 to 800 nm.

  4. New upper bound on the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    CERN Document Server

    Grammer, K B; Barrón-Palos, L; Blyth, D; Bowman, J D; Calarco, J; Crawford, C; Craycraft, K; Evans, D; Fomin, N; Fry, J; Gericke, M; Gillis, R C; Greene, G L; Hamblen, J; Hayes, C; Kucuker, S; Mahurin, R; Maldonado-Velázquez, M; Martin, E; McCrea, M; Mueller, P E; Musgrave, M; Nann, H; Penttilä, S I; Snow, W M; Tang, Z; Wilburn, W S

    2014-01-01

    The scattering of slow neutron beams provides unique, non-destructive, quantitative information on the structure and dynamics of materials of interest in physics, chemistry, materials science, biology, geology, and other fields. Liquid hydrogen is a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. In particular the rapid drop of the slow neutron scattering cross section of liquid parahydrogen below 15 meV, which renders the moderator volume transparent to the neutron energies of most interest for scattering studies, is therefore especially interesting and important. We have placed an upper bound on the total cross section and the scattering cross section for slow neutrons with energies between 0.43 meV and 16.1 meV on liquid hydrogen at 15.6 K using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge Nati...

  5. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2014-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  6. A fission-fragment-sensitive target for X-ray spectroscopy in neutron-induced fission

    CERN Document Server

    Ethvignot, T; Giot, L; Casoli, P; Nelson, R O

    2002-01-01

    A fission-fragment-sensitive detector built for low-energy photon spectroscopy applications at the WNR 'white' neutron source at Los Alamos is described. The detector consists of eight layers of thin photovoltaic cells, onto which 1 mg/cm sup 2 of pure sup 2 sup 3 sup 8 U is deposited. The detector serves as an active target to select fission events from background and other reaction channels. The fairly small thickness of the detector with respect to transmission of 20-50 keV photons permits the measurement of prompt fission-fragment X-rays. Results with the GEANIE photon spectrometer are presented.

  7. Neutron Physics. A Revision of I. Halpern's notes on E. Fermi's lectures in 1945

    Science.gov (United States)

    Beckerley, J.G.

    1951-10-16

    In the Fall of 1945 a course in Neutron Physics was given by Professor Fermi as part of the program of the Los Alamos University. The course consisted of thirty lectures most of which were given by Fermi. In his absence R.F. Christy and E. Segre gave several lectures. The present revision is based upon class notes prepared by I. Halpern with some assistance by B.T. Feld and issued first as document LADC 255 and later with wider circulation as MDDC 320.

  8. Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Freer, J.; Freer, E.; Bond, A. [and others

    1996-07-01

    The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL.

  9. The spallation neutron source: New opportunities

    Indian Academy of Sciences (India)

    Ian S Anderson

    2008-11-01

    The spallation neutron source (SNS) facility became operational in the spring of 2006, and is now well on its way to become the world-leading facility for neutron scattering. Furthermore, the SNS and the HFIR reactor facility, newly outfitted with a brilliant cold source and guide hall, were brought together within a single Neutron Sciences Directorate at ORNL providing the opportunity to develop science and instrumentation programs which take advantage of the unique characteristics of each source. SNS and HFIR will both operate as scientific user facilities. Access to these facilities is being managed under an integrated proposal system, which also includes the Center for Nanophase Materials Sciences (CNMS) and the electron microscopes in the Shared Research Equipment (SHARE) program. Presently, SNS has three instruments operating in the user program and seven more will begin operations in 2008. When complete, the facility will accommodate 25 instruments enabling researchers from the United States and abroad to study materials science that forms the basis for new technologies in telecommunications, manufacturing, transportation, information technology, biotechnology, and health.

  10. Room-temperature LINAC structures for the spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Billen, J. H. (James H.); Young, L. M. (Lloyd M.); Kurennoy, S. (Sergey); Crandall, K. R. (Kenneth R.)

    2001-04-01

    Los Alamos National Laboratory is building room-temperature rf accelerating structures for the Spallation Neutron Source (SNS). These structures, for H{sup -} ions, consist of six 402.5-MHz, 2-MW drift-tube linac (DTL) tanks from 2.5 to 87 MeV followed by four 805-MHz, 4-MW coupled-cavity linac (CCL) modules to 186 MeV. The DTL uses permanent magnet quadrupoles inside the drift tubes arranged in a 6{beta}{lambda} FFODDO lattice with every third drift tube available for diagnostics and steering. The CCL uses a 13{beta}{lambda} FODO electromagnetic quadrupole lattice. Diagnostics and magnets occupy the 2.5{beta}{lambda} spaces between 8-cavity segments. This paper discusses design of the rf cavities and low-power modeling work.

  11. Design of an integrating type neutron dose monitor.

    Science.gov (United States)

    Yamanishi, Hirokuni

    2011-07-01

    It is intended that deuterium-deuterium reaction experiments will be performed for the next phase of the large helical device (LHD) at National Institute for Fusion Science (NIFS), Toki, Japan. To protect workers against radiation, the characteristics of the radiation field at the LHD workplace should be evaluated. The neutron fluence at the workplace was calculated by means of the radiation transportation code. Since the neutron energy distribution at the workplace has a wide energy range, from thermal to fast neutrons, a neutron dose monitor had to be especially designed. The author designed an integrating type neutron dose monitor for this purpose. Since this monitor has good responses for dose evaluation in every energy range, it should be able to evaluate the dose at the LHD workplace accurately.

  12. The neutron texture diffractometer at the China Advanced Research Reactor

    Science.gov (United States)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  13. Neutron scattering and the search for mechanisms of superconductivity

    DEFF Research Database (Denmark)

    Aeppli, G.; Bishop, D.J.; Broholm, C.;

    1999-01-01

    Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors. The remai......Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors....... The remainder of the article gives examples of neutron results with impact on the search for the mechanism of superconductivity in more recently discovered, 'exotic', materials, namely the heavy fermion compounds and the layered cuprates, (C) 1999 Elsevier Science B.V. All rights reserved....

  14. Performance of Optical Devices for Energy-Selective Neutron Imaging in NOBORU at J-PARC

    Science.gov (United States)

    Harada, Masahide; Oikawa, Kenichi; Ooi, Motoki; Kai, Tetsuya; Shinohara, Takenao; Sakai, Kenji; Maekawa, Fujio

    The NeutrOn Beam-line for Observation and Research Use (NOBORU) is a day-1 neutron instrument serving as a test beam port at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex. Energy-selective neutron imaging is one of the more important research activities performed with NOBORU. To obtain a high spatial resolution with low background environment in the imaging experiment, improved neutron optics is necessary. Therefore, a rotary collimator to control the spatial resolution with high neutron intensity and a neutron filter device to control the neutron spectral intensity and gamma ray intensity are designed and installed on the middle of the beam-line. It is found from the results of a neutron radiography test that neutron transmission images with high spatial resolution (˜50 µm) can be obtained using the smallest hole in the rotary collimator. It is also confirmed that the remote-controlled filter device introduced in front of the rotary collimator can control the intensity of neutrons and gamma rays with only a small increase of the background. In particular, as bulk lead plates and bismuth single crystal plates attenuate the prompt gamma rays while only slightly sacrificing neutron intensity, neutrons in the epithermal neutron region can be easily measured.

  15. Shock and Detonation Physics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, David L [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve A [Los Alamos National Laboratory

    2012-08-22

    WX-9 serves the Laboratory and the Nation by delivering quality technical results, serving customers that include the Nuclear Weapons Program (DOE/NNSA), the Department of Defense, the Department of Homeland Security and other government agencies. The scientific expertise of the group encompasses equations-of-state, shock compression science, phase transformations, detonation physics including explosives initiation, detonation propagation, and reaction rates, spectroscopic methods and velocimetry, and detonation and equation-of-state theory. We are also internationally-recognized in ultra-fast laser shock methods and associated diagnostics, and are active in the area of ultra-sensitive explosives detection. The facility capital enabling the group to fulfill its missions include a number of laser systems, both for laser-driven shocks, and spectroscopic analysis, high pressure gas-driven guns and powder guns for high velocity plate impact experiments, explosively-driven techniques, static high pressure devices including diamond anvil cells and dilatometers coupled with spectroscopic probes, and machine shops and target fabrication facilities.

  16. The Characterization of Biotic and Abiotic Media Upgradient and Downgradient of the Los Alamos Canyon Weir

    Energy Technology Data Exchange (ETDEWEB)

    P.R. Fresquez

    2006-01-15

    As per the Mitigation Action Plan for the Special Environmental Analysis of the actions taken in response to the Cerro Grande Fire, sediments, vegetation, and small mammals were collected directly up- and downgradient of the Los Alamos Canyon weir, a low-head sediment control structure located on the northeastern boundary of Los Alamos National Laboratory, to determine contaminant impacts, if any. All radionuclides ({sup 3}H, {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, {sup 90}Sr, {sup 241}Am, {sup 234}U, {sup 235}U and {sup 238}U) and trace elements (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl) in these media were low and most were below regional upper level background concentrations (mean plus three sigma). The very few constituents that were above regional background concentrations were far below screening levels (set from State and Federal standards) for the protection of the human food chain and the terrestrial environment.

  17. Fire Science Strategy: Resource Conservation and Climate Change

    Science.gov (United States)

    2014-09-01

    Fire Science Strategy Resource Conservation and Climate Change September 2014 Report Documentation Page Form...Fire Science Program LiDAR Light Detection and Ranging LANL Los Alamos National Lab NASA National Aeronautics and Space Administration NCAR...managers not only in the proper use of fire but also in understanding the trade-offs involved in deciding to burn or not to burn. This strategy document

  18. Eleventh DOE workshop on personnel neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ``The 1990 Recommendations of the ICRP and their Biological Background.`` The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  19. 2003 Los Alamos National Laboratory Annual Illness and Injury Surveillance Report, Revised September 2007

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-04

    Annual Illness and Injury Surveillance Program report for 2003 for Los Alamos National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  20. Summary of New Los Alamos National Laboratory Groundwater Data Loaded in July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Steven M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-07

    This report provides information concerning groundwater monitoring data obtained by the Los Alamos National Laboratory under its interim monitoring plan and contains results for chemical constituents that meet seven screening criteria laid out in the Compliance Order on Consent. Tables are included in the report to organize the findings from the samples. The report covers groundwater samples taken from wells or springs that provide surveillance of the groundwater zones indicated in the table.

  1. Los Alamos National Laboratory Yucca Mountain Site Characterization Project 1994 quality program status report

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.L.

    1996-03-01

    This status report is for calendar year 1994. It summarizes the annual activities and accomplishments of the Los Alamos National Laboratory Yucca Mountain Site Characterization Project (YMP or Project) quality assurance program. By identifying the accomplishments of the quality program, a baseline is established that will assist in decision making, improve administrative controls and predictability, and allow us to annually identify adverse trends and to evaluate improvements. This is the fourth annual status report.

  2. Plan for increasing public participation in cleanup decisions for the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This document describes a plan for involving the public in decisions related to cleaning up sites suspected of being contaminated with chemicals or radioactivity at Los Alamos National Laboratory. In this section we describe the purpose of the Environmental Remediation Project, our past efforts to communicate with the northern New Mexico community, and the events that brought about our realization that less traditional, more innovative approaches to public involvement are needed.

  3. Preparation of fused chloride salts for use in pyrochemical plutonium recovery operations at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Fife, K.W.; Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

    1986-07-01

    The Plutonium Metal Technology Group at Los Alamos routinely uses pyrochemical processes to produce and purify plutonium from impure sources. The basic processes (metal production, metal purification, and residue treatment) involve controlling oxidation and reduction reactions between plutonium and its compounds in molten salts. Current production methods are described, as well as traditional approaches and recent developments in the preparation of solvent salts for electrorefining, molten salt extraction, lean metal (pyroredox) purification, and direct oxide reduction.

  4. Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation

    Science.gov (United States)

    Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,

  5. Forest surveys and wildfire assessment in the Los Alamos Region; 1998-1999

    Energy Technology Data Exchange (ETDEWEB)

    Randy G. Balice; Jay D. Miller; Brian P. Oswald; Carl Edminster; Stephen R. Yool

    2000-06-01

    To better understand the structural characteristics of vegetation in the Los Alamos region, the authors conducted two years of field surveys and associated analyses. This report introduces field methods, lists the summarized field data, and discusses the results of preliminary spatial analyses. During 1998 and 1999, seventy-six terrestrial plant communities were sampled for topographic characteristics, soil surface features, and vegetational conditions. A nested, randomized design was used to select the plot locations and to guide the sampling of the plot. The samples included a variety of fuel types, including surface fuels and ground fuels, shrubby and small tree fuels, and overstory fuels. Species composition data were also collected. The fuels data were summarized by vegetation type and evaluated for the topographic and spatial relationships of major field categories. The results of these analyses indicate that many of the fuels categories depend on topographic factors in a linear and curvilinear fashion. In particular, middle elevations within the Los Alamos region tend to support more surface fuels and ground fuels, whereas large-diameter trees are most dense at higher elevations and are specific to community types at these elevations. Small-diameter trees occur in more dense stands at lower and middle elevations and on specific soil and topographic conditions. Areas that burned in 1954 were found to be relatively free of fuels. The implications are that the western portions of the Los Alamos region are at risk from wildfire during dry, summer periods.

  6. Neutron Spectroscopy Using LiF Thin-Film Detectors

    Science.gov (United States)

    2013-03-01

    with an effective mass (mn or mp, respectively) different from elementary electrons not embedded in the lattice. The occupation probability for an...Below is a brief explanation of neutron kinematics. The formulas are quite elementary , however, they accurately describe the motion of a neutron as it...domains including: high energy physics, astrophysics and space science, medical physics and radiation protection. Figure 29. Flow chart representation of a

  7. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  8. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  9. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  10. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  11. Neutron imaging data processing using the Mantid framework

    Science.gov (United States)

    Pouzols, Federico M.; Draper, Nicholas; Nagella, Sri; Yang, Erica; Sajid, Ahmed; Ross, Derek; Ritchie, Brian; Hill, John; Burca, Genoveva; Minniti, Triestino; Moreton-Smith, Christopher; Kockelmann, Winfried

    2016-09-01

    Several imaging instruments are currently being constructed at neutron sources around the world. The Mantid software project provides an extensible framework that supports high-performance computing for data manipulation, analysis and visualisation of scientific data. At ISIS, IMAT (Imaging and Materials Science & Engineering) will offer unique time-of-flight neutron imaging techniques which impose several software requirements to control the data reduction and analysis. Here we outline the extensions currently being added to Mantid to provide specific support for neutron imaging requirements.

  12. Neutrons for global energy solutions. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The book of abstracts of the conference on neutrons for global energy solutions include contributions to the following topics: Views from politics: What do we need in European energy research: cooperation, large facilities, more science? Fundamental research for energy supply. View from the United States. View from industry: Neutrons for nuclear reactor development in transition stage between generation III and generation IV. Toyotas's expectations for neutron analysis. Instrumentation and cross cutting issues. Energy sources. Waste management and environment. Li ion batteries. Photovoltaics. Savings and catalysis. Fuel cells. Hydrogen storage.

  13. A simulation report for the neutron guide development at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S. J.; Soo, J. Y.; Seong, B. S.; Lee, C. H.; Kim, H. R

    2006-04-15

    Lately, a demand of the measurement technique on atomic scale has been exceedingly increased over the whole field of the basic and technical science such as biotechnology, nano-technology, solid state physics, solid chemistry etc. Therefore a project called 'infrastructure construction for cold neutron research and utilization technique development' was launched in KAERI in July 2003, in order to raise a domestic basic science with an international level and elevate a international competitiveness for the bio-, nano- and informatics technology area through a wide contribution in a material structure research field. In order to accomplish this project until 2008, some important developments were launched at a same time such as a cold neutron source which shifts neutrons from a short wavelength range to a long wavelength, a system driving part for a smooth operation of a cold neutron source, and a neutron guide tube to be able to send neutrons to spectrometers located over a long distance. The guide simulation should be preferentially performed for an effective use of expensive neutron to meet the requirements such as wavelengths and type of instruments, experimental space, interferences with other instruments. The objective of this study was to decide guide shape, dimension, amount, curvature and instrument layout.

  14. Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system

    Energy Technology Data Exchange (ETDEWEB)

    Iga, Kiminori [Kyushu Univ., Fukuoka (Japan); Takada, Hiroshi; Nagao, Tadashi

    1998-01-01

    In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B{sub 4}C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)

  15. Pocked surface neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  16. THERMAL NEUTRON BACKSCATTER IMAGING.

    Energy Technology Data Exchange (ETDEWEB)

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  17. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  18. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  19. Evaluation of neutron data for americium-241

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M.; Sukhovitskij, E.Sh.; Porodzinskij, Yu.V.; Klepatskij, A.B.; Morogovskij, G.B. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    The evaluation of neutron data for {sup 241}Am is made in the energy region from 10{sup -5} eV up to 20 MeV. The results of the evaluation are compiled in the ENDF/B-VI format. This work is performed under the Project Agreement CIS-03-95 with the International Science and Technology Center (Moscow). The Financing Party for the Project is Japan. The evaluation was requested by Y. Kikuchi (JAERI). (author). 60 refs.

  20. Optical polarizing neutron devices designed for pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.