WorldWideScience

Sample records for al2o3 depositadas sobre

  1. HIDRODENITROGENACION DE CARBAZOL SOBRE CATALIZADORES NiMo/Al2O3-SiO2(x

    Directory of Open Access Journals (Sweden)

    Felipe Sánchez-Minero

    2012-01-01

    Full Text Available En este trabajo se estudió la velocidad de reacción del carbazol sobre catalizadores NiMo soportados sobre Al2O3 modificada superficialmente con SiO2 (0 y 10 % en peso de SiO2 en el soporte. Los catalizadores fueron evaluados en un reactor intermitente a cuatro temperaturas (287, 300, 312 y 325oC, presión de 4.0 MPa y relación molar hidrogeno/carbazol de 2400. A partir de los resultados experimentales se realizó un estudio cinético utilizando ecuaciones del tipo Langmuir-Hinshelwood (L-H. Luego, los parámetros cinéticos fueron estimados mediante la minimización de Powell (programa Scientist de MicroMath. Los resultados muestran que el catalizador con sílice (NiMo-SAC 10 alcanza una mayor actividad para la HDN de carbazol debido a que presenta un mayor número de sitios activos (valor de A, así como una menor fuerza de adsorción entre el reactante y la superficie catalítica (valor de KN, lo cual posiblemente favorece una mejor regeneración de sitios activos.

  2. CATALIZADOR ESTRUCTURADO DE Pt/Al2O3 SOBRE UNA ESPUMA DE ACERO INOXIDABLE (AISI 314 PARA LA OXIDACIÓN DE CO

    Directory of Open Access Journals (Sweden)

    Juan P. Bortolozzi

    2011-01-01

    Full Text Available Se obtuvo un catalizador estructurado por recubrimiento de Pt/Al2O3 sobre las paredes de una espuma de acero inoxidable AISI 314. Para estabilizar térmicamente e incrementar la rugosidad de la superficie de la espuma original se realizó un tratamiento a 900°C por 2 h. El soporte, Al2O3, y el metal activo, Pt, se incorporaron por inmersión. Las técnicas de caracterización aplicadas, XRD, LRS y SEM-EDX, permiten concluir que el tratamiento térmico previo indujo la formación de óxido de cromo y de las espinelas Mn1+xCr2-xO4-x y FeCr2O4 como fases principales en las paredes del sustrato. El espesor de la capa formada es cercano a 1 μm y los cristales producidos tienen forma octaédrica. El cubrimiento de alúmina presentó en general una apariencia homogénea, sin interacción con los óxidos formados durante el tratamiento. El Pt se distribuyó de manera uniforme, resultando un catalizador muy activo para la reacción test elegida: oxidación de monóxido de carbono.

  3. Surface modified Al2O3 in fluorinated polyimide/Al2O3 ...

    Indian Academy of Sciences (India)

    the mechanical and thermal properties of polymers (Li et al. 2010). Herein, we wish to report the synthesis and characte- rization of fluorinated PI–Al2O3 nanocomposite films via in situ polymerization using different contents of surface modified Al2O3 nanoparticles as filler and fluorinated PI as the matrix. PI which was used ...

  4. Tensiones residuales en cerámicas multicapa de Al2O3-ZrO2: naturaleza, evaluación y consecuencias sobre la integridad estructural

    Directory of Open Access Journals (Sweden)

    Llanes, L.

    2006-10-01

    correspondientes monolíticos. Adicionalmente, se determinan analíticamente las tensiones residuales generadas en los laminados por medio de las diferencias volumétricas determinadas en ensayos dilatométricos y del módulo elástico de cada capa. Se encuentra que en las capas delgadas se desarrollan elevadas tensiones de compresión mientras que en las gruesas se inducen tensiones residuales de tracción. El efecto de estas tensiones sobre la integridad mecánica del material se discute en términos de las observaciones de fenómenos de fisuración intrínseca: tanto de grietas de borde o “edge cracks” en la superficie libre de las capas delgadas como de fisuras túnel o “tunneling cracks” en las capas gruesas.

  5. Análisis de la adhesión de recubrimientos del sistema Y2O3-Al2O3-SiO2 sobre sustratos de interés para la industria aeroespacial

    Directory of Open Access Journals (Sweden)

    Cinta Marraco-Borderas

    2016-07-01

    Full Text Available En la industria aeroespacial se necesitan materiales ligeros que tengan unas altas prestaciones mecánicas combinadas con una baja densidad. El carburo de silicio, el carbono reforzado con fibra de carbono y el carburo de silicio reforzado con fibra de carbono son materiales que cumplen con estos requisitos, pero a altas temperaturas presentan problemas de oxidación. Una de las formas más efectivas de prevenir este fenómeno es la utilización de recubrimientos cerámicos, cuya correcta adhesión sobre los distintos sustratos es fundamental para garantizar su funcionamiento. En el caso del presente trabajo, se analiza la adhesión de recubrimientos vítreos del sistema Y2O3-Al2O3-SiO2 obtenidos mediante proyección térmica por llama oxiacetilénica. Para ello, se realizan ensayos de rayado a carga creciente analizando el tipo y la carga de fallo y su relación con las propiedades elásticas y mecánicas de los recubrimientos. Los resultados indican que la adhesión sobre los sustratos carburo de silicio y carburo de silicio reforzado con fibra de carbono es buena, mientras que el carbono reforzado con fibra de carbono no es un material adecuado para recubrir.

  6. Surface modified Al2O3 in fluorinated polyimide/Al2O3 ...

    Indian Academy of Sciences (India)

    agglomeration. One approach to decrease the aggregation of inorganic Al2O3 is surface modification of these nanoparti- cles with coupling agent which usually has a long alkyl tail and shows a good compatibility with polymer .... ture and spatial distribution of the various components, through direct visualization. Figure 5 ...

  7. Tunnel magnetoresistance in Ni 80Fe 20/Al 2O 3/Co/Al 2O 3/Co junctions

    Science.gov (United States)

    Kubota, H.; Watabe, T.; Miyazaki, T.

    1999-06-01

    Tunnel magnetoresistance (TMR) effect has been investigated in Ni 80Fe 20/Al 2O 3/Co/Al 2O 3/Co double tunnel junctions. The Al 2O 3 layer was formed by a direct sputtering method with an Al 2O 3 target. The dependence of the tunnel resistance and the MR ratio on the thickness of Al 2O 3 and that of the central Co layer were investigated. The relation between the structure of the interface and TMR effect was discussed.

  8. Formation and surface characterization of nanostructured Al2O3 ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Formation and surface characterization of nanostructured Al2O3–TiO2 coatings by Vairamuthu Raj and Mohamed Sirajudeen Mumjitha. (pp 1411–1418).

  9. Silicon solar cells with Al2O3 antireflection coating

    Science.gov (United States)

    Dobrzański, Leszek A.; Szindler, Marek; Drygała, Aleksandra; Szindler, Magdalena M.

    2014-09-01

    The paper presents the possibility of using Al2O3 antireflection coatings deposited by atomic layer deposition ALD. The ALD method is based on alternate pulsing of the precursor gases and vapors onto the substrate surface and then chemisorption or surface reaction of the precursors. The reactor is purged with an inert gas between the precursor pulses. The Al2O3 thin film in structure of the finished solar cells can play the role of both antireflection and passivation layer which will simplify the process. For this research 50×50 mm monocrystalline silicon solar cells with one bus bar have been used. The metallic contacts were prepared by screen printing method and Al2O3 antireflection coating by ALD method. Results and their analysis allow to conclude that the Al2O3 antireflection coating deposited by ALD has a significant impact on the optoelectronic properties of the silicon solar cell. For about 80 nm of Al2O3 the best results were obtained in the wavelength range of 400 to 800 nm reducing the reflection to less than 1%. The difference in the solar cells efficiency between with and without antireflection coating was 5.28%. The LBIC scan measurements may indicate a positive influence of the thin film Al2O3 on the bulk passivation of the silicon.

  10. Mechanochemically synthesized Al2O3-TiC nanocomposite

    International Nuclear Information System (INIS)

    Mohammad Sharifi, E.; Karimzadeh, F.; Enayati, M.H.

    2010-01-01

    Al 2 O 3 -TiC nanocomposite was synthesized by ball milling of aluminum, titanium oxide and graphite powder mixtures. Effect of the milling time and heat treatment temperatures were investigated. The structural evolution of powder particles after different milling times was studied by X-ray diffractometry and scanning electron microscopy. The results showed that after 40 h of ball milling the Al/TiO 2 /C reacted with a self-propagating combustion mode producing Al 2 O 3 -TiC nanocomposite. In final stage of milling, alumina and titanium carbide crystallite sizes were less than 10 nm. After annealing at 900 o C for 1 h, Al 2 O 3 and TiC crystallite sizes remained constant, however increasing annealing temperature to 1200 o C increased Al 2 O 3 and TiC crystallite size to 65 and 30 nm, respectively. No phase change was observed after annealing of the synthesized Al 2 O 3 -TiC powder.

  11. Catalytic Methane Decomposition over Fe-Al2O3

    KAUST Repository

    Zhou, Lu

    2016-05-09

    The presence of a Fe-FeAl2O4 structure over an Fe-Al2O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750°C, Fe-Al2O3 prepared by means of a fusion method, containing 86.5wt% FeAl2O4 and 13.5wt% Fe0, showed a stable CMD activity at 750°C for as long as 10h. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Leaching of Al2O3 in simulated repository conditions

    International Nuclear Information System (INIS)

    Svensson, B.-M.; Dahl, L.

    1978-06-01

    Al 2 O 3 material has been leached at 90 deg C in: simulated ground water at pH 8.5, embedded in bentonite + silica sand saturated with the same water, and in simulated ground water at pH 6 and pH 10. Leaching periods varied from 30 days to 300 days. We observed slight weight increments in all cases from deposits on samples from the environment. These mask weight losses from Al 2 O 3 that may have occurred. (author)

  13. Formation and surface characterization of nanostructured Al2O3 ...

    Indian Academy of Sciences (India)

    Administrator

    1411. Formation and surface characterization of nanostructured Al2O3–TiO2 coatings. VAIRAMUTHU RAJ* and MOHAMED SIRAJUDEEN MUMJITHA. Advanced Materials ... of the coatings (thickness, growth rate, coating ratio) showed a linear regime with current density and electro- ..... Electronic Supplementary Material.

  14. Efecto del peso molecular del ácido poliacrílico y de la relación SiO2/Al2O3 en el vidrio sobre la resistencia mecánica de cementos de polialqueonato vítreo

    Directory of Open Access Journals (Sweden)

    Méndez, M.

    2002-08-01

    mejor los procesos involucrados en las reacciones de formación de este tipo de cementos y de explorar su uso en aplicaciones ortopédicas, en el presente trabajo se realizó un estudio para analizar el efecto del peso molecular del ácido poliacrílico y de la proporción sílice/ alúmina sobre la resistencia a la compresión y las características microestructurales de cementos de polialquenoato vítreo. Las probetas obtenidas fueron sometidas a pruebas de compresión y al análisis por microscopía electrónica de barrido (MEB y por espectroscopía infrarroja por transformada de Fourier (IRTF. En una primera serie de experimentos se consideraron pesos moleculares promedio del ácido poliacrílico de 2000, 9700, 15268 y 64000, manteniéndose constante la relación SiO2/Al2O3 en un valor de 2,5. En una segunda serie de experimentos se consideraron relaciones SiO2/Al2O3 de 2,1; 1,67; 1,25; 0,95 y 0,8; utilizando ácido poliacrílico con peso molecular constante de 64000. Los máximos valores de resistencia mecánica (82,5 MPa se alcanzaron cuando el peso molecular del ácido poliacrílico fue de 64000 y la relación SiO2/Al2O3 en el vidrio fue de 1. Estos valores de resistencia a compresión de los cementos de polialquenoato vítreo son similares a los reportados para cementos a base de polimetilmetacrilato, lo cual sugiere su uso potencial en aplicaciones ortopédicas. Finalmente, se evaluó cualitativamente la reactividad de los vidrios y la presencia de grupos funcionales –COOH sin reaccionar utilizando IRTF, así como la separación de fases en vidrios con relaciones SiO2/Al2O3 > 1 y la reactividad superficial de las partículas de vidrio empleando espectroscopia de dispersión de rayos X (DERX en el MEB. A fin de optimizar la resistencia a compresión de los cementos de polialquenoato vítreo, trabajos futuros pueden ser orientados a mejorar la reactividad de los vidrios, a optimizar la relación polímero / vidrio y a utilizar partículas de vidrio de tama

  15. ??????????? ??????????????? ????? ??????-???????? ????????????? ?????????? ??????? ?aO?Al2O3?TiO2 ??? ???????? ?????? ?????

    OpenAIRE

    ???????, ????; ??????, ?????????

    2011-01-01

    ? ????? ?????? ?????????? ???????? ?????????????? ??????????? ????????????? ??? ??????-????????? ???????????????? ?????????? ??????? ?aO?Al2O3?TiO2, ?? ???????? ??????? ? ???????????? ??????? ??? ???????? ? ?????? ????????? ?????? ?????. ???????? ?????????? ???????? ??? ??????????? ?????????? ??????? ????????? ???????????? ?????????? ??? ??????????? 12000?, ?? ????????? ?????????????? ????????????? ???????, ????????? ???? ? ?????????? ????? ???????? ??????? ???????????. ????????, ?? ?? ...

  16. Luminescent properties of Al2O3: Tb powders

    International Nuclear Information System (INIS)

    Esparza G, A.E.; Garcia, M.; Falcony, C.; Azorin N, J.

    2000-01-01

    In this work the photo luminescent and cathode luminescent characteristics of aluminium oxide (Al 2 O 3 ) powders impurified with terbium (Tb) were studied for their use in dosimetry. The optical, structural, morphological characteristics of the powders as function of variation in the impurity concentration and the annealing temperature will be presented. As regards the optical properties of powders (photoluminescence and cathode luminescence) it was observed a characteristic emission associated with radiative transitions between electron energy levels of terbium, the spectra associated with this emission consists of several peaks associated with such transitions. In the structural and morphological characterization (X-ray diffraction and scanning electron microscopy) it was appreciated that in accordance the annealing temperature of powders is augmented it is evident the apparition of certain crystalline phases. The results show that this is a promissory material for radiation dosimetry. (Author)

  17. Temperature-programmed reaction of CO2 reduction in the presence of hydrogen over Fe/Al2O3, Re/Al2O3 and Cr-Mn-O/Al2O3 catalysts

    International Nuclear Information System (INIS)

    Mirzabekova, S.R.; Mamedov, A.B.; Krylov, O.V.

    1996-01-01

    Regularities in CO 2 reduction have been studied using the systems Fe/Al 2 O 3 , Re/Al 2 O 3 and Cr-Mn-O/Al 2 O 3 under conditions of thermally programmed reaction by way of example. A sharp increase in the reduction rate in the course of CO 2 interaction with reduced Fe/Al 2 O 3 and Re/Al 2 O 3 , as well as with carbon fragments with addition in CO 2 flow of 1-2%H 2 , has been revealed. The assumption is made on intermediate formation of a formate in the process and on initiating effect of hydrogen on CO 2 reduction by the catalyst. Refs. 26, figs. 10

  18. Antimicrobial effect of Al2O3, Ag and Al2O3/Ag thin films on Escherichia coli and Pseudomonas putida

    International Nuclear Information System (INIS)

    Angelov, O; Stoyanova, D; Ivanova, I; Todorova, S

    2016-01-01

    The influence of Al 2 O 3 , Ag and Al 2 O 3 /Ag thin films on bacterial growth of Gramnegative bacteria Pseudomonas putida and Escherichia coli is studied. The nanostructured thin films are deposited on glass substrates without intentional heating through r.f. magnetron sputtering in Ar atmosphere of Al 2 O 3 and Ag targets or through sequential sputtering of Al 2 O 3 and Ag targets, respectively. The individual Ag thin films (thickness 8 nm) have a weak bacteriostatic effect on Escherichia coli expressed as an extended adaptive phase of the bacteria up to 5 hours from the beginning of the experiment, but the final effect is only 10 times lower bacterial density than in the control. The individual Al 2 O 3 film (20 nm) has no antibacterial effect against two strains E. coli - industrial and pathogenic. The Al 2 O 3 /Ag bilayer films (Al 2 O 3 20 nm/Ag 8 nm) have strong bactericidal effect on Pseudomonas putida and demonstrate an effective time of disinfection for 2 hours. The individual films Al2O3 and Ag have not pronounced antibacterial effect on Pseudomonas putida . A synergistic effect of Al2O3/Ag bilayer films in formation of oxidative species on the surface in contact with the bacterial suspension could be a reason for their antimicrobial effect on E. coli and P. putida . (paper)

  19. Antimicrobial effect of Al2O3, Ag and Al2O3/Ag thin films on Escherichia coli and Pseudomonas putida

    Science.gov (United States)

    Angelov, O.; Stoyanova, D.; Ivanova, I.; Todorova, S.

    2016-10-01

    The influence of Al2O3, Ag and Al2O3/Ag thin films on bacterial growth of Gramnegative bacteria Pseudomonas putida and Escherichia coli is studied. The nanostructured thin films are deposited on glass substrates without intentional heating through r.f. magnetron sputtering in Ar atmosphere of Al2O3 and Ag targets or through sequential sputtering of Al2O3 and Ag targets, respectively. The individual Ag thin films (thickness 8 nm) have a weak bacteriostatic effect on Escherichia coli expressed as an extended adaptive phase of the bacteria up to 5 hours from the beginning of the experiment, but the final effect is only 10 times lower bacterial density than in the control. The individual Al2O3 film (20 nm) has no antibacterial effect against two strains E. coli - industrial and pathogenic. The Al2O3/Ag bilayer films (Al2O3 20 nm/Ag 8 nm) have strong bactericidal effect on Pseudomonas putida and demonstrate an effective time of disinfection for 2 hours. The individual films Al2O3 and Ag have not pronounced antibacterial effect on Pseudomonas putida. A synergistic effect of Al2O3/Ag bilayer films in formation of oxidative species on the surface in contact with the bacterial suspension could be a reason for their antimicrobial effect on E. coli and P. putida.

  20. Residual stresses in the Al2O3 matrix of Al2O3ZrO2

    International Nuclear Information System (INIS)

    Feng, G.; Tsakalakos, T.; Mayo, W.; Wilfinger, K.; Cannon, W.R.

    1989-01-01

    Residual stresses in the Al 2 O 3 matrix of ground and unground surfaces of zirconia toughened alumina were measured with x-ray techniques. No net residual stresses were found on as-fired surfaces, but residual stresses were found on ground surfaces, increasing with severity of grinding and were proportional to the percent ZrO 2 undergoing the tetragonal monoclinic transformation during grinding. Principal stresses and directions with respect to the grinding direction were obtained. Also Warren-Averbach measurements were made on as- fired surfaces to determine the nonuniform stresses surrounding the particles. These stresses were also found to depend on the monoclinic content which in turn was controlled by the size of the particles

  1. Sol-gel-cum-hydrothermal synthesis of mesoporous Co-Fe@Al2O3 ...

    Indian Academy of Sciences (India)

    surface area, and narrow pore distribution are the key factors for an efficient adsorption of methylene blue on .... 3.1 XRD analysis. Figure 1 shows the XRD pattern of mesoporous Al2O3 and monometallic and bimetallic@Al2O3−MCM-41 samples. Mesoporous Al2O3 is .... Si−O−Si vibration bands of MCM-41 and Al2O3−.

  2. Operando Raman spectroscopy study on the deactivation of Pt/Al2O3 and Pt–Sn/Al2O3 propane dehydrogenation catalysts

    NARCIS (Netherlands)

    Sattler, J.J.H.B.|info:eu-repo/dai/nl/328235601; Beale, A.M.|info:eu-repo/dai/nl/325802068; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2013-01-01

    The deactivation of 0.5 wt% Pt/Al2O3 and 0.5 wt% Pt–1.5 wt% Sn/Al2O3 catalysts has been studied by operando Raman spectroscopy during the dehydrogenation of propane and subsequent regeneration in air for 10 successive dehydrogenation–regeneration cycles. Furthermore, the reaction feed was altered by

  3. Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MOx–Al2O3

    Energy Technology Data Exchange (ETDEWEB)

    Bachrach, Mark; Morlanes-Sanchez, Natalia; Canlas, Christian P.; Miller, Jeffrey T.; Marks, Tobin J.; Notestein, Justin M.

    2014-09-11

    Catalysts consisting of Pd nanoparticles supported on highly dispersed TiOx–Al2O3, TaOx–Al2O3, and MoOx–Al2O3 are studied for catalytic quinoline hydrogenation and selective C–N bond cleavage at 275 °C and 20 bar H2. The Pd/MOx–Al2O3 materials exhibit significantly greater aromatic product selectivity and thus 10–15 % less required H2 for a given level of denitrogenation relative to an unmodified Pd/Al2O3 catalyst.

  4. Strength and thermal stability of Cu-Al2O3 composite obtained by internal oxidation

    Directory of Open Access Journals (Sweden)

    Jovanovic, M. T.

    2010-12-01

    Full Text Available The objective of the work is to study the effects of the high-energy milling on strengthening, thermal stability and electrical conductivity of Cu-Al2O3 composite. The prealloyed copper powders, atomized in inert gas and containing 3 wt. % Al, were milled up to 20 h in the planetary ball mill to oxidize in situ aluminium with oxygen from the air. Composite compacts were obtained by hot-pressing in an argon atmosphere at 800 °C for 3 h under the pressure of 35MPa. The microstructural characterization was performed by the optical microscope, scanning electron microscope (SEM, transmission electron microscope (TEM and X-ray diffraction analysis (XRD. The microhardness, electrical conductivity and density measurements were also carried out. The effect of internal oxidation and high-energy milling on strengthening of Cu-Al2O3 composite was significant, The increase of the microhardness of composite compacts (292 HV is almost threefold comparing to compacts processed from the as-received Cu-3 wt. % Al powder (102 HV. The grain size of Cu-Al2O3 compacts processed from 5 and 20 h-milled powders was 75 and 45 nm, respectively. The small increase in the grain size and the small microhardness drop indicate the high thermal stability of Cu-Al2O3 composite during high-temperature exposure at 800 °C.El objetivo del trabajo es el estudio de los efectos de la pulverización con altas energías sobre la resistencia, estabilidad térmica y conductividad eléctrica del compuesto Cu-Al2O3. El polvo pre-aleado de cobre, obtenido a través de la atomización con gas inerte y con un contenido de 3wt. % Al, se molió durante 20 h en el molino planetario de bolas dando lugar a la oxidación in situ del aluminio con el oxígeno del aire. El compuesto compactado se ha obtenido mediante prensado en caliente en atmósfera de argón a 800 °C durante 3 h y a una presión de 35MPa. La caracterización microestructural se hizo a través de microscopia óptica, microscopia

  5. Kinetics of Transformation of Al2O3 to MgO·Al2O3 Spinel Inclusions in Mg-Containing Steel

    Science.gov (United States)

    Liu, Chunyang; Yagi, Motoki; Gao, Xu; Kim, Sun-joong; Huang, Fuxiang; Ueda, Shigeru; Kitamura, Shin-ya

    2018-02-01

    During ladle furnace refining, initial Al2O3 inclusions generally transform into MgO·Al2O3 spinel inclusions; these generated spinel inclusions consequently deteriorate the product quality. In this study, the transformation from Al2O3 to MgO·Al2O3 was investigated by immersing an Al2O3 rod into molten steel, which was in equilibrium with both MgO and MgO·Al2O3 spinel-saturated slag. A spinel layer, with a thickness of 4 μm, was generated on the Al2O3 rod surface just 10 s after its immersion at 1873 K (1600 °C). The thickness of the formed spinel layer increased with the immersion period and temperature. Moreover, the MgO content of the generated spinel layer also increased with the immersion period. In this study, the chemical reaction rate at 1873 K (1600 °C) was assumed to be sufficiently high, and only diffusion was considered as a rate-controlling step for this transformation. By evaluating the activation energy, MgO diffusion in the generated spinel layer was found to be the rate-controlling step. In addition, this estimation was confirmed by observing the Mg and Al concentration gradients in the generated spinel layer. The results of this study suggest that the MgO diffusion in the spinel inclusions plays a substantial role with regard to their formation kinetics.

  6. Atomic layer deposition of Al2O3 and Al2O3/TiO2 barrier coatings to reduce the water vapour permeability of polyetheretherketone

    International Nuclear Information System (INIS)

    Ahmadzada, Tamkin; McKenzie, David R.; James, Natalie L.; Yin, Yongbai; Li, Qing

    2015-01-01

    We demonstrate significantly enhanced barrier properties of polyetheretherketone (PEEK) against water vapour penetration by depositing Al 2 O 3 or Al 2 O 3 /TiO 2 nanofilms grown by atomic layer deposition (ALD). Nanoindentation analysis revealed good adhesion strength of a bilayer Al 2 O 3 /TiO 2 coating to PEEK, while the single layer Al 2 O 3 coating displayed flaking and delamination. We identified three critical design parameters for achieving the optimum barrier properties of ALD Al 2 O 3 /TiO 2 coatings on PEEK. These are a minimum total thickness dependent on the required water vapour transmission rate, the use of an Al 2 O 3 /TiO 2 bilayer coating and the application of the coating to both sides of the PEEK film. Using these design parameters, we achieved a reduction in moisture permeability of PEEK of over two orders of magnitude while maintaining good adhesion strength of the polymer–thin film system. - Highlights: • Atomic layer deposition of Al 2 O 3 /TiO 2 coatings reduced water vapour permeability. • Bilayer coatings reduced the permeability more than single layer coatings. • Bilayer coatings displayed higher adhesion strength than the single layer coatings. • Double-sided coatings performed better than single-sided coatings. • Correlation was found between total thickness and reduced water vapour permeability.

  7. The MgO-Al2O3-SiO2 system - Free energy of pyrope and Al2O3-enstatite. [in earth mantle formation

    Science.gov (United States)

    Saxena, S. K.

    1981-01-01

    The model of fictive ideal components is used to determine Gibbs free energies of formation of pyrope and Al2O3-enstatite from the experimental data on coexisting garnet and orthopyroxene and orthopyroxene and spinel in the temperature range 1200-1600 K. It is noted that Al2O3 forms an ideal solution with MgSiO3. These thermochemical data are found to be consistent with the Al2O3 isopleths that could be drawn using most recent experimental data and with the reversed experimental data on the garnet-spinel field boundary.

  8. CHF Enhancement in Flow Boiling using Al2O3 Nano-Fluid and Al2O3 Nano-Particle Deposited Tube

    International Nuclear Information System (INIS)

    Kim, Tae Il; Chun, T. H.; Chang, S. H.

    2010-01-01

    Nano-fluids are considered to have strong ability to enhance CHF. Most CHF experiments using nano-fluids were conducted in pool boiling conditions. However there are very few CHF experiments with nano-fluids in flow boiling condition. In the present study, flow boiling CHF experiments using bare round tube with Al 2 O 3 nano-fluid and Al 2 O 3 nano-particle deposited tube with DI water were conducted under atmospheric pressure. CHFs were enhanced up to ∼ 80% with Al 2 O 3 nano-fluid and CHFs with Al 2 O 3 nano-particle deposited tube were also enhanced up to ∼ 80%. Inner surface of test section tube were observed by SEM and AFM after CHF experiments

  9. Stability of Al2O3 and Al2O3/a-SiNx:H stacks for surface passivation of crystalline silicon

    International Nuclear Information System (INIS)

    Dingemans, G.; Hoex, B.; Sanden, M. C. M. van de; Kessels, W. M. M.; Engelhart, P.; Seguin, R.; Einsele, F.

    2009-01-01

    The thermal and ultraviolet (UV) stability of crystalline silicon (c-Si) surface passivation provided by atomic layer deposited Al 2 O 3 was compared with results for thermal SiO 2 . For Al 2 O 3 and Al 2 O 3 /a-SiN x :H stacks on 2 Ω cm n-type c-Si, ultralow surface recombination velocities of S eff eff 800 deg. C) used for screen printed c-Si solar cells. Effusion measurements revealed the loss of hydrogen and oxygen during firing through the detection of H 2 and H 2 O. Al 2 O 3 also demonstrated UV stability with the surface passivation improving during UV irradiation.

  10. Model Research On Synthesis Of Al2O3-C Layers By MOCVD

    Directory of Open Access Journals (Sweden)

    Sawka A.

    2015-06-01

    Full Text Available These are model studies whose aim is to obtain information that would allow development of new technology for synthesizing monolayers of Al2O3-C with adjusted microstructure on cemented carbides. The Al2O3-C layer will constitute an intermediate layer on which the outer layer of Al2O3 without carbon is synthesized. The purpose of the intermediate layer is to block the cobalt diffusion to the synthesized outer layer of Al2O3 and to stop the diffusion of air oxygen to the substrate during the synthesis of the outer layer. This layer should be thin, continuous, dense and uniform in thickness.

  11. Data of ALD Al2O3 rear surface passivation, Al2O3 PERC cell performance, and cell efficiency loss mechanisms of Al2O3 PERC cell

    OpenAIRE

    Huang, Haibing; Lv, Jun; Bao, Yameng; Xuan, Rongwei; Sun, Shenghua; Sneck, Sami; Li, Shuo; Modanese, Chiara; Savin, Hele; Wang, Aihua; Zhao, Jianhua

    2017-01-01

    This data article is related to the recently published article ‘20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%’ (Huang et al., 2017) [1]. This paper is about passivated emitter and rear cell (PERC) structures and it describes the quality of the Al2O3 rear-surface passivation layer deposited by atomic layer deposition (ALD), in relation to the processing parameters (e.g. pre-clean treatment, deposition temperature, g...

  12. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks

    Science.gov (United States)

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-03-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 1012 to 1 × 1012 cm-2 eV-1, the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 1012 cm-2 for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  13. Influence of Al2O3 addition on microstructure and mechanical properties of 3YSZ-Al2O3 composites

    International Nuclear Information System (INIS)

    Abden, Md. Jaynul; Afroze, Jannatul Dil; Gafur, Md. Abdul; Chowdhury, Faruque-Uz-Zaman

    2015-01-01

    The effect of the amount of Al 2 O 3 content on microstructure, tetragonal phase stability and mechanical properties of 3YSZ-Al 2 O 3 composites are investigated in this study. The ceramic composites are obtained by means of uniaxial compacting at 210 MPa and green compacts are sintered at 1550 C for 3 h in air. The monoclinic zirconia (m-ZrO 2 ) phase has completely been transformed into tetragonal zirconia (t-ZrO 2 ) phase with corresponding higher Al 2 O 3 content. The t-ZrO 2 grains induce transgranular fracture mode that has contribution in improvement of fracture toughness. The maximum flexural strength of 340 MPa, Vickers hardness value of 14.31 GPa and fracture toughness of 5.1 MPa x m 1/2 in the composition containing 40 wt.-% Al 2 O 3 is attributed to the microstructure with t-ZrO 2 grains as inter- and intragranular particles in the Al 2 O 3 grains, which makes it suitable for dental applications.

  14. Comparisons of switching characteristics between Ti/Al2O3/Pt and TiN/Al2O3/Pt RRAM devices with various compliance currents

    Science.gov (United States)

    Qi, Yanfei; Zhao, Ce Zhou; Liu, Chenguang; Fang, Yuxiao; He, Jiahuan; Luo, Tian; Yang, Li; Zhao, Chun

    2018-04-01

    In this study, the influence of the Ti and TiN top electrodes on the switching behaviors of the Al2O3/Pt resistive random access memory devices with various compliance currents (CCs, 1-15 mA) has been compared. Based on the similar statistical results of the resistive switching (RS) parameters such as V set/V reset, R HRS/R LRS (measured at 0.10 V) and resistance ratio with various CCs for both devices, the Ti/Al2O3/Pt device differs from the TiN/Al2O3/Pt device mainly in the forming process rather than in the following switching cycles. Apart from the initial isolated state, the Ti/Al2O3/Pt device has the initial intermediate state as well. In addition, its forming voltage is relatively lower. The conduction mechanisms of the ON and OFF state for both devices are demonstrated as ohmic conduction and Frenkel-Poole emission, respectively. Therefore, with the combined modulations of the CCs and the stop voltages, the TiN/Al2O3/Pt device is more stable for nonvolatile memory applications to further improve the RS performance.

  15. Theoretical Investigation of H2 Combustion on alphaAl2O3 Support

    National Research Council Canada - National Science Library

    Synowczynski, Jennifer; Andzelm, Jan W; Vlachos, D. G

    2008-01-01

    ... (alpha alumina oxide (alphaAl2O3)) on the dissociation of molecular hydrogen (H2), molecular oxygen (O2), hydroxyl (OH), water (H2O), and the surface diffusion of oxygen and hydrogen species along the Al2O3...

  16. Preparation and characterization of DLC/SiO2/Al2O3 nanofiltration ...

    Indian Academy of Sciences (India)

    Korea. MS received 12 July 2012; revised 27 September 2012. Abstract. High quality ceramic thin films were fabricated by thin film deposition process in semiconductor field in order to fabricate high performance carbon/SiO2/Al2O3 membrane. α-Al2O3 substrate was used as a support- ing material. A severe thermal stress ...

  17. H2 assisted NH3-SCR over Ag/Al2O3 for automotive applications

    DEFF Research Database (Denmark)

    Fogel, Sebastian

    The up-coming strict emission legislation demands new and improved catalysts for diesel vehicle deNOx. The demand for low-temperature activity is especially challenging. H2-assisted NH3-SCR over Ag/Al2O3 has shown a very promising low-temperature activity and a combination of Ag/Al2O3 and Fe-BEA ...

  18. Experiment and prediction on thermal conductivity of Al2O3/ZnO ...

    Indian Academy of Sciences (India)

    We predict that there is a critical value of Al2O3/ZnO nano thin interface thickness based on two assumptions according to an interesting phenomenon, which the thermal conductivity (TC) trend of Al2O3/ZnO nano thin interface is consistent with that of relevant single nano thin interface when the nano thin interface thickness ...

  19. Experiment and prediction on thermal conductivity of Al2O3/ZnO ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. We predict that there is a critical value of Al2O3/ZnO nano thin interface thickness based on two assumptions according to an interesting phenomenon, which the thermal conductivity (TC) trend of. Al2O3/ZnO nano thin interface is consistent with that of relevant single nano thin interface when the nano thin interface ...

  20. Experiment and prediction on thermal conductivity of Al 2 O 3 /ZnO ...

    Indian Academy of Sciences (India)

    We predict that there is a critical value of Al2O3/ZnO nano thin interface thickness based on two assumptions according to an interesting phenomenon, which the thermal conductivity (TC) trend of Al2O3/ZnO nano thin interface is consistent with that of relevant single nano thin interface when the nano thin interface thickness ...

  1. Microstructural characterization in diffusion bonded TiC–Al2O3/Cr18 ...

    Indian Academy of Sciences (India)

    Unknown

    Al2O3/Cr18–Ni8 joint. The ... Ceramic matrix composite, TiC–Al2O3, has unique char- ... for 150 s. The microstructural observations were perfor- med by optical microscope (OM) and JXA-840 scanning electron microscope (SEM). The chemical ...

  2. Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits

    Directory of Open Access Journals (Sweden)

    K.-H. Cho

    2013-10-01

    Full Text Available We have characterized the microwave loss of high-Q parallel plate capacitors fabricated from thin-film Al/Al2O3/Re heterostructures on (0001 Al2O3 substrates. The superconductor-insulator-superconductor trilayers were grown in situ in a hybrid deposition system: the epitaxial Re base and polycrystalline Al counterelectrode layers were grown by sputtering, while the epitaxial Al2O3 layer was grown by pulsed laser deposition. Structural analysis indicates a highly crystalline epitaxial Al2O3 layer and sharp interfaces. The measured intrinsic (low-power, low-temperature quality factor of the resonators is as high as 3 × 104. These results indicate that low-loss grown Al2O3 is an attractive candidate dielectric for high-fidelity superconducting qubit circuits.

  3. Photochemistry of the α-Al2O3-PETN Interface

    Directory of Open Access Journals (Sweden)

    Roman V. Tsyshevsky

    2016-02-01

    Full Text Available Optical absorption measurements are combined with electronic structure calculations to explore photochemistry of an α-Al2O3-PETN interface formed by a nitroester (pentaerythritol tetranitrate, PETN, C5H8N4O12 and a wide band gap aluminum oxide (α-Al2O3 substrate. The first principles modeling is used to deconstruct and interpret the α-Al2O3-PETN absorption spectrum that has distinct peaks attributed to surface F0-centers and surface—PETN transitions. We predict the low energy α-Al2O3 F0-center—PETN transition, producing the excited triplet state, and α-Al2O3 F0-center—PETN charge transfer, generating the PETN anion radical. This implies that irradiation by commonly used lasers can easily initiate photodecomposition of both excited and charged PETN at the interface. The feasible mechanism of the photodecomposition is proposed.

  4. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks

    OpenAIRE

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-S...

  5. Thermal expansion and thermal conductivity characteristics of Cu–Al2O3 nanocomposites

    International Nuclear Information System (INIS)

    Fathy, A.; El-Kady, Omyma

    2013-01-01

    Highlights: ► The copper–alumina composites were prepared by powder metallurgy (P/M) method with nano-Cu/Al 2 O 3 powders. ► The Al 2 O 3 content was added by 2.5, 7.5 and 12.5 wt.% to the Cu matrix to detect its effect on thermal conductivity and thermal expansion behavior of the resultant Cu/Al 2 O 3 nanocomposites. ► The results showed that alumina nanoparticles (30 nm) were distributed in the copper matrix in a homogeneous manner. ► The measured thermal conductivity for the Cu–Al 2 O 3 nanocomposites decreased from 384 to 78.1 W/m K with increasing Al 2 O 3 content from 0 to 12.5 wt.%. ► Accordingly, the coefficient of thermal expansion (CTE) was tailored from 33 × 10 −6 to 17.74 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. - Abstract: Copper–alumina composites were prepared by powder metallurgy (P/M) technology. Nano-Cu/Al 2 O 3 powders, was deoxidized from CuO/Al 2 O 3 powders which synthesized by thermochemical technique by addition of Cu powder to an aqueous solution of aluminum nitrate. The Al 2 O 3 content was added by 2.5, 7.5 and 12.5 wt.% to the Cu matrix to detect its effect on thermal conductivity and thermal expansion behavior of the resultant Cu/Al 2 O 3 nanocomposites. The results showed that alumina nanoparticles (30 nm) were distributed in the copper matrix in a homogeneous manner. The measured thermal conductivity for the Cu–Al 2 O 3 nanocomposites decreased from 384 to 78.1 W/m K with increasing Al 2 O 3 content from 0 to 12.5 wt.%. The large variation in the thermal conductivities can be related to the microstructural characteristics of the interface between Al 2 O 3 and the Cu-matrix. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 33 × 10 −6 to 17.74 × 10 −6 /K, which is compatible with the CTE of semiconductors in electronic packaging applications. The reduction of thermal conductivity and coefficient of thermal expansion were

  6. Interface behaviour of Al2O3/Ti joints produced by liquid state bonding

    International Nuclear Information System (INIS)

    Lemus R, J.; Guevara L, A. O.; Zarate M, J.

    2014-08-01

    The main objective of this work was to determine various aspects during brazing of Al 2 O 3 samples to commercially titanium alloy grade 4 with biocompatibility properties, using a Au-foil as joining element. Al 2 O 3 ceramic was previously produced by sintering of powder cylindrical shape at 1550 grades C for 120 minutes. Previously to joining experiments, the surface of Al 2 O 3 samples were coating, by chemical vapor depositions (CVD) process, with a Mo layer of 2 and 4 μm thick and then stacked together with the Ti samples. Joining experiments were carried out on Al 2 O 3 -Mo/Au/Ti combinations at temperature of 1100 grades C using different holding times under vacuum atmosphere. The experimental results show a successful joining Mo-Al 2 O 3 to Ti. Analysis by scanning electron microscopy (Sem) revealed that joining of Al 2 O 3 to metal occurred by the formation of a homogeneous diffusion zone with no interfacial cracking or porosity at the interface. Results by electron probe micro analysis (EPMA) of Al 2 O 3 -Mo/Au/Ti combinations revealed that Mo traveled inside the joining elements and remained as solid solutions, however during cooling process Mo had a tendency to stay as a precipitate phase and atomic distributions of elements show a concentration line of Mo inside the joining element Au. On the other hand, well interaction of Ti with Au form different phases; like Ti 3 Au and Ti Au. (author)

  7. Preparation and structures of plasma-sprayed γ- and α-Al2O3 coatings

    International Nuclear Information System (INIS)

    Heintze, G.N.; Uematsu, S.

    1992-01-01

    As-sprayed Al 2 O 3 coatings containing more than 99.5% γ-Al 2 O 3 were prepared by optimizing torch parameters. Lamellae were 1-4 μm thick with grains ranging from 0.1 to 1 μm in diameter. Using the same torch conditions, but slowly traversing the torch over the substrate, coatings containing α-Al 2 O 3 were produced. Three types of microstructures were observed in each pass of the torch: type I, in the lower region, believed to have nucleated as γ-Al 2 O 3 and transformed to α-Al 2 O 3 from the heat of the torch and coating; type II, above type I, which nucleated as α-Al 2 O 3 and had separate lamellae because solidifiction was completed before the next droplet arrived; type III, in the upper region, which nucleated as α-Al 2 O 3 and contained grains over 200 μm in length because the previous droplet had not finished solidifying before the next droplet impacted. Thermal expansion and pore size distributions were measured, as also were temperatures within the coatings during their deposition. (orig.)

  8. Fabrication of hierarchical porous ZnO-Al2O3 microspheres with enhanced adsorption performance

    Science.gov (United States)

    Lei, Chunsheng; Pi, Meng; Xu, Difa; Jiang, Chuanjia; Cheng, Bei

    2017-12-01

    Hierarchical porous ZnO-Al2O3 microspheres were fabricated through a simple hydrothermal route. The as-prepared hierarchical porous ZnO-Al2O3 composites were utilized as adsorbents to remove organic dye Congo red (CR) from water. The ZnO-Al2O3 composites had morphology of microspheres with diameters in the range of 12-16 μm, which were assembled by nanosheets with thicknesses of approximately 60 nm. The adsorption kinetics of CR onto the ZnO-Al2O3 composites was properly fitted by the pseudo-second-order kinetic model. The equilibrium adsorption data were perfectly described by the Langmuir isotherm and had a maximum adsorption capacity that reached 397 mg/g, which was significantly higher than the value of the pure alumina (Al2O3) and zinc oxide (ZnO) samples. The superior CR removal efficiency of the ZnO-Al2O3 composites was attributed to its well-developed hierarchical porous structures and larger specific surface area (201 m2/g), which were conducive to the diffusion and adsorption of CR molecules. Moreover, the regeneration study reveals that the ZnO-Al2O3 composites have suitable stability and reusability. The results also indicate that the as-prepared sample can act as a highly effective adsorbent in anionic dye removal from wastewater.

  9. Preparation of mullite whiskers reinforced SiC/Al2O3 composites by microwave sintering

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-12-01

    Full Text Available Mullite whiskers reinforced SiC/Al2O3 composites were prepared by microwave sintering in a microwave chamber with TE666 resonant mode. Original SiC particles were coated with SiO2 using sol-gel processing and mixed with Al2O3 particles. Mullite was formed in the reaction between SiO2 and Al2O3. The isostatically pressed cylindrical pellets were sintered from 1350 °C to 1600 °C for 30 min. Physical and chemical responses were investigated by detecting changes in reflected power during the microwave sintering process. XRD was carried out to characterize the samples and showed that mullite could be formed at 1200 °C. Bridging of mullite whiskers between Al2O3 and SiC particles was observed by SEM and is due to a so-called local hot spot effect, which was the unique feature for microwave sintering. The optimized microwave sintering temperature was 1500 °C corresponding to the maximum amount of mullite whiskers within SiC/Al2O3 composites. The high electro-magnetic field enhanced the decomposition of mullite at higher temperatures above 1550 °C. The mechanical properties of mullite whiskers reinforced SiC/Al2O3 composites are much better than the SiC/Al2O3 composites without mullite whiskers.

  10. Influence of Al2O3 reinforcement on precipitation kinetic of Cu–Cr nanocomposite

    International Nuclear Information System (INIS)

    Sheibani, S.; Ataie, A.; Heshmati-Manesh, S.; Caballero, A.; Criado, J.M.

    2011-01-01

    Highlights: ► Cr precipitation in Cu-1 wt.% Cr solid solution is based on nucleation and growth models. ► The overall ageing process is accelerated by the presence of Al 2 O 3 reinforcement. ► Al 2 O 3 –Cu interfaces act as primary nucleation sites. ► Structural defects act as secondary nucleation sites. - Abstract: In this paper, the kinetic of precipitation process in mechanically alloyed Cu-1 wt.% Cr and Cu-1 wt.% Cr/3 wt.% Al 2 O 3 solid solution was compared using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The ageing kinetics in Cu–Cr and Cu–Cr/Al 2 O 3 can be described using Johnson–Mehl–Avrami (JMA) and Sestak–Berggren (SB) models, respectively. These different behaviors have been discussed in details. It was found that in presence of Al 2 O 3 reinforcement, the ageing activation energy is decreased and the overall ageing process is accelerated. This behavior is probably due to higher dislocation density previously obtained during ball milling and Al 2 O 3 –Cu interface. TEM observations confirm that Al 2 O 3 –Cu interface and structural defects act as a primary and secondary nucleation sites, respectively.

  11. Phase relations in the SiC-Al2O3-Pr2O3 system

    International Nuclear Information System (INIS)

    Pan, W.; Wu, L.; Jiang, Y.; Huang, Z.

    2016-01-01

    Phase relations in the Si-Al-Pr-O-C system, including the SiC-Al 2 O 3 -Pr 2 O 3 , the Al 2 O 3 -Pr 2 O 3 -SiO 2 and the SiC-Al 2 O 3 -Pr 2 O 3 -SiO 2 subsystems, were determined by means of XRD phase analysis of solid-state-reacted samples fabricated by using SiC, Al 2 O 3 , Pr 2 O 3 and SiO 2 powders as the starting materials. Subsolidus phase diagrams of the systems were presented. Two Pr-aluminates, namely PrAlO 3 (PrAP) and PrAl 11 O 18 (β(Pr) β-Al 2 O 3 type) were formed in the SiC-Al 2 O 3 -Pr 2 O 3 system. SiC was compatible with both of them. Pr-silicates of Pr 2 SiO 5 , Pr 2 Si 2 O 7 and Pr 9.33 Si 6 O 26 (H(Pr) apatite type) were formed owing to presence of SiO 2 impurity in the SiC powder. The presence of the SiO 2 extended the ternary system of SiC-Al 2 O 3 -Pr 2 O 3 into a quaternary system of SiC-Al 2 O 3 -SiO 2 -Pr 2 O 3 (Si-Al-Pr-O-C). SiC was compatible with Al 2 O 3 , Pr 2 O 3 and the Pr-silicates. The effect of SiO 2 on the phase relations and liquid phase sintering of SiC ceramics was discussed.

  12. Luminescence emission spectra of several Al2O3 TL materials

    International Nuclear Information System (INIS)

    Petoe, A.

    1996-01-01

    The paper reports on the radioluminescence (RL) and the thermoluminescence (TL) emission characteristics of several aluminium-oxide dosimeter materials: 'pure' a-Al 2 O 3 (corundum), Al 2 O 3 :C (TLK-500), Al 2 O 3 :Si, Ti, and Al 2 O 3 :Mg, Y. The general feature of the RL spectra is a strong emission line at 695 nm caused by the Cr 3+ impurity, and a wide UV band around 310 nm, which is related to F + -centres. A further emission appears around 420 nm in all of the 'doped' materials. However, the origin of this band is not the same an all phosphors: in Al 2 O 3 :Si, Ti it is associated with Ti 3+ , while in the other two samples it is more likely to be due to F-centres. Al 2 O 3 :Mg, Y shows several more emission lines between 450 and 600 nm, which increase with increasing dopant concentration and therefore these are attributed to Y 3+ impurity. The most obvious feature of the TL emission spectra is the lack of the 310 nm band. Apart from this, all the other emission bands found in the RL are clearly identifiable, and show the same intensity ratios. Corundum shows three major TL peaks at 90, 180 and 350 o C, all of them featuring the Cr 3+ emission. The two glow peaks of Al 2 O 3 :Si, Ti at 120 and 270 o C exhibit the same emission spectra: a strong Cr 3+ line and a somewhat weaker band around 410-420 nm. It is remarkable, that in Al 2 O 3 :C and in Al 2 O 3 :Mg, Y the different glow peaks have different emission spectra. In Al 2 O 3 :C the low temperature, 120 o C peak emits the Cr 3+ line, while the main dosimetry peak at 180 o C exhibits only the 410-420 nm band. On the other hand, in Al 2 O 3 :Mg, Y this blue band appears only in a separated glow peak around 270 o C, while the other three glow peaks at 120, 180 and 350 o C show the Cr 3+ and Y 3+ related emission lines. The detailed knowledge of the RL and TL emission spectra of different Al 2 O 3 TL dosimeters can be used to improve the performance of routine dosimetry work. (author)

  13. Al2 O3:Cr,Ni: a possible thermoluminescent dosemeter

    International Nuclear Information System (INIS)

    Mariani R, Francisco; Roman B, Alvaro; Saavedra S, Renato; Ibarra S, Angel

    1996-01-01

    Results from a study on the thermoluminescent (Tl) emission from Al 2 O 3 :Cr,Ni are presented. The measurements were obtained for evaluation of the Al 2 O 3 :Cr,Ni dosimetric properties. Different crystal batches were exposed to two kind of ionizing radiation (X-ray and β - ). The Tl spectrum has a main peak with high thermal and optical stability, deviating from linearity for doses lower than 3.6 Gy. Furthermore, this material shows advantages (thermal resistance, reusability, multiple heating cycles) compared to TLD-100. Measured Al 2 O 3 :Cr,Ni properties indicate that it could be used as a dosemeter. (author)

  14. High energy transmission of Al2O3 doped with light transition metals

    KAUST Repository

    Schuster, Cosima

    2012-01-31

    The transmission of transparent colored ceramics based on Al2O3doped with light transition metals is measured in the visible and infrared range. To clarify the role of the dopands we perform ab initiocalculations. We discuss the electronic structure and present optical spectra obtained in the independent particle approximation. We argue that the gross spectral features of Co- and Ni-doped Al2O3 samples are described by our model, while the validity of the approach is limited for Cr-doped Al2O3.

  15. Cathode encapsulation of OLEDs by atomic layer deposited Al2O3 films and Al2O3/a-SiNx:H stacks

    NARCIS (Netherlands)

    Keuning, W.; Van de Weijer, P.; Lifka, H.; Kessels, W.M.M.; Creatore, M.

    2011-01-01

    Al2O3 thin films synthesized by plasma-enhanced atomic layer deposition(ALD) at room temperature (25 ºC) have been tested as water vapor per-meation barriers for OLED devices. Silicon nitride films (a-SiNx:H)deposited by plasma-enhanced chemical vapor deposition (PE-CVD) servedas reference and were

  16. Data of ALD Al2O3 rear surface passivation, Al2O3 PERC cell performance, and cell efficiency loss mechanisms of Al2O3 PERC cell

    Directory of Open Access Journals (Sweden)

    Haibing Huang

    2017-04-01

    Full Text Available This data article is related to the recently published article ‘20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%’ (Huang et al., 2017 [1]. This paper is about passivated emitter and rear cell (PERC structures and it describes the quality of the Al2O3 rear-surface passivation layer deposited by atomic layer deposition (ALD, in relation to the processing parameters (e.g. pre-clean treatment, deposition temperature, growth per cycle, and film thickness and to the cell efficiency loss mechanisms. This dataset is made public in order to contribute to the limited available public data on industrial PERC cells, to be used by other researchers.

  17. Data of ALD Al2O3rear surface passivation, Al2O3PERC cell performance, and cell efficiency loss mechanisms of Al2O3PERC cell.

    Science.gov (United States)

    Huang, Haibing; Lv, Jun; Bao, Yameng; Xuan, Rongwei; Sun, Shenghua; Sneck, Sami; Li, Shuo; Modanese, Chiara; Savin, Hele; Wang, Aihua; Zhao, Jianhua

    2017-04-01

    This data article is related to the recently published article '20.8% industrial PERC solar cell: ALD Al 2 O 3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%' (Huang et al., 2017) [1]. This paper is about passivated emitter and rear cell (PERC) structures and it describes the quality of the Al 2 O 3 rear-surface passivation layer deposited by atomic layer deposition (ALD), in relation to the processing parameters (e.g. pre-clean treatment, deposition temperature, growth per cycle, and film thickness) and to the cell efficiency loss mechanisms. This dataset is made public in order to contribute to the limited available public data on industrial PERC cells, to be used by other researchers.

  18. Analysis of cyclic stress-induced fatigue in Al2O3 specimens with Knoop cracks

    International Nuclear Information System (INIS)

    Fett, T.; Munz, D.; Thun, G.; Karlsruhe Univ.

    1990-01-01

    This contribution explains the crack growth in 99.6% Al 2 O 3 specimens with Knoop cracks subject to reverse bending fatigue (R = -1). The experiments revealed a strong fatigue effect under cyclic loads. (MM) [de

  19. A thin layer fiber-coupled luminescence dosimeter based on Al2O3:C

    DEFF Research Database (Denmark)

    Klein, F.A.; Greilich, Steffen; Andersen, Claus Erik

    2011-01-01

    In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence of the intr......In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence...

  20. Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials

    National Research Council Canada - National Science Library

    Krell, Andreas; Hutzler, Thomas; Klimke, Jens

    2006-01-01

    Sintered sub-micrometer alumina (alpha-Al2O3) is the hardest transparent armor. However, its trigonal structure gives rise to a strong thickness effect that makes thicker components translucent. Cubic ceramics (no birefringence...

  1. Direct bonding of ALD Al2O3 to silicon nitride thin films

    DEFF Research Database (Denmark)

    Laganà, Simone; Mikkelsen, E. K.; Marie, Rodolphe

    2017-01-01

    microscopy (TEM) by improving low temperature annealing bonding strength when using atomic layer deposition of aluminum oxide. We have investigated and characterized bonding of Al2O3-SixNy (low stress silicon rich nitride) and Al2O3-Si3N4 (stoichiometric nitride) thin films annealed from room temperature up......, the current bonding method can be also used for further MEMS applications. ...

  2. Controlled synthesis of α-Al2O3 via the hydrothermal-pyrolysis method

    Science.gov (United States)

    Li, Zhao; Wu, Kunyao; Cao, Jing; Wang, Yongfeng

    2017-06-01

    Taking aluminum sulfate and urea as the raw materials produce α-Al2O3 by employing the hydrothermal-pyrolysis method. The study analyzes the characterization of the products by XRD and SEM, The results indicate as follows: after 6 hours’ hydrothermal reaction in the 120°C water, with the aluminum sulfate and urea as the raw materials, spherical α-Al2O3 can be obtained through calcination at 1200°C.

  3. Pressure influenced combustion synthesis of γ- and α-Al2O3 nanocrystalline powders

    International Nuclear Information System (INIS)

    Ozuna, O; Hirata, G A; McKittrick, J

    2004-01-01

    Aluminium oxide nanocrystals have been prepared via a straightforward reaction, initiated at low temperatures ( 2 O 3 ) of these powders. The fibre-like morphology obtained for the as-synthesized γ-Al 2 O 3 permits the synthesis of nanocrystalline α-Al 2 O 3 (∼ 55 nm) even after a high temperature treatment at 1200 deg. C. The findings suggest a promising approach for controlling the size and crystal phase of the particles

  4. Synthesis of Al2O3-Coated Fe3O4 Nanoparticles for Thermomagnetic Processing

    Science.gov (United States)

    2015-12-01

    Scripta Materialia. 2004;51:171–174. 9. Radhakrishnan B, Nicholson DM, Eisenbach M, Parish C, Ludtka GM, Rios O. Alignment of iron nanoparticles in a...ARL-TN-0720 ● DEC 2015 US Army Research Laboratory Synthesis of Al2O3-Coated Fe3O4 Nanoparticles for Thermomagnetic Processing...Laboratory Synthesis of Al2O3-Coated Fe3O4 Nanoparticles for Thermomagnetic Processing by Victoria L Blair Weapons and Materials Research

  5. Characterization of γ- Al2O3 nanopowders synthesized by Co-precipitation method

    International Nuclear Information System (INIS)

    Jbara, Ahmed S.; Othaman, Zulkafli; Ati, Ali A.; Saeed, M.A.

    2017-01-01

    Co-precipitation technique has been used to synthesize gamma-Al 2 O 3 (γ-Al 2 O 3 ) nanopowders under annealing temperature effect. The crystalline phase and purity for the prepared powder were characterized by different spectroscopy techniques. XRD analysis confirms the gamma phase of alumina nanopowders with particle diameter ranging from 6 to 24 nm, which confirms the quantum dots formation, which is also supported by the BET measurement. The surface area of the prepared nanopowders is in the range of 109–367 m 2 /g. Morphology analysis indicates that γ-Al 2 O 3 nanopowders are consisted of grains almost spherical in shape. Some agglomeration of nanoparticles occurs, which become more regular hexagonal shaped with the increasing annealing temperature. The small nanoparticles size and the high surface area from a simple procedure for preparing γ-Al 2 O 3 may make it more suitable for use as an adsorbent for malachite green. - Highlights: • Co-precipitation technique is used to synthesize gamma- Al 2 O 3 nanopowders. • Pure gamma- Al 2 O 3 phase was obtained having maximum nanoparticle size is 24 nm. • The quantum dots were formed inside powder. • High surface area of nanopowders at the low annealing temperature. • Increasing annealing temperature causes the hexagonal agglomeration shape.

  6. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3

    International Nuclear Information System (INIS)

    Jiang, Xiang; Luo, Ruilian; Peng, Feifei; Fang, Yutang; Akiyama, Tomohiro; Wang, Shuangfeng

    2015-01-01

    Highlights: • Novel MEPCM modified with nano-Al 2 O 3 was prepared via emulsion polymerization. • The paraffin microcapsules presented a well-defined microstructure. • The composite achieved high encapsulation efficiency. • The thermal conductivity of MEPCM was enhanced due to the nano-Al 2 O 3 particles. - Abstract: A sort of new microencapsulated phase change materials (MEPCM) based on paraffin wax core and poly(methyl methacrylate-co-methyl acrylate) shell with nano alumina (nano-Al 2 O 3 ) inlay was synthesized through emulsion polymerization. Various techniques were used to characterize the as-prepared products so as to investigate the effect of nano-Al 2 O 3 on morphology and thermal performance, including scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and thermal conductivity measurement. The results showed that the products achieved the best performance with 16% (monomer mass) nano-Al 2 O 3 added under the optimal preparation conditions. The DSC results indicated that the phase change temperature of the composite exhibited appropriate phase change temperature and achieved high encapsulation efficiency. The thermal conductivity of the paraffin microcapsules is also significantly improved owing to the presence of high thermal conductive nano-Al 2 O 3 . This synthetic technique can be a perspective way to prepare the MEPCM with enhanced thermal transfer and phase change properties for potential applications to energy-saving building materials

  7. Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure

    Science.gov (United States)

    Liu, Jian; Yang, Huafeng; Ma, Zhongyuan; Chen, Kunji; Zhang, Xinxin; Huang, Xinfan; Oda, Shunri

    2018-01-01

    We reported an Al2O3/HfO2/Al2O3 sandwich structure resistive switching device with significant improvement of multilevel cell (MLC) operation capability, which exhibited that four stable and distinct resistance states (one low resistance state and three high resistance states) can be achieved by controlling the Reset stop voltages (V Reset-stop) during the Reset operation. The improved MLC operation capability can be attributed to the R HRS/R LRS ratio enhancement resulting from increasing of the series resistance and decreasing of leakage current by inserting two Al2O3 layers. For the high-speed switching applications, we studied the initial switching dynamics by using the measurements of the pulse width and amplitude dependence of Set and Reset switching characteristics. The results showed that under the same pulse amplitude conditions, the initial Set progress is faster than the initial Reset progress, which can be explained by thermal-assisted electric field induced rupture model in the oxygen vacancies conductive filament. Thus, proper combination of varying pulse amplitude and width can help us to optimize the device operation parameters. Moreover, the device demonstrated ultrafast program/erase speed (10 ns) and good pulse switching endurance (105 cycles) characteristics, which are suitable for high-density and fast-speed nonvolatile memory applications.

  8. Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications.

    Science.gov (United States)

    Wang, Lai-Guo; Qian, Xu; Cao, Yan-Qiang; Cao, Zheng-Yi; Fang, Guo-Yong; Li, Ai-Dong; Wu, Di

    2015-01-01

    We have demonstrated a flexible resistive random access memory unit with trilayer structure by atomic layer deposition (ALD). The device unit is composed of Al2O3/HfO2/Al2O3-based functional stacks on TiN-coated Si substrate. The cross-sectional HRTEM image and XPS depth profile of Al2O3/HfO2/Al2O3 on TiN-coated Si confirm the existence of interfacial layers between trilayer structures of Al2O3/HfO2/Al2O3 after 600°C post-annealing. The memory units of Pt/Al2O3/HfO2/Al2O3/TiN/Si exhibit a typical bipolar, reliable, and reproducible resistive switching behavior, such as stable resistance ratio (>10) of OFF/ON states, sharp distribution of set and reset voltages, better switching endurance up to 10(3) cycles, and longer data retention at 85°C over 10 years. The possible switching mechanism of trilayer structure of Al2O3/HfO2/Al2O3 has been proposed. The trilayer structure device units of Al2O3/HfO2/Al2O3 on TiN-coated Si prepared by ALD may be a potential candidate for oxide-based resistive random access memory.

  9. Al2 O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Zhang, Jinbao; Hultqvist, Adam; Zhang, Tian; Jiang, Liangcong; Ruan, Changqing; Yang, Li; Cheng, Yibing; Edoff, Marika; Johansson, Erik M J

    2017-10-09

    Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO 2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al 2 O 3 underlayer for perovskite solar cells. The thickness of the Al 2 O 3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al 2 O 3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al 2 O 3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al 2 O 3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al 2 O 3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al 2 O 3 underlayers for flexible solar cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterization of Al2O3 surface passivation of silicon solar cells

    International Nuclear Information System (INIS)

    Albadri, Abdulrahman M.

    2014-01-01

    A study of the passivation of silicon surface by aluminum oxide (Al 2 O 3 ) is reported. A correlation of fixed oxide charge density (Q f ) and interface trap density (D it ) on passivation efficiency is presented. Low surface recombination velocity (SRV) was obtained even by as-deposited Al 2 O 3 films and this was found to be associated to the passivation of interface states. Fourier transfer infrared spectroscopy spectra show the existence of an interfacial silicon oxide thin layer in both as-deposited and annealed Al 2 O 3 films. Q f is found positive in as-deposited films and changing to negative upon subsequent annealing, providing thus an enhancement of the passivation in p-type silicon wafers, associated to field effects. Secondary ion mass spectrometry analysis confirms the correlation between D it and hydrogen concentration at the Al 2 O 3 /Si interface. A lowest SRV of 15 cm/s was obtained after an anneal at 400 °C in nitrogen atmosphere. - Highlights: • Al 2 O 3 provides superior passivation for silicon surfaces. • Atomic layer deposition-Al 2 O 3 was deposited at a low temperature of 200 °C. • A lowest surface passivation velocity of 15 cm/s was obtained after an anneal at 400 °C in nitrogen. • As-deposited Al 2 O 3 films form very thin SiO 2 layer responsible of low interface trap densities. • High negative fixed charge density of (− 2 × 10 12 cm −2 ) was achieved upon annealing at 400 °C

  11. The impact of ultrathin Al2O3 films on the electrical response of p-Ge/Al2O3/HfO2/Au MOS structures

    Science.gov (United States)

    Botzakaki, M. A.; Skoulatakis, G.; Kennou, S.; Ladas, S.; Tsamis, C.; Georga, S. N.; Krontiras, C. A.

    2016-09-01

    It is well known that the most critical issue in Ge CMOS technology is the successful growth of high-k gate dielectrics on Ge substrates. The high interface quality of Ge/high-k dielectric is connected with advanced electrical responses of Ge based MOS devices. Following this trend, atomic layer deposition deposited ultrathin Al2O3 and HfO2 films were grown on p-Ge. Al2O3 acts as a passivation layer between p-Ge and high-k HfO2 films. An extensive set of p-Ge/Al2O3/HfO2 structures were fabricated with Al2O3 thickness ranging from 0.5 nm to 1.5 nm and HfO2 thickness varying from 2.0 nm to 3.0 nm. All structures were characterized by x-ray photoelectron spectroscopy (XPS) and AFM. XPS analysis revealed the stoichiometric growth of both films in the absence of Ge sub-oxides between p-Ge and Al2O3 films. AFM analysis revealed the growth of smooth and cohesive films, which exhibited minimal roughness (~0.2 nm) comparable to that of clean bare p-Ge surfaces. The electrical response of all structures was analyzed by C-V, G-V, C-f, G-f and J-V characteristics, from 80 K to 300 K. It is found that the incorporation of ultrathin Al2O3 passivation layers between p-Ge and HfO2 films leads to superior electrical responses of the structures. All structures exhibit well defined C-V curves with parasitic effects, gradually diminishing and becoming absent below 170 K. D it values were calculated at each temperature, using both Hill-Coleman and Conductance methods. Structures of p-Ge/0.5 nm Al2O3/2.0 nm HfO2/Au, with an equivalent oxide thickness (EOT) equal to 1.3 nm, exhibit D it values as low as ~7.4  ×  1010 eV-1 cm-2. To our knowledge, these values are among the lowest reported. J-V measurements reveal leakage currents in the order of 10-1 A cm-2, which are comparable to previously published results for structures with the same EOT. A complete mapping of the energy distribution of D its into the energy bandgap of p-Ge, from the valence band

  12. Microstructure of Al2O3 nanocrystalline/cobalt-based alloy composite coatings by laser deposition

    International Nuclear Information System (INIS)

    Li Mingxi; He Yizhu; Yuan Xiaomin; Zhang Shihong

    2006-01-01

    Composite coatings, made of nano-Al 2 O 3 /cobalt-based alloy, produced by a 5-kW CO 2 laser on Ni-based superalloy were investigated. The coatings were examined to reveal their microstructure using optical microscope, scanning electron microscope, transmission electron microscope and X-ray diffraction instrument. The results showed that some equilibrium or non-equilibrium phases, such as γ-Co, Cr 23 C 6 , CoAl 2 O 4 , Al 2 O 3 and ε-Co existed in the coatings. Fine and short dendritic microstructure and columnar to equiaxed transition occurred by adding nano-Al 2 O 3 particle. With the increase of nano-materials (1%, mass fraction), fully equiaxed crystallization appeared. These were contributed to that nano-Al 2 O 3 particles acted as new nucleation site and rapid solidification of the melted pool. The results also showed inhomogeneous dispersion of nano-Al 2 O 3 that resulted in the formation of ε-Co phase in the coatings. The sub-microstructure of the clad was stacking fault. The mechanism of formation of equiaxed grains was also analyzed

  13. Mechanical and Morphological Properties of Polypropylene/Nano α-Al2O3 Composites

    Science.gov (United States)

    Mirjalili, F.; Chuah, L.; Salahi, E.

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt. PMID:24688421

  14. Tribological properties of Ni-P-Al2O3 coatings

    International Nuclear Information System (INIS)

    Trzaska, M.

    1999-01-01

    The paper is aimed on experimental investigations leading to determinations of appropriate conditions for manufacturing composite chemical coatings Ni-P-Al 2 O 3 by the currentless method without or with thermal treatments. The optimal process parameters for Ni-P-Al 2 O 3 deposits on the surface of the steel St3 have been determined. The coatings Ni-P and Ni-P-Al 2 O 3 have been subjected to thermal treatments at the temperature equal to 673 K. Investigations of the structure, hardness and the abrasion wear of the composite coatings before and after thermal treatments have been performed. Influences of the particle dimensions of the dispersed phase Al 2 O 3 on the tribological properties of the resulting composite coatings have been examined. Comparison analysis of the properties of the Ni-P and Ni-P-Al 2 O 3 deposits exhibited that the dispersive phase of the aluminium oxide and the post-manufacturing thermal treatment improve importantly the resistance of the coatings on their mechanical destruction. (author)

  15. Microstructural characterization of Al2O3: Eu with dosimetric purposes

    International Nuclear Information System (INIS)

    Mendoza A, D.; Espinosa P, M.E.; Gonzalez M, P.R.; Rubio, E.

    2004-01-01

    In this work a microstructural analysis is presented, through Sem, EDS and XRD, of the alumina with Europium (Al 2 O 3 : Eu) synthesized by the sol gel method. According to those obtained results, a previous thermal treatment to 1000 C to the samples, induces the formation of the γ-alumina phase for the samples that does not contain Eu; however when there is presence of this element, the θ alumina phase is obtained. Likewise, it was observed that the particle size is increased with the presence of Eu. When analyzing the thermoluminescent response (TL) induced by the gamma radiation, it was observed that the pure Al 2 O 3 presents an intense TL sign; while the Al 2 O 3 : Eu, the sign suffers a marked decrement. (Author)

  16. Multilevel resistive switching in TiO2/Al2O3 bilayers at low temperature

    Science.gov (United States)

    Andreeva, N.; Ivanov, A.; Petrov, A.

    2018-02-01

    We report an approach to design a metal-insulator-metal (MIM) structure exhibiting multilevel resistive switching. Toward this end, two oxide layers (TiO2 and Al2O3) were combined to form a bilayer structure. MIM structures demonstrate stable bipolar switching relative to the resistive state determined by the bias voltage. The resistive state of such bilayer structures can be electrically tuned over seven orders of magnitude. The resistance is determined by the concentration of oxygen vacancies in the active layer of Al2O3. To elucidate a possible mechanism for resistive switching, structural studies and measurements have been made in the temperature range 50-295 K. Resistive switching occurs over the entire temperature range, which assumes the electronic character of the process in the Al2O3 layer. The experimental results indicate that hopping transport with variable-length jumps is the most probable transport mechanism in these MIM structures.

  17. Anchorage of γ-Al2O3 nanoparticles on nitrogen-doped multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Rodríguez-Pulido, A.; Martínez-Gutiérrez, H.; Calderon-Polania, G.A.; Lozano, M.A. Gonzalez; Cullen, D.A.; Terrones, H.; Smith, D.J.; Terrones, M.

    2016-01-01

    Nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) have been decorated with γ-Al 2 O 3 nanoparticles by a novel method. This process involved a wet chemical approach in conjunction with thermal treatment. During the particle anchoring process, individual CNx-MWNT nanotubes agglomerated into bundles, resulting in arrays of aligned CNx-MWNT coated with γ-Al 2 O 3 . Extensive characterization of the resulting γ-Al 2 O 3 /CNx-MWNT bundles was performed using a range of electron microscopy imaging and microanalytical techniques. A possible mechanism explaining the nanobundle alignment is described, and possible applications of these materials for the fabrication of ceramic composites using CNx-MWNTs are briefly discussed.

  18. Characterization of Al2O3-Co ceramic composite obtained by high energy mill

    International Nuclear Information System (INIS)

    Souza, J.L.; Assis, R.B. de; Carlos, E.M.; Oliveira, T.P.; Costa, F.A. da

    2014-01-01

    This work aims to characterize the ceramic composite Al 2 O3-Co obtained by high energy grinding. The composites were obtained by milling Al 2 O 3 and Co in a high energy mill at a speed of 400 rpm, in proportions of 5 to 20% Cobalt (Co). Ceramic composites with 5 and 20% cobalt were sintered at 1200 and 1300 ° C, with a 60-minute plateau and a heating rate of 10 ° C / min. The samples were characterized by X-ray diffraction (XRD), thermogravimetry and differential scanning calorimetry (TG / DSC) and scanning electron microscopy (SEM). The results show the significant effect of cobalt percentage and high energy grinding on the final properties of the Al 2 O 3 - Co ceramic composite, presenting satisfactory values for the composite with a 20% cobalt percentage, showing to be a promising material for application in cutting tools

  19. Strain Distribution of Au and Ag Nanoparticles Embedded in Al2O3 Thin Film

    Directory of Open Access Journals (Sweden)

    Honghua Huang

    2014-01-01

    Full Text Available Au and Ag nanoparticles embedded in amorphous Al2O3 matrix are fabricated by the pulsed laser deposition (PLD method and rapid thermal annealing (RTA technique, which are confirmed by the experimental high-resolution transmission electron microscope (HRTEM results, respectively. The strain distribution of Au and Ag nanoparticles embedded in the Al2O3 matrix is investigated by the finite-element (FE calculations. The simulation results clearly indicate that both the Au and Ag nanoparticles incur compressive strain by the Al2O3 matrix. However, the compressive strain existing on the Au nanoparticle is much weaker than that on the Ag nanoparticle. This phenomenon can be attributed to the reason that Young’s modulus of Au is larger than that of Ag. This different strain distribution of Au and Ag nanoparticles in the same host matrix may have a significant influence on the technological potential applications of the Au-Ag alloy nanoparticles.

  20. Characterization of thermoluminescent response of Al2O3:Tm/Teflon for gamma rays dosimetry

    International Nuclear Information System (INIS)

    Carvalho Junior, Alvaro B. de; Barros, Vinicius S.M. de; Elihimas, Diego Rafael M.; Khoury, Helen J.; Azevedo, Walter M. de

    2011-01-01

    In this work, α-Al 2 O 3 doped with Tm 3+ was prepared by combustion synthesis techniques for thermoluminescent (TL) ionizing radiation dosimetry applications. After this, Al 2 O 3 :Tm (0.1%) pellets were manufactured from a 2:1 homogeneous mixture of Al 2 O 3 :Tm (0.1%) and powdered Teflon (PTFE). Ten pellets were used to characterize the dosimetric properties. The dosimetric characterization was performed by analyses of the reproducibility, sensitivity of the TL response vs. dose between 1 and 10 Gy to 60 Co source and fading. The results showed a glow curve with a peak near to 225 deg C, a linear TL response with the gamma radiation dose in the range investigated and a reproducibility < 10%. These results indicate a potential use of these pellets for gamma radiation dosimetry. (author)

  1. Synthesis of Beta-Al2O3 Solid Electrolytes by Glycine-nitrate Combustion

    Directory of Open Access Journals (Sweden)

    ZHU Cheng-fei

    2016-08-01

    Full Text Available Beta-Al2O3 precursor powders were synthesized by glycine-nitrate combustion at a low temperature using metal nitrate and GNP as raw materials. The thermal decomposition mechanism of the gel and the formation process of beta-Al2O3 were investigated by XRD, TG/DSC, SEM, NMR and EIS. The results show that beta-Al2O3 precursor powder with the average size of 42.0nm can be obtained at 1150℃, 150℃ lower than the solid state reaction. The precursor powder has good forming and sintering performance. The sample is calcined at 1620℃, then the Al(Ⅳ and the Al(Ⅵ in the structure of the sample is around δ=45 and δ=-6, respectively. The relative density of the sample is 97.6%. The ionic conductivity at 350℃ is 0.046S·cm-1.

  2. Synthesis of Mg–Al2O3 nanocomposites by mechanical alloying

    International Nuclear Information System (INIS)

    Liu, Jinling; Suryanarayana, C.; Ghosh, Dipankar; Subhash, Ghatu; An, Linan

    2013-01-01

    Highlights: ► Mg nanocomposites were synthesized by high-energy ball milling. ► A uniform distribution of the nano-sized reinforcements in the matrix was successfully obtained. ► The thermal stability of the formed nanocomposite was evaluated by annealing it at a high temperature. ► A reaction occurred between the initial Mg powder and Al formed as a result of the displacement reaction, leading to the formation of Mg 17 Al 12 , Al 0.58 Mg 0.42 , and Al 3 Mg 2 phases. -- Abstract: Mg–Al 2 O 3 nanocomposite powders, with Al 2 O 3 particles of 50 nm size, were synthesized by mechanical alloying starting from a mixture of 70 vol.% pure Mg and 30 vol.% Al 2 O 3 powders. A steady-state condition was obtained on milling the powder mix for about 20 h, when the crystallite size of the Mg powder was about 10 nm. The structural evolution during milling was monitored using scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction methods. The results showed that a mixture of Mg, Al 2 O 3 , and MgO phases were obtained on mechanical alloying. On annealing the milled powders at 600 °C for 30 min, a displacement reaction occurred between the Mg and Al 2 O 3 phases, when the formation of a mixture of pure Al and MgO phases was observed. Also, a reaction occurred between the initial Mg powder and Al formed as a result of the displacement reaction, leading to the formation of Mg 17 Al 12 , Al 0.58 Mg 0.42 , and Al 3 Mg 2 phases. Thus, the powder annealed after milling the Mg + Al 2 O 3 powder mix for 25 h consisted of Al, MgO and Al 3 Mg 2 phases

  3. Antireflective bilayer coatings based on Al2O3 film for UV region

    Directory of Open Access Journals (Sweden)

    Marszałek Konstanty

    2015-03-01

    Full Text Available Bilayer antireflective coatings consisting of aluminium oxide Al2O3/MgF2 and Al2O3/SiO2 are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5 × 10-3 Pa in the presence of oxygen, and magnesium fluoride was prepared by thermal evaporation on heated optical lenses made from quartz glass (Corning HPFS. Substrate temperature was maintained at 250 _C during the deposition. Thickness and deposition rate were controlled with a thickness measuring system Inficon XTC/2. The experimental results of the optical measurements carried out during and after the deposition process have been presented. Physical thickness measurements were made during the deposition process and resulted in 44 nm/52 nm for Al2O3/MgF2 and 44 nm/50 nm for Al2O3/SiO2 system. Optimization was carried out for ultraviolet region with minimum of reflectance at 300 nm. The influence of post deposition annealing on the crystal structure was determined by X-ray measurements. In the range from ultraviolet to the beginning of visible region, the reflectance of both systems decreased and reached minimum at 290 nm. The value of reflectance at this point, for the coating Al2O3/MgF2 was equal to R290nm = 0.6 % and for Al2O3/SiO2R290nm = 1.1 %. Despite the difference between these values both are sufficient for applications in the UV optical systems for medicine and UV laser technology.

  4. Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution.

    Science.gov (United States)

    Zhao, Di; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Wang, Deping

    2009-05-01

    The effect of replacing varying amounts (0-2.5 mol.%) of B2O3 with Al2O3 in a borate glass on (1) the conversion of the glass to HA in an aqueous phosphate solution and (2) the compressive strength of the as-formed HA product was investigated. Samples of each glass (10 x 10 x 8 mm) were placed in 0.25 M K2HPO4 solution at 60 degrees C, and the conversion kinetics to HA were determined from the weight loss of the glass and the pH of the solution. The structure and composition of the solid reaction products were characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. While the conversion rate of the glass to HA decreased considerably with increasing Al2O3 content, the microstructure of the HA product became denser and the compressive strength of the HA product increased. The addition of SiO2 to the Al2O3-containing borate glass reversed the deterioration of the conversion rate, and produced a further improvement in the strength of the HA product. The compressive strength of the HA formed from the borate glass with 2.5 mol.% Al2O3 and 5 mol.% SiO2 was 11.1 +/- 0.2 MPa, which is equal to the highest strengths reported for trabecular bone. The results indicated that simultaneous additions of Al2O3 and SiO2 could be used to control the bioactivity of the borate glass and to enhance the mechanical strength of the HA product. Furthermore, the HA product formed from the glass containing both SiO2 and Al2O3 could be applied to bone repair.

  5. Effect of Al2O3 and TiO2 nanoparticles on aquatic organisms

    International Nuclear Information System (INIS)

    Gosteva, I; Morgalev, Yu; Morgaleva, T; Morgalev, S

    2015-01-01

    Environmental toxicity of aqueous disperse systems of nanoparticles of binary compounds of titanium dioxides (with particle size Δ 50 =5 nm, Δ 50 =50 nm, Δ 50 =90 nm), aluminum oxide alpha-forms (Δ 50 =7 nm and Δ 50 =70 nm) and macro forms (TiO 2 Δ 50 =350 nm, Al 2 O 3 A 50 =4000 nm) were studied using biological testing methods. The bioassay was performed using a set of test organisms representing the major trophic levels. We found the dependence of the toxic effect concentration degree of nTiO 2 and nAl 2 O 3 on the fluorescence of the bacterial biosensor 'Ekolyum', the chemotactic response of ciliates Paramecium caudatum, the growth of unicellular algae Chlorella vulgaris Beijer and mortality of entomostracans Daphnia magna Straus. We revealed the selective dependence of nTiO 2 and nAl 2 O 3 toxicity on the size, concentration and chemical nature of nanoparticles. The minimal concentration causing an organism's response on nTiO 2 and nAl 2 O 3 effect depends on the type of the test- organism and the test reaction under study. We specified L(E)C 50 and acute toxicity categories for all the studied nanoparticles. We determined that nTiO 2 (Δ 50 =5 nm) belong to the category «Acute toxicity 1», nTiO 2 (A 50 =90 nm) and nAl 2 O 3 (Δ 50 =70 nm) – to the category «Acute toxicity 2», nAl 2 O 3 (Δ 50 =7 nm) – to the category «Acute toxicity 3». No acute toxicity was registered for nTiO 2 (Δ 50 =50 nm) and macro form TiO 2 . (paper)

  6. Effect of AL2O3 and TiO2 nanoparticles on aquatic organisms

    Science.gov (United States)

    Gosteva, I.; Morgalev, Yu; Morgaleva, T.; Morgalev, S.

    2015-11-01

    Environmental toxicity of aqueous disperse systems of nanoparticles of binary compounds of titanium dioxides (with particle size Δ50=5 nm, Δ50=50 nm, Δ50=90 nm), aluminum oxide alpha-forms (Δ50=7 nm and Δ50=70 nm) and macro forms (TiO2 Δ50=350 nm, Al2O3 A50=4000 nm) were studied using biological testing methods. The bioassay was performed using a set of test organisms representing the major trophic levels. We found the dependence of the toxic effect concentration degree of nTiO2 and nAl2O3 on the fluorescence of the bacterial biosensor "Ekolyum", the chemotactic response of ciliates Paramecium caudatum, the growth of unicellular algae Chlorella vulgaris Beijer and mortality of entomostracans Daphnia magna Straus. We revealed the selective dependence of nTiO2 and nAl2O3 toxicity on the size, concentration and chemical nature of nanoparticles. The minimal concentration causing an organism's response on nTiO2 and nAl2O3 effect depends on the type of the test- organism and the test reaction under study. We specified L(E)C50 and acute toxicity categories for all the studied nanoparticles. We determined that nTiO2 (Δ50=5 nm) belong to the category «Acute toxicity 1», nTiO2 (A50=90 nm) and nAl2O3 (Δ50=70 nm) - to the category «Acute toxicity 2», nAl2O3 (Δ50=7 nm) - to the category «Acute toxicity 3». No acute toxicity was registered for nTiO2 (Δ50=50 nm) and macro form TiO2.

  7. Miscibility of amorphous ZrO2-Al2O3 binary alloy

    Science.gov (United States)

    Zhao, C.; Richard, O.; Bender, H.; Caymax, M.; De Gendt, S.; Heyns, M.; Young, E.; Roebben, G.; Van Der Biest, O.; Haukka, S.

    2002-04-01

    Miscibility is a key factor for maintaining the homogeneity of the amorphous structure in a ZrO2-Al2O3 binary alloy high-k dielectric layer. In the present work, a ZrO2/Al2O3 laminate thin layer has been prepared by atomic layer chemical vapor deposition on a Si (100) wafer. This layer, with artificially induced inhomogeneity (lamination), enables one to study the change in homogeneity of the amorphous phase in the ZrO2/Al2O3 system during annealing. High temperature grazing incidence x-ray diffraction (HT-XRD) was used to investigate the change in intensity of the constructive interference peak of the x-ray beams which are reflected from the interfaces of ZrO2/Al2O3 laminae. The HT-XRD spectra show that the intensity of the peak decreases with an increase in the anneal temperature, and at 800 °C, the peak disappears. The same samples were annealed by a rapid thermal process (RTP) at temperatures between 700 and 1000 °C for 60 s. Room temperature XRD of the RTP annealed samples shows a similar decrease in peak intensity. Transmission electronic microscope images confirm that the laminate structure is destroyed by RTP anneals and, just below the crystallization onset temperature, a homogeneous amorphous ZrAlxOy phase forms. The results demonstrate that the two artificially separated phases, ZrO2 and Al2O3 laminae, tend to mix into a homogeneous amorphous phase before crystallization. This observation indicates that the thermal stability of ZrO2-Al2O3 amorphous phase is suitable for high-k applications.

  8. The Evolution of Al2O3 Content in Ancient Chinese Glasses

    Directory of Open Access Journals (Sweden)

    Wang Cheng-yu

    2016-01-01

    Full Text Available Based on the evidence from museums, collectors, the dug out of the grave, the evolution of Al2O3 content in Chinese glasses from Western Zhou to Qing dynasty was documented in this paper in detail. It was found that Al2O3 contents in ancient Chinese glasses were relatively higher than those of outside of China in the world. This is the character of the ancient Chinese glasses which is caused by not only the high Al contents in the raw materials but also by the Chinese people’s preference of the milky glasses similar to jade

  9. Narrow in-gap states in doped Al2O3

    KAUST Repository

    Casas-Cabanas, Montse

    2011-10-01

    Based on XRD data testifying that the M ions occupy substitutional sites, transmittance measurement are discussed in comparison to electronic structure calculations for M-doped Al2O3 with M = V, Mn, and Cr. The M 3d states are found approximatively 2 eV above the top of the host valence band. The fundamental band gap of Al2O3 is further reduced in the V and Mn cases due to a splitting of the narrow band at the Fermi energy. Nevertheless the measured transmittance in the visible range remains high in all three cases. © 2011 Elsevier B.V. All rights reserved.

  10. Antireflective bilayer coatings based on Al2O3 film for UV region

    OpenAIRE

    Marszałek Konstanty; Winkowski Paweł; Marszałek Marta

    2015-01-01

    Bilayer antireflective coatings consisting of aluminium oxide Al2O3/MgF2 and Al2O3/SiO2 are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5 × 10-3 Pa in the presence of oxygen, and magnesium fluoride was prepared by thermal evaporation on heated optical lenses made from quartz glass (Corning HPFS). Substrate temperature was maintained at 250 _C during the deposition. Thickness and deposition rate were controlled with a thickness measuring syste...

  11. Co2+ adsorption in porous oxides Mg O, Al2O3 and Zn O

    International Nuclear Information System (INIS)

    Moreno M, J. E.; Granados C, F.; Bulbulian, S.

    2009-01-01

    The porous oxides Mg O, Al 2 O 3 and Zn O were synthesized by the chemical combustion in solution method and characterized be means of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The adsorption behavior of Co 2+ ions present in aqueous solution were studied on the synthesized materials by means of experiments lots type to ambient temperature. It was found that the cobalt ions removal was of 90% in Mg O, 65% in Zn O and 72% in Al 2 O 3 respectively, indicating that the magnesium oxide is the best material to remove Co 2+ presents in aqueous solution. (Author)

  12. Optical properties of Al2O3 thin films grown by atomic layer deposition.

    Science.gov (United States)

    Kumar, Pradeep; Wiedmann, Monika K; Winter, Charles H; Avrutsky, Ivan

    2009-10-01

    We employed the atomic layer deposition technique to grow Al(2)O(3) films with nominal thicknesses of 400, 300, and 200 nm on silicon and soda lime glass substrates. The optical properties of the films were investigated by measuring reflection spectra in the 400-1800 nm wavelength range, followed by numerical fitting assuming the Sellmeier formula for the refractive index of Al(2)O(3). The films grown on glass substrates possess higher refractive indices as compared to the films on silicon. Optical waveguiding is demonstrated, confirming the feasibility of high-index contrast planar waveguides fabricated by atomic layer deposition.

  13. CO2 Hydrogenation over Ru/χ-Al2O3 Catalyst

    Science.gov (United States)

    Jeenjumras, Kanyanat; Piticharoenphun, Sunthon; Mekasuwandumrong, Okorn

    2018-02-01

    The hydrogenation of CO2 was investigated over Ru/χ-Al2O3 catalyst prepared by thermal decomposition of gibbsite which was followed with impregnation using different types of ruthenium precursors. The performance of the catalysts was examined by the temperature programmed reaction of CO2 with H2. The Ru/χ-Al2O3 catalyst prepared using ruthenium (III) nitrosyl nitrate solution as the Ru source (RNN) exhibited the best performance, compared to other Ru precursors. The physiochemical properties of each catalyst were characterized using XRD diffraction, N2 physisorption and H2 chemisorption.

  14. Low Leakage Superconducting Tunnel Junctions with a Single Crystal Al2O3 Barrier

    Science.gov (United States)

    2016-03-30

    three layers were grown in situ in an ultra high vacuum (UHV) system with a nominal base pressure of ~1×10-10 Torr. First, a 120~150 nm thick...current-voltage (I-V) curves of a typical single-crystal Al2O3 tunnel junction taken at ~80 mK . One way to quantify the junction quality is to define a...80 mK on an epi-Re/epi-Al2O3/poly-Al tunnel junction. (a) Linear vertical scale. (b) Logarithmic vertical scale: absolute value is used. This

  15. Preparation of ZnO-Al2O3 Particles in a Premixed Flame

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2000-01-01

    Zinc oxide (ZnO) and alumina (Al2O3) particles are synthesized by the combustion of their volatilized acetylacetonate precursors in a premixed air-methane flame reactor. The particles are characterized by XRD, transmission electron microscopy, scanning mobility particle sizing and by measurement...... temperature and a decreasing precursor vapour pressure. The combustion of precursor mixtures leads to composite particles consisting of zinc aluminate ZnAl2O4 intermixed with either ZnO or Al2O3 phases. The zinc aluminate particles are dendritic aggregates, resembling the alumina particles, and are evidently...

  16. Reduction of Al2O3 in niobium--lithium systems at 10000C

    International Nuclear Information System (INIS)

    Selle, J.E.; DeVan, J.H.

    1977-07-01

    Various grades of aluminum oxide (Al 2 O 3 ) were sealed inside capsules of niobium and niobium-1% zirconium alloy which were then exposed to liquid lithium for 3000 hr at 1000 0 C. Similar unsealed capsules were exposed to a high vacuum. Reduction of the Al 2 O 3 occurred in the lithium-treated capsules, but no reaction occurred in the vacuum-treated capsules. Metallography and electron-microprobe analysis showed that reaction products in the form of compounds of niobium, aluminum, and zirconium were formed. Lithium acted as a sink for oxygen

  17. Detection of fast neutrons with LiF and Al2O3 scintillating bolometers

    International Nuclear Information System (INIS)

    Coron, N; Gironnet, J; Leblanc, J; Marcillac, P de; Redon, T; Torres, L; Cuesta, C; Domange, J; Garcia, E; Martinez, M; Ortigoza, Y; Ortiz de Solorzano, A; Pobes, C; Puimedon, J; Rolon, T; Sarsa, M L; Villar, J A

    2010-01-01

    Scintillating bolometers of LiF and Al 2 O 3 can monitor the fast neutrons flux in WIMPs searches. With both materials we merge the traditional fast neutron detection methods of induced reactions and scattering. The ROSEBUD collaboration devoted an underground run in the old Canfranc laboratory to study the response of LiF and Al 2 O 3 to fast neutrons from 252 Cf. Both bolometers were used simultaneously in a common experimental set-up resembling those of current WIMPs searches, which could give valuable insights into future WIMPs searches with cryogenic detectors as EURECA.

  18. The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM)

    Science.gov (United States)

    Strojny-Nędza, Agata; Pietrzak, Katarzyna; Węglewski, Witold

    2016-08-01

    In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.

  19. Preparation and Characterization of PVC-Al2O3-LiClO4 Composite Polymeric Electrolyte

    International Nuclear Information System (INIS)

    Azizan Ahmad; Mohd Yusri Abdul Rahman; Siti Aminah Mohd Noor; Mohd Reduan Abu Bakar

    2009-01-01

    Ionic conductivity of composite polymer electrolyte PVC-Al 2 O 3 -LiClO 4 as a function of Al 2 O 3 concentration has been studied. The electrolyte samples were prepared by solution casting technique. Their ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with Al 2 O 3 concentration. The highest room temperature conductivity of the electrolyte of 3.43 x 10 -10 S.cm -1 was obtain at 25 % by weight of Al 2 O 3 and that without Al 2 O 3 filler was found to be 2.43 x 10 -11 S.cm -1 . The glass transition temperature decreases with the increase of Al 2 O 3 percentage due to the increasing amorphous state, meanwhile the degradation temperature increases with the increase of Al 2 O 3 percentage. Both of these thermal properties influence the enhancement of the conductivity value. The morphology of the samples shows the even distribution of the Al 2 O 3 filler in the samples. However, the filler starts to agglomerate in the sample when high percentage of Al 2 O 3 is being used. In conclusion, the addition of Al 2 O 3 filler improves the ionic conductivity of PVC- Al 2 O 3 -LiCIO 4 solid polymer electrolyte. (author)

  20. Operando Raman spectroscopy study on the deactivation of Pt/Al2O3 and Pt-Sn/Al2O3 propane dehydrogenation catalysts.

    Science.gov (United States)

    Sattler, Jesper J H B; Beale, Andrew M; Weckhuysen, Bert M

    2013-08-07

    The deactivation of 0.5 wt% Pt/Al2O3 and 0.5 wt% Pt-1.5 wt% Sn/Al2O3 catalysts has been studied by operando Raman spectroscopy during the dehydrogenation of propane and subsequent regeneration in air for 10 successive dehydrogenation-regeneration cycles. Furthermore, the reaction feed was altered by using different propane/propene/hydrogen ratios. It was found that the addition of hydrogen to the feed increases the catalyst performance and decreases the formation of coke deposits, as was revealed by thermogravimetrical analysis. The positive effect of hydrogen on the catalyst performance is comparable to the addition of Sn, a promoter element which increases both the propane conversion and propene selectivity. Operando Raman spectroscopy showed that hydrogen altered the nature of the coke deposits formed during propane dehydrogenation. Due to this approach it was possible to perform a systematic deconvolution procedure on the Raman spectra. By analysing the related intensity, band position and bandwidth of the different Raman features, it was determined that smaller graphite crystallites, which have less defects, are formed when the partial pressure of hydrogen in the feed was increased.

  1. Uniform Atomic Layer Deposition of Al2O3 on Graphene by Reversible Hydrogen Plasma Functionalization

    Science.gov (United States)

    2017-01-01

    A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 films down to 8 nm in thickness. Hall measurements and Raman spectroscopy reveal that the hydrogen plasma functionalization is reversible upon Al2O3 ALD and subsequent annealing at 400 °C and in this way does not deteriorate the graphene’s charge carrier mobility. This is in contrast with oxygen plasma functionalization, which can lead to a uniform 5 nm thick closed film, but which is not reversible and leads to a reduction of the charge carrier mobility. Density functional theory (DFT) calculations attribute the uniform growth on both H2 and O2 plasma functionalized graphene to the enhanced adsorption of trimethylaluminum (TMA) on these surfaces. A DFT analysis of the possible reaction pathways for TMA precursor adsorption on hydrogenated graphene predicts a binding mechanism that cleans off the hydrogen functionalities from the surface, which explains the observed reversibility of the hydrogen plasma functionalization upon Al2O3 ALD. PMID:28405059

  2. Residual stress distribution of the soldered structure with Kovar alloy and Al2O3 ceramics

    Directory of Open Access Journals (Sweden)

    Qile Gao

    2017-03-01

    Full Text Available Residual stress distribution in soldered structure of Kovar alloy and Al2O3 ceramics was determined using XRD analyses. In order to measure the residual stress, position of the characteristic diffraction peak and stress constant were obtained using several versatile/advanced techniques after calibration. Residual stress of soldered structure was measured based on the diffraction patterns obtained for the distribution of residual stress in the soldered joint. Only diffraction peak at 149° for Kovar alloy and two diffraction peaks ranging from 140–170° for Al2O3 ceramics were found to be appropriate for the residual stress determination. It was also confirmed that for Al2O3 ceramics the XRD peak at 152° reflects the changes of stress more precisely than the one at 146°. The stress constant K of Kovar alloy and Al2O3 ceramics was found to be −197 MPa/° and −654 MPa/°, respectively. After soldering, the maximum residual stress of the soldered joint of both materials developed at 1 mm from the soldering seam, and the values within 3 mm from the soldering seam are generally significant. Thus, it is important to pay attention to the area of 3 mm from the soldering seam in practical application.

  3. Preparation and Characterization of NiMo/Al2O3Catalyst for Hydrocracking Processing

    Science.gov (United States)

    Widiyadi, Aditya; Guspiani, Gema Adil; Riady, Jeffry; Andreanto, Rikky; Chaiunnisa, Safina Dea; Widayat

    2018-02-01

    Hydrocracking is a chemical process used in petroleum refineries for converting high boiling hydrocarbons in petroleum crude oils to more valuable lower boiling products such as gasoline, kerosene, and diesel oil that operate at high temperature and pressure. Catalyst was used in hydrocracking to reduce temperature and pressure. Hydrocracking catalyst are composed of active components and support. Alumina is widely used in hydrocracking process as catalyst support due to its high surface area, high thermal stability, and low prices. The objective of this research was preparated NiMo/Al2O3 catalyst that used as hydrocracking catalyst. Catalyst was synthesized by wetness impregnation method and simple heating method with various kind of Al2O3. The physicochemical properties of catalyst were investigated by X-ray diffraction (XRD) to determine type of crystal and scanning electron microscopy (SEM) to determine morphology of the catalyst. The NiMo/Al2O3 catalyst prepared by aluminium potassium sulfate dodecahydrate exhibited the highest crystallinity of 90.23% and it is clear that MoO3 and NiO crystallites are highly dispersed on the NiMo/Al2O3 catalyst which indicates as the best catalyst. The catalytic activity in hydrocracking process was successfully examined to convert fatty acid into hydrocarbon.

  4. Ethanol gas sensing properties of Al2 O3-doped ZnO thick film ...

    Indian Academy of Sciences (India)

    The characterization and ethanol gas sensing properties of pure and doped ZnO thick films were investigated. Thick films of pure zinc oxide were prepared by the screen printing technique. Pure zinc oxide was almost insensitive to ethanol. Thick films of Al2O3 (1 wt%) doped ZnO were observed to be highly sensitive to ...

  5. Interaction of Pd with steps on alpha-Al2O3(0001)

    DEFF Research Database (Denmark)

    Lodziana, Zbiegniew; Nørskov, Jens Kehlet

    2002-01-01

    Based on density functional calculations, we show that steps on the alpha-Al2O3 (0 0 0 1) surface are enriched in oxygen and that they bind Pd atoms and small clusters much stronger than the terraces. We also show that Pd can diffuse quite freely on an alumina surface and use this to explain why...

  6. Theoretical investigation of the structure of κ-Al2O3

    DEFF Research Database (Denmark)

    Yourdshahyan, Y.; Engberg, U.; Bengtsson, L.

    1997-01-01

    Using plane-wave pseudopotential calculations based on density-functional theory at the local-density-approximation level we investigate all the possible kappa-Al2O3 structures which are permitted by the known crystal symmetry. We find that structures with sixfold coordinated Al atoms...

  7. Characterization of microstructure and properties of Al–Al3Zr–Al2O3 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Characterization of microstructure and properties of Al–Al 3 Zr–Al 2 O 3 composite ... ANUP MANDAL1 KARABI DAS1 SIDDHARTHA DAS1. Department of Metallurgical & Materials Engineering, Indian Institute of Technology, Kharagpur 721 302, India ...

  8. Linear reciprocating wear behaviour of plasma-sprayed Al2O3 ...

    Indian Academy of Sciences (India)

    Balmukund Dhakar

    2017-08-31

    sprayed Al2O3–Cr2O3 coatings applied on steel substrates. ... torch prior to the deposition of coating material. 2.2 Characterisation of coating ..... and high temperature oxidation behaviour of wire arc sprayed iron based coatings.

  9. Heat transfer of Al2O3 nanofluids in microchannel heat sink

    Science.gov (United States)

    Razali, A. A.; Sadikin, A.; Ibrahim, S. A.

    2017-04-01

    Microchannel heat sink creates an innovative cooling technology to remove large amount of heat from small area. Recently, nanotechnology gain interest to explore the microchannel cooling benefits of nanofluids as working fluid. The objective of this study is to investigate the effect of heat transfer to Al2O3 nanofluids after used as working fluid in the microchannel. In this study, the microchannel was design in square shape with a cross section of 0.5×0.5 mm2 and made by copper. The experiment was conducted in laminar flow with Reynolds number ranging approximately from 633 to 1172. The present study was focused on heat transfer of Al2O3 nanofluids in microchannel heat sink at concentration of 1.0 wt. % and 2.5 wt. % dispersed in water. The heat was produced at bottom of the heat sink is 325 W. The computational simulation method was carried out to validate the experimental results. It was observed that the heat transfer rate is higher when using Al2O3 nanofluids compared to water. However, according to X-ray diffraction method (XRD), it is found that the structure of Al2O3 particles tends to more integrity and the crystallite size grows up after increased the temperature in the microchannel.

  10. Selective hydrogenation of maleic anhydride over Pd/Al2O3 ...

    Indian Academy of Sciences (India)

    The results showed that the activity of the Pd/Al2O3 catalysts was excellent due to its high active surface area. ... avoid the high cost of separating the solvent from the reaction mixture, solvent-free hydrogenation of MA ... loss of reaction activity was observed after 120 h.3. Noble catalysts, especially Pd-based catalysts, have.

  11. Classical Bahavior of Alumina (Al2O3) Nanofluids in Antifrogen N with Experimental Evidence

    NARCIS (Netherlands)

    Saleemi, M.; Vanapalli, Srinivas; Nikkam, N.; Toprak, M.S.; Muhammed, M.

    2015-01-01

    A nanofluid is a suspension containing nanoparticles in conventional heat transfer fluids. This paper reports on an investigation of alumina (Al2O3) nanoparticles in Antifrogen N, also called AFN, which is a popular antifreeze coolant consisting primarily of ethylene glycol and other additives to

  12. Dilatometric studies of Y 2 W 3 O 12 with added Al 2 O 3

    Indian Academy of Sciences (India)

    ... due to the removal of water molecules. Al2O3 has been added to Y2W3O12 up to 10 wt% in an attempt to overcome the hygroscopicity and reduce the particle size and thereby the thermal expansion hysteresis. Thermo gravimetric, dilatometric and electron microscopic studies are presented to support these observations.

  13. Theory of Al2O3 incorporation in SiO2

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2002-01-01

    Different possible forms of Al2O3 units in a SiO2 network are studied theoretically within the framework of density-functional theory. Total-energy differences between the various configurations are obtained, and simple thermodynamical arguments are used to provide an estimate of their relative...

  14. Characterization of microstructure and properties of Al–Al3Zr–Al2O3 ...

    Indian Academy of Sciences (India)

    corrosion resistance, high thermal and electrical conductivity and high damping capacity. However, Al alloys possess poor wear and seizure resistance. To improve the above proper- ties, researchers successfully dispersed various hard and soft reinforcements such as SiC [2], Al2O3 [3,4], TiC [5], silicon particle [6], carbon ...

  15. Preparation and Characterization of NiMo/Al2O3Catalyst for Hydrocracking Processing

    Directory of Open Access Journals (Sweden)

    Widiyadi Aditya

    2018-01-01

    Full Text Available Hydrocracking is a chemical process used in petroleum refineries for converting high boiling hydrocarbons in petroleum crude oils to more valuable lower boiling products such as gasoline, kerosene, and diesel oil that operate at high temperature and pressure. Catalyst was used in hydrocracking to reduce temperature and pressure. Hydrocracking catalyst are composed of active components and support. Alumina is widely used in hydrocracking process as catalyst support due to its high surface area, high thermal stability, and low prices. The objective of this research was preparated NiMo/Al2O3 catalyst that used as hydrocracking catalyst. Catalyst was synthesized by wetness impregnation method and simple heating method with various kind of Al2O3. The physicochemical properties of catalyst were investigated by X-ray diffraction (XRD to determine type of crystal and scanning electron microscopy (SEM to determine morphology of the catalyst. The NiMo/Al2O3 catalyst prepared by aluminium potassium sulfate dodecahydrate exhibited the highest crystallinity of 90.23% and it is clear that MoO3 and NiO crystallites are highly dispersed on the NiMo/Al2O3 catalyst which indicates as the best catalyst. The catalytic activity in hydrocracking process was successfully examined to convert fatty acid into hydrocarbon.

  16. Neutron studies of nanostructured CuOAl 2O 3 NO x removal catalysts

    Science.gov (United States)

    Masakuni Ozawa; Chun-Keung Loong

    Nanostructured powders of automotive catalytic system CuOAl 2O 3, targeted for nitrogen oxides (NO x) removal under lean-burn engine conditions, were investigated using neutron diffraction and small-angle neutron scattering. The crystal phases, structural transformations and microstructure oof 10 mol% CuAl 2O 3 powders are characterized according to the heat-treatment conditions. These properties are correlated with the pore structure and NO x removal efficiency determined by nitrogen adsorption isotherm, electron spin resonance, and temperature-programmed reaction measurements. The γ-(Cu, Al) 2O 3 phase and the mass-fractal-like aggregate of particles (size ≈ 26 nm) at annealing temperatures below 900°C were found to be crucial to the high NO x removal performance. The transformation to bulk crystalline phases of α-Al 2O 3 + CuAl 2O 4 spinel above ∼ 1050°C corresponds to a drastic drop of NO x removal efficiency. The usefulness of neutron-scattering techniques as well as their complementarity with other traditional methods of catalytic research are discussed.

  17. Neutron studies of nanostructured CuO-Al2O3 NOx removal catalysts

    International Nuclear Information System (INIS)

    Ozawa, Masakuni; Loong Chun-Keung

    1997-01-01

    Nanostructured powders of automotive catalytic system CuO0Al 2 O 3 , targeted for nitrogen oxides (NOx) removal under lean-burn engine conditions, were investigated using neutron diffraction and small-angle neutron scattering. The crystal phases, structural transformations and microstructure of 10 mol% Cu-Al 2 O 3 powders are characterized according to the heat-treatment conditions. These properties are correlated with the pore structure and NOx removal efficiency determined by nitrogen adsorption isotherm, electron spin resonance, and temperature programmed reaction measurements. The γ-(Cu, Al) 2 O 3 phase and the mass-fractal-like aggregate of particles (size ∼ 26 nm) at annealing temperatures below 900 degrees C were found to be crucial to the high NOx removal performance. The transformation to bulk crystalline phases of α-Al 2 O 3 + CuAl 2 O 4 spinel above ∼1050 degrees C corresponds to a drastic drop of Nox removal efficiency. The usefulness of neutron-scattering techniques as well as their complementarity with other traditional methods of catalytic research are discussed

  18. Polymer-assisted co-precipitation route for the synthesis of Al2O3 ...

    Indian Academy of Sciences (India)

    A polymer-assisted (Pluronic P123 triblock co-polymer) co-precipitation route has been employed to synthesize Al 2 O 3 –TiO 2 nanoparticles. As a surfactant, pluronic P123 polymer exhibits hydrophobic as well as the hydrophilic nature simultaneously which detains the agglomeration and hence the nano size particle have ...

  19. Carbon nanotubes purification constrains due to large Fe–Ni/Al2O3 ...

    Indian Academy of Sciences (India)

    †Research Institute for Technical Physics and Materials Science, P.O. Box 49, Budapest H-1525, Hungary. MS received 10 August 2011; ... (CNTs) have become very promising material for many tech- nological applications due to their ... to optimal metal-support interaction (MSI) in Fe–Ni/Al2O3 catalyst has been discussed ...

  20. Synthesis of γ-Al2O3 nanowires through a boehmite precursor route

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Thermogravimetric analysis (TG), differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), selected area electron diffraction (SAED) and high resolution transmission electron microscope (HRTEM) were used to characterize the features of the as-made -Al2O3 ...

  1. Radioluminescence in Al2O3: C - analytical and numerical simulation results

    DEFF Research Database (Denmark)

    Pagonis, V.; Lawless, J.; Chen, R.

    2009-01-01

    The phenomenon of radioluminescence (RL) has been reported in a number of materials including Al2O3 : C, which is one of the main dosimetric materials. In this work, we study RL using a kinetic model involving two trapping states and two kinds of recombination centres. The model has been previous...

  2. METHANOL OXIDATION OVER AU/ γ -AL 2O3 CATALYSTS 149

    African Journals Online (AJOL)

    DR. AMINU

    1981) and (Ozkan et al. 1990). The reactions and experimental results indicate that a ZnO-Cr2O3/CeO2-ZrO2/Al2O3 catalyst is a promising catalyst for the hydrogen production from methanol oxidation reforming. There was no significant deactivation of the catalyst over 1000 hours of continuous operation. The oxidation of.

  3. Current Tunnelling in MOS Devices with Al2O3/SiO2 Gate Dielectric

    Directory of Open Access Journals (Sweden)

    A. Bouazra

    2008-01-01

    Full Text Available With the continued scaling of the SiO2 thickness below 2 nm in CMOS devices, a large direct-tunnelling current flow between the gate electrode and silicon substrate is greatly impacting device performance. Therefore, higher dielectric constant materials are desirable for reducing the gate leakage while maintaining transistor performance for very thin dielectric layers. Despite its not very high dielectric constant (∼10, Al2O3 has emerged as one of the most promising high-k candidates in terms of its chemical and thermal stability as its high-barrier offset. In this paper, a theoretical study of the physical and electrical properties of Al2O3 gate dielectric is reported including I(V and C(V characteristics. By using a stack of Al2O3/SiO2 with an appropriate equivalent oxide thickness of gate dielectric MOS, the gate leakage exhibits an important decrease. The effect of carrier trap parameters (depth and width at the Al2O3/SiO2 interface is also discussed.

  4. ratio on the deformation behaviour of Fe–Al2O3 metal matrix ...

    Indian Academy of Sciences (India)

    3Department of Mechanical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005,. India. MS received 17 March 2015; accepted 21 March 2016. Abstract. The present paper reports the effect of height to diameter (h/d) ratio on the deformation behaviour of Fe–Al2O3 metal matrix ...

  5. Methanol oxidation over Au/γ-Al 2 O 3 catalysts | Nuhu | Bayero ...

    African Journals Online (AJOL)

    Methanol adsorption and reaction was investigated over Au/γ-Al2O3 catalysts. The catalysts were prepared by deposition precipitation (DP) and incipient wetness impregnation methods. The catalysts were used to catalyze the oxidation of methanol and characterised using X-ray diffraction (XRD), temperature programmed ...

  6. Thermally stimulated conductivity and thermoluminescence from Al2O3 : C

    DEFF Research Database (Denmark)

    Agersnap Larsen, N.; Bøtter-Jensen, L.; McKeever, S.W.S.

    1999-01-01

    Simultaneous measurements of thermoluminescence (TL) and thermally stimulated conductivity (TSC) are reported on single-crystal dosimetry-quality Al2O3:C following gamma irradiation at room temperature. Analysis of the data reveals a superposition of several first-order TL and TSC peaks caused...

  7. Microstructural characterization in diffusion bonded TiC–Al2O3/Cr18 ...

    Indian Academy of Sciences (India)

    The diffusion bonded TiC–Al2O3/Cr18–Ni8 joint was investigated by a variety of characterization techniques such as scanning electron microscope (SEM) with energy dispersion spectroscopy (EDS) and X-ray diffraction (XRD). The results indicate that Ti foil is fully fused to react with elements from substrates and Ti3Al, TiC ...

  8. Tribological behavior of Nano-Al2O3 and PEEK reinforced PTFE composites

    Science.gov (United States)

    Wang, Banghan; Lv, Qiujuan; Hou, Genliang

    2017-01-01

    The Nano-Al2O3 and PEEK particles synergetic filled PTFE composites were prepared by mechanical blending-molding-sintering method. The tribological behavior of composites with different volume fraction of fillers was tested on different test conditions by a MMW-1A block-on-ring friction and wear tester. The transfer film on counterpart 5A06 Aluminum alloy ring was inspected and anslyzed with scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The results demonstrated that the lowest friction coefficient was gained when the PTFE composite was filled with only 10% PEEK. The friction coefficient decreases gradually with the increasing content of PEEK. The special wear rate of 10% PEEK/PTFE were decreased clearly with filled different contents of nano-Al2O3 particles. The special wear rate of the sample with 5% nano-Al2O3 and 10% PEEK had the lowest volume wear rate. The sliding speed effect significantly on the tribological behavior of nano-Al2O3/PEEK/PTFE composites.

  9. MIM capacitors with various Al2O3 thicknesses for GaAs RFIC application

    Science.gov (United States)

    Jiahui, Zhou; Hudong, Chang; Honggang, Liu; Guiming, Liu; Wenjun, Xu; Qi, Li; Simin, Li; Zhiyi, He; Haiou, Li

    2015-05-01

    The impact of various thicknesses of Al2O3 metal—insulator—metal (MIM) capacitors on direct current and radio frequency (RF) characteristics is investigated. For 20 nm Al2O3, the fabricated capacitor exhibits a high capacitance density of 3850 pF/mm2 and acceptable voltage coefficients of capacitance of 681 ppm/V2 at 1 MHz. An outstanding VCC-α of 74 ppm/V2 at 1 MHz, resonance frequency of 8.2 GHz and Q factor of 41 at 2 GHz are obtained by 100 nm Al2O3 MIM capacitors. High-performance MIM capacitors using GaAs process and atomic layer deposition Al2O3 could be very promising candidates for GaAs RFIC applications. Project supported by the National Natural Science Foundation of China (Nos. 61274077, 61474031), the Guangxi Natural Science Foundation (No. 2013GXNSFGA019003), the Guangxi Department of Education Project (No. 201202ZD041), the Guilin City Technology Bureau (Nos. 20120104-8, 20130107-4), the China Postdoctoral Science Foundation Funded Project (Nos. 2012M521127, 2013T60566), the National Basic Research Program of China (Nos. 2011CBA00605, 2010CB327501), the Innovation Project of GUET Graduate Education (Nos. GDYCSZ201448, GDYCSZ201449), the State Key Laboratory of Electronic Thin Films and Integrated Devices, UESTC (No. KFJJ201205), and the Guilin City Science and Technology Development Project (Nos. 20130107-4, 20120104-8).

  10. Lifetime of ALD Al2O3 Passivated Black Silicon Nanostructured for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    .5%. For passivation purposes we used 37 nm ALD Al2O3 films and conducted lifetime measurements and found 1220 µs and to 4170 µs, respectively, for p- and n-type CZ silicon wafers. Such results are promising results to introduce for black silicon RIE nano-structuring in solar cell process flow....

  11. Electrophoretic deposition and reaction-bond sintering of Al2O3/Ti ...

    Indian Academy of Sciences (India)

    ... studied in comparison with uncoated sample. The results demonstrate that the density of Al2O3/Ti composite coating increased considerably after heat treatment process. Moreover, wearing resistance of TiAl6V4 alloy escalated considerably, increasing its potential for application in orthopedic implants and artificial joints.

  12. Porous HA-Al2O3 composite characterization using corn starch as a porogen agent

    International Nuclear Information System (INIS)

    Silva, L.A.J. da; Galdino, A.G.S.; Cardoso, G.B.C.; Zavaglia, C.A.C.

    2011-01-01

    The porous ceramics based on hydroxyapatite have great potential for application in bone grafts due to its chemical similarity with the mineral phase of bone tissue, but have poor biomechanical properties, which cause limitations in its applications. This work aims to analyze the structural characteristics of porous ceramics obtained by addition of hydroxyapatite (HA, sintered in the laboratory), Corn Starch (CS, commercial) and Al 2 O 3 (ALCOA), at different temperatures. Samples were made of dense HA (100% HA), porous (70% HA - 30% CS) and with addition of 2.5%, 5% and 7.5% Al 2 O 3 porous composition. The samples were sintered at 1250°C, 1300 deg C and 135 0°C and characterized by: XRF, XRD, SEM and density by the Archimedes method. Concludes It is the possibility of obtaining samples porous HA / Al 2 O 3 using starch as porogenic agent. The temperature and concentration of Al 2 O 3 most appropriate were: 1250°C and 7.5%. (author)

  13. Ir-Ru/Al2O3 catalysts used in satellite propulsion

    Directory of Open Access Journals (Sweden)

    T.G. Soares Neto

    2003-09-01

    Full Text Available Ir/Al2O3, Ir-Ru/Al2O3 and Ru/Al2O3, catalysts with total metal contents of 30% were prepared using the methods of incipient wetness and incipient coimpregnation wetness and were tested in a 2N microthruster. Their performances were then compared with that of the Shell 405 commercial catalyst (30% Ir/Al2O3. Tests were performed in continuous and pulsed regimes, where there are steep temperature and pressure gradients, from ambient values up to 650 ºC and 14 bar. Performance stability, thrust produced, temperature and stagnation pressure in the chamber and losses of mass were analyzed and compared to the corresponding parameters in Shell 405 tests. It was observed that the performance of all the above-mentioned catalysts was comparable to that of the commercial one, except for in loss of mass, where the values was higher, which was attributed to the lower mechanical resistance of the support.

  14. An Experimental Study of Sintered (Ni-Cr-xAl2O3 Composites

    Directory of Open Access Journals (Sweden)

    Alaa Abdulhasan Atiyah

    2016-09-01

    Full Text Available This paper deals with the (Ni-Cr- xAl2O3 metallic composites (MCCs. Restraining of of thermal expansion at adequate mechanical and corrosion properties is the main objective of this work. Composites are fabricated with four weight percentages of (x = 1, 2, 5 and 10% Al2O3. Compacting and sintering has accomplished at (636 MPa and 1250oC for 7 hrs. All sintered compacts were examined for phases and microstructure featuring. Results have indicated, the incorporation of Al2O3 with the matrix is due to the efficient sintering conditions, that diminishing the grain growth and increasing the softening temperature from 850°C to become 1350°C. Volume expansion appeared in the base sintered composites (NiCr-xAl2O3 due to pores evolution according to SEM observation. As, the Al2O3 has increased, the microhardness and corrosion resistance have improved. DSC results show a clear one exothermic and one endothermic reaction were occurred during the heating cycle. Corrosion behavior of fabricated composites was estimated by polarization curves using Potentiostat at scan rate 3 mV.sec-1. Potential-time measurements showed the formation of protective layer on surface composites compared with Ni-Cr base composite through an obtaining of the nobler open circuit potentials for composites. Corrosion parameters were estimated by the Tafel extrapolation method, these parameters indicated that the corrosion potential shifted toward a positive direction in addition to get lower corrosion current density especially for Ni-Cr/5%Alumina composite.

  15. Copper pillar and memory characteristics using Al2O3 switching material for 3D architecture.

    Science.gov (United States)

    Maikap, Siddheswar; Panja, Rajeswar; Jana, Debanjan

    2014-01-01

    A novel idea by using copper (Cu) pillar is proposed in this study, which can replace the through-silicon-vias (TSV) technique in future three-dimensional (3D) architecture. The Cu pillar formation under external bias in an Al/Cu/Al2O3/TiN structure is simple and low cost. The Cu pillar is formed in the Al2O3 film under a small operation voltage of 70 mA is obtained. More than 100 devices have shown tight distribution of the Cu pillars in Al2O3 film for high current compliance (CC) of 70 mA. Robust read pulse endurances of >10(6) cycles are observed with read voltages of -1, 1, and 4 V. However, read endurance is failed with read voltages of -1.5, -2, and -4 V. By decreasing negative read voltage, the read endurance is getting worst, which is owing to ruptured Cu pillar. Surface roughness and TiO x N y on TiN bottom electrode are observed by atomic force microscope and transmission electron microscope, respectively. The Al/Cu/Al2O3/TiN memory device shows good bipolar resistive switching behavior at a CC of 500 μA under small operating voltage of ±1 V and good data retention characteristics of >10(3) s with acceptable resistance ratio of >10 is also obtained. This suggests that high-current operation will help to form Cu pillar and lower-current operation will have bipolar resistive switching memory. Therefore, this new Cu/Al2O3/TiN structure will be benefited for 3D architecture in the future.

  16. Surface amorphization in Al2O3 induced by swift heavy ion irradiation

    Science.gov (United States)

    Okubo, N.; Ishikawa, N.; Sataka, M.; Jitsukawa, S.

    2013-11-01

    Microstructure in single crystalline Al2O3 developed during irradiation by swift heavy ions has been investigated. The specimens were irradiated by Xe ions with energies from 70 to 160 MeV at ambient temperature. The fluences were in the range from 1.0 × 1013 to 1.0 × 1015 ions/cm2. After irradiations, X-ray diffractometry (XRD) measurements and cross sectional transmission electron microscope (TEM) observations were conducted. The XRD results indicate that in the initial stage of amorphization in single crystalline Al2O3, high-density Se causes the formation of new planes and disordering. The new distorted lattice planes formed in the early stage of irradiation around the fluence of 5.0 × 1013 ions/cm2 for single crystalline Al2O3 irradiated with 160 MeV-Xe ions. Energy dependence on structural modification was also examined in single crystalline Al2O3 irradiated by swift heavy ions. The XRD results indicate that the swift heavy ion irradiation causes the lattice expansion and the structural modification leading to amorphization progresses above the energy around 100 MeV in this XRD study. The TEM observations demonstrated that amorphization was induced in surface region in single crystalline Al2O3 irradiated by swift heavy ions above the fluence expected from the results of XRD. Obvious boundary was observed in the cross sectional TEM images. The crystal structure of surface region above the boundary was identified to be amorphous and deeper region to be single crystal. The threshold fluence of amorphization was found to be around 1.0 × 1014 ions/cm2 in the case over 80 MeV swift heavy ion irradiation and the fluence did not depend on the crystal structures.

  17. Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface

    Science.gov (United States)

    Kotipalli, R.; Vermang, B.; Joel, J.; Rajkumar, R.; Edoff, M.; Flandre, D.

    2015-10-01

    Atomic layer deposited (ALD) Al2O3 films on Cu(In,Ga)Se2 (CIGS) surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density (Qf) and interface-trap charge density (Dit), for as-deposited (AD) and post-deposition annealed (PDA) ALD Al2O3 films on CIGS surfaces using capacitance-voltage (C-V) and conductance-frequency (G-f) measurements. These results indicate that the AD films exhibit positive fixed charges Qf (approximately 1012 cm-2), whereas the PDA films exhibit a very high density of negative fixed charges Qf (approximately 1013 cm-2). The extracted Dit values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm-2 eV-1) for both AD and PDA samples. The high density of negative Qf in the bulk of the PDA Al2O3 film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (ns), preventing them to recombine at the CIGS/Al2O3 interface. Using experimentally extracted Qf and Dit values, SCAPS simulation results showed that the surface concentration of minority carriers (ns) in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al2O3/CIGS interface.

  18. Sintering behavior and property of bioglass modified HA-Al2O3 composite

    Directory of Open Access Journals (Sweden)

    Wang Li-li

    2012-01-01

    Full Text Available The bioglass modified HA-Al2O3 composites were successfully fabricated by mixing HA, synthesized by wet chemical method between precursor materials H3PO4 and Ca(OH2, with 25wt% Al2O3 and different content of bioglass (5%, 25%, 45%, 65wt% respectively, with a mole fraction of 53.9%SiO2, 22.6%Na2O, 21.8%CaO, and 1.7wt%P2O5, sintered in air at various temperatures (750-950°C for 2h. when the content of bioglass is below 45wt% in the composite, HA decomposes completely and transforms to β-TCP. The main phase in this case are β-TCP, Al2O3 and Ca3(AlO32.When the content of bioglass is above 45wt% in the composite, the decomposition of HA to β-TCP is suppressed and the main phases in this case are Al2O3 and HA, DCP□CaHPO4□ and β-TCP, which almost have the same chemical composition, forming ternary-glass phase, and have better bioactive than pure HA. It can also be found that at the certain addition of bioglass, the higher sintered temperature, the bigger volume density and flexural strength of the composite are, but when the sintered temperature reaches 950°C, they decrease. This modified HA-Al2O3 composites by calcium silicate glass have a much lower sintering temperature and decrease the production cost much.

  19. Investigating the electronic properties of Al2O3/Cu(In,GaSe2 interface

    Directory of Open Access Journals (Sweden)

    R. Kotipalli

    2015-10-01

    Full Text Available Atomic layer deposited (ALD Al2O3 films on Cu(In,GaSe2 (CIGS surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density (Qf and interface-trap charge density (Dit, for as-deposited (AD and post-deposition annealed (PDA ALD Al2O3 films on CIGS surfaces using capacitance–voltage (C-V and conductance-frequency (G-f measurements. These results indicate that the AD films exhibit positive fixed charges Qf (approximately 1012 cm−2, whereas the PDA films exhibit a very high density of negative fixed charges Qf (approximately 1013 cm−2. The extracted Dit values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm−2 eV−1 for both AD and PDA samples. The high density of negative Qf in the bulk of the PDA Al2O3 film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (ns, preventing them to recombine at the CIGS/Al2O3 interface. Using experimentally extracted Qf and Dit values, SCAPS simulation results showed that the surface concentration of minority carriers (ns in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al2O3/CIGS interface.

  20. Synergistic toxic effect of nano-Al2O3 and As(V) on Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    Wang Demin; Hu Ji; Forthaus, Brett E.; Wang Jianmin

    2011-01-01

    Engineered nanomaterials (ENMs) alone could negatively impact the environment and human health. However, their role in the presence of other toxic substances is not well understood. The toxicity of nano-Al 2 O 3 , inorganic As(V), and a combination of both was examined with C. dubia as the model organisms. Bare nano-Al 2 O 3 particles exhibited partial mortality at concentrations of greater than 200 mg/L. When As(V) was also present, a significant amount of As(V) was accumulated on the nano-Al 2 O 3 surface, and the calculated LC 50 of As(V) in the presence of nano-Al 2 O 3 was lower than that it was without the nano-Al 2 O 3 . The adsorption of As(V) on the nano-Al 2 O 3 surface and the uptake of nano-Al 2 O 3 by C. dubia were both verified. Therefore, the uptake of As(V)-loaded nano-Al 2 O 3 was a major reason for the enhanced toxic effect. - Highlights: → Nano-Al 2 O 3 particles alone do not have significant toxic effect on C. dubia. → However, nano-Al 2 O 3 particles significantly enhance the toxicity of As(V). → The uptake of As-loaded nano-Al 2 O 3 by C. dubia plays the major role on the toxicity. - Nano-Al 2 O 3 could accumulate background As(V) and enhance As(V) toxicity on C. dubia through the uptake of As(V)-loaded nano-Al 2 O 3 particles.

  1. In situ attenuated total reflection infrared (ATR-IR) study of the adsorption of NO2-, NH2OH, and NH4+ on Pd/Al2O3 and Pt/Al2O3.

    NARCIS (Netherlands)

    Ebbesen, S.D.; Mojet, Barbara; Lefferts, Leonardus

    2008-01-01

    In relation to the heterogeneous hydrogenation of nitrite, adsorption of NO2-, NH4+, and NH2OH from the aqueous phase was examined on Pt/Al2O3, Pd/Al2O3, and Al2O3. None of the investigated inorganic nitrogen compounds adsorb on alumina at conditions presented in this study. NO2-(aq) and NH4+(aq) on

  2. Temperature-Dependent Thermal Boundary Conductance at Al/Al2O3 and Pt/Al2O3 interfaces

    Science.gov (United States)

    Hopkins, Patrick E.; Salaway, R. N.; Stevens, R. J.; Norris, P. M.

    2007-06-01

    With the ever-decreasing size of microelectronic devices, growing applications of superlattices, and development of nanotechnology, thermal resistances of interfaces are becoming increasingly central to thermal management. Although there has been much success in understanding thermal boundary conductance at low temperatures, the current models applied at temperatures more common in device operation are not adequate due to our current limited understanding of phonon transport channels. In this study, the scattering processes in Al and Pt films on Al2O3 substrates are examined by transient thermoreflectance testing at high temperatures. At high temperatures, traditional models predict the thermal boundary conductance to be relatively constant in these systems due to assumptions about phonon elastic scattering. Experiments, however, show an increase in the conductance indicating potential inelastic phonon processes.

  3. Surface study and thickness control of thin Al2O3 film on Cu-9%Al(111) single crystal

    International Nuclear Information System (INIS)

    Yamauchi, Yasuhiro; Yoshitake, Michiko; Song Weijie

    2004-01-01

    We were successful in growing a uniform flat Al 2 O 3 film on the Cu-9%Al(111) surface using the improved cleaning process, low ion energy and short time sputtering. The growth of ultra-thin film of Al 2 O 3 on Cu-9%Al was investigated using Auger electron spectroscopy (AES) and a scanning electron microscope (SEM). The Al 2 O 3 film whose maximum thickness was about 4.0 nm grew uniformly on the Cu-9%Al surface. The Al and O KLL Auger peaks of Al 2 O 3 film shifted toward low kinetic energy, and the shifts were related to Schottky barrier formation and band bending at the Al 2 O 3 /Cu-9%Al interface. The thickness of Al 2 O 3 film on the Cu-9%Al surface was controlled by the oxygen exposure

  4. Thermal stability and fracture toughness of epoxy resins modified with epoxidized castor oil and Al2O3 nanoparticles

    International Nuclear Information System (INIS)

    Zhu, Lin; Jin, Fanlong; Park, Soojin

    2012-01-01

    This study examined the effects of the epoxidized castor oil (ECO) and Al 2 O 3 content on the thermal stability and fracture toughness of the diglycidylether of bisphenol-A (DGEBA)/ECO/Al 2 O 3 ternary composites using a range of techniques. The thermal stability of the composites was decreased by the addition of ECO and Al 2 O 3 nanoparticles. The fracture toughness of the composites was improved significantly by the addition of ECO and Al 2 O 3 nanoparticles. The composite containing 3 wt % Al 2 O 3 nanoparticles showed the maximum flexural strength. Scanning electron microscopy (SEM) revealed tortuous cracks in the DGEBA/ECO/Al 2 O 3 composites, which prevented deformation and crack propagation

  5. Effects of a second phase on the tribological properties of Al2O3 and ZrO2 ceramics

    NARCIS (Netherlands)

    He, Y.; Winnubst, Aloysius J.A.; Schipper, Dirk J.; Burggraaf, Anthonie; Burggraaf, A.J.; Verweij, H.

    1997-01-01

    The tribological properties of four different materials are investigated, tetragonal zirconia (Y-ZTP), Al2O3 dispersed in Y-TZP (ADZ), ZrO2 dispersed in Al2O3 (ZTA) and Al2O3 (with 300 ppm MgO). These materials are used as a cylinder sliding against a plate of Y-TZP (TZ-3Y)). Compared to Y-TZP, the

  6. Preparation and Characterization of Liquid Crystalline Polyurethane/Al2O3/Epoxy Resin Composites for Electronic Packaging

    Directory of Open Access Journals (Sweden)

    Shaorong Lu

    2012-01-01

    Full Text Available Liquid crystalline polyurethane (LCPU/Al2O3/epoxy resin composites were prepared by using LCPU as modifier. The mechanical properties, thermal stability, and electrical properties of the LCPU/Al2O3/epoxy resin composites were investigated systematically. The thermal oxidation analysis indicated that LCPU/Al2O3/epoxy resin composites can sustain higher thermal decomposition temperature. Meanwhile, coefficient of thermal expansion (CTE was also found to decrease with addition of LCPU and nano-Al2O3.

  7. Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus

    Science.gov (United States)

    Li, Xiaomin; Zhou, Suyang; Fan, Wenhong

    2016-01-01

    Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water. PMID:27294942

  8. Theoretical and experimental study on formation and adsorption of enolic species on Ag-Pd/Al 2O 3 catalyst

    Science.gov (United States)

    Gao, Hongwei; He, Hong; Feng, Qingcai; Wang, Jin

    2005-10-01

    The formation and adsorption of enolic species on a palladium promoted Ag/Al 2O 3 catalyst (denoted Ag-Pd/Al 2O 3) during the selective catalytic reduction (SCR) of NO x by C 3H 6 has been studied by means of DRIFTS and density functional calculations. The structure of the enolic species adsorbed on Ag-Pd/Al 2O 3 catalyst has been established based on the in situ DRIFTS spectra and simulated results. The reaction mechanism from C 3H 6 to enolic species on Ag-Pd/Al 2O 3 catalyst was proposed and the hypothesis about the Pd promotion was discussed.

  9. Geant4 calculations for space radiation shielding material Al2O3

    Science.gov (United States)

    Capali, Veli; Acar Yesil, Tolga; Kaya, Gokhan; Kaplan, Abdullah; Yavuz, Mustafa; Tilki, Tahir

    2015-07-01

    Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV - 1 GeV using GEANT4 calculation code.

  10. Nanostructured bilayer anodic TiO2/Al2O3 metal-insulator-metal capacitor.

    Science.gov (United States)

    Karthik, R; Kannadassan, D; Baghini, Maryam Shojaei; Mallick, P S

    2013-10-01

    This paper presents the fabrication of high performance bilayer TiO2/Al2O3 Metal-Insulator-Metal capacitor using anodization technique. A high capacitance density of 7 fF/microm2, low quadratic voltage coefficient of capacitance of 150 ppm/V2 and a low leakage current density of 9.1 nA/cm2 at 3 V are achieved which are suitable for Analog and Mixed signal applications. The influence of anodization voltage on structural and electrical properties of dielectric stack is studied in detail. At higher anodization voltages, we have observed the transformation of amorphous to crystalline state of TiO2/Al2O3 and improvement of electrical properties.

  11. Measurements of Specific Heat and Density of Al2O3 Nanofluid

    Science.gov (United States)

    Vajjha, Ravikanth S.; Das, Debendra K.

    2008-10-01

    This paper presents measurements of specific heat and density of aluminum oxide (Al2O3) nanoparticles suspended in 60:40 (by mass) ethylene glycol and water mixture (EG/W). These property values are necessary to determine the fluid dynamic and heat transfer characteristics of nanofluids. These properties have been measured over a range of temperatures for nanoparticle volumetric concentrations of 0 to 10%. From the experimental results, empirical correlations have been developed as a function of temperature and particle volume concentration. These correlations will be valuable in studying the heat transfer performance and the pumping power requirement of Al2O3 nanofluid in various applications such as industrial heat exchangers, building heating and automotive cooling.

  12. Determination of the thickness of Al2O3 barriers in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Buchanan, J.D.R.; Hase, T.P.A.; Tanner, B.K.; Hughes, N.D.; Hicken, R.J.

    2002-01-01

    The barrier thickness in magnetic spin-dependent tunnel junctions with Al 2 O 3 barriers has been measured using grazing incidence x-ray reflectivity and by fitting the tunneling current to the Simmons model. We have studied the effect of glow discharge oxidation time on the barrier structure, revealing a substantial increase in Al 2 O 3 thickness with oxidation. The greater thickness of barrier measured using grazing incidence x-ray reflectivity compared with that obtained by fitting current density-voltage to the Simmons electron tunneling model suggests that electron tunneling is localized to specific regions across the barrier, where the thickness is reduced by fluctuations due to nonconformal roughness

  13. TEM and AFM study of WO3 nanosize growth on α-Al2O3

    International Nuclear Information System (INIS)

    Al-Mohammad, A.

    2007-07-01

    WO 3 thin films have been deposited by thermal evaporation on (0001) and (1012 ) planes of alumina oxide single crystal and annealed either in Oxygen or in air atmosphere. The morphology and crystallographic structure of films (as-deposited and annealed films) have been characterized by Atomic Force Microscope (AFM), transmission electron microscope (TEM), and transmission electron diffraction (TED). During annealing, the films undergo important morphological and structural changes. The annealed films exhibit large grains. These grains have the monoclinic structure in epitaxial orientations. The grains are made of twinned microdomains elongated in the [100] direction resulting of a preferential growth. The microdomains are along the three different directions on the (0001) α-Al 2 O 3 surface and only one direction on the (1012 ) α-Al 2 O 3 one.(author)

  14. Geant4 calculations for space radiation shielding material Al2O3

    Directory of Open Access Journals (Sweden)

    Capali Veli

    2015-01-01

    Full Text Available Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV – 1 GeV using GEANT4 calculation code.

  15. Fe-Al2O3 nanocomposites prepared by high-energy ball milling

    DEFF Research Database (Denmark)

    Linderoth, Søren; Pedersen, M.S.

    1994-01-01

    Nanocomposites of alpha-Fe and alpha-Al2O3, prepared by high-energy ball milling, exhibit coercivities which are enhanced by about two orders of magnitude with respect to the bulk value. The degree of enhancement depends on the volume fraction (x(upsilon)) of Fe, with a maximum for x(upsilon) alm......Nanocomposites of alpha-Fe and alpha-Al2O3, prepared by high-energy ball milling, exhibit coercivities which are enhanced by about two orders of magnitude with respect to the bulk value. The degree of enhancement depends on the volume fraction (x(upsilon)) of Fe, with a maximum for x...

  16. TEM study of a hot-pressed Al2O3-NbC composite material

    Directory of Open Access Journals (Sweden)

    Wilson Acchar

    2005-03-01

    Full Text Available Alumina-based composites have been developed in order to improve the mechanical properties of the monolithic matrix and to replace the WC-Co material for cutting tool applications. Al2O3 reinforced with refractory carbides improves hardness, fracture toughness and wear resistance to values suitable for metalworking applications. Al2O3-NbC composites were uniaxially hot-pressed at 1650 °C in an inert atmosphere and their mechanical properties and microstructures were analyzed. Sintered density, average grain size, microhardness and fracture toughness measurements and microstructural features were evaluated. Results have shown that the mechanical properties of alumina-NbC are comparable to other carbide systems. Microstructural analysis has shown that the niobium carbide particles are mainly located at the grain boundaries of alumina grains, which is an evidence of the "pinning effect", produced by NbC particles.

  17. Pressureless infiltration of porous Al2O3 preform in molten 6061 commercial aluminium alloy

    International Nuclear Information System (INIS)

    Marin, J.; Olivares, L.; Moreno, C.; Ordonez, S.; Martinez, V.

    2001-01-01

    This paper presents an infiltration study of Al 2 O 3 samples containing, approximately, 40% of pores with 1μ average radios. These samples were totally infiltrated with Al-6061 at 1100 deg C for 24 hs in air. Microstructural analysis showed the presence of an alumina matrix infiltrated through mechanisms that combine reactive processes and capillarity, and thus being coherent with the presence of open and closed porosity. The metallographic analysis showed open porosity infiltrated with Al-6061 by capillarity, while SEM micrographs corresponding to this system also showed closed pores filled with metal, that was transported into the ceramic matrix through a reactivate infiltration mechanism. The EDAX analysis for the Al 2 O 3 /Al 6061 system showed areas rich in silicon and copper at the metal-ceramic interface, while the ceramic phase showed the presence of Mg. XRD identified the presence of the MgAl 2 O 4 spinel in the ceramic phase

  18. Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure.

    Science.gov (United States)

    Kim, Yu Jin; Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Jeon, Woojin; Moon, Taehwan; Kim, Keum Do; Jeong, Doo Seok; Yamada, Hiroyuki; Hwang, Cheol Seong

    2016-01-08

    Enhancement of capacitance by negative capacitance (NC) effect in a dielectric/ferroelectric (DE/FE) stacked film is gaining a greater interest. While the previous theory on NC effect was based on the Landau-Ginzburg-Devonshire theory, this work adopted a modified formalism to incorporate the depolarization effect to describe the energy of the general DE/FE system. The model predicted that the SrTiO3/BaTiO3 system will show a capacitance boost effect. It was also predicted that the 5 nm-thick Al2O3/150 nm-thick BaTiO3 system shows the capacitance boost effect with no FE-like hysteresis behavior, which was inconsistent with the experimental results; the amorphous-Al2O3/epitaxial-BaTiO3 system showed a typical FE-like hysteresis loop in the polarization - voltage test. This was due to the involvement of the trapped charges at the DE/FE interface, originating from the very high field across the thin Al2O3 layer when the BaTiO3 layer played a role as the NC layer. Therefore, the NC effect in the Al2O3/BaTiO3 system was frustrated by the involvement of reversible interface charge; the highly stored charge by the NC effect of the BaTiO3 during the charging period could not be retrieved during the discharging process because integral part of the polarization charge was retained within the system as a remanent polarization.

  19. BF3/nano-γ-Al2O3 Promoted Knoevenagel Condensation at Room Temperature

    Directory of Open Access Journals (Sweden)

    B. F. Mirjalili

    2015-10-01

    Full Text Available The Knoevenagel condensation of aromatic aldehydes with barbituric acid, dimedone and malononitrile occurred in the presence of BF3/nano-γ-Al2O3 at room temperature in ethanol. This catalyst is characterized by powder X-ray diffraction (XRD, fourier transform infrared spectroscopy (FT-IR, thermal gravimetric analysis (TGA, field emission scanning electron microscopy (FESEM and energy-dispersive X-ray spectroscopy (EDS.

  20. Deactivation of a Co-Precipitated Co/Al2O3 Catalyst

    OpenAIRE

    YILDIZ, Meltem; AKIN, Ayşe Nilgün

    2007-01-01

    The effects of reaction temperature, feed ratio, space time, and CO percentage in feed on the deactivation conditions of a co-precipitated 36 wt% Co/Al2O3 catalyst in CO hydrogenation were investigated. Environmental-SEM-EDX and temperature-programmed reduction (TPR) studies were performed on used catalysts to investigate the effect of reaction conditions on catalyst deactivation. Intensive coke deposition on the catalyst was observed at a reaction temperature of about 573 K. Increas...

  1. Preparation and characterization of DLC/SiO2/Al2O3 nanofiltration ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 7. Preparation and characterization of DLC/SiO2/Al2O3 nanofiltration membrane. Jin-Su Jeong ... Mixed gas permeability of the membrane with 1 m-thick SiO2 and 2 m-thick DLC thin filmannealed at 200 °C was ∼18 ccm at 1018 mb back pressure.

  2. Electrophoretic deposition and reaction-bond sintering of Al2O3/Ti ...

    Indian Academy of Sciences (India)

    pensions: Al2O3/Ti wt% = 3–7, 5–5, 7–3) to 100 ml mixed solvent containing butanol/ethanol (1–1). During the EPD process, a constant voltage of 50 V was applied by a power supply (Mastech, DC power supply HY30001E, 9225) for. 90 s. In order to increase the adhesion and density, and reduce the porosity of coatings, ...

  3. Preparation of Mo/Al2O3 Sulfide Catalysts Modified by Ir Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Cinibulk, Josef; Vít, Zdeněk

    2002-01-01

    Roč. 143, - (2002), s. 443-451 ISSN 0167-2991. [International Symposium Scientific Bases for the Preparation of Heterogeneous Catalysts /8./. Louvain-la-Neuve, 09.09.2002-12.09.2002] R&D Projects: GA AV ČR IAA4072103 Keywords : catalysts modified * sulfide catalysts * Mo/Al2O3 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.468, year: 2002

  4. Microstructural characterization in diffusion bonded TiC–Al2O3/Cr18 ...

    Indian Academy of Sciences (India)

    Unknown

    of characterization techniques such as scanning electron microscope (SEM) with energy dispersion spectro- scopy (EDS) and X-ray diffraction (XRD). The results indicate that Ti foil is fully fused to react with elements from substrates and Ti3Al, TiC and α-Ti are formed in the diffusion bonded TiC–Al2O3/Cr18–Ni8 joint. The.

  5. Hot corrosion performance of LVOF sprayed Al2O3–40% TiO2 ...

    Indian Academy of Sciences (India)

    1. Introduction. Hot corrosion of heat transfer pipes and other structural ... substrate due to the difference in coefficient of thermal expansion ..... Arc evaporation. Na2SO4+ 25%. 900. ◦. C for. 0.1. 32 alloy. ZnO + CaO + Na2O + B2O3 method. K2SO4. 100 h. +TiO2+ other )– 30% Al2O3 composite coating with a thin NiCoCrY ...

  6. KINERJA KATALIS Ag/Al2O3 UNTUK REDUKSI NOx

    Directory of Open Access Journals (Sweden)

    Rakhman Sarwono

    2012-02-01

    Full Text Available NOx merupakan hasil samping dari suatu reaksi pembakaran. NOx merupakan gas yang beracun sangat berbahaya terhadap kesehatan manusia dan hewan bila terhirup pada waktu bernafas. Untuk mengurangi kadar NOx pada gas buang, banyak penelitian diarahkan pada reduksi NOx dengan katalis secara selektif dengan hidrokarbon dan oksigen berlebihan. Katalis yang digunakan adalah katalis alumina (Al2O3 yang didapat dari katalis komersial (AlO1-7 dan katalis hasil sintesa (ALOA. Katalis Ag/Al2O3 didapat dengan memasukkan logam Ag ke dalam alumina (Al2O3 dengan cara impregnasi dengan larutan perak nitrat. Katalis diuji aktifitasnya pada reaktor fixed bed yang diluarnya terdapat pemanas yang bisa diatur suhunya. Reaktan seperti gas NO, C2H4  dan oksigen dimasukkan kedalam reaktor dengan laju yang ditentukan. Hasil reaksi dianalisa dengan gas chromatography dan dicatat pada recorder, selanjutnya bisa ditentukan kuantitas dan prosentase konversinya. Katalis alumina  ALOA mempunyai kemampuan mereduksi NO dengan konversi  sekitar 40-45% gas NO menjadi N2. Loading logam perak (Ag kedalam Al2O3 sebesar 2-3% berat menambah daya reduksi NO menjadi sekitar 45-50% pada suhu 500oC. Pada umpan NO + C2H4  + O2  reaksi reduksi terjadi pada suhu 300oC, sedangkan pada umpan NO + C2H4   (tanpa oksigen reaksi reduksi baru terjadi pada suhu 450oC, dengan demikian adanya oksigen sangat berperan dalam proses reduksi NOx. Reaksi peruraian C2H4 menjadi COx berkebalikan dengan kinerja katalis pada proses reduksi NOx

  7. Computer simulation of the structural transformation in liquid Al2O3

    International Nuclear Information System (INIS)

    Vo Van Hoang; Oh, Suhk Kun

    2005-01-01

    We investigate the pressure-induced structural transformation in liquid Al 2 O 3 by a molecular dynamics (MD) method. Simulations were done in the basic cube, under periodic boundary conditions, containing 3000 ions with Born-Mayer-type pair potentials. The structure of the liquid Al 2 O 3 model with a real density at ambient pressure is in good agreement with Landron's experiment. In order to study the structural transformation, seven models of liquid alumina at temperature 2500 K and at densities in the range 2.80-4.5 g cm -3 have been built. The microstructure of Al 2 O 3 systems has been analysed through the pair radial distribution functions, coordination number distributions, interatomic distances and bond-angle distributions. And we found clear evidence of a structural transition in liquid alumina from a tetrahedral to an octahedral network. According to our results, this transformation occurred at densities in the range 3.6-4.5 g cm -3 . We also obtained an anomalous density dependence of the self-diffusion constant in the region of the structural transformation

  8. Hole centers in γ-irradiated, oxidized Al2O3

    International Nuclear Information System (INIS)

    Lee, K.H.; Holmberg, G.E.; Crawford, J.H. Jr.

    1976-01-01

    ESR observations of centers with S = 1/2, g approximately equal to 2, S = 1, g approximately equal to 2 have been made at 77 K on oxidized Al 2 O 3 after γ-irradiation at 30 0 C. From the radiation growth data, it is shown that the S = 1/2 centers are precursors of the S = 1 centers. In addition, when the S = 1 centers anneal out at about 110 0 C, the S = 1/2 centers reappear and eventually anneal out at about 260 0 C. Previously Gamble (Gamble, F.T.; Ph.D. Thesis, U. of Connecticut (1963)) and Cox (Cox, R.T.; Ph.D. Thesis, U. of Grenoble (1972) unpublished), respectively, observed S = 1/2 and S = 1 paramagnetic centers in electron-irradiated nominally pure Al 2 O 3 and γ-irradiated, oxidized, titanium-doped Al 2 O 3 . The models proposed for these centers were one hole and two holes trapped on oxygen ions adjacent to Al 3+ vacancies. Our results further substantiate these models. (author)

  9. Neutron irradiation damage in Al2O3 and Y2O3

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Bunch, J.M.; Ranken, W.A.

    1975-01-01

    Two ceramics under consideration for use in fusion reactors, Al 2 O 3 and Y 2 O 3 , were irradiated in the EBR-II fission reactor at 650, 875, and 1025 0 K to fluences between 2 and 6 x 10 21 n/cm 2 (E greater than 0.1 MeV). Samples evaluated include sapphire, Lucalox, alumina, Y 2 O 3 , and Y 2 O 3 -10 percent ZrO 2 (Yttralox). All Al 2 O 3 specimens swelled significantly (1 to 3 percent), with most of the growth observed in sapphire along the c-axis at the higher temperatures. Al 2 O 3 samples irradiated at 875 to 1025 0 K contained a high density of small aligned ''pores''. Irradiated Y 2 O 3 -based ceramics exhibited dimensional stability and a defect content consisting primarily of unresolved damage and/or dislocation loops. The behavior of these ceramics under irradiation is discussed, and the relevance of fission neutron damage studies to fusion reactor applications is considered. (auth)

  10. Development of α - Al2O3:C films nanoparticulate for application in digital radiology

    International Nuclear Information System (INIS)

    Silva, Edna C.; Fontainha, Crissia C.; Ferraz, Wilmar B.; Faria, Luiz O.

    2011-01-01

    Phosphorescent ceramics are widely used in Ionizing radiation sensors. In nuclear applications, alpha-alumina doped with carbon (α-Al 2 O 3 : C) is most commonly used because of its excellent properties photoluminescent (OSL) and thermoluminescent (TL) in ionizing radiation detections. Another application of OSL and TL materials is the use in digital radiography. Recently, Computerized Radiography (CR) equipment, which use OSL materials, have been replacing the old X-ray devices. In this work we investigated the thermoluminescence of α-Al 2 O 3 doped with different percentages of carbon, sintered in reducing atmospheres, in temperatures from 1300 to 1750 ° C. The results indicate that micro alumina doped with 0.5% of carbon and nano-alumina doped with 2% of carbon present TL signal of the order of 30 to 100 times the signal of the TLD-100, the most widely used TL dosimeter in the world. The results indicate that α-Al 2 O 3 : C nano-particulate has great potential for application in digital thermoluminescent radiography, because of its high TL response to radiation Ionization and the possibility of forming TL digital images with resolution increased by about 1000 times, depending on the size of the nanoparticles

  11. Workability and mechanical properties of ultrasonically cast Al–Al2O3 nanocomposites

    International Nuclear Information System (INIS)

    Mula, Suhrit; Pabi, S.K.; Koch, Carl C; Padhi, P.; Ghosh, S.

    2012-01-01

    Workability and mechanical properties of the ultrasonically cast Al–X wt% Al 2 O 3 (X=2, 3.57 and 4.69) metal matrix nanocomposites were reported in the present investigation. The Al–Al 2 O 3 (average size ∼10 nm) composites showed maximum reduction ratios of 2, 1.75 and 1.41 at room temperature, and 8, 7 and 6 at 300 °C. The elastic modulus, nanoindentation hardness, microhardness and Vickers hardness were measured on the as-cast, cold and hot rolled specimens. The tensile properties were also evaluated for the as-cast composites for different wt% of reinforcement. The microstructural examination was done by optical, scanning and transmission electron microscopy. The strength and workability of the nanocomposites were discussed in the light of dislocation/particle interaction, particle size and its concentration, inter-particle spacing and working temperature. 2 wt% of Al 2 O 3 reinforcement showed better combination of workability and mechanical properties possibly due to better distribution of particulates in the matrix.

  12. KINETIKA HIDRODESULFURISASI DIBENZOTHIOPHENE (HDS DBT MENGGUNAKAN KATALIS NiMo/γ-Al2O3

    Directory of Open Access Journals (Sweden)

    Subagjo Subagjo

    2014-12-01

    Full Text Available Evaluasi kinetika reaksi hidrodesulfurisasi (HDS dibenzothiophene dan simulasi nafta hydrotreater yang berada di PT. PERTAMINA Refinery Unit II Dumai menggunakan katalis NiMo/Al2O3 hasil pengembangan telah dilakukan. Kinetika reaksi HDS DBT dilakukan dalan sistem reaktor batch dengan variasi temperatur 280-320oC dan tekanan 30 bar. Data kinetika diolah dengan persamaan hukum pangkat (law power dan persamaan kinetik mekanistik (Langmuir Hinshelwood, LH. Berdasarkan model hukum pangkat, kinetika HDS DBT menggunakan NiMo/Al2O3 hasil pengembangan merupakan  orde satu  terhadap DBT dengan konstanta Arhenius  sebesar 165633 detik-1 dan energi aktivasi 69017 J/mol (16,56 kkal/mol. Model LH yang cocok untuk reaksi HDS DBT menggunakan NiMo/Al2O3 hasil pengembangan adalah model LH yang mengilustrasikan adanya kompetisi antara reaktan DBT dan H2 pada tipe pusat aktif yang sama, dengan DBT teradsorb secara kuat sedangkan H2 teradsorpsi secara lemah. Energi aktifasi dan konstanta Arhenius berdasarkan model LH ini ini berturut-turut adalah 81409 J/mol (19,34 kkal/mol dan 1658133 s-1. Dengan menggunakan persamaan laju reaksi hukum pangkat, model memberikan hasil konversi sulfur yang sama dengan hasil keluaran reaktor nafta hydrotreater RU II-Dumai, yaitu mencapai 98%.

  13. Catalytic performance of Ag/Al2O3-C2H5OH-Cu/Al2O3 system for the removal of NOx from diesel engine exhaust.

    Science.gov (United States)

    Zhang, Changbin; He, Hong; Shuai, Shijin; Wang, Jianxin

    2007-05-01

    The selective catalytic reduction (SCR) of NOx by C(2)H(5)OH was studied in excess oxygen over Ag/Al(2)O(3) catalysts with different Ag loadings at lab conditions. The 4% Ag/Al(2)O(3) has the highest activity for the C(2)H(5)OH-SCR of NOx with a drawback of simultaneously producing CO and unburned THC in effluent gases. An oxidation catalyst 10% Cu/Al(2)O(3) was directly placed after the Ag/Al(2)O(3) to remove CO and unburned THC. Washcoated honeycomb catalysts were prepared based on the 4% Ag/Al(2)O(3) and 10% Cu/Al(2)O(3) powders and tested for the C(2)H(5)OH-SCR of NOx on a diesel engine at the practical operating conditions. Compared with the Ag/Al(2)O(3) powder, the Ag/Al(2)O(3) washcoated honeycomb catalyst (SCR catalyst) has a similar activity for NOx reduction by C(2)H(5)OH and the drawback of increasing the CO and unburned THC emissions. Using the SCR+Oxi composite catalyst with the optimization of C(2)H(5)OH addition, the diesel engine completely meets EURO III emission standards.

  14. A nanoplate-like α-Al2O3 out-layered Al2O3-ZrO2 coating fabricated by micro-arc oxidation for hip joint prosthesis

    Science.gov (United States)

    Zhang, Lan; Zhang, Wenting; Han, Yong; Tang, Wu

    2016-01-01

    A nanoplate-like α-Al2O3 out-layered Al2O3-ZrO2 coating was fabricated on Zr substrate by micro-arc oxidation (MAO). The structure, formation mechanism, anti-wear property and aging behavior of the coating were explored. The obtained results show that the coating is composed of Al2O3 and ZrO2; the amount and crystallinity of Al2O3 increase gradually from inner layer to the coating surface; monoclinic ZrO2 (m-ZrO2) and tetragonal ZrO2 (t-ZrO2) are both present in the coating, and the ratio of t-ZrO2/m-ZrO2 increases with closing to the coating surface by a "constraint" mechanism of Al2O3; the coating surface mainly consists of nanoplate-like α-Al2O3, and a small amount of nanocrystallized m- and t-ZrO2. The superimposition of α-Al2O3 growth unit on {0 0 0 1} face should be prohibited by PO43- during the MAO process, resulting in the formation of nanoplate-like α-Al2O3 on the coating surface. Compared with pure Zr, the coating shows noticeable improvement in wear-resistance. For aging behavior, although more t-ZrO2 in the coating is transformed to m-ZrO2 with increasing aging time, wear loss increases slightly. It indicates that the nanoplate-like α-Al2O3 out-layered Al2O3-ZrO2 is a potential coating for articular head replacement.

  15. Dielectric Properties of Thermal and Plasma-Assisted Atomic Layer Deposited Al2O3 Thin Films

    NARCIS (Netherlands)

    Jinesh, K. B.; van Hemmen, J. L.; M. C. M. van de Sanden,; Roozeboom, F.; Klootwijk, J. H.; Besling, W. F. A.; Kessels, W. M. M.

    2011-01-01

    A comparative electrical characterization study of aluminum oxide (Al2O3) deposited by thermal and plasma-assisted atomic layer depositions (ALDs) in a single reactor is presented. Capacitance and leakage current measurements show that the Al2O3 deposited by the plasma-assisted ALD shows excellent

  16. UV-protection properties of electrospun polyacrylonitrile nanofibrous mats embedded with MgO and Al2O3 nanoparticles

    International Nuclear Information System (INIS)

    Dadvar, Saeed; Tavanai, Hossein; Morshed, Mohammad

    2011-01-01

    This article describes the ultraviolet (UV) protection of MgO and Al 2 O 3 nanoparticles embedded electrospun polyacrylonitrile (PAN) nanofibrous mats. UV radiation is a harmful part of sunlight and prolonged exposure to it can cause serious skin damages. In this research, nanofibrous mats consisting of nanofibers with different diameters containing different amounts of MgO, Al 2 O 3 , MgO Plus, and Al 2 O 3 Plus nanoparticles were produced, and their UV-protection was measured. The specific surface area of MgO, MgO Plus, Al 2 O 3 , and Al 2 O 3 Plus nanoparticles was 230, 600, 275, and 550 m 2 /g, respectively. The mean diameter of electrospun PAN nanofibers embedded with metal oxide nanoparticles was in the range of 665–337 nm. The results showed that the UV-protection (shielding) capability of the mats strongly depends on fiber diameter; in fact a thin mat of nanofibers has a much stronger UV-protection in comparison to a thicker mat composed of regular fibers. UV transmission is reduced as a result of embedding MgO and Al 2 O 3 nanoparticles in the electrospun PAN nanofibrous mats. MgO Plus and Al 2 O 3 Plus show higher UV-protection than MgO and Al 2 O 3 .

  17. WOx supported on γ-Al2O3 with different morphologies as model catalysts for alkanol dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Dachuan; Wang, Huamin; Kovarik, Libor; Gao, Feng; Wan, Chuan; Hu, Jian Z.; Wang, Yong

    2018-04-21

    The distinctive morphological and surface characteristics of platelet-like γ-Al2O3 were compared to a regular, commercial γ-Al2O3. γ-Al2O3 platelets display dominant (110) surface facets and higher densities of coordinative unsaturated penta-coordinate Al3+ (Al3+penta) sites than regular γ-Al2O3, as measured by solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). Such Al3+penta sites are also the preferred surface anchoring sites for tungsten oxide (WOx) species consistent with NMR analysis indicating that these sites are consumed upon WOx adsorption. The higher Al3+penta density on γ-Al2O3 platelets leads to greater WOx dispersion (or smaller WOx clusters), as demonstrated by scanning transmission electron microscopy and ultraviolet–visible spectroscopy, and WOx species at intermediate WOx surface concentration are the most active for the probe reaction of 2-butanol dehydration. WOx on γ-Al2O3 platelets approaches the highest turnover rates at higher surface densities than WOx on regular γ-Al2O3, yet with similar highest rate values for both series of catalysts. This indicates that different Al2O3 supports mainly affect the dispersion of supported WOx rather than the intrinsic reactivity of individual WOx clusters with similar size.

  18. Influence of different acid etchings on the superficial characteristics of Ti sandblasted with Al2O3

    Directory of Open Access Journals (Sweden)

    Bruno Ramos Chrcanovic

    2013-01-01

    Full Text Available Some implant manufactures use Al2O3 instead TiO2 powder to sandblast the machined dental implant, because Al2O3 powder is commercially more easily available and is cheaper than TiO2 powder. However, Al2O3 powder usually leaves aluminum oxide contamination on the surface, which is potentially toxic. In this work, we subjected Ti discs previously sandblasted with Al2O3 powder to 5 different acid etchings in order to verify which treatment is able to remove incorporated particles of Al2O3 from the surface. One group of samples were only sandblasted and served as control. The samples were analyzed by electron microscopy (SEM, EDS, scanning probe microscopy, and grazing incidence XRD. The control group showed presence of Al2O3 on the surface. Three acid etchings were efficient in removing the alumina from the tested samples. Almost all the tested samples showed higher roughness parameters values than the control samples. Titanium hydride was found in almost all test groups. Moreover, the results suggest that there is no incorporation of the whole Al2O3 particle into the titanium surface after the collision, conversely a particle fragmentation occurs and what remains on the titanium surface are Al2O3 residues.

  19. Formation of a 25 mol% Fe2O3-Al2O3 solid solution prepared by ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Mørup, Steen; Linderoth, Søren

    1996-01-01

    The phase transformation process of a 25 mol% Fe2O3-Al2O3 powder mixture during high-energy ball milling has been studied by x-ray diffraction and Mossbauer spectroscopy. A metastable solid solution of 25 mol % Fe2O3 in Al2O3 with corundum structure has successfully been prepared after a milling...

  20. Synthesis and characterization of high volume fraction Al-Al2O3 nanocomposite powders by high-energy milling

    International Nuclear Information System (INIS)

    Prabhu, B.; Suryanarayana, C.; An, L.; Vaidyanathan, R.

    2006-01-01

    Al-Al 2 O 3 metal matrix composite (MMC) powders with volume fractions of 20, 30, and 50% Al 2 O 3 were synthesized by high-energy milling of the blended component powders. The particle sizes of Al 2 O 3 studied were 50 nm, 150 nm, and 5 μm. A uniform distribution of the Al 2 O 3 reinforcement in the Al matrix was successfully obtained after milling the powders for a period of 20 h at a ball-to-powder ratio of 10:1 in a SPEX mill. The uniform distribution of Al 2 O 3 in the Al matrix was confirmed by characterizing these nanocomposite powders by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray mapping, and X-ray diffraction (XRD) techniques

  1. Characteristics of Cu–Al2O3 composites of various starting particle size obtained by high-energy milling

    Directory of Open Access Journals (Sweden)

    VIŠESLAVA RAJKOVIĆ

    2009-05-01

    Full Text Available The powder Cu– Al2O3 composites were produced by high-energy milling. Various combinations of particle size and mixtures and approximately constant amount of Al2O3 were used as the starting materials. These powders were separately milled in air for up to 20 h in a planetary ball mill. The copper matrix was reinforced by internal oxidation and mechanical alloying. During the milling, internal oxidation of pre-alloyed Cu-2 mass %-Al powder generated 3.7 mass % Al2O3 nano-sized particles finely dispersed in the copper matrix. The effect of different size of the starting copper and Al2O3 powder particles on the lattice parameter, lattice distortion and grain size, as well as on the size, morphology and microstructure of the Cu– Al2O3 composite powder particles was studied.

  2. Al2O3 on WSe2 by ozone based atomic layer deposition: Nucleation and interface study

    Science.gov (United States)

    Azcatl, Angelica; Wang, Qingxiao; Kim, Moon J.; Wallace, Robert M.

    2017-08-01

    In this work, the atomic layer deposition process using ozone and trimethylaluminum (TMA) for the deposition of Al2O3 films on WSe2 was investigated. It was found that the ozone-based atomic layer deposition enhanced the nucleation of Al2O3 in comparison to the water/TMA process. In addition, the chemistry at the Al2O3/WSe2 interface and the surface morphology of the Al2O3 films exhibited a dependence on the deposition temperature. A non-covalent functionalizing effect of ozone on WSe2 at low deposition temperatures 30 °C was identified which prevented the formation of pinholes in the Al2O3 films. These findings aim to provide an approach to obtain high-quality gate dielectrics on WSe2 for two-dimensional transistor applications.

  3. NMR Spectroscopy of the Hydrated Layer of Composite Particles Based on Nanosized Al2O3 and Vitreous Humor

    Science.gov (United States)

    Turov, V. V.; Gerashchenko, I. I.; Markina, A. I.

    2013-11-01

    The hydrated layer of composite particles prepared using Al2O3 and cattle vitreous humor was investigated using NMR spectroscopy. It was found that water bound to Al2O3 nanoparticles was present in the form of clusters with different degrees of association and energies of interaction with the surface. Water bound to the surface of the Al2O3/vitreous humor composite became more uniform upon immobilization of vitreous humor components on the surface of the Al2O3. With this, the clusters of adsorbed water had characteristics that were close to those found in air and weakly polar CHCl3 media. Addition of polar CH3CN led to the formation of very small water clusters. PMR spectra of the surface of the Al2O3/vitreous humor composite in the presence of trifluoroacetic acid differentiated four types of hydrated structures that differed in the degree of water association.

  4. The Viscous Behavior of FeOt-Al2O3-SiO2 Copper Smelting Slags

    Science.gov (United States)

    Park, Hyun-Shik; Park, Su Sang; Sohn, Il

    2011-08-01

    Understanding the viscous behavior of copper smelting slags is essential in increasing the process efficiency and obtaining the discrete separation between the matte and the slag. The viscosity of the FeOt-SiO2-Al2O3 copper smelting slags was measured in the current study using the rotating spindle method. The viscosity at a fixed Al2O3 concentration decreased with increasing Fe/SiO2 ratio because of the depolymerization of the molten slag by the network-modifying free oxygen ions (O2-) supplied by FeO. The Fourier transform infrared (FTIR) analyses of the slag samples with increasing Fe/SiO2 ratio revealed that the amount of large silicate sheets decreased, whereas the amount of simpler silicate structures increased. Al2O3 additions to the ternary FeOt-SiO2-Al2O3 slag system at a fixed Fe/SiO2 ratio showed a characteristic V-shaped pattern, where initial additions decreased the viscosity, reached a minimum, and increased subsequently with higher Al2O3 content. The effect of Al2O3 was considered to be related to the amphoteric behavior of Al2O3, where Al2O3 initially behaves as a basic oxide and changes to an acidic oxide with variation in slag composition. Furthermore, Al2O3 additions also resulted in the high temperature phase change between fayalite/hercynite and the modification of the liquidus temperature with Al2O3 additions affecting the viscosity of the copper smelting slag.

  5. Testing of Flame Sprayed Al2O3 Matrix Coatings Containing TiO2

    Directory of Open Access Journals (Sweden)

    Czupryński A.

    2016-09-01

    Full Text Available The paper presents the results of the properties of flame sprayed ceramic coatings using oxide ceramic materials coating of a powdered aluminium oxide (Al2O3 matrix with 3% titanium oxide (TiO2 applied to unalloyed S235JR grade structural steel. A primer consisting of a metallic Ni-Al-Mo based powder has been applied to plates with dimensions of 5×200×300 mm and front surfaces of Ø40×50 mm cylinders. Flame spraying of primer coating was made using a RotoTec 80 torch, and an external coating was made with a CastoDyn DS 8000 torch. Evaluation of the coating properties was conducted using metallographic testing, phase composition research, measurement of microhardness, substrate coating adhesion (acc. to EN 582:1996 standard, erosion wear resistance (acc. to ASTM G76-95 standard, and abrasive wear resistance (acc. to ASTM G65 standard and thermal impact. The testing performed has demonstrated that flame spraying with 97% Al2O3 powder containing 3% TiO2 performed in a range of parameters allows for obtaining high-quality ceramic coatings with thickness up to ca. 500 µm on a steel base. Spray coating possesses a structure consisting mainly of aluminium oxide and a small amount of NiAl10O16 and NiAl32O49 phases. The bonding primer coat sprayed with the Ni-Al-Mo powder to the steel substrate and external coating sprayed with the 97% Al2O3 powder with 3% TiO2 addition demonstrates mechanical bonding characteristics. The coating is characterized by a high adhesion to the base amounting to 6.5 MPa. Average hardness of the external coating is ca. 780 HV. The obtained coatings are characterized by high erosion and abrasive wear resistance and the resistance to effects of cyclic thermal shock.

  6. Graphene-Al2O3-silicon heterojunction solar cells on flexible silicon substrates

    Science.gov (United States)

    Ahn, Jaehyun; Chou, Harry; Banerjee, Sanjay K.

    2017-04-01

    The quest of obtaining sustainable, clean energy is an ongoing challenge. While silicon-based solar cells have widespread acceptance in practical commercialization, continuous research is important to expand applicability beyond fixed-point generation to other environments while also improving power conversion efficiency (PCE), stability, and cost. In this work, graphene-on-silicon Schottky junction and graphene-insulator-silicon (GIS) solar cells are demonstrated on flexible, thin foils, which utilize the electrical conductivity and optical transparency of graphene as the top transparent contact. Multi-layer graphene was grown by chemical vapor deposition on Cu-Ni foils, followed by p-type doping with Au nanoparticles and encapsulated in poly(methyl methacrylate), which showed high stability with minimal performance degradation over more than one month under ambient conditions. Bendable silicon film substrates were fabricated by a kerf-less exfoliation process based on spalling, where the silicon film thickness could be controlled from 8 to 35 μm based on the process recipe. This method allows for re-exfoliation from the parent Si wafer and incorporates the process for forming the backside metal contact of the solar cell. GIS cells were made with a thin insulating Al2O3 atomic layer deposited film, where the thin Al2O3 film acts as a tunneling barrier for holes, while simultaneously passivating the silicon surface, increasing the minority carrier lifetime from 2 to 27 μs. By controlling the Al2O3 thickness, an optimized cell with 7.4% power conversion efficiency (PCE) on a 35 μm thick silicon absorber was fabricated.

  7. Properties of the c-Si/Al2O3 interface of ultrathin atomic layer deposited Al2O3 layers capped by SiNx for c-Si surface passivation

    Science.gov (United States)

    Schuldis, D.; Richter, A.; Benick, J.; Saint-Cast, P.; Hermle, M.; Glunz, S. W.

    2014-12-01

    This work presents a detailed study of c-Si/Al2O3 interfaces of ultrathin Al2O3 layers deposited with atomic layer deposition (ALD), and capped with SiNx layers deposited with plasma-enhanced chemical vapor deposition. A special focus was the characterization of the fixed charge density of these dielectric stacks and the interface defect density as a function of the Al2O3 layer thickness for different ALD Al2O3 deposition processes (plasma-assisted ALD and thermal ALD) and different thermal post-deposition treatments. Based on theoretical calculations with the extended Shockley-Read-Hall model for surface recombination, these interface properties were found to explain well the experimentally determined surface recombination. Thus, these interface properties provide fundamental insights into to the passivation mechanisms of these Al2O3/SiNx stacks, a stack system highly relevant, particularly for high efficiency silicon solar cells. Based on these findings, it was also possible to improve the surface passivation quality of stacks with thermal ALD Al2O3 by oxidizing the c-Si surface prior to the Al2O3 deposition.

  8. Pengaruh komposisi komposit al2o3/ysz dan variasi feed rate terhadap ketahanan termal dan kekuatan lekat pada Ysz-al2o3/ysz double layer tbc

    Directory of Open Access Journals (Sweden)

    Parindra Kusriantoko

    2014-03-01

    Full Text Available TBC (Thermal Barrier Coating dengan YSZ-Al2O3/YSZ top coat (TCdan MCrAlY sebagai bond coat (BC yang selanjutnya disebut sebagai YSZ-Al2O3/YSZ double layer TBC dibuat dengan menggunakan metode flame spray.Hasil pelapisan sebelum dan sesudah diuji termal dikarakterisasi menggunakan SEM, EDX dan XRD.Dari hasil penelitian didapatkan bahwa semakin tinggi powder feed rate akan berpengaruh pada morfologi permukaan lapisan. Feed rate makin rendah menyebabkan struktur yang cenderung kasar dan tidak padat dan cenderung berporos. Lapisan komposit Al2O3/YSZ juga sangat berpengaruh pada pertumbuhan TGO (Thermally Grown Oxide setelah dilakukan uji termal, dimana komposisi paling bagus dengan pertumbuhan TGO paling rendah adalah 15%Al2O3/8YSZ. Hasil pengujian TGA menunjukkan semua sampel mulai teroksidasi pada temperatur 1000-1030oC dan didapatkan sampel paling stabil adalah 15% Al2O3/8YSZ 14 dan 20 gr/min. Dari pengujian XRD sampel yang memiliki fasa yang paling stabil adalah 15%Al2O3/8YSZ dengan fasa t-ZrO2 dan m-ZrO2. Dari pengujian Thermal Torch dan Pull Off komposisi 15%Al2O3/8YSZjuga memiliki ketahanan terhadap pengerusakan yang paling baik dan kelekatan yang baik sebesar 10 MPa.

  9. High-reflectance 193 nm Al2O3/MgF2 mirrors

    International Nuclear Information System (INIS)

    Shang Shuzhen; Shao Jianda; Liao Chunyan; Yi Kui; Fan Zhengxiu; Chen Lei

    2005-01-01

    Thin-film single layers of Al 2 O 3 and MgF 2 were deposited upon super polished fused-silica by electron-beam evaporation. The subsequent optical constants n and k were reported for the spectral range of 180-230 nm. High-reflectance dense multilayer coatings for 193 nm were designed on the basis of the evaluated optical constants and produced. The spectra of the reflectance of HR coatings were compared to the theoretical calculations. HR mirrors of 27 layers with a reflectance of more than 98% were reported

  10. Characterization of Ball Milled Al-Al2O3 sub-micron Composites

    Science.gov (United States)

    Dagasan, E.; Gercekcioglu, E.; Unalan, S.

    2018-01-01

    The purpose of this study is to investigate properties of the composite powders produced by ball milling process. Different weight ratio of high purity Al2O3 powders were added to the Al matrix as reinforcing element. Ball milling process was conducted by a planetary type ball mill with WC milling balls and vial at constant parameters like rotating speed, time, Ball-to-Powder ratio and Process Control Agent. Samples that taken from the powder mixtureby various time intervals were analyzed by SEM, XRD and BET surface area and porosity measurement systems.

  11. Preparation and characterization of carbonate terminated polycrystalline Al2O3/Al films

    International Nuclear Information System (INIS)

    X-ray photoelectron spectroscopy (XPS) was applied to investigate the surface reactivity of polycrystalline Al films in contact with a gas mixture of carbon dioxide and oxygen at room temperature. Based on the characterization of interactions between these substrates and the individual gases at selected exposures, various surface functionalities were identified. Simultaneously dosing both carbon dioxide and oxygen is shown to create surface-terminating carbonate species, which contribute to inhibiting the formation of an Al 2 O 3 layer. Finally, a reaction scheme is suggested to account for the observed dependence of surface group formation on the dosing conditions

  12. Ultrasonic Al2O3 Ceramic Thermometry in High-Temperature Oxidation Environment

    Directory of Open Access Journals (Sweden)

    Yanlong Wei

    2016-11-01

    Full Text Available In this study, an ultrasonic temperature measurement system was designed with Al2O3 high-temperature ceramic as an acoustic waveguide sensor and preliminarily tested in a high-temperature oxidation environment. The test results indicated that the system can indeed work stably in high-temperature environments. The relationship between the temperature and delay time of 26 °C–1600 °C ceramic materials was also determined in order to fully elucidate the high-temperature oxidation of the proposed waveguide sensor and to lay a foundation for the further application of this system in temperatures as high as 2000 °C.

  13. Improved real-time dosimetry using the radioluminescence signal from Al2O3:C

    DEFF Research Database (Denmark)

    Damkjær, Sidsel Marie Skov; Andersen, Claus Erik; Aznar, Marianne

    2008-01-01

    15th International Conference on Solid State Dosimetry Location: Delft Univ Technol, Delft, NETHERLANDS Date: JUL 08-13, 2007 Abstract: Carbon-doped aluminum oxide (Al2O3:C) is a highly sensitive luminescence material for ionizing radiation dosimetry, and it is well established that the optically...... to greatly reduce the influence of shallow traps in the range from 0 to 3 Gy and the RL dose-rate measurements with a time resolution of 0. 1 s closely matched dose-rate changes monitored with in ionization chamber. (c) 2007 Elsevier Ltd. All rights reserved....

  14. Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Kah Weng Siew

    2013-12-01

    Full Text Available Glycerol (a bio-waste generated from biodiesel production has been touted as a promising bio-syngas precursor via reforming route. Previous studies have indicated that carbon deposition is the major performance-limiting factor for nickel (Ni catalyst during glycerol steam reforming. In the current paper, dry (CO2-reforming of glycerol, a new reforming route was carried out over alumina (Al2O3-supported non-promoted and lanthanum-promoted Ni catalysts. Both sets of catalysts were synthesized via wet co-impregnation procedure. The physicochemical characterization of the catalyst showed that the promoted catalyst possessed smaller metal crystallite size, hence higher metal dispersion compared to the virgin Ni/Al2O3 catalyst. This was also corroborated by the surface images captured by the FESEM analysis. In addition, BET surface area measurement gave 92.05m²/g for non-promoted Ni catalyst whilst promoted catalysts showed an average of 1 to 6% improvement depending on the La loading. Reaction studies at 873 K showed that glycerol dry reforming successfully produced H2 with glycerol conversion and H2 yield that peaked at 9.7% and 25% respectively over 2wt% La content. The optimum catalytic performance by 2%La-Ni/Al2O3 can be attributed to the larger BET surface area and smaller crystallite size that ensured accessibility of active catalytic sites.  © 2013 BCREC UNDIP. All rights reservedReceived: 12nd May 2013; Revised: 7th October 2013; Accepted: 16th October 2013[How to Cite: Siew, K.W., Lee, H.C., Gimbun, J., Cheng, C.K. (2013. Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 160-166. (doi:10.9767/bcrec.8.2.4874.160-166][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4874.160-166

  15. High strength Al–Al2O3p composites: Optimization of extrusion parameters

    DEFF Research Database (Denmark)

    Luan, B.F.; Hansen, Niels; Godfrey, A.

    2011-01-01

    . The parameters investigated are the extrusion temperature, the extrusion rate and the extrusion ratio. The materials chosen are AA 2024 and AA 6061, each reinforced with 30vol.% Al2O3 particles of diameter typically in the range from 0.15 to 0.3μm. The extruded composites have been evaluated based...... on an investigation of their mechanical properties and microstructure, as well as on the surface quality of the extruded samples. The evaluation shows that material with good strength, though with limited ductility, can be reliably obtained using a production route of squeeze casting, followed by hot extrusion...

  16. Thermal conductivity measurements of PTFE and Al2O3 ceramic at sub-Kelvin temperatures

    Science.gov (United States)

    Drobizhev, Alexey; Reiten, Jared; Singh, Vivek; Kolomensky, Yury G.

    2017-07-01

    The design of low temperature bolometric detectors for rare event searches necessitates careful selection and characterization of structural materials based on their thermal properties. We measure the thermal conductivities of polytetrafluoroethylene (PTFE) and Al2O3 ceramic (alumina) in the temperature ranges of 0.17-0.43 K and 0.1-1.3 K, respectively. For the former, we observe a quadratic temperature dependence across the entire measured range. For the latter, we see a cubic dependence on temperature above 0.3 K, with a linear contribution below that temperature. This paper presents our measurement techniques, results, and theoretical discussions.

  17. CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters

    DEFF Research Database (Denmark)

    Edmund, J.M.; Andersen, C.E.; Marckmann, C.J.

    2006-01-01

    A new system for in vivo dosimetry during radiotherapy has been introduced. Luminescence signals from a small crystal of carbon-doped aluminium oxide (Al2O3:C) are transmitted through an optical fibre cable to an instrument that contains optical filters, a photomultiplier tube and a green (532 nm......) laser. The prime output is continuous wave optically stimulated luminescence (CW-OSL) used for the measurement of the integrated dose. We demonstrate a measurement protocol with high reproducibility and improved linearity, which is suitable for clinical dosimetry. A crystal-specific minimum pre...

  18. Catalytic reduction of N2O over Ag-Pd/Al2O3 bimetallic catalysts.

    Science.gov (United States)

    Tzitzios, V K; Georgakilas, V

    2005-05-01

    A study of the catalytic conversion of N2O to N2 over a bimetallic Ag-Pd catalyst is described in this article. Several Ag-Pd catalytic systems were prepared supported on Al2O3 with different ratios and their catalytic activity for the direct decomposition of N2O and their reduction with CO was measured. Based on the experimental results, it was observed that Ag-Pd bimetallic catalyst (5-0.5%) was the most active for both nitrous oxide reduction and direct decomposition. This high activity seems to be connected with a synergistic effect between Ag and Pd.

  19. Structure and phase transitions at the interface between α-Al2O3 and Pt

    Science.gov (United States)

    Ophus, Colin; Santala, Melissa K.; Asta, Mark; Radmilovic, Velimir

    2013-06-01

    The structure and thermodynamics of interfaces between (111) Pt and the basal plane of α-Al2O3 have been studied through a combination of high-resolution electron microscopy and first-principles calculations. Within the framework of ab initio thermodynamics the structure and excess free energies are calculated as functions of temperature (T) and oxygen partial pressure (PO2), for three competing interface terminations. Comparisons between measurements and calculations establish that the interface is oxygen terminated, and a structural phase transition is predicted in the range of experimentally accessible T and PO2 from the calculated interfacial free energies.

  20. Guiding of low-energy electrons by highly ordered Al2 O3 nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Víkor, G.; Pešić, Z.D.

    2007-01-01

    We report an experimental study of guided transmission of low-energy (200-350 eV) electrons through highly ordered Al2 O3 nanocapillaries with large aspect ratio (140 nm diameter and 15 μm length). The nanochannel array was prepared using self-ordering phenomena during a two-step anodization...... process of a high-purity aluminum foil. The experimental results clearly show the existence of the guiding effect, as found for highly charged ions. The guiding of the electron beam was observed for tilt angles up to 12°. As seen for highly charged ions, the guiding efficiency increases with decreasing...

  1. Kinetics of the electronic center annealing in Al2O3 crystals

    Science.gov (United States)

    Kuzovkov, V. N.; Kotomin, E. A.; Popov, A. I.

    2018-04-01

    The experimental annealing kinetics of the primary electronic F, F+ centers and dimer F2 centers observed in Al2O3 produced under neutron irradiation were carefully analyzed. The developed theory takes into account the interstitial ion diffusion and recombination with immobile F-type and F2-centers, as well as mutual sequential transformation with temperature of three types of experimentally observed dimer centers which differ by net charges (0, +1, +2) with respect to the host crystalline sites. The relative initial concentrations of three types of F2 electronic defects before annealing are obtained, along with energy barriers between their ground states as well as the relaxation energies.

  2. Micro-nanocomposites Al2O3/ NbC/ WC and Al2O3/ NbC/ TaC

    International Nuclear Information System (INIS)

    Santos, Thais da Silva

    2014-01-01

    Alumina based ceramics belong to a class of materials designated as structural, which are widely used in cutting tools. Although alumina has good properties for application as a structural ceramics, composites with different additives have been produced with the aim of improving its fracture toughness and mechanical strength. New studies point out micro-nanocomposites, wherein the addition of micrometric particles should enhance mechanical strength, and nano-sized particles enhance fracture toughness. In this work, alumina based micro nanocomposites were obtained by including nano-sized NbC and micrometer WC particles at 2:1, 6:4, 10:5 and 15:10 vol% proportions, and also with the inclusion of nano-sized NbC and micrometer TaC particles at 2:1 vol% proportion. For the study of densification, micro-nanocomposites were sintered in a dilatometer with a heating rate of 20°C/min until a temperature of 1800°C in argon atmosphere. Based on the dilatometry results, specimens were sintered in a resistive graphite furnace under argon atmosphere between 1500°C and 1700°C by holding the sintering temperature for 30 minutes. Densities, crystalline phases, hardness and tenacity were determined, and micro-nanocomposites microstructures were analyzed. The samples Al 2 O 3 : NbC: TaC sintered at 1700 ° C achieved the greater apparent density (~ 95% TD) and the sample sintered at 1600 ° C showed homogeneous microstructure and increased hardness value (15.8 GPa) compared to the pure alumina . The compositions with 3% inclusions are the most promising for future applications. (author)

  3. Anisotropic temperature-dependent thermal conductivity by an Al2O3 interlayer in Al2O3/ZnO superlattice films.

    Science.gov (United States)

    Lee, Won-Yong; Lee, Jung-Hoon; Ahn, Jae-Young; Park, Tae-Hyun; Park, No-Won; Kim, Gil-Sung; Park, Jin-Seong; Lee, Sang-Kwon

    2017-03-10

    The thermal conductivity of superlattice films is generally anisotropic and should be studied separately in the in-plane and cross-plane directions of the films. However, previous works have mostly focused on the cross-plane thermal conductivity because the electrons and phonons in the cross-plane direction of superlattice films may result in much stronger interface scattering than that in the in-plane direction. Nevertheless, it is highly desirable to perform systematic studies on the effect of interface formation in semiconducting superlattice films on both in-plane and cross-plane thermal conductivities. In this study, we determine both the in-plane and cross-plane thermal conductivities of Al 2 O 3 (AO)/ZnO superlattice films grown by atomic layer deposition (ALD) on SiO 2 /Si substrates in the temperature range of 50-300 K by the four-point-probe 3-ω method. Our experimental results indicate that the formation of an atomic AO layer (0.82 nm) significantly contributes to the decrease of the cross-plane thermal conductivity of the AO/ZnO superlattice films compared with that of AO/ZnO thin films. The cross-plane thermal conductivity (0.26-0.63 W m -1 K -1 of the AO/ZnO superlattice films (with an AO layer of ∼0.82 nm thickness) is approximately ∼150%-370% less than the in-plane thermal conductivity (0.96-1.19 W m -1 K -1 ) of the corresponding film, implying significant anisotropy. This indicates that the suppression of the cross-plane thermal conductivity is mainly attributed to the superlattice, rather than the nanograin columnar structure in the films. In addition, we theoretically analyzed strong anisotropic behavior of the in-plane and cross-plane thermal conductivities of the AO/ZnO superlattice films in terms of temperature dependence.

  4. Controlled High Filler Loading of Functionalized Al2O3-Filled Epoxy Composites for LED Thermal Management

    Science.gov (United States)

    Permal, Anithambigai; Devarajan, Mutharasu; Hung, Huong Ling; Zahner, Thomas; Lacey, David; Ibrahim, Kamarulazizi

    2018-03-01

    Thermal management in light-emitting diode (LED) has been extensively researched recently. This study is intended to develop an effective thermally conductive epoxy composite as thermal interface material (TIM) for headlamp LEDs. Silane-functionalized aluminum oxide (Al2O3) powder of different average particle sizes (44 and 10 µm) was studied for its feasibility as filler at its maximum loading. A detailed comparison of three different methods of particle dispersions, hand-mix, speed-mix and calendaring process (3-roll mill), has been reported. The dispersion of Al2O3 particles, the thermal conductivity and thermal degradation characteristics of the composites were investigated and explained in detail. At 75 wt.% filler loading, 10 and 44 µm Al2O3 achieved composite thermal conductivities of 1.13 and 2.08 W/mK, respectively, which is approximately 528 and 1055% of enhancement with respect to neat epoxy. The package-level thermal performance of the LED employing the Al2O3-filled TIMs was carried out using thermal transient analysis. The experimental junction-to-ambient thermal resistances ( R thJ-A) achieved were 6.65, 7.24, and 8.63 K/W for Al2O3_44µm, Al2O3_10µm and neat epoxy, respectively. The results revealed that the Al2O3_44µm fillers-filled composite performed better in both material-level and package-level thermal characteristics.

  5. Fabrication and Characteristics of Sintered Cutting Stainless Steel Fiber Felt with Internal Channels and an Al2O3 Coating

    Directory of Open Access Journals (Sweden)

    Shufeng Huang

    2018-03-01

    Full Text Available A novel sintered cutting stainless steel fiber felt with internal channels (SCSSFFC composed of a stainless-steel fiber skeleton, three-dimensional interconnected porous structure and multiple circular microchannels is developed. SCSSFFC has a jagged and rough surface morphology and possesses a high specific surface area, which is approximately 2.4 times larger than that of the sintered bundle-drawing stainless steel fiber felt with internal channels (SBDSSFFC and is expected to enhance adhesive strength. The sol-gel and wet impregnation methods are adopted to prepare SCSSFFC with an Al2O3 coating (SCSSFFC/Al2O3. The adhesive strength of SCSSFFC/Al2O3 is investigated using ultrasonic vibration and thermal shock tests. The experimental results indicate that the weight loss rate of the Al2O3 coating has a 4.2% and 8.42% reduction compared with those of SBDSSFFCs based on ultrasonic vibration and thermal shock tests. In addition, the permeability of SCSSFFC/Al2O3 is investigated based on forced liquid flow tests. The experimental results show that the permeability and inertial coefficients of SCSSFFC/Al2O3 are mainly affected by the coating rate, porosity and open ratio; however, the internal microchannel diameter has little influence. It is also found that SCSSFFC/Al2O3 yields superior permeability, as well as inertial coefficients compared with those of other porous materials reported in the literature.

  6. Controlled High Filler Loading of Functionalized Al2O3-Filled Epoxy Composites for LED Thermal Management

    Science.gov (United States)

    Permal, Anithambigai; Devarajan, Mutharasu; Hung, Huong Ling; Zahner, Thomas; Lacey, David; Ibrahim, Kamarulazizi

    2018-01-01

    Thermal management in light-emitting diode (LED) has been extensively researched recently. This study is intended to develop an effective thermally conductive epoxy composite as thermal interface material (TIM) for headlamp LEDs. Silane-functionalized aluminum oxide (Al2O3) powder of different average particle sizes (44 and 10 µm) was studied for its feasibility as filler at its maximum loading. A detailed comparison of three different methods of particle dispersions, hand-mix, speed-mix and calendaring process (3-roll mill), has been reported. The dispersion of Al2O3 particles, the thermal conductivity and thermal degradation characteristics of the composites were investigated and explained in detail. At 75 wt.% filler loading, 10 and 44 µm Al2O3 achieved composite thermal conductivities of 1.13 and 2.08 W/mK, respectively, which is approximately 528 and 1055% of enhancement with respect to neat epoxy. The package-level thermal performance of the LED employing the Al2O3-filled TIMs was carried out using thermal transient analysis. The experimental junction-to-ambient thermal resistances (R thJ-A) achieved were 6.65, 7.24, and 8.63 K/W for Al2O3_44µm, Al2O3_10µm and neat epoxy, respectively. The results revealed that the Al2O3_44µm fillers-filled composite performed better in both material-level and package-level thermal characteristics.

  7. Enhanced photoluminescence of corrugated Al2O3 film assisted by colloidal CdSe quantum dots.

    Science.gov (United States)

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Huang, Zhaoling; Qin, Shuijie

    2017-05-19

    We present the enhanced photoluminescence (PL) of a corrugated Al 2 O 3 film enabled by colloidal CdSe quantum dots. The colloidal CdSe quantum dots are fabricated directly on a corrugated Al 2 O 3 substrate using an electrochemical deposition (ECD) method in a microfluidic system. The photoluminescence is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the electron transfer from the conduction band of the CdSe quantum dots to that of Al 2 O 3 , the enhanced photoluminescence effect is observed, which results from the increase in the recombination rate of electrons and holes on the Al 2 O 3 surface and the reduction in the fluorescence of the CdSe quantum dots. A periodically-fluctuating fluorescent spectrum was exhibited because of the periodical wire-like corrugated Al 2 O 3 surface serving as an optical grating. The spectral topographic map around the fluorescence peak from the Al 2 O 3 areas covered with CdSe quantum dots was unique and attributed to the uniform deposition of CdSe QDs on the corrugated Al 2 O 3 surface. We believe that the microfluidic ECD system and the surface enhanced fluorescence method described in this paper have potential applications in forming uniform optoelectronic films of colloidal quantum dots with controllable QD spacing and in boosting the fluorescent efficiency of weak PL devices.

  8. Prediction of fracture strength in Al2O3/SiCp ceramic matrix nanocomposites

    Directory of Open Access Journals (Sweden)

    Z. Zhang and D.L. Chen

    2007-01-01

    Full Text Available Based primarily on a recent publication [S.M. Choi, H. Awaji, Sci. Tech. Adv. Mater. 6 (2005 2–10.], where the dislocations around the nano-sized particles in the intra-granular type of ceramic matrix nanocomposites (CMNCs were modeled, dislocation activities in Al2O3/SiCp CMNCs were discussed in relation to the processing conditions. The dislocations around the nano-sized particles, caused by the thermal mismatch between the ceramic matrix and nano-sized particles, were assumed to hold out the effect of Orowan-like strengthening, although the conventional Owowan loops induced by the movement of dislocations were unlikely in the ceramic matrix at room temperature. A model involving the yield strength of metal matrix nanocomposites (MMNCs, where the Owowan strengthening effect was taken into consideration, was thus modified and extended to predict the fracture strength of the intra-granular type of CMNCs without and with annealing. On the basis of the characteristics of dislocations in the CMNCs, the load-bearing effect and Orowan-like strengthening were considered before annealing, while the load-bearing effect and enhanced dislocation density strengthening were taken into account after annealing. The model prediction was found to be in agreement with the experimental data of Al2O3/SiCp nanocomposites reported in the literature.

  9. Micromachining of AlN and Al2O3 Using Fiber Laser

    Directory of Open Access Journals (Sweden)

    Florian Preusch

    2014-11-01

    Full Text Available We report on high precision high speed micromachining of Al2O3 and AlN using pulsed near infrared fiber laser. Ablation thresholds are determined to be 30 J/cm2 for alumina and 18 J/cm2 for aluminum nitride. The factors influencing the efficiency and quality of 3D micromachining, namely the surface roughness, the material removal rate and the ablation depth accuracy are determined as a function of laser repetition rate and pulse overlap. Using a fluence of 64 J/cm², we achieve a material removal rate of up to 94 mm³/h in Al2O3 and 135 mm³/h in AlN for high pulse overlaps (89% and 84%. A minimum roughness of 1.5 μm for alumina and 1.65 μm for aluminum nitride can be accomplished for medium pulse overlaps (42% to 56%. In addition, ablation depth deviation of the micromachining process of smaller than 8% for alumina and 2% for aluminum nitride are achieved. Based on these results, by structuring exemplarily 3D structures we demonstrate the potential of high quality and efficient 3D micromachining using pulsed fiber laser.

  10. Density Measurements of Low Silica CaO-SiO2-Al2O3 Slags

    Science.gov (United States)

    Muhmood, Luckman; Seetharaman, Seshadri

    2010-08-01

    Density measurements of a low-silica CaO-SiO2-Al2O3 system were carried out using the Archimedes principle. A Pt 30 pct Rh bob and wire arrangement was used for this purpose. The results obtained were in good agreement with those obtained from the model developed in the current group as well as with other results reported earlier. The density for the CaO-SiO2 and the CaO-Al2O3 binary slag systems also was estimated from the ternary values. The extrapolation of density values for high-silica systems also showed good agreement with previous works. An estimation for the density value of CaO was made from the current experimental data. The density decrease at high temperatures was interpreted based on the silicate structure. As the mole percent of SiO2 was below the 33 pct required for the orthosilicate composition, discrete {text{SiO}}4^{4 - } tetrahedral units in the silicate melt would exist along with O2- ions. The change in melt expansivity may be attributed to the ionic expansions in the order of {text{Al}}^{ 3+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ - } Structural changes in the ternary slag also could be correlated to a drastic change in the value of enthalpy of mixing.

  11. Al2O3 Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB Technique

    Directory of Open Access Journals (Sweden)

    Gabriele Baiocco

    2018-01-01

    Full Text Available Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less, and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al2O3 film on a magnesium alloy realized by the fluidized bed (FB technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al2O3 coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  12. Microwave-assisted Ni-La/γ-Al2O3 catalyst for benzene hydrogenation

    Science.gov (United States)

    Liu, Xianjun; Liu, Shuzhi; Xu, Peiqiang

    2017-11-01

    A series of Ni-La/γ-Al2O3 catalysts were prepared by adopting the methods of isometric impregnation and microwave impregnation. The catalysts were characterized with XRD, BET, and SEM, respectively. Inspecting the effects of adding La and the methods of impregnation on the hydrogenation activity of catalysts. The results show that adding a moderate amount of La promotes the dispersing of Ni on the carrier, the methods of microwave impregnation weaks the interaction between Ni and the carrier further, inhibits the formation of NiAl2O4, and the activity of catalyst prepared by the methods of microwave impregnation was significantly higher than that prepared by the methods of isometric impregnation. The hydrogenation activity of the Ni-La/γ-Al2O3 (WB) dipped with n(Ni): n(La) = 4: 1, microwave irradiation time 30 min with power 600W as well as calcined at 400°C exhibited the best performance. The conversion rate is 91.21% with reaction conditions: T = 160°C, p = 0.8 MPa, air speed 5 h-1, n(H2): n(benzene) = 2: 1.

  13. Superficial modifications in TiO2 and Al2O3 ceramics

    Directory of Open Access Journals (Sweden)

    Santos Flávio de Paula

    2003-01-01

    Full Text Available The properties of hydrophilicity or hydrophobicity of materials are defined mainly, though not exclusively, by their composition, morphology and surface energy. In this work, titanium dioxide (TiO2 and aluminum oxide-alumina (Al2O3 ceramics prepared by uniaxial pressing were studied in terms of surface energy. The surfaces of these ceramics were treated with nitrogen plasma, using a stainless steel reactor excited by a 13,6 MHz radio frequency operating at 50 W input power and 13 Pa nitrogen pressure. The surface morphology was investigated by scanning electron microscopy (SEM analysis. Surface energy and contact angle measurements were taken using a RAMÉ-HART goniometer. These measurements were taken as function of time, over a 21-day period. The contact angle and surface energy values were found to change by almost 34% in comparison to their initial values immediately following plasma treatment. Nonetheless, the hydrophilic character of the Al2O3 and TiO2 remained constant throughout the test period.

  14. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    Science.gov (United States)

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  15. Tribological properties of Cu based composite materials strengthened with Al2O3 particles

    Directory of Open Access Journals (Sweden)

    J. W. Kaczmar

    2012-12-01

    Full Text Available In the present work copper was strenghtened with 20 and 30 vol. % of alumina particles characterized by diameter of 3-6μm. The copperbased composite materials were manufactured by the squeeze casting method. Preheated preforms made from Al2O3 particles were placedin the desired place in the heated cast die and the squeeze casting process with liquid copper was performed applying the infiltrationpressure of 90MPa and pressure was kept for 10-15s until solidification was complete. The microstructure and physical properties: Brinell hardness (HBW and density were characterized. Metallografic examinations showed that alumina particles were uniformly distributed in the copper matrix. Hardness of 208 HBW for composite materials containing 30 vol.% of particles was achieved. Wear investigations were performed applying the tribological pin-on-disc tester. Friction forces between copper based composite materials containing 20 and 30 vol. % of Al2O3 particles and cast iron were registered and wear was determined on the base of the specimen mass loss after 1.0, 3.5 and 8.5 km friction distance.

  16. TiB2/Al2O3 ceramic particle reinforced aluminum fabricated by spray deposition

    International Nuclear Information System (INIS)

    Chen Xing; Yang Chengxiao; Guan Leding; Yan Biao

    2008-01-01

    Aluminum matrix ceramic particle reinforced composites (AMCs) is a kind of composite with great importance. Aluminum matrix composite reinforced with TiB 2 /Al 2 O 3 ceramic particles was successfully in situ synthesized in Al-TiO 2 -B 2 O 3 system in this paper, using spray deposition with hot-press treatment technique. Five groups of composites with different reinforcement volume contents were prepared and the comparisons of porosity, ultimate tensile strength (UTS), elongation and Brinell hardness (BH) between the composites with and without hot-press treating were carried out. The composite with 21.0% reinforcement volume content was analyzed by X-ray diffraction (XRD), Environmental Scanning Electron Microscope (ESEM), Transmission Electron Microscope (TEM) and Energy Disperse Spectroscopy (EDS). The results revealed the formation and uniform distribution of fine reinforcements in the matrix after hot-press treating, while a new intermetallic phase Al 3 Ti was found besides TiB 2 /Al 2 O 3 ceramic phase

  17. Corrosion Resistance of Ni/Al2O3 Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Beata KUCHARSKA

    2016-05-01

    Full Text Available Nickel matrix composite coatings with ceramic disperse phase have been widely investigated due to their enhanced properties, such as higher hardness and wear resistance in comparison to the pure nickel. The main aim of this research was to characterize the structure and corrosion properties of electrochemically produced Ni/Al2O3 nanocomposite coatings. The coatings were produced in a Watts bath modified by nickel grain growth inhibitor, cationic surfactant and the addition of alumina particles (low concentration 5 g/L. The process has been carried out with mechanical and ultrasonic agitation. The Ni/Al2O3 nanocomposite coatings were characterized by SEM, XRD and TEM techniques. In order to evaluate corrosion resistance of produced coatings, the corrosion studies have been carried out by the potentiodynamic method in a 0.5 M NaCl solution. The corrosion current, corrosion potential and corrosion rate were determined. Investigations of the morphology, topography and corrosion damages of the produced surface layers were performed by scanning microscope techniques. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7407

  18. Al2O3 dielectric layers on H-terminated diamond: Controlling surface conductivity

    Science.gov (United States)

    Yang, Yu; Koeck, Franz A.; Dutta, Maitreya; Wang, Xingye; Chowdhury, Srabanti; Nemanich, Robert J.

    2017-10-01

    This study investigates how the surface conductivity of H-terminated diamond can be preserved and stabilized by using a dielectric layer with an in situ post-deposition treatment. Thin layers of Al2O3 were grown by plasma enhanced atomic layer deposition (PEALD) on H-terminated undoped diamond (100) surfaces. The changes of the hole accumulation layer were monitored by correlating the binding energy of the diamond C 1s core level with electrical measurements. The initial PEALD of 1 nm Al2O3 resulted in an increase of the C 1s core level binding energy consistent with a reduction of the surface hole accumulation and a reduction of the surface conductivity. A hydrogen plasma step restored the C 1s binding energy to the value of the conductive surface, and the resistance of the diamond surface was found to be within the range for surface transfer doping. Further, the PEALD growth did not appear to degrade the surface conductive layer according to the position of the C 1s core level and electrical measurements. This work provides insight into the approaches to establish and control the two-dimensional hole-accumulation layer of the H-terminated diamond and improve the stability and performance of H-terminated diamond electronic devices.

  19. Tribological properties of Al 7075 alloy based composites strengthened with Al2O3 fibres

    Directory of Open Access Journals (Sweden)

    K. Naplocha

    2011-04-01

    Full Text Available Wear resistance of 7075 aluminium alloy based composite materials reinforced with Al2O3 Saffil fibres was investigated. The measurementsof wear were performed applying the pin-on-disc method at dry friction conditions with the gray iron counterpart. The effects ofpressure of composite samples on the counterpart made of gray iron and the orientation of fibers in relation to the friction surface on wear rate were determined. The materials were produced by squeeze casting method where 80-90% porous ceramic preform were infiltrated.After T6 heat treatment hardness increased about 50-60% both for unreinforced alloy and composites containing strengthening Saffilfibres. Wear resistance of composite materials in relation to the unreinforced 7075 alloy was slightly worse at lower pressure of 0.8 MPa. Under higher pressure of 1.2 MPa wear resistance of unreinforced 7075 alloy was even better whereas no effect of orientation of fibers on wear in composite materials was observed. Additionally, significant wear of counterface in the presence of debris with fragmented Al2O3 fibres as abrasives was observed. Wear resistance improvement of composite materials was obtained when with alumina Saffil fibres Carbon C fibres in the preforms were applied.

  20. Deactivating Carbon Formation on a Ni/Al2O3 Catalyst under Methanation Conditions

    DEFF Research Database (Denmark)

    Olesen, Sine Ellemann; Andersson, Klas J.; Damsgaard, Christian Danvad

    2017-01-01

    The carbon formation causing deactivation during CO methanation was studied for a Ni/Al2O3 catalyst. Sulfur-free methanation at low temperature (573 K) for various lengths of time was followed by temperature-programmed hydrogenation (TPH) providing information on carbon types involved in the deac......The carbon formation causing deactivation during CO methanation was studied for a Ni/Al2O3 catalyst. Sulfur-free methanation at low temperature (573 K) for various lengths of time was followed by temperature-programmed hydrogenation (TPH) providing information on carbon types involved...... in the deactivation of the catalyst.Three main carbon hydrogenation peaks were evident from TPHs following methanation: ∼460, ∼650, and ∼775 K. It is suggested that the ∼460 K TPH peak was composed of two peaks: a surface carbide peak at 445–460 K, and a peak due to carbon dissolved into the nickel at 485 K based...... on CO and CH4 adsorption measurements and XRD analysis. The 650 and 775 K temperature peaks are assigned to polymerized carbon structures and the ∼775K peak was found to be the primary cause of deactivation as judged by a linear correlation between its amount and the degree of catalyst deactivation...

  1. Temperature dependence of the Al2O3:C response in medical luminescence dosimetry

    International Nuclear Information System (INIS)

    Edmund, Jens M.; Andersen, Claus E.

    2007-01-01

    Over the last years, attention has been given to applications of Al 2 O 3 :C in space and medical dosimetry. One such application is in vivo dose verification in radiotherapy of cancer patients and here we investigate the temperature effects on the radioluminescence (RL) and optically stimulated luminescence (OSL) signals in the room-to-body temperature region. We found that the OSL response changes with both irradiation and stimulation temperatures as well as the OSL integration time. We conclude that temperature effects on the OSL response can be removed by integration if the irradiation temperature is not varied. The RL response only depends on the irradiation temperature. We recommend that calibration should be carried out at the same irradiation temperature at which the measurement is performed (i.e. at body temperature for in vivo measurements). The overall change in the integrated OSL and RL signals with irradiation and stimulation temperature covers an interval from -0.2% to 0.6% per deg. C. This indicates the correction factor one must take into account when performing luminescence dosimetry at different temperatures. The same effects were observed regardless of crystal type, test doses and stimulation and detection wavelengths. The reported temperature dependence seems to be a general property of Al 2 O 3 :C

  2. Dynamic compaction of Al2O3-ZrO2 compositions

    International Nuclear Information System (INIS)

    Tunaboylu, B.; McKittrick, J.; Nutt, S.R.

    1994-01-01

    Shock compaction of Al 2 O 3 -ZrO 2 binary and ternary powder compositions resulted in dense, one-piece samples without visible cracks for pressures ≤12.6 GPa. Dynamic pressures were achieved by using a 6.5-m-long two-state gas gun. It is believed that plastic deformation by dislocation slip of α-Al 2 O 3 partially accommodates the tensile stresses created during the release of shock pressures. A fine and narrow particle size distribution is necessary to achieve high bulk densities, but the bulk structural integrity was not strongly related to the distribution. A high-pressure phase of ZrO 2 , which was formed from the monoclinic polymorph, was found at and above shock pressure of 6.3 GPa. No evidence of the orthorhombic cotunnite structure was observed. Compaction of glassy and submicrocrystalline rapidly solidified starting materials showed good structural integrity, although the bulk density was relatively low. It is not clear what the densification/bonding mechanism is in these materials, although it appears not to be plastic deformation. Microstructural analysis showed that fine and uniform microstructures are retained after compaction at appropriate dynamic pressures for all compositions, with some interparticle cohesion present

  3. Formation mechanism and control of MgO·Al2O3 inclusions in non-oriented silicon steel

    Science.gov (United States)

    Sun, Yan-hui; Zeng, Ya-nan; Xu, Rui; Cai, Kai-ke

    2014-11-01

    On the basis of the practical production of non-oriented silicon steel, the formation of MgO·Al2O3 inclusions was analyzed in the process of "basic oxygen furnace (BOF) → RH → compact strip production (CSP)". The thermodynamic and kinetic conditions of the formation of MgO·Al2O3 inclusions were discussed, and the behavior of slag entrapment in molten steel during RH refining was simulated by computational fluid dynamics (CFD) software. The results showed that the MgO/Al2O3 mass ratio was in the range from 0.005 to 0.017 and that MgO·Al2O3 inclusions were not observed before the RH refining process. In contrast, the MgO/Al2O3 mass ratio was in the range from 0.30 to 0.50, and the percentage of MgO·Al2O3 spinel inclusions reached 58.4% of the total inclusions after the RH refining process. The compositions of the slag were similar to those of the inclusions; furthermore, the critical velocity of slag entrapment was calculated to be 0.45 m·s-1 at an argon flow rate of 698 L·min-1, as simulated using CFD software. When the test steel was in equilibrium with the slag, [Mg] was 0.00024wt%-0.00028wt% and [Al]s was 0.31wt%-0.37wt%; these concentrations were theoretically calculated to fall within the MgO·Al2O3 formation zone, thereby leading to the formation of MgO·Al2O3 inclusions in the steel. Thus, the formation of MgO·Al2O3 inclusions would be inhibited by reducing the quantity of slag entrapment, controlling the roughing slag during casting, and controlling the composition of the slag and the MgO content in the ladle refractory.

  4. XAS study of V2O5/Al2O3 catalysts doped with rare earth oxides

    International Nuclear Information System (INIS)

    Centeno, M.A.; Malet, P.; Capitan, M.J.; Benitez, J.J.; Carrizosa, I.; Odriozola, J.A.

    1995-01-01

    This paper reports on XAS studies of well dispersed V 2 O 5 /Al 2 O 3 and V 2 O 5 /Sm 2 O 3 /Al 2 O 3 samples. XAS spectra at V-K and Sm-L III edges show that the rare earth oxide favours the formation of regular tetrahedral units, [VO 4 ], over the surface of the support. Positions of the preedge peak at the V-K edge, and intensities of the white line at the Sm-L III edge also suggest modifications in the electronic density around V and Sm atoms when they are simultaneously supported over Al 2 O 3 . ((orig.))

  5. Liquidus Temperature of SrO-Al2O3-SiO2 Glass-Forming Compositions

    DEFF Research Database (Denmark)

    Abel, Brett M.; Morgan, James M.; Mauro, John C.

    2013-01-01

    Despite the important role of strontium aluminosilicate glasses in various technologies, there is no available phase diagram for this ternary system in the ACerS-NIST Phase Equilibria Diagrams Database. Establishing the liquidus surface (liquidus temperature Tliq and primary devitrification phase...... with the phase diagrams for CaO-Al2O3-SiO2 and MgO-Al2O3-SiO2 systems, we have found that for the highest [RO]/[Al2O3] ratios, Tliq exhibits a minimum value for R = Ca. Based on the phase diagram established here, the composition of glass materials, for example, for liquid crystal display substrates, belonging...

  6. Performance-improved nonvolatile memory with aluminum nanocrystals embedded in Al2O3 for high temperature applications

    Science.gov (United States)

    Xu, Zhongguang; Huo, Zongliang; Zhu, Chenxin; Cui, Yanxiang; Wang, Ming; Zheng, Zhiwei; Liu, Jing; Wang, Yumei; Li, Fanghua; Liu, Ming

    2011-11-01

    In this paper, we demonstrate a charge trapping memory with aluminum nanocrystals (Al- NCs) embedded in Al2O3 high-k dielectric. Compared to metal/Al2O3/SiO2/Si structure, this device exhibits a larger memory window (6.7 V at ±12 V), faster program/erase speed and good endurance. In particular, data retention is improved greatly both at room temperature and in high-temperature (up to 150 °C). The results indicate that the device with the embedding Al-NCs in Al2O3 film has a strong potential for future high-performance nonvolatile memory application.

  7. Influence of SiO2/Al2O3 Molar Ratio on Phase Composition and Surfaces Quality of Aluminum Silicate Sanitary Glazes in the SiO2-Al2O3-CaO-Na2O System

    Directory of Open Access Journals (Sweden)

    Leśniak M.

    2016-12-01

    Full Text Available This paper presents the results of research on aluminum silicate sanitary glazes in the SiO2-Al2O3-CaO-Na2O system with different SiO2/Al2O3 molar ratio. XRD, SEM-EDS and FITR measurement indicated that SiO2/Al2O3 molar ratio has a significant impact on the phase composition of the obtained glazes. Glass-ceramic glazes were obtained that consisted of both the glass phase and pseudowollastonite (Ca3[SiO3]3 or anorthite (Ca[Al2Si2O8] crystals. Subsequently, the influence of phase composition on surface quality (roughness was examined for the obtained samples. On the basis of the conducted examination of glaze surface roughness was observed that glazes of extreme SiO2/Al2O3 molar ratio are characterized with greatest surface roughness when compared to other glazes.

  8. Effects of temperature and ionization density in medical luminescence dosimetry using Al2O3:C

    International Nuclear Information System (INIS)

    Morgenthaler Edmund, J.

    2007-11-01

    A new system containing small crystals of aluminum oxide doped with carbon (Al 2 O 3 :C) attached to optical fiber cables has recently been introduced. During irradiation, the system monitors the radioluminescence (RL)from the crystals and after irradiation, an optically stimulated luminescence (OSL) signal can be read out by stimulating the crystal with light. This thesis applies the initial part and the total area of the resulting OSL decay curve for dosimetry measurements and investigates the effects of temperature and proton energy, i.e. ionization density, on the RL and OSL signals from Al 2 O 3 :C. In the temperature study, it was found that the OSL signal depends on both irradiation and stimulation temperature while the RL signal is effected only by the irradiation temperature. The initial OSL signal is increasing with temperature whereas the total OSL area is decreasing. Therefore, if the irradiation temperature is kept constant, one can find an integration time which provides an OSL signal independent of stimulation temperature. Overall, the RL and OSL signals vary between -0.2 to 0.6% per C. Thermal effects were simulated with a band structure model and indicated that the temperature effects are caused by the combined efforts of energetic shallow traps and thermal excitation from intermediate states in deeper traps. In the study of ionization density, we investigated protons with energies between 10 and 60 MeV (4.57 to 1.08 keV/μm in water). Experimentally, we observed that the initial OSL signalprovided a signal independent of linear energy transfer (LET) for allenergies at 0.3 Gy. The total OSL area showed an LET dependent behavior atall doses and energies. We used track structure theory (TST) to give possible explanations for the LET dependence of the OSL signal. From these calculations, we found that the initial OSL signal is, in general, not LET independent which makes Al2O3:C unsuitable for OSL proton dosimetry. The initial OSL signal can, however

  9. Natural convection of Al2O3-water nanofluid in a wavy enclosure

    Science.gov (United States)

    Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.

    2017-06-01

    Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat

  10. Improved charge trapping flash device with Al2O3/HfSiO stack as blocking layer

    International Nuclear Information System (INIS)

    Zheng Zhi-Wei; Huo Zong-Liang; Zhu Chen-Xin; Xu Zhong-Guang; Liu Jing; Liu Ming

    2011-01-01

    In this paper, we investigate an Al 2 O 3 /HfSiO stack as the blocking layer of a metal—oxide—nitride—oxide—silicon-type (MONOS) memory capacitor. Compared with a memory capacitor with a single HfSiO layer as the blocking layer or an Al 2 O 3 /HfO 2 stack as the blocking layer, the sample with the Al 2 O 3 /HfSiO stack as the blocking layer shows high program/erase (P/E) speed and good data retention characteristics. These improved performances can be explained by energy band engineering. The experimental results demonstrate that the memory device with an Al 2 O 3 /HfSiO stack as the blocking layer has great potential for further high-performance nonvolatile memory applications. (interdisciplinary physics and related areas of science and technology)

  11. Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified γ-Al2O3

    International Nuclear Information System (INIS)

    Zhang Yiping; Fei Jinhua; Yu Yingmin; Zheng Xiaoming

    2006-01-01

    The effect of zirconia modification on γ-Al 2 O 3 support to the Cu based catalyst was studied. It is found that the catalytic activity and methanol selectivity of the catalyst after Zr addition are both improved. The influences of reaction temperature, space velocity and the molar ratio of H 2 :CO 2 on Cu/γ-Al 2 O 3 and 12Cu10Zr/γ-Al 2 O 3 catalyst were also studied. The results indicate that low temperature, high space velocity and proper molar ratio of H 2 /CO 2 are advantageous to methanol synthesis. The XRD and TPR characterization show that the addition of Zr enhances the dispersion of CuO species, which is responsible for the enhanced catalytic performance of Cu based catalyst supported on zirconia modified γ-Al 2 O 3 catalyst

  12. Effects of plasma-enhanced chemical vapor deposition (PECVD) on the carrier lifetime of Al2O3 passivation stack

    Science.gov (United States)

    Cho, Kuk-Hyun; Cho, Young Joon; Chang, Hyo Sik; Kim, Kyung-Joong; Song, Hee Eun

    2015-09-01

    We investigated the effect on the minority carrier lifetime of atomic layer deposition (ALD) Al2O3 passivation by a plasma-enhanced chemical vapor deposition (PECVD) SiON layer in Si/Al2O3/SiON-passivated structure. The lifetime variation of the Al2O3/SiON stack layer was found to depend on both the plasma power and the deposition temperature during the PECVD SiON process and to show better thermal stability than the Al2O3/SiNx:H stack under the same deposition conditions. The lifetime after a high-temperature firing process was improved dramatically at the PECVD deposition temperature of 200 °C. Our results provide a significant clue to reason for the improvement of the passivation performance for passivated emitter and rear contact (PERC) silicon solar cells.

  13. Raman spectra of MgSiO3 . 10% Al2O3-perovskite at various pressures and temperatures

    International Nuclear Information System (INIS)

    Liu Lingun; Irifune, T.

    1995-01-01

    Variations of Raman spectra of MgSiO 3 . 10% Al 2 O 3 -perovskite were investigated up to about 270 kbar at room temperature and in the range 108-425 K at atmospheric pressure. Like MgSiO 3 -perovskite, the Raman frequencies of MgSiO 3 . 10% Al 2 O 3 -perovskite increase nonlinearly with increasing pressure and decrease linearly with increasing temperature within the experimental uncertainties and the range investigated. A comparison of these data with those of MgSiO 3 -perovskite suggests that MgSiO 3 . 10% Al 2 O 3 -perovskite is slightly more compressible than MgSiO 3 -perovskite, and that the volume thermal expansion for MgSiO 3 . 10% Al 2 O 3 -perovskite is also slightly greater than that for MgSiO 3 -perovskite. (orig.)

  14. Choque térmico em filtros cerâmicos do sistema Al2O3-SiC Thermal shock on ceramic filters in the system Al2O3-SiC

    Directory of Open Access Journals (Sweden)

    V. R. Salvini

    2002-03-01

    Full Text Available Em diversas aplicações as cerâmicas celulares são submetidas a tensões térmicas severas, tal como na filtração de metais fundidos. Contudo, há poucos estudos sobre o desempenho ao choque térmico destes materiais. Uma das razões é que a metodologia para análise desta classe de materiais deve ser distinta daquela utilizada para os materiais cerâmicos densos. Isto porque no caso dos materiais celulares para filtração de metais fundidos o meio causador do choque térmico infiltra-se rapidamente na estrutura reticular de poros, reduzindo o gradiente de temperatura entre a superfície externa e a do interior do corpo. Neste contexto, a proposta do presente trabalho é verificar os efeitos de algumas propriedades dos filtros cerâmicos em seu comportamento mecânico durante testes de choque térmico em água. As propriedades consideradas são a permeabilidade, a condutividade térmica e a área superficial específica dos filtros. Para isto foram utilizados os filtros cerâmicos do sistema de Al2O3-SiC de 8, 10, 20 e 30 ppi (poros por polegada linear.In many applications, open-cell ceramics are expected to undergo severe thermal stresses, for instance, in their use as molten metal filters. However, only a few studies have considered the thermal shock behavior of these materials. One of the main reasons is the theoretical approach used for dense ceramics which may not be valid for porous materials. In this context, the aim of this work is to analyze the effects of permeability, specific surface area and thermal conductivity on the mechanical behavior of ceramic filters subjected to water quenching tests. Al2O3-SiC filters with nominal cell sizes, expressed as the number of pores per linear inch (ppi, ranged from 8 to 30 ppi were used in the experimental tests.

  15. Effects of γ-radiation on dielectric properties of LDPE-Al2O3 nanocomposites

    Science.gov (United States)

    Ciuprina, Florin; Zaharescu, Traian; Pleşa, Ilona

    2013-03-01

    Until now several methods for processing and characterization have been tested, and some theories and models have been proposed for these materials having a huge nanofiller-polymer interface area which seems to be the main responsible for their unique properties. The accelerated testing by irradiation of LDPE has been extensively studied in order to assess optimized formulation. The present paper characterizes LDPE modified with Al2O3 nanoparticles. The dispersed nanofiller was added in various concentrations (2, 5 and 10 wt%). The accelerated aging under γ-irradiation was accomplished for evaluation of material behavior to hard stressing environment. Dielectric properties (real part of the permittivity and tan delta) and oxidation resistance were discussed. An improvement of the dielectric losses is noticed for the tested nanocomposites at a radiation dose up to 20 kGy. The radiochemical stability studied by chemiluminescence provides satisfactory stability in the correlation with slight modification of basis polymer due to the inert feature of filler.

  16. Temperature coefficients for in vivo RL and OSL dosimetry using Al2O3:C

    DEFF Research Database (Denmark)

    Andersen, Claus Erik; Edmund, Jens Morgenthaler; Damkjær, Sidsel Marie Skov

    2008-01-01

    A radiotherapy dosimetry system based on radiolurninescence (RL) and optically stimulated luminescence (OSL) from small carbon-doped aluminum oxide (Al2O3:C) crystals attached to optical-fiber cables has been developed. To quantify the influence of temperature variations on clinical RL and OSL...... measurement results, we conducted an automated laboratory experiment involving threefold randomization of (1) irradiation temperature (10-45 degrees C), (2) stimulation temperature (10-45 degrees C), and (3) irradiation dose (0-4 Gy; 50 kV X-rays). We derived linear RL and OSL temperature coefficients using...... a simple statistical model fitted to all data (N = 909). The study shows that the temperature coefficients are independent of dose and other variables studied. In agreement with an earlier investigation, we found that the RL signal changes only with irradiation temperature whereas the OSL response changes...

  17. Effect of preparation method on catalytic activity of Ni/ γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Miranda Morales, Barbara

    2017-01-01

    The performance of catalysts was shown to be strongly dependent on their methods of preparation. A study to examine the relationship between catalyst preparation procedures and the structure, dispersion, activity, and selectivity of the finished catalyst is reported. 10 wt.%Ni/γ-Al 2 O 3 catalysts were prepared by incipient wetness impregnation and by wet impregnation. The catalysts were used in the conversion of glycerol in gas phase and atmospheric pressure. The selectivity and activity of the catalysts were affected by the preparation method employed. The catalysts were characterized by thermogravimetric analysis (TGA), temperature-programmed reduction (TPR), N 2 -physorption, H 2 -chemisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and temperature-programmed oxidation (TPO). The Ni particle size and dispersion of the catalysts affected the selectivity to hydrogenolysis and dehydration routes, and the formation of carbon deposits was also affected. (author) [es

  18. Numerical Simulation of Water/Al2O3 Nanofluid Turbulent Convection

    Directory of Open Access Journals (Sweden)

    Vincenzo Bianco

    2010-01-01

    Full Text Available Turbulent forced convection flow of a water-Al2O3 nanofluid in a circular tube subjected to a constant and uniform temperature at the wall is numerically analyzed. The two-phase mixture model is employed to simulate the nanofluid convection, taking into account appropriate thermophysical properties. Particles are assumed spherical with a diameter equal to 38 nm. It is found that convective heat transfer coefficient for nanofluids is greater than that of the base liquid. Heat transfer enhancement is increasing with the particle volume concentration and Reynolds number. Comparisons with correlations present in the literature are accomplished and a very good agreement is found with Pak and Cho (1998. As for the friction factor, it shows a good agreement with the classical correlation used for normal fluid, such as Blasius formula.

  19. Experimental Study of the Freezing Point of γ-Al2O3/Water Nanofluid

    Directory of Open Access Journals (Sweden)

    Thierry Maré

    2012-01-01

    Full Text Available Nanofluids are colloidal suspensions made of nanometer-sized particles dispersed in a conventional fluid. Their unusual thermal properties explain intensive investigations for several thermal and industrial applications. In this work, an experimental investigation was performed to measure the freezing point and to study the supercooling point made of alumina γ-Al2O3 nanoparticles with 30 nm diameter size and deionized water. Particles' volume fraction used in this work is ranging from 1% to 4%. The T-historic method based on the measurement of the point of inflexion was performed to measure the thermal properties such as the freezing point and the latent heat of solidification of the nanofluids for different concentrations. The results show that the supercooling degree decreases for the high particles volume concentrations and that the agglomeration does not influence the temperature of the freezing point. However, it makes the freezing process longer.

  20. Influence of Sonication on the Stability and Thermal Properties of Al2O3 Nanofluids

    Directory of Open Access Journals (Sweden)

    Monir Noroozi

    2014-01-01

    Full Text Available Nanofluids containing Al2O3 nanoparticles (either 11 or 30 nm in size dispersed in distilled water at low concentrations (0.125–0.5 wt% were prepared using two different ultrasonic devices (a probe and a bath sonicator as the dispersant. The effect of the ultrasonic system on the stability and thermal diffusivity of the nanofluids was investigated. Thermal diffusivity measurements were conducted using a photopyroelectric technique. The dispersion characteristics and morphology of the nanoparticles, as well as the optical absorption properties of the nanofluids, were studied using photon cross correlation spectroscopy with a Nanophox analyzer, transmission electron microscopy, and ultraviolet-visible spectroscopy. At higher particle concentration, there was greater enhancement of the thermal diffusivity of the nanofluids resulting from sonication. Moreover, greater stability and enhancement of thermal diffusivity were obtained by sonicating the nanofluids with the higher power probe sonicator prior to measurement.

  1. Obtaining and characterization catalyst Ki/Al2O3 by physical dispersion process via wet

    International Nuclear Information System (INIS)

    Silva, M.C. da; Dantas, J.; Costa, A.C.F.M.; Costa, N.C.O.; Freitas, N.L. de

    2014-01-01

    The aim of this study is the Obtention and characterization of catalysts being supported alumina impregnated with KI by physical dispersion in wet via attritor mill in periods of 30 and 60 minutes. Before and after impregnation the catalysts were characterized by XRD, X ray fluorescence, particle size distribution, textural analysis (BET). The results show the presence of the stable crystalline phase Al 2 O 3 in all samples after impregnation and the second phase formed from KI and K 2 O. There was a decrease in the agglomerates incorporated with the potassium due to the milling process. It was observed that the highest specific surface area was obtained by the impregnated sample into a 60 min. (author)

  2. Combined TEM and NC-AFM study of Al2O3-supported Pt nanoparticles

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Simonsen, Søren Bredmose; Chorkendorff, Ib

    Sintering, the growth of large particles at the expense of smaller ones, is one of the main causes of catalysts deactivation, since the physicochemical properties of a nanoparticle may depend strongly on its size, shape and composition. For application as heterogeneous catalysts, the nanoparticle...... kinks and edges often play an important role for the catalytic activity. In order to preserve these sites, it is important to stabilize the supported nanoparticles with sizes of a few nanometers during operational conditions at often high temperatures and in the relevant gas environments. A prototypical...... nanocatalyst system for studying coarsening consists of Pt nanoparticles supported on an Al2O3 material which is relevant as an oxidation catalyst in diesel and lean-burn engine exhaust after-treatment technologies. In this study we address the effect on sintering of the shape of Pt nanoparticles supported...

  3. Impedance analysis of Al2O3/H-terminated diamond metal-oxide-semiconductor structures

    Science.gov (United States)

    Liao, Meiyong; Liu, Jiangwei; Sang, Liwen; Coathup, David; Li, Jiangling; Imura, Masataka; Koide, Yasuo; Ye, Haitao

    2015-02-01

    Impedance spectroscopy (IS) analysis is carried out to investigate the electrical properties of the metal-oxide-semiconductor (MOS) structure fabricated on hydrogen-terminated single crystal diamond. The low-temperature atomic layer deposition Al2O3 is employed as the insulator in the MOS structure. By numerically analysing the impedance of the MOS structure at various biases, the equivalent circuit of the diamond MOS structure is derived, which is composed of two parallel capacitive and resistance pairs, in series connection with both resistance and inductance. The two capacitive components are resulted from the insulator, the hydrogenated-diamond surface, and their interface. The physical parameters such as the insulator capacitance are obtained, circumventing the series resistance and inductance effect. By comparing the IS and capacitance-voltage measurements, the frequency dispersion of the capacitance-voltage characteristic is discussed.

  4. RBS characterization of Al2O3 films doped with Ce and Mn

    International Nuclear Information System (INIS)

    Martinez-Martinez, R.; Rickards, J.; Garcia-Hipolito, M.; Trejo-Luna, R.; Martinez-Sanchez, E.; Alvarez-Fregoso, O.; Ramos-Brito, F.; Falcony, C.

    2005-01-01

    Rutherford backscattering (RBS) with 4 He energies from 2 to 6 MeV has been used to study the properties of thin amorphous photoluminescent Al 2 O 3 :Ce,Mn films grown by spray pyrolysis on Corning 7059 glass substrates. The source solutions were AlCl 3 , CeCl 3 and MnCl 2 dissolved in deionized water. Different molar concentrations (Ce 10%; Mn 1%, 3%, 5%, 7% and 10%) were investigated under the same deposition conditions at a substrate temperature of 300 deg. C. The RBS spectra show a homogeneous depth profile of both Ce and Mn within the films, and the measured quantities are consistent with the original solution concentrations. An important amount of Cl, which plays a significant role in luminescent properties, was detected, in both the doped and undoped samples

  5. Adsorption heats of olefins on supported MoO3/Al2O3 catalists

    International Nuclear Information System (INIS)

    Grinev, V.E.; Madden, M.; Khalit, V.A.; Aptekar', E.L.; Aldag, A.; Krylov, O.V.

    1983-01-01

    Adsorption heats of C 2 H 4 , C 3 H 6 and C 4 H 8 on supported MoO 3 /Al 2 O 3 catalysts containing 6, 10 and 15 wt. % of MoO 3 at 25, 77 and 195 deg are determimed. Adsorption heat of an olefin increases with a growing length of its carbonic chain. The number of adsorbed olefin molecules grows with an increase in the MoO 3 concentration, while initial adsorption heats decrease. The number of adsorbed olefins is proportional to mean rate of molybdenum reduction in catalysts. Adsorption heats of oxygen on the surface of the catalysts with preliminarily adsorbed olefins are determined. It is shown that adsorption of oxygen and olefins proceeeds both on the same and on different centres of the surface. Mechanisms of surface interactions are discussed

  6. Pulsed Laser deposition of Al2O3 thin film on silicon

    International Nuclear Information System (INIS)

    Lamagna, A.; Duhalde, S.; Correra, L.; Nicoletti, S.

    1998-01-01

    Al 2 O 3 thin films were fabricated by pulsed laser deposition (PLD) on Si 3 N 4 /Si, to improve the thermal and electrical isolation of gas sensing devices. The microstructure of the films is analysed as a function of the deposition conditions (laser fluence, oxygen pressure, target-substrate distance and substrate temperature). X-ray analysis shows that only a sharp peak that coincides with the corundum (116) reflection can be observed in all the films. But, when they are annealed at temperatures above 1,200 degree centigrade, a change in the crystalline structure of some films occurs. The stoichiometry and morphology of the films with and without thermal treatment are compared using environmental scanning electron microscopy (SEM) and EDAX analysis. (Author) 14 refs

  7. Temperature dependence of the Al2O3:C response in medical luminescence dosimetry

    DEFF Research Database (Denmark)

    Edmund, Jens Morgenthaler; Andersen, Claus Erik

    2007-01-01

    luminescence (OSL) signals in the room-to-body temperature region. We found that the OSL response changes with both irradiation and stimulation temperatures as well as the OSL integration time. We conclude that temperature effects on the OSL response can be removed by integration if the irradiation temperature...... is not varied. The RL response only depends on the irradiation temperature. We recommend that calibration should be carried out at the same irradiation temperature at which the measurement is performed (i.e. at body temperature for in vivo measurements). The overall change in the integrated OSL and RL signals......Over the last years, attention has been given to applications of Al2O3:C in space and medical dosimetry. One such application is in vivo dose verification in radiotherapy of cancer patients and here we investigate the temperature effects on the radioluminescence (RL) and optically stimulated...

  8. Radiation curing of γ-Al2O3 filled epoxy resin

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Kim, Dong Jin; Nho, Young Chang

    2003-01-01

    Epoxy resins are widely utilized as high performance thermosetting resins for many industrial applications but characterized by a relatively low toughness. Recently, the incorporation with rigid inorganic was suggested to improve the mechanical properties of epoxy resins. In the present work, an attempt has been taken to disperse nano-sized γ- Al 2 O 3 particles into diglycidyl ether of bisphenol-A (DGEBA) epoxy resins for improvement of the mechanical properties. These hybrid epoxy-alumina composites were prepared using by the γ-ray curing technique that was conducted with 100kGy under nitrogen at room temperature. The composites were characterized by determining gel content, UTM (Instron model 4443), SEM, FT-IR studies

  9. Effects of temperature and ionization density in medical luminescence dosimetry using Al2O3:C

    DEFF Research Database (Denmark)

    Edmund, Jens Morgenthaler

    2007-01-01

    by the combined efforts of energetic shallow traps and thermal excitation from intermediate states in deeper traps. In the study of ionization density, we investigated protons with energies between 10 and 60 MeV (4.57 to 1.08 keV/ìm in water). Experimentally, we observed that the initial OSL signal provided......) signal can be read out by stimulating the crystal with light. This thesis applies the initial part and the total area of the resulting OSL decay curve for dosimetry measurements and investigates the effects of temperature and proton energy, i.e. ionization density, on the RL and OSL signals from Al2O3:C...

  10. Investigating the nanostructure and thermal properties of chiral poly(amide-imide)/Al2O3 compatibilized with 3-aminopropyltriethoxysilane

    International Nuclear Information System (INIS)

    Mallakpour, Shadpour; Dinari, Mohammad

    2013-01-01

    Graphical abstract: - Highlights: • Chiral polymer with different functional groups was prepared in green route. • The surface of Al 2 O 3 -NPs was treated by KH550 as a silane coupling agent. • NCs of poly(amide-imide) and Al 2 O 3 were synthesized by ultrasonic irradiation. • TEM results show good dispersion of Al 2 O 3 -NPs in the poly(amide-imide) matrix. • The thermal and mechanical properties of the hybrid materials were improved. - Abstract: Novel chiral poly(amide-imide) (PAI)/Al 2 O 3 nanocomposites were prepared via incorporating surface modified Al 2 O 3 nanoparticles into polymer matrices for the first time. In the process of preparing the nanocomposites, severe aggregation of Al 2 O 3 nanoparticles could be reduced by surface modification and γ-aminopropyltriethoxysilane. The optically active PAI chains were formed from the polycondensation reaction of N,N′-(pyromellitoyl)-bis-phenylalanine diacid with 2-(3,5-diaminophenyl)-benzimidazole in green condition. The obtained polymer and inorganic metal oxide nanoparticles were used to prepare chiral PAI/Al 2 O 3 nanocomposites through ultrasonic irradiation. The resulting nanoparticle filled composites were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis (TGA) techniques. TGA thermographs confirmed that the heat stability of the prepared nanoparticle-reinforced composites was improved. Mechanical properties showed that the film containing 10 wt% of modified Al 2 O 3 had a tensile strength of the order of 83.6 MPa, relative to the 64.3 MPa of the pure PAI

  11. Synthesis of new metal-matrix Al-Al2O3-graphene composite materials

    Science.gov (United States)

    Elshina, L. A.; Muradymov, R. V.; Kvashnichev, A. G.; Vichuzhanin, D. I.; Molchanova, N. G.; Pankratov, A. A.

    2017-08-01

    The mechanism of formation of ceramic microparticles (alumina) and graphene in a molten aluminum matrix is studied as a function of the morphology and type of precursor particles, the temperature, and the gas atmosphere. The influence of the composition of an aluminum composite material (as a function of the concentration and size of reinforcing particles) on its mechanical and corrosion properties, melting temperature, and thermal conductivity is investigated. Hybrid metallic Al-Al2O3-graphene composite materials with up to 10 wt % alumina microparticles and 0.2 wt % graphene films, which are uniformly distributed over the metal volume and are fully wetted with aluminum, are synthesized during the chemical interaction of a salt solution containing yttria and boron carbide with molten aluminum in air. Simultaneous introduction of alumina and graphene into an aluminum matrix makes it possible to produce hybrid metallic composite materials having a unique combination of the following properties: their thermal conductivity is higher than that of aluminum, their hardness and strength are increased by two times, their relative elongation during tension is increased threefold, and their corrosion resistance is higher than that of initial aluminum by a factor of 2.5-4. We are the first to synthesize an in situ hybrid Al-Al2O3-graphene composite material having a unique combination of some characteristics. This material can be recommended as a promising material for a wide circle of electrical applications, including ultrathin wires, and as a structural material for the aerospace industry, the car industry, and the shipbuilding industry.

  12. Microstructural characterization of HIP consolidated NiTi–nano Al2O3 composites

    International Nuclear Information System (INIS)

    Farvizi, M.; Ebadzadeh, T.; Vaezi, M.R.; Yoon, E.Y.; Kim, Y-J.; Kim, H.S.; Simchi, A.

    2014-01-01

    Highlights: • NiTi–6 wt.% nano α-Al 2 O 3 composites have been produced using a HIP method. • Both elemental and prealloyed powders were used for the fabrication of composites. • Generation of mismatch stress and intermetallics affected martensitic transformation. • Nanoparticles partially inhibited thermally induced martensitic transformation. • An interwoven austenite–martensite structure was observed in the composite samples. - Abstract: The microstructure and phase transformational behavior of NiTi-based composites reinforced with 6 wt.% of α-alumina nanoparticles have been investigated. Two kinds of starting materials, elemental Ni–Ti and prealloyed austenitic NiTi, were used to prepare the composites. The samples were consolidated using a hot isostatic pressing method. The X-ray diffraction results showed that while unreinforced NiTi mainly contained B2 phase at room temperature, martensitic B19′ phase appeared in the microstructure after addition of the α-alumina nanoparticles. The differential scanning calorimetry measurements indicated that the martensitic transformation temperatures were elevated in the composite samples, but the transformational enthalpy was reduced in comparison with the NiTi sample. It is believed that the generation of thermal mismatch stress during the sintering and the formation of small contents of NiTi 2 /Ni 3 Ti intermetallics in the composite samples are responsible for this increment of the martensitic transformation temperatures. Also, due to the nanometric size of α-Al 2 O 3 , a larger fraction of the matrix is disturbed by the presence of the nanoparticles, which yields the formation of effective barriers to the thermally induced martensitic transformation in the nanocomposite samples. The high-resolution transmission electron microscopy studies of the samples confirmed the higher defect density and partial microplastic deformation in the composite samples

  13. Preparation of porous Al2O3-Ti-C perform by combustion synthesis

    Directory of Open Access Journals (Sweden)

    K.Granat

    2009-04-01

    Full Text Available Using combustion synthesis porous ceramic preforms for composite reinforcing were produced. Prepared mixture of alumina Saffilfibres, Ti powder and graphite flakes, after drying were placed in waveguide of microwave reactor. Supplied with constant power of 540Wmagnetron ignited and maintained reaction in flowing stream of CO2 gas. Al2O3 fibres should improve preliminary endurance of perform,whereas Ti powder processed to hard titanium carbides and oxides. During microwave heating ignited plasma additionally improveprocess and partly fused metallic Ti. Recorded temperature curves were similar for various samples. The highest synthesis temperature revealed samples containing 10% of Al2O3 , 10% of Ti and 5% of graphite, all percentages atomic. Microscopic observation showed considerable microstructure inhomogeneity of some samples. Both irregular component ordering and partly processed Ti particles inside preform exclude them for subsequent infiltration. Chemical analyze EDS of Ti based compounds partly confirmed work purpose, evidencing presence of Ti oxides and carbides. Independently of graphite content these compounds formed folded strips around solid or empty volume. Depends on CO2 availability, reaction could be slowed down resulting in more compacted Ti compounds. Created as a result of combustion synthesis Ti compound after infiltration with liquid metal properly bounded with the matrix. It could be assumed that redox reaction proceeded and on surface of Ti compound alumina and Al-Ti compounds were created. The preforms of proper strength and homogeneous structure were infiltrated with AlSi7Mg by squeeze casting method. In relation to typical composite reinforced only with fibres no significant increase of defects quantity was observed. Preliminary examination of mechanical properties confirmed that assumed work purpose is reasonable.

  14. Preparation and photocatalytic properties of core-shell nano-TiO2 @ α-Al2O3 microspheres.

    Science.gov (United States)

    Jing, Mao-Xiang; Han, Chong; Wang, Zhou; Shen, Xiang-Qian

    2014-09-01

    Core-shell nano-TiO2@a-Al2O3 microspheres of 5-20 μm were prepared by the heterogeneous precipitation method combined with the hydro-thermal and calcination process using α-Al2O3 microspheres as substrate. Their morphologies, microstructure and crystalline phase were characterized by SEM and XRD respectively. The photocatalytic activity was evaluated by degradation of methyl orange. The as-prepared 10 wt.% nano-TiO2@α -Al2O3 microspheres possess α core-shell structure with a monolayer of nano-TiO2 particles less than 30 nm on the surface of α-Al2O3 microspheres. Their photocatalytic properties are largely influenced by the calcination temperature and the sample calcined at 800 degrees C for 2 h has the best photocatalytic activity. This high photocatalytic activity can be attributed to the synergetic effects of the unique structure of nano-TiO2 @α-Al2O3 microspheres, quantum size effect, composition of crystalline phase and crystallinity of nano-TiO2. These nano-TiO2@α-Al2O3 microspheres may be conveniently separable and useful in practical treatment of organic waste waters due to the large particle size and high photocatalytic properties.

  15. Electrical characterization of amorphous Al2O3 dielectric films on n-type 4H-SiC

    Science.gov (United States)

    Khosa, R. Y.; Thorsteinsson, E. B.; Winters, M.; Rorsman, N.; Karhu, R.; Hassan, J.; Sveinbjörnsson, E. Ö.

    2018-02-01

    We report on the electrical properties of Al2O3 films grown on 4H-SiC by successive thermal oxidation of thin Al layers at low temperatures (200°C - 300°C). MOS capacitors made using these films contain lower density of interface traps, are more immune to electron injection and exhibit higher breakdown field (5MV/cm) than Al2O3 films grown by atomic layer deposition (ALD) or rapid thermal processing (RTP). Furthermore, the interface state density is significantly lower than in MOS capacitors with nitrided thermal silicon dioxide, grown in N2O, serving as the gate dielectric. Deposition of an additional SiO2 film on the top of the Al2O3 layer increases the breakdown voltage of the MOS capacitors while maintaining low density of interface traps. We examine the origin of negative charges frequently encountered in Al2O3 films grown on SiC and find that these charges consist of trapped electrons which can be released from the Al2O3 layer by depletion bias stress and ultraviolet light exposure. This electron trapping needs to be reduced if Al2O3 is to be used as a gate dielectric in SiC MOS technology.

  16. The improvement of the mechanical properties of PMMA denture base by Al2O3 particles with nitrile rubber

    Science.gov (United States)

    Alhareb, Ahmed Omran; Akil, Hazizan Md; Ahmad, Zainal Arifin

    2017-07-01

    Poly methyl methacrylate (PMMA) is mostly used for fabrication of denture base by heat-curing technique. Therefore, the purpose of this study is to investigate the effect of Al2O3 filler as toughening particles together with nitrile butadiene rubber (NBR) particles as impact modifier were used to reinforce PMMA denture base materials on the impact strength (IS) and fracture toughness (KIC). PMMA powder was mixed with liquid methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent. The powder components are PMMA, benzoyl peroxide, NBR (5, 7.5 and 10 wt%), and Al2O3 filler (5 wt%) treated by silane. The liquid components are 90% of methyl methacrylate and 10 % ethylene glycol dimethacryate. FTIR analyses confirmed that the Al2O3 filler was successfully treated with silane as coupling agent. The morphology of fracture surfaces was characterized using field emission scanning electron microscopy (FESEM). The results shown that IS and KIC improved significantly when using treated the Al2O3 filler. IS has increased to 56% (8.26 KJ/m2) and 73% (2.77 MPa.m1/2) for KIC when treated Al2O3 filler compared to unreinforced PMMA matrix. Statistical analyses of data results were significantly improved (P<0.05) when using 7.5 wt% NBR with treated Al2O3 filler compared to other the compositions.

  17. Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al2O3 Sensing Film

    Directory of Open Access Journals (Sweden)

    Cuiling Sun

    2017-12-01

    Full Text Available The effects of UV-ozone (UVO treatment on the sensing behaviours of extended-gate field-effect transistors (EGFETs that use Al2O3 as the sensing film have been investigated. The Al2O3 sensing films are UVO-treated with various duration times and the corresponding EGFET sensing behaviours, such as sensitivity, hysteresis, and long-term stability, are electrically evaluated under various measurement conditions. Physical analysis is also performed to characterize the surface conditions of the UVO-treated sensing films using X-ray photoelectron spectroscopy and atomic force microscopy. It is found that UVO treatment effectively reduces the buried sites in the Al2O3 sensing film and subsequently results in reduced hysteresis and improved long-term stability of EGFET. Meanwhile, the observed slightly smoother Al2O3 film surface post UVO treatment corresponds to decreased surface sites and slightly reduced pH sensitivity of the Al2O3 film. The sensitivity degradation is found to be monotonically correlated with the UVO treatment time. A treatment time of 10 min is found to yield an excellent performance trade-off: clearly improved long-term stability and reduced hysteresis at the cost of negligible sensitivity reduction. These results suggest that UVO treatment is a simple and facile method to improve the overall sensing performance of the EGFETs with an Al2O3 sensing film.

  18. Relation of lifetime to surface passivation for atomic-layer-deposited Al2O3 on crystalline silicon solar cell

    International Nuclear Information System (INIS)

    Cho, Young Joon; Song, Hee Eun; Chang, Hyo Sik

    2015-01-01

    Highlights: • We investigated the relation of potassium contamination on Si solar wafer to lifetime. • We deposited Al 2 O 3 layer by atomic layer deposition (ALD) on Si solar wafer after several cleaning process. • Potassium can be left on Si surface by incomplete cleaning process and degrade the Al 2 O 3 passivation quality. - Abstract: We investigated the relation of potassium contamination on a crystalline silicon (c-Si) surface after potassium hydroxide (KOH) etching to the lifetime of the c-Si solar cell. Alkaline solution was employed for saw damage removal (SDR), texturing, and planarization of a textured c-Si solar wafer prior to atomic layer deposition (ALD) Al 2 O 3 growth. In the solar-cell manufacturing process, ALD Al 2 O 3 passivation is utilized to obtain higher conversion efficiency. ALD Al 2 O 3 shows excellent surface passivation, though minority carrier lifetime varies with cleaning conditions. In the present study, we investigated the relation of potassium contamination to lifetime in solar-cell processing. The results showed that the potassium-contaminated samples, due to incomplete cleaning of KOH, had a short lifetime, thus establishing that residual potassium can degrade Al 2 O 3 surface passivation

  19. Effect of Al2O3sf addition on the friction and wear properties of (SiCp+Al2O3sf)/Al2024 composites fabricated by pressure infiltration

    Science.gov (United States)

    Xu, Hui; Zhang, Gong-zhen; Cui, Wei; Ren, Shu-bin; Wang, Qian-jin; Qu, Xuan-hui

    2018-03-01

    Aluminum (Al) 2024 matrix composites reinforced with alumina short fibers (Al2O3sf) and silicon carbide particles (SiCp) as wear-resistant materials were prepared by pressure infiltration in this study. Further, the effect of Al2O3sf on the friction and wear properties of the as-synthesized composites was systematically investigated, and the relationship between volume fraction and wear mechanism was discussed. The results showed that the addition of Al2O3sf, characterized by the ratio of Al2O3sf to SiCp, significantly affected the properties of the composites and resulted in changes in wear mechanisms. When the volume ratio of Al2O3sf to SiCp was increased from 0 to 1, the rate of wear mass loss ( K m) and coefficients of friction (COFs) of the composites decreased, and the wear mechanisms were abrasive wear and furrow wear. When the volume ratio was increased from 1 to 3, the COF decreased continuously; however, the K m increased rapidly and the wear mechanism became adhesive wear.

  20. Kinetics for Steam and CO2 Reforming of Methane Over Ni/La/Al2O3 Catalyst.

    Science.gov (United States)

    Park, Myung Hee; Choi, Bong Kwan; Park, Yoon Hwa; Moon, Dong Ju; Park, Nam Cook; Kim, Young Chul

    2015-07-01

    Kinetic studies of mixed (steam and dry) reforming of methane on Ni/La/Al2O3 and Ni/La-Co (1, 3 wt%)/Al2O3 catalysts were performed in an atmospheric fixed-bed reactor. Kinetic parameters for the mixed reforming over these catalysts were obtained under reaction conditions free from heat and mass transfer limitations. Variables for the mixed reforming were the reaction temperature and partial pressure of reactants. The fitting of the experimental data for the rate of methane conversion, rCH4, using the power law rate equation rCH4 = k(PrCH4)α(PCO2)β(PH2O)γ showed that the reaction orders α, β, and γ are steady and obtained values equal to α = 1, β = 0, and γ = 0. In other words, among CH4, CO2, H2O, and H2, only CH4 reaction orders were not zero and they were affected by the promoters. The apparent activation energy on catalysts Ni/La/Al2O3, Ni/La-Co (1)/Al2O3 and Ni/La-Co (3)/Al2O3 is 85.2, 93.8, and 99.4 kJ/mol, respectively. The addition of Co to Ni/La/Al2O3 was increased the apparent activation energy of the mixed reforming reaction. And the Ni/La-Co (3 wt%)/Al2O3 catalyst showed the highest reforming activity and apparent activation energy. The Co promoters can increase the apparent activation energy of mixed reforming of methane.

  1. A theoretical and experimental XAS study of monolayer dispersive supported CuO/γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Chen Dongliang; Wu Ziyu

    2006-01-01

    The local structures of supported CuO/γ-Al 2 O 3 monolayer dispersive catalysts with different CuO loadings have been investigated by EXAFS and multiple scattering XANES simulations. The EXAFS results show that the first nearest neighbors around the Cu atoms in the CuO/γ-Al 2 O 3 catalysts are similar to that of the polycrystalline CuO powder, which is independent of the CuO loadings. Moreover, the Cu K-XANES FEFF8 calculations for CuO reveal that the monolayer-dispersed CuO species are of small distorted (CuO 4 ) m n+ clusters, which is mainly composed of a distorted CuO 6 octahedron incorporated in the surface octahedral vacant sites of the γ-Al 2 O 3 support. We consider that the CuO species for the CuO/γ-Al 2 O 3 catalysts with loadings of 0.4 and 0.8 mmol/100 m 2 are distorted (CuO 4 ) m n+ clusters composed mainly of a distorted CuO 6 octahedron incorporated in the surface octahedral vacant sites of the γ-Al 2 O 3 support after calcinations at high temperature in air for a few hours. On the contrary, for the CuO/γ-Al 2 O 3 with loading of 1.2 mmol/100 m 2 , the local structure of Cu atoms in CuO/γ-Al 2 O 3 is similar to that of polycrystalline CuO powder

  2. Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates

    Science.gov (United States)

    Ansari, Mohammad Azam; Khan, Haris M.; Khan, Aijaz A.; Pal, Ruchita; Cameotra, Swaranjit Singh

    2013-10-01

    To date very little studies are available in the literature on the interaction of Al2O3 nanoparticles with multidrug-resistant strains of Staphylococcus aureus. Considering the paucity of earlier reports the objective of present study was to investigate the antibacterial activity of Al2O3 NPs (methicillin-resistant S. aureus and methicillin-resistant coagulase negative staphylococci by various methods. Al2O3 NPs were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction. The MIC was found to be in the range of 1,700-3,400 μg/ml. Almost no growth was observed at 2,000 μg/ml for up to 10 h. SEM micrograph revealed that the treated cells were significantly damaged, showed indentation on cell surface and clusters of NPs on bacterial cell wall. HR-TEM micrograph shows disruption and disorganization of cell membrane and cell wall. The cell membrane was extensively damaged and, most probably, the intracellular content has leaked out. Al2O3 NPs not only adhered at the surface of cell membrane, but also penetrated inside the bacterial cells, cause formation of irregular-shaped pits and perforation on their surfaces and may also interact with the cellular macromolecules causing adverse effect including cell death. The data presented here are novel in that Al2O3 NPs are effective bactericidal agents regardless of the drug resistance mechanisms that confer importance to these bacteria as an emergent pathogen. Therefore, in depth studies regarding the interaction of Al2O3 NPs with cells, tissues, and organs as well as the optimum dose required to produce therapeutic effects need to be ascertained before we can expect a more meaningful role of the Al2O3 NPs in medical application.

  3. Influência de aditivos dispersantes nas propriedades de concretos refratários de Al2O3 e Al2O3-MgO Influence of dispersants in Al2O3 and Al2O3-MgO refractory castables

    Directory of Open Access Journals (Sweden)

    I. R. de Oliveira

    2004-03-01

    Full Text Available O estado de dispersão das partículas constituintes da matriz de concretos apresenta uma influência direta no comportamento reológico desses materiais, determinando as técnicas que podem ser usadas para a sua aplicação. Diferentes aditivos são utilizados visando uma dispersão eficiente, a qual constitui um requisito importante na otimização do empacotamento das partículas e da resistência mecânica de concretos. Entretanto, a influência desses aditivos nas propriedades de concretos tem sido muito pouco estudada. Neste trabalho investigou-se o efeito de três dispersantes nas propriedades e desempenho na secagem de diferentes composições refratárias. A presença de poliacrilato de sódio resultou em concretos com elevada permeabilidade e maior porosidade. Por outro lado, em composições no sistema Al2O3-MgO a presença de hexametafosfato de sódio proporcionou concretos com permeabilidade extremamente baixa acarretando numa secagem mais lenta, enquanto o ácido cítrico apresentou um desempenho intermediário. Tais efeitos nas propriedades dos concretos foram correlacionados às características intrínsecas dos aditivos.The state of dispersion of the castables matrix particles presents a direct influence in their rheological behavior, determining the techniques that can be used for their installation. Different additives have been used aiming an efficient dispersion, which constitutes an important requirement in the optimization of the particles packing and mechanical resistance of castables. However, the influence of those additives in the castables properties has not been extensively studied. In this work, the effect of 3 dispersants was investigated in the properties and drying behavior of different refractory compositions. The presence of sodium polyacrylate resulted in castables with higher permeability and larger porosity. On the other hand, in Al2O3-MgO compositions the presence of sodium hexametaphosphate provided

  4. Characterization of humic acid reactivity modifications due to adsorption onto α-Al 2O 3

    KAUST Repository

    Janot, Noémie

    2012-03-01

    Adsorption of purified Aldrich humic acid (PAHA) onto α-Al 2O 3 is studied by batch experiments at different pH, ionic strength and coverage ratios R (mg of PAHA by m 2 of mineral surface). After equilibration, samples are centrifuged and the concentration of PAHA in the supernatants is measured. The amount of adsorbed PAHA per m 2 of mineral surface is decreasing with increasing pH. At constant pH value, the amount of adsorbed PAHA increases with initial PAHA concentration until a pH-dependent constant value is reached. UV/Visible specific parameters such as specific absorbance SUVA 254, ratio of absorbance values E 2/E 3 and width of the electron-transfer absorbance band Δ ET are calculated for supernatant PAHA fractions of adsorption experiments at pH 6.8, to have an insight on the evolution of PAHA characteristics with varying coverage ratio. No modification is observed compared to original compound for R≥20mgPAHA/gα-Al2O3. Below this ratio, aromaticity decreases with initial PAHA concentration. Size-exclusion chromatography - organic carbon detection measurements on these supernatants also show a preferential adsorption of more aromatic and higher-sized fractions. Spectrophotometric titrations were done to estimate changes of reactivity of supernatants from adsorption experiments made at pH ≈6.8 and different PAHA concentrations. Evolutions of UV/Visible spectra with varying pH were treated to obtain titration curves that are interpreted within the NICA-Donnan framework. Protonation parameters of non-sorbed PAHA fractions are compared to those obtained for the PAHA before contact with the oxide. The amount of low proton-affinity type of sites and the value of their median affinity constant decrease after adsorption. From PAHA concentration in the supernatant and mass balance calculations, "titration curves" are experimentally proposed for the adsorbed fractions for the first time. These changes in reactivity to our opinion could explain the difficulty

  5. Methanobactin-Mediated Synthesis of Gold Nanoparticles Supported over Al2O3 toward an Efficient Catalyst for Glucose Oxidation

    Directory of Open Access Journals (Sweden)

    Jia-Ying Xin

    2014-11-01

    Full Text Available Methanobactin (Mb is a copper-binding peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Mb can also bind and reduce Au(III to Au(0. In this paper, Au/Al2O3 catalysts prepared by a novel incipient wetness-Mb-mediated bioreduction method were used for glucose oxidation. The catalysts were characterized, and the analysis revealed that very small gold nanoparticles with a particle size <4 nm were prepared by the incipient wetness-Mb-mediated bioreduction method, even at 1.0% Au loading (w/w. The influence of Au loading, calcination temperature and calcination time on the specific activity of Au/Al2O3 catalysts was systematically investigated. Experimental results showed that decomposing the Mb molecules properly by calcinations can enhance the specific activity of Au/Al2O3 catalysts, though they acted as reductant and protective agents during the catalyst preparation. Au/Al2O3 catalysts synthesized by the method exhibited optimum specific activity under operational synthesis conditions of Au loading of 1.0 wt % and calcined at 450 °C for 2 h. The catalysts were reused eight times, without a significant decrease in specific activity. To our knowledge, this is the first attempt at the preparation of Au/Al2O3 catalysts by Mb-mediated in situ synthesis of gold nanoparticles.

  6. Physico–chemical properties of CdO–Al2O3 catalysts. I – Structural characteristics

    Directory of Open Access Journals (Sweden)

    M.N. Alaya

    2014-11-01

    TG–DTA patterns of uncalcined samples were analyzed and the XRD of all 1000 °C-products and some selected samples calcined at 400–800 °C were investigated. The thermal behaviors of pure and mixed gels depend on the precipitating agent, pH of precipitation, chemical composition and method of preparation. Generally, calcination at temperatures below 800 °C gave poorly crystalline phases. Well crystalline phases are obtained at 800 and 1000 °C. For pure alumina γ-Al2O3 was shown as 400 °C-calcination product that transforms into the δ form around 900 °C and later to θ-Al2O3 as a major phase and α-Al2O3 as a minor phase at 1000 °C. CdO was shown by 500 °C-calcined cadmia gel that showed color changes with rise of calcination temperature. The most stable black cadmium oxide phase (Monteponite is obtained upon calcination at 1000 °C. Thousand degree celsius- calcined mixed oxides showed θ-Al2O3, α-Al2O3, CdAl2O4 and monteponite which dominate depending on the chemical composition.

  7. Properties of low-temperature passivation of silicon with ALD Al2O3 films and their PV applications

    Science.gov (United States)

    Kim, Kwang-Ho; Kim, Hyun-Jun; Jang, Pyungwoo; Jung, Chisup; Seomoon, Kyu

    2011-06-01

    Low-temperature-deposited aluminium oxide (Al2O3) thin films were grown on p-type Si substrates by the remote plasma atomic layer deposition (RPALD) technique. The RPALD technique uses an alternative trimethylaluminum precursor and oxygen radicals to obtain good interface properties for metal-insulatorsemiconductor (MIS) inversion-layer solar cell applications. Si MIS capacitors with ultra-thin Al2O3 (film thickness ranges from 1 nm to 6 nm) gate dielectric and SiNx films were fabricated at 300°C and at room temperature (RT), respectively. Low-temperature-deposited Al2O3 and SiNx films were characterized by electrical properties such as capacitance-voltage (C-V), and current-voltage (I-V). The interface state density (Dit) of the MIS capacitors with SiNx films and without SiNx films was derived from the 1 MHz frequency C-V curves. By using ultra-thin RPALD Al2O3, RT-sputtered SiNx films and a simple fabrication-processing sequence, MIS solar cells were fabricated on 1 Ω·cm to 10 Ω·cm p-Si wafers. The fabricated MIS solar cell with passivated Al2O3 and SiNx films has 8.21% efficiency.

  8. (Oxo)(Fluoro)-Aluminates in KF-Al2O3System: Thermal Stability and Structural Correlation.

    Science.gov (United States)

    Šimko, František; Rakhmatullin, Aydar; Florian, Pierre; Kontrík, Martin; Korenko, Michal; Netriová, Zuzana; Danielik, Vladimír; Bessada, Catherine

    2017-11-06

    Precise investigation of part of the phase diagram of KF-Al 2 O 3 system was performed in an experiment combining different techniques. Solidified mixtures of KF-Al 2 O 3 were studied by X-ray powder diffraction and high-field solid-state NMR spectroscopy over a wide range of compositions. To help with the interpretation of the NMR spectra of the solidified samples found as complex admixtures, we synthesized the following pure compounds: KAlO 2 , K 2 Al 22 O 34 , α-K 3 AlF 6 , KAlF 4 , and K 2 Al 2 O 3 F 2 . These compounds were then characterized using various solid-state NMR techniques, including MQ-MAS and D-HMQC. NMR parameters of the pure compounds were finally determined using first-principles density functional theory calculations. The phase diagram of KF-Al 2 O 3 with the alumina content up to 30 mol % was determined by means of thermal analysis. Thermal analysis was also used for the description of the thermal stability of one synthesized compound, K 2 Al 2 O 3 F 2 .

  9. AlGaN/GaN high electron mobility transistor with Al2O3+BCB passivation

    International Nuclear Information System (INIS)

    Zhang Sheng; Yu Le; Ma Xiao-Hua; Wei Ke; Liu Guo-Guo; Huang Sen; Wang Xin-Hua; Pang Lei; Zheng Ying-Kui; Li Yan-Kui; Sun Bing; Liu Xin-Yu

    2015-01-01

    In this paper, Al 2 O 3 ultrathin film used as the surface passivation layer for AlGaN/GaN high electron mobility transistor (HEMT) is deposited by thermal atomic layer deposition (ALD), thereby avoiding plasma-induced damage and erosion to the surface. A comparison is made between the surface passivation in this paper and the conventional plasma enhanced chemical vapor deposition (PECVD) SiN passivation. A remarkable reduction of the gate leakage current and a significant increase in small signal radio frequency (RF) performance are achieved after applying Al 2 O 3 +BCB passivation. For the Al 2 O 3 +BCB passivated device with a 0.7 μm gate, the value of f max reaches up to 100 GHz, but it decreases to 40 GHz for SiN HEMT. The f max /f t ratio (≥ 4) is also improved after Al 2 O 3 +BCB passivation. The capacitance–voltage (C–V) measurement demonstrates that Al 2 O 3 +BCB HEMT shows quite less density of trap states (on the order of magnitude of 10 10  cm −2 ) than that obtained at commonly studied SiN HEMT. (paper)

  10. A study of the effect of Al2O3 reflector on response function of NaI(Tl) detector

    International Nuclear Information System (INIS)

    Tam, Hoang Duc; Chuong, Huynh Dinh; Thanh, Tran Thien; Van Tao, Chau

    2016-01-01

    This study aims to assess the effect of Al 2 O 3 reflector surrounding the NaI(Tl) crystal on the detector response function, based on Monte Carlo simulation, which can verify the precise model of the NaI(Tl) detector. The method used in determining the suitable thickness of Al 2 O 3 reflector is to compare the calculated and experimental values of full-energy peak efficiency. The results show that the Al 2 O 3 reflector should have a thickness of 0.8–1.2 mm for the maximum deviation between the experimental and simulated efficiency of 3.2% at all concerning energies. In addition, the obtained results are in good agreement with the response function of simulation and experimental spectra. - Highlights: • The study was conducted to verify the model of Monte Carlo simulation. • The effect of Al 2 O 3 reflector on the detector response function was investigated. • The optimum thickness of Al 2 O 3 reflector is suggested.

  11. Study of Al2O3 nanolayers synthesized onto porous SiO2 using X-ray reflection spectroscopy

    International Nuclear Information System (INIS)

    Konashuk, A.S.; Sokolov, A.A.; Drozd, V.E.; Schaefers, F.; Filatova, E.O.

    2013-01-01

    The structure of alumina (Al 2 O 3 ) films with different thickness grown by the atomic layer deposition method on porous silica substrates has been studied using soft X-ray reflection spectroscopy. It was established that synthesized films were amorphous and the proportion of Al coordination (tetrahedral: octahedral) depends on the film thickness. The film growth starts from excess of tetrahedral (AlO 4 ) coordination and thickening of the film leads to increasing of number of octahedral (AlO 6 ) coordination in the structure. A critical thickness of amorphous Al 2 O 3 film exists (in the range of studied films, this is a thickness of 13 nm). For thicker films, the structure of amorphous Al 2 O 3 film corresponds to massive film with the typical proportion of tetrahedrally and octahedrally coordinated sites in the structure. - Highlights: • Growth of Al 2 O 3 film on porous SiO 2 begins with excess of AlO 4 coordinations. • On the contrary, film growth on nonporous substrates starts with excess of AlO 6 . • When thickness reaches 13 nm, the film achieves structure of massive amorphous Al 2 O 3 . • Substrate material doesn't affect structure for thicknesses more than 13 nm

  12. Interfacial and electrical characterization of HfO2/Al2O3/InAlAs structures

    Science.gov (United States)

    Wu, Li-fan; Zhang, Yu-ming; Lu, Hong-liang; Zhang, Yi-men

    2015-11-01

    The HfO2/Al2O3 double layer has been deposited by the atomic layer deposition (ALD) technique to a InAlAs epitaxial layer. The chemical composition at the interface was revealed by angle-resolved X-ray photoelectron spectroscopy (XPS). The electrical properties of the ALD-HfO2/Al2O3/InAlAs metal-oxide-semiconductor (MOS) capacitor have been investigated and compared with those of the ALD-HfO2/InAlAs capacitor. It is demonstrated that the insertion of the Al2O3 layer can decrease interfacial oxidation and trap charge formation. Compared with the HfO2/InAlAs capacitor, the HfO2/Al2O3/InAlAs capacitor exhibits better electrical properties with reduced hysteresis and decreasing stretch-out of the capacitance-voltage (C-V) characteristics, and the oxide trapped charge (Qot) value is significantly decreased after inserting the Al2O3 interlayer.

  13. Formation of Al2O3-HfO2 Eutectic EBC Film on Silicon Carbide Substrate

    Directory of Open Access Journals (Sweden)

    Kyosuke Seya

    2015-01-01

    Full Text Available The formation mechanism of Al2O3-HfO2 eutectic structure, the preparation method, and the formation mechanism of the eutectic EBC layer on the silicon carbide substrate are summarized. Al2O3-HfO2 eutectic EBC film is prepared by optical zone melting method on the silicon carbide substrate. At high temperature, a small amount of silicon carbide decomposed into silicon and carbon. The components of Al2O3 and HfO2 in molten phase also react with the free carbon. The Al2O3 phase reacts with free carbon and vapor species of AlO phase is formed. The composition of the molten phase becomes HfO2 rich from the eutectic composition. HfO2 phase also reacts with the free carbon and HfC phase is formed on the silicon carbide substrate; then a high density intermediate layer is formed. The adhesion between the intermediate layer and the substrate is excellent by an anchor effect. When the solidification process finished before all of HfO2 phase is reduced to HfC phase, HfC-HfO2 functionally graded layer is formed on the silicon carbide substrate and the Al2O3-HfO2 eutectic structure grows from the top of the intermediate layer.

  14. Preparation and characterisation of a sol-gel process α-Al2O3 polycrystalline detector

    International Nuclear Information System (INIS)

    Ferreira, H.R.; Santos, A.

    2015-01-01

    This article presents the dosimetric characteristics of α-Al 2 O 3 detectors prepared through the sol-gel process, disc pressing and sintering in a highly reducing atmosphere. Comparative tests between the sol-gel process α-Al 2 O 3 polycrystalline and anion-defective α-Al 2 O 3 :C single-crystal detectors indicate that the ones prepared through this approach present good dosimetric characteristics similar to those found in single-crystal detectors, such as a simple glow curve with the main peak at ∼198 deg. C (2 deg. C s -1 ), high sensitivity, a detection threshold of 1.7 μGy, linearity of response, low fading, relatively low photon energy dependence, reusability without annealing and good reproducibility. However, the undesirable feature of heating rate dependence of the thermoluminescence (TL) output in α-Al 2 O 3 :C single crystal is practically non-existent in the sol-gel process α-Al 2 O 3 polycrystalline detector. This characteristic renders it useful for the routine processing of large numbers of personal and environmental dosemeters at higher heating rates and also when it comes to the proposal for new approaches to thermal quenching investigation. (authors)

  15. Enhanced dielectric properties of epoxy resin with high content of nano-Al2O3 composites

    Science.gov (United States)

    Xu, Dandan; Wang, Tingting; Han, Xinghao; Qiao, Ru

    2018-01-01

    Epoxy resin was modified by adding different contents (30%, 60% wt.) of nano-Al2O3 particles, which were modified by silicon coupling agent KH560 (γ-amino propyl triethoxy silane), in the form of nano-Al2O3 particles/epoxy composites, via casting method to improve the dielectric properties. The chemical structures of modified and unmodified nano-Al2O3 particles and the morphologies of composites fractures were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) respectively. And the thermal property and dielectric properties were also investigated. The results showed the modified nano-Al2O3 particles well dispersed in the epoxy matrix and the thermal stability of composites was improved. And the dielectric constant of the composites was up to 14 when the content of nano-Al2O3 was 60%, which was 2 times larger than that of pure epoxy. Moreover, the composites also exhibited good dielectric property under high frequencies ranged from 1x107 to 4x107 Hz.

  16. Pembuatan Katalis Asam (Ni/γ-Al2O3 dan Katalis Basa (Mg/γ-Al2O3 untuk Aplikasi Pembuatan Biodiesel dari Bahan Baku Minyak Jelantah

    Directory of Open Access Journals (Sweden)

    . Savitri

    2016-05-01

    Full Text Available Biodiesel is an alternative energy fuel a substitute for diesel oil produced from vegetable oil or animal fat which have the advantage easily used, they are biodegradable, not toxic and sulfur free. This research aims to do process of prosucing biodiesel using acid catalysts (Ni/γ-Al2O3 for a esterification process and base catalyst (Mg/γ-Al2O3 for transesterification  process with the variation of catalyst concentration Ni/γ-Al2O3 (0.5%; 0.75%; 1% and 2% and the time (60 minutes, 120 minutes, and 180 minutes. Research of methodology starting to the process impregnation Ni and Mg metal into a buffer γ-Al2O3, characterization a catalyst with XRD, FTIR, and the SAA, and the esterification process to lower levels of FFA and transesterification process for making it biodiesel. The characterization with X-RD does not appear a new peak, only just occurred a shift peak, and declines intensity of Ni/γ-Al2O3 and Mg/γ-Al2O3. The analysis result of the SAA, a decline in the surface area (the decline in active side of catalyst suspected the process impregnation not run perfect because Ni and Mg metal only distributed on the surface of buffer pore. The results of the FTIR analysis does not occur the addition of acidity and alkalinity. The steady of catalyst concentration from esterification process is 1% within 120 minutes produce levels of FFA 6.85%.  Keywords: Biodiesel, esterification, impregnation, used cooking oil, transesterificationDOI : http://dx.doi.org/10.15408/jkv.v2i1.3104

  17. The Influence of impact on Composite Armour System Kevlar-29/polyester-Al2O3

    International Nuclear Information System (INIS)

    Ramadhan, A A; Talib, A R Abu; Rafie, A S Mohd; Zahari, R

    2012-01-01

    An experimental investigation of high velocity impact responses of composite laminated plates using a helium gas gun has been presented in this paper. The aim of this study was to develop the novel composite structure that meets the specific requirements of ballistic resistance which used for body protections, vehicles and other applications. Thus the high velocity impact tests were performed on composite Kevlar-29 fiber/polyester resin with alumina powder (Al 2 O 3 ). The impact test was conducted by using a cylindrical steel projectile of 7.62mm diameter at a velocity range of 160-400 m/s. The results (shown in this work) are in terms of varying plate thickness and the amount of energy absorbed by the laminated plates meanwhile we obtained that the 12mm thickness of composite plate suitable for impact loading up to 200m/s impact velocity. Therefore this composite structure (it is used to reduce the amount of Kevlar) considered most economical armoure products. We used the ANSYS AUTODYN 3D- v.12 software for our simulations. The results have been obtained a4.1% maximum errors with experimental work of energy absorption.

  18. Experiments on thermal interactions: Tests with Al2O3 droplets and water

    International Nuclear Information System (INIS)

    Peppler, W.; Till, W.; Kaiser, A.

    1991-09-01

    Within the analysis of severe highly hypothetical fast breeder accidents the consequences of a fuel-coolant interaction have to be considered, i.e. the thermal interaction between hot molten fuel and sodium. To improve principal knowledge on the fragmentation process during the interaction of a hot droplet with a cold fluid, a series of experiments was performed with single droplets of molten Al 2 O 3 as the hot liquid and water as the cold and easily volatile fluid. To initiate fragmentation of the droplet pressure pulses of up to 1 MPa were generated in the water by a magnetic hammer. The events were filmed by a high speed camera with up to 10 5 pictures per second. Details of the interactions can be deduced from the films and from the pressure histories. The existence of a vapour trail in all experiments indicates complex heat and mass transfer processes occurring in the vapour film spontaneously formed between droplet and cold fluid. Fragmentation was initiated by local events in the vapour trail area. (orig.) [de

  19. Microstructure and Wear Resistance of Al2O3 Coatings on Functional Structure

    Directory of Open Access Journals (Sweden)

    Jiang Chao-Ping

    2016-01-01

    Full Text Available To enhance the wear properties of function structure, Al2O3-13%TiO2 (AT13 coatings were plasma sprayed on 45 steel functional structure using micro and nano powders. The microstructures and phase compositions of the coatings were investigated by scanning electron microscopy and X-ray diffraction, respectively. Results show that the nano powder coating consists of fully-melted region and partially-melted region. The fully-melted regions show a lamellar structure, while the partially-melted regions retain the powders structure. The phases of coatings are α-A12O3 and TiO2.The wear test was carried out on a ML-10 friction and wear tester under dry sliding condition. It is found that the wear resistance of the micro powder coating is higher than that of nano powder coating. This is mainly ascribe to the breakage of the nano powder coating resulted from low agglomerated binding force.

  20. Thermo-luminescence and photoluminescence studies of Al2O3 irradiated with heavy ions

    International Nuclear Information System (INIS)

    Jheeta, K.S.

    2008-06-01

    Thermo-luminescence (TL) spectra of single crystals of Al 2 O 3 (sapphire) irradiated with 200 MeV swift Ag ions at different fluence in the range 1x10 11 to 1x10 13 ions/cm 2 has been recorded at room temperature by keeping the warming rate 2K/min. The TL glow curve of the irradiated samples has a simple structure with a prominent peak at ∼ 500 K with one small peak at 650 K. The intensity of main peak increases with the ion fluence. This has been attributed to the creation of new traps on irradiation. Also, a shift of 8 K in the peak position towards low temperature side has been observed at higher fluence 1x10 13 ions/cm 2 . In addition, photoluminescence (PL) spectra of irradiated samples have been recorded at room temperature upon 2.8 eV excitation. A broad band consisting of mainly two emission bands, respectively at 2.5 and 2.3 eV corresponding to F 2 and F 2 2+ defect centers is observed. The intensity of these bands shows an increasing trend up to fluence 5x10 12 ions/cm 2 and then decreases at higher fluence 1x10 13 ions/cm 2 . The results are interpreted in terms of creation of newly defect centers, clustering/aggregation and radiation-induced annihilation of defects. (author)

  1. Numerical Study of Heat Transfer Enhancement in Heat Exchanger Using AL2O3 Nanofluids

    Directory of Open Access Journals (Sweden)

    Hussein Talal Dhaiban

    2016-04-01

    Full Text Available In this study, the flow and heat transfer characteristics of Al2O3-water nanofluids for a range of the Reynolds number of 3000, 4500, 6000 and 7500 with a range of volume concentration of 1%, 2%, 3% and 4% are studied numerically. The test rig consists of cold liquid loop, hot liquid loop and the test section which is counter flow double pipe heat exchanger with 1m length. The inner tube is made of smooth copper with diameter of 15mm. The outer tube is made of smooth copper with diameter of 50mm. The hot liquid flows through the outer tube and the cold liquid (or nanofluid flow through the inner tube. The boundary condition of this study is thermally insulated the outer wall with uniform velocity at (0.2, 0.3, 0.4 and 0.5 m/s at the cold loop and constant velocity at (0.5 m/s at the hot loop. The results show that the heat transfer coefficient and Nusselt number increased by increasing Reynolds number and particle concentration. Numerical results indicate that the maximum enhancement in Nusselt number and heat transfer coefficient were 9.5% and 13.5% respectively at Reynolds number of 7100 and particles volume fraction of 4%. Results of nanofluids also showed a good agreement with the available empirical correlation at particles volume fractions of 1%, 2% and 3%, but at volume fractions of 4% a slight deviation is obtained.

  2. Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts

    Directory of Open Access Journals (Sweden)

    Zeinali Heris Saeed

    2011-01-01

    Full Text Available Abstract In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.

  3. Absorption and photoluminescence study of Al 2O 3 single crystal irradiated with fast neutrons

    Science.gov (United States)

    Izerrouken, M.; Benyahia, T.

    2010-10-01

    Colour centers formation in Al 2O 3 by reactor neutrons were investigated by optical measurements (absorption and photoluminescence). The irradiation's were performed at 40 °C, up to fast neutron ( E n > 1.2 MeV) fluence of 1.4 × 10 18 n cm -2. After irradiation the coloration of the sample increases with the neutron fluence and absorption band at about 203, 255, 300, 357 and 450 nm appear in the UV-visible spectrum. The evolution of each absorption bands as a function of fluence and annealing temperature is presented and discussed. The results indicate that at higher fluence and above 350 °C the F + center starts to aggregate to F center clusters (F 2, F 2+ and F22+). These aggregates disappear completely above 650 °C whereas the F and F + centers persist even after annealing at 900 °C. It is clear also from the results that the absorption band at 300 nm is due to the contribution of both F 2 center and interstitial Ali+ ions.

  4. The Influence of impact on Composite Armour System Kevlar-29/polyester-Al2O3

    Science.gov (United States)

    Ramadhan, A. A.; Abu Talib, A. R.; Mohd Rafie, A. S.; Zahari, R.

    2012-09-01

    An experimental investigation of high velocity impact responses of composite laminated plates using a helium gas gun has been presented in this paper. The aim of this study was to develop the novel composite structure that meets the specific requirements of ballistic resistance which used for body protections, vehicles and other applications. Thus the high velocity impact tests were performed on composite Kevlar-29 fiber/polyester resin with alumina powder (Al2O3). The impact test was conducted by using a cylindrical steel projectile of 7.62mm diameter at a velocity range of 160-400 m/s. The results (shown in this work) are in terms of varying plate thickness and the amount of energy absorbed by the laminated plates meanwhile we obtained that the 12mm thickness of composite plate suitable for impact loading up to 200m/s impact velocity. Therefore this composite structure (it is used to reduce the amount of Kevlar) considered most economical armoure products. We used the ANSYS AUTODYN 3D- v.12 software for our simulations. The results have been obtained a4.1% maximum errors with experimental work of energy absorption.

  5. Damage threshold and structure of swift heavy ion tracks in Al2O3

    Science.gov (United States)

    Rymzhanov, R. A.; Medvedev, N.; Volkov, A. E.

    2017-11-01

    Structure changes and their formation threshold in swift heavy ion (SHI) tracks in Al2O3 are studied using a combined start-to-end numerical model. The hybrid approach consists of the Monte-Carlo code TREKIS, describing kinetics of the electronic subsystem, and classical Molecular Dynamics for lattice atoms. The developed approach is free from a posteriori fitting parameters. Simulations of Xe 167 MeV ion impacts show that relaxation of an excess lattice energy results in formation of a cylindrical discontinuous disordered region of about 2 nm in diameter. Recent transmission electron microscopy observations agree with these results. The threshold of an SHI track formation is estimated to be ~6.1 keV nm‑1. Calculated x-ray diffraction patterns of irradiated material demonstrate more pronounced damage of the Al atoms sublattice near SHI trajectories. Modeling of Xe ion tracks overlapping demonstrates that the damaged area can be restored to a near virgin state. Estimations give 6.5 nm as the minimal distance between the Xe ion trajectories resulting in recovery of the transformed structure produced by the previous ion.

  6. Preparation of Pd/γ- Al2O3 catalyst utilized in chemisorption of hydrogen isotopes

    International Nuclear Information System (INIS)

    David, Elena; Stefanescu, Doina; Stanciu, V.

    1997-01-01

    Separation and hydrogen isotope determination require packings with special properties, utilizable in separation columns. Consequently, such packings as catalysts using γ-aluminia and metallic palladium active component as holder were obtained. The γ-aluminia used as holder has been prepared starting from λ salts, easy soluble in water, such as Al 2 (NO 3 ) 3 ·9H 2 O, at a preset (6.2-6.4) controlled pH. At a first stage the Al(OH) 3 results which by calcination at controlled temperature transforms in γ-Al 2O3 . On this holder, in which the specific surface and porosity has been determined, metallic palladium has been deposed, using for impregnation a 2% PdCl 2 solution. The content of deposed palladium was determined as the difference between the content in the initial solution and solution remaining after holder impregnation. This content has been determined by atomic absorption and is within 0.5 - 1.2% Pd. After impregnation the catalyst has been dried, then granulated at the 0.16 mm size and activated by hydrogen at a flow rate of 300 vol H 2 /volume

  7. Chemical analysis of Al2O3-MgO-C refractories

    International Nuclear Information System (INIS)

    Ortega, P.; Velasco, M. J.; Munoz, V.; Tomba Martinez, A. G.; Pena, P.

    2012-01-01

    The Al 2 O 3 -MgO-C refractories, of great technological interest for its excellent properties, are used in a wide range of furnace lining applications such as iron and steel. These materials are composed of various grades of alumina, magnesia, graphite and metallic additives, which are added to a resin that acts as binder. The variety of components oxides, metals and polymers makes the study of these refractories a complex task. Considering this diversity to characterize these materials has been used several techniques: X-ray fluorescence, plasma emission spectroscopy and gravimetry, complemented by X-ray diffraction, differential thermal analysis and thermogravimetry and reflected light optical microscopy. This paper provides a methodology for chemical and mineralogical characterization of these refractory materials. The results of chemical analysis together with the qualitative information on the crystalline phases and the raw materials with which they are formulated have been used to quantify the composition of the refractories using rational analysis. The data obtained by the different techniques validate the methodology developed. (Author) 23 refs.

  8. Stability of TiO2 and Al2O3 Nanofluids

    Science.gov (United States)

    Wang, Xian-Ju; Li, Hai; Li, Xin-Fang; Wang, Zhou-Fei; Lin, Fang

    2011-08-01

    Aiming at the dispersion stability of nanofluids, we investigate the absorbency and the zeta potential of TiO2 and Al2O3 nanofluids under different pH values and different dispersant concentrations. The results show that in the mass fraction 0.05% alumina and 0.01% titanium dioxide nanosuspensions, the absolute value of the zeta potential and the absorbency of the two nanofluids with sodium dodecyl sulfate (SDS) dispersant are the highest at an optimal pH (pHAl2O3 ≈ 6.0, pHTiO2 ≈ 9.5) and that there is a good correlation between absorbency and zeta potential: the higher the absolute value of the zeta potential is, the greater the absorbency is, and the better the stability of the system is. The optimizing concentrations for SDS are 0.10% and 0.14%, respectively, at which the two nanofluids have the best dispersion results. The calculated DLVO interparticle interaction potentials verify the experimental results of the pH effect on the stability behavior.

  9. Electronic structure of α-Al2O3 slabs: A local environment study

    International Nuclear Information System (INIS)

    Darriba, Germán N.; Faccio, Ricardo; Rentería, Mario

    2012-01-01

    In this work we performed an ab initio/Density Functional Theory (DFT) study of structural and electronic properties of the (0 0 1) α-Al 2 O 3 surface. For this study we used two methods with different basis set: the Full-Potential Augmented Plane Wave plus local orbital (FP-APW+lo) and a linear combination of numerical localized atomic orbital basis sets, employing the WIEN2k code and the SIESTA code, respectively. In order to calculate the structural and electronic properties of the reconstructed surface, we calculated the final equilibrium atomic position with the SIESTA code and then the electric-field gradient (EFG) at Al sites was calculated with the FP-APW+lo code using the optimized positions. Using this procedure we found equilibrium structures with comparative lower energy than those obtained using only the FP-APW+lo method. The EFG tensor and the local structure for Al were studied as a function of the depth from the surface for the relaxed structures. We found that distances down to 6 Å from the surface are sufficient to converge the EFG and the Al-O distances to bulk values. The predicted bulk EFG at the Al site is in good agreement with available experimental values. These results can be used for local probes purposes, e.g., in the case of doping, with important sensitivity for probes located close to the top of the surface, in particular for distances smaller than 6 Å.

  10. A study of electron momentum density distribution in Al2O3 ceramic

    Science.gov (United States)

    Vyas, V.; Kumar, R.; Mishra, M. C.; Sharma, G.; Sharma, B. K.

    2011-08-01

    A study of electron momentum density distribution in α-Al2O3 ceramic using Compton spectroscopy is presented in this work. Measurements have been carried out using 59.54 keV gamma-rays emanating from an Am241 source. Calculations have been performed on the basis of the ab-initio linear combination of atomic orbitals (LCAO) method embodied in the CRYSTAL code. The correlation scheme proposed by Perdew-Burke-Ernzerhof was adopted. The exchange was treated following the Becke scheme. The Hartree-Fock and hybrid schemes were also applied to the compound. All the schemes yielded results that are in good agreement with the measurements. The agreement with experiment is, however, better with the hybrid B3LYP (Lee-Yang-Parr) scheme. Ionic model calculations for a number of configurations of (Al+x)2(O-2x/3)3 (2.75<=x<=3 in steps of 0.125) were also performed utilizing free atom profiles. The ionic model suggests transfer of 2.875 electrons from the valence sp state of Al to the p state of O.

  11. A high resolution, high efficiency neutron powder diffractometer: test refinement of Al2O3

    International Nuclear Information System (INIS)

    Hewat, A.W.; Bailey, I.

    1975-01-01

    Modifications to the ILL high-resolution powder diffractometer D1A will improve its efficiency by an order of magnitude. Novel features include a monochromator take-off angle of 122deg giving high resolution at high angles, a bank of eight 20 x 100 mm high efficiency mylar collimators with He 3 counters, and the possibility of working at high pressures (up to 45 kbar), or low and very high temperatures (1.5K to 2800K). The performance expected of the instrument is illustrated by the refinement of data collected on a standard Al 2 O 3 sample supplied by the Neutron Diffraction Commission. Anisotropic vibrational amplitudes as well as atomic co-ordinates have been determined quite precisely. When completed, D1A will be unique for the precise measurement of moderately complex crystal structures under 'difficult' conditions, especially for the study of phase transitions. But in fact, it is only an indication of a type of more powerful machine described recently in Nuclear Instruments and Methods which could be built on a beam tube of a high-flux reactor

  12. The thermodynamic properties of hydrated γ-Al2O3 nanoparticles

    Science.gov (United States)

    Spencer, Elinor C.; Huang, Baiyu; Parker, Stewart F.; Kolesnikov, Alexander I.; Ross, Nancy L.; Woodfield, Brian F.

    2013-12-01

    In this paper we report a combined calorimetric and inelastic neutron scattering (INS) study of hydrated γ-Al2O3 (γ-alumina) nanoparticles. These complementary techniques have enabled a comprehensive evaluation of the thermodynamic properties of this technological and industrially important metal oxide to be achieved. The isobaric heat capacity (Cp) data presented herein provide further critical insights into the much-debated chemical composition of γ-alumina nanoparticles. Furthermore, the isochoric heat capacity (Cv) of the surface water, which is so essential to the stability of all metal-oxides at the nanoscale, has been extracted from the high-resolution INS data and differs significantly from that of ice-Ih due to the dominating influence of strong surface-water interactions. This study also encompassed the analysis of four γ-alumina samples with differing pore diameters [4.5 (1), 13.8 (2), 17.9 (3), and 27.2 nm (4)], and the results obtained allow us to unambiguously conclude that the water content and pore size have no influence on the thermodynamic behaviour of hydrated γ-alumina nanoparticles.

  13. Role of carbon and electronic structure effects in Al2O3:C OSL phosphor

    International Nuclear Information System (INIS)

    Salunke, H.G.; Muthe, K.P.; Kulkarni, M.S.; Bhatt, B.C.

    2014-01-01

    Alumina has been investigated for thermoluminescent (TL) properties since the 1950s along with a large number of materials which were tested for dosimetric applications. Some natural alumina crystals were found to be more favourable than LiF for luminescence dosimetry applications. However later Alumina was abandoned in favour of other more promising materials. However in 1990s it was observed that TL and optically stimulated luminescence (OSL) in carbon doped Al 2 O 3 enhances its use as dosimetric material increasing its applicability immensely. It was further observed that the performance of carbon doped alumina improved and remained linear over a large range of exposure to radiation. Also radiation trapped in the material remained localized and did not dissipate with time. This possibly could arise due to electronic states which are localised and with no hybridisation with other extended states of the host matrix. Furthermore the vibrations of the impurity atoms or vacancies also do not have any interaction with the host matrix resulting in absence of dissipation of stored energy form the localised states. The radiation induced defects responsible for OSL have been characterized. The aim of the present work is to theoretically investigate the role of carbon doping in enhancing defects in the material and also understand the origin of trap and recombination states in the material

  14. Preparation of Al2O3 Supports for Thin Membrane Fabrication

    Directory of Open Access Journals (Sweden)

    Berna Topuz

    2017-12-01

    Full Text Available In this study, macroporous a-alumina supports were prepared by using vacuum-assisted filtration of α-Al2O3 suspensions with different particle size. The average particle sizes of the powders are 400 and 200 nm. The prepared supports had smooth and uniform surface microstructure and well suited for the fabrication of thin continuous membrane. The microstructure consists of a random close packing of 200 nm particles led to improved surface uniformity and roughness. ZnO spheres were prepared by homogeneous precipitation and added to the colloidal suspension to modify the support structure and increase the support flux. Structural parameters such as pore diameter and tortuosity of the prepared macroporous supports were estimated by using He, N2, CO2 permeance measurements. Slight pressure dependence in the permeance values indicated the contribution of viscous flow to the Knudsen flow. The supports prepared by alumina powder with a larger particle size exhibited He permeance of three times higher than that of prepared with a smaller particle size. The addition of ZnO resulted in the increase in He permeance value significantly for the support prepared by 400 nm particles in size. He permeance was in a range of 8.5-8.7x10-6 mol/(m2sPa which is very close to the desired value of 1x10-5 mol/(m2sPa.

  15. Improving the cooling performance of automobile radiator with Al2O3/water nanofluid

    International Nuclear Information System (INIS)

    Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Jamnani, M. Seifi; Hoseini, S.M.

    2011-01-01

    In this paper, forced convective heat transfer in a water based nanofluid has experimentally been compared to that of pure water in an automobile radiator. Five different concentrations of nanofluids in the range of 0.1-1 vol.% have been prepared by the addition of Al 2 O 3 nanoparticles into the water. The test liquid flows through the radiator consisted of 34 vertical tubes with elliptical cross section and air makes a cross flow inside the tube bank with constant speed. Liquid flow rate has been changed in the range of 2-5 l/min to have the fully turbulent regime (9 x 10 3 4 ). Additionally, the effect of fluid inlet temperature to the radiator on heat transfer coefficient has also been analyzed by varying the temperature in the range of 37-49 o C. Results demonstrate that increasing the fluid circulating rate can improve the heat transfer performance while the fluid inlet temperature to the radiator has trivial effects. Meanwhile, application of nanofluid with low concentrations can enhance heat transfer efficiency up to 45% in comparison with pure water. - Highlights: → Application of nanofluid in the car radiator has been studied experimentally. → Heat transfer enhancement of about 45% compared to water has been recorded. → Increasing particle concentration and velocity improves heat transfer performance.

  16. Residual Stress in Brazing of Submicron Al2O3 to WC-Co

    Science.gov (United States)

    Grunder, T.; Piquerez, A.; Bach, M.; Mille, P.

    2016-07-01

    This study evaluated the residual stresses induced by brazing and grinding submicron Al2O3, using different methods. Energy dispersive x-ray spectrometry analysis (EDX) of 72Ag-Cu filler and filler/WC-Co interface showed evidence of atomic diffusion and possible formation of titanium oxide layers between the joint and the bonding materials. An analytical model supported by the finite element method (FEM) based on strain determination due to the difference in variation of thermal expansion was used to assess the stress distribution at the coupling interface and in bulk materials. The model took into account the evolution of the Young's modulus and of the thermal expansion with temperature. The model could be used to follow strain and stress evolutions of the bonded materials during the cooling cycle. The maximum stress rose above -300 MPa at the center of the 100 × 100 × 3 mm ceramic plates. The residual stresses on the external surface of ceramic were investigated by x-ray diffraction (XRD) and indentation fracture method (IFM). After brazing and grinding the plate, the principal stresses were 128.1 and 94.9 MPa, and the shear stress was -20.1 MPa. Microscopic examination revealed grain pull-out promoted by the global residual stresses induced by the brazing and grinding processes. The surface stresses evaluated by the different methods were reasonably correlated.

  17. Production of Al2O3–SiC nano-composites by spark plasma sintering; Producción de nano-composites – SiC–Al2O3 por spark plasma sinterizado

    Energy Technology Data Exchange (ETDEWEB)

    Mansour Razavi; Ali Reza Farajipour; Mohammad Zakeri; Mohammad Reza Rahimipour; Ali Reza Firouzbakht

    2017-11-01

    In this paper, Al2O3–SiC composites were produced by SPS at temperatures of 1600°C for 10min under vacuum atmosphere. For preparing samples, Al2O3 with the second phase including of micro and nano-sized SiC powder were milled for 5h. The milled powders were sintered in a SPS machine. After sintering process, phase studies, densification and mechanical properties of Al2O3–SiC composites were examined. Results showed that the specimens containing micro-sized SiC have an important effect on bulk density, hardness and strength. The highest relative density, hardness and strength were 99.7%, 324.6 HV and 2329MPa, respectively, in Al2O3–20wt% SiCmicro composite. Due to short time sintering, the growth was limited and grains still remained in nano-meter scale. [Spanish] En este trabajo se muestran compuestos de Al2O3-SiC producidos por SPS, en vacío, a 1.600 °C durante 10 min. Para la preparación de muestras, se molieron polvos de Al2O3 durante 5 h con la segunda fase de micro-y-nano polvo de SiC. Posteriormente, estos polvos molidos se sinterizaron mediante SPS. Después del proceso de sinterización, se realizaron estudios de fase, densificación y propiedades mecánicas de los compuestos de Al2O3-SiC obtenidos. Los resultados mostraron que micro-SiC en las muestras tiene un efecto importante en su densidad aparente, dureza y resistencia. La mayor densidad relativa, dureza y resistencia fueron respectivamente del 99,7%, 324,6 HV y 2.329 MPa para Al2O3 con un 20% en peso micro-SiC. Debido al corto tiempo de sinterización, el crecimiento los granos fue limitado y se mantuvieron en escala nanométrica.

  18. Mechanical properties of dental composite materials reinforced with micro and nano-size Al2O3 filler particles

    International Nuclear Information System (INIS)

    Foroutan, F.; Javadpour, J.; Khavandi, A.; Atai, M.

    2011-01-01

    Composite specimens were prepared by dispersion of various amounts of nano-sized Al 2 O 3 fillers in a monomer system containing 60 p ercent B is-GMA and 40 p ercent T EGDMA. For comparative purposes, composite samples containing micrometer size Al 2 O 3 fillers were also prepared following the same procedure. The mechanical properties of the light- cured samples were assessed by three-point flexural strength, diametral tensile strength, and microhardness tests. The results indicated a more than hundred percent increase in the flexural strength and nearly an eighty percent increase in the diametral tensile strength values in the samples containing nano-size Al 2 O 3 filler particles. It is interesting to note that, this improvement was observed at a much lower nano-size filler content. Fracture surfaces analyzed by scanning electron microscopy, indicated a brittle type of fracture in both sets of specimens.

  19. Temperature-Dependent Electrical Properties of Al2O3-Passivated Multilayer MoS2 Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Seok Hwan Jeong

    2018-03-01

    Full Text Available It is becoming more important for electronic devices to operate stably and reproducibly under harsh environments, such as extremely low and/or high temperatures, for robust and practical applications. Here, we report on the effects of atomic-layer-deposited (ALD aluminum oxide (Al2O3 passivation on multilayer molybdenum disulfide (MoS2 thin-film transistors (TFTs and their temperature-dependent electrical properties, especially at a high temperature range from 293 K to 380 K. With the aid of ultraviolet-ozone treatment, an Al2O3 layer was uniformly applied to cover the entire surface of MoS2 TFTs. Our Al2O3-passivated MoS2 TFTs exhibited not only a dramatic reduction of hysteresis but also enhancement of current in output characteristics. In addition, we investigated the temperature-dependent behaviors of the TFT performance, including intrinsic carrier mobility based on the Y-function method.

  20. Properties of sintered Al2O3-Cr composites depending on the method of preparation of the powder mixture

    Directory of Open Access Journals (Sweden)

    Chmielewski M.

    2006-01-01

    Full Text Available Continuous progress in modern science and industry depends on the availability of new effective devices and materials. New generation materials should be characterized by a specified combination of properties which sometimes exclude one another. Al2O3-Cr composites belong to this group of materials. This study is concerned with the effect of the method of preparation of the starting powders upon the properties of sintered Al2O3-Cr composites. The composites were produced using powder mixtures with various volumetric shares of the starting powders (from 25 to 75vol.%. The mixtures were prepared by conventional mechanical mixing in a ball-mill or by mechanical alloying in a high-energy mill of the attritor type. It has been found that with mechanically alloyed powders the Al2O3-Cr composites have better bending strength, hardness and frictional wear resistance.

  1. Wear Behavior of AZ31/Al2O3 Magnesium Matrix Surface Nanocomposite Fabricated via Friction Stir Processing

    Science.gov (United States)

    Azizieh, Mahdi; Larki, Arsham Norouzi; Tahmasebi, Mehdi; Bavi, Mehdi; Alizadeh, Ehsan; Kim, Hyoung Seop

    2018-03-01

    The aim of this study was to produce magnesium-based surface nanocomposites via friction stir processing and to investigate the effect of tool rotational speed on the microstructure, hardness and wear behavior. The surface of the nanocomposites was characterized using optical and scanning electron microscopes, as well as through microhardness and wear tests. The results indicated that with the increase in rotational speed, the grain size of the surface nanocomposites increased, but its hardness decreased despite the improved distribution of Al2O3 nanoparticles. It was also found that the wear resistance has a direct relation to the distribution of the Al2O3 nanoparticles. Furthermore, the addition of nano-Al2O3 changed the wear mechanism from the adhesive mode in the as-received AZ31 to the abrasive mode in the nanocomposite specimens. The rotational speed of 1400 rpm was an optimum parameter to achieve a suitable composite layer with the highest wear resistance.

  2. Coating of Steel by Alkyd Resin Reinforced with Al2O3 Nanoparticles to Improve Corrosion Resistance

    Science.gov (United States)

    Kordzangeneh, Shirin; Naghibi, Sanaz; Esmaeili, Hamideh

    2018-01-01

    In this study, an alkyd/Al2O3 nanocomposite coating was prepared and applied on a stainless steel substrate. The Al2O3 nanoparticles (NPs) with different weight ratios (1, 2, and 3 wt.%) were added to the alkyd resin and coated on the substrate via dip-coating technique. Then, the dispersion of NPs in the coating film was investigated using scanning electron microscopy (SEM) and scanning probe microscopy (SPM). The coating thickness estimated by SEM was 20 μm. The corrosion behavior of the coating was examined through the Tafel polarization and salt spray tests. The results showed that the addition of Al2O3 NPs up to 2 wt.% will result in a dense and homogeneous coating which protects the substrate leading to lower corrosion current density from 9.2 × 10-6 to 1.65×10-9 A/cm2 compared with the uncoated stainless steel.

  3. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    Directory of Open Access Journals (Sweden)

    Yamina Boukoberine

    2016-09-01

    Full Text Available CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in catalyst results in a decrease of the thiophene HDS activity. This decrease is probably caused by the formation of heavy compounds and the deactivation of the zeolite at high temperatures.

  4. Green synthesis of nanocrystalline α-Al2O3 powders by both wet-chemical and mechanochemical methods

    Science.gov (United States)

    Gao, Huiying; Li, Zhiyong; Zhao, Peng

    2018-03-01

    Nanosized α-Al2O3 powders were prepared with AlCl3ṡ6H2O and NH4HCO3 as raw materials by both wet-chemical and mechanochemical methods, through the synthesis of the ammonium aluminum carbonate hydroxide (AACH) precursor followed by calcination. The environmentally benign starch was used as an effective dispersant during the preparation of nanocrystalline α-Al2O3 powders. X-ray diffraction (XRD), thermogravimetric differential thermal analysis (TG-DTA), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to characterize the precursor AACH and products. The results show that nanosized spherical α-Al2O3 powders without hard agglomeration and with particle size in the range of 20-40 nm can be obtained by the two methods. Comparing the two “green” processes, the mechanochemical method has better prospects for commercial production.

  5. Influence of the stem effect on radioluminescence signals from optical fibre Al2O3:C dosemeters

    DEFF Research Database (Denmark)

    Marckmann, C.J.; Aznar, M.C.; Andersen, C.E.

    2006-01-01

    This paper analyses the influence of the Cerenkov radiation and other noise sources, the so-called stem effect, on radioluminescence (RL) signals generated in optical fibre Al2O3:C dosemeters used in medical dosimetry. The optical fibre dosemeter consists of a sensitive Al2O3:C crystal coupled...... to an optical fibre cable that carries the RL and optically stimulated luminescence (OSL) signals generated in the Al2O3:C crystal. During irradiation of the dosemeter, the real-time dose rate can be determined from the RL signal and after irradiation the total dose absorbed is determined from the OSL signal...... stimulated using a focused green solid-state laser. In particular, the components of the stem effect generated in the fibres were analysed to determine their impact on the RL signal....

  6. Diffusion barriers of Al2O3 to reduce the bondcoat-oxidation of MCrAlY alloys

    International Nuclear Information System (INIS)

    Schmitt-Thomas, K.G.; Dietl, U.

    1992-01-01

    Under operating conditions in gas turbines plasma sprayed MCrAlY bondcoats (M = Co and/or Ni) for thermal barrier coatings are exposed to a strong oxidation attack. One possibility to reduce bondcoat oxidation is the application of diffusion barriers. Onto the bondcoat, diffusion barriers of Al 2 O 3 are deposited by CVD, PVD and plasma pulse process. The oxidation behaviour of these coating systems were examined at a temperature of 1273 K for times up to 250 hours. The CVD and PVD Al 2 O 3 - coated specimens show compared to the uncoated specimens smaller oxidation rates. The porous Al 2 O 3 coatings, produced by plasma pulse process are not fit for oxidation protection of the bondcoat. There is hope for further improvement of the oxidation resistance by optimizing the CVD- and PVD-process parameters. (orig.) [de

  7. Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcusaureus isolated from skin exudates

    International Nuclear Information System (INIS)

    Ansari, Mohammad Azam; Khan, Haris M.; Khan, Aijaz A.; Pal, Ruchita; Cameotra, Swaranjit Singh

    2013-01-01

    To date very little studies are available in the literature on the interaction of Al 2 O 3 nanoparticles with multidrug-resistant strains of Staphylococcusaureus. Considering the paucity of earlier reports the objective of present study was to investigate the antibacterial activity of Al 2 O 3 NPs ( 2 O 3 NPs were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction. The MIC was found to be in the range of 1,700–3,400 μg/ml. Almost no growth was observed at 2,000 μg/ml for up to 10 h. SEM micrograph revealed that the treated cells were significantly damaged, showed indentation on cell surface and clusters of NPs on bacterial cell wall. HR-TEM micrograph shows disruption and disorganization of cell membrane and cell wall. The cell membrane was extensively damaged and, most probably, the intracellular content has leaked out. Al 2 O 3 NPs not only adhered at the surface of cell membrane, but also penetrated inside the bacterial cells, cause formation of irregular-shaped pits and perforation on their surfaces and may also interact with the cellular macromolecules causing adverse effect including cell death. The data presented here are novel in that Al 2 O 3 NPs are effective bactericidal agents regardless of the drug resistance mechanisms that confer importance to these bacteria as an emergent pathogen. Therefore, in depth studies regarding the interaction of Al 2 O 3 NPs with cells, tissues, and organs as well as the optimum dose required to produce therapeutic effects need to be ascertained before we can expect a more meaningful role of the Al 2 O 3 NPs in medical application

  8. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu–Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu–Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2–18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than ‑19 dB in 2–18 GHz, and the maximum of ‑23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu–Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu–Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  9. Lipid bilayer coated Al(2)O(3) nanopore sensors: towards a hybrid biological solid-state nanopore.

    Science.gov (United States)

    Venkatesan, Bala Murali; Polans, James; Comer, Jeffrey; Sridhar, Supriya; Wendell, David; Aksimentiev, Aleksei; Bashir, Rashid

    2011-08-01

    Solid-state nanopore sensors are highly versatile platforms for the rapid, label-free electrical detection and analysis of single molecules, applicable to next generation DNA sequencing. The versatility of this technology allows for both large scale device integration and interfacing with biological systems. Here we report on the development of a hybrid biological solid-state nanopore platform that incorporates a highly mobile lipid bilayer on a single solid-state Al(2)O(3) nanopore sensor, for the potential reconstitution of ion channels and biological nanopores. Such a system seeks to combine the superior electrical, thermal, and mechanical stability of Al(2)O(3) solid-state nanopores with the chemical specificity of biological nanopores. Bilayers on Al(2)O(3) exhibit higher diffusivity than those formed on TiO(2) and SiO(2) substrates, attributed to the presence of a thick hydration layer on Al(2)O(3), a key requirement to preserving the biological functionality of reconstituted membrane proteins. Molecular dynamics simulations demonstrate that the electrostatic repulsion between the dipole of the DOPC headgroup and the positively charged Al(2)O(3) surface may be responsible for the enhanced thickness of this hydration layer. Lipid bilayer coated Al(2)O(3) nanopore sensors exhibit excellent electrical properties and enhanced mechanical stability (GΩ seals for over 50 h), making this technology ideal for use in ion channel electrophysiology, the screening of ion channel active drugs and future integration with biological nanopores such as α-hemolysin and MspA for rapid single molecule DNA sequencing. This technology can find broad application in bio-nanotechnology.

  10. Characterization of microstructure and mechanical properties of friction stir welded AlMg5- Al2O3 nanocomposites

    International Nuclear Information System (INIS)

    Babu, N. Kishore; Kallip, Kaspar; Leparoux, Marc; AlOgab, Khaled A.; Reddy, G.M.; Talari, M.K.

    2016-01-01

    In the present study, powder metallurgy processed unmilled AlMg5, milled AlMg5 and milled AlMg5-0.5 vol% Al 2 O 3 nanocomposite have been successfully friction stir welded (FSW). The effect of friction stir welding on the evolution of weld microstructures; hardness and tensile properties were studied and discussed in detail. FSW of unmilled AlMg5 resulted in significant grain refinement and strain hardening in the nugget zone induced by the thermo-mechanical processing, thereby increasing the stir zone hardness and tensile strengths to 100 HV and 324 MPa when compared to 80 HV and 300 MPa of base metal, respectively. In contrast, the FSW of milled AlMg5 and milled AlMg5-0.5 vol% Al 2 O 3 samples showed a reduction in UTS values to 375 MPa and 401 MPa in the stir zone compared to 401 MPa and 483 MPa of respective base metal values. Transmission electron microscopic (TEM) investigation of weld stir zones revealed the homogenous distribution of Al 4 C 3 nanophases in milled AlMg5 and Al 2 O 3 nanoparticles in milled AlMg5-0.5 vol% Al 2 O 3 samples throughout the aluminium matrix. It was revealed that the pre-stored energy from the prior ball milling and hot pressing processes, higher deformation energy and grain boundary pinning effect due to the presence of reinforcement particles has resulted in a higher recrystallization tendency and retarded grain growth during FSW of milled samples. The welds prepared with milled AlMg5-0.5 vol% Al 2 O 3 exhibited higher hardness and tensile strength in the stir zone when compared to all other conditions which was attributed to Hall Petch effect due to fine grain size and Orowan strengthening effect due to Al 2 O 3 reinforcements.

  11. Stem signal suppression in fiber-coupled Al2O3:C dosimetry for 192Ir brachytherapy

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir; Andersen, Claus Erik; Edmund, J.M.

    2011-01-01

    was adapted for on-line in-vivo dosimetry using fiber-coupled carbon doped aluminum oxide (Al2O3:C). The technique involved a two-channel optical filtration of the radioluminescence (RL) emitted from a pre-irradiated Al2O3:C crystal with enhanced sensitivity. The system responded linearly in the absorbed dose......The stem signal, composed of fluorescence and Čerenkov light, becomes a significant source of uncertainty in fiber-coupled afterloaded brachytherapy dosimetry when the source dwells near the fiber cable but far from the detector. A stem suppression technique originally developed for scintillators...

  12. The effect of the gas composition on hydrogen-assisted NH3-SCR over Ag/Al2O3

    DEFF Research Database (Denmark)

    Tamm, Stefanie; Fogel, Sebastian; Gabrielsson, Pär

    2013-01-01

    In addition to high activity in hydrocarbon-SCR, Ag/Al2O3 catalysts show excellent activity for NOx reduction for H2-assisted NH3-SCR already at 200°C. Here, we study the influence of different gas compositions on the activity of a pre-sulfated 6wt% Ag/Al2O3 catalyst for NOx reduction, and oxidat...... on these sites and react probably on the border between the silver and alumina or on the alumina surface to N2....

  13. Effect of Uniformly and Nonuniformly Coated Al2O3 Nanoparticles over Glass Tube Heater on Pool Boiling

    Directory of Open Access Journals (Sweden)

    Nitin Doifode

    2016-01-01

    Full Text Available Effect of uniformly and nonuniformly coated Al2O3 nanoparticles over plain glass tube heater on pool boiling heat transfer was studied experimentally. A borosilicate glass tube coated with Al2O3 nanoparticle was used as test heater. The boiling behaviour was studied by using high speed camera. Result obtained for pool boiling shows enhancement in heat transfer for nanoparticle coated surface heater and compared with plain glass tube heater. Also heat transfer coefficient for nonuniformly coated nanoparticles was studied and compared with uniformly coated and plain glass tube. Coating effect of nanoparticles over glass tube increases its surface roughness and thereby creates more nucleation sites.

  14. Analysis of the main dosimetric peak of Al2O3:C compounds with a model of interacting traps

    International Nuclear Information System (INIS)

    Ortega, F.; Marcazzó, J.; Molina, P.; Santiago, M.; Lester, M.; Henniger, J.; Caselli, E.

    2013-01-01

    The glow curve of Al 2 O 3 :C compounds has been analyzed by employing a model consisting of two active traps, thermally disconnected traps and one recombination centre. The analysis takes into account interaction among traps and the thermal quenching of the thermoluminescent emission. - Highlights: • Glow curves of Al 2 O 3 :C for two doses have been analysed taking into account interactions among traps. • The system of differential equations describing the kinetics has been uncoupled. • The new system of equations takes into account equations without derivatives. • The algorithm used will not become stiff. • The kinetics parameters obtained do not depend on the dose

  15. Direct etching of SiO2 and Al2O3 by 900-keV gold ions

    OpenAIRE

    Glass, Gary A.; Dias, Johnny Ferraz; Dymnikov, Alexander D.; Houston, Louis M.; Rout, Bibhudutta

    2009-01-01

    We report the direct etching of Al2O3 and SiO2 using 900-keV Au+ ions. 2000-mesh Cu grids were employed as masks using two different configurations: 1 the Cu mesh was placed on top of each insulator separately and independent irradiations were performed, and 2 the Al2O3 and SiO2 substrates were positioned in an edge-to-edge configuration with a single Cu grid providing a common mask to both insulators. Scanning electron microscopy SEM analysis revealed quite different patterns resulting from ...

  16. Toughness enhancement in graphene nanoplatelet/SiC reinforced Al2O3 ceramic hybrid nanocomposites

    Science.gov (United States)

    Ahmad, Iftikhar; Islam, Mohammad; Subhani, Tayyab; Zhu, Yanqiu

    2016-10-01

    This paper elucidates the effect of silicon carbide nanoparticles (SiCNP) and graphene nanoplatelets (GNPs), on their own and together, on the densification behavior and fracture toughness of alumina (Al2O3) ceramic matrix. This was investigated by using the high-frequency induction heat sintering (HFIHS) process. While the addition of each nanostructure caused varying degrees of grain refinement and enhancement of mechanical properties, the incorporation of as little as 0.5 wt.% GNPs along with 5.0 wt.% SiCNP promoted uniform dispersion of the latter due to the lateral surface area of the graphene nanosheets with their two-dimensional morphology. There was an associated reduction in grain size from 1500 to 300 nm upon the addition of both types of nanoscale reinforcements. Extensive electron microscopy of the as-produced nanocomposites indicated the presence of SiCNP within, as well as at, the grain boundary areas whereas the 2D GNPs anchored between neighboring grains. Fractography of the samples revealed a transition from a mixed intergranular/transgranular mode for SiCNP or GNP-reinforced nanocomposites to transgranular fracture mode for the hybrid nanocomposites with improvements in fracture toughness and microhardness by 160 and 27%, respectively, largely due to the synergic role of the nanostructured reinforcements and their distinctly different toughening mechanisms. A new toughening model is proposed for the hybrid nanocomposites by taking into consideration crack deflection and pull-out effects due to SiCNP and the atomic level slip-stick driven GNPs inter-layer slithering. It was found that the addition of GNPs facilitates SiCNP dispersion that subsequently develops dense, fine-grained microstructures after a short-cycle, pressure-assisted consolidation process.

  17. Sources of deactivation during glycerol conversion on Ni/γ-Al 2 O 3

    Energy Technology Data Exchange (ETDEWEB)

    Chimenton, Ricardo J.; Chimentao, Ricardo J.; Miranda, Barbara C.; Szanyi, Janos; Sepulveda, C.; Santos, Joao Batista O.; Correa, J. V.; Llorca, Jordi; Medina, Francesc

    2017-07-01

    Hydrogenolysis of glycerol was studied using a diluted aqueous solution of glycerol in gas phase and atmospheric pressure on Ni/γ-Al2O3 catalyst. The catalytic transformation of glycerol generates products derived from dehydration, dehydrogenation, hydrogenolysis and condensation reactions. Deep hydrogenolysis route to produce CH4 prevails in the first few hours of reaction. As the reaction time progress, dehydration-dehydrogenation products start to appear. Here, a description of the deactivation sources and its effects on the catalytic performance of Ni catalyst was proposed. The catalyst was characterized before and after the catalytic reaction by high-resolution transmission electron microscopy (HRTEM) and by employing Fourier transformed infrared spectroscopy (FTIR) of adsorbed CO. A source of deactivation was due to carbonaceous deposition. FTIR at low CO dosing pressure reveal bands assignments species essentially due to linear and bridge carbonyls, whereas high pressure CO dosing produces a complex spectra due to polycarbonyls. X-ray absorption near edge structure (XANES) analysis was employed to reveal the initial degree of reduction of the fresh catalyst. The oxidation of metallic Ni in the course of reaction may also be considered as a source of deactivation. Ni oxide species promote dehydration routes. Alumina support facilitates nickel species to be more active toward interacting with glycerol. Dehydration, which takes place on the acid sites, is the mainly route related to the generation of carbon deposition and to the observed catalyst deactivation. Another source of deactivation was due to carbiding of Ni to form Ni3C. The regeneration of used Ni catalyst was achieved by oxidation-reduction steps at 723 K.

  18. Direct analysis of Al2O3 powders by total reflection X-ray fluorescence spectrometry.

    Science.gov (United States)

    Peschel, Birgit U; Fittschen, Ursula E A; Pepponi, Giancarlo; Jokubonis, Christoph; Streli, Christina; Wobrauschek, Peter; Falkenberg, Gerald; Broekaert, José A C

    2005-08-01

    A direct analysis procedure for the determination of trace impurities of Ca, V, Cr, Mn, Fe, Ni, Cu, Zn and Ga in Al2O3 ceramic powders by total reflection X-ray fluorescence spectrometry (TXRF) is described. The powders were analysed in the form of slurries containing 1-10 mg mL(-1) of powder. The use of the procedure in the case of powders with differing grain size and for different slurry concentrations was investigated. Three different quantification possibilities were compared, namely the use of Al as a matrix component, the use of Fe as a trace element contained in the sample or of Co added in concentrations of 200 microg g(-1) as internal standard. The homogeneity of elemental distributions in sample layers deposited on the TXRF quartz carriers by evaporating 5 microL of the 10 mg mL(-1) slurries was studied by scanning the 4- to 5-mm-diameter spots of two samples by synchrotron radiation TXRF at Hasylab. For powders with differing graininess but mainly finer than about a few 10 microm, no systematic influence of the grain size on the accuracy of the determinations of Ca, V, Fe, Ni, Cu and Zn could be observed. The measurement precision, however, seemed to be limited by inhomogeneous distributions of the trace elements in the samples as testified by the synchrotron radiation TXRF scans. Detection limits of the developed TXRF procedure for Ca, V, Cr, Mn, Fe, Ni, Cu, Zn and Ga were found to be in the 0.3-7 microg g(-1) range and were shown to increase slightly with the grain size of the samples. Quantification using Al (matrix) as internal standard led to systematically higher values out of the accuracy required, whereas the other two approaches in all cases led to reliable results.

  19. Functionalized pink Al2O3:Mn pigments applied in prosthetic dentistry.

    Science.gov (United States)

    Cruzeiro, Mário Thadeo R; Moraes, Fernando A; Kaizer, Marina R; Moreira, Mário Lúcio; Zhang, Yu; Moraes, Rafael R; Cava, Sergio S

    2017-12-01

    The color of dental poly(methyl methacrylate) (PMMA) is conventionally rendered by organic and inorganic pigments, which are usually not bonded to the polymer network. Functionalized ceramic pigments can be used to color PMMA, allowing improved chemical interaction with the resin matrix. The purpose of this in vitro study was to synthesize, functionalize, and characterize pink manganese-doped alumina ceramic pigments. The hypothesis tested was that functionalized ceramic pigments would render pink coloration to a translucent PMMA without jeopardizing its mechanical properties. Pink alumina powders doped with 1 or 2 mol% of manganese (Al 2 O 3 :Mn) were prepared by means of a polymeric precursor method. Pigment (Pig.) particles were functionalized with a silica coating method followed by silanation before preparation of PMMA-based composite resins (5 wt% pigment). The color of composite resins (Pig.1% and Pig.2%) and PMMA controls (Pink and translucent [Trans]) was evaluated (CIELab color coordinates), and their mechanical properties were tested (3-point bending). The microstructure of the pigment particles showed approximately 55-nm nanocrystals of manganese-doped α-alumina clustered into irregular porous particles up to 60 μm. The composite resins and pink PMMA showed similar color parameters (CIE a* pink=20.1, Pig.1%=14.6, Pig.2%=16.0, Trans=0.19, PPink=17.0, Pig.1%=18.6, Pig.2%=19.0, Trans=2.52, Ppink=98.4, Pig.1%=98.1, Pig.2%=98.8, trans=89.1, P=.136). The addition of the functionalized pink ceramic pigments to a translucent PMMA yielded similar coloration to that of the regular pink PMMA used in dentistry and did not jeopardize its mechanical properties. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Effect of pH on the Nitrite Hydrogenation Mechanism over Pd/Al2O3 and Pt/Al2O3: Details Obtained with ATR-IR Spectroscopy

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Mojet, Barbara L.; Lefferts, Leon

    2011-01-01

    It is well-known that activity and selectivity to N2 during nitrite hydrogenation over noble metal catalysts in water depend on the pH of the solution, but mechanistic understanding is lacking. Attenuated total reflection infrared (ATR-IR) spectroscopy is an ideal tool to perform detailed studies...... on catalytic surfaces in water. In this paper, the influence of pH was studied on adsorption and subsequent hydrogenation of nitrite in water between pH 5 and 9 over Pd/Al2O3 and Pt/Al2O3, using ATR-IR spectroscopy. On both catalysts, pH clearly influenced the surface coverage and reaction rates...... of intermediates. For Pt/Al2O3, lowering the pH induced the increasing surface coverage of key reaction intermediates like NOsteps1620cm−1 and “HNO”(ads)1540cm−1, as well as increased hydrogenation rates, explaining the higher TOF at lower pH as reported in the literature. For Pd/Al2O3, the effect of p...

  1. THE THERMODYNAMIC PROPERTIES OF MELTS OF DOUBLE SYSTEM MgO – Al2O3, MgO – SiO2, MgO – CaF2, Al2O3 – SiO2, Al2O3 – CaF2, SiO2 – CaF2

    Directory of Open Access Journals (Sweden)

    В. Судавцова

    2012-04-01

    Full Text Available Methodology of prognostication of thermodynamics properties of melts is presented from the coordinatesof liquidus of diagram of the state in area of equilibria a hard component is solution, on which energies ofmixing of Gibbs are expected in the double border systems of MgO – Al2O3, MgO – SiO2, MgO – CaF2,Al2O3 – SiO2, Al2O3 - CaF2, SiO2 - CaF2. For the areas of equilibrium there is quasibinary connection(MgAl2O4, Mg2SiO4, Al6Si2O13 – a grout at calculations was used equalization of Hauffe-Wagner. Theobtained data comport with literary

  2. Microestructura de Al2O3/TZP codopado con Fe2O3 y TiO2 fabricado por reacción (RBAO

    Directory of Open Access Journals (Sweden)

    Jiménez, M.

    2003-02-01

    Full Text Available Reaction-bonded 80 vol% Al2O3/TZP (2 mol% Y2O3-stabilized tetragonal zirconia polycrystals composites co-doped with 1 vol% Fe2O3 and 1 vol% TiO2 have been produced, and then presureless sintered (1450 ºC, 60 min or sinter-forged (20 MPa, 1200 ºC, 60 min. The resulting microstructures have been characterized using scanning electron microscopy. Both types of materials are dense, with a fine and homogeneous dual microstructure consisting of Al2O3 and TZP grains without intermediate grain boundary phases. Sinter-forged composites exhibit a very narrow pore size distribution, essentially smaller than the grain size of the alumina and zirconia phases. Co-doping promotes the sintering of alumina at lower temperatures, while still retains a fine grain size due to the presence of the dispersed zirconia phase. First results on presureless sintered RBAO materials show a fracture strength higher than in conventionally sintered and sinter-forged composites.Se han fabricado compuestos de 80% vol. Al2O3/TZP (ZrO2 estabilizada con 2% mol Y2O3 codopados con 1% vol. Fe2O3 y 1% vol. TiO2 mediante la tecnología RBAO (“Reaction Bonding of Aluminum Oxide”, que se han sinterizado libremente (1450 ºC, 60 min y bajo carga uniaxial (20 MPa, 1200 ºC, 60 min. Se ha caracterizado la microestructura mediante microscopía electrónica de barrido. Ambos materiales son densos con una microestructura homogénea formada por granos de alúmina y de circona, sin fases en juntas de grano. En el caso de la sinterización bajo carga, la distribución del tamaño de los poros es muy estrecha, y esencialmente menor que las correspondientes a los granos de Al2O3 y TZP. El codopado promueve la sinterización de la alúmina, mientras que los granos dispersos de circona inhiben su crecimiento de grano. Los ensayos preliminares de flexión en cuatro puntos realizados sobre los materiales sinterizados sin carga indican una resistencia a la fractura superior a la que presentan los

  3. Photoluminescence Enhancement in Nanotextured Fluorescent SiC Passivated by Atomic Layer Deposited Al2O3 Films

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas

    2016-01-01

    The influence of thickness of atomic layer deposited Al2O3 films on nano-textured fluorescent 6H-SiC passivation is investigated. The passivation effect on the light emission has been characterized by photoluminescence and time-resolved photoluminescence at room temperature. The results show...... as passivation in fluorescent SiC based white LEDs applications....

  4. Nano- Al 2O 3 particle addition effects on Y Ba 2Cu 3O y superconducting properties

    Science.gov (United States)

    Mellekh, A.; Zouaoui, M.; Ben Azzouz, F.; Annabi, M.; Ben Salem, M.

    2006-11-01

    The effect of nanometer Al 2O 3 particle addition on the crystal structure and superconducting properties of Y Ba 2Cu 3O y (YBCO) ceramics was systematically studied. Samples were synthesized using a standard solid state reaction technique by adding alumina up to 0.8 wt%. The structure for all samples was characterized by X-ray diffraction (XRD) with the Rietveld refinement technique and by the energy dispersive X-ray (EDX) technique. The crystal lattice parameters were found to change and the orthorhombicity decreased slightly with Al 2O 3 addition. No change in the structural symmetry state was obtained. Aluminium was found to incorporate into the crystal structure and could occupy both copper in chains Cu(1) and yttrium (Y) atoms. With the increase of Al 2O 3 addition, the superconducting transition temperatures determined by standard four-probe method measurements changed slightly to 85 K up to x=0.6 wt%, then dropped sharply with higher alumina content. Results are discussed in relation with the importance of Al incorporation in Y, Cu(1) sites and oxygen stoichiometry to superconductivity in YBCO. Significant enhancement of the superconducting critical current density (JC) in applied magnetic field was evidenced for the nanometer Al 2O 3 added samples.

  5. Production and study of mixed Al-Al2O3 thin films for passive electronic circuits

    International Nuclear Information System (INIS)

    Pruniaux, B.

    1966-09-01

    A new vacuum deposition process, named reactive evaporation, is used to realize passive thin film circuits. Using aluminium, oxidized at various steps in its vapor phase, we obtain: - Al-Al 2 O 3 cermet resistors (R □ = 10000 Ω □ , CTR 2 O 3 capacitors (C □ = 60000 pf/cm 2 , tg δ [fr

  6. Electrical performance of multilayer MoS2 transistors on high-κ Al2O3 coated Si substrates

    Directory of Open Access Journals (Sweden)

    Tao Li

    2015-05-01

    Full Text Available The electrical performance of MoS2 can be engineered by introducing high-κ dielectrics, while the interactions between high-κ dielectrics and MoS2 need to be studied. In this study, multilayer MoS2 field-effect transistors (FETs with a back-gated configuration were fabricated on high-κ Al2O3 coated Si substrates. Compared with MoS2 FETs on SiO2, the field-effect mobility (μFE and subthreshold swing (SS were remarkably improved in MoS2/Al2O3/Si. The improved μFE was thought to result from the dielectric screening effect from high-κ Al2O3. When a HfO2 passivation layer was introduced on the top of MoS2/Al2O3/Si, the field-effect mobility was further enhanced, which was thought to be concerned with the decreased contact resistance between the metal and MoS2. Meanwhile, the interface trap density increased from 2.4×1012 eV−1cm−2 to 6.3×1012 eV−1cm−2. The increase of the off-state current and the negative shift of the threshold voltage may be related to the increase of interface traps.

  7. Corrosion and wear properties of Zn-Ni and Zn-Ni-Al2O3 multilayer electrodeposited coatings

    Science.gov (United States)

    Shourgeshty, M.; Aliofkhazraei, M.; Karimzadeh, A.; Poursalehi, R.

    2017-09-01

    Zn-Ni and Zn-Ni-Al2O3 multilayer coatings with 32, 128, and 512 layers were electroplated on a low carbon steel substrate by pulse electrodeposition under alternative changes in the duty cycle between 20% and 90% and a constant frequency of 250 Hz. Corrosion behavior was investigated by potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) and wear behavior of the coatings was evaluated by a pin on disk test. The results showed that the corrosion resistance of coatings was improved by increasing the number of layers (the decrease in layer thickness) as well as the presence of alumina nanoparticles. The lowest corrosion current density corresponds to Zn-Ni-Al2O3 with 512 layers equal to 3.74 µA cm-2. Increasing the number of layers in the same total thickness and the presence of alumina nanoparticles within the coating also leads to the improvement in wear resistance of the samples. The coefficient of friction decreased with increasing number of layers and the lowest coefficient of friction (0.517) corresponds to Zn-Ni-Al2O3 coating with 512 layers. Wear mechanism of Zn-Ni coatings with a different number of layers is adhesive while in the Zn-Ni-Al2O3 coatings wear mechanism is a combination of adhesive and abrasive wear, where by increasing the number of the layers to 512 abrasive wear mechanism becomes dominant.

  8. Nanostructured Fe2O3/Al2O3 Adsorbent for removal of As (V from water

    Directory of Open Access Journals (Sweden)

    Faranak Akhlaghian

    2017-04-01

    Full Text Available The presence of arsenate in drinking water causes adverse health effects including skin lesions, diabetes, cancer, damage to the nervous system, and cardiovascular diseases. Therefore, the removal of As (V from water is necessary. In this work, nanostructured adsorbent Fe2O3/Al2O3 was synthesized via the sol-gel method and applied to remove arsenate from polluted waters. First, the Fe2O3 load of the adsorbent was optimized. The Fe2O3/Al2O3 adsorbent was characterized by means of XRF, XRD, ASAP, and SEM techniques. The effects of the operating conditions of the batch process of As (V adsorption such as pH, adsorbent dose, contact time, and initial concentration of As (V solution were studied, and optimized. The thermodynamic study of the process showed that arsenate adsorption was endothermic. The kinetic model corresponded to the pseudo-second-order model. The Langmuir adsorption isotherm was better fitted to the experimental data. The Fe2O3/Al2O3 adsorbent was immobilized on leca granules and applied for As (V adsorption. The results showed that the immobilization of Fe2O3/Al2O3 on leca particles improved the As (V removal efficiency.

  9. Atomistic mechanisms of copper filament formation and composition in Al2O3-based conductive bridge random access memory

    Science.gov (United States)

    Nail, C.; Blaise, P.; Molas, G.; Bernard, M.; Roule, A.; Toffoli, A.; Perniola, L.; Vallée, C.

    2017-07-01

    Conductive filament formation and composition in Oxide-based Conductive Bridge Random Access Memory (CBRAM) are investigated. To this end, Al2O3/Cu-based CBRAM is electrically characterized and studied. Current-voltage characteristics exhibit different forming behaviors depending on device polarization exposing the charged species involved during the forming process. In order to get more insights at the microscopic level, ion diffusion is investigated in depth by first-principles calculations. We study different point defects in Al2O3 which can come either from the post-process of the material itself or after top electrode deposition or during device operation. Since the role of Oxygen Vacancies (VO) and Copper (Cu) ions is core to the switching mechanism, ab initio calculations focus on their displacements. For different charge states in Al2O3, we extract the thermodynamic and activation energies of Cu, Te, Al, and O related point defects. The results reveal that Cu is not the only ion diffusing in the Al2O3-based CBRAM switching mechanism while Te ions appear unfavorable. A Cu/VO based hybrid filament model is proposed, and the impact of Aluminum Vacancies (VAl) on the forming process is demonstrated.

  10. Influence of minimum quantity lubrication with Al2O3 nanoparticles on cutting parameters in drilling process

    Science.gov (United States)

    Fitrina, Sofia; Kristiawan, Budi; Surojo, Eko; Wijayanta, Agung Tri; Miyazaki, Takahiko; Koyama, Shigeru

    2018-02-01

    Machining is one of the largest and most widely used methods of production segments in industries. In this way, cutting fluids play an important role in minimizing production time, cost, and energy in various machining operations. This paper presents an experimental investigation into minimum quantity lubrication (MQL) with Al2O3 nanoparticles in drilling process of common rail as work material with DPSCM 435H code to analyze its influence on cutting parameters. Al2O3 has been selected for nanoparticles in this study due to its non-toxicity and spherical shapes for enhanced tribological attributes. Experiments were carried out for two different conditions; MQL + nanofluids (250 ml/h) and conventional cutting fluid (15 liters/min). In this work, nanofluid was prepared by adding Al2O3 nanoparticles (13 nm size) into the conventional cutting fluid in the specific proportion of 1.2 vol.%. The experiment results reveal that the performance of Al2O3 nanofluid in term surface roughness is better compared to the conventional cutting fluid, but the result of cutting temperature and chip morphology does not match with the previous experiment because volume fraction of nanofluid is too high. It means the specific proportion of 1.2 vol.% nanofluid is not best volume fraction for getting best cooling properties. This experiment does not focus on variations of volume fraction but on cooling conditions.

  11. Densification and dielectric properties of SrO–Al2O3–B2O3 ceramic ...

    Indian Academy of Sciences (India)

    Abstract. The influence of SrO (0·0–5·0 wt%) on partial substitution of alpha alumina (corundum) in ceramic com- position (95 Al2O3–5B2O3) have been studied by co-precipitated process and their phase composition, microstruc- ture, microchemistry and microwave dielectric properties were studied. Phase composition ...

  12. Synergism between Ni and W in the NiW/gama-Al2O3 Hydrotreating Catalysts

    Czech Academy of Sciences Publication Activity Database

    Spojakina, A.A.; Palcheva, R.; Jirátová, Květa; Tyuliev, G.; Petrov, L.

    2005-01-01

    Roč. 104, 1-2 (2005), s. 45-52 ISSN 1011-372X Institutional research plan: CEZ:AV0Z40720504 Keywords : NiW/gama-Al2O3 * Thiophene hydrodesulfurization * TPR, XPS Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.088, year: 2005

  13. AlGaN/GaN high electron mobility transistor with Al2O3+BCB passivation

    Science.gov (United States)

    Zhang, Sheng; Wei, Ke; Yu, Le; Liu, Guo-Guo; Huang, Sen; Wang, Xin-Hua; Pang, Lei; Zheng, Ying-Kui; Li, Yan-Kui; Ma, Xiao-Hua; Sun, Bing; Liu, Xin-Yu

    2015-11-01

    In this paper, A12O3 ultrathin film used as the surface passivation layer for AlGaN/GaN high electron mobility transistor (HEMT) is deposited by thermal atomic layer deposition (ALD), thereby avoiding plasma-induced damage and erosion to the surface. A comparison is made between the surface passivation in this paper and the conventional plasma enhanced chemical vapor deposition (PECVD) SiN passivation. A remarkable reduction of the gate leakage current and a significant increase in small signal radio frequency (RF) performance are achieved after applying Al2O3+BCB passivation. For the Al2O3+BCB passivated device with a 0.7 μm gate, the value of fmax reaches up to 100 GHz, but it decreases to 40 GHz for SiN HEMT. The fmax/ft ratio (≥ 4) is also improved after Al2O3+BCB passivation. The capacitance-voltage (C-V) measurement demonstrates that Al2O3+BCB HEMT shows quite less density of trap states (on the order of magnitude of 1010 cm-2) than that obtained at commonly studied SiN HEMT.

  14. Application of silver vanadate solid electrolyte mixed with Al2O3 in Ag/I2 batteries

    International Nuclear Information System (INIS)

    Abdul Karim bin Arof.

    1993-01-01

    The glassy silver vanadate electrolyte of the composition 70AgI-20Ag20-10V205 was added with Al2O3 in varying percentages to form several physical mixtures that will be used to fabricate several solid stare electrochemical cells in order to study the influence of the dispersoid on the silver vanadate cells internal resistance and lifetime of the silver vanadate cells. The internal resistance of the cells increased on addition of Al2O3 but the cell with the mixture of Al2O3 and electrolyte in the weight ratio 2:3 has the lowest internal resistance. The increase in the internal resistance of the cell is attributed to the insulating nature of Al2O3. Although the internal resistance of the cell increased, it was observed that the time needed for the cell potential to drop to 400 mV at a constant discharge current of 30 uA increase in discharge lifetime was also observed when a second cell of the same mixed electrolyte constituents was discharged at 40 uA current drain. We have attempted to explain the increase in discharge lifetime in terms of the space charge layer developed between the insulator and the ionic conductor which results in a dipole region across which a potential difference is developed. This potential difference is responsible in prolonging the discharge lifetime of the cells

  15. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2003-01-01

    The flame combustion synthesis of Cu/ZnO/Al2O3 catalysts for the synthesis of methanol from CO, CO2 and H2 is investigated. The oxides are generated in a premixed flame from the acetyl-acetonate vapours of Cu, Zn and Al mixed with the fuel and air prior to combustion. The flame-generated powder...

  16. Acoustic investigations on PbO–Al2O3–B2O3 glasses doped with ...

    Indian Academy of Sciences (India)

    Unknown

    increasing temperature of measurement. From these results (together with IR spectra of these glasses), an attempt is made to throw some light on the mechanical strength of these glasses. Keywords. PbO–Al2O3–B2O3 glasses; rare earth ions; elastic moduli. 1. Introduction. The study of elastic/acoustic and thermodynamic ...

  17. Hydrodesulfurization of Different Feeds on CoMo/Al2O3 Catalyst Prepared Using Cobalt Heteropolyoxomolybdate

    Czech Academy of Sciences Publication Activity Database

    Spojakina, A. A.; Jirátová, Květa; Novák, V.; Palcheva, R.; Kaluža, Luděk

    2008-01-01

    Roč. 73, 8-9 (2008), s. 983-999 ISSN 0010-0765 R&D Projects: GA ČR GP104/06/P034 Institutional research plan: CEZ:AV0Z40720504 Keywords : CoMo/Al2O3 * Co heteropolymolydate * hds Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008

  18. Preparation of MoO3/Al2O3 Catalysts with Sharp Eggshell Mo Distribution by Slurry Impregnation

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Zdražil, Miroslav

    2002-01-01

    Roč. 78, 1-4 (2002), s. 313-318 ISSN 1011-372X R&D Projects: GA ČR GA104/01/0544 Keywords : MoO3/Al2O3 catalyst * eggshell Mo catalyst * slurry impregnation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.559, year: 2002

  19. CLC in packed beds using syngas and CuO/Al2O3: model description and experimental validation

    NARCIS (Netherlands)

    Hamers, H.P.; Gallucci, F.; Cobden, P.D.; Kimball, E.; Sint Annaland, M. van

    2014-01-01

    The objective of this work is to study the performance of the oxygen carrier in a packed bed with periodic switching between oxidizing and reducing conditions. In this paper the performance of CuO/Al2O3 as the oxygen carrier in a packed bed reactor with syngas as the fuel are investigated, while

  20. Acoustic investigations on PbO–Al2O3–B2O3 glasses doped with ...

    Indian Academy of Sciences (India)

    Abstract. Elastic moduli (, ), Poisson's ratio (), microhardness () and some thermodynamical parameters such as Debye temperature (), diffusion constant (), latent heat of melting ( ) etc of PbO–Al2O3–B2O3 glasses doped with rare earth ions viz. Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Er3+ and Yb3+, ...

  1. Adsorption of Cu and Pd on alpha-Al2O3(0001) surfaces with different stoichiometries

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Nørskov, Jens Kehlet

    2001-01-01

    We report density functional theory calculations of the interaction of Cu and Pd with the (0001) surface of alpha -Al2O3. The interaction of those metals with the oxide surface varies from covalent-like for the aluminum rich surface to ionic-like for the oxygen terminated surface. Stoichiometric...

  2. Al-Si/Al2O3 in situ composite prepared by displacement reaction of CuO/Al system

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2010-02-01

    Full Text Available Al2O3 particle-reinforced ZL109 composite was prepared by in situ reaction between CuO and Al. The microstructure was observed by means of OM, SEM and TEM. The Al2O3 particles in sub-micron sizes distribute uniformly in the matrix, and the Cu displaced from the in situ reaction forms net-like alloy phases with other alloy elements. The hardness and the tensile strength of the composites at room temperature have a slight increase as compared to that of the matrix. However, the tensile strength at 350 ℃ has reached 90.23 MPa, or 16.92 MPa higher than that of the matrix. The mechanism of the reaction in the CuO/Al system was studied by using of differential scanning calorimetry(DSC and thermodynamic calculation. The reaction between CuO and Al involves two steps. First, CuO reacts with Al to form Cu2O and Al2O3 at the melting temperature of the matrix alloy, and second, Cu2O reacts with Al to form Cu and Al2O3 at a higher temperature. At ZL109 casting temperature of 750–780 ℃, the second step can also take place because of the effect of exothermic reaction of the first step.

  3. Production of Al2O3–SiC nano-composites by spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Mansour Razavi

    2017-07-01

    Full Text Available In this paper, Al2O3–SiC composites were produced by SPS at temperatures of 1600 °C for 10 min under vacuum atmosphere. For preparing samples, Al2O3 with the second phase including of micro and nano-sized SiC powder were milled for 5 h. The milled powders were sintered in a SPS machine. After sintering process, phase studies, densification and mechanical properties of Al2O3–SiC composites were examined. Results showed that the specimens containing micro-sized SiC have an important effect on bulk density, hardness and strength. The highest relative density, hardness and strength were 99.7%, 324.6 HV and 2329 MPa, respectively, in Al2O3–20 wt% SiCmicro composite. Due to short time sintering, the growth was limited and grains still remained in nano-meter scale.

  4. Growth of C60 thin films on Al2O3/NiAl(100) at early stages

    Science.gov (United States)

    Hsu, S.-C.; Liao, C.-H.; Hung, T.-C.; Wu, Y.-C.; Lai, Y.-L.; Hsu, Y.-J.; Luo, M.-F.

    2018-03-01

    The growth of thin films of C60 on Al2O3/NiAl(100) at the earliest stage was studied with scanning tunneling microscopy and synchrotron-based photoelectron spectroscopy under ultrahigh-vacuum conditions. C60 molecules, deposited from the vapor onto an ordered thin film of Al2O3/NiAl(100) at 300 K, nucleated into nanoscale rectangular islands, with their longer sides parallel to direction either [010] or [001] of NiAl. The particular island shape resulted because C60 diffused rapidly, and adsorbed and nucleated preferentially on the protrusion stripes of the crystalline Al2O3 surface. The monolayer C60 film exhibited linear protrusions of height 1-3 Å, due to either the structure of the underlying Al2O3 or the lattice mismatch at the boundaries of the coalescing C60 islands; such protrusions governed also the growth of the second layer. The second layer of the C60 film grew only for a C60 coverage >0.60 ML, implying a layer-by-layer growth mode, and also ripened in rectangular shapes. The thin film of C60 was thermally stable up to 400 K; above 500 K, the C60 islands dissociated and most C60 desorbed.

  5. Kinetics of adsorptive removal of DEClP and GB on impregnated Al2O3 nanoparticles.

    Science.gov (United States)

    Saxena, Amit; Srivastava, Avanish K; Singh, Beer; Gupta, Arvind K; Suryanarayana, Malladi V S; Pandey, Pratibha

    2010-03-15

    Nanoparticles of AP-Al(2)O(3) (aero-gel produced alumina) have been produced by an alkoxide based synthesis involving aluminum powder, methanol, toluene and water. Thus produced alumina nanoparticles were characterized and the data indicated the formation of nanoparticles of alumina in the size range of 2-30 nm with high surface area (375 m(2)/g). Thereafter, these nanoparticles were impregnated with reactive chemicals. Adsorptive removal kinetics for DEClP (diethylchlorophosphate) and GB (isopropylmethylphosphonofluoridate, sarin) was monitored by GC-FID (gas chromatograph coupled with flame ionization detector) technique and found to be following pseudo first order reaction kinetics. Among impregnated AP-Al(2)O(3) nanoparticles based sorbent systems AP-Al(2)O(3) impregnated with 9-molybdo-3-vanadophosphoric acid (10%, w/w) was found to be the most reactive with least half-life values of 7 and 30 min for the removal of DEClP and GB, respectively, whereas unimpregnated AP-Al(2)O(3) nanoparticles showed the best adsorption potential among all studied systems. In addition to this, hydrolysis reaction {identified using GC/MS (gas chromatograph coupled with mass spectrometer) technique} was found to be the route of degradation of DEClP and GB on impregnated alumina nanoparticles. (c) 2009 Elsevier B.V. All rights reserved.

  6. Directed laser processing of compacted powder mixtures Al2O3-TiO2-Y2O3

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2013-01-01

    Full Text Available The phase formation, microstructure and surface texture of laser treated ternary powder mixtures of Al2O3-TiO2-Y2O3 had been studied. Rapid high temperature heating and subsequent rapid cooling due to the directed movement of the laser beam forms concave ceramic tracks. Phase composition and microstructure of the tracks depends on the Al2O3 content and the TiO2/Y2O3 ratio of the initial mixtures. The main phases observed are Y3Al5O12, Y2Ti2O7, Al2O3 and Al2TiO5. Due to the temperature gradient in the heating zone, complex layered structures are formed. The tracks consist of three main layers: a thin surface layer, a layer of crystallization products of eutectic alloys, and a lower sintered layer. The thickness of the crystallization layer and the shrinkage of the irradiation zone depend on the amount of Y3Al5O12 and Al2O3 crystallized from the melt.

  7. Nucleation and growth mechanisms of Al2O3 atomic layer deposition on synthetic polycrystalline MoS2

    Science.gov (United States)

    Zhang, H.; Chiappe, D.; Meersschaut, J.; Conard, T.; Franquet, A.; Nuytten, T.; Mannarino, M.; Radu, I.; Vandervorst, W.; Delabie, A.

    2017-02-01

    Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) are of great interest for applications in nano-electronic devices. Their incorporation requires the deposition of nm-thin and continuous high-k dielectric layers on the 2D TMDs. Atomic layer deposition (ALD) of high-k dielectric layers is well established on Si surfaces: the importance of a high nucleation density for rapid layer closure is well known and the nucleation mechanisms have been thoroughly investigated. In contrast, the nucleation of ALD on 2D TMD surfaces is less well understood and a quantitative analysis of the deposition process is lacking. Therefore, in this work, we investigate the growth of Al2O3 (using Al(CH3)3/H2O ALD) on MoS2 whereby we attempt to provide a complete insight into the use of several complementary characterization techniques, including X-ray photo-electron spectroscopy, elastic recoil detection analysis, scanning electron microscopy, and time-of-flight secondary ion mass spectrometry. To reveal the inherent reactivity of MoS2, we exclude the impact of surface contamination from a transfer process by direct Al2O3 deposition on synthetic MoS2 layers obtained by a high temperature sulfurization process. It is shown that Al2O3 ALD on the MoS2 surface is strongly inhibited at temperatures between 125°C and 300°C, with no growth occurring on MoS2 crystal basal planes and selective nucleation only at line defects or grain boundaries at MoS2 top surface. During further deposition, the as-formed Al2O3 nano-ribbons grow in both vertical and lateral directions. Eventually, a continuous Al2O3 film is obtained by lateral growth over the MoS2 crystal basal plane, with the point of layer closure determined by the grain size at the MoS2 top surface and the lateral growth rate. The created Al2O3/MoS2 interface consists mainly of van der Waals interactions. The nucleation is improved by contributions of reversible adsorption on the MoS2 basal planes by using low

  8. Experimental and Theoretical Study of the Interactions between Fe2O3/Al2O3 and CO

    Directory of Open Access Journals (Sweden)

    Zhiyong Liang

    2017-04-01

    Full Text Available The behavior of Fe2O3/Al2O3 particles as oxygen carriers (OCs for CO chemical looping combustion (CLC under different reaction temperatures (700 °C, 800 °C, 900 °C, and 1000 °C were tested in a lab-scale fluidized bed and a thermogravimetric analysis (TGA unit. The results show that the oxygen carrier presents the highest reactivity at 800 °C, even after 30 cycles of redox reaction in a fluidized bed, while more obvious carbon deposition occurred for the case at 700 °C, and agglomeration for the case at 1000 °C. Moreover, the detailed behavior of the prepared Fe2O3/Al2O3 particle was detected in the TGA apparatus at different reaction temperatures. Furthermore, temperature-programming TGA experiments were performed to investigate the influence of different CO concentrations and CO/CO2 concentrations on the reaction between CO and OC during the chemical looping combustion processes. Based on these experimental behaviors of the prepared Fe2O3/Al2O3 during the CLC of CO, the detailed models and electronic properties of the pure and reduced Fe2O3/Al2O3 supported the slabs, CO adsorption, and oxidation, and the decomposition reactions on these surfaces were revealed using density functional theory (DFT calculations which went deep into the nature of the synergetic effect of the support of Al2O3 on the activity of Fe2O3 for the CLC of CO.

  9. Temperature dependence of trapping effects in metal gates/Al2O3/InGaAs stacks

    Science.gov (United States)

    Palumbo, F.; Pazos, S.; Aguirre, F.; Winter, R.; Krylov, I.; Eizenberg, M.

    2017-06-01

    The influence of the temperature on Metal Gate/Al2O3/n-InGaAs stacks has been studied by means of capacitance-voltage (C-V) hysteresis and flat band voltage as function of both negative and positive stress fields. It was found that the de-trapping effect decreases at low-temperature, indicating that the de-trapping of trapped electrons from oxide traps may be performed via Al2O3/InGaAs interface defects. The dependence of the C-V hysteresis on the stress field at different temperatures in our InGaAs stacks can be explained in terms of the defect spatial distribution. An oxide defect distribution can be found very close to the metal gate/Al2O3 interface. On the other side, the Al2O3/InGaAs interface presents defects distributed from the interface into the bulk of the oxide, showing the influence of InGaAs on Al2O3 in terms of the spatial defect distribution. At the present, he is a research staff of the National Council of Science and Technology (CONICET), working in the National Commission of Atomic Energy (CNEA) in Buenos Aires, Argentina, well embedded within international research collaboration. Since 2008, he is Professor at the National Technological University (UTN) in Buenos Aires, Argentina. Dr. Palumbo has received research fellowships from: Marie Curie Fellowship within the 7th European Community Framework Programme, Abdus Salam International Centre for Theoretical Physics (ICTP) Italy, National Council of Science and Technology (CONICET) Argentina, and Consiglio Nazionale delle Ricerche (CNR) Italy. He is also a frequent scientific visitor of academic institutions as IMM-CNR-Italy, Minatec Grenoble-France, the Autonomous University of Barcelona-Spain, and the Israel Institute of Technology-Technion. He has authored and co-authored more than 50 papers in international conferences and journals.

  10. Role of Tricoordinate Al Sites in CH3ReO3/Al2O3 Olefin Metathesis Catalysts.

    Science.gov (United States)

    Valla, Maxence; Wischert, Raphael; Comas-Vives, Aleix; Conley, Matthew P; Verel, René; Copéret, Christophe; Sautet, Philippe

    2016-06-01

    Re2O7 supported on γ-alumina is an alkene metathesis catalyst active at room temperature, compatible with functional groups, but the exact structures of the active sites are unknown. Using CH3ReO3/Al2O3 as a model for Re2O7/Al2O3, we show through a combination of reactivity studies, in situ solid-state NMR, and an extensive series of DFT calculations, that μ-methylene structures (Al-CH2-ReO3-Al) containing a Re═O bound to a tricoordinated Al (AlIII) and CH2 bound to a four-coordinated Al (AlIVb) are the precursors of the most active sites for olefin metathesis. The resting state of CH3ReO3/Al2O3 is a distribution of μ-methylene species formed by the activation of the C-H bond of CH3ReO3 on different surface Al-O sites. In situ reaction with ethylene results in the formation of Re metallacycle intermediates, which were studied in detail through a combination of solid-state NMR experiments, using labeled ethylene, and DFT calculations. In particular, we were able to distinguish between metallacycles in TBP (trigonal-bipyramidal) and SP (square-pyramidal) geometry, the latter being inactive and detrimental to catalytic activity. The SP sites are more likely to be formed on other Al sites (AlIVa/AlIVa). Experimentally, the activity of CH3ReO3/Al2O3 depends on the activation temperature of alumina; catalysts activated at or above 500 °C contain more active sites than those activated at 300 °C. We show that the dependence of catalytic activity on the Al2O3 activation temperature is related to the quantity of available AlIII-defect sites and adsorbed H2O.

  11. The Influence of oxide additives on Ni/Al2O3 catalysts in low temperature methane steam reforming

    International Nuclear Information System (INIS)

    Lazar, Mihaela; Dan, Monica; Mihet, Maria; Almasan, Valer

    2009-01-01

    Hydrogen is industrially produced by methane steam reforming. The process is catalytic and the usual catalyst is based on Ni as the active element. The main problem of this process is its inefficiency. It requires high temperatures at which Ni also favors the formation of graphite, which deactivates the catalysts. Ni has the advantage of being much cheaper than noble metal catalysts, so many researches are done in order to improve the properties of supported Ni catalysts and to decrease the temperature at which the process is energetically efficient. In order to obtain catalysts with high activity and stability, it is essential to maintain the dispersion of the active phase (Ni particles) and the stability of the support. Both properties can be improved by addition of a second oxide to the support. In this paper we present the results obtained in preparation and characterization of Ni/Al 2 O 3 catalysts modified by addition of CeO 2 and La 2 O 3 to alumina support. The following catalysts were prepared by impregnation method: Ni/Al 2 O 3 , Ni/CeO 2 -Al 2 O 3 and Ni/La 2 O 3 -Al 2 O 3 (10 wt.% Ni and 6 wt.% additional oxide). The catalytic surface was characterized by N 2 adsorption - desorption isotherms. The hydrogen - surface bond was characterized by Thermo-Programmed-Desorption (TPD) method. All catalysts were tested in steam reforming reaction of methane in the range of 600 - 700 deg. C, at atmospheric pressure working with CH 4 :H 2 O ratio of 1:3. The modified catalysts showed a better catalytic activity and selectivity for H 2 and CO 2 formation, at lower temperatures than the simple Ni/Al 2 O 3 catalyst. (authors)

  12. Effect of Al2O3 on the Crystallization of Mold Flux for Casting High Al Steel

    Science.gov (United States)

    Zhou, Lejun; Wang, Wanlin; Zhou, Kechao

    2015-06-01

    In order to lower the weight of automotive bodies for better fuel-efficiency and occupant safety, the demand for high Al-containing advanced high strength steel, such as transformation-induced plasticity and twinning-induced plasticity steel, is increasing. However, high aluminum content in steels would tend to significantly affect the properties of mold flux during the continuous casting process. In this paper, a kinetic study of the effect of Al2O3 content on the crystallization behavior of mold flux was conducted by using the single hot thermocouple technique and the Johnson-Mehl-Avrami model combined with the Arrhenius Equation. The results suggested that Al2O3 behaves as an amphoteric oxide in the crystallization process of mold flux. The precipitated phases of mold flux change from cuspidine (Ca4Si2O7F2) into nepheline (NaAlSiO4) and CaF2, and then into gehlenite (Ca2Al2SiO7) with the increase of Al2O3 content. The kinetics study of the isothermal crystallization process indicated that the effective crystallization rate ( k) and Avrami exponent ( n) also first increased and then decreased with the increase of Al2O3 content. The values for the crystallization activation energy of mold flux with different Al2O3 contents were E R0.8A7 = 150.76 ± 17.89 kJ/mol, E R0.8A20 = 136.43 ± 6.48 kJ/mol, E R0.8A30 = 108.63 ± 12.25 kJ/mol and E R0.8A40 = 116.15 ± 8.17 kJ/mol.

  13. COx Free Hydrogen Production by Catalytic Decomposition of Methane Over Porous Ni/Al2O3 Catalysts

    International Nuclear Information System (INIS)

    Makvandi, S.; Alavi, S. M.

    2011-01-01

    The prepared meso porous spherical alumina with high-surface area was employed as a support for nickel catalysts in methane decomposition reaction. It was observed that, the catalytic activity of Ni/Al 2 O 3 catalysts was high at the initial times of reaction and decreased with time on stream, and finally reached a constant value. The deactivation rate of catalysts is dependent on the catalyst characteristics and the operating conditions. The activity results indicate that, the yield of hydrogen and the structure of deposited carbon are strongly dependent on the loading amount of Ni. The Scanning Electron Microscopy results showed that carbon formed on the catalysts in the form of filamentous carbon. Concerning hydrogen production, the 10% Ni/ Al 2 O 3 catalyst leads to a higher yield, due to the higher amount of active phases which can catalyze further the number of methane molecules, while lesser amounts of filamentous carbon were observed on this catalyst than for 5 and 7.5% Ni/ Al 2 O 3 catalysts at the same operating condition. The yield of hydrogen and structure of filamentous carbon also significantly depend on the reaction temperatures and residence time of gas in the reactor, as the 10% Ni/ Al 2 O 3 catalyst showed a remarkable stability with a decrease of about 14% at 800 d egree C and 25 ml/min after 240 min of reaction. The obtained results showed that the prepared Ni/ Al 2 O 3 catalysts had a good activity in methane decomposition reaction, which is one of the highest activities among those for low nickel loaded catalysts reported up until now.

  14. Resolidificación superficial de eutécticos Al2O3-YSZ asistida por láser

    Directory of Open Access Journals (Sweden)

    Larrea, A.

    2004-10-01

    Full Text Available A procedure for surface densification and/or texturing of Al2O3-YSZ (yttria stabilised zirconia ceramics with eutectic composition by means of laser surface melting is presented. By scanning a high-power laser beam on a ceramic surface, we achieve a textured and fully dense surface layer from 30 to 1000 microns thick. For example, using a thin diode laser line with fluence 1.23 kW/cm2 and 0.14 mm/s scan rate, the solidified layer has 560 μm depth. We get a low roughness and dense surface. The microstructure is fine (micron size due to the eutectic composition. The orientation of the microstructure is determined by the shape of the solid-liquid interface in the solidification process. We study the shape of this interface in transverse and longitudinal cross-sections in single as well as overlapping scans, which are required to process large surfaces. From the macroscopic point of view, the transition between adjacent scans is smooth. However, the microstructure presents discontinuity in the interphase spacing due to microstructural evolution in the heat affected region as well as the nucleation of an Al2O3 layer at the beginning of the crystal growth. The thermal shock inherent to the procedure generates cracks longitudinal and transverse to the scanning direction, as well as delaminating cracks. We analyse different possibilities to reduce this thermal shock. The best results are obtained by preheating the substrate, allowing us to process surfaces of Al2O3-YSZ eutectic ceramics 99% dense.Se presenta un procedimiento para la densificación y/o texturado superficial de cerámicas de Al2O3-YSZ (circona estabilizada con itria con composición eutéctica mediante fusión zonal asistida por láser. Haciendo un barrido con la radiación proveniente de un láser de potencia sobre piezas cerámicas conseguimos modificar la microestructura y densificar completatmente la capa superficial, con un espesor que va de 30 a 1000 μm. Por ejemplo, con l

  15. Catalisadores Ni/Al2O3 promovidos com molibdênio para a reação de reforma a vapor de metano Mo-Ni/AL2O3 catalysts for the methane steam reforming reaction

    Directory of Open Access Journals (Sweden)

    Silvia Sálua Maluf

    2003-03-01

    Full Text Available Mo-promoted Ni/Al2O3 catalysts for the methane steam reforming reaction were studied in this work. The Ni/Al2O3 catalysts were prepared by precipitation and molibdenum was added by impregnation up to 2%wt. The solids were tested using a micro-reactor under two H2Ov/C conditions and were characterized by ICP-OES, XRD, N2 adsoption, H2 chemisorption and TPR. NiO and NiAl2O4 phases were observed and the metallic area decreased with the increase of the Mo content. From the catalytic tests high stability was verified for H2Ov/C=4.0. On the other hand, only the catalyst containing 0,05% Mo stayed stable during 30 hours of the test at H2Ov/C=2.0.

  16. Catalytic Oxidation of Propene over Pd Catalysts Supported on CeO2, TiO2, Al2O3 and M/Al2O3 Oxides (M = Ce, Ti, Fe, Mn

    Directory of Open Access Journals (Sweden)

    Sonia Gil

    2015-04-01

    Full Text Available In the following work, the catalytic behavior of Pd catalysts prepared using different oxides as support (Al2O3, CeO2 and TiO2 in the catalytic combustion of propene, in low concentration in excess of oxygen, to mimic the conditions of catalytic decomposition of a volatile organic compound of hydrocarbon-type is reported. In addition, the influence of different promoters (Ce, Ti, Fe and Mn when added to a Pd/Al2O3 catalyst was analyzed. Catalysts were prepared by the impregnation method and were characterized by ICP-OES, N2 adsorption, temperature-programmed reduction, temperature-programmed oxidation, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. Catalyst prepared using CeO2 as the support was less easily reducible, due to the stabilization effect of CeO2 over the palladium oxides. Small PdO particles and, therefore, high Pd dispersion were observed for all of the catalysts, as confirmed by XRD and TEM. The addition of Ce to the Pd/Al2O3 catalysts increased the metal-support interaction and the formation of highly-dispersed Pd species. The addition of Ce and Fe improved the catalytic behavior of the Pd/Al2O3 catalyst; however, the addition of Mn and Ti decreased the catalytic activity in the propene oxidation. Pd/TiO2 showed the highest catalytic activity, probably due to the high capacity of this catalyst to reoxidize Pd into PdO, as has been found in the temperature-programmed oxidation (TPO experiments.

  17. Selective Crystallization Behavior of CaO-SiO2-Al2O3-MgO-FetO-P2O5 Steelmaking Slags Modified through P2O5 and Al2O3

    Science.gov (United States)

    Wang, Zhanjun; Sun, Yongqi; Sridhar, Seetharaman; Zhang, Mei; Guo, Min; Zhang, Zuotai

    2015-10-01

    In this study, the selective crystallization behavior of synthetic FetO-rich steelmaking slags modified by P2O5 and Al2O3 additions was explored using non-isothermal differential scanning calorimetry, X-ray diffraction, and field emission scanning electron microscopy techniques. Continuous cooling transformation diagrams of Fe-enriched and P-enriched phases were constructed. It was found that P2O5 addition can suppress the crystallization due to the increasing viscosity caused by increasing degree of polymerization; however, an increase of Al2O3 content accelerated the precipitation of dystectic MgFeAlO4, copolymerized by [AlO4]-tetrahedra and [FeO4]-tetrahedra units. It was also noted that the content of phosphorus in P-enriched phase can reach a high value as 28.71 wt pct for the slags modified by 15.17 wt pct Al2O3. The non-isothermal crystallization kinetics derived from activation energy and the structure of the slags explained by Raman spectra were further analyzed, which was well in accordance with the above analysis.

  18. Hydroprocessing of Jatropha Oil for Production of Green Diesel over Non-sulfided Ni-PTA/Al2O3 Catalyst

    Science.gov (United States)

    Liu, Jing; Lei, Jiandu; He, Jing; Deng, Lihong; Wang, Luying; Fan, Kai; Rong, Long

    2015-07-01

    The non-sulfided Ni-PTA/Al2O3 catalyst was developed to produce green diesel from the hydroprocessing of Jatropha oil. The Ni-PTA/Al2O3 catalyst was prepared by one-pot synthesis of Ni/Al2O3 with the co-precipitation method and then impregnanting Ni/Al2O3 with PTA solution. The catalysts were characterized with BET, SEM-EDX, TEM, XRD, XPS, TGA and NH3-TPD. The Ni and W species of the Ni-PTA/Al2O3 catalyst were much more homogeneously distributed on the surface than that of commercial Al2O3. Catalytic performance in the hydroprocessing of Jatropha oil was evaluated by GC. The maximum conversion of Jatropha oil (98.5 wt%) and selectivity of the C15-C18 alkanes fraction (84.5 wt %) occurred at 360 °C, 3.0 MPa, 0.8 h-1. The non-sulfided Ni-PTA/Al2O3 catalyst is more environmentally friendly than the conventional sulfided hydroprocessing catalyst, and it exhibited the highest catalytic activity than the Ni-PTA catalyst supported with commercial Al2O3 grain and Al2O3 powder.

  19. Effect of polymorphism of Al2O3 on the sintering and microstructure of transparent MgAl2O4 ceramics

    Science.gov (United States)

    Han, Dan; Zhang, Jian; Liu, Peng; Wang, Shiwei

    2017-09-01

    Transparent MgAl2O4 ceramics were fabricated by reactive sintering in air followed by hot isostatic press treatment using commercial Al2O3 powder (γ-Al2O3 or α-Al2O3) and MgO powder as raw materials. The densification rate, microstructure and optical properties of the ceramics were investigated. Densification temperature of the sample from γ-Al2O3/MgO was lower than that from α-Al2O3/MgO. However, in-line transmission (2 mm thick) of the sample from α-Al2O3/MgO at the wavelength of 600 nm and 1100 nm were respectively 77.7% and 84.3%, higher than those (66.7%, 81.4%) of the sample from γ-Al2O3/MgO. SEM observation revealed that the sample from α-Al2O3/MgO exhibited a homogeneous and pore-free microstructure, while, the sample from γ-Al2O3/MgO showed an apparent bimodal microstructure containing pores.

  20. Hydroprocessing of Jatropha Oil for Production of Green Diesel over Non-sulfided Ni-PTA/Al2O3 Catalyst

    Science.gov (United States)

    Liu, Jing; Lei, Jiandu; He, Jing; Deng, Lihong; Wang, Luying; Fan, Kai; Rong, Long

    2015-01-01

    The non-sulfided Ni-PTA/Al2O3 catalyst was developed to produce green diesel from the hydroprocessing of Jatropha oil. The Ni-PTA/Al2O3 catalyst was prepared by one-pot synthesis of Ni/Al2O3 with the co-precipitation method and then impregnanting Ni/Al2O3 with PTA solution. The catalysts were characterized with BET, SEM-EDX, TEM, XRD, XPS, TGA and NH3-TPD. The Ni and W species of the Ni-PTA/Al2O3 catalyst were much more homogeneously distributed on the surface than that of commercial Al2O3. Catalytic performance in the hydroprocessing of Jatropha oil was evaluated by GC. The maximum conversion of Jatropha oil (98.5 wt%) and selectivity of the C15-C18 alkanes fraction (84.5 wt %) occurred at 360 °C, 3.0 MPa, 0.8 h−1. The non-sulfided Ni-PTA/Al2O3 catalyst is more environmentally friendly than the conventional sulfided hydroprocessing catalyst, and it exhibited the highest catalytic activity than the Ni-PTA catalyst supported with commercial Al2O3 grain and Al2O3 powder. PMID:26162092

  1. Experimental evidence of structural transition at the crystal-amorphous interphase boundary between Al and Al2O3

    International Nuclear Information System (INIS)

    Yang, Z.Q.; He, L.L.; Zhao, S.J.; Ye, H.Q.

    2002-01-01

    High-resolution transmission electron microscopy observations on the structure of the interphase boundary between crystalline Al and amorphous Al 2 O 3 coating reveal that an interfacial melting transition of Al occurs at 833 K, which is distinctly lower than the bulk melting point of Al. The crystalline lattice planes of Al near the interface bend or small segments of crystalline Al deviated from the matrix Al grains are formed. Stand-off dislocations formed at the interphase boundary are also observed. The amorphous Al 2 O 3 coating plays an important role in retaining the evidence for structural transition at high temperature to room temperature, which makes it possible to make experimental observations. (author)

  2. KARAKTERISTIK PERPINDAHAN PANAS KONVEKSI ALAMIAH ALIRAN NANOFLUIDA AL2O3-AIR DI DALAM PIPA ANULUS VERTIKAL

    Directory of Open Access Journals (Sweden)

    Reinaldy Nazar

    2016-03-01

    Full Text Available ABSTRAK KARAKTERISTIK PERPINDAHAN PANAS KONVEKSI ALAMIAH ALIRAN NANOFLUIDA AL2O3-AIR DI DALAM PIPA ANULUS VERTIKAL. Hasil beberapa penelitian menunjukan bahwa nanofluida memiliki karakteristik termal yang lebih baik dibandingkan dengan fluida konvensional (air. Berkaitan dengan hal tersebut, saat ini sedang berkembang pemikiran untuk menggunakan nanofluida sebagai fluida perpindahan panas alternatif pada sistem pedingin reaktor. Sementara itu, konveksi alamiah di dalam pipa anulus vertikal merupakan salah satu mekanisme perpindahan panas yang penting dan banyak ditemukan pada reaktor riset TRIGA, reaktor daya generasi baru dan alat konversi energi lainnya. Namun disisi lain karakteristik perpindahan panas nanofluida di dalam pipa anulus vertikal belum banyak diketahui. Oleh karena itu penting dilakukan secara berkesinambungan penelitian-penelitian untuk menganalisis perpindahan panas nanofluida di dalam pipa anulus vertikal. Pada penelitian telah dilakukan analisis numerik menggunakan program computer CFD (computational of fluids dynamic terhadap karakteristik perpindahan panas konveksi alamiah aliran nanofluida Al2O3-air konsentrasi 2% volume di dalam pipa anulus vertikal. Hasil kajian ini menunjukkan terjadi peningkatan kinerja perpindahan panas (bilangan Nuselt- NU sebesar 20,5% - 35%. Pada moda konveksi alamiah dengan bilangan 2,4708e+09 £ Ra £ 1,9554e+13 diperoleh korelasi empirik untuk air adalah dan korelasi empirik untuk nanofluida Al2O3-air adalah   Kata kunci: Nanofluida Al2O3-air, konveksi alamiah, pipa anulus vertikal     ABSTRACT THE CHARACTERISTICS OF NATURAL CONVECTIVE HEAT TRANSFER OF AL2O3–WATER NANOFLUIDS FLOW IN A VERTICAL ANNULUS PIPE. Results of several research have shown that nanofluids have better thermal characteristics compared to conventional fluid (water. In this regard, currently developing ideas for using nanofluids as an alternative heat transfer fluid in the reactor coolant system. Meanwhile the natural

  3. Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions

    Science.gov (United States)

    Zirour, H.; Izerrouken, M.; Sari, A.

    2015-12-01

    Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions were investigated by optical absorption measurements, Raman spectroscopy and X-ray diffraction (XRD) techniques. The irradiations were performed at the GANIL accelerator in Caen, France for the fluence in the range from 1012 to 6 × 1013 cm-2 at room temperature under normal incidence. The F+ and F2+enters kinetic as a function of fluence deduced from the optical measurements explains that the single defects (F and F+) aggregate to F center clusters (F2 , F2+, F22+) during irradiation at high fluence (>1013 cm-2). Raman and XRD analysis reveal a partial disorder of 40% of Al2O3 in the studied fluence range in accordance with Kabir et al. (2008) study. The result suggests that this is due to the stress relaxation process which occurs at high fluence (>1013 cm-2).

  4. Effective optimization of surface passivation on porous silicon carbide using atomic layer deposited Al2O3

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    2017-01-01

    Porous silicon carbide (B–N co-doped SiC) produced by anodic oxidation showed strong photoluminescence (PL) at around 520 nm excited by a 375 nm laser. The porous SiC samples were passivated by atomic layer deposited (ALD) aluminum oxide (Al2O3) films, resulting in a significant enhancement...... of the PL intensity (up to 689%). The effect of thickness, annealing temperature, annealing duration and precursor purge time on the PL intensity of ALD Al2O3 films was investigated. In order to investigate the penetration depth and passivation effect in porous SiC, the samples were characterized by X...... effective method to enhance the luminescence efficiency of porous SiC....

  5. Study and determination of thermoluminescent properties of a new dosemeter based on α -Al2O3:C

    International Nuclear Information System (INIS)

    Rivera Montalvo, T.

    1993-01-01

    Study and determination of the thermoluminescent properties of a new dosimeter based on α -Al 2 O 3 :C. Dosimetric characteristics studied were: glow curve structure, sensitivity, reproducibility, TL response as function of dose, and fading. Each experimental data point represents the average value of at least five measurements. The new detectors exhibited two peaks in its glow curve at 383 and 493 K. The low temperature peak decayed at room temperature in a few hours. Sensitivity of α -Al 2 O 3 :C detectors to gamma radiation per unit of absorbed dose was 3 times that of LiF:Mg, Cu, P and 11 times that of CaSO 4 : Dy + PTFE; the last two detectors possess characteristics which make them appropriate for diverse applications in the field of radiation dosimetry, specially for environmental measurements. (Author)

  6. Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3

    Science.gov (United States)

    Zhang, Y.; Chen, Y.; Du, H. Q.; Zhao, YW

    2018-03-01

    Micro-arc oxidation (MAO) coatings were formed on the aluminum alloy in silicate-based electrolyte without and with the addition of Al2O3. It is showed that the coating produced in 7 g l‑1 Al2O3-containing electrolyte was of the most superior corrosion resistance. Besides, the corrosion properties of the coatings were studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test in both 0.5 M and 1 M NaCl solution. The results proved that the coating is capable to protect the substrate from the corrosion of aggressive Cl‑ in 0.5 M NaCl after 384 h immersion. However, it can not offer protection to the aluminum alloy substrate after 384 h immersion in 1 M NaCl solution. The schematic diagrams illustrate the corrosion process and matched well with the corrosion test results.

  7. TEM observation and study of three-layer Al2O3/ZrO2 ceramics.

    Science.gov (United States)

    Chen, Bei; Cheng, Chuan; Chen, Bin

    2010-03-01

    The micrograph and the crystal orientation relationship of Al2O3/ZrO2 laminated ceramics were studied with the help of transmission electronic microscope (TEM). The experiment results showed that: the Al2O3 and ZrO2 grain sizes were small and the links among the crystals were good. No flaws such as pores or micro-cracks were observed in the micro-structure. Further TEM analyses and electronic diffraction spot calculation proved that interface compressive stress could greatly restrain the transformation of the tetragonal phase and increase the contents of transformable tetragon, but did not change the orientation relation between the tetragonal and monoclinic phase, while (100),m//(010), still exist in the three-layer ZrO2 ceramics.

  8. Ni-Pd-Al2O3 catalyst supported on reticulated ceramic foam for dry methane reforming

    Directory of Open Access Journals (Sweden)

    Vesna Nikolić

    2015-03-01

    Full Text Available In the present study, Ni-Pd/Al2O3 catalyst supported on α-Al2O3 based foam was prepared and evaluated in the dry methane reforming process. Corresponding metal chlorides were deposited to the foam surface by impregnation of the foam with ultrasonically aerosolized salt solutions at 473 K and drying at that temperature. Calcination step was excluded and the catalyst was reduced at very low temperature – 533 K. The reforming experiment lasted for 3 h, with standing time of 1 h at the following temperatures: 873, 973 and 1023 K. Conclusions on selectivity, catalytic activity and stability were reached on the basis of CO and H2 yields.

  9. Contact induced spin relaxation in graphene spin valves with Al2O3 and MgO tunnel barriers

    Directory of Open Access Journals (Sweden)

    Walid Amamou

    2016-03-01

    Full Text Available We investigate spin relaxation in graphene by systematically comparing the roles of spin absorption, other contact-induced effects (e.g., fringe fields, and bulk spin relaxation for graphene spin valves with MgO barriers, Al2O3 barriers, and transparent contacts. We obtain effective spin lifetimes by fitting the Hanle spin precession data with two models that include or exclude the effect of spin absorption. Results indicate that additional contact-induced spin relaxation other than spin absorption dominates the contact effect. For tunneling contacts, we find reasonable agreement between the two models with median discrepancy of ∼20% for MgO and ∼10% for Al2O3.

  10. Perfect absorption in 1D photonic crystal nanobeam embedded with graphene/Al2O3 multilayer stack

    Science.gov (United States)

    Liu, Hanqing; Zha, Song; Liu, Peiguo; Zhou, Xiaotian; Bian, Li-an

    2018-05-01

    We exploit the concept of critical coupling to graphene based chip-integrated applications and numerically demonstrate that a perfect absorption (PA) absorber in the near-infrared can be obtained by graphene/Al2O3 multilayer stack (GAMS) critical coupling with a resonant cavity in the 1D photonic crystal nanobeam (PCN). The key point is dynamically matching the coupling rate of incident light wave to the cavity with the absorbing rate of GAMS via electrically modulating the chemical potential of graphene. Simulation results show that the radius of GAMS as well as the thickness of Al2O3 layer are closely connected with the performance of perfect absorption. These results may provide potential applications in the high-density integrated optical devices, photolectric transducers, and laser pulse limiters.

  11. Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al2O3/water nanofluid

    Science.gov (United States)

    Gangadevi, R.; Vinayagam, B. K.; Senthilraja, S.

    2017-05-01

    In this paper, the PV/T (Photovoltaic thermal unit) system is investigated experimentally to examine the thermal, electrical and overall efficiency by circulating Al2O3/water nanofluid of 1wt% and 2wt% with an optimum flow rate of 40L/H. The overall efficiency of PVT system is largely influenced by various factors such as heat due to photovoltaic action; energy radiated at the infrared wavelength of the solar spectrum, solar irradiance, mounting structure, tilt angle, wind speed direction, Ambient temperature and panel material composition. However, the major factor is considered in this study to extract the heat generated in the PV panel by using nanofluid as a coolant to increase the overall system efficiency. Therefore, the result shows that by using 2 wt% Al2O3/water nanofluid the electrical efficiency, thermal efficiency and overall efficiency of the PVT system enhanced by 13%, 45%, and 58% respectively compared with water.

  12. Measurement of AC electrical conductivity of single crystal Al2O3 during spallation-neutron irradiation

    International Nuclear Information System (INIS)

    Kennedy, J.C. III; Farnum, E.H.; Sommer, W.F.; Clinard, F.W. Jr.

    1993-01-01

    Samples of single crystal Al 2 O 3 , commonly known as sapphire, and polycrystalline Al 2 O 3 were irradiated with spallation neutrons at the Los Alamos Spallation Radiation Effects Facility (LASREF) under various temperature conditions and with a continuously applied alternating electric field. This paper describes the results of measurements on the sapphire samples. Neutron fluence and flux values are estimated values pending recovery and analysis of dosimetry packages. The conductivity increased approximately with the square root of the neutron flux at fluences less than 3 x 10 21 n/m 2 . The increase in conductivity reached saturated levels as high as 2 x 10 -2 (ohm-m) -1 at fluences as low as 2 x 10 22 n/m 2 . Frequency swept impedance measurements indicated a change in the electrical properties from capacitive to resistive behavior with increasing fluence

  13. Argon Ion Irradiation Effect on the Magnetic Properties of Fe-Al2O3 Nano Granular Film

    Directory of Open Access Journals (Sweden)

    Setyo Purwanto

    2014-10-01

    Full Text Available We studied the effect of Argon (Ar ion irradiation on Fe-Al2O3 nanogranular thin film. X-ray diffraction (XRD patterns show that the ion dose might promote the growth of the Fe2O3 phase from an amorphous phase to a crystalline phase. The magnetic and magnetoresistance properties were investigated using a vibrating sample magnetometer (VSM and a four point probe (FPP. The results suggest that percolation concentration occurred at the 0.55 Fe volume fraction and with a maximum magnetoresistance (MR ratio of 3%. The present MR ratio was lower than that of previous results, which might be related to the existence of the α-Fe2O3 phase promoted by Ar ion irradiation. CEMS spectra show ion irradiation induces changes from superparamagnetic characteristics to ferromagnetic ones, which indicates the spherical growth of Fe particles in the Al2O3 matrix.

  14. Atomic layer deposition of Al2O3 on GaSb using in situ hydrogen plasma exposure

    International Nuclear Information System (INIS)

    Ruppalt, Laura B.; Cleveland, Erin R.; Champlain, James G.; Prokes, Sharka M.; Brad Boos, J.; Park, Doewon; Bennett, Brian R.

    2012-01-01

    In this report, we study the effectiveness of hydrogen plasma surface treatments for improving the electrical properties of GaSb/Al 2 O 3 interfaces. Prior to atomic layer deposition of an Al 2 O 3 dielectric, p-GaSb surfaces were exposed to hydrogen plasmas in situ, with varying plasma powers, exposure times, and substrate temperatures. Good electrical interfaces, as indicated by capacitance-voltage measurements, were obtained using higher plasma powers, longer exposure times, and increasing substrate temperatures up to 250 °C. X-ray photoelectron spectroscopy reveals that the most effective treatments result in decreased SbO x , decreased Sb, and increased GaO x content at the interface. This in situ hydrogen plasma surface preparation improves the semiconductor/insulator electrical interface without the use of wet chemical pretreatments and is a promising approach for enhancing the performance of Sb-based devices.

  15. Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: Towards oxide spinterfaces

    KAUST Repository

    Xing, G. Z.

    2013-07-08

    We report that room-temperature ferromagnetism emerges at the interface formed between ZnO nanowire core and Al2O3 shell although both constituents show mainly diamagnetism. The interface-based ferromagnetism can be further enhanced by annealing the ZnO/Al2O3 core-shell nanowires and activating the formation of ZnAl2O4 phase as a result of interfacial solid-state reaction. High-temperature measurements indicate that the magnetic order is thermally stable up to 750 K. Transmission electron microscopy studies reveal the annealing-induced jagged interfaces, and the extensive structural defects appear to be relevant to the emergent magnetism. Our study suggests that tailoring the spinterfaces in nanostructure-harnessed wide-band-gap oxides is an effective route towards engineered nanoscale architecture with enhanced magnetic properties.

  16. Memory effects and systematic errors in the RL signal from fiber coupled Al2O3:C for medical dosimetry

    DEFF Research Database (Denmark)

    Damkjær, Sidsel Marie Skov; Andersen, Claus Erik

    2010-01-01

    This review describes 40 years of experience gained at Risø The radioluminescence (RL) signal from fiber coupled Al2O3:C can be used for real-time in vivo dosimetry during radiotherapy. RL generally provides measurements with a reproducibility of 2% (one standard deviation). However, we have...... observed a non-random variability of the RL signal which means that the memory of the system is not fully reset by the optically stimulated luminescence (OSL) readout. Here we report an example of how this memory affects the RL signal. Measurements were performed in the range of 0–4 Gy using four Al2O3:C...... crystals, in cycles of irradiation and subsequent readout. We found the memory to be persistent, influencing several successive RL measurements. The induced systematic error was found to be crystal dependent, but proportional to the measurement-to-measurement dose variation (approximately 1.4% per Gy)....

  17. Electrochemical promotion of propane oxidation on Pt deposited on a dense β"-Al2O3 ceramic Ag+ conductor

    Directory of Open Access Journals (Sweden)

    Michail eTsampas

    2013-08-01

    Full Text Available A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a β"-Al2O3 ceramic Ag+ conductor was developed and evaluated during propane oxidation. It was observed that upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation.

  18. Pembuatan Biofuel dari Minyak Kelapa Sawit melalui Proses Hydrocracking dengan Katalis Ni-Mg/γ-Al2O3

    Directory of Open Access Journals (Sweden)

    Anindita Pramesti Putri Nugroho

    2014-09-01

    Full Text Available Keterbatasan bahan bakar fosil sebagai salah satu sumber energi yang tidak dapat diperbarui di Indonesia menjadikan wacana untuk menciptakan sumber energi alternatif dari bahan baku lain yang jumlahnya masih melimpah dan dapat diperbarui. Salah satu sumber energi alternatif tersebut adalah bahan bakar nabati. Biofuel atau bahan bakar nabati sering disebut energi hijau karena asal-usul dan emisinya bersifat ramah lingkungan dan tidak menyebabkan peningkatan pemanasan global secara signifikan. Penelitian ini bertujuan untuk mempelajari pembuatan biofuel melalui proses hydrocracking minyak kelapa sawit dengan katalis Ni-Mg/γ-Al2O3, mempelajari pengaruh komposisi katalis, waktu, dan suhu terhadap yield biofuel serta mempelajari kondisi operasi terbaik pembuatan biofuel. Penelitian dilakukan dalam tiga tahap yaitu sintesis katalis, karakterisasi katalis, dan proses hydrocracking. Penentuan katalis terbaik melalui proses hydrocracking pada suhu 330oC waktu 60 menit untuk % loading Ni 1%, 5%, 10%, 15%, dan 20% diperoleh katalis Ni-Mg/γ-Al2O3 15% yang menghasilkan yield gasoline tertinggu yaitu 44,819%. Katalis terbaik dikarakterisasi dengan Atomic Absorption Spectroscopy (AAS dan titrimetri menghasilkan rasio Ni/Mg sebesar 13,5/4,71. Luas permukaan katalis terbaik berdasarkan analisis Brunaur Emmet Teller (BET yaitu 77.746 m2/g. Katalis Ni-Mg/γ-Al2O3 15% yang menghasilkan yield gasoline tertinggi digunakan untuk proses hydrocracking dengan variasi waktu dan temperatur. Hasil yang diperoleh untuk katalis Ni-Mg/γ-Al2O3 15% yield terbaik fraksi gasoline 46,333% pada suhu 360oC waktu 120 menit, yield terbaik kerosene 39,177% pada suhu 300oC waktu 120 menit, dan yield terbaik solar 63,213% pada suhu 300oC waktu 30 menit.

  19. Fabrication and magnetic properties of FePt/Al2O3 composite film by atomic-layer-deposition

    International Nuclear Information System (INIS)

    Kong, Ji-Zhou; Gao, Mo-Yun; Zhai, Hai-Fa; Yan, Qing-Yu; Li, Ai-Dong; Li, Hui; Wu, Di

    2013-01-01

    Self-assembled face-centered cubic FePt nanoparticles were capped by a amorphous Al 2 O 3 capping layer with the thickness of 10 nm using the atomic layer deposition (ALD) technology, and transmission electron microscopy indicates that the FePt nanocrystals are well-separated. After annealing the composite film at 700 °C, well-monodispersed face-centered tetragonal FePt particles can be obtained, yielding a coercivity value Hc=5.9 kOe with the magnetocrystalline anisotropy of 3.86 MJ/m 3 . The thermal factor for the composite film is 68.5, meeting the industry requirement (K u V/k B T ≥ 50). The protection of amorphous Al 2 O 3 matrix can effectively inhibit grain growth and particle aggregation, and preserve the ordered domains of FePt nanoparticles during the L1 0 ordering transition. The combination of ALD-capping layer and self-assembled FePt nanoparticles provides a new potential approach to fabricate patterned magnetic recording media with ultrahigh areal density. - Highlights: • Well-monodispersed fcc-FePt NPs were prepared via chemical reduction. • Self-assembled fcc-FePt NPs were capped by Al 2 O 3 layer via ALD. • Al 2 O 3 capping layer can prevent particles from agglomerating and sintering. • A coercivity of 5.9 kOe with the magnetocrystalline anisotropy of 3.86 MJ/m 3 was obtained. • The thermal factor of the composite film is 68.5, meeting the industry requirement

  20. MgAl2 O4–γ-Al2 O3 solid solution interaction: mathematical ...

    Indian Academy of Sciences (India)

    Administrator

    ration from MgAl2O4 has been observed in the Mg–Al spinel powders (n > 1) when the 1000°C heat treated materials are calcined at 1200°C. In the mathematical framework, unit cell of MgAl2O4 (Mg8Al16O32) has been considered for the solid solution interactions (substitution of Mg. 2+ ions by Al. 3+ ions) with γ-Al2O3.

  1. Electronic imitation of behavioral and psychological synaptic activities using TiOx/Al2O3-based memristor devices.

    Science.gov (United States)

    Banerjee, Writam; Liu, Qi; Lv, Hangbing; Long, Shibing; Liu, Ming

    2017-10-05

    Seeking an effective electronic synapse to emulate biological synaptic behavior is fundamental for building brain-inspired computers. An emerging two-terminal memristor, in which the conductance can be gradually modulated by external electrical stimuli, is widely considered as the strongest competitor of the electronic synapse. Here, we show the capability of TiO x /Al 2 O 3 -based memristor devices to imitate synaptic behaviors. Along with analog resistive switching performances, the devices replicate the bio-synapse behaviors of potentiation/depression, short-term-plasticity, and long-term-potentiation, which show that TiO x /Al 2 O 3 -based memristors may be useful as electronic synapses. The essential memorizing capabilities of the brain are dependent on the connection strength between neurons, and the memory types change from short-term memory to long-term memory. In the TiO x /Al 2 O 3 -based electronic synaptic junction, the memorizing levels can change their state via a standard rehearsal process and also via newly introduced process called "impact of event" i.e. the impact of pulse amplitude, and the width of the input pulse. The devices show a short-term to long-term memory effect with the introduction of intermediate mezzanine memory. The experimental achievements using the TiO x /Al 2 O 3 electronic synapses are finally psychologically modeled by considering the mezzanine level. It is highly recommended that similar phenomena should be investigated for other memristor systems to check the authenticity of this model.

  2. Highly-Ordered Magnetic Nanostructures on Self-Assembled α-Al2O3 and Diblock Copolymer Templates

    International Nuclear Information System (INIS)

    Erb, Denise

    2015-08-01

    This thesis shows the preparation of nanostructured systems with a high degree of morphological uniformity and regularity employing exclusively selfassembly processes, and documents the investigation of these systems by means of atomic force microscopy (AFM), grazing incidence small angle X-ray scattering (GISAXS), and nuclear resonant scattering of synchrotron radiation (NRS). Whenever possible, the X-ray scattering methods are applied in-situ and simultaneously in order to monitor and correlate the evolution of structural and magnetic properties of the nanostructured systems. The following systems are discussed, where highly-ordered magnetic nanostructures are grown on α-Al 2 O 3 substrates with topographical surface patterning and on diblock copolymer templates with chemical surface patterning: - Nanofaceted surfaces of α-Al 2 O 3 - Magnetic nanostructures on nanofaceted α-Al 2 O 3 substrates - Thin films of microphase separated diblock copolymers - Magnetic nanostructures on diblock copolymer thin film templates The fact that the underlying self-assembly processes can be steered by external factors is utilized to optimize the degree of structural order in the nanostructured systems. The highly-ordered systems are well-suited for investigations with X-ray scattering methods, since due to their uniformity the inherently averaged scattered signal of a sample yields meaningful information on the properties of the contained nanostructures: By means of an in-situ GISAXS experiment at temperatures above 1000 C, details on the facet formation on α-Al 2 O 3 surfaces are determined. A novel method, merging in-situ GISAXS and NRS, shows the evolution of magnetic states in a system with correlated structural and magnetic inhomogeneity with lateral resolution. The temperature-dependence of the shape of Fe nanodots growing on diblock copolymer templates is revealed by in-situ GISAXS during sputter deposition of Fe. Combining in-situ GISAXS and NRS, the magnetization

  3. Hydrodesulfurization NiMo Catalysts Supported on Co, Ni and B Modified Al2O3 from Anderson Heteropolymolybdates

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Palcheva, R.; Spojakina, A.; Jirátová, Květa; Tyuliev, G.

    2012-01-01

    Roč. 42, SI (2012), s. 873-884 E-ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague, 25.08.2012-29.08.2012] R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : NiMo/γ-Al2O3 * anderson heteropolymolybdate * additives Subject RIV: CF - Physical ; Theoretical Chemistry

  4. The Process of Acetonitrile Synthesis over γ-Al2O3 Promoted by Phosphoric Acid Catalysts

    OpenAIRE

    Galanov, Sergey I.; Sidorova, Olga I.; Gavrilenko, Mikhail A.

    2014-01-01

    The influence of principal parameters (reaction temperature, ratio of acetic acid and ammonia, composition of reactionary mixture and promotion of catalysts) on the selectivity and yield of the desired product was studied in the reaction of catalytic acetonitrile synthesis by ammonolysis of acetic acid. The processing of [gamma]-Al[2]O[3] by phosphoric acid increases amount of the centers, on which carries out reaction of acetamide dehydration. The kinetic model of a limiting stage of reactio...

  5. The effect of light soaking on crystalline silicon surface passivation by atomic layer deposited Al2O3

    Science.gov (United States)

    Liao, Baochen; Stangl, Rolf; Mueller, Thomas; Lin, Fen; Bhatia, Charanjit S.; Hoex, Bram

    2013-01-01

    The effect of light soaking of crystalline silicon wafer lifetime samples surface passivated by thermal atomic layer deposited (ALD) Al2O3 is investigated in this paper. Contrary to other passivation materials used in solar cell applications (i.e., SiO2, SiNx), using thermal ALD Al2O3, an increase in effective carrier lifetime after light soaking under standard testing conditions is observed for both p-type (˜45%) and n-type (˜60%) FZ c-Si lifetime samples. After light soaking and storing the samples in a dark and dry environment, the effective lifetime decreases again and practically returns to the value before light soaking. The rate of lifetime decrease after light soaking is significantly slower than the rate of lifetime increase by light soaking. To investigate the underlying mechanism, corona charge experiments are carried out on p-type c-Si samples before and after light soaking. The results indicate that the negative fixed charge density Qf present in the Al2O3 films increases due to the light soaking, which results in an improved field-effect passivation. Numerical calculations also confirm that the improved field-effect passivation is the main contributor for the increased effective lifetime after light soaking. To further understand the light soaking phenomenon, a kinetic model—a charge trapping/de-trapping model—is proposed to explain the time dependent behavior of the lifetime increase/decrease observed under/after light soaking. The trap model fits the experimental results very well. The observed light enhanced passivation for ALD Al2O3 passivated c-Si is of technological relevance, because solar cell devices operate under illumination, thus an increase in solar cell efficiency due to light soaking can be expected.

  6. Oxidation of the GaAs semiconductor at the Al2O3/GaAs junction.

    Science.gov (United States)

    Tuominen, Marjukka; Yasir, Muhammad; Lång, Jouko; Dahl, Johnny; Kuzmin, Mikhail; Mäkelä, Jaakko; Punkkinen, Marko; Laukkanen, Pekka; Kokko, Kalevi; Schulte, Karina; Punkkinen, Risto; Korpijärvi, Ville-Markus; Polojärvi, Ville; Guina, Mircea

    2015-03-14

    Atomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes). The oxidation-induced defect-rich phases at the interfaces of oxide/III-V junctions significantly affect the electrical performance of devices. In this study, a method to control the GaAs oxidation and interfacial defect density at the prototypical Al2O3/GaAs junction grown via atomic layer deposition (ALD) is demonstrated. Namely, pre-oxidation of GaAs(100) with an In-induced c(8 × 2) surface reconstruction, leading to a crystalline c(4 × 2)-O interface oxide before ALD of Al2O3, decreases band-gap defect density at the Al2O3/GaAs interface. Concomitantly, X-ray photoelectron spectroscopy (XPS) from these Al2O3/GaAs interfaces shows that the high oxidation state of Ga (Ga2O3 type) decreases, and the corresponding In2O3 type phase forms when employing the c(4 × 2)-O interface layer. Detailed synchrotron-radiation XPS of the counterpart c(4 × 2)-O oxide of InAs(100) has been utilized to elucidate the atomic structure of the useful c(4 × 2)-O interface layer and its oxidation process. The spectral analysis reveals that three different oxygen sites, five oxidation-induced group-III atomic sites with core-level shifts between -0.2 eV and +1.0 eV, and hardly any oxygen-induced changes at the As sites form during the oxidation. These results, discussed within the current atomic model of the c(4 × 2)-O interface, provide insight into the atomic structures of oxide/III-V interfaces and a way to control the semiconductor oxidation.

  7. Hot Extrusion of A356 Aluminum Metal Matrix Composite with Carbon Nanotube/Al2O3 Hybrid Reinforcement

    Science.gov (United States)

    Kim, H. H.; Babu, J. S. S.; Kang, C. G.

    2014-05-01

    Over the years, the attention of material scientists and engineers has shifted from conventional composite materials to nanocomposite materials for the development of light weight and high-performance devices. Since the discovery of carbon nanotubes (CNTs), many researchers have tried to fabricate metal matrix composites (MMCs) with CNT reinforcements. However, CNTs exhibit low dispersibility in metal melts owing to their poor wettability and large surface-to-volume ratio. The use of an array of short fibers or hybrid reinforcements in a preform could overcome this problem and enhance the dispersion of CNTs in the matrix. In this study, multi-walled CNT/Al2O3 preform-based aluminum hybrid composites were fabricated using the infiltration method. Then, the composites were extruded to evaluate changes in its mechanical properties. In addition, the dispersion of reinforcements was investigated using a hardness test. The required extrusion pressure of hybrid MMCs increased as the Al2O3/CNT fraction increased. The deformation resistance of hybrid material was over two times that of the original A356 aluminum alloy material due to strengthening by the Al2O3/CNTs reinforcements. In addition, an unusual trend was detected; primary transition was induced by the hybrid reinforcements, as can be observed in the pressure-displacement curve. Increasing temperature of the material can help increase formability. In particular, temperatures under 623 K (350 °C) and over-incorporating reinforcements (Al2O3 20 pct, CNTs 3 pct) are not recommended owing to a significant increase in the brittleness of the hybrid material.

  8. Processing and properties of AA7075/ porous SiO2-MgO-Al2O3 composite

    OpenAIRE

    M.H. Robert; A.F. Jorge

    2012-01-01

    Purpose: the work presents a new composite based in Al matrix reinforced with porous, lightweight and low cost SiO2/MgO/Al2O3 ceramic particles. The new material can present a unique combination of properties: those related to metal/ceramic composites and still associating some characteristics of cellular materials, as the low density and high plastic deformation under compression stresses.Design/methodology/approach: processing technique involves the infiltration of AA7075 alloy in the semis...

  9. Electrochemical promotion of propane oxidation on Pt deposited on a dense β"-Al2O3 ceramic Ag+ conductor

    Science.gov (United States)

    Tsampas, Michail; Kambolis, Anastasios; Obeid, Emil; Lizarraga, Leonardo; Sapountzi, Foteini; Vernoux, Philippe

    2013-08-01

    A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a β"-Al2O3 ceramic Ag+ conductor was developed and evaluated during propane oxidation. It was observed that upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation.

  10. Effect of atomic layer deposited Al2O3:ZnO alloys on thin-film silicon photovoltaic devices

    Science.gov (United States)

    Abdul Hadi, Sabina; Dushaq, Ghada; Nayfeh, Ammar

    2017-12-01

    In this work, we present the effects of the Al2O3:ZnO ratio on the optical and electrical properties of aluminum doped ZnO (AZO) layers deposited by atomic layer deposition, along with AZO application as the anti-reflective coating (ARC) layer and in heterojunction configurations. Here, we report complex refractive indices for AZO layers with different numbers of aluminum atomic cycles (ZnO:Al2O3 = 1:0, 39:1, 19:1, and 9:1) and we confirm their validity by fitting models to experimental data. Furthermore, the most conductive layer (ZnO:Al2O3 = 19:1, conductivity ˜4.6 mΩ cm) is used to fabricate AZO/n+/p-Si thin film solar cells and AZO/p-Si heterojunction devices. The impact of the AZO layer on the photovoltaic properties of these devices is studied by different characterization techniques, resulting in the extraction of recombination and energy band parameters related to the AZO layer. Our results confirm that AZO 19:1 can be used as a low cost and effective conductive ARC layer for solar cells. However, AZO/p-Si heterojunctions suffer from an insufficient depletion region width (˜100 nm) and recombination at the interface states, with an estimated potential barrier of ˜0.6-0.62 eV. The work function of AZO (ZnO:Al2O3 = 19:1) is estimated to be in the range between 4.36 and 4.57 eV. These material properties limit the use of AZO as an emitter in Si solar cells. However, the results imply that AZO based heterojunctions could have applications as low-cost photodetectors or photodiodes, operating under relatively low reverse bias.

  11. Potential of LiNO3/Al2O3 Catalyst for Heterogeneous Transesterification of Palm Oil to Biodiesel

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2010-10-01

    Full Text Available Production of biodiesel through transesterification process using heterogenous catalysts in order to avoid the saponification problem was studied. In this process, palm oil reacted with methanol to form a mixture of glycerol and biodiese over a solid basic catalyst. One type of the catalysts used in this research is basic catalyst of LiNO3/Al2O3. The parameters studied in this research are concentration of LiNO3 loading on Al2O3 and effect of different reaction time. The products was analyzed using Gas Chromatography to determine composition and yield of resulted methyl esters as well as conversion of palm oil to biodiesel. The major products in this transesterification reaction were biodiesel and glycerol. It can be concluded that the 20 wt% LiNO3/Al2O3 catalyst is potential for producing biodiesel from palm oil over transesterification reaction. Advantages of the usage of this catalyst is that the soap formation was not observed in this research. ©2010 BCREC UNDIP. All rights reserved(Received: 24th April 2010, Revised: 20th May 2010; Accepted: 21st May 2010[How to Cite: I. Istadi, B. Pramudono, S. Suherman, and S. Priyanto. (2010. Potential of LiNO3/Al2O3 Catalyst for Heterogeneous Transesterification of Palm Oil to Biodiesel. Bulletin of Chemical Reaction Engineering and Catalysis, 5(1: 51-56. doi:10.9767/bcrec.5.1.7128.51-56][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.5.1.7128.51-56

  12. Potential of LiNO3/Al2O3 Catalyst for Heterogeneous Transesterification of Palm Oil to Biodiesel

    Directory of Open Access Journals (Sweden)

    Bambang Pramudono

    2010-10-01

    Full Text Available Production of biodiesel through transesterification process using heterogenous catalysts in order to avoid the saponification problem was studied. In this process, palm oil reacted with methanol to form a mixture of glycerol and biodiese over a solid basic catalyst. One type of the catalysts used in this research is basic catalyst of LiNO3/Al2O3. The parameters studied in this research are concentration of LiNO3 loading on Al2O3 and effect of different reaction time. The products was analyzed using Gas Chromatography to determine composition and yield of resulted methyl esters as well as conversion of palm oil to biodiesel. The major products in this transesterification reaction were biodiesel and glycerol. It can be concluded that the 20 wt% LiNO3/Al2O3 catalyst is potential for producing biodiesel from palm oil over transesterification reaction. Advantages of the usage of this catalyst is that the soap formation was not observed in this research. ©2010 BCREC UNDIP. All rights reserved(Received: 24th April 2010, Revised: 20th May 2010; Accepted: 21st May 2010[How to Cite: I. Istadi, B. Pramudono, S. Suherman, and S. Priyanto. (2010. Potential of LiNO3/Al2O3 Catalyst for Heterogeneous Transesterification of Palm Oil to Biodiesel. Bulletin of Chemical Reaction Engineering and Catalysis, 5(1: 51-56. doi:10.9767/bcrec.5.1.777.51-56][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.5.1.777.51-56

  13. Critical investigation of the separation of noradrenaline and adrenaline from urine samples using Al2O3 as adsorbant

    International Nuclear Information System (INIS)

    Neidhart, B.; Kringe, K.-P.; Deutschmann, P.

    1983-01-01

    A critical investigation of the separation of free noradrenaline and adrenaline from urine samples revealed serious errors during sample pretreatment using Al 2 O 3 as adsorbent. An exact and rapid pH adjustment of the sample, using thymol-blue as indicator, proved to be the chief prerequisite for precise and accurate results. Increasing temperature and pH favour the oxidative decomposition of the catecholamines during routine analysis. This was examined, using the radiotracer method and liquid scintillation counting. (author)

  14. Theoretical studies of the g factors and local structure for Pt in α-Al2O3

    Indian Academy of Sciences (India)

    Theoretical studies of the g factors and local structure for Pt. 3+ in α-Al2O3. Z H ZHANG1, SYWU1,2,∗. , S X ZHANG1 and L L LI1. 1Department of Applied Physics, University of Electronic Science and Technology of China,. Chengdu 610054, People's Republic of China. 2International Centre for Materials Physics, Chinese ...

  15. Characterization of water dissociation on α-Al2O3(11[combining macron]02): theory and experiment.

    Science.gov (United States)

    Wirth, Jonas; Kirsch, Harald; Wlosczyk, Sebastian; Tong, Yujin; Saalfrank, Peter; Campen, R Kramer

    2016-06-01

    The interaction of water with α-alumina (i.e. α-Al2O3) surfaces is important in a variety of applications and a useful model for the interaction of water with environmentally abundant aluminosilicate phases. Despite its significance, studies of water interaction with α-Al2O3 surfaces other than the (0001) are extremely limited. Here we characterize the interaction of water (D2O) with a well defined α-Al2O3(11[combining macron]02) surface in UHV both experimentally, using temperature programmed desorption and surface-specific vibrational spectroscopy, and theoretically, using periodic-slab density functional theory calculations. This combined approach makes it possible to demonstrate that water adsorption occurs only at a single well defined surface site (the so-called 1-4 configuration) and that at this site the barrier between the molecularly and dissociatively adsorbed forms is very low: 0.06 eV. A subset of OD stretch vibrations are parallel to this dissociation coordinate, and thus would be expected to be shifted to low frequencies relative to an uncoupled harmonic oscillator. To quantify this effect we solve the vibrational Schrödinger equation along the dissociation coordinate and find fundamental frequencies red-shifted by more than 1500 cm(-1). Within the context of this model, at moderate temperatures, we further find that some fraction of surface deuterons are likely delocalized: dissociatively and molecularly absorbed states are no longer distinguishable.

  16. From two- to three-dimensional alumina: Interface templated films and formation of γ -Al2O3 (111) nuclei

    Science.gov (United States)

    Zabka, Wolf-Dietrich; Leuenberger, Dominik; Mette, Gerson; Osterwalder, Jürg

    2017-10-01

    Oxide thin films are of fundamental importance due to their applications in materials science, optics, corrosion protection, catalysis, and microelectronics. A multistep oxidation procedure is employed to precisely tune the alumina (Al2O3 ) thickness on a NiAl(110) alloy from two atomic bilayers to 1.5 nm . Structural changes are analyzed with x-ray photoelectron diffraction and low-energy electron diffraction. The long-range order does not relate to any bulk structure and is imposed by the crystallized interface. The large unit cell formed at the interface persists in thicker films. In contrast, the local order changes at a thickness above 0.5 nm from the complex structure of this prelayer under the formation of subnanometer-sized γ -Al2O3 (111)-type nuclei. The band structure is monitored with angle-resolved photoelectron spectroscopy. Increasing film thickness results in a slight decrease of the work function, but does not lead to significant changes of the electronic band structure. The presented multistep procedure opens a route for the synthesis of thin film structures in general and in particular provides fundamental insight in the surface structure of spinel-based transition Al2O3 .

  17. Structural Characteristics and Magnetic Properties of Al2O3 Matrix-Based Co-Cermet Nanogranular Films

    Directory of Open Access Journals (Sweden)

    Giap Van Cuong

    2015-01-01

    Full Text Available Magnetic micro- and nanogranular materials prepared by different methods have been used widely in studies of magnetooptical response. However, among them there seems to be nothing about magnetic nanogranular thin films prepared by a rf cosputtering technique for both metals and insulators till now. This paper presented and discussed preparation, structural characteristics, and magnetic properties of alumina (Al2O3 matrix-based granular Co-cermet thin films deposited by means of the cosputtering technique for both Co and Al2O3. By varying the ferromagnetic (Co atomic fraction, x, from 0.04 to 0.63, several dominant features of deposition for these thin films were shown. Structural characteristics by X-ray diffraction confirmed a cermet-type structure for these films. Furthermore, magnetic behaviours presented a transition from paramagnetic- to superparamagnetic- and then to ferromagnetic-like properties, indicating agglomeration and growth following Co components of Co clusters or nanoparticles. These results show a typical granular Co-cermet feature for the Co-Al2O3 thin films prepared, in which Co magnetic nanogranules are dispersed in a ceramic matrix. Such nanomaterials can be applied suitably for our investigations in future on the magnetooptical responses of spinplasmonics.

  18. Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei

    2017-05-01

    Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.

  19. Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates.

    Science.gov (United States)

    López, Gema; Ortega, Pablo R; Voz, Cristóbal; Martín, Isidro; Colina, Mónica; Morales, Anna B; Orpella, Albert; Alcubilla, Ramón

    2013-01-01

    The aim of this work is to study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx) stacks on both p-type and n-type crystalline silicon (c-Si) substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition (ALD) at 200 °C and were complemented with a layer of a-SiCx deposited by plasma-enhanced chemical vapor deposition (PECVD) to form anti-reflection coating (ARC) stacks with a total thickness of 75 nm. A comparative study has been carried out on polished and randomly textured wafers. We have experimentally determined the optimum thickness of the stack for photovoltaic applications by minimizing the reflection losses over a wide wavelength range (300-1200 nm) without compromising the outstanding passivation properties of the Al2O3 films. The upper limit of the surface recombination velocity (S eff,max) was evaluated at a carrier injection level corresponding to 1-sun illumination, which led to values below 10 cm/s. Reflectance values below 2% were measured on textured samples over the wavelength range of 450-1000 nm.

  20. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Ali, Mohamed Kamal Ahmed; Xianjun, Hou; Elagouz, Ahmed; Essa, F.A.; Abdelkareem, Mohamed A. A.

    2016-01-01

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al 2 O 3 and TiO 2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al 2 O 3 and TiO 2 nanoparticles had sizes of 8–12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35–51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al 2 O 3 and TiO 2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  1. Normally-off Al2O3/GaN MOSFET: Role of border traps on the device transport characteristics

    Science.gov (United States)

    Wang, Hongyue; Wang, Jinyan; Liu, Jingqian; He, Yandong; Wang, Maojun; Yu, Min; Wu, Wengang

    2018-03-01

    Based on the self-terminating gate recess technique, two different processes featuring gate-recess-first (GF) and ohmic-contact-first (OF) were proposed for E-mode Al2O3/GaN MOSFETs. Increased maximum drain current (Idmax) ∼30% (420 vs 325 mA/mm), field-effect mobility (μFEmax) ∼67% (150 vs 90 cm2/Vs) and reduced on-state resistance (Ron) ∼42% (9.7 vs 16.8 Ω·mm) were observed in the devices fabricated by GF process. Such significant performance difference of GF- and OF-devices resulted from the presence of border traps at Al2O3/GaN interface with a time constant ∼7 × 10-6 s. Experimental results indicated that: (1) the near interface border traps in Al2O3 dielectric significantly affect device channel mobility; (2) a high temperature post-deposition annealing process could effective suppress generation of border traps.

  2. Microstructure and Properties of Ni and Ni/Al2O3 Coatings Electrodeposited at Various Current Densities

    Directory of Open Access Journals (Sweden)

    Góral A.

    2016-03-01

    Full Text Available The study presents investigations of an influence of various direct current densities on microstructure, residual stresses, texture, microhardness and corrosion resistance of the nickel coatings electrodeposited from modified Watt’s baths. The properties of obtained coatings were compared to the nano-crystalline composite Ni/Al2O3 coatings prepared under the same plating conditions. The similarities and differences of the obtained coatings microstructures visible on both their surfaces and cross sections and determined properties were presented. The differences in the growth character of the Ni matrix and in the microstructural properties were observed. All electrodeposited Ni and Ni/Al2O3 coatings were compact and well adhering to the steel substrates. The thickness and the microhardness of the Ni and Ni/Al2O3 deposits increased significantly with the current density in the range 2 - 6 A/dm2. Residual stresses are tensile and they reduced as the current density increased. The composite coatings revealed better protection from the corrosion of steel substrate than pure nickel in solution 1 M NaCl.

  3. Reduced defect density at the CZTSSe/CdS interface by atomic layer deposition of Al2O3

    Science.gov (United States)

    Erkan, Mehmet Eray; Chawla, Vardaan; Scarpulla, Michael A.

    2016-05-01

    The greatest challenge for improving the power conversion efficiency of Cu2ZnSn(S,Se)4 (CZTSSe)/CdS/ZnO thin film solar cells is increasing the open circuit voltage (VOC). Probable leading causes of the VOC deficit in state-of-the-art CZTSSe devices have been identified as bulk recombination, band tails, and the intertwined effects of CZTSSe/CdS band offset, interface defects, and interface recombination. In this work, we demonstrate the modification of the CZTSSe absorber/CdS buffer interface following the deposition of 1 nm-thick Al2O3 layers by atomic layer deposition (ALD) near room temperature. Capacitance-voltage profiling and quantum efficiency measurements reveal that ALD-Al2O3 interface modification reduces the density of acceptor-like states at the heterojunction resulting in reduced interface recombination and wider depletion width. Indications of increased VOC resulting from the modification of the heterojunction interface as a result of ALD-Al2O3 treatment are presented. These results, while not conclusive for application to state-of-the-art high efficiency CZTSSe devices, suggest the need for further studies as it is probable that interface recombination contributes to reduced VOC even in such devices.

  4. Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes

    Science.gov (United States)

    2011-01-01

    Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density. PMID:21711741

  5. Synthesis of bimetallic nanocompositions AuxPd1-x/γ-Al2O3 for catalytic CO oxidation

    Science.gov (United States)

    Zaytsev, S. Yu.; Plyusnin, P. E.; Slavinskaya, E. M.; Shubin, Yu. V.

    2017-11-01

    Colloidal suspensions of AuxPd1-x nanoalloys were prepared via hydrazine co-reduction of [AuCl4]- and [PdCl4]2- complex anions in aqueous solution. High molecular weight polymeric compounds polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and cryptoionic surfactants (AF-6 and AF-12 neonols, Triton X-100) were used as surface capping agents. Nanoparticles prepared under different experimental conditions were immobilized on γ-Al2O3 supports. The removal of the capping agents from the surface of the active particles was achieved through calcination of samples in oxidative atmosphere (air, 500 °C). This pretreatment of the catalysts significantly enhances their performance. Powder XRD, TEM, and EDX were employed to characterize the structure, size, and composition of the AuxPd1-x/γ-Al2O3 catalysts. The immobilized particles consist of uniformly mixed alloys having multi-domain face-centered cubic structure with typical crystallite size of 3-6 nm. The activity of the prepared samples was examined with temperature-programmed CO oxidation reaction (TP-CO+O2). Triton X-100 surfactant is superior in a number of parameters. Among all AuxPd1-x/γ-Al2O3 catalysts tested, the one stabilized with Triton X-100 (0.4%Au-0.2%Pd@Triton X-100) was found to have the highest activity for conversion of CO into CO2.

  6. From Colloidal Monodisperse Nickel Nanoparticles to Well-Defined Ni/Al2O3Model Catalysts.

    Science.gov (United States)

    Zacharaki, Eirini; Beato, Pablo; Tiruvalam, Ramchandra R; Andersson, Klas J; Fjellvåg, Helmer; Sjåstad, Anja O

    2017-09-26

    In the past few decades, advances in colloidal nanoparticle synthesis have created new possibilities for the preparation of supported model catalysts. However, effective removal of surfactants is a prerequisite to evaluate the catalytic properties of these catalysts in any reaction of interest. Here we report on the colloidal preparation of surfactant-free Ni/Al 2 O 3 model catalysts. Monodisperse Ni nanoparticles (NPs) with mean particle size ranging from 4 to 9 nm were synthesized via thermal decomposition of a zerovalent precursor in the presence of oleic acid. Five weight percent Ni/Al 2 O 3 catalysts were produced by direct deposition of the presynthesized NPs on an alumina support, followed by thermal activation (oxidation-reduction cycle) for complete surfactant removal and surface cleaning. Structural and morphological characteristics of the nanoscale catalysts are described in detail following the propagation of the bulk and surface Ni species at the different treatment stages. Powder X-ray diffraction, electron microscopy, and temperature-programmed reduction experiments as well as infrared spectroscopy of CO adsorption and magnetic measurements were conducted. The applied thermal treatments are proven to be fully adequate for complete surfactant removal while preserving the metal particle size and the size distribution at the level attained by the colloidal synthesis. Compared with standard impregnated Ni/Al 2 O 3 catalysts, the current model materials display narrowed Ni particle size distributions and increased reducibility with a higher fraction of the metallic nickel atoms exposed at the catalyst surface.

  7. Hardness and wear analysis of Cu/Al2O3 composite for application in EDM electrode

    Science.gov (United States)

    Hussain, M. Z.; Khan, U.; Jangid, R.; Khan, S.

    2018-02-01

    Ceramic materials, like Aluminium Oxide (Al2O3), have high mechanical strength, high wear resistance, high temperature resistance and good chemical durability. Powder metallurgy processing is an adaptable method commonly used to fabricate composites because it is a simple method of composite preparation and has high efficiency in dispersing fine ceramic particles. In this research copper and novel material aluminium oxide/copper (Al2O3/Cu) composite has been fabricated for the application of electrode in Electro-Discharge Machine (EDM) using powder metallurgy technique. Al2O3 particles with different weight percentages (0, 1%, 3% and 5%) were reinforced into copper matrix using powder metallurgy technique. The powders were blended and compacted at a load of 100MPa to produce green compacts and sintered at a temperature of 574 °C. The effect of aluminium oxide content on mass density, Rockwell hardness and wear behaviour were investigated. Wear behaviour of the composites was investigated on Die-Sink EDM (Electro-Discharge Machine). It was found that wear rate is highly depending on hardness, mass density and green protective carbonate layer formation at the surface of the composite.

  8. Oxidative dehydrogenation of propane on the VO x /CeZrO/Al2O3 supported catalyst

    Science.gov (United States)

    Turakulova, A. O.; Kharlanov, A. N.; Levanov, A. V.; Lunin, V. V.

    2017-05-01

    The oxidative dehydrogenation of propane on a supported vanadium catalyst was studied (the support was a complex oxide system consisting of a ceria-zirconia solid solution deposited on γ-Al2O3 (CeZrO/γ-Al2O3)). A comparative analysis of the properties of the support and the catalyst prepared on its basis was performed. The support and catalyst were characterized by the BET method, scanning electron microscopy, X-ray diffraction analysis, and Raman spectroscopy. The catalytic properties of the catalyst and support were studied in propane oxidation at 450 and 500°C with pulse feeding of the reagent. The effect of propane on the support was found to improve the oxidative properties of the latter. This behavior of the support is related to the preparation procedure, which leads to the formation on its surface of the crystalline phase of the ceria-zirconia solid solution and amorphous ZrO2 and Al2O3 phases and/or their solid solution. Similar processes occur with the catalyst support during the oxidative dehydrogenation, giving rise to additional active centers (CeVO4).

  9. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.

    Science.gov (United States)

    Muratsugu, Satoshi; Kityakarn, Sutasinee; Wang, Fei; Ishiguro, Nozomu; Kamachi, Takashi; Yoshizawa, Kazunari; Sekizawa, Oki; Uruga, Tomoya; Tada, Mizuki

    2015-10-14

    Decarbonylation-promoted Ru nanoparticle formation from Ru3(CO)12 on a basic K-doped Al2O3 surface was investigated by in situ FT-IR and in situ XAFS. Supported Ru3(CO)12 clusters on K-doped Al2O3 were converted stepwise to Ru nanoparticles, which catalyzed the selective hydrogenation of nitriles to the corresponding primary amines via initial decarbonylation, the nucleation of the Ru cluster core, and the growth of metallic Ru nanoparticles on the surface. As a result, small Ru nanoparticles, with an average diameter of less than 2 nm, were formed on the support and acted as efficient catalysts for nitrile hydrogenation at 343 K under hydrogen at atmospheric pressure. The structure and catalytic performance of Ru catalysts depended strongly on the type of oxide support, and the K-doped Al2O3 support acted as a good oxide for the selective nitrile hydrogenation without basic additives like ammonia. The activation of nitriles on the modelled Ru catalyst was also investigated by DFT calculations, and the adsorption structure of a nitrene-like intermediate, which was favourable for high primary amine selectivity, was the most stable structure on Ru compared with other intermediate structures.

  10. The Metal-Support Interaction Concerning the Particle Size Effect of Pd/Al2O3on Methane Combustion.

    Science.gov (United States)

    Murata, Kazumasa; Mahara, Yuji; Ohyama, Junya; Yamamoto, Yuta; Arai, Shigeo; Satsuma, Atsushi

    2017-12-11

    The particle size effect of Pd nanoparticles supported on alumina with various crystalline phases on methane combustion was investigated. Pd/θ, α-Al 2 O 3 with weak metal-support interaction showed a volcano-shaped dependence of the catalytic activity on the size of Pd particles, and the catalytic activity of the strongly interacted Pd/γ-Al 2 O 3 increased with the particle size. Based on a structural analysis of Pd nanoparticles using CO adsorption IR spectroscopy and spherical aberration-corrected scanning/transmission electron microscopy, the dependence of catalytic activity on Pd particle size and the alumina crystalline phase was due to the fraction of step sites on Pd particle surface. The difference in fraction of the step site is derived from the particle shape, which varies not only with Pd particle size but also with the strength of metal-support interaction. Therefore, this interaction perturbs the particle size effect of Pd/Al 2 O 3 for methane combustion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bias temperature stress induced hydrogen depassivation from Al2O3/InGaAs interface defects

    Science.gov (United States)

    Tang, Kechao; Droopad, Ravi; McIntyre, Paul C.

    2018-01-01

    We study the reliability of Al2O3/InGaAs metal-oxide-semiconductor gate stacks by investigating the effect of bias temperature stress on the charge trap density at the Al2O3/InGaAs interface and in the bulk oxide. Under extended negative biasing at 100 °C, the gate stacks display a notable increase in the interface trap density (Dit), but little change in the border trap density. This phenomenon is more prominent for samples exposed to a H2/N2 forming gas anneal (FGA) than for the as-deposited samples. Negative gate bias applied during 100 °C thermal stress negates the FGA-induced passivation of interface states and causes convergence of the Dit of the post-FGA and as-deposited gate stacks with increasing biasing time. This appears to be caused by hydrogen depassivation of interface traps under bias temperature stress, which is further supported by an observed hydrogen isotope effect when comparing the rate of Dit increase after annealing in hydrogenated versus deuterated forming gas. A N2 anneal control experiment also indicates that the stability of the interface trap density of post-FGA Al2O3/InGaAs gate stacks is more strongly influenced by the behavior of hydrogen at the interface than by the thermal treatment effect of the anneal.

  12. Identification of a third phase in Cu-Al2O3 nanocomposites prepared by chemical routes

    International Nuclear Information System (INIS)

    Jena, P.K.; Brocchi, E.A.; Solorzano, I.G.; Motta, M.S.

    2004-01-01

    Nanocomposite of Cu-Al 2 O 3 have been prepared through their nitrates by two processes, namely: (1) addition of CuO to aqueous solution of aluminum nitrate, and (2) dissolution of the nitrates of copper and aluminum in water, followed by decomposition to their oxides and then preferential hydrogen reduction of CuO for both processes 1 and 2. The composite powders (containing 0.5-5 wt.% of Al 2 O 3 ), prepared by both the routes have been found to have nanoparticles. The composite powders have been cold pressed into briquettes and sintered at 950 deg. C for 2 h. Studies on their microstructures have been carried out through X-ray diffraction (XRD), conventional and high-resolution transmission electron microscopy (CTEM and HRTEM) and quantitative scanning transmission electron microscopy (STEM) X-ray mapping. The composites prepared through both routes, have been found to contain a third phase (Cu x Al y O z ), possibly CuAlO 2 and/or CuAl 2 O 4 along with Cu and Al 2 O 3 phases. However, in the composite prepared by process 2, the Al and O were dispersed more homogeneously, maintaining a continuity in the matrix

  13. Microstructure and Properties of Nanocrystalline Copper Strengthened by a Low Amount of Al2O3 Nanoparticles

    Science.gov (United States)

    Ďurišinová, Katarína; Ďurišin, Juraj; Ďurišin, Martin

    2017-03-01

    Dispersion-strengthened Cu-Al2O3 materials have been studied over recent years to find an optimum processing route to obtain a high strength, thermal-stable copper alloy designed for modern applications in electrical engineering. The study analyses the influence of 1 vol.% of alumina content on strengthening the copper matrix. Microstructure of the Cu-Al2O3 composite was studied by x-ray diffraction as well as scanning and transmission electron microscopy. The composite shows a homogeneous, thermal-stable nanostructure up to 900 °C due to dispersed alumina nanoparticles. The particles effectively strengthen crystallite/grain boundaries in processes of powder consolidation and annealing of the compact. In contrast to monolithic Cu, the Cu-1 vol.% Al2O3 exhibits more than double strength and hardness. The nanocrystalline matrix and the low amount of alumina particles result in a yield strength of 288 MPa and a ductility of 15% which is a good combination for practical utilization of the material.

  14. Fabrication of Al2O3–20 vol.% Al nanocomposite powders using high energy milling and their sinterability

    International Nuclear Information System (INIS)

    Zawrah, M.F.; Abdel-kader, H.; Elbaly, N.E.

    2012-01-01

    Highlights: ► Al 2 O 3 /Al nanocomposite powders were prepared via high energy ball milling. After 20 h milling, the size of Al 2 O 3 –20 vol.% Al nanocomposite particles was in the range of 23–29 nm. A uniform distribution of nanosized Al reinforcement throughout the Al 2 O 3 matrix, coating the particles was successfully obtained. ► There was no any sign of phase changes during the milling. A competition between the cold welding mechanism and the fracturing mechanism were found during milling and finally the above two mechanisms reached an equilibrium. ► The highest value of relative density was obtained for the sintered bodies at 1500 °C. ► The harness of the sintered composite was decreased while the fracture toughness was improved after addition Al into alumina. -- Abstract: In this study, alumina-based matrix nanocomposite powders reinforced with Al particles were fabricated and investigated. The sinterability of the prepared nanocomposite powder at different firing temperature was also conducted. Their mechanical properties in terms of hardness and toughness were tested. Alumina and aluminum powder mixtures were milled in a planetary ball mill for various times up to 30 h in order to produce Al 2 O 3 –20% Al nanocomposite. The phase composition, morphological and microstructural changes during mechanical milling of the nanocomposite particles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) techniques, respectively. The crystallite size and internal strain were evaluated by XRD patterns using Scherrer methods. A uniform distribution of the Al reinforcement in the Al 2 O 3 matrix was successfully obtained after milling the powders. The results revealed that there was no any sign of phase changes during the milling. The crystal size decreased with the prolongation of milling times, while the internal strain increased. A simple model is presented to illustrate the mechanical

  15. Development and characterization of nickel catalysts supported in CeO2-ZrO2-Al2O3, CeO2-La2O3-Al2O3 e ZrO2-La2O3-Al2O3 matrixes evaluated for methane reforming reactions

    International Nuclear Information System (INIS)

    Abreu, Amanda Jordão de

    2012-01-01

    Nowadays, the methane reforming is large interest industrial for the take advantage of these gas in production the hydrogen and synthesis gas (syngas). Among in the reactions of methane stand of the reactions steam reforming and carbon dioxide reforming of methane. The main catalysts uses in the methane reforming is Ni/Al 2 O 3 . However, the supported-nickel catalyst is susceptible to the deactivation or the destruction by coke deposition. The carbon dissolves in the nickel crystallite and its diffuses through the nickel, leading for formation of the carbon whiskers, which results in fragmentation of the catalyst. Modification of such catalysts, like incorporation of suitable promoters, is desirable to achieve reduction of the methane hydrogenolysis and/or promotion of the carbon gasification. Catalysts 5%Ni/Al 2 O 3 supported on solid solutions formed by ZrO 2 -CeO 2 , La 2 O 3 and CeO 2 -ZrO 2 -La 2 O 3 were prepared, characterized and evaluated in reactions steam and carbon dioxide reforming and partial oxidation of methane with objective the value effect loading solution solid in support. The supports were prepared by co-precipitation method and catalysts were prepared by impregnation method and calcined at 500 deg C. The supports and catalysts were characterized by Nitrogen Adsorption, method -rays diffraction (XRD), X-rays dispersive spectroscopy (XDS), spectroscopy in the region of the ultraviolet and the visible (UV-vis NIR) to and temperature programmed reduction (TPR), Raman Spectroscopy, X-ray absorption spectroscopy and Thermogravimetric Analysis. After all the catalytic reactions check which the addition of solid solution is beneficial for Ni/Al 2 O 3 catalysts and the best catalysts are Ni/CeO 2 -La 2 O 3 -Al 2 O 3 . (author)

  16. Effect of surface reactions on steel, Al2O3 and Si3N4counterparts on their tribological performance with polytetrafluoroethylene filled composites

    NARCIS (Netherlands)

    Shen, J.T.; Top, M.; Ivashenko, O.; Rudolf, P.; Pei, Yutao T.; De Hosson, J.Th.M.

    2015-01-01

    The influence of surface reactions on the tribo-performance of steel, Al2O3 and Si3N4 balls sliding against polytetrafluoroethylene/SiO2/epoxy composites was investigated. Al2O3 ball were found to exhibit the best tribo-performance, namely a low coefficient of friction and the lowest wear rates of

  17. Precision of RL/OSL medical dosimetry with fiber-coupled Al2O3:C: Influence of readout delay and temperature variations

    DEFF Research Database (Denmark)

    Andersen, Claus Erik; Morgenthaler Edmund, Jens; Damkjær, Sidsel Marie Skov

    2010-01-01

    Carbon-doped aluminum oxide (Al2O3:C) crystals attached to 15 m optical fiber cables can be used for online in vivo dosimetry during, for example, remotely afterloaded brachytherapy. Radioluminescence (RL) is generated spontaneously in Al2O3:C during irradiation, and this scintillator-like signal...

  18. Phase and Microstructure Evolution and Toughening Mechanism of a Hierarchical Architectured Al2O3-Y2O3 Coating under High Temperature

    Science.gov (United States)

    Rong, Jian; Yang, Kai; Zhuang, Yin; Ni, Jinxing; Zhao, Huayu; Tao, Shunyan; Zhong, Xinghua; Ding, Chuanxian

    2018-02-01

    In recent years, numerous techniques have been developed to mimic nacre-like hierarchical architectures in order to improve the damage tolerance of materials. We present herein a simple strategy to fabricate such a hierarchical architectured Al2O3-Y2O3 composite coating via atmospheric plasma spraying. The evolution of the phase and microstructure of the Al2O3-Y2O3 composite coating were characterized under conditions of high-temperature exposure in air at 800-1350 °C. The hardness and porosity of several typical coatings were determined. In situ formation of dense hierarchical architectured Al2O3-YAG composite coating with improved hardness was achieved after heat treatment at 1350 °C. Compared with Al2O3 coating, elevated toughness was found for the hierarchical architectured Al2O3-YAG composite coating, which can be ascribed to the distribution of YAG phase that contributed to crack termination and deflection, and microbridging. After thermal aging treatment at 1350 °C, the hierarchical architectured Al2O3-YAG composite coating was quite stable after 100 h of thermal exposure. Furthermore, the Al2O3-Y2O3 composite coating exhibited superior sintering resistance compared with the Al2O3 coating.

  19. A kinetic model of the hydrogen assisted selective catalytic reduction of NO with ammonia over Ag/Al2O3

    DEFF Research Database (Denmark)

    Tamm, Stefanie; Olsson, Louise; Fogel, Sebastian

    2013-01-01

    A global kinetic model which describes H2-assisted NH3-SCR over an Ag/Al2O3 monolith catalyst has been developed. The intention is that the model can be applied for dosing NH3 and H2 to an Ag/Al2O3 catalyst in a real automotive application as well as contribute to an increased understanding...

  20. Síntese de Al2O3/SiC em forno de microondas: estudo de parâmetros do processo Synthesis of Al2O3/SiC in microwave oven: study of the processing parameters

    Directory of Open Access Journals (Sweden)

    T. P. Deksnys

    2005-12-01

    Full Text Available Estudos demonstram a eficiência do método de moagem prévia do aluminossilicato precursor para a síntese da fase Al2O3/SiC por meio da reação de redução carbotérmica em forno de microondas. No presente trabalho, além da moagem do precursor, outros parâmetros de reação foram estudados, como tempo de reação, potência da radiação emitida e fluxo de gás. As reações foram realizadas em forno de microondas semi-industrial, com adaptação para inserção de gás inerte. Dois tipos de reatores foram avaliados: um reator cilíndrico, termicamente isolado, e um reator tubular de leito fixo, nos quais foram colocados os precursores peletizados. Existe uma relação direta entre a saturação da atmosfera de reação com a cinética de redução carbotérmica do aluminossilicato. Esse comportamento, aliado a elevadas potências de emissão, favorecem a formação da fase Al2O3/SiC em períodos de tempo reduzidos.Results presented elsewhere have confirmed the feasibility of the previous milling process of the starting materials for the synthesis of Al2O3/SiC by the microwave-assisted carbothermal reduction. In the present work, parameters such as precursor milling, reaction time, microwave's power level and gas flow have been investigated. Reactions were carried out in a semi-industrial microwave oven (Cober Inc., USA, which allowed the inert gas insertion. Two reactions arrangement were developed to perform the synthesis: a cylindrical reactor, thermally insulated and a pipe fluidized bed reactor. Into both reactors, the precursor was applied in a palletized form to react. There is a direct relation between the reaction atmosphere saturation and the kinetics of the carbothermal reduction. This behavior, in addiction to high power levels of microwave radiation (>1.5 KW, favors the formation of Al2O3/SiC in a short time.

  1. Molecular adsorption at electrolyte/α-Al2O3interface of aluminum electrolytic capacitor revealed by sum frequency vibrational spectroscopy.

    Science.gov (United States)

    Jia, Ming; Hu, Xiaoyu; Liu, Jin; Liu, Yexiang; Ai, Liang

    2017-05-21

    The operating voltage of an aluminum electrolytic capacitor is determined by the breakdown voltage (U b ) of the Al 2 O 3 anode. U b is related to the molecular adsorption at the Al 2 O 3 /electrolyte interface. Therefore, we have employed sum-frequency vibrational spectroscopy (SFVS) to study the adsorption states of a simple electrolyte, ethylene glycol (EG) solution with ammonium adipate, on an α-Al 2 O 3 surface. In an acidic electrolyte (pH 8), the Al 2 O 3 surface is negatively charged and the short chain EG molecules adopt a "tilting" orientation. The U b results exhibit a much higher value at pH 8. Since the "lying" long chain molecules cover and protect the Al 2 O 3 surface, U b increases with a decrease of pH. These findings provide new insights to study the breakdown mechanisms and to develop new electrolytes for high operating voltage capacitors.

  2. High efficient conversion of furfural to 2-methylfuran over Ni-Cu/Al2O3 catalyst with formic acid as a hydrogen donor

    DEFF Research Database (Denmark)

    Fu, Zhaolin; Wang, Ze; Lin, Weigang

    2017-01-01

    Conversion of furfural to 2-methylfuran over Cu/Al2O3, Ni/Al2O3 and Ni-Cu/Al2O3 catalysts were investigated with formic acid as a hydrogen donor. Ni/Al2O3 showed a high catalytic activity but a moderate selectivity to 2-methylfuran. Contrarily, Cu/Al2O3 showed a low catalytic activity but a high...... contribute to the formation of furfuryl alcohol with 96% selectivity through the transfer hydrogenation process. Formic acid could decompose to H2 and CO2, remarkably promoting the hydrogenolysis of furfuryl alcohol to 2-methylfuran. Finally, 100% conversion and 92 mol% yield of 2-methylfuran could...

  3. Hydrogen production via supercritical water gasification of bagasse using Ni-Cu/γ-Al2O3 nano-catalysts.

    Science.gov (United States)

    Mehrani, Reza; Barati, Mohammad; Tavasoli, Ahmad; Karimi, Ali

    2015-01-01

    Biomass gasification in supercritical water media is a promising method for the production of hydrogen. In this research, Cu-promoted Ni/γ-Al2O3 nano-catalysts were prepared with 2.5-30 wt% Ni and 0.6-7.5 wt% Cu loadings via the microemulsion method. Nano-catalysts were characterized by inductively coupled plasma (ICP), Brunauer Emmett Teller (BET) technique, X-Ray Diffraction (XRD), H2 chemisorption and Transmission Electron Microscopy (TEM) technique, as well as Carbon-Hydrogen-Nitrogen-Sulfur (CHNS) analysis was carried out for elemental analysis of bagasse. Nano-catalysts were assessed in a batch micro-reactor under 400°C and 240 bar. The microemulsion method decreased the catalyst average particle size and increased the percentage dispersion and reduction of the catalysts. The total gas yield increased with an increase in Ni and Cu loadings up to 20 wt% Ni and 5 wt% Cu and then started to decrease. Using the microemulsion technique for the preparation of Ni-Cu/γ-Al2O3 nano-catalyst, increased the hydrogen yield to 11.76 (mmol of H2/g of bagasse), CO yield to 2.67 (mmol of CO/g of bagasse) and light gaseous hydrocarbons to 0.6 (mmol of light gaseous hydrocarbons/g of bagasse). Promotion of Ni/γ-Al2O3 with copper increased the mole fraction of hydrogen in the final gasification products to 58.1 mol%.

  4. Improved interface and electrical properties of atomic layer deposited Al2O3/4H-SiC

    Science.gov (United States)

    Suvanam, Sethu Saveda; Usman, Muhammed; Martin, David; Yazdi, Milad. G.; Linnarsson, Margareta; Tempez, Agnès; Götelid, Mats; Hallén, Anders

    2018-03-01

    In this paper we demonstrate a process optimization of atomic layer deposited Al2O3 on 4H-SiC resulting in an improved interface and electrical properties. For this purpose the samples have been treated with two pre deposition surface cleaning processes, namely CP1 and CP2. The former is a typical surface cleaning procedure used in SiC processing while the latter have an additional weak RCA1 cleaning step. In addition to the cleaning and deposition, the effects of post dielectric annealing (PDA) at various temperatures in N2O ambient have been investigated. Analyses by scanning electron microscopy show the presence of structural defects on the Al2O3 surface after annealing at 500 and 800 °C. These defects disappear after annealing at 1100 °C, possibly due to densification of the Al2O3 film. Interface analyses have been performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight medium energy ion scattering (ToF MEIS). Both these measurements show the formation of an interfacial SiOx (0 < x < 2) layer for both the CP1 and CP2, displaying an increased thickness for higher temperatures. Furthermore, the quality of the sub-oxide interfacial layer was found to depend on the pre deposition cleaning. In conclusion, an improved interface with better electrical properties is shown for the CP2 sample annealed at 1100 °C, resulting in lower oxide charges, strongly reduced flatband voltage and leakage current, as well as higher breakdown voltage.

  5. Characterization of Industrial Pt-Sn/Al2O3 Catalyst and Transient Product Formations during Propane Dehydrogenation

    Directory of Open Access Journals (Sweden)

    Kah Sing Ho

    2013-06-01

    Full Text Available The major problem plaguing propane dehydrogenation process is the coke formation on the Pt-Sn/Al2O3 catalyst which leads to catalyst deactivation. Due to information paucity, the physicochemical characteristics of the commercially obtained regenerated Pt-Sn/Al2O3 catalyst (operated in moving bed reactor and coke formation at different temperatures of reaction were discussed. The physicochemical characterization of regenerated catalyst gave a BET surface area of 104.0 m2/g with graphitic carbon content of 8.0% indicative of incomplete carbon gasification during the industrial propylene production. Effect of temperatures on coke formation was identified by studying the product yield via temperature-programmed reaction carried out at 500oC, 600oC and 700oC. It was found that ethylene was precursor to carbon laydown while propylene tends to crack into methane. Post reaction, the spent catalyst possessed relatively lower surface area and pore radius whilst exhibited higher carbon content (31.80% at 700oC compared to the regenerated catalyst. Significantly, current studies also found that higher reaction temperatures favoured the coke formation. Consequently, the propylene yield has decreased with reaction temperature. © 2013 BCREC UNDIP. All rights reservedReceived: 10th March 2013; Revised: 28th April 2013; Accepted: 6th May 2013[How to Cite: Kah, S.H., Joanna Jo, E.C., Sim, Y.C., Chin, K.C. (2013. Characterization of Industrial Pt-Sn/Al2O3 Catalyst and Transient Product Formations during Propane Dehydrogenation. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 77-82. (doi:10.9767/bcrec.8.1.4569.77-82][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4569.77-82] | View in  |

  6. SrZnO nanostructures grown on templated Al2O3 substrates by pulsed laser deposition

    Science.gov (United States)

    Labis, Joselito P.; Alanazi, Anwar Q.; Albrithen, Hamad A.; El-Toni, Ahmed Mohamed; Hezam, Mahmoud; Elafifi, Hussein Elsayed; Abaza, Osama M.

    2017-09-01

    The parameters of pulsed laser deposition (PLD) have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO). In this work, SrZnO nanostructures are grown on Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ˜300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL), while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002) preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.

  7. Band alignment and electrical investigations of ultra-thin Al2O3 on Si by E-beam evaporation

    Science.gov (United States)

    Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara

    2017-05-01

    The continuous downscaling leads the search of high-κ gate dielectrics. The films amorphous in nature offered good mechanical flexibility, smooth surfaces and better uniformity associated with low leakage current density. In this work, ˜ 16 nm thick amorphous Al2O3 films on silicon substrate are fabricated by E-beam evaporation. The high value of refractive index (1.76) extracted from ellipsometry analysis directs the deposition of compact film. The AFM analysis reveal a flat surface with small RMS surface roughness 1.5 Å. The band gap is extracted from O1s electron loss spectra and was found 6.7 eV and band alignment of Al2O3/Si is derived from the UPS measurements. The films are incorporated in Metal - Insulator - Semiconductor (MIS) capacitor to perform the electrical measurement. The flat band voltage (VFB), dielectric constant (κ) and oxide trapped charges (Qot) extracted from high frequency (1 MHz) C-V curve are - 0.4 V, 8.4 and 2 × 1011 cm-2, respectively. The small flat band voltage - 0.4 V, narrow hysteresis and very little frequency dispersion suggest an exceptional good Al2O3/Si interface with small quantity of trapped charges in the oxide. The leakage current density was 4.27 × 10-8 A/cm2 at 1 V. The moderate dielectric constant and low leakage current density with ultra-smooth surface is quite useful towards its application in future CMOS and memory devices.

  8. SrZnO nanostructures grown on templated Al2O3 substrates by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Joselito P. Labis

    2017-09-01

    Full Text Available The parameters of pulsed laser deposition (PLD have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO. In this work, SrZnO nanostructures are grown on Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ∼300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL, while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002 preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.

  9. Network topology for the formation of solvated electrons in binary CaO-Al2O3 composition glasses.

    Science.gov (United States)

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J K Richard; Benmore, Chris J

    2013-06-18

    Glass formation in the CaO-Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO-Al2O3 glasses using combined density functional theory-reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O-Ca and O-Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al-O is stronger than that of Ca-O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71-74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass.

  10. Upgrading of the liquid fuel from fast pyrolysis of biomass over MoNi/γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Xu, Ying; Wang, Tiejun; Ma, Longlong; Zhang, Qi; Liang, Wei

    2010-01-01

    The hydrotreatment of bio-oil, which obtained from fast pyrolysis of pine sawdust, was investigated over MoNi/γ-Al 2 O 3 catalyst under mild conditions (373 K, 3 MPa hydrogen pressure). Acetic acid was taken as a model compound to investigate the effects of Mo promoter contents and reducing temperatures of catalysts on the catalysts activity under the condition of 473 K and 3 MPa hydrogen pressure. X-ray diffraction and temperature programmed reduction showed that the addition of Mo promoter benefited the uniformity of nickel species and inhibited the formation of NiAl 2 O 4 spinel in the catalysts. The GC spectrum of liquid products showed the mechanism of the model reaction. The maximum conversion of acetic acid (33.20%) was attained over 0.06MoNi/γ-Al 2 O 3 catalysts being reduced at 873 K. This catalyst was chosen for the upgrading of raw bio-oil. After the upgrading process, the pH value of the bio-oil increased from 2.33 to 2.77. The water content increased from 35.52 wt.% to 41.55 wt.% and the gross calorific value increased from 13.96 MJ/kg to 14.17 MJ/kg. The hydrogen content in the bio-oil increased from 6.25 wt.% to 6.95 wt.%. The product properties of the upgraded bio-oil, particularly the hydrogen content and the acidity were considerably improved. The results of gas chromatography-mass spectrometry analysis showed that both hydrotreatment and esterification had happened over 0.06MoNi/γ-Al 2 O 3 (873) catalyst during the upgrading process.

  11. Characterization of physical properties of Al2O3 and ZrO2 nanofluids for heat transfer applications

    International Nuclear Information System (INIS)

    Rocha, Marcelo S.; Cabral, Eduardo L.L.; Sabundjian, Gaiane; Yoriyaz, Helio; Lima, Ana Cecilia S.; Belchior Junior, Antonio; Prado, Adelk C.; Filho, Tufic M.; Andrade, Delvonei A.; Shorto, Julian M.B.; Mesquita, Roberto N.; Otubo, Larissa; Baptista Filho, Benedito D.; Pinho, Priscila G.M.; Ribatsky, Gherhardt; Moraes, Anderson Antonio Ubices

    2015-01-01

    Studies demonstrate that nanofluids based on metal oxide nanoparticles have physical properties that characterize them as promising fluids, mainly, in industrial systems in which high heat flux takes place. Water based nanofluids of Al 2 O 3 and ZrO 2 were characterized regarding its promising use in heat transfer applications. Three different concentrations of dispersed solutions of cited nanofluids were prepared (0.01% vol., 0.05% vol., and 0.1% vol.) from commercial nanofluids. Experimental measurements were carried out at different temperatures. Thermal conductivity, viscosity and density of the prepared nanofluids were measured. (author)

  12. Effects caused by thermal shocks in plasma sprayed protective coatings from materials based on Al2O3

    International Nuclear Information System (INIS)

    Gorski, L.; Wolski, T.; Gostynski, D.

    1996-01-01

    Plasma sprayed coatings from the materials based on Al 2 O 3 with addition of NiO and TiO 2 have been studied. Thermal shock resistance of these coatings has been tested on special experimental arrangement in the stream of hot and cold gases. Changes in coating microstructure has been determined by light microscopy methods. Phase transition caused by the experiments are revealed by X-ray diffraction methods. The resistance for thermal fatigue processes depends on used coatings materials. (author). 21 refs, 21 figs, 1 tab

  13. EXPERIMENTAL STUDY ON HEAT TRANSFER COEFFICIENT AND FRICTION FACTOR OF Al2O3 NANOFLUID IN A PACKED BED COLUMN

    Directory of Open Access Journals (Sweden)

    G. Srinivasa Rao

    2011-12-01

    Full Text Available The forced convection heat transfer coefficient and friction factor are determined for the flow of water and nanofluid in a vertical packed bed column. The analysis is undertaken in the laminar and transition Reynolds number range. The column is filled with spherical glass beads as the bed material. The heat transfer coefficients with Al2O3 nanofluid increased by 12% to 15% with the increase of volume concentration from 0.02% to 0.5% compared with water. The experimental values of axial temperature are in good agreement with the NTU-ε method proposed by Schumann’s model.

  14. The phenomena occurring along borderline of the phase shares in the casted Al-Al2O3 composites

    OpenAIRE

    K. Garbala; A. Patejuk

    2009-01-01

    In the foregoing work, one analyses in detail the use of nickel cover on the Al2O3 particles in composites with the Al matrix (Al alloy). The mechanisms of developing the Al-Ni combination on the interface were the subject of the detailed analysis. The aim of the work was topresent the model research, the aim of which is to describe mechanism of the combination in the sphere of aluminum-nickel sphere, ingradient. The research of the combination between the above mentioned metals was conducted...

  15. RAMAN/Cr3+ FLUORESCENCE MAPPING OF MELT-GROWN Al2O3/GdAlO3 EUTECTICS

    OpenAIRE

    Gouadec , Gwénael; Colomban , Philippe; Piquet , Nicolas; Trichet , Marie-France; Mazerolles , Léo

    2005-01-01

    International audience; The paper reports on the Raman/fluorescence study of melt-grown Al2O3/GdAlO3 eutectic composites. Raman bands from the Α-alumina and gadolinium perovskite phases identified by X-ray diffraction were systematically observed together in the domains optically visible, even when the latter were much larger than the Raman probe. This suggests a more complex interlocking pattern than appearing on SEM or optical microscopy images. The polarization of alumina and GdAlO3 Raman ...

  16. Degradation of sulfur mustard on KF/Al2O3 supports: insights into the products and the reactions mechanisms.

    Science.gov (United States)

    Zafrani, Yossi; Goldvaser, Michael; Dagan, Shai; Feldberg, Liron; Mizrahi, Dana; Waysbort, Daniel; Gershonov, Eytan; Columbus, Ishay

    2009-11-06

    The degradation of the warfare agent sulfur mustard (HD) adsorbed onto KF/Al(2)O(3) sorbents is described. These processes were explored by MAS NMR, using (13)C-labeled sulfur mustard (HD*) and LC-MS techniques. Our study on the detoxification of this blister agent showed the formation of nontoxic substitution and less-toxic elimination products (t(1/2) = 3.5-355 h). Interestingly, the reaction rates were found to be affected by MAS conditions, i.e., by a centrifugation effect. The products and the mechanisms of these processes are discussed.

  17. Peculiarities of the behavior of the W-Al2O3 system in a controlled reducing atmosphere

    Science.gov (United States)

    Kostomarov, D. V.

    2016-03-01

    The W-Al2O3 system at T = 2400 K and standard pressure (controlled Ar + H2 atmosphere) has been calculated by stochastic simulation. It is shown that the presence of hydrogen leads to the formation of aluminum hydrides, hydrogen oxides, and aluminum hydroxides; the compounds from the two latter groups (except for water) can interact directly with tungsten. The main chemical reactions occurring in the system are determined, based on which a conclusion about the cyclic character of the processes is drawn. Some recommendations on the composition and pressure of controlled atmosphere for growing sapphire crystals are given.

  18. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer; Johannessen, Tue; Wedel, Stig

    2003-01-01

    The flame combustion synthesis of Cu/ZnO/Al2O3 catalysts for the synthesis of methanol from CO, CO2 and H2 is investigated. The oxides are generated in a premixed flame from the acetyl-acetonate vapours of Cu, Zn and Al mixed with the fuel and air prior to combustion. The flame-generated powder.......1 %. A ternary catalyst with the composition of Cu:Zn:Al=45:45:10 has the highest catalytic activity of all samples tested. This catalyst is also very selective and stable towards thermal deactivation. The role of the individual catalyst components in the optimal catalyst is discussed....

  19. Two-Nozzle Flame Spray Pyrolysis (FSP) Synthesis of CoMo/Al2O3 Hydrotreating Catalysts

    DEFF Research Database (Denmark)

    Høj, Martin; Pham, David K.; Brorson, Michael

    2013-01-01

    synthesized oxidic catalysts were activated by sulfidation without further heat treatments. The hydrodesulfurization activity of the best two-nozzle FSP catalysts, compared to the one-nozzle FSP catalysts, improved from 75 to 91 % activity relative to a commercial reference catalyst...... at short flame mixing distances, where the flame conditions resemble one-nozzle FSP. Raman spectroscopy revealed that β-CoMoO4 was a component of all the catalysts (in the as-prepared oxidic form) together with alumina supported MoO x surface species. The only phase detected with XRD was γ-Al2O3. The FSP...

  20. Proximity effect and hot-electron diffusion in Ag/Al2O3/Al tunnel junctions

    International Nuclear Information System (INIS)

    Netel, H.; Jochum, J.; Labov, S.E.; Mears, C.A.; Frank, M.; Chow, D.; Lindeman, M.A.; Hiller, L.J.

    1997-01-01

    We have fabricated Ag/Al 2 O 3 /Al tunnel junctions on Si substrates using a new process. This process was developed to fabricate superconducting tunnel junctions (STJs) on the surface of a superconductor. These junctions allow us to study the proximity effect of a superconducting Al film on a normal metal trapping layer. In addition, these devices allow us to measure the hot-electron diffusion constant using a single junction. Lastly these devices will help us optimize the design and fabrication of tunnel junctions on the surface of high-Z, ultra-pure superconducting crystals. 5 refs., 8 figs

  1. Structural and electronic properties of Ag-Pd bimetallic clusters on Al2O3 substrates: A first principles study

    Science.gov (United States)

    Nigam, Sandeep; Majumder, Chiranjib

    2012-06-01

    We report the structure and electronic properties of AgmPdn bimetallic clusters (m, n = 1-2) in gas phase and deposited on the α-Al2O3(0 0 0 1) surface using plane wave pseudopotential approach. The ground state geometry of the mixed clusters is significantly modified after deposition. For Ag2Pd2 tetramer, the gas phase compact tetrahedron structure reorients to open bent rhombus. The charge distribution analysis shows that small amount of charge is accumulated at the Pd site and depleted at the Ag site. The electronic density of states analysis reveals that after deposition, the bands near the Fermi energy become wider.

  2. Microstructural evolution of the al2o3-zro2 composite and its correlation with electrical conductivity

    Directory of Open Access Journals (Sweden)

    Fortulan Carlos A.

    1999-01-01

    Full Text Available The Al2O3-ZrO2 composite was studied by impedance spectroscopy, a non destructive technique that was found to be sensitive to the composite's microstructure. The observed decrease in the zirconia grain and grain boundary conductivities points to compression on zirconia grain by alumina matrix. This effect increased with decreased concentration of zirconia in the composite. Measurements were taken of composites above the percolation threshold for vacancy conduction along the zirconia grains. The effect of densification and grain growth on the composite's conduction was measured. The changes in the zirconia grain and grain boundary specific conductivities were found to be correlated.

  3. X-ray photoelectron spectroscopy of an industrially sulphided commercial CoMo-γAl2O3 catalyst

    International Nuclear Information System (INIS)

    Demanet, C.M.

    1984-01-01

    An X-ray photoelectron spectroscopic (XPS) study of an industrially sulphided commercial CoMo-γAl 2 O 3 catalyst is reported. In the fresh (oxidized) catalyst, Co is present as Co 3 O 4 and Mo is in the form of Mosup(VI). When sulphided under industrial conditions, Co is in the form of CoS, Mo is present in the Mosup(IV) and Mosup(VI), and three different sulphur species are distinguished. The variation of the intensity of the XPS signals with temperature is considered in drawing conclusions about the nature of the surface

  4. The Effect of Heat Treatment on Fe doped Al2O3 Nanoparticles Prepared by Aqueous Combustion Synthesis

    International Nuclear Information System (INIS)

    Dehzangi, A.; Jalal Rouhi; Saion, E.B.

    2011-01-01

    Iron doped Al 2 O 3 nanoparticles have been prepared from an aqueous combustion synthesis technique using stoichiometric amounts of aluminium nitrate [Al 9 NO 3 ) 3 .9H 2 O], ferric nitrate [Fe(NO 3 ) 3 .9H 2 O] and Sucrose sugar [C 12 H 22 O 11 ]. Heat treatment of the nanoparticles at tow temperatures (900 degree Celsius, 1100 degree Celsius) results in the formation of porous agglomerated iron doped alumina nanoparticles. Iron doped alumina were successfully synthesized by using sugar as fuel. The heat-treated powders have been characterized by X-ray diffraction, scanning electron microscopy and Energy-dispersive X-ray spectroscopy . (author)

  5. Comparative analysis of the low-energy He + ions scattering on Al and Al 2O 3 surfaces

    Science.gov (United States)

    Fomin, V. M.; Misko, V. R.; Devreese, J. T.; Brongersma, H. H.

    1998-12-01

    Using the Anderson-Muda-Newns approach, the neutralization rate and the ion survival probability have been calculated for the large angle scattering of low-energy He + ions by Al and by Al 2O 3. The two-band model of the electronic energy spectra is applied for the case of alumina. The electron promotion has been shown to play an important role in the processes of the He + ions scattering by aluminum and alumina. The experimentally observed absence of the matrix effect is discussed on the basis of the obtained results.

  6. Comparative analysis of the low-energy He+ ions scattering on Al and Al2O3 surfaces

    International Nuclear Information System (INIS)

    Fomin, V.M.; Misko, V.R.; Devreese, J.T.; Brongersma, H.H.

    1998-01-01

    Using the Anderson-Muda-Newns approach, the neutralization rate and the ion survival probability have been calculated for the large angle scattering of low-energy He + ions by Al and by Al 2 O 3 . The two-band model of the electronic energy spectra is applied for the case of alumina. The electron promotion has been shown to play an important role in the processes of the He + ions scattering by aluminum and alumina. The experimentally observed absence of the matrix effect is discussed on the basis of the obtained results. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. A comparison of BCF-12 organic scintillators and Al2O3:C crystals for real-time medical dosimetry

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Andersen, Claus Erik; Lindvold, Lars

    2008-01-01

    Radioluminescence (RL) from aluminium oxide (Al2O3:C) crystals and organic scintillators such as the blue-emitting BCF-12 can be used for precise real-time dose rate measurements during radiation therapy of cancer patients. Attaching the dosimeters to thin light-guiding fiber cables enables in vivo...... can be circumvented for pulsed beams due to the long life-time of the main luminescence center. In contrast, chromatic removal seems to be the most effective method for organic scintillators, but is found to yield some experimental complexities. In this paper, we report on dose rate measurements using...

  8. Electrical characterization of 4H-SiC metal-oxide-semiconductor structure with Al2O3 stacking layers as dielectric

    Science.gov (United States)

    Chang, P. K.; Hwu, J. G.

    2018-02-01

    Interface defects and oxide bulk traps conventionally play important roles in the electrical performance of SiC MOS device. Introducing the Al2O3 stack grown by repeated anodization of Al films can notably lower the leakage current in comparison to the SiO2 structure, and enhance the minority carrier response at low frequency when the number of Al2O3 layers increase. In addition, the interface quality is not deteriorated by the stacking of Al2O3 layers because the stacked Al2O3 structure grown by anodization possesses good uniformity. In this work, the capacitance equivalent thickness (CET) of stacking Al2O3 will be up to 19.5 nm and the oxidation process can be carried out at room temperature. For the Al2O3 gate stack with CET 19.5 nm on n-SiC substrate, the leakage current at 2 V is 2.76 × 10-10 A/cm2, the interface trap density at the flatband voltage is 3.01 × 1011 eV-1 cm-2, and the effective breakdown field is 11.8 MV/cm. Frequency dispersion and breakdown characteristics may thus be improved as a result of the reduction in trap density. The Al2O3 stacking layers are capable of maintaining the leakage current as low as possible even after constant voltage stress test, which will further ameliorate reliability characteristics.

  9. Suppressing the Photocatalytic Activity of TiO2 Nanoparticles by Extremely Thin Al2O3 Films Grown by Gas-Phase Deposition at Ambient Conditions

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2018-01-01

    Full Text Available This work investigated the suppression of photocatalytic activity of titanium dioxide (TiO2 pigment powders by extremely thin aluminum oxide (Al2O3 films deposited via an atomic-layer-deposition-type process using trimethylaluminum (TMA and H2O as precursors. The deposition was performed on multiple grams of TiO2 powder at room temperature and atmospheric pressure in a fluidized bed reactor, resulting in the growth of uniform and conformal Al2O3 films with thickness control at sub-nanometer level. The as-deposited Al2O3 films exhibited excellent photocatalytic suppression ability. Accordingly, an Al2O3 layer with a thickness of 1 nm could efficiently suppress the photocatalytic activities of rutile, anatase, and P25 TiO2 nanoparticles without affecting their bulk optical properties. In addition, the influence of high-temperature annealing on the properties of the Al2O3 layers was investigated, revealing the possibility of achieving porous Al2O3 layers. Our approach demonstrated a fast, efficient, and simple route to coating Al2O3 films on TiO2 pigment powders at the multigram scale, and showed great potential for large-scale production development.

  10. Interfacial and electrical properties of Al2O3/GaN metal-oxide-semiconductor junctions with ultrathin AlN layer

    Science.gov (United States)

    Kim, Hogyoung; Kim, Dong Ha; Choi, Byung Joon

    2017-12-01

    Ultrathin AlN layer deposited by atomic layer deposition (ALD) was employed in Al2O3/GaN metal-oxide-semiconductor (MOS) capacitors, and their interfacial and electrical properties were investigated using X-ray photoelectron spectroscopy (XPS) and current-voltage ( I-V) and capacitance-voltage ( C-V) measurements. XPS analyses revealed that the diffusion of N atoms into Al2O3 and the degradation of Al2O3 film quality were significant for the thickest Al2O3 (10 nm). The sample with a 10-nm-thick Al2O3 layer produced the highest leakage current and trap density. These results may result from the deteriorated interface characteristics near the AlN layer caused by long growth time. Therefore, it is suggested that the Al2O3 thickness (and optimal growth time) is a key factor in Al2O3/AlN/GaN MOS capacitors.

  11. Control of Al2O3/InAlN interface by two-step atomic layer deposition combined with high-temperature annealing

    Science.gov (United States)

    Nakano, Takuma; Chiba, Masahito; Akazawa, Masamichi

    2014-04-01

    An attempt was made to control the Al2O3/InAlN interface by the phase change of the Al2O3 layer formed by atomic layer deposition (ALD). The electrical properties of an InAlN metal-oxide-semiconductor (MOS) diode with a sufficiently thick ALD-Al2O3 layer deteriorated following conventional postdeposition annealing (PDA) at 850 °C, which is sufficiently high for microcrystallization of the ALD-Al2O3 layer. However, X-ray photoelectron spectroscopy showed no evidence of an interface disorder in the ultrathin ALD-Al2O3/InAlN structure annealed at 850 °C. Two-step ALD interrupted by annealing at 850 °C right after the formation of the initial ultrathin Al2O3 layer improved the electrical properties of the MOS diode with reduced interface state density (Dit) and leakage current. A weak crystallization of the ultrathin Al2O3 layer was confirmed by transmission electron microscopy. Improvement of the interface disorder by high-temperature annealing is discussed as the origin of the Dit reduction.

  12. Epitaxial growth and electric properties of γ-Al2O3(110) films on β-Ga2O3(010) substrates

    Science.gov (United States)

    Hattori, Mai; Oshima, Takayoshi; Wakabayashi, Ryo; Yoshimatsu, Kohei; Sasaki, Kohei; Masui, Takekazu; Kuramata, Akito; Yamakoshi, Shigenobu; Horiba, Koji; Kumigashira, Hiroshi; Ohtomo, Akira

    2016-12-01

    Epitaxial growth and electrical properties of γ-Al2O3 films on β-Ga2O3(010) substrates were investigated regarding the prospect of a gate oxide in a β-Ga2O3-based MOSFET. The γ-Al2O3 films grew along the [110] direction and inherited the oxygen sublattice from β-Ga2O3 resulting in the unique in-plane epitaxial relationship of γ-Al2O3 [\\bar{1}10] ∥ β-Ga2O3[001]. We found that the γ-Al2O3 layer had a band gap of 7.0 eV and a type-I band alignment with β-Ga2O3 with conduction- and valence-band offsets of 1.9 and 0.5 eV, respectively. A relatively high trap density (≅ 2 × 1012 cm-2 eV-1) was found from the voltage shift of photoassisted capacitance-voltage curves measured for a Au/γ-Al2O3/β-Ga2O3 MOS capacitor. These results indicate good structural and electric properties and some limitations hindering the better understanding of the role of the gate dielectrics (a γ-Al2O3 interface layer naturally crystallized from amorphous Al2O3) in the β-Ga2O3 MOSFET.

  13. Growth and characterization of ceria thin films and Ce-doped γ-Al2O3 nanowires using sol-gel techniques.

    Science.gov (United States)

    Gravani, S; Polychronopoulou, K; Stolojan, V; Cui, Q; Gibson, P N; Hinder, S J; Gu, Z; Doumanidis, C C; Baker, M A; Rebholz, C

    2010-11-19

    γ-Al(2)O(3) is a well known catalyst support. The addition of Ce to γ-Al(2)O(3) is known to beneficially retard the phase transformation of γ-Al(2)O(3) to α-Al(2)O(3) and stabilize the γ-pore structure. In this work, Ce-doped γ-Al(2)O(3) nanowires have been prepared by a novel method employing an anodic aluminium oxide (AAO) template in a 0.01 M cerium nitrate solution, assisted by urea hydrolysis. Calcination at 500 °C for 6 h resulted in the crystallization of the Ce-doped AlOOH gel to form Ce-doped γ-Al(2)O(3) nanowires. Ce(3+) ions within the nanowires were present at a concentration of surface, a nanocrystalline CeO(2) thin film was deposited with a cubic fluorite structure and a crystallite size of 6-7 nm. Characterization of the nanowires and thin films was performed using scanning electron microscopy, transmission electron microscopy, electron energy loss spectroscopy, x-ray photoelectron spectroscopy and x-ray diffraction. The nanowire formation mechanism and urea hydrolysis kinetics are discussed in terms of the pH evolution during the reaction. The Ce-doped γ-Al(2)O(3) nanowires are likely to find useful applications in catalysis and this novel method can be exploited further for doping alumina nanowires with other rare earth elements.

  14. Study of the interactions between Eu(III) and Al2O3 particles in the presence of phenolic acids

    International Nuclear Information System (INIS)

    Moreau, P.

    2012-01-01

    In the framework of environmental pollution by radionuclides, this work was focused on the interactions occurring in systems containing europium(III) - as a chemical analogue for the actinides Am(III) and Cm(III) -, phenolic acids - lignin degradation products and anti-fungi, naturally occurring in soils, and alumina - representative of sorption sites found in the environment. This study was conducted at different scales of description: the macroscopic scale - to quantify Eu(III) and/or phenolic acids adsorption onto the mineral surface -, and the microscopic scale - to study the chemical environment of Eu(III) using Time-Resolved Luminescence Spectroscopy (TRLS). First, the binary systems, i.e. systems containing only two entities among the three previously cited, were characterized. Complexation constants of Eu(III) by three phenolic acids (4-hydroxybenzoic, 3,4-dihydroxybenzoic, and 3,4,5-trihydroxybenzoic acids) were determined and quantum calculations (DFT) were carried out on La(III)-acid complex analogues. Sorption of the acids onto aluminol sites was modelled using surface complexation concepts. Analyses of two ternary systems (containing 4-hydroxybenzoic and 3,4-dihydroxybenzoic acids) revealed synergistic processes for Eu(III) and phenolic acids sorption onto Al 2 O 3 . A spectral fingerprint of ternary complex involving Eu(III)/4-hydroxybenzoic acid/Al 2 O 3 surface sites was evidenced. (author) [fr

  15. Spray process for in situ synthesizing Ti(C,N)-TiB2-Al2O3 composite ceramic coatings

    Science.gov (United States)

    Zhou, Jian; Liu, Hongwei; Sun, Sihao

    2017-12-01

    Using core wires with Ti-B4C-C as core and Al as strip materials, Ti(C,N)-TiB2-Al2O3 composite ceramic coatings were prepared on 45 steel substrates by the reactive arc spray technology. The influence of spray voltage, current, gas pressure and distance on the coatings was discussed. The spray parameters were optimized with porosity of the coatings as evaluation standard. The results showed that the most important factor which influences the quality of the coatings was spray distance. Then spray gas pressure, current and voltage followed in turn. The optimum process was spray current of 120A, voltage of 36, gas pressure of 0.7MPa and distance of 160mm. The porosity of coatings prepared in this spray process was only 2.11%. The coatings were composed of TiB2, TiC0.3N0.7, TiN, Al2O3 and AlN. Good properties and uniform distribution of these ceramic phases made the coatings have excellent comprehensive performances.

  16. An investigation on the thermal effusivity of nanofluids Containing Al(2)O(3) and CuO nanoparticles.

    Science.gov (United States)

    Noroozi, Monir; Zakaria, Azmi; Moksin, Mohd Maarof; Wahab, Zaidan Abd

    2012-01-01

    The thermal effusivity of Al(2)O(3) and CuO nanofluids in different base fluids, i.e., deionized water, ethylene glycol and olive oil were investigated. The nanofluids, nanoparticles dispersed in base fluids; were prepared by mixing Al(2)O(3), CuO nanopowder and the base fluids using sonication with high-powered pulses to ensure a good uniform dispersion of nanoparticles in the base fluids. The morphology of the particles in the base fluids was investigated by transmission electron microscopy (TEM). In this study, a phase frequency scan of the front pyroelectric configuration technique, with a thermally thick PVDF pyroelectric sensor and sample, was used to measure the thermal effusivity of the prepared nanofluids. The experimental results of the thermal effusivity of the studied solvents (deionized water, ethylene glycol and olive oil) showed good agreement with literature values, and were reduced in the presence of nanoparticles. The thermal effusivity of the nanofluid was found to be particularly sensitive to its base fluid and the type of nanoparticles.

  17. Bio diesel Production via Transesterification of Palm Oil Using NaOH/ Al2O3 Catalysts

    International Nuclear Information System (INIS)

    Taufiq Yap Yun Hin; Nurul Fitriyah Abdullah; Mahiran Basri; Taufiq Yap Yun Hin; Nurul Fitriyah Abdullah

    2011-01-01

    Due to the increase in price of petroleum and environmental concerns, the search for alternative fuels has gained importance. In this work, bio diesel production by transesterification of palm oil with methanol has been studied in a heterogeneous system using sodium hydroxide loaded on alumina (NaOH/ Al 2 O 3 ). NaOH/ Al 2 O 3 catalyst was prepared by impregnation of alumina with different amount of an aqueous solution of sodium hydroxide followed by calcination in air for 3 h. The prepared catalysts were then characterized by using x-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), Brunner-Emmett-Teller surface area measurement (BET), scanning electron microscopy (SEM) and temperature-programmed desorption of CO 2 (CO 2 -TPD). Moreover, the dependence of the conversion of palm oil on the reactions variables such as the molar ratio of methanol/oil, the amount of catalysts used, reaction temperatures and reaction times were performed. The conversion of 99 % was achieved under the optimum reaction conditions. The bio diesel obtained was characterized by FT-IR and the pour point was measured. (author)

  18. Dielectric and Microwave Absorption Properties of TiC-Al2O3/Silica Coatings at High Temperature

    Science.gov (United States)

    Wang, Yuan; Luo, Fa; Zhou, Wancheng; Zhu, Dongmei

    2017-08-01

    The dielectric property and microwave attenuation performance of a TiC micropowder-filled Al2O3/silica coating were studied. The permittivity of the coating increases gradually with increasing TiC content, which can be attributed to the enhancement of polarization ability and the increase of coating conductivity. Meanwhile, the high-temperature microwave attenuation property of the 30 wt.% TiC-loaded coating was investigated in the temperature range of 25-250°C. Both the real and imaginary parts of complex permittivity exhibit obvious temperature-dependent behavior and increase with the rise of temperature. In the studied temperature range, this coating exhibits an excellent microwave absorption property. A strong absorption peak with minimum RL of -55.2 dB is obtained at 11.8 GHz when the temperature reaches 150°C. Furthermore, the absorption bandwidth (RL ≤ -10 dB) exhibits a widening tendency with the increase of temperature. As the temperature rises from 25°C to 250°C, the effective bandwidth (RL ≤ -10 dB) expands from 2.2 GHz to 3.2 GHz. These results suggest that the TiC-Al2O3/silica coating could be a desirable candidate for microwave absorbtion in the measured frequency and temperature ranges.

  19. Investigation of Wear Behavior of Aluminum Matrix Composite Reinforced by Al2O3 and Produced by Hot Pressing Process

    Directory of Open Access Journals (Sweden)

    Halil ARIK

    2017-12-01

    Full Text Available In this study, Al powder produced by gas atomization technique has 72.06 µm average particle size and 99 % purity was mixed with as a reinforcement Al2O3 has 99.52% purity and 45 submicron particle size in a high energy ball mill for two hours. In order to obtain disk samples with 30 mm diameter and 6 mm thick mixed powders, after the characterization of particle size and morphology, were compacted in a single action press. Compaction process were carried out from mixed powders by hot pressing at 200 MPa pressure and 550 °C temperature for two hours. Then microstructural analysis, hardness and density measurements of powder metal composite parts were performed. After, the characterization of samples abrasion wear tests were performed according to ASTM-G99-05 by using TRIBOMETER T10/20 ball-on-disk abrasive wearing device. After the abrasive wear test of aluminum and composite powder metal parts produced under the identical test parameters, test results were compared and effect of Al2O3 on the wear properties of composite materials was exhibited. The test results showed that the composite parts have 62 % extra harness and better abrasion wear performance according to aluminum powder metal parts produced and tested under the identical conditions

  20. Numerical Study of Laminar Flow Forced Convection of Water-Al2O3 Nanofluids under Constant Wall Temperature Condition

    Directory of Open Access Journals (Sweden)

    Hsien-Hung Ting

    2015-01-01

    Full Text Available This numerical study is aimed at investigating the forced convection heat transfer and flow characteristics of water-based Al2O3 nanofluids inside a horizontal circular tube in the laminar flow regime under the constant wall temperature boundary condition. Five volume concentrations of nanoparticle, 0.1, 0.5, 1, 1.5, and 2 vol.%, are used and diameter of nanoparticle is 40 nm. Characteristics of heat transfer coefficient, Nusselt number, and pressure drop are reported. The results show that heat transfer coefficient of nanofluids increases with increasing Reynolds number or particle volume concentration. The heat transfer coefficient of the water-based nanofluid with 2 vol.% Al2O3 nanoparticles is enhanced by 32% compared with that of pure water. Increasing particle volume concentration causes an increase in pressure drop. At 2 vol.% of particle concentration, the pressure drop reaches a maximum that is nearly 5.7 times compared with that of pure water. It is important to note that the numerical results are in good agreement with published experimental data.

  1. Development of Al2O3 electrospun fibers prepared by conventional sintering method or plasma assisted surface calcination

    Science.gov (United States)

    Mudra, E.; Streckova, M.; Pavlinak, D.; Medvecka, V.; Kovacik, D.; Kovalcikova, A.; Zubko, P.; Girman, V.; Dankova, Z.; Koval, V.; Duzsa, J.

    2017-09-01

    In this paper, the electrospinning method was used for preparation of α-Al2O3 microfibers from PAN/Al(NO3)3 precursor solution. The precursor fibers were thermally treated by conventional method in furnace or low-temperature plasma induced surface sintering method in ambient air. The four different temperatures of PAN/Al(NO3)3 precursors were chosen for formation of α-Al2O3 phase by conventional sintering way according to the transition features observed in the TG/DSC analysis. In comparison, the low-temperature plasma treatment at atmospheric pressure was used as an alternative sintering method at the exposure times of 5, 10 and 30 min. FTIR analysis was used for evaluation of residual polymer after plasma induced calcination and for studying the mechanism of polymer degradation. The polycrystalline alumina fibers arranged with the nanoparticles was created continuously throughout the whole volume of the sample. On the other side the low temperature approach, high density of reactive species and high power density of plasma generated at atmospheric pressure by used plasma source allowed rapid removal of polymer in preference from the surface of fibers leading to the formation of composite ceramic/polymer fibers. This plasma induced sintering of PAN/Al(NO3)3 can have obvious importance in industrial applications where the ceramic character of surface with higher toughness of the fibers are required.

  2. Analysis of fatigue crack propagation behaviour in SiC particulate Al2O3 whisker reinforced hybrid MMC

    International Nuclear Information System (INIS)

    Iqbal, AKM Asif; Arai, Yoshio

    2016-01-01

    The fatigue crack propagation behaviour of a cast hybrid metal matrix composite (MMC) was investigated and compared with the crack propagation behaviour of MMC with Al 2 O 3 and Al alloy in this article. Three dimensional (3D) surface analysis is carried out to analyze the crack propagation mechanism. All three materials clearly show near threshold and stable crack growth regions, but the rapid crack growth region is not clearly understood. The crack propagation resistance is found higher in hybrid MMC than that of MMC with Al 2 O 3 whisker and the Al alloy in the low ΔK region. The crack propagation in the hybrid MMC in the near-threshold region is directed by the debonding of reinforcement-matrix followed by void nucleation in the Al alloy matrix. Besides, the crack propagation in the stable- or midcrack-growth region is controlled by the debonding of particle-matrix and whisker-matrix interface caused by the cycle-by-cycle crack growth along the interface. The transgranular fracture of the reinforcement and void formation are also observed. Due to presence of large volume of inclusions and the microstructural inhomogeneity, the area of striation formation is reduced in the hybrid MMC, caused the unstable fracture. (paper)

  3. Ab-initio studies of the electronic and optical properties of Al2O3:Ti3+ laser crystals

    Science.gov (United States)

    Brik, M. G.

    2018-03-01

    The structural and electronic properties of pure and Ti3+-doped α-Al2O3 were calculated in the present paper by using the first-principles methods. Special attention has been paid to the location of the Ti3+ states (3d1 electron configuration) in the band gap; the lowest 3d states are at about 4.78 eV above the top of the valence band. The crystal field strength 10Dq at the Ti3+ site was estimated from the density of states diagrams to be about 17,700 cm-1. The structural optimization of the unit cell was also performed at elevated hydrostatic pressure in the range from 0 to 25 GPa. By application of the Murnaghan equation to the obtained results, the bulk modulus of α-Al2O3 was estimated to be 225.69 GPa. In addition, from the analysis of the Ti3+3d density of states the distance dependence of the crystal field strength was found to be described by the following function: 10Dq=61.744/R4.671, where R is expressed in Å and 10Dq in eV.

  4. Impacts of oxidants in atomic layer deposition method on Al2O3/GaN interface properties

    Science.gov (United States)

    Taoka, Noriyuki; Kubo, Toshiharu; Yamada, Toshikazu; Egawa, Takashi; Shimizu, Mitsuaki

    2018-01-01

    The electrical interface properties of GaN metal-oxide-semiconductor (MOS) capacitors with an Al2O3 gate insulator formed by atomic layer deposition method using three kinds of oxidants were investigated by the capacitance-voltage technique, Terman method, and conductance method. We found that O3 and the alternate supply of H2O and O3 (AS-HO) are effective for reducing the interface trap density (D it) at the energy range of 0.15 to 0.30 eV taking from the conduction band minimum. On the other hand, we found that surface potential fluctuation (σs) induced by interface charges for the AS-HO oxidant is much larger than that for a Si MOS capacitor with a SiO2 layer formed by chemical vapor deposition despite the small D it values for the AS-HO oxidant compared with the Si MOS capacitor. This means that the total charged center density including the fixed charge density, charged slow trap density, and charged interface trap density for the GaN MOS capacitor is higher than that for the Si MOS capacitor. Therefore, σs has to be reduced to improve the performances and reliability of GaN devices with the Al2O3/GaN interfaces.

  5. Interface traps at Al2O3/InAlN/GaN MOS-HEMT -on- 200 mm Si

    Science.gov (United States)

    Kumar, Sandeep; Remesh, Nayana; Dolmanan, S. B.; Tripathy, S.; Raghavan, S.; Muralidharan, R.; Nath, Digbijoy N.

    2017-11-01

    We report on the characterization of the interfaces of Al2O3/InAlN/GaN HEMT structure grown on 200 mm diameter silicon using conductance dispersion technique. Irreversible threshold voltage (VTH) shift of up to +∼2.5 V was observed due to the gate stress induced activation of acceptor states. Further, frequency dependent VTH shift during capacitance voltage measurements were also recorded due to the presence of slow traps at InAlN/GaN interface. The conductance dispersion indicated the presence of acceptor traps of the order of ∼4 × 1012 to 7 × 1013 cm-2 eV-1 with a time constant of ∼10 to 350 μs at the InAlN/GaN interface. Trap density at the Al2O3/InAlN was found to be in similar range but with a time constant of ∼2 μs. The presence of high density of traps at InAlN/GaN interface is attributed to the unavoidable growth interruption before the start of InAlN growth.

  6. Radiative Properties of Ceramic Al2O3, AlN and Si3N4—II: Modeling

    Science.gov (United States)

    Yang, Peiyan; Cheng, Qiang; Zhang, Zhuomin

    2017-08-01

    In Part I of this study (Cheng et al. in Int J Thermophys 37: 62, 2016), the reflectance and transmittance of dense ceramic plates were measured at wavelengths from 0.4 μm to about 20 μm. The samples of Al2O3 and AlN are semitransparent in the wavelength region from 0.4 μm to about 7 μm, where volume scattering dominates the absorption and scattering behaviors. On the other hand, the Si3N4 plate is opaque in the whole wavelength region. In the mid-infrared region, all samples show phonon vibration bands and surface reflection appears to be strong. The present study focuses on modeling the radiative properties and uses an inverse method to obtain the scattering and absorption coefficients of Al2O3 and AlN in the semitransparent region from the measured directional-hemispherical reflectance and transmittance. The scattering coefficient is also predicted using Mie theory for comparison. The Lorentz oscillator model is applied to fit the reflectance spectra of AlN and Si3N4 from 1.6 μm to 20 μm in order to obtain their optical constants. It is found that the phonon modes for Si3N4 are much stronger in the polycrystalline sample studied here than in amorphous films reported previously.

  7. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation

    KAUST Repository

    Zhang, Zailei

    2017-07-27

    Single-atom metal catalysts offer a promising way to utilize precious noble metal elements more effectively, provided that they are catalytically active and sufficiently stable. Herein, we report a synthetic strategy for Pt single-atom catalysts with outstanding stability in several reactions under demanding conditions. The Pt atoms are firmly anchored in the internal surface of mesoporous Al2O3, likely stabilized by coordinatively unsaturated pentahedral Al3+ centres. The catalyst keeps its structural integrity and excellent performance for the selective hydrogenation of 1,3-butadiene after exposure to a reductive atmosphere at 200 °C for 24 h. Compared to commercial Pt nanoparticle catalyst on Al2O3 and control samples, this system exhibits significantly enhanced stability and performance for n-hexane hydro-reforming at 550 °C for 48 h, although agglomeration of Pt single-atoms into clusters is observed after reaction. In CO oxidation, the Pt single-atom identity was fully maintained after 60 cycles between 100 and 400 °C over a one-month period.

  8. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition.

    Science.gov (United States)

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M E; Puurunen, Riikka L; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-04

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm(-1), above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m(2) K GW(-1), and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  9. Born-Oppenheimer molecular dynamics simulation of pentanoic acid adsorption on α-Al2O3

    Science.gov (United States)

    Martinotto, André L.; Zorzi, Janete E.; Perottoni, Cláudio A.

    2017-11-01

    Adsorption of a single pentanoic acid (C5H10O2) molecule on (0001) α-Al2O3 in a vacuum was explored with the aid of Born-Oppenheimer molecular dynamics simulations. Computer simulations were carried out considering two different situations, namely a clean Al/O-terminated surface and, also, a (0001) α-Al2O3 surface saturated with doubly-coordinated, isolated hydroxyls. In the first case, pentanoic acid adsorbs dissociatively, with the creation of an isolated surface hydroxyl, while the oxygen from the molecule's former carbonyl makes a bond to a nearby surface Al. On the other hand, pentanoic acid adsorbs on hydroxylated alumina by making a strong hydrogen bond to a surface oxygen, with the molecule aligning itself nearly parallel to the surface after full relaxation. For each case (i.e., pentanoic acid adsorption on Al/O-terminated or hydroxylated corundum surface), the different adsorption mechanism has a marked impact on the respective calculated infrared absorption spectrum, which can be of further use as an analytical tool to determine the underlying adsorption mechanism in actual experiments.

  10. Physical, Mechanical and Water Absorption Behaviour of Coir Fiber Reinforced Epoxy Composites Filled With Al2O3 Particulates

    Science.gov (United States)

    Das, Geetanjali; Biswas, Sandhayarani

    2016-02-01

    The objective of the present work is to study the physical, mechanical and water absorption behaviour of coir fiber reinforced epoxy composites filled with Al2O3 particulates. Composites with different compositions were prepared by varying the length of the fiber and content of fiber using hand lay-up technique. The experimental investigation reveals that the properties of composite increases with the incorporation of Al2O3 particulates. It is observed that the density of composites increases with increase in fiber content, while a decrease in density is observed with increase in fiber length. The strength properties of the composites increases with the increase in fiber content up to 15 wt.% and 12mm fiber length, however further increase in fiber length and fiber content the value decreases. The maximum tensile strength of 25.71MPa, flexural strength of 29.75MPa and impact strength of 14.76kJ/m2 is obtained for composites with 12 mm fiber length and 15 wt.% of fiber content. The hardness and tensile modulus, on the other hand, increases with increase in fiber length and fiber content. The maximum hardness value of 19.52Hv and tensile modulus of 3.412GPa is obtained for composites with 15mm fiber length and 20 wt.% of fiber content. Finally, morphological analysis is also carried out using scanning electron microscope (SEM) to study the fracture behaviour of the composite samples.

  11. Dye-sensitized solar cells assembled with composite gel polymer electrolytes containing nanosized Al2O3 particles.

    Science.gov (United States)

    Jeon, Nawon; Kim, Dong-Won

    2013-12-01

    Polymeric ionic liquid, poly(1-methyl 3-(2-acryloyloxy propyl) imidazolium iodide) (PMAPII) containing iodide ions is synthesized and used as a matrix polymer for preparing the composite polymer electrolytes. The composite gel polymer electrolytes are prepared by utilizing PMAPII, organic solvent containing redox couple and aluminum oxide nanoparticle for application in dye-sensitized solar cells (DSSCs). PMAPII is highly compatible with organic solvents and thus there is no phase separation between the PMAPII and organic solvents. This makes it be possible to directly solidify the liquid electrolyte in the cell and maintain good interfacial contacts between the electrolyte and electrodes. The addition of 10 wt.% Al2O3 nanoparticle to gel polymer electrolyte provides the most desirable environment for ionic transport, resulting in the improvement of the photovoltaic performance of DSSC. The quasi-solid-state DSSC assembled with optimized composite gel polymer electrolyte containing 10 wt.% Al2O3 nanoparticle exhibits a relatively high conversion efficiency of 6.51% under AM 1.5 illumination at 100 mA cm(-2) and better stability than DSSC with liquid electrolyte.

  12. Parametric study of plasma-mediated thermoluminescence produced by Al2O3 sub-micron powders

    Science.gov (United States)

    Morávek, T.; Ambrico, P. F.; Ambrico, M.; Schiavulli, L.; Ráheľ, J.

    2017-10-01

    Sub-micron Al2O3 powders with a surface activated by dielectric barrier discharge exhibit improved performance in wet deposition of ceramic layers. In addressing the possible mechanisms responsible for the observed improvement, a comprehensive thermoluminescence (TL) study of plasma-activated powders was performed. TL offers the unique possibility of exploring the population of intrinsic electrons/holes in the charge trapping states. This study covers a wide range of experimental conditions affecting the TL of powders: treatment time, plasma working gas composition, change of discharge configuration, step-annealing of powder, exposure to laser irradiation and aging time. Deconvoluted TL spectra were followed for the changes in their relative contributions. The TL spectra of all tested gases (air, Ar, N2 and 5% He in N2) consist of the well-known main dosimetric peak at 450 K and a peak of similar magnitude at higher temperatures, centered between 700 and 800 K depending on the working gas used. N2 plasma treatment gave rise to a new specific TL peak at 510 K, which exhibited several peculiarities. Initial thermal annealing of Al2O3 powders led to its significant amplification (unlike the other peaks); the peak was insensitive to optical bleaching, and it exhibited slow gradual growth during the long-term aging test. Besides its relevance to the ceramic processing studies, a comprehensive set of data is presented that provides a useful and unconventional view on plasma-mediated material changes.

  13. Relaxation electron excitations in Al2O3, Y3Al5O12 and YAlO3

    International Nuclear Information System (INIS)

    Kuznetsov, A.I.; Namozov, B.R.; Myurk, V.V.

    1985-01-01

    Excitation spectra of short-wave Al 2 O 3 , YAlO 3 and Y 3 Al 5 O 12 crystal luminescence, cathodoluminescence (including time resolution) and lay-temperature thermoluminescence are investigated. Analysis of experimental data permits to distingnish among these objects pairs of bands of supposedly characteristic luminescences: 7.5 and 3.8 eV (Al 2 O 3 ), 5.9 and 4.2 eV (YAlO 3 ), and 4.9 and 4.2 eV (Y 3 Al 5 O 12 ), where recombination luminescence is characteristic for long-wave ones, at that time exciton-like luminescence - for short-wave ones. A hypothesis about strong difference between states of an autolocalized exciton and ''autolocalized hole + electron'' (responsible for short-wave and long-wave bands of characteristic luminescence) is expressed; the difference is based on their genetic origin from different regions of a valent zone (in particular, long-wave bands - from the subzone of heavy holes of a valent zone ceiling, originating from nonbinding 2p-orbitals of oxygen)

  14. Plasma spray deposition of Al-Al2O3 coatings doped with metal oxides: catalytic applications

    International Nuclear Information System (INIS)

    Pranevicius, L.; Pranevicius, L.L.; Valatkevicius, P.; Valincius, V.

    2000-01-01

    Al-Al 2 O 3 (70% γ-phase) coatings 30-50 μm thick well-adhered to the steel sheets and with a highly developed surface area (100-120 m 2 g -1 ) were formed employing plasma-spray technology at atmospheric pressure in air. The plasma-gun with two sequential powder feeders was developed offering the ability to control particle trajectories through the plasma flame, and thus their thermal history. The Al powder is mainly melted and oxidized. Al(OH) 3 powder passes through the plasma torch with partial dissociation and is incorporated in the matrix of growing film with subsequent decomposition during thermal annealing at 560 C for 90 min. The good adhesion results are explained by the surface pre-treatment effects taking place on the periphery of the plasma torch moving along the surface of steel sheets. The plasma sprayed Al-Al 2 O 3 coatings doped with CuO and Cr 2 O 3 oxides showed characteristic catalytic combustion behaviors. (orig.)

  15. Long term investigations of carbon nanotube transistors encapsulated by atomic-layer-deposited Al2O3 for sensor applications

    International Nuclear Information System (INIS)

    Helbling, T; Hierold, C; Roman, C; Durrer, L; Mattmann, M; Bright, V M

    2009-01-01

    Single-walled carbon nanotube field-effect transistors (CNFETs) are promising functional structures in future micro- or nanoelectronic systems and sensor applications. Research on the fundamental device concepts includes the investigation of the conditions for stable long term CNFET operation. CNFET operation in ambient air leads to on-state current degradation and fluctuating signals due to the well-known sensitivity of the electronic properties of the CNT to many environmental condition changes. It is the goal of device and sensor research to understand various kinds of sensor-environment interactions and to overcome the environmental sensitivity. Here, we show that the encapsulation of CNFETs by a thermal atomic-layer-deposited (ALD) aluminium oxide (Al 2 O 3 ) layer of approximately 100 nm leads to stable device operation for 260 days and reduces their sensitivity to the environment. The characteristics of CNFETs prior to and after Al 2 O 3 encapsulation are comparatively investigated. It is found that encapsulation improves the stability of the CNFET characteristics with respect to the gate threshold voltage, hysteresis width and the on-state current, while 1/f noise is lowered by up to a factor of 7. Finally, CNFETs embedded in a dielectric membrane are employed as pressure sensors to demonstrate sensor operation of CNFETs encapsulated by ALD as piezoresistive transducers.

  16. An Investigation on the Wear and Corrosion Behavior of HVOF-Sprayed WC-12Co-Al2O3 Cermet Coating

    Science.gov (United States)

    Chakradhar, R. P. S.; Prasad, G.; Venkateswarlu, K.; Srivastava, Meenu

    2018-03-01

    The aim of the present study is to develop thermally sprayable WC-12Co and WC-12Co- xAl2O3 ( x = 10 and 15 wt.%) cermet coatings on steel substrate (SS 304) by high-velocity oxy fuel (HVOF) method. Influence of Al2O3 addition on the wear and corrosion behavior of WC-12Co coating has been studied. The microstructure and chemical composition of the coatings were analyzed using field emission scanning electron microscope (FESEM), and phase identification was carried out using x-ray diffraction (XRD) studies. The morphology of the coating appears as coarse granular structure. The XRD studies revealed the presence of hexagonal WC phase along with η-Co6W6C phase. It has been observed from the microhardness measurements, that the values gradually increase from 950 to 1300 HK with the addition of Al2O3 from 0 to 15 wt.%. The wear rate of WC-12Co-15Al2O3 (3.19 × 10-6 mm3/Nm) and WC-12Co-10Al2O3 (5.26 × 10-6 mm3/Nm) coatings was seen to be one order of magnitude lower than that of WC-12Co (2.9 × 10-5 mm3/Nm) coating. The polarization studies revealed that WC-12Co-15Al2O3 cermet coating showed superior corrosion protection than that of WC-12Co-10Al2O3 and WC-12Co coatings. This has been attributed to the gradual decrease in the porosity levels with an increase in Al2O3 content which is supported by morphology studies. The microhardness and wear behavior of WC-12Co-Al2O3 coatings are equivalent to those of hard chrome suggesting the possibility of its replacement.

  17. Influence of excess sodium ions on the specific surface area formation in a NiO-Al2O3 catalyst prepared by different methods

    Directory of Open Access Journals (Sweden)

    Lazić M.M.

    2008-01-01

    Full Text Available The influence of sodium ions on the specific surface area of a NiO-Al2O3 catalyst in dependence of nickel loading (5, 10, and 20 wt% Ni, temperature of heat treatment (400, 700 and 1100oC and the method of sample preparation was investigated. Low temperature nitrogen adsorption (LTNA, X-ray diffraction (XRD and scanning electron microscopy (SEM were applied for sample characterization. Dramatic differences in the specific surface area were registered between non-rinsed and rinsed Al2O3 and NiO-Al2O3 samples. The lagged sodium ions promote sintering of non-rinsed catalyst samples.

  18. Electrical and structural characterizations of crystallized Al2O3/GaN interfaces formed by in situ metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu, X.; Yeluri, R.; Kim, J.; Keller, S.; Mishra, U. K.; Jackson, C. M.; Arehart, A. R.; Ringel, S. A.; Wu, F.; Mazumder, B.; Speck, J. S.

    2016-01-01

    Al 2 O 3 films were grown in situ by metalorganic chemical vapor deposition at 900 °C on GaN of both Ga- and N-face polarities. High-resolution transmission electron microscopy revealed that the Al 2 O 3 films were crystalline and primarily γ-phase. The Al 2 O 3 /Ga-GaN and Al 2 O 3 /N-GaN interfaces were both atomically sharp, and the latter further exhibited a biatomic step feature. The corresponding current-voltage (J-V) characteristics were measured on a metal-Al 2 O 3 -semiconductor capacitor (MOSCAP) structure. The leakage current was very high when the Al 2 O 3 thickness was comparable with the size of the crystalline defects, but was suppressed to the order of 1 × 10 −8 A/cm 2 with larger Al 2 O 3 thicknesses. The interface states densities (D it ) were measured on the same MOSCAPs by using combined ultraviolet (UV)-assisted capacitance-voltage (C-V), constant capacitance deep level transient spectroscopy (CC-DLTS), and constant capacitance deep level optical spectroscopy (CC-DLOS) techniques. The average D it measured by CC-DLTS and CC-DLOS were 6.6 × 10 12 and 8.8 × 10 12 cm −2 eV −1 for Al 2 O 3 /Ga-GaN and 8.6 × 10 12 and 8.6 × 10 12  cm −2 eV −1 for Al 2 O 3 /N-GaN, respectively. The possible origins of the positive (negative) polarization compensation charges in Al 2 O 3 /Ga-GaN (Al 2 O 3 /N-GaN), including the filling of interface states and the existence of structure defects and impurities in the Al 2 O 3 layer, were discussed in accordance with the experimental results and relevant studies in the literature

  19. Effects of buffered HF cleaning on metal-oxide-semiconductor interface properties of Al2O3/InAs/GaSb structures

    Science.gov (United States)

    Nishi, Koichi; Yokoyama, Masafumi; Yokoyama, Haruki; Hoshi, Takuya; Sugiyama, Hiroki; Takenaka, Mitsuru; Takagi, Shinichi

    2015-06-01

    We studied the impact of buffered HF (BHF) cleaning on the interface properties of Al2O3/InAs/GaSb metal-oxide-semiconductor (MOS) structures fabricated by the ex-situ surface cleaning process. The Al2O3/InAs/GaSb MOS structures fabricated with BHF cleaning exhibited lower Dit values than those fabricated with sulfur passivation. In addition, the Al2O3/InAs/GaSb MOS structures fabricated with BHF cleaning were robust with respect to the MOS field-effect transistor fabrication process by using W gate metal with PMA in the 250-300 °C range.

  20. Produção de nanopartículas de Al2O3 utilizando água de coco maduro (coco seco Production of Al2O3 nanoparticles employing mature coconut water (dried coconut

    Directory of Open Access Journals (Sweden)

    V. K. S. Soares

    2013-03-01

    Full Text Available O presente trabalho propõe o emprego de uma nova rota de produção de nanopartículas para aplicação em indústria cerâmica. Esta rota, conhecida como rota sol-gel proteico, usualmente utiliza água de coco verde para dissolver os sais precursores, em substituição aos alcóxidos metálicos empregados no processo convencional. No entanto, não existem relatos da utilização da água de coco maduro, geralmente descartada pelas indústrias de processamento de coco, para fabricação de nanopartículas. Nanopartículas de Al2O3 foram produzidas através da rota sol-gel proteico utilizando água de coco maduro como fluido precursor molecular e foram caracterizadas por meio de análises termogravimétrica-térmica diferencial, difração de raios X, microscopia eletrônica de varredura e microscopia de força atômica. Amostras com água de coco verde também foram produzidas e usadas como referência. A fase γ-Al2O3 foi obtida após calcinação a 700 °C, permanecendo estável após calcinação a 1200 °C. Observou-se um aumento no tamanho das partículas à medida que a temperatura de calcinação aumentava, sendo os tamanhos estimados em ~ 400 nm para as amostras calcinadas a 1200 °C.The present work proposes a new preparation route of nanoparticles to be used in the ceramic industry. This new route, known as proteic sol-gel, usually employs green coconut water to dissolve the precursor salts, instead of conventional metal alcoxides. However there are no reports about the employment of water from mature coconut in the preparation of nanoparticles, which is usually disposed in the coconut processing industry. Al2O3 nanoparticles were produced via proteic sol-gel route using mature coconut water and were characterized through DTA/TG and XRD measurements and SEM and AFM images. The γ-Al2O3 phase was obtained after calcination at 700 °C, and was stable even after calcination at 1200 °C. An increase in particle size while the temperature

  1. Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack

    Directory of Open Access Journals (Sweden)

    Shi-Bing Qian

    2015-12-01

    Full Text Available Amorphous indium-gallium-zinc oxide (a-IGZO thin-film transistor (TFT memory is very promising for transparent and flexible system-on-panel displays; however, electrical erasability has always been a severe challenge for this memory. In this article, we demonstrated successfully an electrically programmable-erasable memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack under a maximal processing temperature of 300 oC. As the programming voltage was enhanced from 14 to 19 V for a constant pulse of 0.2 ms, the threshold voltage shift increased significantly from 0.89 to 4.67 V. When the programmed device was subjected to an appropriate pulse under negative gate bias, it could return to the original state with a superior erasing efficiency. The above phenomena could be attributed to Fowler-Nordheim tunnelling of electrons from the IGZO channel to the Pt nanocrystals during programming, and inverse tunnelling of the trapped electrons during erasing. In terms of 0.2-ms programming at 16 V and 350-ms erasing at −17 V, a large memory window of 3.03 V was achieved successfully. Furthermore, the memory exhibited stable repeated programming/erasing (P/E characteristics and good data retention, i.e., for 2-ms programming at 14 V and 250-ms erasing at −14 V, a memory window of 2.08 V was still maintained after 103 P/E cycles, and a memory window of 1.1 V was retained after 105 s retention time.

  2. Biofuel Production from Jatropha Bio-Oil Derived Fast Pyrolysis: Effect and Mechanism of CoMoS Supported on Al2O3

    Science.gov (United States)

    Rodseanglung, T.; Ratana, T.; Phongaksorn, M.; Tungkamani, S.

    2018-03-01

    The aims of this research was to understand the CoMo/Al2O3 sulfide catalyst effect to remove oxygen-containing and nitrogen-containing molecules from Jatropha bio-oil derived fast pyrolysis converted to biofuels via hydrotreating process. The activity and selectivity of CoMo/γ-Al2O3 sulfided catalysts in hydrodeoxygenation (HDO) of Jatropha bio-oil derived fast pyrolysis was evaluated in a Parr batch reactor under 50 bar of H2 atmosphere for 2 h at 300 320 and 340 °C. It appeared that the CoMo/Al2O3 sulfide catalyst have high performance in activity for promoting the fatty acid, fatty ester, fatty amide and fatty nitrile compounds were converted to paraffin/olefin (Diesel range), this could be the CUS site on supported Al2O3 catalyst. The difference in selectivity products allowed us to propose a reaction scheme.

  3. Promoting Effect of CeO2 Addition on Activity and Catalytic Stability in Steam Reforming of Methane over Ni/Al2O3

    International Nuclear Information System (INIS)

    Rakib, A.; Gennequin, C.; Ringot, S.; Aboukais, A.; Abi-Aad, E.; Dhainaut, T.

    2011-01-01

    Hydrogen production by steam reforming of methane was studied over Ni catalysts supported on CeO 2 , Al 2 O 3 and CeO 2 -Al 2 O 3 . These catalysts were prepared using the impregnation method and characterized by XRD. The effect of CeO2 promoter on the catalytic performance of Ni/Al 2 O 3 catalyst for methane steam reforming reaction was investigated. In fact, CeO 2 had a positive effect on the catalytic activity in this reaction. Experimental results demonstrated that Ni/CeO 2 -