WorldWideScience

Sample records for akt kinase part

  1. Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes

    Science.gov (United States)

    Wende, Adam R.; O'Neill, Brian T.; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O.; McCrory, Mark A.; Nye, Brenna G.; Benavides, Gloria A.; Darley-Usmar, Victor M.; Shioi, Tetsuo; Weimer, Bart C.

    2014-01-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity. PMID:25535334

  2. Synthesis and evaluation of the antiproliferative activity of novel pyrrolo[1,2-a]quinoxaline derivatives, potential inhibitors of Akt kinase. Part II.

    Science.gov (United States)

    Desplat, Vanessa; Moreau, Stephane; Gay, Aurore; Fabre, Solene Belisle; Thiolat, Denis; Massip, Stephane; Macky, Gregory; Godde, Frederic; Mossalayi, Djavad; Jarry, Christian; Guillon, Jean

    2010-04-01

    Attenuation of protein kinases by selective inhibitors is an extremely active field of activity in anticancer drug development. Therefore, Akt, a serine/threonine protein kinase, also known as protein kinase B (PKB), represents an attractive potential target for therapeutic intervention. Recent efforts in the development and biological evaluation of small molecule inhibitors of Akt have led to the identification of novel inhibitors with various heterocycle scaffolds. Based on previous results obtained on the antiproliferative activities of new pyrrolo[1,2-a]quinoxalines, a novel series was designed and synthesized from various substituted phenyl-1H-pyrrole-2-carboxylic acid alkyl esters via a multistep heterocyclization process. These new compounds were tested for their in vitro ability to inhibit the proliferation of the human leukemic cell lines K562, U937, and HL60, and the breast cancer cell line MCF7. The first biological evaluation of our new substituted pyrrolo[1,2-a]quinoxalines showed antiproliferative activity against the tested cell lines. From a general SAR point of view, these preliminary biological results highlight the importance of substitution at the C-4 position of the pyrroloquinoxaline scaffold by a benzylpiperidinyl fluorobenzimidazole group, and also the need for a functionalization on the pyrrole ring.

  3. Multiple host kinases contribute to Akt activation during Salmonella infection.

    Science.gov (United States)

    Roppenser, Bernhard; Kwon, Hyunwoo; Canadien, Veronica; Xu, Risheng; Devreotes, Peter N; Grinstein, Sergio; Brumell, John H

    2013-01-01

    SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4) P2/PI(3-5) P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4) P2/PI(3-5) P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.

  4. Multiple host kinases contribute to Akt activation during Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Bernhard Roppenser

    Full Text Available SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4 P2/PI(3-5 P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4 P2/PI(3-5 P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.

  5. Akt Regulates TNFα synthesis downstream of RIP1 kinase activation during necroptosis.

    Directory of Open Access Journals (Sweden)

    Colleen R McNamara

    Full Text Available Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS. In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1 kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1. Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation.

  6. Targeting protein kinase-b3 (akt3) signaling in melanoma.

    Science.gov (United States)

    Madhunapantula, SubbaRao V; Robertson, Gavin P

    2017-03-01

    Deregulated Akt activity leading to apoptosis inhibition, enhanced proliferation and drug resistance has been shown to be responsible for 35-70% of advanced metastatic melanomas. Of the three isoforms, the majority of melanomas have elevated Akt3 expression and activity. Hence, potent inhibitors targeting Akt are urgently required, which is possible only if (a) the factors responsible for the failure of Akt inhibitors in clinical trials is known; and (b) the information pertaining to synergistically acting targeted therapeutics is available. Areas covered: This review provides a brief introduction of the PI3K-Akt signaling pathway and its role in melanoma development. In addition, the functional role of key Akt pathway members such as PRAS40, GSK3 kinases, WEE1 kinase in melanoma development are discussed together with strategies to modulate these targets. Efficacy and safety of Akt inhibitors is also discussed. Finally, the mechanism(s) through which Akt leads to drug resistance is discussed in this expert opinion review. Expert opinion: Even though Akt play key roles in melanoma tumor progression, cell survival and drug resistance, many gaps still exist that require further understanding of Akt functions, especially in the (a) metastatic spread; (b) circulating melanoma cells survival; and (c) melanoma stem cells growth.

  7. Drosophila tribbles antagonizes insulin signaling-mediated growth and metabolism via interactions with Akt kinase.

    Directory of Open Access Journals (Sweden)

    Rahul Das

    Full Text Available Drosophila Tribbles (Trbl is the founding member of the Trib family of kinase-like docking proteins that modulate cell signaling during proliferation, migration and growth. In a wing misexpression screen for Trbl interacting proteins, we identified the Ser/Thr protein kinase Akt1. Given the central role of Akt1 in insulin signaling, we tested the function of Trbl in larval fat body, a tissue where rapid increases in size are exquisitely sensitive to insulin/insulin-like growth factor levels. Consistent with a role in antagonizing insulin-mediated growth, trbl RNAi knockdown in the fat body increased cell size, advanced the timing of pupation and increased levels of circulating triglyceride. Complementarily, overexpression of Trbl reduced fat body cell size, decreased overall larval size, delayed maturation and lowered levels of triglycerides, while circulating glucose levels increased. The conserved Trbl kinase domain is required for function in vivo and for interaction with Akt in a yeast two-hybrid assay. Consistent with direct regulation of Akt, overexpression of Trbl in the fat body decreased levels of activated Akt (pSer505-Akt while misexpression of trbl RNAi increased phospho-Akt levels, and neither treatment affected total Akt levels. Trbl misexpression effectively suppressed Akt-mediated wing and muscle cell size increases and reduced phosphorylation of the Akt target FoxO (pSer256-FoxO. Taken together, these data show that Drosophila Trbl has a conserved role to bind Akt and block Akt-mediated insulin signaling, and implicate Trib proteins as novel sites of signaling pathway integration that link nutrient availability with cell growth and proliferation.

  8. Propofol pretreatment attenuates lipopolysaccharide-induced acute lung injury in rats by activating the phosphoinositide-3-kinase/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.L. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Hu, G.C. [Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Zhu, S.S. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Li, J.F. [Department of Anesthesiology, Tengzhou Central People' s Hospital, Liaocheng, Shandong Province (China); Liu, G.J. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China)

    2014-10-14

    The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway.

  9. AKT (protein kinase B) is implicated in meiotic maturation of porcine oocytes.

    Science.gov (United States)

    Kalous, Jaroslav; Kubelka, Michal; Solc, Petr; Susor, Andrej; Motlík, Jan

    2009-10-01

    The aim of this study was to investigate the involvement of the serine/threonine protein kinase AKT (also called protein kinase B) in the control of meiosis of porcine denuded oocytes (DOs) matured in vitro. Western blot analysis revealed that the two principal AKT phosphorylation sites, Ser473 and Thr308, are phosphorylated at different stages of meiosis. In freshly isolated germinal vesicle (GV)-stage DOs, Ser473 was already phosphorylated. After the onset of oocyte maturation, the intensity of the Ser473 phosphorylation increased, however, which declined sharply when DOs underwent GV breakdown (GVBD) and remained at low levels in metaphase I- and II-stage (MI- and MII-stage). In contrast, phosphorylation of Thr308 was increased by the time of GVBD and reached maximum at MI-stage. A peak of AKT activity was noticed around GVBD and activity of AKT declined at MI-stage. To assess the role of AKT during meiosis, porcine DOs were cultured in 50 microM SH-6, a specific inhibitor of AKT. In SH-6-treated DOs, GVBD was not inhibited; on the contrary, a significant acceleration of meiosis resumption was observed. The dynamics of the Ser473 phosphorylation was not affected; however, phosphorylation of Thr308 was reduced, AKT activity was diminished at the time of GVBD, and meiotic progression was arrested in early MI-stage. Moreover, the activity of the cyclin-dependent kinase 1 (CDK1) and MAP kinase declined when SH-6-treated DOs underwent GVBD, indicating that AKT activity is involved in the regulation of CDK1 and MAP kinase. These results suggest that activity of AKT is not essential for induction of GVBD in porcine oocytes but plays a substantial role during progression of meiosis to MI/MII-stage.

  10. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  11. Combination treatment of prostate cancer with FGF receptor and AKT kinase inhibitors

    Science.gov (United States)

    Feng, Shu; Shao, Longjiang; Castro, Patricia; Coleman, Ilsa; Nelson, Peter S; Smith, Paul D; Davies, Barry R; Ittmann, Michael

    2017-01-01

    Activation of the PI3K/AKT pathway occurs in the vast majority of advanced prostate cancers (PCas). Activation of fibroblast growth factor receptor (FGFR) signaling occurs in a wide variety of malignancies, including PCa. RNA-Seq of castration resistant PCa revealed expression of multiple FGFR signaling components compatible with FGFR signaling in all cases, with multiple FGF ligands expressed in 90% of cases. Immunohistochemistry confirmed FGFR signaling in the majority of xenografts and advanced PCas. AZD5363, an AKT kinase inhibitor and AZD4547, a FGFR kinase inhibitor are under active clinical development. We therefore sought to determine if these two drugs have additive effects in PCa models. The effect of both agents, singly and in combination was evaluated in a variety of PCa cell lines in vitro and in vivo. All cell lines tested responded to both drugs with decreased invasion, soft agar colony formation and growth in vivo, with additive effects seen with combination treatment. Activation of the FGFR, AKT, ERK and STAT3 pathways was examined in treated cells. AZD5363 inhibited AKT signaling and increased FGFR1 signaling, which partially compensated for decreased AKT kinase activity. While AZD4547 could effectively block the ERK pathway, combination treatment was needed to completely block STAT3 activation. Thus combination treatment with AKT and FGFR kinase inhibitors have additive effects on malignant phenotypes in vitro and in vivo by inhibiting multiple signaling pathways and mitigating the compensatory upregulation of FGFR signaling induced by AKT kinase inhibition. Our studies suggest that co-targeting these pathways may be efficacious in advanced PCa. PMID:28008155

  12. Nik-related kinase regulates trophoblast proliferation and placental development by modulating AKT phosphorylation

    Science.gov (United States)

    Morioka, Yuka; Nam, Jin-Min; Ohashi, Takashi

    2017-01-01

    Nik-related kinase (Nrk) is a Ser/Thr kinase and was initially discovered as a molecule that was predominantly detected in skeletal muscles during development. A recent study using Nrk-null mice suggested the importance of Nrk in proper placental development; however, the molecular mechanism remains unknown. In this study, we demonstrated that differentiated trophoblasts from murine embryonic stem cells (ESCs) endogenously expressed Nrk and that Nrk disruption led to the enhanced proliferation of differentiated trophoblasts. This phenomenon may reflect the overproliferation of trophoblasts that has been reported in enlarged placentas of Nrk-null mice. Furthermore, we demonstrated that AKT phosphorylation at Ser473 was upregulated in Nrk-null trophoblasts and that inhibition of AKT phosphorylation cancelled the enhanced proliferation observed in differentiated Nrk-null trophoblasts. These results indicated that the upregulation of AKT phosphorylation was the possible cause of enhanced proliferation observed in Nrk-null trophoblasts. The upregulation of AKT phosphorylation was also confirmed in enlarged Nrk-null placentas in vivo, suggesting that proper regulation of AKT by Nrk was important for normal placental development. In addition, our detailed analysis on phosphorylation status of AKT isoforms in newly established trophoblast stem cells (TSCs) revealed that different levels of upregulation of AKT phosphorylation were occurred in Nrk-null TSCs depending on AKT isoforms. These results further support the importance of Nrk in proper development of trophoblast lineage cells and indicate the possible application of TSCs for the analysis of differently regulated activation mechanisms of AKT isoforms. PMID:28152035

  13. Recurrent BCAM-AKT2 fusion gene leads to a constitutively activated AKT2 fusion kinase in high-grade serous ovarian carcinoma

    Science.gov (United States)

    Kannan, Kalpana; Coarfa, Cristian; Chao, Pei-Wen; Luo, Liming; Wang, Yan; Brinegar, Amy E.; Hawkins, Shannon M.; Milosavljevic, Aleksandar; Matzuk, Martin M.; Yen, Laising

    2015-01-01

    High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. Excessive genomic rearrangements, which are expected to create fusion oncogenes, are the hallmark of this cancer. Here we report a cancer-specific gene fusion between BCAM, a membrane adhesion molecule, and AKT2, a key kinase in the PI3K signaling pathway. This fusion is present in 7% of the 60 patient cancers tested, a significant frequency considering the highly heterogeneous nature of this malignancy. Further, we provide direct evidence that BCAM-AKT2 is translated into an in-frame fusion protein in the patient’s tumor. The resulting AKT2 fusion kinase is membrane-associated, constitutively phosphorylated, and activated as a functional kinase in cells. Unlike endogenous AKT2, whose activity is tightly regulated by external stimuli, BCAM-AKT2 escapes the regulation from external stimuli. Moreover, a BCAM-AKT2 fusion gene generated via chromosomal translocation using the CRISPR/Cas9 system leads to focus formation in both OVCAR8 and HEK-293T cell lines, suggesting that BCAM-AKT2 is oncogenic. Together, the results indicate that BCAM-AKT2 expression is a new mechanism of AKT2 kinase activation in HGSC. BCAM-AKT2 is the only fusion gene in HGSC that is proven to translate an aberrant yet functional kinase fusion protein with oncogenic properties. This recurrent genomic alteration is a potential therapeutic target and marker of a clinically relevant subtype for tailored therapy of HGSC. PMID:25733895

  14. ErbB3 ablation impairs phosphatidylinositol 3-kinase (PI3K)/AKT-dependent mammary tumorigenesis

    Science.gov (United States)

    Cook, Rebecca S.; Garrett, Joan T.; Sánchez, Violeta; Stanford, Jamie C.; Young, Christian; Chakravarty, Anindita; Rinehart, Cammie; Zhang, Yixian; Wu, Yaming; Greenberger, Lee; Horak, Ivan D.; Arteaga, Carlos L.

    2011-01-01

    Summary The ErbB receptor family member ErbB3 has been implicated in breast cancer growth but it has yet to be determined whether its disruption is therapeutically valuable. In a mouse model of mammary carcinoma driven by the polyomavirus middle T (PyVmT) oncogene, the ErbB2 tyrosine kinase inhibitor lapatinib reduced the activation of ErbB3 and Akt along with tumor cell growth. In this phosphatidylinositol-3 kinase (PI3K)-dependent tumor model, ErbB2 is part of a complex containing PyVmT, p85 (PI3K), ErbB3, and Src, that is disrupted by treatment with lapatinib. Thus, full engagement of PI3K/Akt by ErbB2 in this oncogene-induced mouse tumor model may involve its ability to dimerize with and phosphorylate ErbB3, which itself directly binds PI3K. Here we report that ErbB3 is critical for PI3K/AKT-driven tumor formation triggered by the PyVmT oncogene. Tissue-specific, Cre-mediated deletion of ErbB3 reduced Akt phosphorylation, primary tumor growth and pulmonary metastasis. Further EZN-3920, a chemically stabilized antisense oligonucleotide that targets the ErbB3 mRNA in vivo, produced similar effects while causing no mouse toxicity. Our findings offer further preclinical evidence that ErbB3 ablation may be therapeutically effective in tumors where ErbB3 engages PI3K/Akt signaling. PMID:21482676

  15. Phosphatidylinositol 3-Kinase Couples Localised Calcium Influx to Activation of Akt in Central Nerve Terminals.

    Science.gov (United States)

    Nicholson-Fish, Jessica C; Cousin, Michael A; Smillie, Karen J

    2016-03-01

    The efficient retrieval of synaptic vesicle membrane and cargo in central nerve terminals is dependent on the efficient recruitment of a series of endocytosis modes by different patterns of neuronal activity. During intense neuronal activity the dominant endocytosis mode is activity-dependent endocytosis (ADBE). Triggering of ADBE is linked to calcineurin-mediated dynamin I dephosphorylation since the same stimulation intensities trigger both. Dynamin I dephosphorylation is maximised by a simultaneous inhibition of its kinase glycogen synthase kinase 3 (GSK3) by the protein kinase Akt, however it is unknown how increased neuronal activity is transduced into Akt activation. To address this question we determined how the activity-dependent increases in intracellular free calcium ([Ca(2+)]i) control activation of Akt. This was achieved using either trains of high frequency action potentials to evoke localised [Ca(2+)]i increases at active zones, or a calcium ionophore to raise [Ca(2+)]i uniformly across the nerve terminal. Through the use of either non-specific calcium channel antagonists or intracellular calcium chelators we found that Akt phosphorylation (and subsequent GSK3 phosphorylation) was dependent on localised [Ca(2+)]i increases at the active zone. In an attempt to determine mechanism, we antagonised either phosphatidylinositol 3-kinase (PI3K) or calmodulin. Activity-dependent phosphorylation of both Akt and GSK3 was arrested on inhibition of PI3K, but not calmodulin. Thus localised calcium influx in central nerve terminals activates PI3K via an unknown calcium sensor to trigger the activity-dependent phosphorylation of Akt and GSK3.

  16. Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway.

    Science.gov (United States)

    Chuang, Wen-Ying; Kung, Po-Hsiung; Kuo, Chih-Yun; Wu, Chin-Chung

    2013-06-01

    Sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, has been shown to exert beneficial effects in animal models of cardiovascular diseases. However, its effect on platelet aggregation, which is a critical factor in arterial thrombosis, is still unclear. In the present study, we show that sulforaphane inhibited human platelet aggregation caused by different receptor agonists, including collagen, U46619 (a thromboxane A2 mimic), protease-activated receptor 1 agonist peptide (PAR1-AP), and an ADP P2Y12 receptor agonist. Moreover, sulforaphane significantly reduced thrombus formation on a collagen-coated surface under whole blood flow conditions. In exploring the underlying mechanism, we found that sulforaphane specifically prevented phosphatidylinositol 3-kinase (PI3K)/Akt signalling, without markedly affecting other signlaling pathways involved in platelet aggregation, such as protein kinase C activation, calcium mobilisation, and protein tyrosine phosphorylation. Although sulforaphane did not directly inhibit the catalytic activity of PI3K, it caused ubiquitination of the regulatory p85 subunit of PI3K, and prevented PI3K translocation to membranes. In addition, sulforaphane caused ubiquitination and degradation of phosphoinositide-dependent kinase 1 (PDK1), which is required for Akt activation. Therefore, sulforaphane is able to inhibit the PI3K/Akt pathway at two distinct sites. In conclusion, we have demonstrated that sulforaphane prevented platelet aggregation and reduced thrombus formation in flow conditions; our data also support that the inhibition of the PI3K/Akt pathway by sulforaphane contributes it antiplatelet effects.

  17. Computational Modelling of the Metabolic States Regulated by the Kinase Akt

    Directory of Open Access Journals (Sweden)

    Ettore eMosca

    2012-11-01

    Full Text Available Signal transduction pathways and gene regulation determine a major reorganization of metabolic activities in order to support cell proliferation. Protein Kinase B (PKB, also known as Akt, participates in the PI3K/Akt/mTOR pathway, a master regulator of aerobic glycolysis and cellular biosynthesis, two activities shown by both normal and cancer proliferating cells. Not surprisingly considering its relevance for cellular metabolism, Akt/PKB is often found hyperactive in cancer cells. In the last decade, many efforts have been made to improve the understanding of the control of glucose metabolism and the identification of a therapeutic window between proliferating cancer cells and proliferating normal cells. In this context, we have modelled the link between the PI3K/Akt/mTOR pathway, glycolysis, lactic acid production and nucleotide biosynthesis. We used a computational model in order to compare two metabolic states generated by the specific variation of the metabolic fluxes regulated by the activity of the PI3K/Akt/mTOR pathway. One of the two states represented the metabolism of a growing cancer cell characterised by aerobic glycolysis and cellular biosynthesis, while the other state represented the same metabolic network with a reduced glycolytic rate and a higher mitochondrial pyruvate metabolism, as reported in literature in relation to the activity of the PI3K/Akt/mTOR. Some steps that link glycolysis and pentose phosphate pathway revealed their importance for controlling the dynamics of cancer glucose metabolism.

  18. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt.

    Directory of Open Access Journals (Sweden)

    Tamas Kiss

    Full Text Available Pulmonary arterial hypertension (PH is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt pathway and nuclear factor (NF-κB activation in order to elucidate the mechanisms by which sildenafil's protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-1α, lipopolysaccharide induced CXC chemokine (LIX, monokine induced by gamma interferon (MIG, macrophage inflammatory protein (MIP-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension.

  19. Emodin negatively affects the phosphoinositide 3-kinase/AKT signalling pathway: a study on its mechanism of action

    DEFF Research Database (Denmark)

    Olsen, Birgitte B; Bjørling-Poulsen, Marina; Guerra, Barbara

    2007-01-01

    -regulation, emodin being the most effective, suggesting that other mechanisms other than the inhibition of CK2 were responsible for the emodin-mediated modulation of AKT. We found that emodin does not directly affect AKT kinase. Furthermore, we show that the down-regulation of AKT is due to the emodin...... mechanism by which emodin exerts anti-cancer activity and suggest the further investigation of plant polyphenols, such as emodin, as therapeutic and preventive agents for cancer therapy....

  20. Maternal Disononyl Phthalate Exposure Activates Allergic Airway Inflammation via Stimulatingthe Phosphoinositide 3-kinase/Akt Pathway in Rat Pups

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Jiao; XIE ChangMing; ZHAO Yan; WANG Xiu; andZHANG YunHui

    2015-01-01

    ObjectiveTo evaluate the effectof diisononyl phthalate (DINP) exposure during gestation and lacta-tion on allergic response in pups and to explore the role of phosphoinositide 3-kinase/Akt pathway on it. MethodsFemale Wistar rats were treated with DINP at different dosages (0, 5, 50,and 500 mg/kg of body weight per day). The pups were sensitized and challenged by ovalbumin (OVA). The airway response was assessed; the airway histological studies were performed by hematoxylin and eosin (HE) staining; and the relative cytokines in phosphoinositide 3-kinase (PI3K)/Akt pathway were measured by enzyme-linked immunosorbent assay (ELISA) and western blot analysis. ResultsThere was no significant difference in DINP’s effect on airway hyperresponsiveness (AHR) between male pups and female pups. In the 50 mg/(kg·d) DINP-treated group, airway response to OVA significantly increased and pups showed dramatically enhanced pulmonary resistance (RI) compared with those from controls (P<0.05). Enhanced Akt phosphorylation and NF-κB translocation, and Th2 cytokines expression were observed in pups of 50 mg/(kg·d) DINP-treated group. However, in the 5 and 500 mg/(kg·d) DINP-treated pups, no significant effects were observed. ConclusionTherewas an adjuvant effect of DINP on allergic airway inflammation in pups. Maternal DINP exposure could promote OVA-induced allergic airway response in pups in part by upregulation of PI3K/Akt pathway.

  1. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486

    Science.gov (United States)

    Small, Eric M.; O’Rourke, Jason R.; Moresi, Viviana; Sutherland, Lillian B.; McAnally, John; Gerard, Robert D.; Richardson, James A.; Olson, Eric N.

    2010-01-01

    microRNAs (miRNAs) play key roles in modulating a variety of cellular processes through repression of mRNA targets. In a screen for miRNAs regulated by myocardin-related transcription factor-A (MRTF-A), a coactivator of serum response factor (SRF), we discovered a muscle-enriched miRNA, miR-486, controlled by an alternative promoter within intron 40 of the Ankyrin-1 gene. Transcription of miR-486 is directly controlled by SRF and MRTF-A, as well as by MyoD. Among the most strongly predicted targets of miR-486 are phosphatase and tensin homolog (PTEN) and Foxo1a, which negatively affect phosphoinositide-3-kinase (PI3K)/Akt signaling. Accordingly, PTEN and Foxo1a protein levels are reduced by miR-486 overexpression, which, in turn, enhances PI3K/Akt signaling. Similarly, we show that MRTF-A promotes PI3K/Akt signaling by up-regulating miR-486 expression. Conversely, inhibition of miR-486 expression enhances the expression of PTEN and Foxo1a and dampens signaling through the PI3K/Akt-signaling pathway. Our findings implicate miR-486 as a downstream mediator of the actions of SRF/MRTF-A and MyoD in muscle cells and as a potential modulator of PI3K/Akt signaling. PMID:20142475

  2. Computational Modeling of the Metabolic States Regulated by the Kinase Akt

    Science.gov (United States)

    Mosca, Ettore; Alfieri, Roberta; Maj, Carlo; Bevilacqua, Annamaria; Canti, Gianfranco; Milanesi, Luciano

    2012-01-01

    Signal transduction and gene regulation determine a major reorganization of metabolic activities in order to support cell proliferation. Protein Kinase B (PKB), also known as Akt, participates in the PI3K/Akt/mTOR pathway, a master regulator of aerobic glycolysis and cellular biosynthesis, two activities shown by both normal and cancer proliferating cells. Not surprisingly considering its relevance for cellular metabolism, Akt/PKB is often found hyperactive in cancer cells. In the last decade, many efforts have been made to improve the understanding of the control of glucose metabolism and the identification of a therapeutic window between proliferating cancer cells and proliferating normal cells. In this context, we have modeled the link between the PI3K/Akt/mTOR pathway, glycolysis, lactic acid production, and nucleotide biosynthesis. We used a computational model to compare two metabolic states generated by two different levels of signaling through the PI3K/Akt/mTOR pathway: one of the two states represents the metabolism of a growing cancer cell characterized by aerobic glycolysis and cellular biosynthesis, while the other state represents the same metabolic network with a reduced glycolytic rate and a higher mitochondrial pyruvate metabolism. Biochemical reactions that link glycolysis and pentose phosphate pathway revealed their importance for controlling the dynamics of cancer glucose metabolism. PMID:23181020

  3. The Phosphoinositide 3-OH Kinase/AKT2 Pathway as a Critical Target for Farnesyltransferase Inhibitor-Induced Apoptosis

    OpenAIRE

    Jiang, Kun; Coppola, Domenico; Crespo, Nichole C.; Nicosia, Santo V.; Hamilton, Andrew D.; Sebti, Said M.; Cheng, Jin Q.

    2000-01-01

    Farnesyltransferase inhibitors (FTIs) represent a novel class of anticancer drugs that exhibit a remarkable ability to inhibit malignant transformation without toxicity to normal cells. However, the mechanism by which FTIs inhibit tumor growth is not well understood. Here, we demonstrate that FTI-277 inhibits phosphatidylinositol 3-OH kinase (PI 3-kinase)/AKT2-mediated growth factor- and adhesion-dependent survival pathways and induces apoptosis in human cancer cells that overexpress AKT2. Fu...

  4. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2

    Directory of Open Access Journals (Sweden)

    Murphy Derek M

    2010-04-01

    Full Text Available Abstract Background Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects. Results We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184. Conclusions MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer.

  5. The phosphatidylinositol 3-kinase/Akt and c-Jun N-terminal kinase signaling in cancer: Alliance or contradiction? (Review).

    Science.gov (United States)

    Zhao, Hua-Fu; Wang, Jing; Tony To, Shing-Shun

    2015-08-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and c-Jun N-terminal kinase (JNK) pathway are responsible for regulating a variety of cellular processes including cell growth, migration, invasion and apoptosis. These two pathways are essential to the development and progression of tumors. The dual roles of JNK signaling in apoptosis and tumor development determine the different interactions between the PI3K/Akt and JNK pathways. Activation of PI3K/Akt signaling can inhibit stress- and cytokine-induced JNK activation through Akt antagonizing and the formation of the JIP1-JNK module, as well as the activities of upstream kinases ASK1, MKK4/7 and MLK. On the other hand, hyperactivation of Akt and JNK is also found in cancers that harbor EGFR overexpression or loss of PTEN. Understanding the activation mechanism of PI3K/Akt and JNK pathways, as well as the interplays between these two pathways in cancer may contribute to the identification of novel therapeutic targets. In the present report, we summarized the current understanding of the PI3K/Akt and JNK signaling networks, as well as their biological roles in cancers. In addition, the interactions and regulatory network between PI3K/Akt and JNK pathways in cancer were discussed.

  6. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    Science.gov (United States)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  7. Concurrent targeting Akt and sphingosine kinase 1 by A-674563 in acute myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lin [Xiangya Hospital, Central South University, Changsha (China); Shaoyang Central Hospital, Hunan Province (China); Zhang, Yanan; Gao, Meng [The Third Xiangya Hospital, Central South University, Changsha, 410013 (China); Wang, Guangping, E-mail: wangguangping45@sina.com [Xiangya Hospital, Central South University, Changsha (China); Fu, Yunfeng, E-mail: fuyunfeng33163@163.com [The Third Xiangya Hospital, Central South University, Changsha, 410013 (China)

    2016-04-15

    Akt signaling plays a pivotal role in acute myeloid leukemia (AML) development and progression. In the present study, we evaluated the potential anti-AML activity by a novel Akt kinase inhibitor A-674563. Our results showed that A-674563 dose-dependently inhibited survival and proliferation of U937 AML cells and six lines of human AML progenitor cells, yet sparing human peripheral blood mononuclear leukocytes (PBMCs). A-674563 activated caspase-3/9 and apoptosis in the AML cells. Reversely, the pan-caspase inhibitor z-VAD-CHO dramatically alleviated A-674563-induced AML cell apoptosis and cytotoxicity. For the molecular study, we showed that A-674563 blocked Akt activation in U937 cells and human AML progenitor cells. Further, A-674563 decreased sphingosine kinase 1 (SphK1) activity in above AML cells to deplete pro-survival sphingosine-1-phosphate (S1P) and boost pro-apoptotic ceramide production. Such an effect on SphK1 signaling by A-674563 appeared independent of Akt blockage. Significantly, K6PC-5, a novel SphK1 activator, or supplement with S1P attenuated A-674563-induced ceramide production, and subsequent U937 cell death and apoptosis. Importantly, intraperitoneal injection of A-674563 at well-tolerated doses suppressed U937 leukemic xenograft tumor growth in nude mice, whiling significantly improving the animal survival. The results of the current study demonstrate that A-674563 exerts potent anti-leukemic activity in vitro and in vivo, possibly via concurrent targeting Akt and SphK1 signalings. - Highlights: • A-674563 is cytotoxic and anti-proliferative in U937 and AML progenitor cells. • A-674563 activates caspase-3/9 and apoptosis in U937 and AML progenitor cells. • Whiling blocking Akt, A-674563 manipulates other signalings in AML cells. • A-674563 inhibits SphK1 activity in AML cells, independent of Akt blockage. • A-674563 injection inhibits U937 xenograft in vivo growth, and improves mice survival.

  8. Polycystin-1 Induces Resistance to Apoptosis through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway

    Science.gov (United States)

    Boca, Manila; Distefano, Gianfranco; Boletta, Alessandra; Qian, Feng; Bhunia, Anil K.; Germino, Gregory G.

    2006-01-01

    Polycystin-1 (PC-1), the PKD1 gene product, is a large receptor whose expression in renal epithelial cells results in resistance to apoptosis and tubulogenesis, a model consistent with the phenotype observed in patients. This study links PC-1 expression to a signaling pathway that is known to be both antiapoptotic and important for normal tubulogenesis. This study found that PC-1 expression results in phosphorylation of Akt and downstream effectors and that phosphatidylinositol 3-kinase (PI3-K) inhibitors prevent this process. In addition, it is shown that dominant negative Akt can revert PC-1-induced protection from apoptosis. Furthermore, it was observed that increased PI3-K β activity in PC-1- expressing MDCK cells seems to be dependent on both tyrosine-kinase activity and heterotrimeric G proteins. It also was found that PC-1-induced tubulogenesis is inhibited by PI3-K inhibitors. Taken together, these data suggest that the PI3-K/Akt cascade may be a central modulator of PC-1 function and that its deregulation might be important in autosomal dominant polycystic kidney disease. PMID:16452497

  9. PERK Utilizes Intrinsic Lipid Kinase Activity To Generate Phosphatidic Acid, Mediate Akt Activation, and Promote Adipocyte Differentiation

    Science.gov (United States)

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J.; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A.; Witze, Eric S.

    2012-01-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought. PMID:22493067

  10. PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation.

    Science.gov (United States)

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A; Witze, Eric S; Diehl, J Alan

    2012-06-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought.

  11. L-3-n-butylphthalide protects against vascular dementia via activation of the Akt kinase pathway**

    Institute of Scientific and Technical Information of China (English)

    Yaping Huai; Yanhong Dong; Jing Xu; Nan Meng; Chunfeng Song; Wenbin Li; Peiyuan Lv

    2013-01-01

    As a neuroprotective drug for the treatment of ischemic stroke, 3-n-butylphthalide, a celery seed ex-tract, has been approved by the State Food and Drug Administration of China as a clinical therapeutic drug for ischemic stroke patients. L-3-n-butylphthalide possesses significant efficacy in the treatment of acute ischemic stroke. The activated Akt kinase pathway can prevent the death of nerve cel s and exhibit neuroprotective effects in the brain after stroke. This study provides the hypothesis that l-3-n-butylphthalide has a certain therapeutic effect on vascular dementia, and its mechanism depends on the activation of the Akt kinase pathway. A vascular dementia mouse model was established by cere-bral repetitive ischemia/reperfusion, and intragastrical y administered l-3-n-butylphthalide daily for 28 consecutive days after ischemia/reperfusion, or 7 consecutive days before ischemia/reperfusion. The Morris water maze test showed significant impairment of spatial learning and memory at 4 weeks after operation, but intragastric administration of l-3-n-butylphthalide, especial y pretreatment with l-3-n-butylphthalide, significantly reversed these changes. Thionine staining and western blot analylsis showed that preventive and therapeutic application of l-3-n-butylphthalide can reduce loss of pyrami-dal neurons in the hippocampal CA1 region and al eviate nerve damage in mice with vascular demen-tia. In addition, phosphorylated Akt expression in hippocampal tissue increased significantly after l-3-n-butylphthalide treatment. Experimental findings demonstrate that l-3-n-butylphthalide has preventive and therapeutic effects on vascular dementia, and its mechanism may be mediated by upregulation of phosphorylated Akt in the hippocampus.

  12. Cytokine Stimulation Promotes Glucose Uptake via Phosphatidylinositol-3 Kinase/Akt Regulation of Glut1 Activity and Trafficking

    Science.gov (United States)

    Wieman, Heather L.; Wofford, Jessica A.

    2007-01-01

    Cells require growth factors to support glucose metabolism for survival and growth. It is unclear, however, how noninsulin growth factors may regulate glucose uptake and glucose transporters. We show that the hematopoietic growth factor interleukin (IL)3, maintained the glucose transporter Glut1 on the cell surface and promoted Rab11a-dependent recycling of intracellular Glut1. IL3 required phosphatidylinositol-3 kinase activity to regulate Glut1 trafficking, and activated Akt was sufficient to maintain glucose uptake and surface Glut1 in the absence of IL3. To determine how Akt may regulate Glut1, we analyzed the role of Akt activation of mammalian target of rapamycin (mTOR)/regulatory associated protein of mTOR (RAPTOR) and inhibition of glycogen synthase kinase (GSK)3. Although Akt did not require mTOR/RAPTOR to maintain surface Glut1 levels, inhibition of mTOR/RAPTOR by rapamycin greatly diminished glucose uptake, suggesting Akt-stimulated mTOR/RAPTOR may promote Glut1 transporter activity. In contrast, inhibition of GSK3 did not affect Glut1 internalization but nevertheless maintained surface Glut1 levels in IL3-deprived cells, possibly via enhanced recycling of internalized Glut1. In addition, Akt attenuated Glut1 internalization through a GSK3-independent mechanism. These data demonstrate that intracellular trafficking of Glut1 is a regulated component of growth factor-stimulated glucose uptake and that Akt can promote Glut1 activity and recycling as well as prevent Glut1 internalization. PMID:17301289

  13. Hepatitis C Virus RNA-Dependent RNA Polymerase Interacts with the Akt/PKB Kinase and Induces Its Subcellular Relocalization.

    Science.gov (United States)

    Valero, María Llanos; Sabariegos, Rosario; Cimas, Francisco J; Perales, Celia; Domingo, Esteban; Sánchez-Prieto, Ricardo; Mas, Antonio

    2016-06-01

    Hepatitis C virus (HCV) interacts with cellular components and modulates their activities for its own benefit. These interactions have been postulated as a target for antiviral treatment, and some candidate molecules are currently in clinical trials. The multifunctional cellular kinase Akt/protein kinase B (PKB) must be activated to increase the efficacy of HCV entry but is rapidly inactivated as the viral replication cycle progresses. Viral components have been postulated to be responsible for Akt/PKB inactivation, but the underlying mechanism remained elusive. In this study, we show that HCV polymerase NS5B interacts with Akt/PKB. In the presence of transiently expressed NS5B or in replicon- or virus-infected cells, NS5B changes the cellular localization of Akt/PKB from the cytoplasm to the perinuclear region. Sequestration of Akt/PKB by NS5B could explain its exclusion from its participation in early Akt/PKB inactivation. The NS5B-Akt/PKB interaction represents a new regulatory step in the HCV infection cycle, opening possibilities for new therapeutic options.

  14. A novel signaling pathway associated with Lyn, PI 3-kinase and Akt supports the proliferation of myeloma cells

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Mohd S. [Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505 (Japan); Enteric and Food Microbiology Laboratory, Laboratory Sciences Division, International Center for Diarrhoeal Disease Research, Bangladesh, P.O. Box 128, Dhaka 1000 (Bangladesh); Tsuyama, Naohiro [Department of Analytical Molecular Medicine and Devices, Division of Frontier Medical Science, Graduate School of Medical Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8553 (Japan); Obata, Masanori [Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505 (Japan); Ishikawa, Hideaki, E-mail: hishika@yamaguchi-u.ac.jp [Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505 (Japan)

    2010-02-12

    Interleukin-6 (IL-6) is a growth factor for human myeloma cells. We have recently found that in myeloma cells the activation of both signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase (ERK) 1/2 is not sufficient for the IL-6-induced proliferation, which further requires the activation of the src family kinases, such as Lyn. Here we showed that the Lyn-overexpressed myeloma cell lines had the higher proliferative rate with IL-6 and the enhanced activation of the phosphatidylinositol (PI) 3-kinase and Akt. The IL-6-induced phosphorylation of STAT3 and ERK1/2 was not up-regulated in the Lyn-overexpressed cells, indicating that the Lyn-PI 3-kinase-Akt pathway is independent of these pathways. The PI 3-kinase was co-precipitated with Lyn in the Lyn-overexpressed cells of which proliferation with IL-6 was abrogated by the specific inhibitors for PI 3-kinase or Akt, suggesting that the activation of the PI 3-kinase-Akt pathway associated with Lyn is indeed related to the concomitant augmentation of myeloma cell growth. Furthermore, the decreased expression of p53 and p21{sup Cip1} proteins was observed in the Lyn-overexpressed cells, implicating a possible downstream target of Akt. This study identifies a novel IL-6-mediated signaling pathway that certainly plays a role in the proliferation of myeloma cells and this novel mechanism of MM tumor cell growth associated with Lyn would eventually contribute to the development of MM treatment.

  15. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways.

    Science.gov (United States)

    Hu, Shan; Huang, Liming; Meng, Liwei; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-11-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways.

  16. Research progress of protein kinase B/Akt inhibitors%蛋白激酶B/Akt抑制剂

    Institute of Scientific and Technical Information of China (English)

    郝茜; 钟嫄; 王朋; 赵桂森

    2011-01-01

    PI3K (phosphatidylinositol 3-kinase)/Akt (protein kinase B, PKB) signaling pathway plays a key role in cell growth and survival. Excessive activation of PI3K/Akt pathway has been found in many tumors. In more than 50% of human tumors, Akt or/and its upstream regulatory molecules (such as PTEN and PI3K) changes abnormally. So Akt has become a hot target for cancer prevention and therapy. Recently, many effective small-molecule Akt inhibitors with different mechanisms have been found. According to the binding site and/or the chemical structures of various Akt inhibitors, they are divided into ATP competitive inhibitor, Akt allosteric inhibitor and phosphatidylinositol analog inhibitor. This paper reviews the relationship between PI3K/Akt pathway and tumors, and the research progress of Akt inhibitor, which will contribute to the design of new anti-tumor drugs.%磷脂酰肌醇-3-激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB/Akt)信号通路在细胞生长与存活中起着关键作用,PI3K/Akt通路的过度激活在多种肿瘤中常见.Akt激酶本身以及Akt激酶上游调节分子,例如PTEN和PI3K,在超过50%的人类肿瘤中均有异常变化.因此Akt成为肿瘤预防和肿瘤靶向治疗的热点之一.许多小分子化合物通过不同机制抑制Akt活性,根据小分子抑制剂与激酶的结合部位和化学结构不同,主要分为ATP竞争性抑制剂、Akt变构抑制剂和磷脂酰肌醇类似物抑制剂.本文综述了PI3K/Akt通路与肿瘤的关系和Akt抑制剂的研究现状,为新型抗癌药物的设计研究提供参考.

  17. Cellular and Molecular Roles of the Akt Protein Kinase in Breast Carcinomas

    Science.gov (United States)

    1999-06-01

    are in progress. Identification of Akt interacting proteins We proposed to identify targets of Akt using a yeast two-hybrid screen (1). We have...studies in Task 2. Key Research Accomplishments "* Identified Akt interacting proteins using a yeast two-hybrid screen "* Provided secondary evidence...human breast cancer lines (5). Therefore, our studies in the future will also focus on the regulation of Oct3 by Akt. Identification of AKT Interacting

  18. Physical association of PDK1 with AKT1 is sufficient for pathway activation independent of membrane localization and phosphatidylinositol 3 kinase.

    Directory of Open Access Journals (Sweden)

    Zhiyong Ding

    Full Text Available Frequent activation of the AKT serine-threonine kinase in cancer confers resistance to therapy. AKT is activated by a multi-step process involving phosphatidylinositide (PtdIns phosphate-mediated recruitment of AKT and its upstream kinases, including 3-Phosphoinositide-dependent kinase 1 (PDK1, to the inner surface of the cell membrane. PDK1 in the appropriate context phosphorylates AKT at threonine 308 (T308 to activate AKT. Whether PtdIns(3,4,5Ps (PtdInsP3 binding and AKT membrane translocation mediate functions other than formation of a functional PDK1::AKT complex have not been fully elucidated. We fused complementary fragments of intensely fluorescent protein (IFP to AKT1 and PDK1 to induce a stable complex to study the prerequisites of AKT1 phosphorylation and function. In the stabilized PDK1-IFPC::IFPN-AKT1 complex, AKT1 T308 phosphorylation was independent of PtdIns, as demonstrated by treatment with Phosphatidylinositol 3 Kinase (PI3K inhibitors. Further when interaction with PtdIns and the cell membrane was prevented by creating PH-domain mutants of AKT1 (R25A and PDK1 (R474A, AKT1 phosphorylation on T308 was maintained in the PDK1-IFPC::IFPN-AKT1 complex. The PDK1-IFPC::IFPN-AKT1 complex was sufficient for phosphorylation of known AKT substrates, and conferred resistance to inhibitors of PI3K (LY294002, PI103, GDC0941 and TGX286 but not inhibitors of the downstream TORC1 complex (rapamycin. Thus the locus of action of targeted therapeutics can be elucidated by the constitutively active AKT1 complex. Our data indicate that PtdIns and membrane localization are not required for AKT phosphorylation and activation, but rather serve to induce a functional physical interaction between PDK1 and AKT. The PDK1-IFPC::IFPN-AKT1 complex provides a cell-based platform to examine specificity of drugs targeting PI3K pathway components.

  19. Physical association of PDK1 with AKT1 is sufficient for pathway activation independent of membrane localization and phosphatidylinositol 3 kinase.

    Science.gov (United States)

    Ding, Zhiyong; Liang, Jiyong; Li, Jin; Lu, Yiling; Ariyaratna, Vathsala; Lu, Zhimin; Davies, Michael A; Westwick, John K; Mills, Gordon B

    2010-03-26

    Frequent activation of the AKT serine-threonine kinase in cancer confers resistance to therapy. AKT is activated by a multi-step process involving phosphatidylinositide (PtdIns) phosphate-mediated recruitment of AKT and its upstream kinases, including 3-Phosphoinositide-dependent kinase 1 (PDK1), to the inner surface of the cell membrane. PDK1 in the appropriate context phosphorylates AKT at threonine 308 (T308) to activate AKT. Whether PtdIns(3,4,5)Ps (PtdInsP3) binding and AKT membrane translocation mediate functions other than formation of a functional PDK1::AKT complex have not been fully elucidated. We fused complementary fragments of intensely fluorescent protein (IFP) to AKT1 and PDK1 to induce a stable complex to study the prerequisites of AKT1 phosphorylation and function. In the stabilized PDK1-IFPC::IFPN-AKT1 complex, AKT1 T308 phosphorylation was independent of PtdIns, as demonstrated by treatment with Phosphatidylinositol 3 Kinase (PI3K) inhibitors. Further when interaction with PtdIns and the cell membrane was prevented by creating PH-domain mutants of AKT1 (R25A) and PDK1 (R474A), AKT1 phosphorylation on T308 was maintained in the PDK1-IFPC::IFPN-AKT1 complex. The PDK1-IFPC::IFPN-AKT1 complex was sufficient for phosphorylation of known AKT substrates, and conferred resistance to inhibitors of PI3K (LY294002, PI103, GDC0941 and TGX286) but not inhibitors of the downstream TORC1 complex (rapamycin). Thus the locus of action of targeted therapeutics can be elucidated by the constitutively active AKT1 complex. Our data indicate that PtdIns and membrane localization are not required for AKT phosphorylation and activation, but rather serve to induce a functional physical interaction between PDK1 and AKT. The PDK1-IFPC::IFPN-AKT1 complex provides a cell-based platform to examine specificity of drugs targeting PI3K pathway components.

  20. The fibrotic role of phosphatidylinositol-3-kinase/Akt pathway in injured skeletal muscle after acute contusion.

    Science.gov (United States)

    Li, H-Y; Zhang, Q-G; Chen, J-W; Chen, S-Q; Chen, S-Y

    2013-09-01

    Transforming growth factor β (TGF-β) is a multifunctional cytokine with fibrogenic properties. Previous studies demonstrated that Phosphatidylinositol 3-Kinase (PI3K)/Akt/ mammalian target of Ramycin (mTOR), a non-Smad TGF-β pathway, plays an important role in the fibrotic pathogenesis of different organs such as the lung, kidney, skin and liver. However, the role of PI3k-Akt pathway in fibrosis in injured skeletal muscle is still unclear. In this study, we determined the fibrotic role of PI3K-Akt pathway in injured skeletal muscle. We established a mouse model for acute muscle contusion. Western blotting analysis showed that TGF-β, phosphorylated Akt and phosphorylated mTOR were increased in muscles after acute contusion, which indicated that the PI3K-Akt- mTOR pathway was activated in skeletal muscle after acute contusion. The pathway was inhibited by a PI3K inhibitor, LY294002. Moreover, the expression of fibrosis markers vimentin, α SMA and collagen I and the area of scar decreased in injured skeletal muscle after PI3K pathway was blocked. The muscle function improved in terms of both fast-twitch and tetanic strength after PI3K/Akt pathway was inhibited in injured skeletal muscle. In conclusion, activation of PI3K-Akt-mTOR pathway might promote collagen production and scar formation in the acute contused skeletal muscle. Blocking of PI3K-Akt-mTOR pathway could improve the function of injured skeletal muscle.

  1. Feedback regulation on PTEN/AKT pathway by the ER stress kinase PERK mediated by interaction with the Vault complex

    DEFF Research Database (Denmark)

    Zhang, Wei; Neo, Suat Peng; Gunaratne, Jayantha

    2015-01-01

    The high proliferation rate of cancer cells, together with environmental factors such as hypoxia and nutrient deprivation can cause Endoplasmic Reticulum (ER) stress. The protein kinase PERK is an essential mediator in one of the three ER stress response pathways. Genetic and pharmacological...... inhibition of PERK has been reported to limit tumor growth in xenograft models. Here we provide evidence that inactive PERK interacts with the nuclear pore-associated Vault complex protein and that this compromises Vault-mediated nuclear transport of PTEN. Pharmacological inhibition of PERK under ER stress...... results is abnormal sequestration of the Vault complex, leading to increased cytoplasmic PTEN activity and lower AKT activation. As the PI3K/PTEN/AKT pathway is crucial for many aspects of cell growth and survival, this unexpected effect of PERK inhibitors on AKT activity may have implications...

  2. Anti-malarial drug artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Chang Cheng

    Full Text Available BACKGROUND: Phosphoinositide 3-kinase (PI3K/Akt pathway is linked to the development of asthma. Anti-malarial drug artesunate is a semi-synthetic derivative of artemisinin, the principal active component of a medicinal plant Artemisia annua, and has been shown to inhibit PI3K/Akt activity. We hypothesized that artesunate may attenuate allergic asthma via inhibition of the PI3K/Akt signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS: Female BALB/c mice sensitized and challenged with ovalbumin (OVA developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Artesunate dose-dependently inhibited OVA-induced increases in total and eosinophil counts, IL-4, IL-5, IL-13 and eotaxin levels in bronchoalveolar lavage fluid. It attenuated OVA-induced lung tissue eosinophilia and airway mucus production, mRNA expression of E-selectin, IL-17, IL-33 and Muc5ac in lung tissues, and airway hyperresponsiveness to methacholine. In normal human bronchial epithelial cells, artesunate blocked epidermal growth factor-induced phosphorylation of Akt and its downstream substrates tuberin, p70S6 kinase and 4E-binding protein 1, and transactivation of NF-κB. Similarly, artesunate blocked the phosphorylation of Akt and its downstream substrates in lung tissues from OVA-challenged mice. Anti-inflammatory effect of artesunate was further confirmed in a house dust mite mouse asthma model. CONCLUSION/SIGNIFICANCE: Artesunate ameliorates experimental allergic airway inflammation probably via negative regulation of PI3K/Akt pathway and the downstream NF-κB activity. These findings provide a novel therapeutic value for artesunate in the treatment of allergic asthma.

  3. A Gammaherpesvirus Complement Regulatory Protein Promotes Initiation of Infection by Activation of Protein Kinase Akt/PKB

    Science.gov (United States)

    Steer, Beatrix; Adler, Barbara; Jonjic, Stipan; Stewart, James P.; Adler, Heiko

    2010-01-01

    Background Viruses have evolved to evade the host's complement system. The open reading frames 4 (ORF4) of gammaherpesviruses encode homologs of regulators of complement activation (RCA) proteins, which inhibit complement activation at the level of C3 and C4 deposition. Besides complement regulation, these proteins are involved in heparan sulfate and glycosaminoglycan binding, and in case of MHV-68, also in viral DNA synthesis in macrophages. Methodology/Principal Findings Here, we made use of MHV-68 to study the role of ORF4 during infection of fibroblasts. While attachment and penetration of virions lacking the RCA protein were not affected, we observed a delayed delivery of the viral genome to the nucleus of infected cells. Analysis of the phosphorylation status of a variety of kinases revealed a significant reduction in phosphorylation of the protein kinase Akt in cells infected with ORF4 mutant virus, when compared to cells infected with wt virus. Consistent with a role of Akt activation in initial stages of infection, inhibition of Akt signaling in wt virus infected cells resulted in a phenotype resembling the phenotype of the ORF4 mutant virus, and activation of Akt by addition of insulin partially reversed the phenotype of the ORF4 mutant virus. Importantly, the homologous ORF4 of KSHV was able to rescue the phenotype of the MHV-68 ORF4 mutant, indicating that ORF4 is functionally conserved and that ORF4 of KSHV might have a similar function in infection initiation. Conclusions/Significance In summary, our studies demonstrate that ORF4 contributes to efficient infection by activation of the protein kinase Akt and thus reveal a novel function of a gammaherpesvirus RCA protein. PMID:20657771

  4. Synthesis of new pyrrolo[1,2-a]quinoxaline derivatives as potential inhibitors of Akt kinase.

    Science.gov (United States)

    Desplat, Vanessa; Geneste, Ambre; Begorre, Marc-Antoine; Fabre, Solene Belisle; Brajot, Stephane; Massip, Stephane; Thiolat, Denis; Mossalayi, Djavad; Jarry, Christian; Guillon, Jean

    2008-10-01

    Akt kinases are attractive targets for small molecule drug discovery because of their key role in tumor cell survival/proliferation and their overexpression/activation in many human cancers. Recent efforts in the development and biological evaluation of small molecule inhibitors of Akt have led to the identification of novel Akt kinase inhibitors, based on a quinoxaline or pyrazinone scaffold. A series of new substituted pyrrolo[1,2-a]quinoxaline derivatives, structural analogues of these active quinoxaline or pyrazinone pharmacophores, was synthesized from various substituted 2-nitroanilines or 1,2-phenylenediamine via multistep heterocyclization process. These new compounds were tested for their in vitro ability to inhibit the proliferation of the human leukemic cell lines K562, U937 and HL60, and the breast cancer cell line MCF7. Three of these human cell lines (K562, U937 and MCF7) exhibited an active phosphorylated Akt form. The most promising active pyrroloquinoxalines were found to be 1a that inhibited K562 cell line proliferation with an IC(50) of 4.5 microM, and 1h that inhibited U937 and MCF7 cell lines with IC(50) of 5 and 8 microM, respectively. These two candidates exhibited more potent activities than the reference inhibitor A6730.

  5. Protein Kinase B/Akt Binds and Phosphorylates PED/PEA-15, Stabilizing Its Antiapoptotic Action

    OpenAIRE

    Trencia, Alessandra; Perfetti, Anna; Cassese, Angela; Vigliotta, Giovanni; Miele, Claudia; Oriente, Francesco; Santopietro, Stefania; Giacco, Ferdinando; Condorelli, Gerolama; Formisano, Pietro; Beguinot, Francesco

    2003-01-01

    The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser116. In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser116 PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser116. In addition, a mutant of PED/PEA-15 featuring the substitution of Ser116→Gly (PEDS116→G) showed 10-fold-decreased phosphorylation by Akt. In intact 293 cells, Akt also i...

  6. Dysregulated Expression of Tensin 2 and Components of the PI3 Kinase/Akt Signaling Pathway in Human Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Nasrollah Erfani

    2016-01-01

    Full Text Available Background: The phosphatidylinositol 3-kinase/Akt signaling pathway is recognized as a key driver of cancer cell survival and proliferation, and is often contingent upon an impairment of expression/function of the PTEN tumor suppressor, a negative regulator of this pathway. In addition, the cytoskeletal signaling protein Tensin 2 has also been implicated as a negative regulator of this pathway. However, the PI3K pathway remains to be fully characterized in clinical thyroid carcinomas. The aim of this study is to determine the expression of components of the PI3K pathway in neoplastic and normal tissue sections obtained from patients with thyroid carcinoma. Methods: Tissues from 58 cases with thyroid carcinoma underwent immunohistochemistry for activated Akt (phosphorylated Akt, pAkt, Tensin 2 and PTEN. Results: A total of 100% of thyroid cancerous tissues were positive for pAkt staining compared to 67.9% of normal tissues. In contrast, 46.8% of cancer tissues were positive for Tensin 2 compared to 61.7% of normal tissues. For PTEN, 82.8% of cancerous tissues and 67.2% of normal tissues stained positive for this protein. There were no associations between the expression levels of the molecules with the patients’ clinicopathological characteristics. Conclusion:We have found evidence for an enhanced activation of the PI3K/Akt signaling pathway in clinical thyroid carcinoma tissues. This can be coupled with concomitant downregulation of Tensin 2. Further work is required to determine the relative significance of PTEN expression versus its activity in thyroid carcinoma in order to determine its role in the observed increased Akt activity.

  7. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    OpenAIRE

    ZHANG, Zong-Kang; Li, Jie; Liu, Jin; Baosheng GUO; Leung, Albert; Zhang, Ge; Zhang, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment...

  8. Dysregulated Expression of Tensin 2 and Components of the PI3 Kinase/Akt Signaling Pathway in Human Thyroid Carcinoma

    OpenAIRE

    Nasrollah Erfani; Mohammad Javad Fattahi; Mohammad Hossein Dabbaghmanesh; Mohammad Mehrazmay; Ahmad Monabati; Akbar Rasekhi Kazerouni; Sassan Hafizi; Abbas Ghaderi

    2016-01-01

    Background: The phosphatidylinositol 3-kinase/Akt signaling pathway is recognized as a key driver of cancer cell survival and proliferation, and is often contingent upon an impairment of expression/function of the PTEN tumor suppressor, a negative regulator of this pathway. In addition, the cytoskeletal signaling protein Tensin 2 has also been implicated as a negative regulator of this pathway. However, the PI3K pathway remains to be fully characterized in clinical thyroid carc...

  9. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia

    Science.gov (United States)

    Edwards, Holly; Xie, Chengzhi; LaFiura, Katherine M.; Dombkowski, Alan A.; Buck, Steven A.; Boerner, Julie L.; Taub, Jeffrey W.; Matherly, Larry H.

    2009-01-01

    RUNX1 (AML1) encodes the core binding factor α subunit of a heterodimeric transcription factor complex which plays critical roles in normal hematopoiesis. Translocations or down-regulation of RUNX1 have been linked to favorable clinical outcomes in acute leukemias, suggesting that RUNX1 may also play critical roles in chemotherapy responses in acute leukemias; however, the molecular mechanisms remain unclear. The median level of RUNX1b transcripts in Down syndrome (DS) children with acute megakaryocytic leukemia (AMkL) were 4.4-fold (P < .001) lower than that in non-DS AMkL cases. Short hairpin RNA knockdown of RUNX1 in a non-DS AMkL cell line, Meg-01, resulted in significantly increased sensitivity to cytosine arabinoside, accompanied by significantly decreased expression of PIK3CD, which encodes the δ catalytic subunit of the survival kinase, phosphoinositide 3 (PI3)–kinase. Transcriptional regulation of PIK3CD by RUNX1 was further confirmed by chromatin immunoprecipitation and promoter reporter gene assays. Further, a PI3-kinase inhibitor, LY294002, and cytosine arabinoside synergized in antileukemia effects on Meg-01 and primary pediatric AMkL cells. Our results suggest that RUNX1 may play a critical role in chemotherapy response in AMkL by regulating the PI3-kinase/Akt pathway. Thus, the treatment of AMkL may be improved by integrating PI3-kinase or Akt inhibitors into the chemotherapy of this disease. PMID:19638627

  10. Regulation of mTORC1 Signaling by Src Kinase Activity Is Akt1-Independent in RSV-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Martina Vojtěchová

    2008-02-01

    Full Text Available Increased activity of the Src tyrosine protein kinase that has been observed in a large number of human malignancies appears to be a promising target for drug therapy. In the present study, a critical role of the Src activity in the deregulation of mTOR signaling pathway in Rous sarcoma virus (RSV-transformed hamster fibroblasts, H19 cells, was shown using these cells treated with the Src-specific inhibitor, SU6656, and clones of fibroblasts expressing either the active Src or the dominant-negative Src kinase-dead mutant. Disruption of the Src kinase activity results in substantial reduction of the phosphorylation and activity of the Akt/protein kinase B (PKB, phosphorylation of tuberin (TSC2, mammalian target of rapamycin (mTOR, S6K1, ribosomal protein S6, and eukaryotic initiation factor 4E-binding protein 4E-BP1. The ectopic, active Akt1 that was expressed in Src-deficient cells significantly enhanced phosphorylation of TSC2 in these cells, but it failed to activate the inhibited components of the mTOR pathway that are downstream of TSC2. The data indicate that the Src kinase activity is essential for the activity of mTOR-dependent signaling pathway and suggest that mTOR targets may be controlled by Src independently of Akt1/TSC2 cascade in cells expressing hyperactive Src protein. These observations might have an implication in drug resistance to mTOR inhibitor-based cancer therapy in certain cell types.

  11. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung.

    Science.gov (United States)

    Malanga, Donatella; Scrima, Marianna; De Marco, Carmela; Fabiani, Fernanda; De Rosa, Nicla; De Gisi, Silvia; Malara, Natalia; Savino, Rocco; Rocco, Gaetano; Chiappetta, Gennaro; Franco, Renato; Tirino, Virginia; Pirozzi, Giuseppe; Viglietto, Giuseppe

    2008-03-01

    Somatic mutation (E17K) that constitutively activates the protein kinase AKT1 has been found in human cancer patients. We determined the role of the E17K mutation of AKT1 in lung cancer, through sequencing of AKT1 exon 4 in 105 resected, clinically annotated non-small cell lung cancer specimens. We detected a missense mutations G-->A transition at nucleotide 49 (that results in the E17K substitution) in two squamous cell carcinoma (2/36) but not in adenocarcinoma (0/53). The activity of the endogenous kinase carrying the E17K mutation immunoprecipitated by tumour tissue was significantly higher compared with the wild-type kinase immunoprecipitated by the adjacent normal tissue as determined both by in vitro kinase assay using a consensus peptide as substrate and by in vivo analysis of the phosphorylation status of AKT1 itself (pT308, pS473) or of known downstream substrates such as GSK3 (pS9/S22) and p27 (T198). Immunostaining or immunoblot analysis on membrane-enriched extracts indicated that the enhanced membrane localization exhibited by the endogenous E17K-AKT1 may account for the observed increased activity of mutant E17K kinase in comparison with the wild-type AKT1 from adjacent normal tissue. In conclusion, this is the first report of AKT1 mutation in lung cancer. Our data provide evidence that, although AKT1 mutations are apparently rare in lung cancer (1.9%), the oncogenic properties of E17K-AKT1 may contribute to the development of a fraction of lung carcinoma with squamous histotype (5.5%).

  12. Fine particulate matter leads to reproductive impairment in male rats by overexpressing phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway.

    Science.gov (United States)

    Cao, Xi-Ning; Yan, Chao; Liu, Dong-Yao; Peng, Jin-Pu; Chen, Jin-Jun; Zhou, Yue; Long, Chun-Lan; He, Da-Wei; Lin, Tao; Shen, Lian-Ju; Wei, Guang-Hui

    2015-09-17

    Maintenance of male reproductive function depends on normal sperm generation during which process Sertoli cells play a vital role. Studies found that fine particulate matter (PM) causes decreased male sperm quality, mechanism of which unestablished. We aim to investigate the definite mechanism of PM impairment on male reproduction. Male Sprague-Dawley rats were daily exposed to normal saline (NS) or PM2.5 with the doses of 9 mg/kg.b.w and 24 mg/kg.b.w. via intratracheal instillation for seven weeks. Reproductive function was tested by mating test and semen analysis after last exposure. Testes were collected to assess changes in histomorphology, and biomarkers including connexin 43 (Cx43), superoxide dismutase (SOD), phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (p-Akt). Male rats exposed to PM2.5 showed noticeable decreased fertility, significantly reduced sperm count, increased sperm abnormality rate and severe testicular damage in histomorphology. After PM2.5 exposure, the levels of Cx43 was significantly downregulated, and SOD was upregulated and downregulated significantly with different dose, respectively. Protein expression of PI3K and p-Akt dramatically enhanced, and the later one being located in Sertoli cells, the upward or declining trend was in dose dependent. PM2.5 exposure leads to oxidative stress impairment via PI3K/Akt signaling pathway on male reproduction in rats.

  13. Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition.

    Directory of Open Access Journals (Sweden)

    Véronique Calleja

    2009-01-01

    Full Text Available Protein kinase B (PKB/Akt belongs to the AGC superfamily of related serine/threonine protein kinases. It is a key regulator downstream of various growth factors and hormones and is involved in malignant transformation and chemo-resistance. Full-length PKB protein has not been crystallised, thus studying the molecular mechanisms that are involved in its regulation in relation to its structure have not been simple. Recently, the dynamics between the inactive and active conformer at the molecular level have been described. The maintenance of PKB's inactive state via the interaction of the PH and kinase domains prevents its activation loop to be phosphorylated by its upstream activator, phosphoinositide-dependent protein kinase-1 (PDK1. By using a multidisciplinary approach including molecular modelling, classical biochemical assays, and Förster resonance energy transfer (FRET/two-photon fluorescence lifetime imaging microscopy (FLIM, a detailed model depicting the interaction between the different domains of PKB in its inactive conformation was demonstrated. These findings in turn clarified the molecular mechanism of PKB inhibition by AKT inhibitor VIII (a specific allosteric inhibitor and illustrated at the molecular level its selectivity towards different PKB isoforms. Furthermore, these findings allude to the possible function of the C-terminus in sustaining the inactive conformer of PKB. This study presents essential insights into the quaternary structure of PKB in its inactive conformation. An understanding of PKB structure in relation to its function is critical for elucidating its mode of activation and discovering how to modulate its activity. The molecular mechanism of inhibition of PKB activation by the specific drug AKT inhibitor VIII has critical implications for determining the mechanism of inhibition of other allosteric inhibitors and for opening up opportunities for the design of new generations of modulator drugs.

  14. Regulation of Serine-Threonine Kinase Akt Activation by NAD+-Dependent Deacetylase SIRT7

    Directory of Open Access Journals (Sweden)

    Jia Yu

    2017-01-01

    Full Text Available The Akt pathway is a central regulator that promotes cell survival in response to extracellular signals. Depletion of SIRT7, an NAD+-dependent deacetylase that is the least-studied sirtuin, is known to significantly increase Akt activity in mice through unknown mechanisms. In this study, we demonstrate that SIRT7 depletion in breast cancer cells results in Akt hyper-phosphorylation and increases cell survival following genotoxic stress. Mechanistically, SIRT7 specifically interacts with and deacetylates FKBP51 at residue lysines 28 and 155 (K28 and K155, resulting in enhanced interactions among FKBP51, Akt, and PHLPP, as well as Akt dephosphorylation. Mutating both lysines to arginines abolishes the effect of SIRT7 on Akt activity through FKBP51 deacetylation. Finally, energy stress strengthens SIRT7-mediated effects on Akt dephosphorylation through FKBP51 and thus sensitizes cancer cells to cytotoxic agents. These results reveal a direct role of SIRT7 in Akt regulation and raise the possibility of using the glucose analog 2-deoxy-D-glucose (2DG as a chemo-sensitizing agent.

  15. Syntheses of potent, selective, and orally bioavailable indazole-pyridine series of protein kinase B/Akt inhibitors with reduced hypotension.

    Science.gov (United States)

    Zhu, Gui-Dong; Gandhi, Viraj B; Gong, Jianchun; Thomas, Sheela; Woods, Keith W; Song, Xiaohong; Li, Tongmei; Diebold, R Bruce; Luo, Yan; Liu, Xuesong; Guan, Ran; Klinghofer, Vered; Johnson, Eric F; Bouska, Jennifer; Olson, Amanda; Marsh, Kennan C; Stoll, Vincent S; Mamo, Mulugeta; Polakowski, James; Campbell, Thomas J; Martin, Ruth L; Gintant, Gary A; Penning, Thomas D; Li, Qun; Rosenberg, Saul H; Giranda, Vincent L

    2007-06-28

    Compound 7 was identified as a potent (IC50 = 14 nM), selective, and orally bioavailable (F = 70% in mouse) inhibitor of protein kinase B/Akt. While promising efficacy was observed in vivo, this compound showed effects on depolarization of Purkinje fibers in an in vitro assay and CV hypotension in vivo. Guided by an X-ray structure of 7 bound to protein kinase A, which has 80% homology with Akt in the kinase domain, our efforts have focused on structure-activity relationship (SAR) studies of the phenyl moiety, in an attempt to address the cardiovascular liability and further improve the Akt potency. A novel and efficient synthetic route toward diversely substituted phenyl derivatives of 7 was developed utilizing a copper-mediated aziridine ring-opening reaction as the key step. To improve the selectivity of these Akt inhibitors over other protein kinases, a nitrogen atom was incorporated into selected phenyl analogues of 7 at the C-6 position of the methyl indazole scaffold. These modifications resulted in the discovery of inhibitor 37c with greater potency (IC50 = 0.6 nM vs Akt), selectivity, and improved cardiovascular safety profile. The SARs, pharmacokinetic profile, and CV safety of selected Akt inhibitors will be discussed.

  16. Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis.

    Science.gov (United States)

    Larson-Casey, Jennifer L; Deshane, Jessy S; Ryan, Alan J; Thannickal, Victor J; Carter, A Brent

    2016-03-15

    Idiopathic pulmonary fibrosis (IPF) is a devastating lung disorder with increasing incidence. Mitochondrial oxidative stress in alveolar macrophages is directly linked to pulmonary fibrosis. Mitophagy, the selective engulfment of dysfunctional mitochondria by autophagasomes, is important for cellular homeostasis and can be induced by mitochondrial oxidative stress. Here, we show Akt1 induced macrophage mitochondrial reactive oxygen species (ROS) and mitophagy. Mice harboring a conditional deletion of Akt1 in macrophages (Akt1(-/-)Lyz2-cre) and Park2(-/-) mice had impaired mitophagy and reduced active transforming growth factor-β1 (TGF-β1). Although Akt1 increased TGF-β1 expression, mitophagy inhibition in Akt1-overexpressing macrophages abrogated TGF-β1 expression and fibroblast differentiation. Importantly, conditional Akt1(-/-)Lyz2-cre mice and Park2(-/-) mice had increased macrophage apoptosis and were protected from pulmonary fibrosis. Moreover, IPF alveolar macrophages had evidence of increased mitophagy and displayed apoptosis resistance. These observations suggest that Akt1-mediated mitophagy contributes to alveolar macrophage apoptosis resistance and is required for pulmonary fibrosis development.

  17. Involvement of PI 3 kinase/Akt-dependent Bad phosphorylation in Toxoplasma gondii-mediated inhibition of host cell apoptosis.

    Science.gov (United States)

    Quan, Juan-Hua; Cha, Guang-Ho; Zhou, Wei; Chu, Jia-Qi; Nishikawa, Yoshifumi; Lee, Young-Ha

    2013-04-01

    Toxoplasma gondii-infected cells are resistant to various apoptotic stimuli, however, the role of the pro-apoptotic BH3-only Bad protein in T. gondii-imposed inhibition of host cell apoptosis in connection with the phosphoinositide 3-kinase (PI3K)-PKB/Akt pathway was not well delineated. Here, we investigated the signaling patterns of Bad, Bax and PKB/Akt in T. gondii-infected and uninfected THP-1 cells treated with staurosporine (STS) or PI3K inhibitors. STS treatment, without T. gondii infection, reduced the viability of THP-1 cells in proportion to STS concentration and triggered many cellular death events such as caspase-3 and -9 activation, Bax translocation, cytochrome c release from host cell mitochondria into cytosol, and PARP cleavage in the host cell. However, T. gondii infection eliminated the STS-triggered mitochondrial apoptotic events described above. Additionally, T. gondii infection in vitro and in vivo induced the phosphorylation of PKB/Akt and Bad in a parasite-load-dependent manner which subsequently inhibited Bax translocation. The PI3K inhibitors, LY294002 and Wortmannin, both blocked parasite-induced phosphorylation of PKB/Akt and Bad. Furthermore, THP-1 cells pretreated with these PI3K inhibitors showed reduced phosphorylation of Bad in a dose-dependent manner and subsequently failed to inhibit the Bax translocation, also these cells also failed to overcome the T. gondii-imposed inhibition of host cell apoptosis. These data demonstrate that the PI3K-PKB/Akt pathway may be one of the major route for T. gondii in the prevention of host cell apoptosis and T. gondii phosphorylates the pro-apoptotic Bad protein to prevent apoptosis.

  18. Cyclooxygenase 2-dependent and independent activation of Akt through casein kinase 2α contributes to human bladder cancer cell survival

    Directory of Open Access Journals (Sweden)

    Fujimoto Kiyohide

    2011-05-01

    Full Text Available Abstract Background Survival rate for patients presenting muscle invasive bladder cancer is very low, and useful therapeutic target has not been identified yet. In the present study, new COX2 downstream signals involved in urothelial carcinoma cell survival were investigated in vitro and in vivo. Methods COX2 gene was silenced by siRNA transfection. Orthotopic implantation animal model and transurethral instillation of siRNA with atelocollagen was constructed to examine the effects of COX2 knockdown in vivo. Cell cycle was examined by flowcytoketry. Surgical specimens derived from patients with urinary bladder cancer (all were initially diagnosed cases were used for immunohistochemical analysis of the indicated protein expression in urothelial carcinoma cells. Results Treatment with the COX2 inhibitor or knockdown of COX2 reduced expression of casein kinase (CK 2 α, a phophorylated Akt and urokinase type plasminogen activator (uPA, resulting in p27 induction, cell cycle arrest at G1 phase and cell growth suppression in human urothelial carcinoma cell lines expressing COX2. Silencing of CK2α exhibited the similar effects. Even in UMUC3 cells lacking the COX2 gene, COX2 inhibition also inhibited cell growth through down-regulation of the CK2α-Akt/uPA axis. The mouse orthotropic bladder cancer model demonstrated that the COX2 inhibitor, meloxicam significantly reduced CK2α, phosphorylated Akt and uPA expression, whereas induced p27 by which growth and invasiveness of bladder cancer cells were strongly inhibited. Immunohistochemically, high expression of COX2, CK2α and phosphorylated form of Akt was found in high-grade, invasive carcinomas as well as carcinoma in situ, but not in low-grade and noninvasive phenotypes. Conclusions COX2-dependent and independent activation of CK2α-Akt/uPA signal is mainly involved in urothelial carcinoma cell survival, moreover, not only COX2 but also CK2α could be direct targets of COX2 inhibitors.

  19. Functional Role of mTORC2 versus Integrin-Linked Kinase in Mediating Ser473-Akt Phosphorylation in PTEN-Negative Prostate and Breast Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Su-Lin Lee

    Full Text Available Although the rictor-mTOR complex (mTORC2 has been shown to act as phosphoinositide-dependent kinase (PDK2 in many cell types, other kinases have also been implicated in mediating Ser473-Akt phosphorylation. Here, we demonstrated the cell line specificity of integrin-linked kinase (ILK versus mTORC2 as PDK2 in LNCaP and PC-3 prostate and MDA-MB-468 breast cancer cells, of which the PTEN-negative status allowed the study of Ser473-Akt phosphorylation independent of external stimulation. PC-3 and MDA-MB-468 cells showed upregulated ILK expression relative to LNCaP cells, which expressed a high abundance of mTOR. Exposure to Ku-0063794, a second-generation mTOR inhibitor, decreased Ser473-Akt phosphorylation in LNCaP cells, but not in PC-3 or MDA-MB-468 cells. In contrast, treatment with T315, a novel ILK inhibitor, reduced the phosphorylation of Ser473-Akt in PC-3 and MDA-MB-468 cells without affecting that in LNCaP cells. This cell line specificity was verified by comparing Ser473-Akt phosphorylation status after genetic knockdown of rictor, ILK, and other putative Ser-473-Akt kinases. Genetic knockdown of rictor, but not ILK or the other kinases examined, inhibited Ser473-Akt phosphorylation in LNCaP cells. Conversely, PC-3 and MDA-MB-468 cells were susceptible to the effect of ILK silencing on Ser473-Akt phosphorylation, while knockdown of rictor or any of the other target kinases had no appreciable effect. Co-immunoprecipitation analysis demonstrated the physical interaction between ILK and Akt in PC-3 cells, and T315 blocked ILK-mediated Ser473 phosphorylation of bacterially expressed Akt. ILK also formed complexes with rictor in PC-3 and MDA-MB-468 cells that were disrupted by T315, but such complexes were not observed in LNCaP cells. In the PTEN-functional MDA-MB-231 cell line, both T315 and Ku-0063794 suppressed EGF-induced Ser473-Akt phosphorylation. Inhibition of ILK by T315 or siRNA-mediated knockdown suppressed epithelial

  20. In vitro and in vivo activity of novel small-molecule inhibitors targeting the pleckstrin homology domain of protein kinase B/AKT.

    Science.gov (United States)

    Moses, Sylvestor A; Ali, M Ahad; Zuohe, Song; Du-Cuny, Lei; Zhou, Li Li; Lemos, Robert; Ihle, Nathan; Skillman, A Geoffrey; Zhang, Shuxing; Mash, Eugene A; Powis, Garth; Meuillet, Emmanuelle J

    2009-06-15

    The phosphatidylinositol 3-kinase/AKT signaling pathway plays a critical role in activating survival and antiapoptotic pathways within cancer cells. Several studies have shown that this pathway is constitutively activated in many different cancer types. The goal of this study was to discover novel compounds that bind to the pleckstrin homology (PH) domain of AKT, thereby inhibiting AKT activation. Using proprietary docking software, 22 potential PH domain inhibitors were identified. Surface plasmon resonance spectroscopy was used to measure the binding of the compounds to the expressed PH domain of AKT followed by an in vitro activity screen in Panc-1 and MiaPaCa-2 pancreatic cancer cell lines. We identified a novel chemical scaffold in several of the compounds that binds selectively to the PH domain of AKT, inducing a decrease in AKT activation and causing apoptosis at low micromolar concentrations. Structural modifications of the scaffold led to compounds with enhanced inhibitory activity in cells. One compound, 4-dodecyl-N-(1,3,4-thiadiazol-2-yl)benzenesulfonamide, inhibited AKT and its downstream targets in cells as well as in pancreatic cancer cell xenografts in immunocompromised mice; it also exhibited good antitumor activity. In summary, a pharmacophore for PH domain inhibitors targeting AKT function was developed. Computer-aided modeling, synthesis, and testing produced novel AKT PH domain inhibitors that exhibit promising preclinical properties.

  1. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation.

    Science.gov (United States)

    Ohtsuka, Hiroko; Iguchi, Tomohiro; Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation.

  2. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation

    Science.gov (United States)

    Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation. PMID:28072855

  3. A kinome-wide RNAi screen in Drosophila Glia reveals that the RIO kinases mediate cell proliferation and survival through TORC2-Akt signaling in glioblastoma.

    Directory of Open Access Journals (Sweden)

    Renee D Read

    Full Text Available Glioblastoma, the most common primary malignant brain tumor, is incurable with current therapies. Genetic and molecular analyses demonstrate that glioblastomas frequently display mutations that activate receptor tyrosine kinase (RTK and Pi-3 kinase (PI3K signaling pathways. In Drosophila melanogaster, activation of RTK and PI3K pathways in glial progenitor cells creates malignant neoplastic glial tumors that display many features of human glioblastoma. In both human and Drosophila, activation of the RTK and PI3K pathways stimulates Akt signaling along with other as-yet-unknown changes that drive oncogenesis. We used this Drosophila glioblastoma model to perform a kinome-wide genetic screen for new genes required for RTK- and PI3K-dependent neoplastic transformation. Human orthologs of novel kinases uncovered by these screens were functionally assessed in mammalian glioblastoma models and human tumors. Our results revealed that the atypical kinases RIOK1 and RIOK2 are overexpressed in glioblastoma cells in an Akt-dependent manner. Moreover, we found that overexpressed RIOK2 formed a complex with RIOK1, mTor, and mTor-complex-2 components, and that overexpressed RIOK2 upregulated Akt signaling and promoted tumorigenesis in murine astrocytes. Conversely, reduced expression of RIOK1 or RIOK2 disrupted Akt signaling and caused cell cycle exit, apoptosis, and chemosensitivity in glioblastoma cells by inducing p53 activity through the RpL11-dependent ribosomal stress checkpoint. These results imply that, in glioblastoma cells, constitutive Akt signaling drives RIO kinase overexpression, which creates a feedforward loop that promotes and maintains oncogenic Akt activity through stimulation of mTor signaling. Further study of the RIO kinases as well as other kinases identified in our Drosophila screen may reveal new insights into defects underlying glioblastoma and related cancers and may reveal new therapeutic opportunities for these cancers.

  4. Theobromine, the primary methylxanthine found in Theobroma cacao, prevents malignant glioblastoma proliferation by negatively regulating phosphodiesterase-4, extracellular signal-regulated kinase, Akt/mammalian target of rapamycin kinase, and nuclear factor-kappa B.

    Science.gov (United States)

    Sugimoto, Naotoshi; Miwa, Shinji; Hitomi, Yoshiaki; Nakamura, Hiroyuki; Tsuchiya, Hiroyuki; Yachie, Akihiro

    2014-01-01

    Theobromine, a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. We previously showed that methylxanthines, including caffeine and theophylline, have antitumor and antiinflammatory effects, which are in part mediated by their inhibition of phosphodiesterase (PDE). A member of the PDE family, PDE4, is widely expressed in and promotes the growth of glioblastoma, the most common type of brain tumor. The purpose of this study was to determine whether theobromine could exert growth inhibitory effects on U87-MG, a cell line derived from human malignant glioma. We show that theobromine treatment elevates intracellular cAMP levels and increases the activity of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, whereas it attenuates p44/42 extracellular signal-regulated kinase activity and the Akt/mammalian target of rapamycin kinase and nuclear factor-kappa B signal pathways. It also inhibits cell proliferation. These results suggest that foods and beverages containing cocoa bean extracts, including theobromine, might be extremely effective in preventing human glioblastoma.

  5. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Anika; Ammer, Hermann [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany); Eisinger, Daniela A., E-mail: eisinger@pharmtox.vetmed.uni-muenchen.de [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany)

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  6. Repulsive axon guidance by Draxin is mediated by protein Kinase B (Akt), glycogen synthase kinase-3β (GSK-3β) and microtubule-associated protein 1B.

    Science.gov (United States)

    Meli, Rajeshwari; Weisová, Petronela; Propst, Friedrich

    2015-01-01

    Draxin is an important axon guidance cue necessary for the formation of forebrain commissures including the corpus callosum, but the molecular details of draxin signaling are unknown. To unravel how draxin signals are propagated we used murine cortical neurons and genetic and pharmacological approaches. We found that draxin-induced growth cone collapse critically depends on draxin receptors (deleted in colorectal cancer, DCC), inhibition of protein kinase B/Akt, activation of GSK-3β (glycogen synthase kinase-3β) and the presence of microtubule-associated protein MAP1B. This study, for the first time elucidates molecular events in draxin repulsion, links draxin and DCC to MAP1B and identifies a novel MAP1B-depenent GSK-3β pathway essential for chemo-repulsive axon guidance cue signaling.

  7. Compound library screening identified Akt/PKB kinase pathway inhibitors as potential key molecules for the development of new chemotherapeutics against schistosomiasis.

    Science.gov (United States)

    Morel, Marion; Vanderstraete, Mathieu; Cailliau, Katia; Lescuyer, Arlette; Lancelot, Julien; Dissous, Colette

    2014-12-01

    Protein kinases (PKs) are one of the largest protein families in most eukaryotic organisms. These enzymes are involved in the control of cell proliferation, differentiation and metabolism and a large number of the anticancer drugs currently used are directed against PKs. The structure and function of PKs are well conserved throughout evolution. In schistosome parasites, PKs were shown to be involved in essential functions at every stage of the parasite life cycle, making these enzymes promising anti-parasite drug targets. In this study, we tested a panel of commercial inhibitors for various PKs and analyzed their effects on pairing and egg production by schistosomes as well as their toxicity towards schistosomula larvae. Results obtained confirmed the deleterious effect of PK targeting on Schistosoma mansoni physiology and the important function of different tyrosine and serine/threonine kinases in the biology and reproduction of this parasite. They also indicated for the first time that the Protein kinase B (also called Akt) which is a major downstream target of many receptor tyrosine kinases and a central player at the crossroads of signal transduction pathways activated in response to growth factors and insulin, can constitute a novel target for anti-schistosome chemotherapy. Structural and functional studies have shown that SmAkt is a conserved kinase and that its activity can be inhibited by commercially available Akt inhibitors. In treated adult worms, Akt/PKB kinase pathway inhibitors induced profound alterations in pairing and egg laying and they also greatly affected the viability of schistosomula larvae.

  8. Caspase-3-dependent cleavage of Akt modulates tau phosphorylation via GSK3β kinase: implications for Alzheimer's disease.

    Science.gov (United States)

    Chu, J; Lauretti, E; Praticò, D

    2017-01-31

    The pathological hallmark of Alzheimer's disease (AD) is accumulation of misfolded amyloid-β peptides and hyperphosphorylated tau protein in the brain. Increasing evidence suggests that serine-aspartyl proteases-caspases are activated in the AD brain. Previous studies identified a caspase-3 cleavage site within the amyloid-β precursor protein, and a caspase-3 cleavage of tau as the mechanisms involved in the development of Aβ and tau neuropathology, respectively. However, the potential role that caspase-3 could have on tau metabolism remains unknown. In the current studies, we provide experimental evidence that caspase-3 directly and specifically regulates tau phosphorylation, and demonstrate that this effect is mediated by the GSK3β kinase pathway via a caspase-3-dependent cleavage of the protein kinase B (also known as Akt). In addition, we confirm these results in vivo by using a transgenic mouse model of AD. Collectively, our findings demonstrate a new role for caspase-3 in the neurobiology of tau, and suggest that therapeutic strategies aimed at inhibiting this protease-dependent cleavage of Akt may prove beneficial in preventing tau hyperphosphorylation and subsequent neuropathology in AD and related tauopathies.Molecular Psychiatry advance online publication, 31 January 2017; doi:10.1038/mp.2016.214.

  9. Alisol B acetate induces apoptosis of SGC7901 cells via mitochondrial and phosphatidylinositol 3-kinases/Akt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Yong-Hong Xu; Li-Jie Zhao; Yan Li

    2009-01-01

    AIM: To examine the effect of alisol B acetate on the growth of human gastric cancer cell line SGC7901 and its possible mechanism of action. METHODS: The cytotoxic effect of alisol B acetate on SGC7901 cells was measured by 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Phase-contrast and electron microscopy were used to observe the morphological changes. Cell cycle and mitochondrial transmembrane potential (ΔΨm) were determined by flow cytometry. Western blotting was used to detect the expression of apoptosis-regulated gene Bcl-2, Bax, Apaf-1, caspase-3, caspase-9, Akt, P-Akt and phosphatidylinositol 3-kinases (PI3K). RESULTS: Alisol B acetate inhibited the proliferation of SGC7901 cell line in a time- and dose-dependent manner. PI staining showed that alisol B acetate can change the cell cycle distribution of SGC7901, increase the proportion of cells in G0-G1 phase and decrease the proportion of S phase cells and G2-M phase cells. Alisol B acetate at a concentration of 30 μmol/L induced apoptosis after 24, 48 and 72 h incubation, with occurrence rates of apoptotic cells of 4.36%, 14.42% and 21.16%, respectively. Phase-contrast and electron microscopy revealed that the nuclear fragmentation and chromosomal condensed, cells shrank and attachment loss appeared in the SGC7901 treated with alisol B acetate. Apoptosis of SGC7901 with alisol B acetate. Apoptosis of SGC7901 cells was associated with cell cycle arrest, caspase-3 and caspase-9 activation, loss of mitochondrial membrane potential and up-regulation of the ratio of Bax/Bcl-2 and inhibition of the PI3K/Akt. CONCLUSION: Alisol B acetate exhibits an antiproliferative effect in SGC7901 cells by inducing apoptosis. Apoptosis of SGC7901 cells involves mitochondria-caspase and PI3K/Akt dependent pathways.

  10. Promotion of melanoma cell invasion and tumor metastasis by microcystin-LR via phosphatidylinositol 3-kinase/AKT pathway.

    Science.gov (United States)

    Xu, Pengfei; Zhang, Xu-Xiang; Miao, Chen; Fu, Ziyi; Li, Zhengrong; Zhang, Gen; Zheng, Maqing; Liu, Yuefang; Yang, Liuyan; Wang, Ting

    2013-08-06

    Recently, we have indicated that microcystin-LR, a cyanobacterial toxin produced in eutrophic lakes or reservoirs, can increase invasive ability of melanoma MDA-MB-435 cells; however, the stimulatory effect needs identification by in vivo experiment and the related molecular mechanism is poorly understood. In this study, in vitro and in vivo experiments were conducted to investigate the effect of microcystin-LR on invasion and metastasis of human melanoma cells, and the underlying molecular mechanism was also explored. MDA-MB-435 xenograft model assay showed that oral administration of nude mice with microcystin-LR at 0.001-0.1 mg/kg/d posed no significant effect on tumor weight. Histological examination demonstrated that microcystin-LR could promote lung metastasis, which is confirmed by Matrigel chamber assay suggesting that microcystin-LR treatment at 25 nM can increase the invasiveness of MDA-MB-435 cells. In vitro and in vivo experiments consistently showed that microcystin-LR exposure increased mRNA and protein levels of matrix metalloproteinases (MMP-2/-9) by activating phosphatidylinositol 3-kinase (PI3-K)/AKT. Additionally, microcystin-LR treatment at low doses (≤25 nM) decreased lipid phosphatase PTEN expression, and the microcystin-induced invasiveness enhancement and MMP-2/-9 overexpression were reversed by the PI3-K/AKT chemical inhibitor LY294002 and AKT siRNA, indicating that microcystin-LR promotes invasion and metastasis of MDA-MB-435 cells via the PI3-K/AKT pathway.

  11. Polyunsaturated fatty acids block platelet-activating factor-induced phosphatidylinositol 3 kinase/Akt-mediated apoptosis in intestinal epithelial cells.

    Science.gov (United States)

    Lu, Jing; Caplan, Michael S; Li, Dan; Jilling, Tamas

    2008-05-01

    We have shown earlier that platelet-activating factor (PAF) causes apoptosis in enterocytes via a mechanism that involves Bax translocation to mitochondria, followed by caspase activation and DNA fragmentation. Herein we report that, in rat small intestinal epithelial cells (IEC-6), these downstream apoptotic effects are mediated by a PAF-induced inhibition of the phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt) signaling pathway. Treatment with PAF results in rapid dephosphorylation of Akt, phosphoinositide-dependent kinase-1, and the YXXM p85 binding motif of several proteins and redistribution of Akt-pleckstrin homology domain-green fluorescent protein, i.e., an in vivo phosphatidylinositol (3,4,5)-trisphosphate sensor, from membrane to cytosol. The proapoptotic effects of PAF were inhibited by both n-3 and n-6 polyunsaturated fatty acids but not by a saturated fatty acid palmitate. Indomethacin, an inhibitor of prostaglandin biosynthesis, did not influence the baseline or PAF-induced apoptosis, but 2-bromopalmitate, an inhibitor of protein palmitoylation, inhibited all of the proapoptotic effects of PAF. Our data strongly suggest that an inhibition of the PI 3-kinase/Akt signaling pathway is the main mechanism of PAF-induced apoptosis in enterocytes and that polyunsaturated fatty acids block this mechanism very early in the signaling cascade independently of any effect on prostaglandin synthesis, and probably directly via an effect on protein palmitoylation.

  12. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice.

    Science.gov (United States)

    Nishida, Hidenori; Sohara, Eisei; Nomura, Naohiro; Chiga, Motoko; Alessi, Dario R; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi

    2012-10-01

    Metabolic syndrome patients have insulin resistance, which causes hyperinsulinemia, which in turn causes aberrant increased renal sodium reabsorption. The precise mechanisms underlying this greater salt sensitivity of hyperinsulinemic patients remain unclear. Abnormal activation of the recently identified with-no-lysine kinase (WNK)-oxidative stress-responsive kinase 1 (OSR1)/STE20/SPS1-related proline/alanine-rich kinase (SPAK)-NaCl cotransporter (NCC) phosphorylation cascade results in the salt-sensitive hypertension of pseudohypoaldosteronism type II. Here, we report a study of renal WNK-OSR1/SPAK-NCC cascade activation in the db/db mouse model of hyperinsulinemic metabolic syndrome. Thiazide sensitivity was increased, suggesting greater activity of NCC in db/db mice. In fact, increased phosphorylation of OSR1/SPAK and NCC was observed. In both SpakT243A/+ and Osr1T185A/+ knock-in db/db mice, which carry mutations that disrupt the signal from WNK kinases, increased phosphorylation of NCC and elevated blood pressure were completely corrected, indicating that phosphorylation of SPAK and OSR1 by WNK kinases is required for the increased activation and phosphorylation of NCC in this model. Renal phosphorylated Akt was increased in db/db mice, suggesting that increased NCC phosphorylation is regulated by the phosphatidylinositol 3-kinase/Akt signaling cascade in the kidney in response to hyperinsulinemia. A phosphatidylinositol 3-kinase inhibitor (NVP-BEZ235) corrected the increased OSR1/SPAK-NCC phosphorylation. Another more specific phosphatidylinositol 3-kinase inhibitor (GDC-0941) and an Akt inhibitor (MK-2206) also inhibited increased NCC phosphorylation. These results indicate that the phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in db/db mice. This mechanism may play a role in the pathogenesis of salt-sensitive hypertension in human hyperinsulinemic conditions, such as the metabolic syndrome.

  13. Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways.

    Science.gov (United States)

    Park, Chang-Min; Park, Myung-Jin; Kwak, Hee-Jin; Lee, Hyung-Chahn; Kim, Mi-Suk; Lee, Seung-Hoon; Park, In-Chul; Rhee, Chang Hun; Hong, Seok-Il

    2006-09-01

    Glioblastoma is a severe type of primary brain tumor, and its highly invasive character is considered to be a major therapeutic obstacle. Several recent studies have reported that ionizing radiation (IR) enhances the invasion of tumor cells, but the mechanisms for this effect are not well understood. In this study, we investigated the possible signaling mechanisms involved in IR-induced invasion of glioma cells. IR increased the matrix metalloproteinase (MMP)-2 promoter activity, mRNA transcription, and protein secretion along with the invasiveness of glioma cells lacking functional PTEN (U87, U251, U373, and C6) but not those harboring wild-type (WT)-PTEN (LN18 and LN428). IR activated phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin, and blockade of these kinases by specific inhibitors (LY294002, Akt inhibitor IV, and rapamycin, respectively) and transfection of dominant-negative (DN) mutants (DN-p85 and DN-Akt) or WT-PTEN suppressed the IR-induced MMP-2 secretion in U251 and U373 cells. In addition, inhibitors of epidermal growth factor receptor (EGFR; AG490 and AG1478), Src (PP2), and p38 (SB203580), EGFR neutralizing antibody, and transfection of DN-Src and DN-p38 significantly blocked IR-induced Akt phosphorylation and MMP-2 secretion. IR-induced activation of EGFR was suppressed by PP2, whereas LY294002 and SB203580 did not affect the activations of p38 and PI3K, respectively. Finally, these kinase inhibitors significantly reduced the IR-induced invasiveness of these cells on Matrigel. Taken together, our findings suggest that IR induces Src-dependent EGFR activation, which triggers the p38/Akt and PI3K/Akt signaling pathways, leading to increased MMP-2 expression and heightened invasiveness of PTEN mutant glioma cells.

  14. Campylobacter jejuni induces an anti-inflammatory response in human intestinal epithelial cells through activation of phosphatidylinositol 3-kinase/Akt pathway

    DEFF Research Database (Denmark)

    Li, Yiping; Vegge, Christina S.; Brøndsted, Lone

    2011-01-01

    Campylobacterjejuni (C. jejuni) is the most common cause of human acute bacterial gastroenteritis. Poultry is a major reservoir of C. jejuni and considered an important source of human infections, thus, it is important to understand the host response to C. jejuni from chicken origin. In this study...... to activate phosphatidylinositol 3-kinase (PI3K)/Akt pathway and induce pro-inflammatory interleukin-8(IL-8) as well as anti-inflammatory cytokine IL-10 in human intestinal epithelial cell line Colo 205. The signalling pathways PI3K/Akt and mitogen-activated protein (MAP)kinases ERK and p38 were involved in C...... for cytolethal distending toxin (CDT) deficient mutants. Moreover, we demonstrated that heat-killed bacteria were able to induce IL-8 and IL-10 expression to a lower level than live bacteria. We therefore conclude that C. jejuni activate a PI3K/Akt-dependent anti-inflammatory pathway in human intestinal...

  15. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-pil [Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine (Korea, Republic of); Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung [MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine (Korea, Republic of); Chung, Sung Woon [Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine (Korea, Republic of); Hong, Ki Whan; Kim, Chi Dae [MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine (Korea, Republic of); Bae, Sun Sik, E-mail: sunsik@pusan.ac.kr [MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine (Korea, Republic of)

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.

  16. 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells.

    Science.gov (United States)

    Kulp, Samuel K; Yang, Ya-Ting; Hung, Chin-Chun; Chen, Kuen-Feng; Lai, Ju-Ping; Tseng, Ping-Hui; Fowble, Joseph W; Ward, Patrick J; Chen, Ching-Shih

    2004-02-15

    Regarding the involvement of cyclooxygenase-2 (COX-2)-independent pathways in celecoxib-mediated antineoplastic effects, the following two issues remain outstanding: identity of the non-COX-2 targets and relative contributions of COX-2-dependent versus -independent mechanisms. We use a close celecoxib analog deficient in COX-2-inhibitory activity, DMC (4-[5-(2,5-dimethylphenyl)-3(trifluoromethyl)-1H-pyrazol-1-yl]benzene-sulfonamide), to examine the premise that Akt signaling represents a major non-COX-2 target. Celecoxib and DMC block Akt activation in PC-3 cells through the inhibition of phosphoinositide-dependent kinase-1 (PDK-1) with IC(50) of 48 and 38 micro M, respectively. The consequent effect on Akt activation is more pronounced (IC(50) values of 28 and 20 micro M, respectively), which might be attributed to the concomitant dephosphorylation by protein phosphatase 2A. In serum-supplemented medium, celecoxib and DMC cause G(1) arrest, and at higher concentrations, they induce apoptosis with relative potency comparable with that in blocking Akt activation. Moreover, the effect of daily oral celecoxib and DMC at 100 and 200 mg/kg on established PC-3 xenograft tumors is assessed. Celecoxib at both doses and DMC at 100 mg/kg had marginal impacts. However, a correlation exists between the in vitro potency of DMC and its ability at 200 mg/kg to inhibit xenograft tumor growth through the inhibition of Akt activation. Analysis of the tumor samples indicates that a differential reduction in the phospho-Akt/Akt ratio was noted in celecoxib- and DMC-treated groups vis-à-vis the control group. Together, these data underscore the role of 3-phosphoinositide-dependent protein kinase-1/Akt signaling in celecoxib-mediated in vitro antiproliferative effects in prostate cancer cells.

  17. Phosphoinositide-3-kinase/akt - dependent signaling is required for maintenance of [Ca2+]i,ICa, and Ca2+ transients in HL-1 cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Graves Bridget M

    2012-06-01

    Full Text Available Abstract The phosphoinositide 3-kinases (PI3K/Akt dependent signaling pathway plays an important role in cardiac function, specifically cardiac contractility. We have reported that sepsis decreases myocardial Akt activation, which correlates with cardiac dysfunction in sepsis. We also reported that preventing sepsis induced changes in myocardial Akt activation ameliorates cardiovascular dysfunction. In this study we investigated the role of PI3K/Akt on cardiomyocyte function by examining the role of PI3K/Akt-dependent signaling on [Ca2+]i, Ca2+ transients and membrane Ca2+ current, ICa, in cultured murine HL-1 cardiomyocytes. LY294002 (1–20 μM, a specific PI3K inhibitor, dramatically decreased HL-1 [Ca2+]i, Ca2+ transients and ICa. We also examined the effect of PI3K isoform specific inhibitors, i.e. α (PI3-kinase α inhibitor 2; 2–8 nM; β (TGX-221; 100 nM and γ (AS-252424; 100 nM, to determine the contribution of specific isoforms to HL-1 [Ca2+]i regulation. Pharmacologic inhibition of each of the individual PI3K isoforms significantly decreased [Ca2+]i, and inhibited Ca2+ transients. Triciribine (1–20 μM, which inhibits AKT downstream of the PI3K pathway, also inhibited [Ca2+]i, and Ca2+ transients and ICa. We conclude that the PI3K/Akt pathway is required for normal maintenance of [Ca2+]i in HL-1 cardiomyocytes. Thus, myocardial PI3K/Akt-PKB signaling sustains [Ca2+]i required for excitation-contraction coupling in cardiomyoctyes.

  18. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth

    Directory of Open Access Journals (Sweden)

    Li J

    2015-02-01

    Full Text Available Jie Li,1 Chao Zhang,1 Hongchuan Jiang,1 Jiao Cheng21Department of General Surgery, 2Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Beijing, People’s Republic of ChinaAbstract: Hypoxia-inducible factor-1 (HIF-1 is a master regulator of the transcriptional response to hypoxia. HIF-1α is one of the most compelling anticancer targets. Andrographolide (Andro was newly identified to inhibit HIF-1 in T47D cells (a half maximal effective concentration [EC50] of 1.03×10-7 mol/L, by a dual-luciferase reporter assay. It suppressed HIF-1α protein and gene accumulation, which was dependent on the inhibition of upstream phosphatidylinositol 3-kinase (PI3K/AKT pathway. It also abrogated the expression of HIF-1 target vascular endothelial growth factor (VEGF gene and protein. Further, Andro inhibited T47D and MDA-MB-231 cell proliferation and colony formation. In addition, it exhibited significant in vivo efficacy and antitumor potential against the MDA-MB-231 xenograft in nude mice. In conclusion, these results highlighted the potential effects of Andro, which inhibits HIF-1, and hence may be developed as an antitumor agent for breast cancer therapy in future.Keywords: Andrographolide (Andro, HIF-1α, inhibit, breast cancer, hypoxia, PI3k/AKT/mTOR pathway

  19. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    Science.gov (United States)

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.

  20. Compound library screening identified Akt/PKB kinase pathway inhibitors as potential key molecules for the development of new chemotherapeutics against schistosomiasis

    Directory of Open Access Journals (Sweden)

    Marion Morel

    2014-12-01

    Full Text Available Protein kinases (PKs are one of the largest protein families in most eukaryotic organisms. These enzymes are involved in the control of cell proliferation, differentiation and metabolism and a large number of the anticancer drugs currently used are directed against PKs. The structure and function of PKs are well conserved throughout evolution. In schistosome parasites, PKs were shown to be involved in essential functions at every stage of the parasite life cycle, making these enzymes promising anti-parasite drug targets. In this study, we tested a panel of commercial inhibitors for various PKs and analyzed their effects on pairing and egg production by schistosomes as well as their toxicity towards schistosomula larvae. Results obtained confirmed the deleterious effect of PK targeting on Schistosoma mansoni physiology and the important function of different tyrosine and serine/threonine kinases in the biology and reproduction of this parasite. They also indicated for the first time that the Protein kinase B (also called Akt which is a major downstream target of many receptor tyrosine kinases and a central player at the crossroads of signal transduction pathways activated in response to growth factors and insulin, can constitute a novel target for anti-schistosome chemotherapy. Structural and functional studies have shown that SmAkt is a conserved kinase and that its activity can be inhibited by commercially available Akt inhibitors. In treated adult worms, Akt/PKB kinase pathway inhibitors induced profound alterations in pairing and egg laying and they also greatly affected the viability of schistosomula larvae.

  1. PI3 kinase/Akt activation mediates estrogen and IGF-1 nigral DA neuronal neuroprotection against a unilateral rat model of Parkinson's disease.

    Science.gov (United States)

    Quesada, Arnulfo; Lee, Becky Y; Micevych, Paul E

    2008-04-01

    Recently, using the medial forebrain bundle (MFB) 6-hydroxydopmaine (6-OHDA) lesion rat model of Parkinson's disease (PD), we have demonstrated that blockade of central IGF-1 receptors (IGF-1R) attenuated estrogen neuroprotection of substantia nigra pars compacta (SNpc) DA neurons, but exacerbated 6-OHDA lesions in IGF-1 only treated rats (Quesada and Micevych [2004]: J Neurosci Res 75:107-116). This suggested that the IGF-1 system is a central mechanism through which estrogen acts to protect the nigrostriatal DA system. Moreover, these results also suggest that IGF-1R-induced intracellular signaling pathways are involved in the estrogen mechanism that promotes neuronal survival. In vitro, two convergent intracellular signaling pathways used by estrogen and IGF-1, the mitogen-activated protein kinase (MAPK/ERK), and phosphatidyl-inositol-3-kinase/Akt (PI3K/Akt), have been demonstrated to be neuroprotective. Continuous central infusions of MAPK/ERK and PI3K/Akt inhibitors were used to test the hypothesis that one or both of these signal transduction pathways mediates estrogen and/or IGF-1 neuroprotection of SNpc DA neurons after a unilateral administration of 6-OHDA into the MFB of rats. Motor behavior tests and tyrosine hydroxylase immunoreactivity revealed that the inhibitor of the PI3K/Akt pathway (LY294002) blocked the survival effects of both estrogen and IGF-1, while an inhibitor of the MAPK/ERK signaling (PD98059) was ineffective. Western blot analyses showed that estrogen and IGF-1 treatments increased PI3K/Akt activation in the SN; however, MAPK/ERK activation was decreased in the SN. Indeed, continuous infusions of inhibitors blocked phosphorylation of PI3K/Akt and MAPK/ERK. These findings indicate that estrogen and IGF-1-mediated SNpc DA neuronal protection is dependent on PI3K/Akt signaling, but not on the MAPK/ERK pathway.

  2. Alterations in the human epidermal growth factor receptor 2-phosphatidylinositol 3-kinase-v-Akt pathway in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Yasutaka Sukawa; Hiroyuki Yamamoto; Katsuhiko Nosho; Hiroaki Kunimoto; Hiromu Suzuki; Yasushi Adachi; Mayumi Nakazawa

    2012-01-01

    AIM:To investigate human epidermal growth factor receptor 2 (HER2)-phosphatidylinositol 3-kinase (PI3K)-v-Akt murine thymoma viral oncogene homolog signaling pathway.METHODS:We analyzed 231 formalin-fixed,paraffinembedded gastric cancer tissue specimens from Japanese patients who had undergone surgical treatment.The patients' age,sex,tumor location,depth of invasion,pathological type,lymph node metastasis,and pathological stage were determined by a review of the medical records.Expression of HER2 was analyzed by immunohistochemistry (IHC) using the HercepTestTM kit.Standard criteria for HER2 positivity (0,1+,2+,and 3+) were used.Tumors that scored 3+ were considered HER2-positive.Expression of phospho Akt (pAkt)was also analyzed by IHC.Tumors were considered pAkt-positive when the percentage of positive tumor cells was 10% or more.PI3K,catalytic,alpha polypeptide (PIK3CA) mutations in exons 1,9 and 20 were analyzed by pyrosequencing.Epstein-Barr virus (EBV)infection was analyzed by in situ hybridization targeting EBV-encoded small RNA (EBER) with an EBER-RNA probe.Microsatellite instability (MSI) was analyzed by polymerase chain reaction using the mononucleotide markers BAT25 and BAT26.RESULTS:HER2 expression levels of 0,1+,2+ and 3+ were found in 167 (72%),32 (14%),12 (5%) and 20 (8.7%) samples,respectively.HER2 overexpression (IHC 3+) significantly correlated with intestinal histological type (15/20 vs 98/205,P =0.05).PIK3CA mutations were present in 20 cases (8.7%) and significantly correlated with MSI (10/20 vs 9/211,P < 0.01).The mutation frequency was high (21%) in T4 cancers and very low (6%) in T2 cancers.Mutations in exons 1,9 and 20 were detected in 5 (2%),9 (4%) and 7(3%) cases,respectively.Two new types of PIK3CA mutation,R88Q and R108H,were found in exon1.All PIK3CA mutations were heterozygous missense singlebase substitutions,the most common being H1047R (6/20,30%) in exon20.Eighteen cancers (8%) were EBV-positive and this

  3. Antitumor effect of resveratrol on chondrosarcoma cells via phosphoinositide 3-kinase/AKT and p38 mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Dai, Zixun; Lei, Pengfei; Xie, Jie; Hu, Yihe

    2015-08-01

    Chondrosarcoma is one of the most common types of primary bone cancer that develops in cartilage cells. Resveratrol (Res), a natural polyphenol compound isolated from various fruits, has a suppressive effect on various human malignancies. It has been shown that Res inhibits matrix metalloproteinase (MMP)-induced differentiation in chondrosarcoma cells. However, the effects of Res on cell proliferation, apoptosis and invasion of chondrosarcoma cells, as well as the underlying mechanisms, remain largely unknown. To the best of our knowledge, the present study showed for the first time that Res inhibited proliferation and induced apoptosis in chondrosarcoma cells in a dose-dependent manner. Furthermore, it was shown that Res also suppressed chondrosarcoma cell invasion in a dose-dependent manner, probably via the inhibition of MMP2 and MMP9 protein expression. Molecular mechanism investigations revealed that Res could inhibit the activity of phosphoinositide 3-kinase/AKT and p38 mitogen-activated protein kinase signaling pathways, which has been demonstrated to be important in the regulation of proliferation, apoptosis and invasion in various cancer cell types. In conclusion, this study suggests that Res may serve as a promising agent for the treatment of chondrosarcoma.

  4. Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B

    Directory of Open Access Journals (Sweden)

    Li Qiao

    2006-12-01

    Full Text Available Abstract Background In eukaryotic cells, the genomic DNA is packed with histones to form the nucleosome and chromatin structure. Reversible acetylation of the histone tails plays an important role in the control of specific gene expression. Mounting evidence has established that histone deacetylase inhibitors selectively induce cellular differentiation, growth arrest and apoptosis in variety of cancer cells, making them a promising class of anticancer drugs. However, the molecular mechanisms of the anti-cancer effects of these inhibitors have yet to be understood. Results Here, we report that a key determinant for the susceptibility of cancer cells to histone deacetylase inhibitors is their ability to maintain cellular Akt activity in response to the treatment. Also known as protein kinase B, Akt is an essential pro-survival factor in cell proliferation and is often deregulated during tumorigenesis. We show that histone deacetylase inhibitors, such as valproic acid and butyrate, impede Akt1 and Akt2 expression, which leads to Akt deactivation and apoptotic cell death. In addition, valproic acid and butyrate induce apoptosis through the caspase-dependent pathway. The activity of caspase-9 is robustly activated upon valproic acid or butyrate treatment. Constitutively active Akt is able to block the caspase activation and rescues cells from butyrate-induced apoptotic cell death. Conclusion Our study demonstrates that although the primary target of histone deacetylase inhibitors is transcription, it is the capacity of cells to maintain cellular survival networks that determines their fate of survival.

  5. Inhibition of constitutively activated phosphoinositide 3-kinase/AKT pathway enhances antitumor activity of chemotherapeutic agents in breast cancer susceptibility gene 1-defective breast cancer cells.

    Science.gov (United States)

    Yi, Yong Weon; Kang, Hyo Jin; Kim, Hee Jeong; Hwang, Jae Seok; Wang, Antai; Bae, Insoo

    2013-09-01

    Loss or decrease of wild type BRCA1 function, by either mutation or reduced expression, has a role in hereditary and sporadic human breast and ovarian cancers. We report here that the PI3K/AKT pathway is constitutively active in BRCA1-defective human breast cancer cells. Levels of phospho-AKT are sustained even after serum starvation in breast cancer cells carrying deleterious BRCA1 mutations. Knockdown of BRCA1 in MCF7 cells increases the amount of phospho-AKT and sensitizes cells to small molecule protein kinase inhibitors (PKIs) targeting the PI3K/AKT pathway. Restoration of wild type BRCA1 inhibits the activated PI3K/AKT pathway and de-sensitizes cells to PKIs targeting this pathway in BRCA1 mutant breast cancer cells, regardless of PTEN mutations. In addition, clinical PI3K/mTOR inhibitors, PI-103, and BEZ235, showed anti-proliferative effects on BRCA1 mutant breast cancer cell lines and synergism in combination with chemotherapeutic drugs, cisplatin, doxorubicin, topotecan, and gemcitabine. BEZ235 synergizes with the anti-proliferative effects of gemcitabine by enhancing caspase-3/7 activity. Our results suggest that the PI3K/AKT pathway can be an important signaling pathway for the survival of BRCA1-defective breast cancer cells and pharmacological inhibition of this pathway is a plausible treatment for a subset of breast cancers.

  6. Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/ Akt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Jin-rong FU; Wen-li LIU; Jian-feng ZHOU; Han-ying SUN; Hui-zhen XU; Li LUO; Heng ZHANG; Yu-feng ZHOU

    2006-01-01

    Aim: To investigate the effects of Sonic hedgehog (shh) protein on bone marrowderived endothelial progenitor cells (BM-EPC) proliferation, migration and vascular endothelial growth factor (VEGF) production, and the potential signaling pathways involved in these effects. Methods: Bone marrow-derived Flk-l+ cells were enriched using the MACS system from adult Kunming mice and then BM-EPC was cultured in gelatin-coated culture dishes. The effects of shh N-terminal peptide on BM-EPC proliferation were evaluated using the MTT colorimetric assay. Cell migration was assayed using a modified Boyden chamber technique. The production of VEGF was determined by ELIS A and immunofluorescence analysis. The potential involvement of PKC and PI3K signaling pathways was explored using selective inhibitor or Western blot. Results: The proliferation, migration and VEGF production in BM-EPC could be promoted by endogenous shh Nterminal peptide at concentrations of 0.1 μg/mL to 10 ug/mL, and could be inhibited by anti-shh antibodies. Shh-mediated proliferation and migration in BM-EPC could be partly attenuated by anti-VEGF. Phospho-PI3-kinase expression in newly separated BM-EPC was low, and it increased significantly when exogenous shh N-terminal peptide was added, but could be attenuated by anti-human/mouse shh N-terminal peptide antibody. Moreover, the inhibitor of the PI3-kinase, but not the inhibitor of the PKC, significantly inhibited the shh-mediated proliferation, migration and VEGF production. Conclusion: Shh protein can stimulate bone marrow-derived BM-EPC proliferation, migration and VEGF production, which may promote neovascularization to ischemic tissues. This results also suggests that the PI3-kinase/Akt signaling pathways are involved in the angiogenic effects of shh.

  7. Clk/STY (cdc2-like kinase 1 and Akt regulate alternative splicing and adipogenesis in 3T3-L1 pre-adipocytes.

    Directory of Open Access Journals (Sweden)

    Pengfei Li

    Full Text Available The development of adipocytes from their progenitor cells requires the action of growth factors signaling to transcription factors to induce the expression of adipogenic proteins leading to the accumulation of lipid droplets, induction of glucose transport, and secretion of adipokines signaling metabolic events throughout the body. Murine 3T3-L1 pre-adipocytes sequentially express all the proteins necessary to become mature adipocytes throughout an 8-10 day process initiated by a cocktail of hormones. We examined the role of Clk/STY or Clk1, a cdc2-like kinase, in adipogenesis since it is known to be regulated by Akt, a pivotal kinase in development. Inhibition of Clk1 by a specific inhibitor, TG003, blocked alternative splicing of PKCβII and expression of PPARγ1 and PPARγ2. SiRNA depletion of Clk1 resulted in early expression of PKCβII and sustained PKCβI expression. Since Clk1 is a preferred Akt substrate, required for phosphorylation of splicing factors, mutation of Clk1 Akt phosphorylation sites was undertaken. Akt sites on Clk1 are in the serine/arginine-rich domain and not the kinase domain. Mutation of single and multiple sites resulted in dysregulation of PKCβII, PKCβI, and PPARγ1&2 expression. Additionally, adipogenesis was blocked as assessed by Oil Red O staining, adiponectin, and Glut1 and 4 expression. Immunofluorescence microscopy revealed that Clk1 triple mutant cDNA, transfected into pre-adipocytes, resulted in excluding SRp40 (SFSR6 from co-localizing to the nucleus with PFS, a perispeckle specific protein. This study demonstrates the role of Akt and Clk1 kinases in the early differentiation of 3T3-L1 cells to adipocytes.

  8. Protein kinase B (c-akt) regulates hematopoietic lineage choice decisions during myelopoiesis

    NARCIS (Netherlands)

    Buitenhuis, Miranda; Verhagen, Liesbeth P.; van Deutekom, Hanneke W. M.; Castor, Anders; Verploegen, Sandra; Koenderman, Leo; Jacobsen, Sten-Eirik W.; Coffer, Paul J.

    2008-01-01

    Hematopoiesis is a highly regulated process resulting in the formation of all blood lineages. Aberrant regulation of phosphatidylinositol-3-kinase (PI3K) signaling has been observed in hematopoietic malignancies, suggesting that regulated PI3K signaling is critical for regulation of blood cell produ

  9. Protein kinase B (c-akt) regulates hematopoietic lineage choice decisions during myelopoiesis

    NARCIS (Netherlands)

    Buitenhuis, Miranda; Verhagen, Liesbeth P.; van Deutekom, Hanneke W. M.; Castor, Anders; Verploegen, Sandra; Koenderman, Leo; Jacobsen, Sten-Eirik W.; Coffer, Paul J.

    2008-01-01

    Hematopoiesis is a highly regulated process resulting in the formation of all blood lineages. Aberrant regulation of phosphatidylinositol-3-kinase (PI3K) signaling has been observed in hematopoietic malignancies, suggesting that regulated PI3K signaling is critical for regulation of blood cell

  10. Prostate specific membrane antigen knockdown impairs the tumorigenicity of LNCaP prostate cancer cells by inhibiting the phosphatidylinositol 3-kinase/Akt signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Guo Zhenghui; Lai Yiming; Du Tao; Zhang Yiming; Chen Jieqing; Bi Liangkuan; Lin Tianxin

    2014-01-01

    Background Prostate specific membrane antigen (PSMA) can facilitate the growth,migration,and invasion of the LNCaP prostate cancer cell lines,but the underlying molecular mechanisms have not yet been clearly defined.Here,we investigated whether PSMA serves as a novel regulator of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling by employing PSMA knockdown model and PI3K pharmacological inhibitor (LY294002) in LNCaP prostate cancer cells.Methods PSMA knockdown had been stably established by transfecting with lentivirus-mediated siRNA in our previous study.Then,LNCaP cells were divided into interference,non-interference,and blank groups.We first testified the efficacy of PSMA knockdown in our LNCaP cell line.Then,we compared the expression of PSMA and total/activated Akt by Westem blotting in the above three groups with or without LY294002 treatment.Furthermore,immunocytochemistry was performed to confirm the changes of activated Akt (p-Akt,Ser473) in groups.Besides,cell proliferation,migration,and cell cycle were measured by CCK-8 assay,Transwell analysis,and Flow cytometry respectively.Results After PSMA knockdown,the level of p-Akt (Ser473) but not of total-Akt (Akt1/2) was significantly decreased when compared with the non-interference and blank groups.However,LY294002 administration significantly reduced the expression of p-Akt (Ser473) in all the three groups.The results of immunocytochemistry further confirmed that PSMA knockdown or LY294002 treatment was associated with p-Akt (Ser473) down-regulation.Decrease of cell proliferation,migration,and survival were also observed upon PSMA knockdown and LY294002 treatment.Conclusions Taken together,our results reveal that PI3K/Akt signaling pathway inhibition may serve as a novel molecular mechanism in LNCaP prostate cancer cells of PSMA knockdown and suggest that Akt (Ser473) may play a critical role as a downstream signaling target effector of PSMA in this cellular model.

  11. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/ CIPK6 calcium sensor/protein kinase complex

    Institute of Scientific and Technical Information of China (English)

    Katrin Held; Jean-Baptiste Thibaud; J(o)rg Kudla; Francois Pascaud; Christian Eckert; Pawel Gajdanowicz; Kenji Hashimoto; Claire Corratgé-Faillie; Jan Niklas Offenborn; Beno(i)t Lacombe; Ingo Dreyer

    2011-01-01

    Potassium (K+) channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K+ channels remain poorly understood. Here, we show that the calcium (Ca2+)sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM)targeting of the K+ channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering pheuotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4- and Ca2+-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca2+ sensor modulates K+ channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM.

  12. Migration of Th1 lymphocytes is regulated by CD152 (CTLA-4-mediated signaling via PI3 kinase-dependent Akt activation.

    Directory of Open Access Journals (Sweden)

    Karin Knieke

    Full Text Available Efficient adaptive immune responses require the localization of T lymphocytes in secondary lymphoid organs and inflamed tissues. To achieve correct localization of T lymphocytes, the migration of these cells is initiated and directed by adhesion molecules and chemokines. It has recently been shown that the inhibitory surface molecule CD152 (CTLA-4 initiates Th cell migration, but the molecular mechanism underlying this effect remains to be elucidated. Using CD4 T lymphocytes derived from OVA-specific TCR transgenic CD152-deficient and CD152-competent mice, we demonstrate that chemokine-triggered signal transduction is differentially regulated by CD152 via phosphoinositide 3-kinase (PI3K-dependent activation of protein kinase B (PKB/Akt. In the presence of CD152 signaling, the chemoattractant CCL4 selectively induces the full activation of Akt via phosphorylation at threonine 308 and serine 473 in pro-inflammatory Th lymphocytes expressing the cognate chemokine receptor CCR5. Akt signals lead to cytoskeleton rearrangements, which are indispensable for migration. Therefore, this novel Akt-modulating function of CD152 signals affecting T cell migration demonstrates that boosting CD152 or its down-stream signal transduction could aid therapies aimed at sensitizing T lymphocytes for optimal migration, thus contributing to a precise and effective immune response.

  13. Hyperforin inhibits Akt1 kinase activity and promotes caspase-mediated apoptosis involving Bad and Noxa activation in human myeloid tumor cells.

    Directory of Open Access Journals (Sweden)

    Faten Merhi

    Full Text Available BACKGROUND: The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo. METHODOLOGY AND RESULTS: HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60 by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser(473 and Akt1 substrate Bad (at Ser(136 which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells. SIGNIFICANCE: Our data provide new evidence that HF's pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment.

  14. DNA-hypomethylating agent, 5'-azacytidine, induces cyclooxygenase-2 expression via the PI3-kinase/Akt and extracellular signal-regulated kinase-1/2 pathways in human HT1080 fibrosarcoma cells.

    Science.gov (United States)

    Yu, Seon-Mi; Kim, Song-Ja

    2015-10-01

    The cytosine analogue 5'-azacytidine (5'-aza) induces DNA hypomethylation by inhibiting DNA methyltransferase. In clinical trials, 5'-aza is widely used in epigenetic anticancer treatments. Accumulated evidence shows that cyclooxygenase-2 (COX-2) is overexpressed in various cancers, indicating that it may play a critical role in carcinogenesis. However, few studies have been performed to explore the molecular mechanism underlying the increased COX-2 expression. Therefore, we tested the hypothesis that 5'-aza regulates COX-2 expression and prostaglandin E2 (PGE2) production. The human fibrosarcoma cell line HT1080, was treated with various concentrations of 5'-aza for different time periods. Protein expressions of COX-2, DNA (cytosine-5)-methyltransferase 1 (DNMT1), pAkt, Akt, extracellular signal-regulated kinase (ERK), and phosphorylated ERK (pERK) were determined using western blot analysis, and COX-2 mRNA expression was determined using RT-PCR. PGE2 production was evaluated using the PGE2 assay kit. The localization and expression of COX-2 were determined using immunofluorescence staining. Treatment with 5'-aza induces protein and mRNA expression of COX-2. We also observed that 5'-aza-induced COX-2 expression and PGE2 production were inhibited by S-adenosylmethionine (SAM), a methyl donor. Treatment with 5'-aza phosphorylates PI3-kinase/Akt and ERK-1/2; inhibition of these pathways by LY294002, an inhibitor of PI3-kinase/Akt, or PD98059, an inhibitor of ERK-1/2, respectively, prevents 5'-aza-induced COX-2 expression and PGE2 production. Overall, these observations indicate that the hypomethylating agent 5'-aza modulates COX-2 expression via the PI3-kinase/Akt and ERK-1/2 pathways in human HT1080 fibrosarcoma cells.

  15. In vivo Evaluation of Two Thiazolidin-4-one Derivatives in High Sucrose Diet Fed Pre-diabetic Mice and Their Modulatory Effect on AMPK, Akt and p38 MAP Kinase in L6 Cells

    Science.gov (United States)

    Mudgal, Jayesh; Shetty, Priya; Reddy, Neetinkumar D.; Akhila, H. S.; Gourishetti, Karthik; Mathew, Geetha; Nayak, Pawan G.; Kumar, Nitesh; Kishore, Anoop; Kutty, Nampurath G.; Nandakumar, Krishnadas; Shenoy, Rekha R.; Rao, Chamallamudi M.; Joseph, Alex

    2016-01-01

    We had previously demonstrated the anti-diabetic potential and pancreatic protection of two thiazolidin-4-one derivatives containing nicotinamide moiety (NAT-1 and NAT-2) in STZ-induced diabetic mice. However, due to the limitations of the STZ model, we decided to undertake a detailed evaluation of anti-diabetic potential of the molecules on a high sucrose diet (HSD) fed diabetic mouse model. Further, in vitro mechanistic studies on the phosphorylation of AMPK, Akt and p38 MAP kinase in L6 myotubes and anti-inflammatory studies in RAW264.7 mouse monocyte macrophage cells were performed. 15 months of HSD induced fasting hyperglycaemia and impaired glucose tolerance in mice. Treatment with NAT-1 and NAT-2 (100 mg/kg) for 45 days significantly improved the glucose tolerance and lowered fasting blood glucose levels compared to untreated control. An improvement in the elevated triglycerides and total cholesterol levels, and favorable rise in HDL cholesterol were also observed with test drug treatment. Also, no major changes were observed in the liver (albumin, AST and ALT) and kidney (creatinine and urea) parameters. This was further confirmed in their respective histology profiles which revealed no gross morphological changes. In L6 cells, significant phosphorylation of Akt and p38 MAP kinase proteins were observed with 100 μM of NAT-1 and NAT-2 with no significant changes in phosphorylation of AMPK. The molecules failed to exhibit anti-inflammatory activity as observed by their effect on the generation of ROS and nitrite, and nuclear levels of NF-κB in LPS-stimulated RAW264.7 cells. In summary, the molecules activated Akt and p38 MAP kinase which could have partly contributed to their anti-hyperglycaemic and hypolipidemic activities in vivo. PMID:27790148

  16. Extracellular signal-regulated kinases 1/2 and Akt contribute to triclosan-stimulated proliferation of JB6 Cl 41-5a cells.

    Science.gov (United States)

    Wu, Yuanfeng; Beland, Frederick A; Chen, Si; Fang, Jia-Long

    2015-08-01

    Triclosan is a broad spectrum anti-bacterial agent widely used in many personal care products, household items, medical devices, and clinical settings. Human exposure to triclosan is mainly through oral and dermal routes. In previous studies, we found that sub-chronic dermal exposure of B6C3F1 mice to triclosan induced epidermal hyperplasia and focal necrosis; however, the mechanisms for these responses remain elusive. In this study, using mouse epidermis-derived JB6 Cl 41-5a cells, we found that triclosan stimulated cell growth in a concentration- and time-dependent manner. Enhanced cell proliferation was demonstrated by a substantial increase in the percentage of BrdU-positive cells, an elevation in the protein levels of cyclin D1 and cyclin A, and a reduction in the protein level of p27(Kip1). Western blotting analysis revealed that triclosan induced the activation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK), p38, and Akt. Pre-treatment of the cells with PD184352, an inhibitor of the upstream kinase MEK1/2, or with wortmannin, an inhibitor of phosphoinositide 3-kinase, blocked triclosan-mediated phosphorylation of ERK1/2 and Akt, respectively, and substantially suppressed triclosan-stimulated cell proliferation, whereas the JNK inhibitor SP600125 or the p38 inhibitor SB203580 had little to no effect on triclosan-stimulated cell proliferation. The phosphorylation activation of ERK1/2 and Akt was further confirmed on the skin of mice dermally administered triclosan. These data suggest that the activation of ERK1/2 and Akt is involved in triclosan-stimulated proliferation of JB6 Cl 41-5a cells.

  17. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth

    Science.gov (United States)

    Li, Jie; Zhang, Chao; Jiang, Hongchuan; Cheng, Jiao

    2015-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a master regulator of the transcriptional response to hypoxia. HIF-1α is one of the most compelling anticancer targets. Andrographolide (Andro) was newly identified to inhibit HIF-1 in T47D cells (a half maximal effective concentration [EC50] of 1.03×10−7 mol/L), by a dual-luciferase reporter assay. It suppressed HIF-1α protein and gene accumulation, which was dependent on the inhibition of upstream phosphatidylinositol 3-kinase (PI3K)/AKT pathway. It also abrogated the expression of HIF-1 target vascular endothelial growth factor (VEGF) gene and protein. Further, Andro inhibited T47D and MDA-MB-231 cell proliferation and colony formation. In addition, it exhibited significant in vivo efficacy and antitumor potential against the MDA-MB-231 xenograft in nude mice. In conclusion, these results highlighted the potential effects of Andro, which inhibits HIF-1, and hence may be developed as an antitumor agent for breast cancer therapy in future. PMID:25709476

  18. Andrographolide inhibits osteopontin expression and breast tumor growth through down regulation of PI3 kinase/Akt signaling pathway.

    Science.gov (United States)

    Kumar, S; Patil, H S; Sharma, P; Kumar, D; Dasari, S; Puranik, V G; Thulasiram, H V; Kundu, G C

    2012-09-01

    Breast cancer is one of the most common cancers among women in India and around the world. Despite recent advancement in the treatment of breast cancer, the results of chemotherapy to date remain unsatisfactory, prompting a need to identify natural agents that could target cancer efficiently with least side effects. Andrographolide (Andro) is one such molecule which has been shown to possess inhibitory effect on cancer cell growth. In this study, Andro, a natural diterpenoid lactone isolated from Andrographis paniculata has been shown to inhibit breast cancer cell proliferation, migration and arrest cell cycle at G2/M phase and induces apoptosis through caspase independent pathway. Our experimental evidences suggest that Andro attenuates endothelial cell motility and tumor-endothelial cell interaction. Moreover, Andro suppresses breast tumor growth in orthotopic NOD/SCID mice model. The anti-tumor activity of Andro in both in vitro and in vivo model was correlated with down regulation of PI3 kinase/Akt activation and inhibition of pro-angiogenic molecules such as OPN and VEGF expressions. Collectively, these results demonstrate that Andro may act as an effective anti-tumor and anti-angiogenic agent for the treatment of breast cancer.

  19. Interactions of the integrin subunit beta1A with protein kinase B/Akt, p130Cas and paxillin contribute to regulation of radiation survival

    DEFF Research Database (Denmark)

    Seidler, Julia; Durzok, Rita; Brakebusch, Cord;

    2005-01-01

    in presence or absence of growth factors or inhibitors for phosphatidylinositol-3 kinase (PI3K), i.e. Ly294002 and wortmannin. In addition to colony formation, protein kinase B/Akt (PKB/Akt) kinase activity, focal adhesion kinase (FAK), p130Cas, paxillin and c-Jun N2-terminal kinase (JNK) expression...... and phosphorylation were analyzed by Western blot technique. RESULTS: Adhesion of GD25beta1A cells to extracellular matrix proteins or beta1-IgG resulted in growth factor-independent radiation survival. In contrast, serum starved GD25beta1B cells showed a significant (P...25beta1B cells, which express mutant beta1B-integrins, were compared in terms of radiation survival and beta1-integrin signaling. MATERIALS AND METHODS: Cells grown on fibronectin, collagen-III, laminin, vitronectin, anti-beta1-integrin-IgG (beta1-IgG) or poly-l-lysine were irradiated with 0-6Gy...

  20. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 (China); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 (China); Gu, Tieguang [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia); Yamahara, Johji [Pharmafood Institute, Kyoto 602-8136 (Japan); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia)

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  1. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats.

    Science.gov (United States)

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. IL-7 activates the phosphatidylinositol 3-kinase/AKT pathway in normal human thymocytes but not normal human B cell precursors.

    Science.gov (United States)

    Johnson, Sonja E; Shah, Nisha; Bajer, Anna A; LeBien, Tucker W

    2008-06-15

    IL-7 signaling culminates in different biological outcomes in distinct lymphoid populations, but knowledge of the biochemical signaling pathways in normal lymphoid populations is incomplete. We analyzed CD127/IL-7Ralpha expression and function in normal (nontransformed) human thymocytes, and human CD19(+) B-lineage cells purified from xenogeneic cord blood stem cell/MS-5 murine stromal cell cultures, to further clarify the role of IL-7 in human B cell development. IL-7 stimulation of CD34(+) immature thymocytes led to phosphorylation (p-) of STAT5, ERK1/2, AKT, and glycogen synthase kinase-3 beta, and increased AKT enzymatic activity. In contrast, IL-7 stimulation of CD34(-) thymocytes (that included CD4(+)/CD8(+) double-positive, and CD4(+) and CD8(+) single-positive cells) only induced p-STAT5. IL-7 stimulation of CD19(+) cells led to robust induction of p-STAT5, but minimal induction of p-ERK1/2 and p-glycogen synthase kinase-3 beta. However, CD19(+) cells expressed endogenous p-ERK1/2, and when rested for several hours following removal from MS-5 underwent de-phosphorylation of ERK1/2. IL-7 stimulation of rested CD19(+) cells resulted in robust induction of p-ERK1/2, but no induction of AKT enzymatic activity. The use of a specific JAK3 antagonist demonstrated that all IL-7 signaling pathways in CD34(+) thymocytes and CD19(+) B-lineage cells were JAK3-dependent. We conclude that human CD34(+) thymocytes and CD19(+) B-lineage cells exhibit similarities in activation of STAT5 and ERK1/2, but differences in activation of the PI3K/AKT pathway. The different induction of PI3K/AKT may at least partially explain the different requirements for IL-7 during human T and B cell development.

  3. Apigenin attenuates dopamine-induced apoptosis in melanocytes via oxidative stress-related p38, c-Jun NH2-terminal kinase and Akt signaling.

    Science.gov (United States)

    Lin, Mao; Lu, Shan-Shan; Wang, Ao-Xue; Qi, Xiao-Yi; Zhao, Dan; Wang, Zhao-Hui; Man, Mao-Qiang; Tu, Cai-Xia

    2011-07-01

    Accumulating evidence suggests that the occurrence of oxidative stress leads to melanocyte degeneration in vitiligo. Elevated level of dopamine (DA), an initiator of oxidative stress, reportedly is found in patients with vitiligo and induces melanocyte death in vitro. DA-treated melanocytes have been used as a model to search for antioxidants for treating vitiligo. We investigated the protective effects of apigenin against DA-induced apoptosis in melanocytes and the molecular mechanism underlying those effects. Melanocytes with or without pretreatment with apigenin were exposed to DA. Then cell viabilities were measured by MTT assay. Cellular reactive oxygen species (ROS) levels and the percentage of apoptotic cells were detected by flow cytometry analysis. Activation of caspase 3, poly(ADP-ribose) polymerase (PARP) and oxidative stress-related signaling, including p38, c-Jun NH2-terminal kinase (JNK) and Akt, were assessed by Western blotting. Apigenin attenuated DA-induced apoptotic cell death, relieved ROS accumulation and activated caspase 3 and PARP, suggesting the protective effects of apigenin against DA-induced oxidative stress and apoptosis in melanocytes. Moreover, DA induced phosphorylation of p38, JNK and Akt, while inhibitors of p38, JNK and Akt significantly decreased DA-induced apoptosis. However, pretreatment with apigenin significantly inhibited DA-triggered activation of p38, JNK and Akt, suggesting the involvement of p38, JNK and Akt in the protective effects of apigenin against DA-induced cytotoxicity. These results suggest that apigenin attenuates dopamine-induced apoptosis in melanocytes via oxidative stress-related p38, JNK and Akt signaling and therefore could be a potential agent in treating vitiligo. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC.

  5. Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway.

    Science.gov (United States)

    Marędziak, Monika; Tomaszewski, Krzysztof; Polinceusz, Paulina; Lewandowski, Daniel; Marycz, Krzysztof

    2017-01-01

    The aim of this work was to investigate the effects of 0.5T static magnetic field (sMF) on the viability and proliferation rate of human adipose-derived mesenchymal stromal stem cells (hASCs) via activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathway. In a 7-d culture we examined cell growth kinetic and population doubling time (PDT). We also examined cell morphology and the cellular senescence markers level. Exposure to sMF enhanced the viability of these cells. However, the effect was blocked by treating the cells with LY294002, a P13K inhibitor. We compared this effect by Western Blot analysis of Akt protein expression. We also examined whether the cell response on sMF stimulation is dependent on integrin engagement and we measured integrin gene expression. Our results suggest that stimulation using sMF is a viable method to improve hASC viability. sMF is involved in mechanisms associated with controlling cell proliferative potential signaling events.

  6. Phosphatidylinositol 3-kinase/Akt signaling pathway mediates acupuncture-induced dopaminergic neuron protection and motor function improvement in a mouse model of Parkinson's disease.

    Science.gov (United States)

    Kim, Seung-Nam; Kim, Seung-Tae; Doo, Ah-Reum; Park, Ji-Yeun; Moon, Woongjoon; Chae, Younbyoung; Yin, Chang Shik; Lee, Hyejung; Park, Hi-Joon

    2011-10-01

    It has been reported that acupuncture treatment reduced dopaminergic neuron degeneration in Parkinson's disease (PD) models. However, the mechanistic pathways underlying, such neuroprotection, are poorly understood. Here, we investigated the effects and the underlying mechanism of acupuncture in a mouse model of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). First, we observed that MPTP-induced impairment of Akt activation, but not MPTP-induced c-Jun activation, was effectively restored by acupuncture treatment in the substantia nigra. Furthermore, we demonstrated for the first time that the brain-specific blockade of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, by intranasal administration of LY294002, a specific inhibitor of PI3K/Akt signaling pathway, significantly blocked acupuncture-induced dopaminergic neuron protection and motor function improvement. Our results provide evidence that PI3K/Akt signaling pathway may play a central role in the mechanism underlying acupuncture-induced benefits in Parkinsonian mice.

  7. Programmed Death-1 Inhibition of Phosphatidylinositol 3-Kinase/AKT/Mechanistic Target of Rapamycin Signaling Impairs Sarcoidosis CD4(+) T Cell Proliferation.

    Science.gov (United States)

    Celada, Lindsay J; Rotsinger, Joseph E; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene; Drake, Wonder P

    2017-01-01

    Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4(+) T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4(+) T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1(+) CD4(+) T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P sarcoidosis CD4(+) T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression.

  8. The Emerging Role of the Phosphatidylinositol 3-Kinase/ Akt/Mammalian Target of Rapamycin Signaling Network in Cancer Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    James A. McCubrey

    2010-08-01

    Full Text Available The cancer stem cell theory entails the existence of a hierarchically organized, rare population of cells which are responsible for tumor initiation, self-renewal/maintenance, and mutation accumulation. The cancer stem cell proposition could explain the high frequency of cancer relapse and resistance to currently available therapies. The phosphatidylinositol 3-kinase (PI3K/Akt/mammalian target of rapamycin (mTOR signaling pathway regulates a wide array of physiological cell functions which include differentiation, proliferation, survival, metabolism, autophagy, and motility. Dysregulated PI3K/Akt/mTOR signaling has been documented in many types of neoplasias. It is now emerging that this signaling network plays a key role in cancer stem cell biology. Interestingly, cancer stem cells displayed preferential sensitivity to pathway inhibition when compared to healthy stem cells. This observation provides the proof-of-principle that functional differences in signaling pathways between neoplastic stem cells and healthy stem cells could be identified. In this review, we present the evidence which links the signals emanating from the PI3K/Akt/mTOR cascade with the functions of cancer stem cells, both in solid and hematological tumors. We then highlight how targeting PI3K/Akt/mTOR signaling with small molecules could improve cancer patient outcome.

  9. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway.

    Science.gov (United States)

    Way, Tzong-Der; Kao, Ming-Ching; Lin, Jen-Kun

    2004-02-06

    Apigenin is a low toxicity and non-mutagenic phytopolyphenol and protein kinase inhibitor. It exhibits anti-proliferating effects on human breast cancer cells. Here we examined several human breast cancer cell lines having different levels of HER2/neu expression and found that apigenin exhibited potent growth-inhibitory activity in HER2/neu-overexpressing breast cancer cells but was much less effective for those cells expressing basal levels of HER2/neu. Induction of apoptosis was also observed in HER2/neu-overexpressing breast cancer cells in a dose- and time-dependent manner. However, the one or more molecular mechanisms of apigenin-induced apoptosis in HER2/neu-overexpressing breast cancer cells remained to be elucidated. A cell survival pathway involving phosphatidylinositol 3-kinase (PI3K), and Akt is known to play an important role in inhibiting apoptosis in response to HER2/neu-overexpressing breast cancer cells, which prompted us to investigate whether this pathway plays a role in apigenin-induced apoptosis in HER2/neu-overexpressing breast cancer cells. Our results showed that apigenin inhibits Akt function in tumor cells in a complex manner. First, apigenin directly inhibited the PI3K activity while indirectly inhibiting the Akt kinase activity. Second, inhibition of HER2/neu autophosphorylation and transphosphorylation resulting from depleting HER2/neu protein in vivo was also observed. In addition, apigenin inhibited Akt kinase activity by preventing the docking of PI3K to HER2/HER3 heterodimers. Therefore, we proposed that apigenin-induced cellular effects result from loss of HER2/neu and HER3 expression with subsequent inactivation of PI3K and AKT in cells that are dependent on this pathway for cell proliferation and inhibition of apoptosis. This implies that the inhibition of the HER2/HER3 heterodimer function provided an especially effective strategy for blocking the HER2/neu-mediated transformation of breast cancer cells. Our results also

  10. nitric oxide triggers the phosphatidylinositol 3-kinase/Akt survival pathway in insulin-producing RINm5F cells by arousing Src to activate insulin receptor substrate-1.

    Science.gov (United States)

    Tejedo, Juan R; Cahuana, Gladys M; Ramírez, Remedios; Esbert, Margarida; Jiménez, Juan; Sobrino, Francisco; Bedoya, Francisco J

    2004-05-01

    Mechanisms involved in the protective action of nitric oxide (NO) in insulin-producing cells are a matter of debate. We have previously shown that pharmacological inhibition of c-Src cancels the antiapoptotic action of low and sustained concentrations of exogenous NO. In this study, using insulin-producing RINm5F cells that overexpress Src either permanently active (v-Src) or dominant negative (dn-Src) forms, we determine that this tyrosine kinase is the principal mediator of the protective action of NO. We also show that Src-directed activation of insulin receptor substrate-1, phosphatidylinositol 3-kinase (PI3K), Akt, and Bad phosphorylation conform a substantial component of the survival route because pharmacological inhibition of PI3K and Akt canceled the antiapoptotic effects of NO. Studies performed with the protein kinase G (PKG) inhibitor KT-5823 revealed that NO-dependent activation of c-Src/ insulin receptor substrate-1 is not affected by PKG activation. By contrast, Akt and Bad activation are partially dependent on PKG activation. Endogenous production of NO after overexpression of endothelial nitric oxide synthase in RINm5F cells mimics the effects produced by generation of low amounts of NO from exogenous diethylenetriamine/NO. In addition, we found that NO produces c-Src/PI3K- and PKG-dependent activation of ERK 1/2. The MAPK kinase inhibitor PD 98059 suppresses NO-dependent protection from DNA fragmentation induced by serum deprivation. The protective action of low and sustained concentration of NO is also observed in staurosporine- and Taxol-induced apoptosis. Finally, NO also protects isolated rat islets from DNA fragmentation induced by serum deprivation. These data strengthen the notion that NO production at physiological levels plays a role in protection from apoptosis in pancreatic beta-cells.

  11. Interleukin-1R3 mediates interleukin-1–induced potassium current increase through fast activation of Akt kinase

    Science.gov (United States)

    Qian, Jiang; Zhu, Ling; Li, Qiming; Belevych, Natalya; Chen, Qun; Zhao, Fangli; Herness, Scott; Quan, Ning

    2012-01-01

    Inflammatory cytokine interleukin-1 (IL-1) performs multiple functions in the central nervous system. The type 1 IL-1 receptor (IL-1R1) and the IL-1 receptor accessory protein (IL-1RAcP) form a functional IL-1 receptor complex that is thought to mediate most, if not all, IL-1–induced effects. Several recent studies, however, suggest the existence of a heretofore-unidentified receptor for IL-1. In this study, we report that the IL-1R1 gene contains an internal promoter that drives the transcription of a shortened IL-1R1 mRNA. This mRNA is the template for a unique IL-1R protein that is identical to IL-1R1 at the C terminus, but with a shorter extracellular domain at the N terminus. We have termed this molecule IL-1R3. The mRNA and protein for IL-1R3 are expressed in normal and two strains of commercially available IL-1R1 knockout mice. Western blot analysis shows IL-1R3 is preferentially expressed in neural tissues. Furthermore, IL-1β binds specifically to IL-1R3 when it is complexed with the newly discovered alternative IL-1 receptor accessory protein, IL-1RAcPb. Stimulation of neurons expressing both IL-1R3 and IL-1RAcPb with IL-1β causes fast activation of the Akt kinase, which leads to an increase in voltage-gated potassium current. These results demonstrate that IL-1R3/IL-1RAcPb complex mediates a unique subset of IL-1 activity that accounts for many previously unexplained IL-1 effects in the central nervous system. PMID:22778412

  12. Solution structure and backbone dynamics of the pleckstrin homology domain of the human protein kinase B (PKB/Akt). Interaction with inositol phosphates.

    Science.gov (United States)

    Auguin, Daniel; Barthe, Philippe; Augé-Sénégas, Marie-Thérèse; Stern, Marc-Henri; Noguchi, Masayuki; Roumestand, Christian

    2004-02-01

    The programmed cell death occurs as part of normal mammalian development. The induction of developmental cell death is a highly regulated process and can be suppressed by a variety of extracellular stimuli. Recently, the ability of trophic factors to promote survival have been attributed, at least in part, to the phosphatidylinositide 3'-OH kinase (PI3K)/Protein Kinase B (PKB, also named Akt) cascade. Several targets of the PI3K/PKB signaling pathway have been identified that may underlie the ability of this regulatory cascade to promote cell survival. PKB possesses a N-terminal Pleckstrin Homology (PH) domain that binds specifically and with high affinity to PtIns(3,4,5)P(3) and PtIns(3,4)P(2), the PI3K second messengers. PKB is then recruited to the plasma membrane by virtue of its interaction with 3'-OH phosphatidylinositides and activated. Recent evidence indicates that PKB is active in various types of human cancer; constitutive PKB signaling activation is believed to promote proliferation and increased cell survival, thereby contributing to cancer progression. Thus, it has been shown that induction of PKB activity is augmented by the TCL1/MTCP1 oncoproteins through a physical association requiring the PKB PH domain. Here we present the three-dimensional solution structure of the PH domain of the human protein PKB (isoform beta). PKBbeta-PH is an electrostatically polarized molecule that adopts the same fold and topology as other PH-domains, consisting of a beta-sandwich of seven strands capped on one top by an alpha-helix. The opposite face presents three variable loops that appear poorly defined in the NMR structure. Measurements of (15)N spin relaxation times and heteronuclear (15)N[(1)H]NOEs showed that this poor definition is due to intrinsic flexibility, involving complex motions on different time scales. Chemical shift mapping studies correctly defined the binding site of Ins(1,3,4,5)P(4) (the head group of PtIns(3,4,5)P(3)), as was previously proposed

  13. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: an emerging treatment strategy for squamous cell lung carcinoma.

    Science.gov (United States)

    Beck, Joseph Thaddeus; Ismail, Amen; Tolomeo, Christina

    2014-09-01

    Squamous cell lung carcinoma accounts for approximately 30% of all non-small cell lung cancers (NSCLCs). Despite progress in the understanding of the biology of cancer, cytotoxic chemotherapy remains the standard of care for patients with squamous cell lung carcinoma, but the prognosis is generally poor. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is one of the most commonly activated signaling pathways in cancer, leading to cell proliferation, survival, and differentiation. It has therefore become a major focus of clinical research. Various alterations in the PI3K/AKT/mTOR pathway have been identified in squamous cell lung carcinoma and a number of agents targeting these alterations are in clinical development for use as single agents and in combination with other targeted and conventional treatments. These include pan-PI3K inhibitors, isoform-specific PI3K inhibitors, AKT inhibitors, mTOR inhibitors, and dual PI3K/mTOR inhibitors. These agents have demonstrated antitumor activity in preclinical models of NSCLC and preliminary clinical evidence is also available for some agents. This review will discuss the role of the PI3K/AKT/mTOR pathway in cancer and how the discovery of genetic alterations in this pathway in patients with squamous cell lung carcinoma can inform the development of targeted therapies for this disease. An overview of ongoing clinical trials investigating PI3K/AKT/mTOR pathway inhibitors in squamous cell lung carcinoma will also be included.

  14. Role of the Phosphoinositide 3-Kinase-Akt-Mammalian Target of the Rapamycin Signaling Pathway in Long-Term Potentiation and Trace Fear Conditioning Memory in Rat Medial Prefrontal Cortex

    Science.gov (United States)

    Sui, Li; Wang, Jing; Li, Bao-Ming

    2008-01-01

    Phosphatidylinositol 3-kinase (PI3K) and its downstream targets, including Akt (also known as protein kinase B, PKB), mammalian target of rapamycin (mTOR), the 70-kDa ribosomal S6 kinase (p70S6k), and the eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), may play important roles in long-term synaptic plasticity and memory in many…

  15. Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt

    Directory of Open Access Journals (Sweden)

    Hunter Randy

    2008-01-01

    Full Text Available Abstract Background Previous studies have suggested that peroxisome proliferator activated receptor-gamma (PPAR-γ-mediated neuroprotection involves inhibition of microglial activation and decreased expression and activity of inducible nitric oxide synthase (iNOS; however, the underlying molecular mechanisms have not yet been well established. In the present study we explored: (1 the effect of the PPAR-γ agonist pioglitazone on lipopolysaccharide (LPS-induced iNOS activity and nitric oxide (NO generation by microglia; (2 the differential role of p38 mitogen-activated protein kinase (p38 MAPK, c-Jun NH(2-terminal kinase (JNK, and phosphoinositide 3-kinase (PI3K on LPS-induced NO generation; and (3 the regulation of p38 MAPK, JNK, and PI3K by pioglitazone. Methods Mesencephalic neuron-microglia mixed cultures, and microglia-enriched cultures were treated with pioglitazone and/or LPS. The protein levels of iNOS, p38 MAPK, JNK, PPAR-γ, PI3K, and protein kinase B (Akt were measured by western blot. Different specific inhibitors of iNOS, p38MAPK, JNK, PI3K, and Akt were used in our experiment, and NO generation was measured using a nitrite oxide assay kit. Tyrosine hydroxylase (TH-positive neurons were counted in mesencephalic neuron-microglia mixed cultures. Results Our results showed that pioglitazone inhibits LPS-induced iNOS expression and NO generation, and inhibition of iNOS is sufficient to protect dopaminergic neurons against LPS insult. In addition, inhibition of p38 MAPK, but not JNK, prevented LPS-induced NO generation. Further, and of interest, pioglitazone inhibited LPS-induced phosphorylation of p38 MAPK. Wortmannin, a specific PI3K inhibitor, enhanced p38 MAPK phosphorylation upon LPS stimulation of microglia. Elevations of phosphorylated PPAR-γ, PI3K, and Akt levels were observed with pioglitazone treatment, and inhibition of PI3K activity enhanced LPS-induced NO production. Furthermore, wortmannin prevented the inhibitory effect of

  16. Lethal Congenital Contractural Syndrome Type 2 (LCCS2) Is Caused by a Mutation in ERBB3 (Her3), a Modulator of the Phosphatidylinositol-3-Kinase/Akt Pathway

    OpenAIRE

    Narkis, Ginat ; Ofir, Rivka ; Manor, Esther ; Landau, Daniella ; Elbedour, Khalil ; Birk, Ohad S. 

    2007-01-01

    Lethal congenital contractural syndrome type 2 (LCCS2) is an autosomal recessive neurogenic form of arthrogryposis that is associated with atrophy of the anterior horn of the spinal cord. We previously mapped LCCS2 to 6.4 Mb on chromosome 12q13 and have now narrowed the locus to 4.6 Mb. We show that the disease is caused by aberrant splicing of ERBB3, which leads to a predicted truncated protein. ERBB3 (Her3), an activator of the phosphatidylinositol-3-kinase/Akt pathway—regulating cell survi...

  17. Disruption of the interface between the pleckstrin homology (PH) and kinase domains of Akt protein is sufficient for hydrophobic motif site phosphorylation in the absence of mTORC2.

    Science.gov (United States)

    Warfel, Noel A; Niederst, Matt; Newton, Alexandra C

    2011-11-11

    The pro-survival kinase Akt requires phosphorylation at two conserved residues, the activation loop site (Thr-308) and the hydrophobic motif site (Ser-473), for maximal activation. Previous reports indicate that mTORC2 is necessary for phosphorylation of the hydrophobic motif and that this site is not phosphorylated in cells lacking components of the mTORC2 complex, such as Sin1. Here we show that Akt can be phosphorylated at the hydrophobic motif site (Ser-473) in the absence of mTORC2. First, increasing the levels of PIP(3) in Sin1(-/-) MEFs by (i) expression of a constitutively active PI3K or (ii) relief of a negative feedback loop on PI3K by prolonged inhibition of mTORC1 or S6K is sufficient to rescue hydrophobic motif phosphorylation of Akt. The resulting accumulation of PIP(3) at the plasma membrane results in Ser-473 phosphorylation. Second, constructs of Akt in which the PH domain is constitutively disengaged from the kinase domain are phosphorylated at the hydrophobic motif site in Sin1(-/-) MEFs; both myristoylated-Akt and Akt lacking the PH domain are phosphorylated at Ser-473. Thus, disruption of the interface between the PH and kinase domains of Akt bypasses the requirement for mTORC2. In summary, these data support a model in which Akt can be phosphorylated at Ser-473 and activated in the absence of mTORC2 by mechanisms that depend on removal of the PH domain from the kinase domain.

  18. BRAF, KIT and NRAS mutations and expression of c-KIT, phosphorylated extracellular signal-regulated kinase and phosphorylated AKT in Japanese melanoma patients.

    Science.gov (United States)

    Oyama, Satomi; Funasaka, Yoko; Watanabe, Atsushi; Takizawa, Toshihiro; Kawana, Seiji; Saeki, Hidehisa

    2015-05-01

    To clarify the status of gene mutation and activation of growth signal in melanoma of Japanese patients in vivo, we analyzed the mutation of BRAF exon 15, NRAS exon 2, and KIT exons 9, 11, 13, 17 and 18 in melanoma cells obtained by laser capture microdissection, and performed direct sequencing in 20 cases of acral lentiginous melanoma (ALM) and 17 cases of superficial spreading melanoma (SSM). In the study of the mutation of BRAF, pyrosequencing was also done. To examine the cell proliferation signaling, immunohistochemistry for phosphorylated extracellular signal-regulated kinase (pERK), phosphorylated AKT (phosphorylated AKT) and c-KIT was done. The mutation of BRAF p.V600E was detected in 13 cases of ALM (65.0%) and 12 cases of SSM (70.6%). No NRAS mutation was found in all cases. The mutation in exons 9, 11, and 18 of KIT was detected in nine cases. The mutation of BRAF and KIT showed no correlation with clinical stage, lymph node metastasis, tumor thickness, ulceration and histology. pERK and pAKT was observed in small population of melanoma cells and there was no correlation with gene mutation. Our results indicate that the mutations of BRAF and KIT exist in Japanese melanoma patients, however, the cell growth signaling may be regulated by not only these mutated genes, but by other unknown regulatory factors, which may affect the prognosis of melanoma.

  19. The src-family kinase inhibitor PP2 suppresses the in vitro invasive phenotype of bladder carcinoma cells via modulation of Akt.

    Science.gov (United States)

    Chiang, George J; Billmeyer, Brian R; Canes, David; Stoffel, John; Moinzadeh, Alireza; Austin, Christina A; Kosakowski, Monika; Rieger-Christ, Kimberly M; Libertino, John A; Summerhayes, Ian C

    2005-08-01

    To evaluate PP2 as a modulator of the cadherin/catenin complex in late-stage bladder carcinoma cells, and to assess its potential invasion-suppressor activity in this model. A panel of five human bladder carcinoma cells, characterizing late-stage disease, was used to determine the concentration for 50% inhibition of PP2 in cell-proliferation assays. Modulation of cadherin/catenin expression by PP2 was determined in Western blot analysis, with an assessment of the activation status of mitogen-activated protein kinase and Akt signalling pathways. Altered invasive capacity linked to these variables was determined in standard in vitro invasion assays. PP2 elicited concentration-dependent growth inhibition in all bladder cell lines within the panel, with growth suppression recorded at 10-35 micromol/L PP2. Distinct morphological changes were recorded in cell lines exposed to PP2, accompanied by up-regulation of plakoglobin expression in a subset of lines. Exposure of cells to PP2 resulted in inactivation of Akt in all cells and a concomitant reduction in in vitro invasive capacity. These results show that PP2 inhibits bladder carcinoma cell growth and can modulate plakoglobin expression in a subset of cell lines. In addition, PP2 can suppress the in vitro invasive capacity of bladder carcinoma cells by modulating the activation status of Akt.

  20. Didymin Alleviates Hepatic Fibrosis Through Inhibiting ERK and PI3K/Akt Pathways via Regulation of Raf Kinase Inhibitor Protein

    Directory of Open Access Journals (Sweden)

    Xing Lin

    2016-12-01

    Full Text Available Background: Didymin has been reported to have anti-cancer potential. However, the effect of didymin on liver fibrosis remains illdefined. Methods: Hepatic fibrosis was induced by CCl4 in rats. The effects of didymin on liver pathology and collagen accumulation were observed by hematoxylin-eosin and Masson's trichrome staining, respectively. Serum transaminases activities and collagen-related indicators levels were determined by commercially available kits. Moreover, the effects of didymin on hepatic stellate cell apoptosis and cell cycle were analyzed by flow cytometry. Mitochondrial membrane potential was detected by using rhodamine-123 dye. The expression of Raf kinase inhibitor protein (RKIP and the phosphorylation of the ERK/MAPK and PI3K/Akt pathways were assessed by Western blot. Results: Didymin significantly ameliorated chronic liver injury and collagen deposition. It strongly inhibited hepatic stellate cells proliferation, induced apoptosis and caused cell cycle arrest in G2/M phase. Moreover, didymin notably attenuated mitochondrial membrane potential, accompanied by release of cytochrome C. Didymin significantly inhibited the ERK/MAPK and PI3K/Akt pathways. The effects of didymin on the collagen accumulation in rats and on the biological behaviors of hepatic stellate cells were largely abolished by the specific RKIP inhibitor locostatin. Conclusion: Didymin alleviates hepatic fibrosis by inhibiting ERK/MAPK and PI3K/Akt pathways via regulation of RKIP expression.

  1. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway.

  2. The modulation of vascular ATP-sensitive K+ channel function via the phosphatidylinositol 3-kinase-Akt pathway activated by phenylephrine.

    Science.gov (United States)

    Haba, Masanori; Hatakeyama, Noboru; Kinoshita, Hiroyuki; Teramae, Hiroki; Azma, Toshiharu; Hatano, Yoshio; Matsuda, Naoyuki

    2010-08-01

    The present study examined the modulator role of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway activated by the alpha-1 adrenoceptor agonist phenylephrine in ATP-sensitive K(+) channel function in intact vascular smooth muscle. We evaluated the ATP-sensitive K(+) channel function and the activity of the PI3K-Akt pathway in the rat thoracic aorta without endothelium. The PI3K inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) (10(-5) M) augmented relaxation in response to the ATP-sensitive K(+) channel opener levcromakalim (10(-8) to 3 x 10(-6) M) in aortic rings contracted with phenylephrine (3 x 10(-7) M) but not with 9,11-dideoxy-11alpha,9alpha-epoxy-methanoprostaglandin F(2alpha) (U46619; 3 x 10(-8) M), although those agents induced similar contraction. ATP-sensitive K(+) channel currents induced by levcromakalim (10(-6) M) in the presence of phenylephrine (3 x 10(-7) M) were enhanced by the nonselective alpha-adrenoceptor antagonist phentolamine (10(-7) M) and LY294002 (10(-5) M). Levels of the regulatory subunits of PI3K p85-alpha and p55-gamma increased in the membrane fraction from aortas without endothelium treated with phenylephrine (3 x 10(-7) M) but not with U46619 (3 x 10(-8) M). Phenylephrine simultaneously augmented Akt phosphorylation at Ser473 and Thr308. Therefore, activation of the PI3K-Akt pathway seems to play a role in the impairment of ATP-sensitive K(+) channel function in vascular smooth muscle exposed to alpha-1 adrenergic stimuli.

  3. Inhibition of protein kinase C delta attenuates allergic airway inflammation through suppression of PI3K/Akt/mTOR/HIF-1 alpha/VEGF pathway.

    Directory of Open Access Journals (Sweden)

    Yun Ho Choi

    Full Text Available Vascular endothelial growth factor (VEGF is supposed to contribute to the pathogenesis of allergic airway disease. VEGF expression is regulated by a variety of stimuli such as nitric oxide, growth factors, and hypoxia-inducible factor-1 alpha (HIF-1α. Recently, inhibition of the mammalian target of rapamycin (mTOR has been shown to alleviate cardinal asthmatic features, including airway hyperresponsiveness, eosinophilic inflammation, and increased vascular permeability in asthma models. Based on these observations, we have investigated whether mTOR is associated with HIF-1α-mediated VEGF expression in allergic asthma. In studies with the mTOR inhibitor rapamycin, we have elucidated the stimulatory role of a mTOR-HIF-1α-VEGF axis in allergic response. Next, the mechanisms by which mTOR is activated to modulate this response have been evaluated. mTOR is known to be regulated by phosphoinositide 3-kinase (PI3K/Akt or protein kinase C-delta (PKC δ in various cell types. Consistent with these, our results have revealed that suppression of PKC δ by rottlerin leads to the inhibition of PI3K/Akt activity and the subsequent blockade of a mTOR-HIF-1α-VEGF module, thereby attenuating typical asthmatic attack in a murine model. Thus, the present data indicate that PKC δ is necessary for the modulation of the PI3K/Akt/mTOR signaling cascade, resulting in a tight regulation of HIF-1α activity and VEGF expression. In conclusion, PKC δ may represent a valuable target for innovative therapeutic treatment of allergic airway disease.

  4. Dual inhibitory roles of geldanamycin on the c-Jun NH2-terminal kinase 3 signal pathway through suppressing the expression of mixed-lineage kinase 3 and attenuating the activation of apoptosis signal-regulating kinase 1 via facilitating the activation of Akt in ischemic brain injury.

    Science.gov (United States)

    Wen, X-R; Li, C; Zong, Y-Y; Yu, C-Z; Xu, J; Han, D; Zhang, G-Y

    2008-10-15

    It is well documented that heat-shock protein (hsp90) plays an essential role in maintaining stability and activity of its clients. Recent studies have shown that geldanamycin (GA), an inhibitor of hsp90, could decrease the protein of mixed-lineage kinase (MLK) 3 and activate Akt; our previous research documented that MLK3 and Akt and subsequent c-Jun N-terminal kinase (JNK) were involved in neuronal cell death in ischemic brain injury. Here, we investigated whether GA could decrease the protein of MLK3 and activate Akt in rat four-vessel occlusion ischemic model. Our results showed that global cerebral ischemia followed by reperfusion could enhance the association of hsp90 with MLK3, the association of hsp90 with Src, and JNK3 activation. As a result, GA decreased the protein of MLK3 and down-regulated JNK activation. On the other hand, Src kinase was activated and phosphorylated Cbl, which then recruited the p85 subunit of phosphatidylinositol 3-kinase (PI-3K), resulting in PI-3K activation, and as a consequence increased Akt activation, which inhibited ASK1 activation and down-regulated JNK3 activation. In summary, our results indicated that GA showed a dual inhibitory role on JNK3 activation and exerted strong neuroprotection in vivo and in vitro, which provides a new possible approach for stroke therapy.

  5. The Neuron-Specific Rai (ShcC) Adaptor Protein Inhibits Apoptosis by Coupling Ret to the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway

    Science.gov (United States)

    Pelicci, Giuliana; Troglio, Flavia; Bodini, Alessandra; Melillo, Rosa Marina; Pettirossi, Valentina; Coda, Laura; De Giuseppe, Antonio; Santoro, Massimo; Pelicci, Pier Giuseppe

    2002-01-01

    Rai is a recently identified member of the family of Shc-like proteins, which are cytoplasmic signal transducers characterized by the unique PTB-CH1-SH2 modular organization. Rai expression is restricted to neuronal cells and regulates in vivo the number of postmitotic sympathetic neurons. We report here that Rai is not a common substrate of receptor tyrosine kinases under physiological conditions and that among the analyzed receptors (Ret, epidermal growth factor receptor, and TrkA) it is activated specifically by Ret. Overexpression of Rai in neuronal cell lines promoted survival by reducing apoptosis both under conditions of limited availability of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) and in the absence of Ret activation. Overexpressed Rai resulted in the potentiation of the Ret-dependent activation of phosphatidylinositol 3-kinase (PI3K) and Akt. Notably, increased Akt phosphorylation and PI3K activity were also found under basal conditions, e.g., in serum-starved neuronal cells. Phosphorylated and hypophosphorylated Rai proteins form a constitutive complex with the p85 subunit of PI3K: upon Ret triggering, the Rai-PI3K complex is recruited to the tyrosine-phosphorylated Ret receptor through the binding of the Rai PTB domain to tyrosine 1062 of Ret. In neurons treated with low concentrations of GDNF, the prosurvival effect of Rai depends on Rai phosphorylation and Ret activation. In the absence of Ret activation, the prosurvival effect of Rai is, instead, phosphorylation independent. Finally, we showed that overexpression of Rai, at variance with Shc, had no effects on the early peak of mitogen-activated protein kinase (MAPK) activation, whereas it increased its activation at later time points. Phosphorylated Rai, however, was not found in complexes with Grb2. We propose that Rai potentiates the MAPK and PI3K signaling pathways and regulates Ret-dependent and -independent survival signals. PMID:12242309

  6. Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration.

    Science.gov (United States)

    Zanou, Nadège; Schakman, Olivier; Louis, Pierre; Ruegg, Urs T; Dietrich, Alexander; Birnbaumer, Lutz; Gailly, Philippe

    2012-04-27

    We previously showed in vitro that calcium entry through Trpc1 ion channels regulates myoblast migration and differentiation. In the present work, we used primary cell cultures and isolated muscles from Trpc1(-/-) and Trpc1(+/+) murine model to investigate the role of Trpc1 in myoblast differentiation and in muscle regeneration. In these models, we studied regeneration consecutive to cardiotoxin-induced muscle injury and observed a significant hypotrophy and a delayed regeneration in Trpc1(-/-) muscles consisting in smaller fiber size and increased proportion of centrally nucleated fibers. This was accompanied by a decreased expression of myogenic factors such as MyoD, Myf5, and myogenin and of one of their targets, the developmental MHC (MHCd). Consequently, muscle tension was systematically lower in muscles from Trpc1(-/-) mice. Importantly, the PI3K/Akt/mTOR/p70S6K pathway, which plays a crucial role in muscle growth and regeneration, was down-regulated in regenerating Trpc1(-/-) muscles. Indeed, phosphorylation of both Akt and p70S6K proteins was decreased as well as the activation of PI3K, the main upstream regulator of the Akt. This effect was independent of insulin-like growth factor expression. Akt phosphorylation also was reduced in Trpc1(-/-) primary myoblasts and in control myoblasts differentiated in the absence of extracellular Ca(2+) or pretreated with EGTA-AM or wortmannin, suggesting that the entry of Ca(2+) through Trpc1 channels enhanced the activity of PI3K. Our results emphasize the involvement of Trpc1 channels in skeletal muscle development in vitro and in vivo, and identify a Ca(2+)-dependent activation of the PI3K/Akt/mTOR/p70S6K pathway during myoblast differentiation and muscle regeneration.

  7. Trpc1 Ion Channel Modulates Phosphatidylinositol 3-Kinase/Akt Pathway during Myoblast Differentiation and Muscle Regeneration*

    Science.gov (United States)

    Zanou, Nadège; Schakman, Olivier; Louis, Pierre; Ruegg, Urs T.; Dietrich, Alexander; Birnbaumer, Lutz; Gailly, Philippe

    2012-01-01

    We previously showed in vitro that calcium entry through Trpc1 ion channels regulates myoblast migration and differentiation. In the present work, we used primary cell cultures and isolated muscles from Trpc1−/− and Trpc1+/+ murine model to investigate the role of Trpc1 in myoblast differentiation and in muscle regeneration. In these models, we studied regeneration consecutive to cardiotoxin-induced muscle injury and observed a significant hypotrophy and a delayed regeneration in Trpc1−/− muscles consisting in smaller fiber size and increased proportion of centrally nucleated fibers. This was accompanied by a decreased expression of myogenic factors such as MyoD, Myf5, and myogenin and of one of their targets, the developmental MHC (MHCd). Consequently, muscle tension was systematically lower in muscles from Trpc1−/− mice. Importantly, the PI3K/Akt/mTOR/p70S6K pathway, which plays a crucial role in muscle growth and regeneration, was down-regulated in regenerating Trpc1−/− muscles. Indeed, phosphorylation of both Akt and p70S6K proteins was decreased as well as the activation of PI3K, the main upstream regulator of the Akt. This effect was independent of insulin-like growth factor expression. Akt phosphorylation also was reduced in Trpc1−/− primary myoblasts and in control myoblasts differentiated in the absence of extracellular Ca2+ or pretreated with EGTA-AM or wortmannin, suggesting that the entry of Ca2+ through Trpc1 channels enhanced the activity of PI3K. Our results emphasize the involvement of Trpc1 channels in skeletal muscle development in vitro and in vivo, and identify a Ca2+-dependent activation of the PI3K/Akt/mTOR/p70S6K pathway during myoblast differentiation and muscle regeneration. PMID:22399301

  8. Recent Development of Anticancer Therapeutics Targeting Akt

    OpenAIRE

    Morrow, John K.; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J.; Eugene A Mash; Powis, Garth; Zhang, Shuxing

    2011-01-01

    The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellu...

  9. Dihydrotestosterone induces SREBP-1 expression and lipogenesis through the phosphoinositide 3-kinase/Akt pathway in HaCaT cells

    Directory of Open Access Journals (Sweden)

    Zhou Bing-rong

    2012-11-01

    Full Text Available Abstract Background The purpose of this study was to investigate the effects and mechanisms of dihydrotestosterone (DHT-induced expression of sterol regulatory element binding protein-1 (SREBP-1, and the synthesis and secretion of lipids, in HaCaT cells. HaCaT cells were treated with DHT and either the phosphoinositide 3-kinase inhibitor LY294002 or the extracellular-signal-regulated kinase (ERK inhibitor PD98059. Real time-PCR, Western blot, Oil Red staining and flow cytometry were employed to examine the mRNA and protein expressions of SREBP-1, the gene transcription of lipid synthesis, and lipid secretion in HaCaT cells. Findings We found that DHT upregulated mRNA and protein expressions of SREBP-1. DHT also significantly upregulated the transcription of lipid synthesis-related genes and increased lipid secretion, which can be inhibited by the addition of LY294002. Conclusions Collectively, these results indicate that DHT induces SREBP-1 expression and lipogenesis in HaCaT cells via activation of the phosphoinositide 3-kinase/Akt Pathway.

  10. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways

    OpenAIRE

    Hu, Shan; HUANG, LIMING; MENG, LIWEI; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-01-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammal...

  11. Phosphatidylinositol 3-Kinase/AKT Pathway Inhibition by Doxazosin Promotes Glioblastoma Cells Death, Upregulation of p53 and Triggers Low Neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Mariana Maier Gaelzer

    Full Text Available Glioblastoma is the most frequent and malignant brain tumor. Treatment includes chemotherapy with temozolomide concomitant with surgical resection and/or irradiation. However, a number of cases are resistant to temozolomide, as well as the human glioblastoma cell line U138-MG. We investigated doxazosin's (an antihypertensive drug activity against glioblastoma cells (C6 and U138-MG and its neurotoxicity on primary astrocytes and organoptypic hippocampal cultures. For this study, the following methods were used: citotoxicity assays, flow cytometry, western-blotting and confocal microscopy. We showed that doxazosin induces cell death on C6 and U138-MG cells. We observed that doxazosin's effects on the PI3K/Akt pathway were similar as LY294002 (PI3K specific inhibitor. In glioblastoma cells treated with doxasozin, Akt levels were greatly reduced. Upon examination of activities of proteins downstream of Akt we observed upregulation of GSK-3β and p53. This led to cell proliferation inhibition, cell death induction via caspase-3 activation and cell cycle arrest at G0/G1 phase in glioblastoma cells. We used in this study Lapatinib, a tyrosine kinase inhibitor, as a comparison with doxazosin because they present similar chemical structure. We also tested the neurocitotoxicity of doxazosin in primary astrocytes and organotypic cultures and observed that doxazosin induced cell death on a small percentage of non-tumor cells. Aggressiveness of glioblastoma tumors and dismal prognosis require development of new treatment agents. This includes less toxic drugs, more selective towards tumor cells, causing less damage to the patient. Therefore, our results confirm the potential of doxazosin as an attractive therapeutic antiglioma agent.

  12. Nuclear Magnetic Resonance Detects Phosphoinositide 3-Kinase/Akt-Independent Traits Common to Pluripotent Murine Embryonic Stem Cells and Their Malignant Counterparts

    Directory of Open Access Journals (Sweden)

    Hanna M. Romanska

    2009-12-01

    Full Text Available Pluripotent embryonic stem (ES cells, a potential source of somatic precursors for cell therapies, cause tumors after transplantation. Studies of mammalian carcinogenesis using nuclear magnetic resonance (NMR spectroscopy have revealed changes in the choline region, particularly increased phosphocholine (PCho content. High PCho levels in murine ES (mES cells have recently been attributed to cell pluripotency. The phosphoinositide 3-kinase (PI3K/Akt pathway has been implicated in tumor-like properties of mES cells. This study aimed to examine a potential link between the metabolic profile associated with choline metabolism of pluripotent mES cells and PI3K/Akt signaling. We used mES (ES-D3 and murine embryonal carcinoma cells (EC-F9 and compared the metabolic profiles of 1 pluripotent mES (ESD0, 2 differentiated mES (ESD14, and 3 pluripotent F9 cells. Involvement of the PI3K/Akt pathway was assessed using LY294002, a selective PI3K inhibitor. Metabolic profiles were characterized in the extracted polar fraction by 1H NMR spectroscopy. Similarities were found between the levels of choline phospholipid metabolites (PCho/total choline and PCho/glycerophosphocholine [GPCho] in ESD0 and F9 cell spectra and a greater-than five-fold decrease of the PCho/GPCho ratio associated with mES cell differentiation. LY294002 caused no significant change in relative PCho levels but led to a greater-than two-fold increase in PCho/GPCho ratios. These results suggest that the PCho/GPCho ratio is a metabolic trait shared by pluripotent and malignant cells and that PI3K does not underlie its development. It is likely that the signature identified here in a mouse model may be relevant for safe therapeutic applications of human ES cells.

  13. WNT16B is a new marker of cellular senescence that regulates p53 activity and the phosphoinositide 3-kinase/AKT pathway.

    Science.gov (United States)

    Binet, Romuald; Ythier, Damien; Robles, Ana I; Collado, Manuel; Larrieu, Delphine; Fonti, Claire; Brambilla, Elisabeth; Brambilla, Christian; Serrano, Manuel; Harris, Curtis C; Pedeux, Rémy

    2009-12-15

    Senescence is a tumor suppression mechanism that is induced by several stimuli, including oncogenic signaling and telomere shortening, and controlled by the p53/p21(WAF1) signaling pathway. Recently, a critical role for secreted factors has emerged, suggesting that extracellular signals are necessary for the onset and maintenance of senescence. Conversely, factors secreted by senescent cells may promote tumor growth. By using expression profiling techniques, we searched for secreted factors that were overexpressed in fibroblasts undergoing replicative senescence. We identified WNT16B, a member of the WNT family of secreted proteins. We found that WNT16B is overexpressed in cells undergoing stress-induced premature senescence and oncogene-induced senescence in both MRC5 cell line and the in vivo murine model of K-Ras(V12)-induced senescence. By small interfering RNA experiments, we observed that both p53 and WNT16B are necessary for the onset of replicative senescence. WNT16B expression is required for the full transcriptional activation of p21(WAF1). Moreover, WNT16B regulates activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Overall, we identified WNT16B as a new marker of senescence that regulates p53 activity and the PI3K/AKT pathway and is necessary for the onset of replicative senescence.

  14. Skeletal muscle insulin signaling defects downstream of phosphatidylinositol 3-kinase at the level of akt are associated with impaired nonoxidative glucose disposal in HIV lipodystrophy

    DEFF Research Database (Denmark)

    Haugaard, Steen B.; Andersen, Ove; Madsbad, Sten

    2005-01-01

    More than 40% of HIV-infected patients on highly active antiretroviral therapy (HAART) experience fat redistribution (lipodystrophy), a syndrome associated with insulin resistance primarily affecting insulin-stimulated nonoxidative glucose metabolism (NOGM(ins)). Skeletal muscle biopsies, obtaine...... defects were downstream of PI 3-kinase at the level of Akt. These results suggest mechanisms for the insulin resistance greatly enhancing the risk of type 2 diabetes in HIV lipodystrophy....... from 18 lipodystrophic nondiabetic patients (LIPO) and 18 nondiabetic patients without lipodystrophy (NONLIPO) before and during hyperinsulinemic (40 mU.m(-2).min(-1))-euglycemic clamps, were analyzed for insulin signaling effectors. All patients were on HAART. Both LIPO and NONLIPO patients were...... normoglycemic (4.9 +/- 0.1 and 4.8 +/- 0.1 mmol/l, respectively); however, NOGM(ins) was reduced by 49% in LIPO patients (P correlated positively with insulin-stimulated glycogen synthase activity (I-form, P correlated inversely...

  15. Chitosan oilgosaccharides suppress LPS-induced IL-8expression in human umbilical vein endothelial cells through blockade of p38 and Akt protein kinases

    Institute of Scientific and Technical Information of China (English)

    Hong-tao LIU; Pei HUANG; Pan MA; Qi-shun LIU; Chao YU; Yu-guang DUL

    2011-01-01

    Aim:To investigate whether and how COS inhibited IL-8 production in LPS-induced human urnbilical vein endothelial cells(HUVECs).Methods:RT-PCR,enzyme-linked immunosorbent assays(ELISA)and Western blotting were used to study IL-8 expression and related signaling pathway.Wound healing migration assays and monocytic cell adhesion analysis were used to explore the chemotactic andadhesive aCtivities of HUVEcs.Results:COS 50-200 μg/mL exerted a significant inhibitory effect on LPS 100 μg/mL-induced IL-8 expression in HUVECs at both the transcriptional and translational levels.In addition, COS 50-200 μg/mL inhibited LPS-induced HUVEC migration and U937 monocyte adhesion to HUVECs in a concentration-dependent manner.Signal transduction studies suggest that COS blocked LPS-induced activation of nuclear factor-KB(NF-KB)and activator protein-1(AP-1)as well as phosphorylation of p38 mitogen-activated protein kinase (MAPK)and phosphokinase Akt.Further,the over-expression of LPS-induced IL-8 mRNA in HUVEcs was suppressed by a p38 MAPK inhibitor(SB203580.25 pmol/L)or a phosphatidylinositol 3-kinase(P13K)inhibitor(LY294002.50 μmol/L).Conclusion:COS inhibited LPS-induced IL-8 expression in HUVECs through the blockade of the p38 MAPK and P13K/Akt signaling pathways.

  16. Inhibition of activated receptor tyrosine kinases by Sunitinib induces growth arrest and sensitizes melanoma cells to Bortezomib by blocking Akt pathway.

    Science.gov (United States)

    Yeramian, Andree; Sorolla, Anabel; Velasco, Ana; Santacana, Maria; Dolcet, Xavier; Valls, Joan; Abal, Leandre; Moreno, Sara; Egido, Ramón; Casanova, Josep M; Puig, Susana; Vilella, Ramón; Llombart-Cussac, Antonio; Matias-Guiu, Xavier; Martí, Rosa M

    2012-02-15

    Despite the use of multiple therapeutic strategies, metastatic melanoma remains a challenge for oncologists. Thus, new approaches using combinational treatment may be used to try to improve the prognosis of this disease. In this report, we have analyzed the expression of receptor tyrosine kinases (RTKs) in melanoma specimens and in four metastatic melanoma cell lines. Both melanoma specimens and cell lines expressed RTKs, suggesting that they may represent eventual targets for multitargeted tyrosine kinase inhibitor, Suntinib. Sunitinib reduced the proliferation of two melanoma cell lines (M16 and M17) and increased apoptosis in one of them (M16). Moreover, the two metastatic melanoma cell lines harbored an activated receptor (PDGFRα and VEGFR, respectively), and Sunitinib suppressed the phosphorylation of the RTKs and their downstream targets Akt and ribosomal protein S6, in these two cell lines. Similar results were obtained when either PDGFRα or VEGFR2 expression was silenced by lentiviral-mediated short-hairpin RNA delivery in M16 and M17, respectively. To evaluate the interaction between Sunitinib and Bortezomib, median dose effect analysis using MTT assay was performed, and combination index was calculated. Bortezomib synergistically enhanced the Sunitinib-induced growth arrest in Sunitinib-sensitive cells (combination index < 1). Moreover, LY294002, a PI3K inhibitor, sensitized melanoma cells to Bortezomib treatment, suggesting that downregulation of phospho-Akt by Sunitinib mediates the synergy obtained by Bortezomib + Sunitinib cotreatment. Altogether, our results suggest that melanoma cells harboring an activated RTK may be clinically responsive to pharmacologic RTK inhibition by Sunitinib, and a strategy combining Sunitinib and Bortezomib, may provide therapeutic benefit. Copyright © 2011 UICC.

  17. Inhibition of mitotic kinase Aurora suppresses Akt-1 activation and induces apoptotic cell death in all-trans retinoid acid-resistant acute promyelocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Long Zi-Jie

    2011-05-01

    Full Text Available Abstract Background Aurora kinase ensures accurate chromosome segregation during cell cycle, maintaining genetic integrity in cell division. VX-680, a small-molecule Aurora kinase inhibitor, interferes with mitotic entry and formation of bipolar spindles. Here, we evaluated VX-680 as a potential agent for treatment of all-trans retinoid acid (ATRA-resistant acute promyelocytic leukemia (APL in vitro. Methods CD11b expression was utilized to assess cell differentiation by flow cytometry. Immunofluorescence staining was conducted to analyze formation of cell monopolar spindle. Cell proliferation was evaluated by MTT assay. Sub-G1 population and Annexin V/PI staining were used to measure cell apoptosis. Hoechst 33342 staining was applied for identifying morphological changes in nucleus of apoptotic cell. Aurora-A (Aur-A activation and the signaling pathways involved in apoptosis were detected by Western blot. JC-1 probe was employed to measure mitochondrial depolarization. Results VX-680 inhibited Aur-A by reducing autophosphorylation at the activation site, Thr288, accompanied by producing monopolar mitotic spindles in APL cell line NB4-R2 that was resistant to ATRA. In addition, we found that VX-680 inhibited cell proliferation as assessed by MTT assay. Flow cytometry showed that VX-680 led to apoptotic cell death in both dose- and time-dependent manners by either Sub-G1 or Annexin V/PI analysis. Hoechst 33342 staining represented typical apoptotic cells with nuclear fragmentation in VX-680 treated cells. Importantly, VX-680 inhibition of Aurora kinase suppressed Akt-1 activation and induced mitochondrial depolarization, which eventually resulted in apoptosis by activation of caspase pathway, as indicated by increasing proteolytic cleavage of procaspase-3 and poly ADP ribose polymerase (PARP in NB4-R2 cells. Conclusions Our study suggested potential clinical use of mitotic Aurora kinase inhibitor in targeting ATRA-resistant leukemic cells.

  18. Synergistic effect of a combination of nanoparticulate Fe3O4 and gambogic acid on phosphatidylinositol 3-kinase/Akt/Bad pathway of LOVO cells

    Directory of Open Access Journals (Sweden)

    Hu S

    2012-07-01

    Full Text Available Lianghua Fang,1,3 Baoan Chen,2 Shenlin Liu,3 Ruiping Wang,3 Shouyou Hu,3 Guohua Xia,2 Yongli Tian,3 Xiaohui Cai21No 1 Clinical Medical College of Nanjing University of Chinese Medicine, 2Department of Hematology, Zhongda Hospital, Medical School, Southeast University, 3Department of Oncology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, People's Republic of ChinaBackground: The present study evaluated whether magnetic nanoparticles containing Fe3O4 could enhance the activity of gambogic acid in human colon cancer cells, and explored the potential mechanisms involved.Methods: Cytotoxicity was evaluated by MTT assay. The percentage of cells undergoing apoptosis was analyzed by flow cytometry, and cell morphology was observed under both an optical microscope and a fluorescence microscope. Reverse transcriptase polymerase chain reaction and Western blot assay were performed to determine the transcription of genes and expression of proteins, respectively.Results: Gambogic acid could inhibit proliferation of LOVO cells in a dose-dependent and time-dependent manner and induce apoptosis, which was dramatically enhanced by magnetic nanoparticles containing Fe3O4. The typical morphological features of apoptosis in LOVO cells were observed after treatment comprising gambogic acid with and without magnetic nanoparticles containing Fe3O4. Transcription of cytochrome c, caspase 9, and caspase 3 genes was higher in the group treated with magnetic nanoparticles containing Fe3O4 and gambogic acid than in the groups that received gambogic acid or magnetic nanoparticles containing Fe3O4, but transcription of phosphatidylinositol 3-kinase, Akt, and Bad genes decreased. Notably, expression of cytochrome c, caspase 9, and caspase 3 proteins in the group treated with gambogic acid and magnetic nanoparticles containing Fe3O4 was higher than in the groups receiving magnetic nanoparticles containing Fe3O4 or gambogic acid, while expression of p-PI3

  19. Activation of phosphatidylinositol 3-kinase/Akt-mammalian target of Rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine-induced place preference in rats.

    Science.gov (United States)

    Cui, Yue; Zhang, X Q; Cui, Y; Xin, W J; Jing, J; Liu, X G

    2010-11-24

    Hippocampus is a critical structure for the acquisition of morphine-induced conditioned place preference (CPP), which is a usual learning paradigm for assessing drug reward. However, the precise mechanisms remain largely unknown. Phosphatidylinositol 3-kinase (PI3K) and its downstream targets, including Akt, mammalian target of Rapamycin (mTOR) and 70-kDa ribosomal S6 kinase (p70S6K), are critical molecules implicated in learning and memory. Here, we tested the role of PI3K/Akt-mTOR-p70S6K signaling pathway in morphine-induced CPP in the hippocampus. Our results showed that the acquisition of morphine CPP increased phosphorylation of Akt in the hippocampal CA3, but not in the nucleus accumbens (NAc), the ventral tegmental area (VTA) or the CA1. Moreover, the phosphorylated Akt exclusively expressed in the CA3 neurons. Likewise, levels of phosphorylated mTOR and p70S6K were significantly enhanced in the CA3 following morphine CPP. The alterations of these phosphorylated proteins are positively correlated with the acquisition of morphine CPP. More importantly, microinjection of PI3K inhibitor (LY294002) or mTOR inhibitor (Rapamycin) into the CA3 prevented the acquisition of CPP and inhibited the activation of PI3K-Akt signaling pathway. In addition, pre-infusion of β-FNA (β-funaltrexamine hydrochloride), a selective irreversible μ opioid receptor antagonist, into CA3 significantly prevented the acquisition of CPP and impaired Akt phosphorylation. All these results strongly implied that the PI3K-Akt signaling pathway activated by μ opioid receptor in hippocampal CA3 plays an important role in acquisition of morphine-induced CPP.

  20. Insulin promotes Rip11 accumulation at the plasma membrane by inhibiting a dynamin- and PI3-kinase-dependent, but Akt-independent, internalisation event.

    Science.gov (United States)

    Boal, Frédéric; Hodgson, Lorna R; Reed, Sam E; Yarwood, Sophie E; Just, Victoria J; Stephens, David J; McCaffrey, Mary W; Tavaré, Jeremy M

    2016-01-01

    Rip11 is a Rab11 effector protein that has been shown to be important in controlling the trafficking of several intracellular cargoes, including the fatty acid transporter FAT/CD36, V-ATPase and the glucose transporter GLUT4. We have previously demonstrated that Rip11 translocates to the plasma membrane in response to insulin and here we examine the basis of this regulated phenomenon in more detail. We show that Rip11 rapidly recycles between the cell interior and surface, and that the ability of insulin to increase the appearance of Rip11 at the cell surface involves an inhibition of Rip11 internalisation from the plasma membrane. By contrast the hormone has no effect on the rate of Rip11 translocation towards the plasma membrane. The ability of insulin to inhibit Rip11 internalisation requires dynamin and class I PI3-kinases, but is independent of the activation of the protein kinase Akt; characteristics which are very similar to the mechanism by which insulin inhibits GLUT4 endocytosis.

  1. Protein kinase B (PKB/AKT1) formed signaling complexes with mitochondrial proteins and prevented glycolytic energy dysfunction in cultured cardiomyocytes during ischemia-reperfusion injury.

    Science.gov (United States)

    Deng, Wu; Leu, Hsin-Bang; Chen, Yumay; Chen, Yu-Han; Epperson, Christine M; Juang, Charity; Wang, Ping H

    2014-05-01

    Our previous studies showed that insulin stimulated AKT1 translocation into mitochondria and modulated oxidative phosphorylation complex V in cardiac muscle. This raised the possibility that mitochondrial AKT1 may regulate glycolytic oxidative phosphorylation and mitochondrial function in cardiac muscle cells. The aims of this project were to study the effects of mitochondrial AKT1 signaling on cell survival in stressed cardiomyocytes, to define the effect of mitochondrial AKT1 signaling on glycolytic bioenergetics, and to identify mitochondrial targets of AKT1 signaling in cardiomyocytes. Mitochondrial AKT1 signaling played a protective role against apoptosis and necrosis during ischemia-reperfusion stress, suppressed mitochondrial calcium overload, and alleviated mitochondrial membrane depolarization. Activation of AKT1 signaling in mitochondria increased glucose uptake, enhanced respiration efficiency, reduced superoxide generation, and increased ATP production in the cardiomyocytes. Inhibition of mitochondrial AKT attenuated insulin response, indicating that insulin regulation of ATP production required mitochondrial AKT1 signaling. A proteomic approach was used to reveal 15 novel targets of AKT1 signaling in mitochondria, including pyruvate dehydrogenase complex (PDC). We have confirmed and characterized the association of AKT1 and PDC subunits and verified a stimulatory effect of mitochondrial AKT1 on the enzymatic activity of PDC. These findings suggested that AKT1 formed protein complexes with multiple mitochondrial proteins and improved mitochondrial function in stressed cardiomyocytes. The novel AKT1 signaling targets in mitochondria may become a resource for future metabolism research.

  2. Altered PI3-kinase/Akt signalling in skeletal muscle of young men with low birth weight

    DEFF Research Database (Denmark)

    Jensen, C.B.; Martin-Gronert, M.S.; Storgaard, H.

    2008-01-01

    BACKGROUND: Low birth weight (LBW) is associated with increased future risk of insulin resistance and type 2 diabetes mellitus. The underlying molecular mechanisms remain poorly understood. We have previously shown that young LBW men have reduced skeletal muscle expression of PI3K p85alpha...... regulatory subunit and p110beta catalytic subunit, PKCzeta and GLUT4 in the fasting state. The aim of this study was to determine whether insulin activation of the PI3K/Akt and MAPK signalling pathways is altered in skeletal muscle of young adult men with LBW. METHODS: Vastus lateralis muscle biopsies were......). Expression and phosphorylation of selected proteins was determined by Western blotting. PRINCIPAL FINDINGS: Insulin stimulated expression of aPKCzeta (pmuscle of LBW men when compared to insulin stimulated controls. LBW was associated with increased insulin...

  3. Extracellular acidosis induces neutrophil activation by a mechanism dependent on activation of phosphatidylinositol 3-kinase/Akt and ERK pathways.

    Science.gov (United States)

    Martínez, Diego; Vermeulen, Mónica; Trevani, Analía; Ceballos, Ana; Sabatté, Juan; Gamberale, Romina; Alvarez, María Eugenia; Salamone, Gabriela; Tanos, Tamara; Coso, Omar A; Geffner, Jorge

    2006-01-15

    Inflammation in peripheral tissues is usually associated with the development of local acidosis; however, there are few studies aimed at analyzing the influence of acidosis on immune cells. We have shown previously that extracellular acidosis triggers human neutrophil activation, inducing a transient increase in intracellular Ca2+ concentration, a shape change response, the up-regulation of CD18 expression, and a delay of apoptosis. In this study, we analyzed the signaling pathways responsible for neutrophil activation. We found that acidosis triggers the phosphorylation of Akt (the main downstream target of PI3K) and ERK MAPK, but not that of p38 and JNK MAPK. No degradation of IkappaB was observed, supporting the hypothesis that NF-kappaB is not activated under acidosis. Inhibition of PI3K by wortmannin or LY294002 markedly decreased the shape change response and the induction of Ca2+ transients triggered by acidosis, whereas the inhibition of MEK by PD98059 or U0126 significantly inhibited the shape change response without affecting the induction of Ca2+ transients. We also found that acidosis not only induces a shape change response and the induction of Ca2+ transients in human neutrophils but also stimulates the endocytosis of FITC-OVA and FITC-dextran. Stimulation of endocytosis was partially prevented by inhibitors of PI3K and MEK. Together, our results support the notion that the stimulation of human neutrophils by extracellular acidosis is dependent on the activation of PI3K/Akt and ERK pathways. Of note, using mouse peritoneal neutrophils we observed that the enhancement of endocytosis induced by acidosis was associated with an improved ability to present extracellular Ags through a MHC class I-restricted pathway.

  4. Nitric oxide mediates stretch-induced Ca2+ release via activation of phosphatidylinositol 3-kinase-Akt pathway in smooth muscle.

    Directory of Open Access Journals (Sweden)

    Bin Wei

    Full Text Available BACKGROUND: Hollow smooth muscle organs such as the bladder undergo significant changes in wall tension associated with filling and distension, with attendant changes in muscle tone. Our previous study indicated that stretch induces Ca(2+ release occurs in the form of Ca(2+ sparks and Ca(2+ waves in urinary bladder myocytes. While, the mechanism underlying stretch-induced Ca2+ release in smooth muscle is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We examined the transduction mechanism linking cell stretch to Ca(2+ release. The probability and frequency of Ca(2+ sparks induced by stretch were closely related to the extent of cell extension and the time that the stretch was maintained. Experiments in tissues and single myocytes indicated that mechanical stretch significantly increases the production of nitric oxide (NO and the amplitude and duration of muscle contraction. Stretch-induced Ca(2+ sparks and contractility increases were abrogated by the NO inhibitor L-NAME and were also absent in eNOS knockout mice. Furthermore, exposure of eNOS null mice to exogenously generated NO induced Ca(2+ sparks. The soluble guanylyl cyclase inhibitor ODQ did not inhibit SICR, but this process was effectively blocked by the PI3 kinase inhibitors LY494002 and wortmannin; the phosphorylation of Akt and eNOS were up-regulated by 204+/-28.6% and 258+/-36.8% by stretch, respectively. Moreover, stretch significantly increased the eNOS protein expression level. CONCLUSIONS/SIGNIFICANCE: Taking together, these results suggest that stretch-induced Ca2+ release is NO dependent, resulting from the activation of PI3K/Akt pathway in smooth muscle.

  5. Protective Role of PI3-kinase/Akt/eNOS Signaling in Mechanical Stress Through Inhibition of p38 Mitogen-Activated Protein Kinase in Mouse Lung

    Science.gov (United States)

    2010-01-01

    Materials and methods Materials CMRL 1066 medium was purchased from Invitrogen (Carls- bad, CAl, and fetal bovine serum was obtained from Hyclone... endotoxin -induced inflammatory lung injury. Am J Respir Crit Care Med 2004; 169: 1245-51. 3 Miyahara T. Hamanaka K. Weber OS. Drake DA. Anghelescu...kinase up-regulates LPS-induced NF-kappaB activation in the development of lung injury and RAW 264.7 macrophages. Toxicology 2006; 225: 36-47. 15

  6. Essential role of AKT in tumor cells addicted to FGFR.

    Science.gov (United States)

    Hu, Yi; Lu, Huiru; Zhang, Jinchao; Chen, Jun; Chai, Zhifang; Zhang, Jingxin

    2014-02-01

    Tumor cells with genetic amplifications or mutations in the fibroblast growth factor receptor (FGFR) family are often addicted to FGFR and heavily dependent on its signaling to survive. Although it is critical to understand which signaling pathway downstream of FGFR plays an essential role to guide the research and development of FGFR inhibitors, it has remained unclear partly because the tool compounds used in the literature also hit many other kinases, making the results difficult to interpret. With the development of a potent FGFR-specific inhibitor, BGJ398, we are now able to dissect various pathways with low drug concentrations to minimize multiple-target effects. Importantly, here, we show that inhibition of FGFR signaling by BGJ398 leads to only transient inhibition of ERK1/2 phosphorylation, whereas the inhibitory effect on AKT phosphorylation is sustainable, indicating that AKT, not ERK as commonly believed, serves as an appropriate pharmacodynamic biomarker for BGJ398. Although AKT inhibition by a pan-PI3K inhibitor alone has almost no effect on cell growth, heterologous expression of myr-AKT, an active form of AKT, rescues BGJ398-mediated suppression of tumor cell proliferation. These results indicate that AKT is an essential component downstream of FGFR. Finally, combination of the FGFR inhibitor BGJ398 with rapamycin significantly inhibits AKT phosphorylation and enhances their antiproliferative effects in FGFR-addicted cells, suggesting an effective combination strategy for clinical development of FGFR inhibitors.

  7. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways.

    Science.gov (United States)

    Kovacheva, Ekaterina L; Hikim, Amiya P Sinha; Shen, Ruoqing; Sinha, Indranil; Sinha-Hikim, Indrani

    2010-02-01

    Aging in rodents and humans is characterized by loss of muscle mass (sarcopenia). Testosterone supplementation increases muscle mass in healthy older men. Here, using a mouse model, we investigated the molecular mechanisms by which testosterone prevents sarcopenia and promotes muscle growth in aging. Aged mice of 22 months of age received a single sc injection of GnRH antagonist every 2 wk to suppress endogenous testosterone production and were implanted subdermally under anesthesia with 0.5 or 1.0 cm testosterone-filled implants for 2 months (n = 15/group). Young and old mice (n = 15/group), of 2 and 22 months of age, respectively, received empty implants and were used as controls. Compared with young animals, a significant (P muscle cell apoptosis coupled with a decrease in gastrocnemius muscles weight (by 16.7%) and muscle fiber cross-sectional area, of both fast and slow fiber types, was noted in old mice. Importantly, such age-related changes were fully reversed by higher dose (1 cm) of testosterone treatment. Testosterone treatment effectively suppressed age-specific increases in oxidative stress, processed myostatin levels, activation of c-Jun NH(2)-terminal kinase, and cyclin-dependent kinase inhibitor p21 in aged muscles. Furthermore, it restored age-related decreases in glucose-6-phosphate dehydrogenase levels, phospho-Akt, and Notch signaling. These alterations were associated with satellite cell proliferation and differentiation. Collectively these results suggest involvement of multiple signal transduction pathways in sarcopenia. Testosterone reverses sarcopenia through stimulation of cellular metabolism and survival pathway together with inhibition of death pathway.

  8. Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin pathways.

    Science.gov (United States)

    Han, Yong-Seok; Lee, Jun Hee; Lee, Sang Hun

    2015-09-01

    Fucoidan, a sulfated polysaccharide, has a variety of biological activities, including anti-cancer, anti-angiogenic and anti-inflammatory effects. However, the underlying mechanisms of fucoidan as an anti‑cancer agent remain to be elucidated. The present study examined the anti‑cancer effect of fucoidan on HT‑29 human colon cancer cells. The cell growth of HT29 cells was significantly decreased following treatment with fucoidan (200 µg/ml). In addition, fucoidan inhibited the migration of HT‑29 cells by decreasing the expression levels of matrix metalloproteinase‑2 in a dose‑dependent manner (0‑200 µg/ml). The underlying mechanism of these inhibitory effects included the downregulation of phosphoinositide 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) by treatment with fucoidan. Furthermore, fucoidan increased the expression of cleaved caspase‑3 and decreased cancer sphere formation. The present study suggested that fucoidan exerts an anti‑cancer effect on HT‑29 human colon cancer cells by downregulating the PI3K‑Akt‑mTOR signaling pathway. Therefore, fucoidan may be a potential therapeutic reagent against the growth of human colon cancer cells.

  9. N-(4-bromophenethyl) Caffeamide Inhibits Melanogenesis by Regulating AKT/Glycogen Synthase Kinase 3 Beta/Microphthalmia-associated Transcription Factor and Tyrosinase-related Protein 1/Tyrosinase.

    Science.gov (United States)

    Kuo, Yueh-Hsiung; Chen, Chien-Chia; Lin, Ping; You, Ya-Jhen; Chiang, Hsiu-Mei

    2015-01-01

    Skin color is primarily produced by melanin, which is a crucial pigment that protects the skin from UV-induced damage and prevents carcinogenesis. However, accumulated melanin in the skin may cause hyperpigmentation and related disorders. Melanin synthesis comprises consecutive oxidative reactions, and tyrosinase is the enzyme that catalyzes the rate-limiting process of melanogenesis. In this study, tyrosinase-related protein 1 (TRP-1) and TRP-2 contributed to melanin formation. N-(4-bromophenethyl) caffeamide ((E)-N-(4-bromophenethyl)-3-(3,4-dihydroxyphenyl)acrylamide; K36H), a caffeic acid phenyl amide derivative, inhibited α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity in B16F0 cells. In addition, K36H reduced the protein expression of the phospho-cAMP response element binding protein (p-CREB), microphthalmia-associated transcription factor (MITF), tyrosinase, and TRP-1. Moreover, K36H promoted AKT and glycogen synthase kinase 3 beta (GSK3β) phosphorylation, thereby inhibiting MITF transcription activity. Thus, K36H attenuated α-MSH-induced cAMP pathways, contributing to hypopigmentation. The results of a safety assay revealed that K36H did not exhibit cytotoxicity or irritate the skin or eyes. According to these results, K36H may have the potential to be used as a whitening agent in the cosmetic and pharmaceutical industries.

  10. Phosphoinositide 3-kinase/Akt Pathway Mediates Fip1-like1-platelet-derived Growth Factor Receptor α-induced Cell Infiltration and Activation: Possible Molecular Mechanism for the Malignant Phenotype of Chronic Eosinophilic Leukemia

    Directory of Open Access Journals (Sweden)

    Bin Li

    2015-01-01

    Full Text Available The fip1-like1/platelet-derived growth factor receptor-α fusion gene (F/P is responsible for 14-60% cases of hypereosinophilia syndrome (HES, also known as F/P-positive chronic eosinophilic leukemia (F/P(+ CEL. The major pathogenesis of F/P(+ CEL is known to involve migration and activation of mast cells and eosinophils, leading to severe multi-organ dysfunction, but the mechanism was still unclear. Phosphoinositide 3-kinase (PI3K and serine-threonine protein kinase Akt have been reported to be targets of F/P in the F/P-promoted cell proliferation. They are extensively involved in the migration and adhesion of hematopoietic stem/progenitor cells, and also control cell invasion in some leukemias. The PI3K/Akt pathway is involved in eosinophil/neutrophil activation and infiltration; its possible role in regulating F/P induced cytotoxicity and upregulation of A4-integrin in eosinophils, and inducing eosinophil activation through controlling F/P-induced Nuclear factor-kB activity. Akt was recently shown to be stimulated by F/P, synergistically with stem cell factor, resulting in the induction of MCs migration and excessive activation. PI3K/Akt pathway is also a principal mediator of interleukin-5 (IL-5-induced signal transduction promoting eosinophil trafficking and degranulation, whereas IL-5 is a necessary cytokine for F/P-mediated CEL development. We, therefore, propose the hypothesis that the PI3K/Akt pathway might be vital downstream of F/P to induce target cell activation and tissue infiltration, resulting in the malignant phenotype seen in F/P(+ CEL.

  11. Alterations in microRNA expression profile in HCV-infected hepatoma cells: Involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Hisashi; Tatsumi, Tomohide; Hosui, Atsushi; Nawa, Takatoshi; Kodama, Takahiro; Shimizu, Satoshi; Hikita, Hayato; Hiramatsu, Naoki; Kanto, Tatsuya [Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita 565-0871 (Japan); Hayashi, Norio [Kansai Rosai Hospital, 3-1-69, Inabaso, Amagasaki 660-8511 (Japan); Takehara, Tetsuo, E-mail: takehara@gh.med.osaka-u.ac.jp [Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita 565-0871 (Japan)

    2011-08-19

    Highlights: {yields} HCV infection upregulated miR-192, -194, -215, downregulated miR-320, -491. {yields} Transfection of miR-192, -215, and -491 enhanced HCV replication. {yields} Transfection of miR-491 inhibited Akt phosphorylation. {yields} Akt inhibition could be responsible for augmentation of HCV replication by miR-491. -- Abstract: The aim of this study was to investigate the role of microRNA (miRNA) on hepatitis C virus (HCV) replication in hepatoma cells. Using miRNA array analysis, miR-192/miR-215, miR-194, miR-320, and miR-491 were identified as miRNAs whose expression levels were altered by HCV infection. Among them, miR-192/miR-215 and miR-491 were capable of enhancing replication of the HCV replicon as well as HCV itself. HCV IRES activity or cell proliferation was not increased by forced expression of miR-192/miR-215 or miR-491. Investigation of signaling pathways revealed that miR-491 specifically suppressed the phosphoinositol-3 (PI3) kinase/Akt pathway. Under inhibition of PI3 kinase by LY294002, the suppressive effect of miR-491 on HCV replication was abolished, indicating that suppression of HCV replication by miR-491 was dependent on the PI3 kinase/Akt pathway. miRNAs altered by HCV infection would then affect HCV replication, which implies a complicated mechanism for regulating HCV replication. HCV-induced miRNA may be involved in changes in cellular properties including hepatocarcinogenesis.

  12. Both mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinases (ERK) 1/2 and phosphatidylinositide-3-OH kinase (PI3K)/Akt pathways regulate activation of E-twenty-six (ETS)-like transcription factor 1 (Elk-1) in U138 glioblastoma cells.

    Science.gov (United States)

    Mut, Melike; Lule, Sevda; Demir, Ozlem; Kurnaz, Isil Aksan; Vural, Imran

    2012-02-01

    Epidermal growth factor (EGF) and its receptor (EGFR) have been shown to play a significant role in the pathogenesis of glioblastoma. In our study, the EGFR was stimulated with EGF in human U138 glioblastoma cells. We show that the activated mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinases (ERK) 1/2 pathway phosphorylated the E twenty-six (ETS)-like transcription factor 1 (Elk-1) mainly at serine 383 residue. Mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, UO126 and ERK inhibitor II, FR180204 blocked the Elk-1 phosphorylation and activation. The phosphatidylinositide-3-OH kinase (PI3K)/Akt pathway was also involved in the Elk-1 activation. Activation of the Elk-1 led to an increased survival and a proliferative response with the EGF stimulation in the U138 glioblastoma cells. Knocking-down the Elk-1 using an RNA interference technique caused a decrease in survival of the unstimulated U138 glioblastoma cells and also decreased the proliferative response to the EGF stimulation. The Elk-1 transcription factor was important for the survival and proliferation of U138 glioblastoma cells upon the stimulation of EGFR with EGF. The MAPK/ERK1/2 and PI3K/Akt pathways regulated this response via activation of the Elk-1 transcription factor. The Elk-1 may be one of the convergence points for pathways located downstream of EGFR in glioblastoma cells. Utilization of the Elk-1 as a therapeutic target may lead to a novel strategy in treatment of glioblastoma.

  13. Non-CDK-bound p27 (p27{sup NCDK}) is a marker for cell stress and is regulated through the Akt/PKB and AMPK-kinase pathways

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerklund, Mia A. [Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki (Finland); Vaahtomeri, Kari [Genome-Scale Biology Program and Institute of Biotechnology, 00014 University of Helsinki, Helsinki (Finland); Peltonen, Karita [Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki (Finland); Viollet, Benoit [Institut Cochin, Universite Paris Descartes, CNRS (UMR 8104), 75014 Paris (France); INSERM U567, 75014 Paris (France); Maekelae, Tomi P. [Genome-Scale Biology Program and Institute of Biotechnology, 00014 University of Helsinki, Helsinki (Finland); Band, Arja M. [Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki (Finland); Laiho, Marikki, E-mail: mlaiho1@jhmi.edu [Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki (Finland); Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD (United States)

    2010-03-10

    p27Kip1 (p27) tumour suppressor protein is regulated by multiple mechanisms including its turnover, localization and complex formation with its key targets, cyclin-dependent kinases (CDK) and cyclins. We have earlier shown that p27 exists in cells in a form that lacks cyclin/CDK interactions (hence non-CDK, p27{sup NCDK}) but the nature of p27{sup NCDK} has remained unresolved. Here we demonstrate that the epitope recognized by the p27{sup NCDK}-specific antibody resides in the p27 CDK-interaction domain and that p27{sup NCDK} is regulated by the balance of CDK inhibitors and cyclin-CDK complexes. We find that signalling by cellular growth promoting pathways, like phosphoinositol 3-kinase (PI3K) and specifically Akt/PKB kinase, inversely correlates with p27{sup NCDK} levels whereas total p27 levels are unaffected. p27{sup NCDK}, but not total p27, is increased by cellular perturbations such as hyperosmotic and metabolic stress and activation of AMP-activated protein kinase (AMPK). By using AMPK catalytic subunit proficient and deficient cells we further demonstrate that the AMPK pathway governs p27{sup NCDK} responses to metabolic stress and PI3K inhibition. These results indicate that p27{sup NCDK} is a sensitive marker for both cell stress and proliferation over and above p27 and is regulated by Akt/PKB and AMPK pathways.

  14. Sann-Joong-Kuey-Jian-Tang induces autophagy in HepG2 cells via regulation of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and p38 mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Chuang, Wan-Ling; Su, Chin-Cheng; Lin, Ping-Yi; Lin, Chi-Chen; Chen, Yao-Li

    2015-08-01

    Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional Chinese medicine, was previously reported to induce autophagy and inhibit the proliferation of the human HepG2 hepatocellular carcinoma cell line via an extrinsic pathway. In the present study, the effects of SJKJT-induced autophagy and the cytotoxic mechanisms mediating these effects were investigated in HepG2 cells. The cytotoxicity of SJKJT in the HepG2 cells was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results demonstrated that the half-maximal inhibitory concentration of SJKJT was 2.91 mg/ml at 24 h, 1.64 mg/ml at 48 h and 1.26 mg/ml at 72 h. The results of confocal fluorescence microscopy indicated that SJKJT resulted in the accumulation of green fluorescent protein-LC3 and vacuolation of the cytoplasm. Flow cytometric analysis revealed the accumulation of acidic vesicular organelles. Furthermore, western blot analysis, used to determine the expression levels of autophagy-associated proteins, demonstrated that the HepG2 cells treated with SJKJT exhibited LC3B-I/LC3B-II conversion, increased expression levels of Beclin, Atg-3 and Atg-5 and reduced expression levels of p62 and decreased signaling of the phosphoinositide-3 kinase/Akt/mammalian target of rapamycin and the p38 mitogen-activated protein kinase pathways. Taken together, these findings may assist in the development of novel chemotherapeutic agents for the treatment of malignant types of liver cancer.

  15. Fibroblast Growth Factor Receptor-2 Contributes to the Basic Fibroblast Growth Factor-Induced Neuronal Differentiation in Canine Bone Marrow Stromal Cells via Phosphoinositide 3-Kinase/Akt Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Rei Nakano

    Full Text Available Bone marrow stromal cells (BMSCs are considered as candidates for regenerative therapy and a useful model for studying neuronal differentiation. The role of basic fibroblast growth factor (bFGF in neuronal differentiation has been previously studied; however, the signaling pathway involved in this process remains poorly understood. In this study, we investigated the signaling pathway in the bFGF-induced neuronal differentiation of canine BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associated protein-2 (MAP2 and the neuron-like morphological change in canine BMSCs. In the presence of inhibitors of fibroblast growth factor receptors (FGFR, phosphatidylinositol 3-kinase (PI3K and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was confirmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentiation of canine BMSCs.

  16. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma.

    Science.gov (United States)

    Chang, Liang; Zhao, Dan; Liu, Hui-Bin; Wang, Qiu-Shi; Zhang, Ping; Li, Chen-Long; Du, Wen-Zhong; Wang, Hong-Jun; Liu, Xing; Zhang, Zhi-Ren; Jiang, Chuan-Lu

    2015-11-01

    Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N‑terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase‑2 (MMP‑2) and MMP‑9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP‑2 and ‑9. Furthermore, it was found that MMP‑2- and MMP‑9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH‑induced upregulation of MMP‑2 and ‑9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP‑2 and ‑9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway.

  17. Ginsenoside Re Protects Trimethyltin-Induced Neurotoxicity via Activation of IL-6-Mediated Phosphoinositol 3-Kinase/Akt Signaling in Mice.

    Science.gov (United States)

    Tu, Thu-Hien Thi; Sharma, Naveen; Shin, Eun-Joo; Tran, Hai-Quyen; Lee, Yu Jeung; Jeong, Ji Hoon; Jeong, Jung Hwan; Nah, Seung Yeol; Tran, Hoang-Yen Phi; Byun, Jae Kyung; Ko, Sung Kwon; Kim, Hyoung-Chun

    2017-09-07

    Ginseng (Panax ginseng), an herbal medicine, has been used to prevent neurodegenerative disorders. Ginsenosides (e.g., Re, Rb1, or Rg1) were obtained from Korean mountain cultivated ginseng. The anticonvulsant activity of ginsenoside Re (20 mg/kg/day × 3) against trimethyltin (TMT) insult was the most pronounced out of ginsenosides (e.g., Re, Rb1, and Rg1). Re itself did not significantly alter tumor necrosis factor-α (TNF-α), interferon-ϒ (IFN-ϒ), and interleukin-1β (IL-1β) expression, however, it significantly increases the interleukin-6 (IL-6) expression. In addition, Re attenuated the TMT-induced decreases in IL-6 protein level. Therefore, IL-6 knockout (-/-) mice were employed to investigate whether Re requires IL-6-dependent neuroprotective activity against TMT toxicity. Re significantly attenuated TMT-induced lipid peroxidation, protein peroxidation, and reactive oxygen species in the hippocampus. Re-mediated antioxidant effects were more pronounced in IL-6 (-/-) mice than in WT mice. Consistently, TMT-induced increase in c-Fos-immunoreactivity (c-Fos-IR), TUNEL-positive cells, and nuclear chromatin clumping in the dentate gyrus of the hippocampus were significantly attenuated by Re. Furthermore, Re attenuated TMT-induced proapoptotic changes. Protective potentials by Re were comparable to those by recombinant IL-6 protein (rIL-6) against TMT-insult in IL-6 (-/-) mice. Moreover, treatment with a phosphoinositol 3-kinase (PI3K) inhibitor, LY294002 (1.6 µg, i.c.v) counteracted the protective potential mediated by Re or rIL-6 against TMT insult. The results suggest that ginsenoside Re requires IL-6-dependent PI3K/Akt signaling for its protective potential against TMT-induced neurotoxicity.

  18. Upstream and Downstream Co-inhibition of Mitogen-Activated Protein Kinase and PI3K/Akt/mTOR Pathways in Pancreatic Ductal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Matthew H. Wong

    2016-07-01

    Full Text Available BACKGROUND: Extensive cross talk exists between PI3K/Akt/mTOR and mitogen-activated protein kinase (MAPK pathways, and both are upregulated in pancreatic ductal adenocarcinoma (PDAC. Our previous study suggested that epidermal growth factor receptor inhibitor erlotinib which acts upstream of these pathways acts synergistically with PI3K inhibitors in PDAC. Horizontal combined blockade upstream and downstream of these two pathways is therefore explored. METHODS: Erlotinib paired with PI3K inhibitor (BYL719 was tested against erlotinib plus dual PI3K/mTOR inhibitor BEZ-235, and MEK inhibitor (PD98059 plus BEZ235, on five primary PDAC cell lines and on two pairs of parent and erlotinib-resistant (ER cell lines. A range of in vitro assays including cell proliferation, Western blotting, migration, clonogenic, cell cycle, and apopotic assays was used to test for the efficacy of combined blockade. RESULTS: Dual downstream blockade of the MAPK and PAM pathways was more effective in attenuating downstream molecular signals. Synergy was demonstrated for erlotinib and BEZ235 and for PD-98059 and BEZ-235. This resulted in a trend of increased growth cell cycle arrest, apoptosis, cell proliferation, and colony and migration suppression. This combination showed more efficacy in cell lines with acquired resistance to erlotinib. CONCLUSIONS: The additional mTOR blockade provided by BEZ235 in combined blockade resulted in increased anticancer effect. The hypersensitivity of ER cell lines to additional mTOR blockade suggested PAM pathway oncogenic dependence via mTOR. Dual downstream combined blockade of MAPK and PAM pathways with MEK and PI3K/mTOR inhibitor appeared most effective and represents an attractive therapeutic strategy against pancreatic cancer and its associated drug resistance.

  19. The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2

    Science.gov (United States)

    Sklodowski, Kamil; Riedelsberger, Janin; Raddatz, Natalia; Riadi, Gonzalo; Caballero, Julio; Chérel, Isabelle; Schulze, Waltraud; Graf, Alexander; Dreyer, Ingo

    2017-03-01

    The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H+-ATPase-energized K+ uptake. Moreover, through reversible post-translational modifications it can also function as an open, K+-selective channel, which taps a ‘potassium battery’, providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.

  20. Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    Ying JIN; En-zhi YAN; Ying FAN; Zhi-hong ZONG; Zhi-min QI; Zhi LI

    2005-01-01

    Aim: To observe whether an amyloid β (Aβ)-induced increase in interleukin (IL)1 β was accompanied by an increase in the p38 mitogen-activated protein kinase (MAPK) pathway and a decrease in the cell survival pathway, and whether sodium ferulate (SF) treatment was effective in preventing these Aβ-induced changes.Methods: Rats were injected intracerebroventricularly with Aβ25-35. Seven days after injection, immunohistochemical techniques for glial fibrillary acidic protein (GFAP) were used to determine the astrocyte infiltration and activation in hippocampal CA1 areas. The expression of IL-1 β, extracellular signal-regulated kinase (ERK), p38 MAPK, Akt/protein kinase B (PKB), Fas ligand and caspase-3 were determined by Western blotting. The caspase-3 activity was measured by cleavage of the caspase-3 substrate (Ac-DEVD-pNA). Reverse transcriptionpolymerase chain reaction was used to analyze the changes in IL- 1 βmRNA levels.Results:Intracerebroventricular injection of Aβ25-35 elicited astrocyte activation and infiltration and caused a strong inflammatory reaction characterized by increased IL-1 β production and elevated levels of IL-1 β mRNA. Increased IL-1 β synthesis was accompanied by increased activation of p38 MAPK and downregulation of phospho-ERK and phospho-Akt/PKB in hippocampal CA regions prepared from Aβ-treated rats, leading to cell death as assessed by activation of caspase-3. SF significantly prevented Aβ-induced increases in IL-1 β and p38 MAPK activation and also Aβ-induced changes in phospho-ERK and phospho-Akt/PKB expression levels. Conclusion: SF prevents Aβ-induced neurotoxicity through suppression of p38 MAPK activation and upregulation of phospho-ERK and phospho-Akt/PKB expression.survival signals ERK and Akt/PKB may contribute to the demise of the cells. These are significantly abrogated by SF treatment, which also attenuates Aβ-induced increase in caspase-3 activity and FasL expression.

  1. Suppression of Heregulin-β1/HER2-Modulated Invasive and Aggressive Phenotype of Breast Carcinoma by Pterostilbene via Inhibition of Matrix Metalloproteinase-9, p38 Kinase Cascade and Akt Activation

    Directory of Open Access Journals (Sweden)

    Min-Hsiung Pan

    2011-01-01

    Full Text Available Invasive breast cancer is the major cause of death among females and its incidence is closely linked to HER2 (human epidermal growth factor receptor 2 overexpression. Pterostilbene, a natural analog of resveratrol, exerts its cancer chemopreventive activity similar to resveratrol by inhibiting cancer cell proliferation and inducing apoptosis. However, the anti-invasive effect of pterostilbene on HER2-bearing breast cancer has not been evaluated. Here, we used heregulin-β1 (HRG-β1, a ligand for HER3, to transactivate HER2 signaling. We found that pterostilbene was able to suppress HRG-β1-mediated cell invasion, motility and cell transformation of MCF-7 human breast carcinoma through down-regulation of matrix metalloproteinase-9 (MMP-9 activity and growth inhibition. In parallel, pterostilbene also inhibited protein and mRNA expression of MMP-9 driven by HRG-β1, suggesting that pterostilbene decreased HRG-β1-mediated MMP-9 induction via transcriptional regulation. Examining the signaling pathways responsible for HRG-β1-associated MMP-9 induction and growth inhibition, we observed that pterostilbene, as well as SB203580 (p38 kinase inhibitor, can abolish the phosphorylation of p38 mitogen-activated protein kinase (p38 kinase, a downstream HRG-β1-responsive kinase responsible for MMP-9 induction. In addition, HRG-β1-driven Akt phosphorylation required for cell proliferation was also suppressed by pterostilbene. Taken together, our present results suggest that pterostilbene may serve as a chemopreventive agent to inhibit HRG-β1/HER2-mediated aggressive and invasive phenotype of breast carcinoma through down-regulation of MMP-9, p38 kinase and Akt activation.

  2. Essential Roles of mTOR/Akt Pathway in Aurora-A Cell Transformation

    Directory of Open Access Journals (Sweden)

    Makoto Taga, Eiji Hirooka, Toru Ouchi

    2009-01-01

    Full Text Available We have recently demonstrated that Aurora-A kinase is a potential oncogene to develop mammary gland tumors in mice, when expressed under MMTV promoter. These tumors contain phosphorylated forms of Akt and mTOR, suggesting that Akt-mTOR pathway is involved in transformed phenotype induced by Aurora-A. In the present studies, we discovered that stable cell lines expressing Aurora-A contain phosphorylation of Akt Ser473 after prolonged passages of cell culture, not in cells of the early period of cell culture. Levels of PTEN tumor suppressor are significantly reduced in these late passage cells at least in part due to increased poly ubiquitination of the protein. Akt-activated Aurora-A cells formed larger colonies in soft agar and are resistant to UV-induced apoptosis. Aurora-A inhibitor, VX-680, can cause cell death of Aurora-A cells in which Akt is not activated. siRNA-mediated depletion of mTOR in those cells resulted in decreased phosphorylation of Akt Ser473, suggesting that TORC2 complex phosphorylates Akt in Aurora-A cells. Treatment of late-passage Aurora-A cells with mTOR inhibitor reduced colony formation in soft agar. These results strongly suggest that commitment of cell transformation by Aurora-A is determined by at least co-activation of Akt/mTOR pathway.

  3. Differential aetiology and impact of phosphoinositide 3-kinase (PI3K) and Akt signalling in skeletal muscle on in vivo insulin action

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Poulsen, P.; Richter, Erik

    2010-01-01

    ' modifiers of insulin action, including genetics, age, sex, obesity and [Formula: see text], do not seem to mediate their most central effects on whole-body insulin sensitivity through modulation of proximal insulin signalling in skeletal muscle. We also demonstrated an association between Akt activity...... and in vivo insulin sensitivity, suggesting a role of Akt in control of in vivo insulin resistance and potentially in type 2 diabetes....

  4. Neural stem cell transplantation in the hippocampus of rats with cerebral ischemia/reperfusion injury Activation of the phosphatidylinositol-3 kinase/Akt pathway and increased brain-derived neurotrophic factor expression

    Institute of Scientific and Technical Information of China (English)

    Yu Zhao; Shengtao Yao; Shijun Wang

    2010-01-01

    The phosphatidylinositol-3 kinase (PI3K)/Akt pathway and brain-derived neurotrophic factor (BDNF) are involved in neurological functional recovery following cerebral ischemia. Therefore, we hypothesized that mechanisms of neuroprotection by transplantation of neural stem cells (NSCs) on cerebral ischemia contributed to activation of the PI3K/Akt pathway and enhanced BDNF expression. In the present study, Wortmannin (a specific, covalent inhibitor of PI3K) was administered adjacent to ischemic hippocampus by stereotactic transplantation to further confirm the neuroprotective mechanisms of NSC transplantation following cerebral ischemia. Results showed that focal infarct volume was significantly smaller in the NSCs group, but the neurological behavior score in the NSC group was significantly greater than the middle cerebral artery occlusion model group, Wortmannin treatment group, and NSCs + Wortmannin treatment group. Protein expression of RDNF was significantly greater in the NSC group compared with the Wortmannin treatment group and NSCs + Wortmannin treatment group. These results suggest that the neuroprotective role of NSC transplantation in the cerebral ischemia activated the PI3K/Akt pathway and upregulated BDNF expression in lesioned brains.

  5. IL-4 protects the B-cell lymphoma cell line CH31 from anti-IgM-induced growth arrest and apoptosis:contribution of the PI-3' kinase/AKT pathway

    Institute of Scientific and Technical Information of China (English)

    Gregory B Carey; Elena Semenova; Xiulan Qi; Achsah D Keegan

    2007-01-01

    Interleukin-4(IL-4)promotes lymphocyte survival and protects primary lymphomas from apoptosis.Previous studies reported differential requirements for the signal transducer and activator of transcription 6(STAT6)and IRS2/phosphatidylinositol 3 kinase(PI-3K)signaling pathways in mediating the IL-4-induced protection from Fas-mediated apoptosis.In this study,we characterized IL-4-activated signals that suppress anti-IgM-mediated apoptosis and growth arrest of CH31,a model B-cell lymphoma line.In CH31,anti-IgM treatment leads to the loss of mitochondrial membrane potential,phospho-Akt,phospho-CDK2,and c-myc protein.These losses are followed by massive induction ofp27Kip1 protein expression,cell cycle arrest,and apoptosis.Strikingly,IL-4 treatment prevented or reversed these changes.Furthermore,IL-4 suppressed the activation of caspases 9 and 3,and,in contrast to previous reports,induced the phosphorylation(deactivation)of BAD.IL-4 treatment also induced expression of BclxL,a STAT6-dependent gene.Pharmacologic inhibitors and dominant inhibitory forms of PI-3K andAkt abrogated the anti-apoptotic function of IL-4.These results suggest that the IL-4 receptor activates several signaling pathways,with the Akt pathway playing a major role in suppression of the apoptotic program activated by anti-IgM.

  6. Signaling networks associated with AKT activation in non-small cell lung cancer (NSCLC: new insights on the role of phosphatydil-inositol-3 kinase.

    Directory of Open Access Journals (Sweden)

    Marianna Scrima

    Full Text Available Aberrant activation of PI3K/AKT signalling represents one of the most common molecular alterations in lung cancer, though the relative contribution of the single components of the cascade to the NSCLC development is still poorly defined. In this manuscript we have investigated the relationship between expression and genetic alterations of the components of the PI3K/AKT pathway [KRAS, the catalytic subunit of PI3K (p110α, PTEN, AKT1 and AKT2] and the activation of AKT in 107 surgically resected NSCLCs and have analyzed the existing relationships with clinico-pathologic features. Expression analysis was performed by immunohistochemistry on Tissue Micro Arrays (TMA; mutation analysis was performed by DNA sequencing; copy number variation was determined by FISH. We report that activation of PI3K/AKT pathway in Italian NSCLC patients is associated with high grade (G3-G4 compared with G1-G2; n = 83; p<0.05 and more advanced disease (TNM stage III vs. stages I and II; n = 26; p<0.05. In addition, we found that PTEN loss (41/104, 39% and the overexpression of p110α (27/92, 29% represent the most frequent aberration observed in NSCLCs. Less frequent molecular lesions comprised the overexpression of AKT2 (18/83, 22% or AKT1 (17/96, 18%, and KRAS mutation (7/63, 11%. Our results indicate that, among all genes, only p110α overexpression was significantly associated to AKT activation in NSCLCs (p = 0.02. Manipulation of p110α expression in lung cancer cells carrying an active PI3K allele (NCI-H460 efficiently reduced proliferation of NSCLC cells in vitro and tumour growth in vivo. Finally, RNA profiling of lung epithelial cells (BEAS-2B expressing a mutant allele of PIK3 (E545K identified a network of transcription factors such as MYC, FOS and HMGA1, not previously recognised to be associated with aberrant PI3K signalling in lung cancer.

  7. Transcriptional and post-transcriptional control of DNA methyltransferase 3B is regulated by phosphatidylinositol 3 kinase/Akt pathway in human hepatocellular carcinoma cell lines.

    Science.gov (United States)

    Mei, Chuanzhong; Sun, Lidong; Liu, Yonglei; Yang, Yong; Cai, Xiumei; Liu, Mingzhu; Yao, Wantong; Wang, Can; Li, Xin; Wang, Liying; Li, Zengxia; Shi, Yinghong; Qiu, Shuangjian; Fan, Jia; Zha, Xiliang

    2010-09-01

    DNA methyltransferases (DNMTs) are essential for maintenance of aberrant methylation in cancer cells and play important roles in the development of cancers. Unregulated activation of PI3K/Akt pathway is a prominent feature of many human cancers including human hepatocellular carcinoma (HCC). In present study, we found that DNMT3B mRNA and protein levels were decreased in a dose- and time-dependent manner in HCC cell lines with LY294002 treatment. However, we detected that LY294002 treatment did not induce increase of the degradation of DNMT3B protein using protein decay assay. Moreover we found that Akt induced alteration of the expression of DNMT3B in cells transfected with myristylated variants of Akt2 or cells transfected with small interfering RNA respectively. Based on DNMT3B promoter dual-luciferase reporter assay, we found PI3K pathway regulates DNMT3B expression at transcriptional level. And DNMT3B mRNA decay analysis suggested that down-regulation of DNMT3B by LY294002 is also post-transcriptional control. Furthermore, we demonstrated that LY294002 down-regulated HuR expression in a time-dependent manner in BEL-7404. In summary, we have, for the first time, demonstrate that PI3K/Akt pathway regulates the expression of DNMT3B at transcriptional and post-transcriptional levels, which is particularly important to understand the effects of PI3K/Akt and DNMT3B on hepatocarcinogenesis.

  8. Platelet-Rich Plasma Greatly Potentiates Insulin-Induced Adipogenic Differentiation of Human Adipose-Derived Stem Cells Through a Serine/Threonine Kinase Akt-Dependent Mechanism and Promotes Clinical Fat Graft Maintenance

    Science.gov (United States)

    Cervelli, Valerio; Scioli, Maria G.; Gentile, Pietro; Doldo, Elena; Bonanno, Elena; Spagnoli, Luigi G.

    2012-01-01

    The potential plasticity and therapeutic utility in tissue regeneration of human adipose-derived stem cells (ASCs) isolated from adult adipose tissue have recently been highlighted. The use of autologous platelet-rich plasma (PRP) represents an alternative strategy in regenerative medicine for the local release of multiple endogenous growth factors. Here we investigated the signaling pathways and effects of PRP and human recombinant insulin on proliferation and adipogenic differentiation of ASCs in vitro. PRP stimulated proliferation (EC50 = 15.3 ± 1.3% vol/vol), whereas insulin's effect was the opposite (IC50 = 3.0 ± 0.5 μM). Although PRP alone did not increase adipogenesis, in association with insulin it prevented ASC proliferative arrest, greatly enhanced intracytoplasmic lipid accumulation, strongly increased serine/threonine kinase Akt phosphorylation and mouse monoclonal anti-sterol regulatory element binding protein-1 accumulation, and downregulated Erk-1 activity; adipogenic effects were markedly prevented by the Akt inhibitor wortmannin. PRP with insulin synergistically upregulated fibroblast growth factor receptor (FGFR) and downregulated epidermal growth factor receptor (ErbB) expression; moreover, PRP in association prevented insulin-induced insulin-like growth factor-1 receptor and insulin receptor downregulation. The inhibition of FGFR-1, epidermal growth factor receptor (EGFR), and epidermal growth factor receptor-2 (ErbB2) activity reduced ASC proliferation, but only that of FGFR-1 reduced adipogenesis and Akt phosphorylation, whereas the ErbB2 inhibition effects were the opposite. However, EGFR activity was needed for ErbB2-mediated inhibition of ASC adipogenesis. Clinically, the injection of insulin further ameliorated patients' 1-year PRP-induced fat graft volume maintenance and contour restoring. Our results ascertain that PRP in association with insulin greatly potentiates adipogenesis in human ASCs through a FGFR-1 and ErbB2-regulated Akt

  9. Synthesis and evaluation of indazole based analog sensitive Akt inhibitors.

    Science.gov (United States)

    Okuzumi, Tatsuya; Ducker, Gregory S; Zhang, Chao; Aizenstein, Brian; Hoffman, Randy; Shokat, Kevan M

    2010-08-01

    The kinase Akt is a key signaling node in regulating cellular growth and survival. It is implicated in cancer by mutation and its role in the downstream transmission of aberrant PI3K signaling. For these reasons, Akt has become an increasingly important target of drug development efforts and several inhibitors are now reaching clinical trials. Paradoxically it has been observed that active site kinase inhibitors of Akt lead to hyperphosphorylation of Akt itself. To investigate this phenomenon we here describe the application of a chemical genetics strategy that replaces native Akt with a mutant version containing an active site substitution that allows for the binding of an engineered inhibitor. This analog sensitive strategy allows for the selective inhibition of a single kinase. In order to create the inhibitor selective for the analog sensitive kinase, a diversity of synthetic approaches was required, finally resulting in the compound PrINZ, a 7-substituted version of the Abbott Labs Akt inhibitor A-443654.

  10. Dual phosphorylation of Btk by Akt/protein kinase b provides docking for 14-3-3ζ, regulates shuttling, and attenuates both tonic and induced signaling in B cells.

    Science.gov (United States)

    Mohammad, Dara K; Nore, Beston F; Hussain, Alamdar; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2013-08-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation.

  11. Recent development of anticancer therapeutics targeting Akt.

    Science.gov (United States)

    Morrow, John K; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J; Mash, Eugene A; Powis, Garth; Zhang, Shuxing

    2011-01-01

    The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellular translocation, a kinase domain with serine/threonine specificity, and a C-terminal extension domain. These well defined regions have been targeted, and various approaches, including in silico methods, have been implemented to develop Akt inhibitors. In spite of unique techniques and a prolific body of knowledge surrounding Akt, no targeted Akt therapeutics have reached the market yet. Here we will highlight successes and challenges to date on the development of anticancer agents modulating the Akt pathway in recent patents as well as discuss the methods employed for this task. Special attention will be given to patents with focus on those discoveries using computer-aided drug design approaches.

  12. Epicatechin induces NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells.

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Haegeman, Guy; Goya, Luis; Bravo, Laura; Ramos, Sonia

    2010-01-01

    The dietary flavonoid epicatechin has been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin on the activity of the main transcription factors (NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor (Nrf2)) related to antioxidant defence and survival and proliferation pathways in HepG2 cells. Treatment of cells with 10 microm-epicatechin induced the NF-kappaB pathway in a time-dependent manner characterised by increased levels of IkappaB kinase (IKK) and phosphorylated inhibitor of kappaB subunit-alpha (p-IkappaBalpha) and proteolytic degradation of IkappaB, which was consistent with an up-regulation of the NF-kappaB-binding activity. Time-dependent activation of the AP-1 pathway, in concert with enhanced c-Jun nuclear levels and induction of Nrf2 translocation and phosphorylation were also demonstrated. Additionally, epicatechin-induced NF-kappaB and Nrf2 were connected to reactive oxygen species intracellular levels and to the activation of cell survival and proliferation pathways, being phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) associated to Nrf2 modulation and ERK to NF-kappaB induction. These data suggest that the epicatechin-induced survival effect occurs by the induction of redox-sensitive transcription factors through a tight regulation of survival and proliferation pathways.

  13. Pseudomonas aeruginosa pyocyanin activates NRF2-ARE-mediated transcriptional response via the ROS-EGFR-PI3K-AKT/MEK-ERK MAP kinase signaling in pulmonary epithelial cells.

    Science.gov (United States)

    Xu, Ying; Duan, Chaohui; Kuang, Zhizhou; Hao, Yonghua; Jeffries, Jayme L; Lau, Gee W

    2013-01-01

    The redox-active pyocyanin (PCN) secreted by the respiratory pathogen Pseudomonas aeruginosa generates reactive oxygen species (ROS) and causes oxidative stress to pulmonary epithelial cells. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) confers protection against ROS-mediated cell death by inducing the expression of detoxifying enzymes and proteins via its binding to the cis-acting antioxidant response element (ARE). However, a clear relationship between NRF2 and PCN-mediated oxidative stress has not been established experimentally. In this study, we investigated the induction of NRF2-ARE response by PCN in the pulmonary epithelial cells. We analyzed the effect of PCN on NRF2 expression and nuclear translocation in cultured human airway epithelial cells, and in a mouse model of chronic PCN exposure. NRF2-dependent transcription of antioxidative enzymes was also assessed. Furthermore, we used inhibitors to examine the involvement of EGFR and its downstream signaling components that mediate NRF2-ARE-activation in response to PCN. PCN enhances the nuclear NRF2 accumulation and activates the transcription of ARE-mediated antioxidant genes. Furthermore, PCN activates NRF2 by inducing the EGFR-phosphoinositide-3-kinase (PI3K) signaling pathway and its main downstream effectors, AKT and MEK1/2-ERK1/2 MAP kinases. Inhibition of the EGFR-PI3K signaling markedly attenuates PCN-stimulated NRF2 accumulation in the nucleus. We demonstrate for the first time that PCN-mediated oxidative stress activates the EGFR-PI3K-AKT/MEK1/2-ERK1/2 MAP kinase signaling pathway, leading to nuclear NRF2 translocation and ARE responsiveness in pulmonary epithelial cells.

  14. Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel

    Energy Technology Data Exchange (ETDEWEB)

    Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali; Dutta, Anindita; Siddique, Shabana; Ray, Manas Ranjan, E-mail: manasrray@rediffmail.com

    2012-02-15

    The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34 years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt{sup ser473} and p-Akt{sup thr308}) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2–5 times more particulate pollutants (PM{sub 10} and PM{sub 2.5}), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway. -- Highlights: ► Carcinogenesis in airway cells was examined in biomass and LPG using women. ► Metaplasia and dysplasia of epithelial cells were more prevalent in biomass users. ► Change in airway cytology was associated with oxidative stress and Akt activation. ► Biomass users had greater exposure to respirable PM, B(a)P and benzene. ► Cooking with biomass

  15. Development of a new model system to dissect isoform specific Akt signalling in adipocytes

    Science.gov (United States)

    Kajno, Esi; McGraw, Timothy E.; Gonzalez, Eva

    2015-01-01

    Protein kinase B (Akt) kinases are critical signal transducers mediating insulin action. Genetic studies revealed that Akt1 and Akt2 signalling differentially contribute to sustain lipid and glucose homoeostasis; however Akt isoform-specific effectors remain elusive due to the lack of a suitable model system to mechanistically interrogate Akt isoform-specific signalling. To overcome those technical limitations we developed a novel model system that provides acute and specific control of signalling by Akt isoforms. We generated mutants of Akt1 and Akt2 resistant to the allosteric Akt inhibitor MK-2206. We then developed adipocyte cell lines, in which endogenous Akt1 or Akt2 has been replaced by their corresponding drug-resistant Akt mutant. Treatment of those cells with MK-2206 allowed for acute and specific control of either Akt1 or Akt2 function. Our data showed that Akt1W80A and Akt2W80A mutants are resistant to MK-2206, dynamically regulated by insulin and able to signal to Akt downstream effectors. Analyses of insulin action in this cellular system showed that Akt1 and Akt2 are both able to mediate insulin regulation of the transcription factor forkhead box O1 (FoxO1) and the glucose transporter 4 (GLUT4), revealing a redundant role for these Akt kinases in the control of glucose transport into fat cells. In contrast, Akt1 signalling is uniquely required for adipogenesis, by controlling the mitotic clonal expansion (MCE) of pre-adipocytes that precedes white adipose cell differentiation. Our data provide new insights into the role of Akt kinases in glucose transport and adipogenesis and support our model system as a valuable tool for the biochemical characterization of signalling by specific Akt isoforms. PMID:25856301

  16. Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel.

    Science.gov (United States)

    Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali; Dutta, Anindita; Siddique, Shabana; Ray, Manas Ranjan

    2012-02-15

    The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt(ser473) and p-Akt(thr308)) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2-5 times more particulate pollutants (PM(10) and PM(2.5)), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway.

  17. Pharmacological Inhibition of Protein Kinase G1 Enhances Bone Formation by Human Skeletal Stem Cells Through Activation of RhoA-Akt Signaling

    DEFF Research Database (Denmark)

    Jafari, Abbas; Siersbæk, Majken; Chen, Li;

    2015-01-01

    for several malignant and nonmalignant conditions. We screened a library of kinase inhibitors to identify small molecules that enhance bone formation by human skeletal (stromal or mesenchymal) stem cells (hMSC). We identified H-8 (known to inhibit protein kinases A, C, and G) as a potent enhancer of ex vivo......Development of novel approaches to enhance bone regeneration is needed for efficient treatment of bone defects. Protein kinases play a key role in regulation of intracellular signal transduction pathways, and pharmacological targeting of protein kinases has led to development of novel treatments...

  18. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    Science.gov (United States)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  19. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    Science.gov (United States)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  20. Growth-Factor-Driven Rescue to Receptor Tyrosine Kinase (RTK) Inhibitors through Akt and Erk Phosphorylation in Pediatric Low Grade Astrocytoma and Ependymoma

    NARCIS (Netherlands)

    Sie, Mariska; den Dunnen, Wilfred F. A.; Lourens, Harm Jan; Meeuwsen-de Boer, Tiny G. J.; Scherpen, Frank J. G.; Zomerman, Walderik W.; Kampen, Kim R.; Hoving, Eelco W.; de Bont, Eveline S. J. M.

    2015-01-01

    Up to now, several clinical studies have been started investigating the relevance of receptor tyrosine kinase (RTK) inhibitors upon progression free survival in various pediatric brain tumors. However, single targeted kinase inhibition failed, possibly due to tumor resistance mechanisms. The present

  1. Different muscarinic receptor subtypes modulate proliferation of primary human detrusor smooth muscle cells via Akt/PI3K and map kinases.

    Science.gov (United States)

    Arrighi, Nicola; Bodei, Serena; Zani, Danilo; Michel, Martin C; Simeone, Claudio; Cosciani Cunico, Sergio; Spano, Pierfranco; Sigala, Sandra

    2013-08-01

    While acetylcholine (ACh) and muscarinic receptors in the bladder are mainly known for their role in the regulation of smooth muscle contractility, in other tissues they are involved in tissue remodelling and promote cell growth and proliferation. In the present study we have used primary cultures of human detrusor smooth muscle cells (HDSMCs), in order to investigate the role of muscarinic receptors in HDSMC proliferation. Samples were obtained as discarded tissue from men >65 years undergoing radical cystectomy for bladder cancer and cut in pieces that were either immediately frozen or placed in culture medium for the cell culture establishment. HDSMCs were isolated from samples, propagated and maintained in culture. [(3)H]-QNB radioligand binding on biopsies revealed the presence of muscarinic receptors, with a Kd of 0.10±0.02nM and a Bmax of 72.8±0.1fmol/mg protein. The relative expression of muscarinic receptor subtypes, based on Q-RT-PCR, was similar in biopsies and HDSMC with a rank order of M2≥M3>M1>M4>M5. The cholinergic agonist carbachol (CCh, 1-100μM) concentration-dependently increased [(3)H]-thymidine incorporation (up to 46±4%). This was concentration-dependently inhibited by the general muscarinic receptor antagonist atropine and by subtype-preferring antagonists with an order of potency of darifenacin >4-DAMP>AF-DX 116. The CCh-induced cell proliferation was blocked by selective PI-3 kinase and ERK activation inhibitors, strongly suggesting that these intracellular pathways mediate, at least in part, the muscarinic receptor-mediated cell proliferation. This work shows that M2 and M3 receptors can mediate not only HDSM contraction but also proliferation; they may also contribute bladder remodelling including detrusor hypertrophy.

  2. The investigational Aurora kinase A inhibitor alisertib (MLN8237 induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li JP

    2015-03-01

    /M phase in MCF7 and MDA-MB-231 cells which was accompanied by the downregulation of cyclin-dependent kinase (CDK1/cell division cycle (CDC 2, CDK2, and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53, suggesting that ALS induces G2/M arrest through modulation of p53/p21/CDC2/cyclin B1 pathways. ALS induced mitochondria-mediated apoptosis in MCF7 and MDA-MB-231 cells; ALS significantly decreased the expression of B-cell lymphoma 2 (Bcl-2, but increased the expression of B-cell lymphoma 2-associated X protein (Bax and p53-upregulated modulator of apoptosis (PUMA, and increased the expression of cleaved caspases 3 and 9. ALS significantly increased the expression level of membrane-bound microtubule-associated protein 1 light chain 3 (LC3-II and beclin 1 and induced inhibition of phosphatidylinositol 3-kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR and p38 mitogen-activated protein kinase (MAPK pathways in MCF7 and MDA-MB-231 cells as indicated by their altered phosphorylation, contributing to the pro-autophagic activities of ALS. Furthermore, treatment with wortmannin markedly downregulated ALS-induced p38 MAPK activation and LC3 conversion. In addition, knockdown of the p38 MAPK gene by ribonucleic acid interference upregulated Akt activation and resulted in LC3-II accumulation. These findings indicate that ALS promotes cellular apoptosis and autophagy in breast cancer cells via modulation of p38 MAPK/Akt/ mTOR pathways. Further studies are warranted to further explore the molecular targets of ALS in the treatment of breast cancer.Keywords: ALS, breast cancer, cell cycle, apoptosis, autophagy, p38 MAPK

  3. Polyphyllin G induce apoptosis and autophagy in human nasopharyngeal cancer cells by modulation of AKT and mitogen-activated protein kinase pathways in vitro and in vivo.

    Science.gov (United States)

    Chen, Jui-Chieh; Hsieh, Ming-Ju; Chen, Chih-Jung; Lin, Jen-Tsun; Lo, Yu-Sheng; Chuang, Yi-Ching; Chien, Su-Yu; Chen, Mu-Kuan

    2016-10-25

    Polyphyllin G (also call polyphyllin VII), extract from rhizomes of Paris yunnanensis Franch, has been demonstrated to have strong anticancer activities in a wide variety of human cancer cell lines. Previous studies found that Polyphyllin G induced apoptotic cell death in human hepatoblastoma cancer and lung cancer cells. However, the underlying mechanisms of autophagy in human nasopharyngeal carcinoma (NPC) remain unclear. In this study, Polyphyllin G can potently induced apoptosis dependent on the activations of caspase-8, -3, and -9 and the changes of Bcl-2, Bcl-xL and Bax protein expression in different human NPC cell lines (HONE-1 and NPC-039). The amount of both LC3-II and Beclin-1 was intriguingly increased suggest that autophagy was induced in Polyphyllin G-treated NPC cells. To further clarify whether Polyphyllin G-induced apoptosis and autophagy depended on AKT/ERK/JNK/p38 MAPK signaling pathways, cells were combined treated with AKT inhibitor (LY294002), ERK1/2 inhibitor (U0126), p38 MAPK inhibitor (SB203580), or JNK inhibitor (SP600125). These results demonstrated that Polyphyllin G induced apoptosis in NPC cells through activation of ERK, while AKT, p38 MAPK and JNK were responsible for Polyphyllin G-induced autophagy. Finally, an administration of Polyphyllin G effectively suppressed the tumor growth in the NPC carcinoma xenograft model in vivo. In conclusion, our results reveal that Polyphyllin G inhibits cell viability and induces apoptosis and autophagy in NPC cancer cells, suggesting that Polyphyllin G is an attractive candidate for tumor therapies. Polyphyllin G may promise candidate for development of antitumor drugs targeting nasopharyngeal carcinoma.

  4. Acidic Fibroblast Growth Factor Promotes Endothelial Progenitor Cells Function via Akt/FOXO3a Pathway.

    Directory of Open Access Journals (Sweden)

    Liya Huang

    Full Text Available Acidic fibroblast growth factor (FGF1 has been suggested to enhance the functional activities of endothelial progenitor cells (EPCs. The Forkhead homeobox type O transcription factors (FOXOs, a key substrate of the survival kinase Akt, play important roles in regulation of various cellular processes. We previously have shown that FOXO3a is the main subtype of FOXOs expressed in EPCs. Here, we aim to determine whether FGF1 promotes EPC function through Akt/FOXO3a pathway. Human peripheral blood derived EPCs were transduced with adenoviral vectors either expressing a non-phosphorylable, constitutively active triple mutant of FOXO3a (Ad-TM-FOXO3a or a GFP control (Ad-GFP. FGF1 treatment improved functional activities of Ad-GFP transduced EPCs, including cell viability, proliferation, antiapoptosis, migration and tube formation, whereas these beneficial effects disappeared by Akt inhibitor pretreatment. Moreover, EPC function was declined by Ad-TM-FOXO3a transduction and failed to be attenuated even with FGF1 treatment. FGF1 upregulated phosphorylation levels of Akt and FOXO3a in Ad-GFP transduced EPCs, which were repressed by Akt inhibitor pretreatment. However, FGF1 failed to recover Ad-TM-FOXO3a transduced EPCs from dysfunction. These data indicate that FGF1 promoting EPC function is at least in part mediated through Akt/FOXO3a pathway. Our study may provide novel ideas for enhancing EPC angiogenic ability and optimizing EPC transplantation therapy in the future.

  5. Design and synthesis of new RAF kinase-inhibiting antiproliferative quinoline derivatives. Part 2: Diarylurea derivatives.

    Science.gov (United States)

    El-Gamal, Mohammed I; Khan, Mohammad Ashrafuddin; Tarazi, Hamadeh; Abdel-Maksoud, Mohammed S; Gamal El-Din, Mahmoud M; Yoo, Kyung Ho; Oh, Chang-Hyun

    2017-02-15

    This article describes the design, synthesis, and biological screening of a new series of diarylurea derivatives possessing quinoline nucleus. Nine target compounds were selected by the National Cancer Institute (NCI, Bethesda, Maryland, USA) for in vitro antiproliferative screening against a panel of 58 cancer cell lines of nine cancer types. Following one-dose initial screening, compounds 1d-g and 2b were selected for 5-dose screening in order to calculate their IC50 and total growth inhibition (TGI) values against the cell lines. Compounds 1e and 1g were the most promising analogues. Both compounds showed strong potency and broad-spectrum antiproliferative activity against the different tested cancer types. Their IC50 and TGI values were less than those of the reference drug, sorafenib, against most of the tested cell lines of the nine different cancer types. Furthermore, the most potent compounds 1d-g were tested against C-RAF kinase as a potential molecular target of this series of compounds. All of them showed high potency, and the most potent derivative was compound 1e (IC50 = 0.10 μM). It was further tested against a panel of another twelve kinases, and it showed selectivity against C-RAF kinase. This could be, at least in part, the possible mechanism of antiproliferative action of this series of compounds at molecular level. The binding modes of compounds 1e and 1g were studied by docking studies, which highlighted the importance of the urea linker compared with the amide linker.

  6. Stimulatory Effect of Vascular Endothelial Growth Factor on Proliferation and Migration of Porcine Trophectoderm Cells and Their Regulation by the Phosphatidylinositol-3-Kinase-AKT and Mitogen-Activated Protein Kinase Cell Signaling Pathways.

    Science.gov (United States)

    Jeong, Wooyoung; Kim, Jinyoung; Bazer, Fuller W; Song, Gwonhwa

    2014-03-01

    Vascular endothelial growth factor (VEGF), a potent stimulator for angiogenesis, is likely to regulate implantation by stimulating endometrial angiogenesis and vascular permeability. In addition to known angiogenetic effects, VEGF has been suggested to participate in development of the early embryo as a mediator of fetal-maternal dialogue. Current studies have determined VEGF in terms of its role in endometrial vascular events, but VEGF-induced effects on the peri-implantation conceptus (embryo and extraembryonic membranes) remains unknown. In the present study, endometrial VEGF, VEGF receptor-1 (VEGFR-1), and VEGF receptor-2 (VEGFR-2) mRNAs increased significantly during the peri-implantation period of pregnancy as compared to the estrous cycle. Expression of VEGF, VEGFR-1, and VEGFR-2 mRNAs was abundant in endometrial luminal and glandular epithelia, endothelial blood vessels, and scattered cells in the stroma and conceptus trophectoderm. In addition, porcine trophectoderm (pTr) cells treated with VEGF exhibited increased abundance of phosphorylated (p)-AKT1, p-ERK1/2, p-p70RSK, p-RPS6, and p-4EBP1 in a time-dependent manner. The addition of U0126, an inhibitor of ERK1/2, inhibited VEGF-induced ERK1/2 phosphorylation, but AKT1 phosphorylation was not affected. The addition of LY294002, a PI3K inhibitor, decreased VEGF-induced phosphorylation of ERK1/2 and AKT1. Furthermore, VEGF significantly stimulated proliferation and migration of pTr cells, but these effects were blocked by SB203580, U0126, rapamycin, and LY294002, which inhibit p38 MAPK, ERK1/2, mTOR, and PI3K, respectively. These results suggest that VEGF is critical to successful growth and development of pTr during early pregnancy and that VEGF-induced stimulatory effect is coordinately regulated by multiple cell signaling pathways, including PI3K-AKT1 and MAPK signaling pathways.

  7. Puerarin Synergizes with Arsenic Trioxide for the Apoptosis of Human Glioblastoma Cells through the Protein Kinase/p38 Mitogen-activated Protein Kinases Pathway%葛根素与三氧化二砷协同作用通过Akt/p38途径促进人胶质瘤细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    羊轶驹; 孙振球

    2012-01-01

    目的:研究葛根素(PRN)是否通过Akt/p38途径协同三氧化二砷(As2O3)促进人胶质瘤细胞的凋亡.方法:MTT检测细胞的存活率,流式细胞仪(FCM)技术检测细胞的凋亡状态,蛋白免疫印迹(Immunoblotting)检测细胞phosphorylated Akt和p38-MAPK,Cleaved Caspase-3蛋白的表达,PCR检测Caspase-3的mRNA的表达.结果:PRN协同As2O3降低人胶质瘤细胞U87的存活.与对照组相比,PRN(16μM)组,As2O3(2μM)组显著增加细胞内钙水平(1.13±0.015),(1.18±0.33).此外,PRN能够协同As2O3增加细胞内钙(1.34±0.72),下调蛋白phosphorylated Akt,上调phosphorylated p38-MAPK和Cleaved Caspase-3蛋白及Cleaved Caspase-3 mRNA表达水平.结论:PRN协同As2O3增加胶质瘤细胞内钙水平,抑制细胞存活.此外,PRN联合As2O3下调phosphorylated Akt,增强phosphorylated p38-MAPK和Cleaved Caspase-3的表达,进而促进肿瘤细胞凋亡.PRN可能成为临床上辅助As2O3治疗肿瘤中的潜在的辅助治疗药物.%Objective: To investigate whether puerarin (PRN) synergizes with arsenic trioxide (As2O3) in facilitating the apoptosis of human glioblastoma cell line U87 through the protein kinase (Akt)/p 38 mitogen-activated protein kinases (p38-MAPK) pathway. Methods: The 3-(4,5-deimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide technique was performed to detect cell survival. Flow cytometry was applied to calculate cell apoptosis, and immunoblot technique was used to verify the protein expressions of phosphorylated Akt, p38-MAPK, and cleaved caspase-3. In addition, caspase-3 mRNA levels were detected by real-time polymerase chain reaction. Results: PRN synergized with As2O3 to decrease the survival of human glioblastoma cell line U87. A single dosage each of PRN (16 μM; 1.13±0.015) and As2O3 (2 μM; 1.18±0.33) significantly increased the intracellular calcium concentration. Moreover, PRN synergized with As2O3 to increase the in-tracellular calcium concentration (1.34±0.72) compared with the findings in

  8. The influence of the stem cell marker ALDH and the EGFR-PI3 kinase act signaling pathway on the radiation resistance of human tumor cell lines; Der Einfluss des Stammzellmarkers ALDH und des EGFR-PI3 Kinase-Akt Signalwegs auf die Strahlenresistenz humaner Tumorzelllinien

    Energy Technology Data Exchange (ETDEWEB)

    Mihatsch, Julia

    2014-07-14

    Cancer is the second leading cause of death in industriated nations. Besides surgery and chemotherapy, radiotherapy (RT) is an important approach by which about 60% of patients are treated. The response of these patients to RT is very heterogenous. On the one hand, there are patients with tumors which are radiosensitive and can be cured, but on the other hand patients bear tumors which are quite resistant to radiotherapy. A Radioresistant phenotype of tumor cells causes treatment failure consequently leading to a limited response to radiotherapy. It is proposed, that radiotherapy outcome mainly depends on the potential of radiation on controlling growth, proliferation and survival of a specific population of tumor cells called cancer stem cells (CSCs) or tumor-initiating cells. Based on experimental studies so far reported it is assumed that the population of CSC varies in tumors from different entities and is relatively low compared to the tumor bulk cells in general. According to the CSC hypothesis, it might be concluded that the differential response of tumors to radiotherapy depends on CSC populations, since these supposedly slow replicating cells are able to initiate a tumor, to self renew indefinitely and to generate the differentiated progeny of a tumor. Besides the role of cancer stem cells in radiotherapy response, ionizing radiation (IR) activates the epidermal growth factor receptor (EGFR) and its downstream signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK) and Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathways. Among these pathways, PI3K/Akt is one of the most important pathways involved in post-irradiation survival: Activation of Akt results in activation of DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). DNA-PKcs is a core enzyme involved in repair of IR-induced DNA-double strand breaks (DNA-DSB) through non-homologous end joining (NHEJ). The aim of the

  9. Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety.

    Science.gov (United States)

    Yen, Yi-Chun; Mauch, Christoph P; Dahlhoff, Maik; Micale, Vincenzo; Bunck, Mirjam; Sartori, Simone B; Singewald, Nicolas; Landgraf, Rainer; Wotjak, Carsten T

    2012-07-01

    Patients diagnosed for anxiety disorders often display faster acquisition and slower extinction of learned fear. To gain further insights into the mechanisms underlying these phenomenona, we studied conditioned fear in mice originating form a bi-directional selective breeding approach, which is based on elevated plus-maze behavior and results in CD1-derived high (HAB), normal (NAB), and low (LAB) anxiety-related behavior mice. HAB mice displayed pronounced cued-conditioned fear compared to NAB/CD1 and LAB mice that coincided with increased phosphorylation of the protein kinase B (AKT) in the basolateral amygdala 45 min after conditioning. No similar changes were observed after non-associative immediate shock presentations. Fear extinction of recent but not older fear memories was preserved. However, HAB mice were more prone to relapse of conditioned fear with the passage of time. HAB mice also displayed higher levels of contextual fear compared to NAB and LAB mice and exaggerated avoidance following step-down avoidance training. Interestingly, HAB mice showed lower and LAB mice higher levels of acoustic startle responses compared to NAB controls. The increase in arousal observed in LAB mice coincided with the general absence of conditioned freezing. Taken together, our results suggest that the genetic predisposition to high anxiety-related behavior may increase the risk of forming traumatic memories, phobic-like fear and avoidance behavior following aversive encounters, with a clear bias towards passive coping styles. In contrast, genetic predisposition to low anxiety-related and high risk-taking behavior seems to be associated with an increase in active coping styles. Our data imply changes in AKT phosphorylation as a therapeutic target for the prevention of exaggerated fear memories.

  10. Akt1 is the principal Akt isoform regulating apoptosis in limiting cytokine concentrations.

    Science.gov (United States)

    Green, B D; Jabbour, A M; Sandow, J J; Riffkin, C D; Masouras, D; Daunt, C P; Salmanidis, M; Brumatti, G; Hemmings, B A; Guthridge, M A; Pearson, R B; Ekert, P G

    2013-10-01

    The activation of the Akt signalling in response to cytokine receptor signalling promotes protein synthesis, cellular growth and proliferation. To determine the role of Akt in interleukin-3 (IL-3) signalling, we generated IL-3-dependent myeloid cell lines from mice lacking Akt1, Akt2 or Akt3. Akt1 deletion resulted in accelerated apoptosis at low concentrations of IL-3. Expression of constitutively active Akt1 was sufficient to delay apoptosis in response to IL-3 withdrawal, but not sufficient to induce proliferation in the absence of IL-3. Akt1 prolonged survival of Bim- or Bad-deficient cells, but not cells lacking Puma, indicating that Akt1-dependent repression of apoptosis was in part dependent on Puma and independent of Bim or Bad. Our data show that a key role of Akt1 during IL-3 signalling is to repress p53-dependent apoptosis pathways, including transcriptional upregulation of Puma. Moreover, our data indicate that regulation of BH3-only proteins by Akt is dispensable for Akt-dependent cell survival.

  11. Protein kinase C α regulates nuclear pri-microRNA 15a release as part of endothelin signaling.

    Science.gov (United States)

    von Brandenstein, Melanie; Depping, Reinhard; Schäfer, Ekaterine; Dienes, Hans-Peter; Fries, Jochen W U

    2011-10-01

    Endothelin-1 induced signaling is characterized by an early induction of a nuclear factor-kappa B p65/mitogen-activated phosphokinase p38 transcription complex via its A-receptor versus a late induction via diacylglycerol, and protein kinase C. A possible interaction between these two pathways and a potential function for protein kinase C in this context has not previously been elucidated. Here we report that in Caki-1 tumor cells, protein kinase C α is a part of the transcription complex. With importin α4 and α5 as chaperones, the transcription complex transmigrates into the nucleus. Protein kinase C α blocks the nuclear release of pri-microRNA 15a by direct binding shown by electrophoretic mobility shift assay and Duolink immune histology. The expression levels of miRNA 15a can be further manipulated by transfection of si-protein kinase C α, or an expression vector containing protein kinase C α or miRNA 15. The miRNA 15a regulation by protein kinase C α is detectable in different malignant human tumor cell lines (renal cell carcinoma, breast carcinoma, and melanoma). Furthermore, all three cell lines harbor both endothelin receptors (ETAR/ETBR). Specific blockage of each receptor leads to major reduction of miRNA 15a expression due to increased nuclear protein kinase C α translocation. We conclude that the nuclear binding of pri-microRNA 15a is a novel function of protein kinase C α, which plays an important role in endothelin-1 mediated signaling. Since several endothelin-sensitive, malignant tumor cell lines harbor this regulation, it could indicate a more general role in tumor biology.

  12. Akt is negatively regulated by the MULAN E3 ligase

    Institute of Scientific and Technical Information of China (English)

    Seunghee Bae; Jongdoo Kim; Hong-Duck Um; In-Chul Park; Su-Jae Lee; Seon Young Nam; Young-Woo Jin; Jae Ho Lee; Sungkwan An; Sun-Yong Kim; Jin Hyuk Jung; Yeongmin Yoon; Hwa Jun Cha; Hyunjin Lee; Karam Kim; Jongran Kim; In-Sook An

    2012-01-01

    The serine/threonine kinase Akt functions in multiple cellular processes,including cell survival and tumor development.Studies of the mechanisms that negatively regulate Akt have focused on dephosphorylation-mediated inactivation.In this study,we identified a negative regulator of Akt,MULAN,which possesses both a RING finger domain and E3 ubiquitin ligase activity.Akt was found to directly interact with MULAN and to be ubiquitinated by MULAN in vitro and in vivo.Other molecular assays demonstrated that phosphorylated Akt is a substantive target for both interaction with MULAN and ubiquitination by MULAN.The results of the functional studies suggest that the degradation of Akt by MULAN suppresses cell proliferation and viability.These data provide insight into the Akt ubiquitination signaling network.

  13. Gq-mediated Akt translocation to the membrane: a novel PIP3-independent mechanism in platelets.

    Science.gov (United States)

    Badolia, Rachit; Manne, Bhanu Kanth; Dangelmaier, Carol; Chernoff, Jonathan; Kunapuli, Satya P

    2015-01-01

    Akt is an important signaling molecule regulating platelet aggregation. Akt is phosphorylated after translocation to the membrane through Gi signaling pathways by a phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent mechanism. However, Akt is more robustly phosphorylated by thrombin compared with adenosine 5'-diphosphate in platelets. This study investigated the mechanisms of Akt translocation as a possible explanation for this difference. Stimulation of washed human platelets with protease-activated receptor agonists caused translocation of Akt to the membrane rapidly, whereas phosphorylation occurred later. The translocation of Akt was abolished in the presence of a Gq-selective inhibitor or in Gq-deficient murine platelets, indicating that Akt translocation is regulated downstream of Gq pathways. Interestingly, phosphatidylinositol 3-kinase (PI3K) inhibitors or P2Y12 antagonist abolished Akt phosphorylation without affecting Akt translocation to the membrane, suggesting that Akt translocation occurs through a PI3K/PIP3/Gi-independent mechanism. An Akt scaffolding protein, p21-activated kinase (PAK), translocates to the membrane after stimulation with protease-activated receptor agonists in a Gq-dependent manner, with the kinetics of translocation similar to that of Akt. Coimmunoprecipitation studies showed constitutive association of PAK and Akt, suggesting a possible role of PAK in Akt translocation. These results show, for the first time, an important role of the Gq pathway in mediating Akt translocation to the membrane in a novel Gi/PI3K/PIP3-independent mechanism.

  14. EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function.

    Science.gov (United States)

    Phuchareon, Janyaporn; McCormick, Frank; Eisele, David W; Tetsu, Osamu

    2015-07-21

    Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. About 14% of NSCLCs harbor mutations in epidermal growth factor receptor (EGFR). Despite remarkable progress in treatment with tyrosine kinase inhibitors (TKIs), only 5% of patients achieve tumor reduction >90%. The limited primary responses are attributed partly to drug resistance inherent in the tumor cells before therapy begins. Recent reports showed that activation of receptor tyrosine kinases (RTKs) is an important determinant of this innate drug resistance. In contrast, we demonstrate that EGFR inhibition promotes innate drug resistance despite blockade of RTK activity in NSCLC cells. EGFR TKIs decrease both the mitogen-activated protein kinase (MAPK) and Akt protein kinase pathways for a short time, after which the Ras/MAPK pathway becomes reactivated. Akt inhibition selectively blocks the transcriptional activation of Ets-1, which inhibits its target gene, dual specificity phosphatase 6 (DUSP6), a negative regulator specific for ERK1/2. As a result, ERK1/2 is activated. Furthermore, elevated c-Src stimulates Ras GTP-loading and activates Raf and MEK kinases. These observations suggest that not only ERK1/2 but also Akt activity is essential to maintain Ets-1 in an active state. Therefore, despite high levels of ERK1/2, Ets-1 target genes including DUSP6 and cyclins D1, D3, and E2 remain suppressed by Akt inhibition. Reduction of DUSP6 in combination with elevated c-Src renews activation of the Ras/MAPK pathway, which enhances cell survival by accelerating Bim protein turnover. Thus, EGFR TKIs evoke innate drug resistance by preventing Akt activity and inactivating Ets-1 function in NSCLC cells.

  15. 2,3,5-Trisubstituted pyridines as selective AKT inhibitors-Part I: Substitution at 2-position of the core pyridine for ROCK1 selectivity.

    Science.gov (United States)

    Lin, Hong; Yamashita, Dennis S; Zeng, Jin; Xie, Ren; Wang, Wenyong; Nidarmarthy, Sirishkumar; Luengo, Juan I; Rhodes, Nelson; Knick, Victoria B; Choudhry, Anthony E; Lai, Zhihong; Minthorn, Elisabeth A; Strum, Susan L; Wood, Edgar R; Elkins, Patricia A; Concha, Nestor O; Heerding, Dirk A

    2010-01-15

    2,3,5-Trisubstituted pyridines have been designed as potent AKT inhibitors that are selective against ROCK1 based on the comparison between AKT and ROCK1 structures. Substitution at the 2-position of the core pyridine is the key element to provide selectivity against ROCK1. An X-ray co-crystal structure of 9p in PKA supports the proposed rationale of ROCK1 selectivity.

  16. Synthetic studies on kinase inihbitors and cyclic peptides : strategies towards new antibiotics

    NARCIS (Netherlands)

    Tuin, Adriaan Willem

    2008-01-01

    The last decade has witnessed an increased occurrence of bacterial resistance against antibiotics. The first part of this thesis describes the discovery of a novel target, protein kinase B / Akt1, that may be used to combat infection with pathogenic bacteria like Salmonella typhimurium. Inhibitors

  17. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2).

    Science.gov (United States)

    Granado-Serrano, Ana Belén; Martín, María Angeles; Bravo, Laura; Goya, Luis; Ramos, Sonia

    2006-11-01

    Dietary polyphenols have been associated with the reduced risk of chronic diseases such as cancer, but the precise underlying mechanism of protection remains unclear. The aim of this study was to investigate the effect of quercetin on the activation of the apoptotic pathway in a human hepatoma cell line (HepG2). Treatment of cells for 18 h with quercetin induced cell death in a dose-dependent manner; however, a shorter treatment (4 h) had no effect on cell viability. Incubation of HepG2 cells with quercetin for 18 h induced apoptosis by the activation of caspase-3 and -9, but not caspase-8. Moreover, this flavonoid decreased the Bcl-xL:Bcl-xS ratio and increased translocation of Bax to the mitochondrial membrane. A sustained inhibition of the major survival signals, Akt and extracellular regulated kinase (ERK), also occurred in quercetin-treated cells. These data suggest that quercetin may induce apoptosis by direct activation of caspase cascade (mitochondrial pathway) and by inhibiting survival signaling in HepG2.

  18. G-Protein Inwardly Rectifying Potassium Channel 1 (GIRK1 Knockdown Decreases Beta-Adrenergic, MAP Kinase and Akt Signaling in the MDA-MB-453 Breast Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Michael W. Hance

    2008-01-01

    Full Text Available Previous data from our laboratory have indicated that there is a functional link between the beta-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1 in breast cancer cell lines and that these pathways are involved in growth regulation of these cells. To determine functionality, MDA-MB-453 breast cancer cells were stimulated with ethanol, known to open GIRK channels. Decreased GIRK1 protein levels were seen after treatment with 0.12% ethanol. In addition, serum-free media completely inhibited GIRK1 protein expression. This data indicates that there are functional GIRK channels in breast cancer cells and that these channels are involved in cellular signaling. In the present research, to further define the signaling pathways involved, we performed RNA interference (siRNA studies. Three stealth siRNA constructs were made starting at bases 1104, 1315, and 1490 of the GIRK1 sequence. These constructs were transfected into MDA-MB-453 cells, and both RNA and protein were isolated. GIRK1, β2-adrenergic and 18S control levels were determined using real-time PCR 24 hours after transfection. All three constructs decreased GIRK1 mRNA levels. However, β2 mRNA levels were unchanged by the GIRK1 knockdown. GIRK1 protein levels were also reduced by the knockdown, and this knockdown led to decreases in beta-adrenergic, MAP kinase and Akt signaling.

  19. Exogenous Bradykinin Inhibits Tissue Factor Induction and Deep Vein Thrombosis via Activating the eNOS/Phosphoinositide 3-Kinase/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ruolan Dong

    2015-11-01

    Full Text Available Background/Aims: Bradykinin has been shown to exert a variety of protective effects against vascular injury, and to reduce the levels of several factors involved in the coagulation cascade. A key determinant of thrombin generation is tissue factor (TF. However, whether bradykinin can regulate TF expression remains to be investigated. Methods: To study the effect of bradykinin on TF expression, we used Lipopolysaccharides (LPS to induce TF expression in human umbilical vein endothelial cells and monocytes. Transcript levels were determined by RT-PCR, protein abundance by Western blotting. In the in vivo study, bradykinin and equal saline were intraperitoneally injected into mice for three days ahead of inferior cava vein ligation that we took to induce thrombus formation, after which bradykinin and saline were injected for another two days. Eventually, the mice were sacrificed and tissues were harvested for tests. Results: Exogenous bradykinin markedly inhibited TF expression in mRNA and protein level induced by LPS in a dose-dependent manner. Moreover, the NO synthase antagonist L-NAME and PI3K inhibitor LY294002 dramatically abolished the inhibitory effects of bradykinin on tissue factor expression. PI3K/Akt signaling pathway activation induced by bradykinin administration reduced the activity of GSK-3ß and MAPK, and reduced NF-κB level in the nucleus, thereby inhibiting TF expression. Consistent with this, intraperitoneal injection of C57/BL6 mice with bradykinin also inhibited the thrombus formation induced by ligation of inferior vena cava. Conclusion: Bradykinin suppressed TF protein expression in human umbilical vein endothelial cells and monocytes in vitro; in line with this, it inhibits thrombus formation induced by ligation of inferior vena cava in vivo.

  20. Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells : Limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways

    NARCIS (Netherlands)

    Janmaat, ML; Kruyt, FAE; Rodriguez, JA; Giaccone, G

    2003-01-01

    The epidermal growth factor receptor (EGFR) is an important novel target for anticancer therapy. In this study, we examined the molecular mechanisms that underlie the antitumor effects of the anti-EGFR monoclonal antibody C225 (Cetuximab) and the selective EGFR tyrosine kinase inhibitor ZD1839 (Ires

  1. Asparagine reduces the mRNA expression of muscle atrophy markers via regulating protein kinase B (Akt), AMP-activated protein kinase α, toll-like receptor 4 and nucleotide-binding oligomerisation domain protein signalling in weaning piglets after lipopolysaccharide challenge.

    Science.gov (United States)

    Wang, Xiuying; Liu, Yulan; Wang, Shuhui; Pi, Dingan; Leng, Weibo; Zhu, Huiling; Zhang, Jing; Shi, Haifeng; Li, Shuang; Lin, Xi; Odle, Jack

    2016-10-01

    Pro-inflammatory cytokines are critical in mechanisms of muscle atrophy. In addition, asparagine (Asn) is necessary for protein synthesis in mammalian cells. We hypothesised that Asn could attenuate lipopolysaccharide (LPS)-induced muscle atrophy in a piglet model. Piglets were allotted to four treatments (non-challenged control, LPS-challenged control, LPS+0·5 % Asn and LPS+1·0 % Asn). On day 21, the piglets were injected with LPS or saline. At 4 h post injection, piglet blood and muscle samples were collected. Asn increased protein and RNA content in muscles, and decreased mRNA expression of muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1). However, Asn had no effect on the protein abundance of MAFbx and MuRF1. In addition, Asn decreased muscle AMP-activated protein kinase (AMPK) α phosphorylation, but increased muscle protein kinase B (Akt) and Forkhead Box O (FOXO) 1 phosphorylation. Moreover, Asn decreased the concentrations of TNF-α, cortisol and glucagon in plasma, and TNF-α mRNA expression in muscles. Finally, Asn decreased mRNA abundance of muscle toll-like receptor (TLR) 4 and nucleotide-binding oligomerisation domain protein (NOD) signalling-related genes, and regulated their negative regulators. The beneficial effects of Asn on muscle atrophy may be associated with the following: (1) inhibiting muscle protein degradation via activating Akt and inactivating AMPKα and FOXO1; and (2) decreasing the expression of muscle pro-inflammatory cytokines via inhibiting TLR4 and NOD signalling pathways by modulation of their negative regulators.

  2. Induction of Apoptosis by Luteolin Involving Akt Inactivation in Human 786-O Renal Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yen-Chuan Ou

    2013-01-01

    Full Text Available There is a growing interest in the health-promoting effects of natural substances obtained from plants. Although luteolin has been identified as a potential therapeutic and preventive agent for cancer because of its potent cancer cell-killing activity, the molecular mechanisms have not been well elucidated. This study provides evidence of an alternative target for luteolin and sheds light on the mechanism of its physiological benefits. Treatment of 786-O renal cell carcinoma (RCC cells (as well as A498 and ACHN with luteolin caused cell apoptosis and death. This cytotoxicity was caused by the downregulation of Akt and resultant upregulation of apoptosis signal-regulating kinase-1 (Ask1, p38, and c-Jun N-terminal kinase (JNK activities, probably via protein phosphatase 2A (PP2A activation. In addition to being a concurrent substrate of caspases and event of cell death, heat shock protein-90 (HSP90 cleavage might also play a role in driving further cellular alterations and cell death, at least in part, involving an Akt-related mechanism. Due to the high expression of HSP90 and Akt-related molecules in RCC and other cancer cells, our findings suggest that PP2A activation might work in concert with HSP90 cleavage to inactivate Akt and lead to a vicious caspase-dependent apoptotic cycle in luteolin-treated 786-O cells.

  3. 烧伤血清作用下心肌细胞蛋白激酶B和p38丝裂原活化蛋白激酶通路的交叉对话研究%Study on crosstalk between phosphatidylinositol 3-kinase/Akt pathway and p38 mitogen-activated protein kinase pathway in cardiomyocyte with challenge of bum serum

    Institute of Scientific and Technical Information of China (English)

    吕根法; 陈璧; 张万福; 王耘川; 朱雄翔; 胡大海

    2008-01-01

    Objective To investigate the possibility of erosstalk between phosphatidylinositol 3-kinase (PI 3-K)/Akt pathway and p38 mitogen-aetivated protein kinase (p38MAPK) pathway in cardiomyocyte with challenge of burn serum, and to explore their influence on eardiomyocyte injury after bum. Methods The model of murine cardiomyocyte with stimulation of burn serum was established. ( 1 ) The level of Akt and p38 phosphorlation in cardiomyocyte were examined with stimulation of 10% bum serum before stimulation and 1,3,6,12,24 hour after stimulation. (2) The levels of Akt and p38 phosphorylation in cardiomyocyte were determined with stimulation of burn serum (at concentration of 5% ,10% ,20% ) or 10% burn serum plus insulin( at concentration of 1 × 10-8, 1 × 10-7,1 × 10-6mol/L). The content of creatine kinase (CK) in superuate was also detected. (3)Addition to the inhibitor of p38 MAPK pathway(SB203580) and PI3K/ Akt pathway ( LY294002 ), the level of p38 M APK , PI3 K/Akt and the content of CK in supernate were deter- mined. Results (1)The level of p-p38 in cardiomyocyte was 4.0±0.8,3.6±0.8,5.1±1.6,2.4± 0.5,3.0 ± 0.6 at 1 ,3,6,12,24 hour(s) after stimulation of burn serum,which was obviously higher than that immediate after stimulation ( 1.0, P < 0.01 ). The level of p-Akt was 0. 15 ± 0.07,0.64 ± 0.10,0.26 ± 0.08,0.38 ± 0.11,0.59 ± 0.13, which was obviously lower than that before stimulation ( 1.00, P < 0. 01 ). (2) With stimulation of different concentration of burn serum or burn serum plus insulin,the level of p-Akt and p- p38 changed in the opposite directions comparatively. The content of CK increased along with increase of burn serum concentration ,but decreased obviously with treatment of insulin ( P < 0.05 or 0.01 ). (3) Low level of p38 induced by burn serum was increased after treatment of LY294002, which neutralized the protection of insulin( P < 0.01 ). Low level of p-Akt induced by burn serum increased after treatment of SB203580( P <0.01 ),which

  4. Insufficient Astrocyte-Derived Brain-Derived Neurotrophic Factor Contributes to Propofol-Induced Neuron Death Through Akt/Glycogen Synthase Kinase 3β/Mitochondrial Fission Pathway.

    Science.gov (United States)

    Liu, Yanan; Yan, Yasheng; Inagaki, Yasuyoshi; Logan, Sarah; Bosnjak, Zeljko J; Bai, Xiaowen

    2017-07-01

    Growing animal evidence demonstrates that prolonged exposure to propofol during brain development induces widespread neuronal cell death, but there is little information on the role of astrocytes. Astrocytes can release neurotrophic growth factors such as brain-derived neurotrophic factor (BDNF), which can exert the protective effect on neurons in paracrine fashion. We hypothesize that during propofol anesthesia, BDNF released from developing astrocytes may not be sufficient to prevent propofol-induced neurotoxicity. Hippocampal astrocytes and neurons isolated from neonatal Sprague Dawley rats were exposed to propofol at a clinically relevant dose of 30 μM or dimethyl sulfoxide as control for 6 hours. Propofol-induced cell death was determined by propidium iodide (PI) staining in astrocyte-alone cultures, neuron-alone cultures, or cocultures containing either low or high density of astrocytes (1:9 or 1:1 ratio of astrocytes to neurons ratio [ANR], respectively). The astrocyte-conditioned medium was collected 12 hours after propofol exposure and measured by protein array assay. BDNF concentration in astrocyte-conditioned medium was quantified using enzyme-linked immunosorbent assay. Neuron-alone cultures were treated with BDNF, tyrosine receptor kinase B inhibitor cyclotraxin-B, glycogen synthase kinase 3β (GSK3β) inhibitor CHIR99021, or mitochondrial fission inhibitor Mdivi-1 before propofol exposure. Western blot was performed for quantification of the level of protein kinase B and GSK3β. Mitochondrial shape was visualized through translocase of the outer membrane 20 staining. Propofol increased cell death in neurons by 1.8-fold (% of PI-positive cells [PI%] = 18.6; 95% confidence interval [CI], 15.2-21.9, P .05]). Astrocytes secreted BDNF in a cell density-dependent way and propofol decreased BDNF secretion from astrocytes. Administration of BDNF, CHIR99021, or Mdivi-1 significantly attenuated the propofol-induced neuronal death and aberrant mitochondria in

  5. Astaxanthin Alleviates Early Brain Injury Following Subarachnoid Hemorrhage in Rats: Possible Involvement of Akt/Bad Signaling

    Directory of Open Access Journals (Sweden)

    Xiang-Sheng Zhang

    2014-07-01

    Full Text Available Apoptosis has been proven to play a crucial role in early brain injury pathogenesis and to represent a target for the treatment of subarachnoid hemorrhage (SAH. Previously, we demonstrated that astaxanthin (ATX administration markedly reduced neuronal apoptosis in the early period after SAH. However, the underlying molecular mechanisms remain obscure. In the present study, we tried to investigate whether ATX administration is associated with the phosphatidylinositol 3-kinase-Akt (PI3K/Akt pathway, which can play an important role in the signaling of apoptosis. Our results showed that post-SAH treatment with ATX could cause a significant increase of phosphorylated Akt and Bad levels, along with a significant decrease of cleaved caspase-3 levels in the cortex after SAH. In addition to the reduced neuronal apoptosis, treatment with ATX could also significantly reduce secondary brain injury characterized by neurological dysfunction, cerebral edema and blood-brain barrier disruption. In contrast, the PI3K/Akt inhibitor, LY294002, could partially reverse the neuroprotection of ATX in the early period after SAH by downregulating ATX-induced activation of Akt/Bad and upregulating cleaved caspase-3 levels. These results provided the evidence that ATX could attenuate apoptosis in a rat SAH model, potentially, in part, through modulating the Akt/Bad pathway.

  6. Akt-mediated foxo1 inhibition is required for liver regeneration.

    Science.gov (United States)

    Pauta, Montse; Rotllan, Noemi; Fernández-Hernando, Ana; Langhi, Cedric; Ribera, Jordi; Lu, Mingjian; Boix, Loreto; Bruix, Jordi; Jimenez, Wladimiro; Suárez, Yajaira; Ford, David A; Baldán, Angel; Birnbaum, Morris J; Morales-Ruiz, Manuel; Fernández-Hernando, Carlos

    2016-05-01

    Understanding the hepatic regenerative process has clinical interest as the effectiveness of many treatments for chronic liver diseases is conditioned by efficient liver regeneration. Experimental evidence points to the need for a temporal coordination between cytokines, growth factors, and metabolic signaling pathways to enable successful liver regeneration. One intracellular mediator that acts as a signal integration node for these processes is the serine-threonine kinase Akt/protein kinase B (Akt). To investigate the contribution of Akt during hepatic regeneration, we performed partial hepatectomy in mice lacking Akt1, Akt2, or both isoforms. We found that absence of Akt1 or Akt2 does not influence liver regeneration after partial hepatectomy. However, hepatic-specific Akt1 and Akt2 null mice show impaired liver regeneration and increased mortality. The major abnormal cellular events observed in total Akt-deficient livers were a marked reduction in cell proliferation, cell hypertrophy, glycogenesis, and lipid droplet formation. Most importantly, liver-specific deletion of FoxO1, a transcription factor regulated by Akt, rescued the hepatic regenerative capability in Akt1-deficient and Akt2-deficient mice and normalized the cellular events associated with liver regeneration. The Akt-FoxO1 signaling pathway plays an essential role during liver regeneration. © 2015 by the American Association for the Study of Liver Diseases.

  7. Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes

    DEFF Research Database (Denmark)

    Calay, Damien; Vind-Kezunovic, Dina; Frankart, Aurelie;

    2010-01-01

    in deactivation of mammalian target of rapamycin, activation of FoxO3a, and increased sensitivity to apoptosis stimuli. Lipid raft disruption abrogated the binding of Akt and the major Akt kinase, phosphatidylinositol-dependent kinase 1, to the membrane by pleckstrin-homology domains. Thus, the integrity of lipid...

  8. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Bertran-Alamillo, Jordi; Molina, Miguel Angel

    2017-01-01

    phospho-Akt levels to therapeutically combat the heterogeneity of EGFR tyrosine kinase inhibitor resistance mechanisms.EGFR-mutant non-small cell lung cancer are often resistant to EGFR tyrosine kinase inhibitor treatment. In this study, the authors show that resistant tumors display high Akt activation...

  9. Modification of Akt by SUMO conjugation regulates alternative splicing and cell cycle

    OpenAIRE

    Risso, Guillermo; Pelisch, Federico; Pozzi, Berta; Mammi, Pablo; Blaustein, Matías; Colman-Lerner, Alejandro; Srebrow, Anabella

    2013-01-01

    Akt/PKB is a key signaling molecule in higher eukaryotes and a crucial protein kinase in human health and disease. Phosphorylation, acetylation, and ubiquitylation have been reported as important regulatory post-translational modifications of this kinase. We describe here that Akt is modified by SUMO conjugation, and show that lysine residues 276 and 301 are the major SUMO attachment sites within this protein. We found that phosphorylation and SUMOylation of Akt appear as independent events. ...

  10. TGF-beta1 modulates matrix metalloproteinase-13 expression in hepatic stellate cells by complex mechanisms involving p38MAPK, PI3-kinase, AKT, and p70S6k.

    Science.gov (United States)

    Lechuga, Carmen G; Hernández-Nazara, Zamira H; Domínguez Rosales, José-Alfredo; Morris, Elena R; Rincón, Ana Rosa; Rivas-Estilla, Ana María; Esteban-Gamboa, Andrés; Rojkind, Marcos

    2004-11-01

    Transforming growth factor-beta1 (TGF-beta1), the main cytokine involved in liver fibrogenesis, induces expression of the type I collagen genes in hepatic stellate cells by a transcriptional mechanism, which is hydrogen peroxide and de novo protein synthesis dependent. Our recent studies have revealed that expression of type I collagen and matrix metalloproteinase-13 (MMP-13) mRNAs in hepatic stellate cells is reciprocally modulated. Because TGF-beta1 induces a transient elevation of alpha1(I) collagen mRNA, we investigated whether this cytokine was able to induce the expression of MMP-13 mRNA during the downfall of the alpha1(I) collagen mRNA. In the present study, we report that TGF-beta1 induces a rapid decline in steady-state levels of MMP-13 mRNA at the time that it induces the expression of alpha1(I) collagen mRNA. This change in MMP-13 mRNA expression occurs within the first 6 h postcytokine administration and is accompanied by a twofold increase in gene transcription and a fivefold decrease in mRNA half-life. This is followed by increased expression of MMP-13 mRNA, which reaches maximal values by 48 h. Our results also show that this TGF-beta1-mediated effect is de novo protein synthesis-dependent and requires the activity of p38MAPK, phosphatidylinositol 3-kinase, AKT, and p70(S6k). Altogether, our data suggest that regulation of MMP-13 by TGF-beta1 is a complex process involving transcriptional and posttranscriptional mechanisms.

  11. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding.

    Directory of Open Access Journals (Sweden)

    Nicole Speed

    Full Text Available BACKGROUND: The prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address "food-abuse" disorders. We demonstrate a molecular link between impairment of a central kinase (Akt involved in insulin signaling induced by exposure to a high-fat (HF diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT. Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake. METHODOLOGY/PRINCIPAL FINDINGS: We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia. CONCLUSIONS/SIGNIFICANCE: Acquired disruption of brain insulin action may confer risk for and/or underlie "food-abuse" disorders and the recalcitrance of obesity. This molecular

  12. Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming.

    Science.gov (United States)

    Chae, Young Chan; Vaira, Valentina; Caino, M Cecilia; Tang, Hsin-Yao; Seo, Jae Ho; Kossenkov, Andrew V; Ottobrini, Luisa; Martelli, Cristina; Lucignani, Giovanni; Bertolini, Irene; Locatelli, Marco; Bryant, Kelly G; Ghosh, Jagadish C; Lisanti, Sofia; Ku, Bonsu; Bosari, Silvano; Languino, Lucia R; Speicher, David W; Altieri, Dario C

    2016-08-08

    Hypoxia is a universal driver of aggressive tumor behavior, but the underlying mechanisms are not completely understood. Using a phosphoproteomics screen, we now show that active Akt accumulates in the mitochondria during hypoxia and phosphorylates pyruvate dehydrogenase kinase 1 (PDK1) on Thr346 to inactivate the pyruvate dehydrogenase complex. In turn, this pathway switches tumor metabolism toward glycolysis, antagonizes apoptosis and autophagy, dampens oxidative stress, and maintains tumor cell proliferation in the face of severe hypoxia. Mitochondrial Akt-PDK1 signaling correlates with unfavorable prognostic markers and shorter survival in glioma patients and may provide an "actionable" therapeutic target in cancer.

  13. Benzothiophene inhibitors of MK2. Part 2: improvements in kinase selectivity and cell potency.

    Science.gov (United States)

    Anderson, David R; Meyers, Marvin J; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Long, Scott A; Pierce, Betsy S; Mahoney, Matthew W; Mourey, Robert J; Parikh, Mihir D

    2009-08-15

    Optimization of kinase selectivity for a set of benzothiophene MK2 inhibitors provided analogs with potencies of less than 500 nM in a cell based assay. The selectivity of the inhibitors can be rationalized by examination of X-ray crystal structures of inhibitors bound to MK2.

  14. Benzothiophene inhibitors of MK2. Part 2: Improvements in kinase selectivity and cell potency

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, David R.; Meyers, Marvin J.; Kurumbail, Ravi G.; Caspers, Nicole; Poda, Gennadiy I.; Long, Scott A.; Pierce, Betsy S.; Mahoney, Matthew W.; Mourey, Robert J.; Parikh, Mihir D.; Pfizer

    2010-10-01

    Optimization of kinase selectivity for a set of benzothiophene MK2 inhibitors provided analogs with potencies of less than 500 nM in a cell based assay. The selectivity of the inhibitors can be rationalized by examination of X-ray crystal structures of inhibitors bound to MK2.

  15. Rapamycin induces mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) expression through activation of protein kinase B and mitogen-activated protein kinase kinase pathways.

    Science.gov (United States)

    Rastogi, Ruchi; Jiang, Zhongliang; Ahmad, Nisar; Rosati, Rita; Liu, Yusen; Beuret, Laurent; Monks, Robert; Charron, Jean; Birnbaum, Morris J; Samavati, Lobelia

    2013-11-22

    Mitogen-activated protein kinase phosphatase-1 (MKP-1), also known as dual specificity phosphatase-1 (DUSP-1), plays a crucial role in the deactivation of MAPKs. Several drugs with immune-suppressive properties modulate MKP-1 expression as part of their mechanism of action. We investigated the effect of mTOR inhibition through rapamycin and a dual mTOR inhibitor (AZD2014) on MKP-1 expression. Low dose rapamycin led to a rapid activation of both AKT and ERK pathways with a subsequent increase in MKP-1 expression. Rapamycin treatment led to phosphorylation of CREB, transcription factor 1 (ATF1), and ATF2, three transcription factors that bind to the cyclic AMP-responsive elements on the Mkp-1 promoter. Inhibition of either the MEK/ERK or the AKT pathway attenuated rapamycin-mediated MKP-1 induction. AZD2014 did not activate AKT but activated the ERK pathway, leading to a moderate MKP-1 induction. Using bone marrow-derived macrophages (BMDMs) derived from wild-type (WT) mice or mice deficient in AKT1 and AKT2 isoforms or BMDM from targeted deficiency in MEK1 and MEK2, we show that rapamycin treatment led to an increased MKP1 expression in BMDM from WT but failed to do so in BMDMs lacking the AKT1 isoform or MEK1 and MEK2. Importantly, rapamycin pretreatment inhibited LPS-mediated p38 activation and decreased nitric oxide and IL-6 production. Our work provides a conceptual framework for the observed immune modulatory effect of mTOR inhibition.

  16. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells

    Directory of Open Access Journals (Sweden)

    Yuan CX

    2015-03-01

    autophagy-inducing effects on AGS and NCI-N78 cells. Danusertib arrested AGS and NCI-N78 cells in G2/M phase, with downregulation of expression of cyclin B1 and cyclin-dependent kinase 1 and upregulation of expression of p21 Waf1/Cip1, p27 Kip1, and p53. Danusertib induced mitochondria-mediated apoptosis, with an increase in expression of proapoptotic protein and a decrease in antiapoptotic proteins in both cell lines. Danusertib induced release of cytochrome c from the mitochondria to the cytosol and triggered activation of caspase 9 and caspase 3 in AGS and NCI-N78 cells. Further, danusertib induced autophagy, with an increase in expression of beclin 1 and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I to LC3-II in both cell lines. Inhibition of phosphatidylinositol 3-kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR and p38 mitogen-activated protein kinase pathways as well as activation of 5' AMP-activated protein kinase contributed to the proautophagic effect of danusertib in AGS and NCI-N78 cells. SB202191 and wortmannin enhanced the autophagy-inducing effect of danusertib in AGS and NCI-N78 cells. In addition, danusertib inhibited epithelial to mesenchymal transition with an increase in expression of E-cadherin and a decrease in expression of N-cadherin in both cell lines. Taken together, danusertib has potent inducing effects on cell cycle arrest, apoptosis, and autophagy, but has an inhibitory effect on epithelial to mesenchymal transition, with involvement of signaling pathways mediated by PI3K/Akt/mTOR, p38 mitogen-activated protein kinase, and 5' AMP-activated protein kinase in AGS and NCI-N78 cells. Keywords: danusertib, gastric cancer, Aurora kinase, apoptosis, autophagy, epithelial to mesenchymal transition

  17. Insulin Regulates Adipocyte Lipolysis via an Akt-Independent Signaling Pathway ▿

    OpenAIRE

    Choi, Sarah M.; Tucker, David F.; Gross, Danielle N.; Easton, Rachael M.; DiPilato, Lisa M.; Dean, Abigail S.; Monks, Bob R.; Birnbaum, Morris J.

    2010-01-01

    After a meal, insulin suppresses lipolysis through the activation of its downstream kinase, Akt, resulting in the inhibition of protein kinase A (PKA), the main positive effector of lipolysis. During insulin resistance, this process is ineffective, leading to a characteristic dyslipidemia and the worsening of impaired insulin action and obesity. Here, we describe a noncanonical Akt-independent, phosphoinositide-3 kinase (PI3K)-dependent pathway that regulates adipocyte lipolysis using restric...

  18. Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer

    DEFF Research Database (Denmark)

    Jönsson, Mats; Ekstrand, Anna Isinger; Jönsson, Mats;

    2010-01-01

    The phosphatidylinositol 3-kinases-AKT-mammalian target of rapamycin pathway (PI3K/AKT/mTOR) is central in colorectal tumors. Data on its role in hereditary cancers are, however, scarce and we therefore characterized mutations in PIK3CA and KRAS, and expression of PIK3CA, phosphorylated AKT...

  19. Breviscapine attenuatted contrast medium-induced nephropathy via PKC/Akt/MAPK signalling in diabetic mice.

    Science.gov (United States)

    Jiang, Wenbin; Li, Zhengwei; Zhao, Wei; Chen, Hao; Wu, Youyang; Wang, Yi; Shen, Zhida; He, Jialin; Chen, Shengyu; Zhang, Jiefang; Fu, Guosheng

    2016-01-01

    Contrast medium-induced nephropathy (CIN) remains a major cause of iatrogenic, drug-induced renal injury. Recent studies reveal that Breviscapine can ameliorate diabetic nephropathy in mice. Yet it remains unknown if Breviscapine could reduce CIN in diabetic mice. In this study, male C57/BL6J mice were randomly divided into 7 groups: control, diabetes mellitus, CIN, diabetes mellitus+CIN, diabetes mellitus+Breviscapine, CIN+Breviscapine and diabetes mellitus+CIN+Breviscapine. Model of CIN was induced by tail intravenous administration of iopromide and model of diabetes mellitus was induced by Streptozotocin intraperitoneally. Breviscapine was administered intragastrically for 4 weeks. Renal function parameters, kidney histology, markers of renal fibrosis, phosphorylation of protein kinase C/Akt/mitogen activated protein kinases were measured by western blot. We found out that diabetes mellitus aggravated CIN damage. Renal histological analysis showed Breviscapine reduced of renal fibrosis and tubular damage. Breviscapine was also shown markedly to ameliorate CIN fibrotic markers expression, reduced proteinuria and serum creatinine. Furthermore, Breviscapine decreased phosphorylation of PKCβII, Akt, JNK1/2 and p38. Therefore, Breviscapine treatment could ameliorate the development of CIN in diabetic mice, which was partly attributed to its suppression of renal fibrosis via phosphorylation of PKCβII/Akt/JNK1/2/p38 signalling.

  20. A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2015-08-01

    Full Text Available The mechanistic target of rapamycin complex 2 (mTORC2 regulates cell survival and cytoskeletal organization by phosphorylating its AGC kinase substrates; however, little is known about the regulation of mTORC2 itself. It was previously reported that Akt phosphorylates the mTORC2 subunit SIN1 at T86, activating mTORC2 through a positive feedback loop, though another study reported that S6K phosphorylates SIN1 at the same site, inhibiting mTORC2 activity. We performed extensive analysis of SIN1 phosphorylation upon inhibition of Akt, S6K, and mTOR under diverse cellular contexts, and we found that, in all cell lines and conditions studied, Akt is the major kinase responsible for SIN1 phosphorylation. These findings refine the activation mechanism of the Akt-mTORC2 signaling branch as follows: PDK1 phosphorylates Akt at T308, increasing Akt kinase activity. Akt phosphorylates SIN1 at T86, enhancing mTORC2 kinase activity, which leads to phosphorylation of Akt S473 by mTORC2, thereby catalyzing full activation of Akt.

  1. A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation.

    Science.gov (United States)

    Yang, Guang; Murashige, Danielle S; Humphrey, Sean J; James, David E

    2015-08-11

    The mechanistic target of rapamycin complex 2 (mTORC2) regulates cell survival and cytoskeletal organization by phosphorylating its AGC kinase substrates; however, little is known about the regulation of mTORC2 itself. It was previously reported that Akt phosphorylates the mTORC2 subunit SIN1 at T86, activating mTORC2 through a positive feedback loop, though another study reported that S6K phosphorylates SIN1 at the same site, inhibiting mTORC2 activity. We performed extensive analysis of SIN1 phosphorylation upon inhibition of Akt, S6K, and mTOR under diverse cellular contexts, and we found that, in all cell lines and conditions studied, Akt is the major kinase responsible for SIN1 phosphorylation. These findings refine the activation mechanism of the Akt-mTORC2 signaling branch as follows: PDK1 phosphorylates Akt at T308, increasing Akt kinase activity. Akt phosphorylates SIN1 at T86, enhancing mTORC2 kinase activity, which leads to phosphorylation of Akt S473 by mTORC2, thereby catalyzing full activation of Akt.

  2. Akt is translocated to the mitochondria during etoposide-induced apoptosis of HeLa cells.

    Science.gov (United States)

    Park, Byoungduck; Je, Young-Tae; Chun, Kwang-Hoon

    2015-11-01

    Akt, or protein kinase B, is a key serine-threonine kinase, which exerts anti-apoptotic effects and promotes cell proliferation in response to various stimuli. Recently, however, it was demonstrated that Akt exhibits a proapoptotic role in certain contexts. During etoposide‑induced apoptosis of HeLa cells, Akt enhances the interaction of second mitochondria‑derived activator of caspases/direct IAP binding protein with low pI (Smac/DIABLO) and X‑linked inhibitor of apoptosis protein by phosphorylating Smac at serine 67, and thus promotes apoptosis. However, the detailed mechanisms underlying Akt regulation in etoposide‑mediated apoptosis remain to be determined. The present study investigated whether etoposide triggers the translocation of Akt into the mitochondria. It was found that Akt activity was increased and sustained during apoptosis triggered by etoposide in HeLa cells. During apoptosis, Akt was translocated from the cytoplasm into the mitochondria in a phosphoinositide 3‑kinase-dependent manner at the early and late stages of apoptosis. Concomitantly, the depletion of Akt in the nuclear fraction was observed after etoposide treatment from analysis of confocal microscopy. The results suggest that etoposide‑stimulated Akt is translocated into the mitochondria, thereby possibly enhancing its interaction with Smac and promoting apoptosis in HeLa cells. These results indicate that Akt may be a promising candidate for a pro-apoptotic approach in cancer treatment.

  3. PI3K/AKT and Mdm2 activation are associated with inhibitory effect of cAMP increasing agents on DNA damage-induced cell death in human pre-B NALM-6 cells.

    Science.gov (United States)

    Ghorbani, Arman; Jeddi-Tehrani, Mahmood; Saidpour, Atoosa; Safa, Majid; Bayat, Ahmad Ali; Zand, Hamid

    2015-01-15

    DNA damage response (DDR) consists of both proapoptotic and prosurvival signaling branches. Superiority of each signaling branch determines the outcome of DNA damage: death or allowing the repair. The present authors have previously shown that an increased intracellular level of cAMP disrupts p53-mediated apoptosis in human pre-B NALM-6 cells and inhibition of NF-κB prevents prosurvival effect of cAMP during DNA damage. AKT/PKB (protein kinase B) is a general mediator of survival signaling. AKT signaling inhibits p53-mediated transcription and apoptosis. The results of present study showed that cAMP disrupted DNA damage/p53-mediated apoptosis through AKT and subsequent NF-κB activation. These results suggested that AKT may be found as part of a complex with scaffolding proteins, beta-arrestins and PDE4D. cAMP disarticulated the complex through binding to PDE4D compartment. It seems that release of AKT protein potentiated DDR activated pro-survival AKT in NALM-6 cells. Taken together, the present data indicated that regulation of AKT signaling may determine the fate of cells exposed to genotoxic stress.

  4. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor.

    Directory of Open Access Journals (Sweden)

    Melissa Dumble

    Full Text Available Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.

  5. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor.

    Science.gov (United States)

    Dumble, Melissa; Crouthamel, Ming-Chih; Zhang, Shu-Yun; Schaber, Michael; Levy, Dana; Robell, Kimberly; Liu, Qi; Figueroa, David J; Minthorn, Elisabeth A; Seefeld, Mark A; Rouse, Meagan B; Rabindran, Sridhar K; Heerding, Dirk A; Kumar, Rakesh

    2014-01-01

    Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss) while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF) were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib) resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.

  6. Downregulation of AKT3 Increases Migration and Metastasis in Triple Negative Breast Cancer Cells by Upregulating S100A4.

    Directory of Open Access Journals (Sweden)

    Astrid Grottke

    Full Text Available Treatment of breast cancer patients with distant metastases represents one of the biggest challenges in today's gynecological oncology. Therefore, a better understanding of mechanisms promoting the development of metastases is of paramount importance. The serine/threonine kinase AKT was shown to drive cancer progression and metastasis. However, there is emerging data that single AKT isoforms (i.e. AKT1, AKT2 and AKT3 have different or even opposing functions in the regulation of cancer cell migration in vitro, giving rise to the hypothesis that inhibition of distinct AKT isoforms might have undesirable effects on cancer dissemination in vivo.The triple negative breast cancer cell line MDA-MB-231 was used to investigate the functional roles of AKT in migration and metastasis. AKT single and double knockdown cells were generated using isoform specific shRNAs. Migration was analyzed using live cell imaging, chemotaxis and transwell assays. The metastatic potential of AKT isoform knockdown cells was evaluated in a subcutaneous xenograft mouse model in vivo.Depletion of AKT3, but not AKT1 or AKT2, resulted in increased migration in vitro. This effect was even more prominent in AKT2,3 double knockdown cells. Furthermore, combined downregulation of AKT2 and AKT3, as well as AKT1 and AKT3 significantly increased metastasis formation in vivo. Screening for promigratory proteins revealed that downregulation of AKT3 increases the expression of S100A4 protein. In accordance, depletion of S100A4 by siRNA approach reverses the increased migration induced by knockdown of AKT3.We demonstrated that knockdown of AKT3 can increase the metastatic potential of triple negative breast cancer cells. Therefore, our results provide a rationale for the development of AKT isoform specific inhibitors.

  7. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity

    Science.gov (United States)

    Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.

    2017-01-01

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968

  8. Resveratrol inhibits TNF-α-induced IL-1β, MMP-3 production in human rheumatoid arthritis fibroblast-like synoviocytes via modulation of PI3kinase/Akt pathway.

    Science.gov (United States)

    Tian, Jing; Chen, Jin-wei; Gao, Jie-sheng; Li, Len; Xie, Xi

    2013-07-01

    Resveratrol (trans-3,4'-trihydroxystilbene), a natural phytoalexin, possesses anti-inflammatory, anti-proliferative, and immunomodulatory properties and has the potential for treating inflammatory disorders. The present study was designed to investigate the effects of resveratrol on TNF-α-induced inflammatory cytokines production of IL-1β and MMP3 in Rheumatoid arthritis (RA) Fibroblast-like synoviocytes (FLS) and further to explore the role of PI3K/Akt signaling pathway by which resveratrol modulates those cytokines production. The levels of IL-1β, MMP-3 in cultural supernatants among groups were measured by enzyme-linked immunosorbent assay. Messenger RNA expression of IL-1β and MMP-3 in RA FLS was analyzed using a reverse transcription-polymerase chain reaction. Western blot analysis was used to detect proteins expression in RA FLS intervened by resveratrol. Resveratrol inhibited both mRNA and proteins expressions of IL-1β and MMP-3 on RA FLS in a dose-dependent manner. Resveratrol also decreased significantly the expression of phosphorylated Akt dose dependently. Activation of PI3K/Akt signaling pathway exists in TNF-α-induced production of IL-1β and MMP3 on RA FLS, which is hampered by PI3K inhibitor LY294002. Immunofluorescence staining showed that TNF-α alone increased the production of P-Akt, whereas LY294002 and 50 μM resveratrol suppressed the TNF-α-stimulated expression of P-Akt. Resveratrol attenuates TNF-α-induced production of IL-1β and MMP-3 via inhibition of PI3K-Akt signaling pathway in RA FLS, suggesting that resveratrol plays an anti-inflammatory role and might have beneficial effects in preventing and treating RA.

  9. The anti-esophageal cancer cell activity by a novel tyrosine/phosphoinositide kinase inhibitor PP121

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yi; Zhou, Yajuan [Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan 430071 (China); Cheng, Long [Department of Interventional Radiology, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215001 (China); Hu, Desheng; Zhou, Xiaoyi; Wang, Zhaohua [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan 430071 (China); Xie, Conghua, E-mail: chxie_65@hotmail.com [Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zhou, Fuxiang, E-mail: ZhouFuxiangwuhan@126.com [Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)

    2015-09-11

    Here we explored the potential effect of PP121, a novel dual inhibitor of tyrosine and phosphoinositide kinases, against human esophageal cancer cells. We showed that PP121 exerted potent cytotoxic effect in primary (patient-derived) and established (Eca-109, TE-1 and TE-3 lines) esophageal cancer cells, possibly through activating caspase-3-dependnent apoptosis. PP121 was, however, non-cytotoxic to the normal human esophageal epithelial cells (EECs). At the molecular level, we showed that PP121 blocked Akt-mTOR (mammalian target of rapamycin) activation in esophageal cancer cells, which was restored by introducing a constitutively-active Akt (CA-Akt). Yet, CA-Akt only partly inhibited cytotoxicity by PP121 in Eca-109 cells. Importantly, we showed that PP121 inhibited nuclear factor kappa B (NFκB) signaling activation in esophageal cancer cells, which appeared independent of Akt-mTOR blockage. In vivo, oral administration of PP121 remarkably inhibited Eca-109 xenograft growth in nude mice, and significantly improved mice survival. Further, the immunohistochemistry (IHC) and Western blot assays analyzing xenografted tumors showed that PP121 inhibited Akt-mTOR and NFκB activations in vivo. Together, we demonstrate that PP121 potently inhibits esophageal cancer cells in vitro and in vivo, possibly through concurrently inhibiting Akt-mTOR and NFκB signalings. - Highlights: • PP121 is cytotoxic against primary and established esophageal cancer cells. • PP121 induces caspase-3-dependnent apoptosis in esophageal cancer cells. • PP121 blocks Akt-mTOR activation in esophageal cancer cells. • PP121 inhibits NFκB activation, independent of Akt-mTOR blockage. • PP121 inhibits Eca-109 xenograft growth and Akt-mTOR/NFκB activation in vivo.

  10. PI3K/Akt Pathway Contributes to Neurovascular Unit Protection of Xiao-Xu-Ming Decoction against Focal Cerebral Ischemia and Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Rui Lan

    2013-01-01

    Full Text Available In the present study, we used a focal cerebral ischemia and reperfusion rat model to investigate the protective effects of Xiao-Xu-Ming decoction (XXMD on neurovascular unit and to examine the role of PI3K (phosphatidylinositol 3-kinase/Akt pathway in this protection. The cerebral ischemia was induced by 90 min of middle cerebral artery occlusion. Cerebral infarct area was measured by tetrazolium staining, and neurological function was observed at 24 h after reperfusion. DNA fragmentation assay, combined with immunofluorescence, was performed to evaluate apoptosis of neuron, astrocyte, and vascular endothelial cell which constitute neurovascular unit. The expression levels of proteins involved in PI3K/Akt pathway were detected by Western blot. The results showed that XXMD improved neurological function, decreased cerebral infarct area and neuronal damage, and attenuated cellular apoptosis in neurovascular unit, while these effects were abolished by inhibition of PI3K/Akt with LY294002. We also found that XXMD upregulated p-PDKl, p-Akt, and p-GSK3β expression levels, which were partly reversed by LY294002. In addition, the increases of p-PTEN and p-c-Raf expression levels on which LY294002 had no effect were also observed in response to XXMD treatment. The data indicated the protective effects of XXMD on neurovascular unit partly through the activation of PI3K/Akt pathway.

  11. Ethosuximide Induces Hippocampal Neurogenesis and Reverses Cognitive Deficits in an Amyloid-β Toxin-induced Alzheimer Rat Model via the Phosphatidylinositol 3-Kinase (PI3K)/Akt/Wnt/β-Catenin Pathway.

    Science.gov (United States)

    Tiwari, Shashi Kant; Seth, Brashket; Agarwal, Swati; Yadav, Anuradha; Karmakar, Madhumita; Gupta, Shailendra Kumar; Choubey, Vinay; Sharma, Abhay; Chaturvedi, Rajnish Kumar

    2015-11-20

    Neurogenesis involves generation of new neurons through finely tuned multistep processes, such as neural stem cell (NSC) proliferation, migration, differentiation, and integration into existing neuronal circuitry in the dentate gyrus of the hippocampus and subventricular zone. Adult hippocampal neurogenesis is involved in cognitive functions and altered in various neurodegenerative disorders, including Alzheimer disease (AD). Ethosuximide (ETH), an anticonvulsant drug is used for the treatment of epileptic seizures. However, the effects of ETH on adult hippocampal neurogenesis and the underlying cellular and molecular mechanism(s) are yet unexplored. Herein, we studied the effects of ETH on rat multipotent NSC proliferation and neuronal differentiation and adult hippocampal neurogenesis in an amyloid β (Aβ) toxin-induced rat model of AD-like phenotypes. ETH potently induced NSC proliferation and neuronal differentiation in the hippocampus-derived NSC in vitro. ETH enhanced NSC proliferation and neuronal differentiation and reduced Aβ toxin-mediated toxicity and neurodegeneration, leading to behavioral recovery in the rat AD model. ETH inhibited Aβ-mediated suppression of neurogenic and Akt/Wnt/β-catenin pathway gene expression in the hippocampus. ETH activated the PI3K·Akt and Wnt·β-catenin transduction pathways that are known to be involved in the regulation of neurogenesis. Inhibition of the PI3K·Akt and Wnt·β-catenin pathways effectively blocked the mitogenic and neurogenic effects of ETH. In silico molecular target prediction docking studies suggest that ETH interacts with Akt, Dkk-1, and GSK-3β. Our findings suggest that ETH stimulates NSC proliferation and differentiation in vitro and adult hippocampal neurogenesis via the PI3K·Akt and Wnt·β-catenin signaling.

  12. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia.

    Science.gov (United States)

    Jansen, Laura A; Mirzaa, Ghayda M; Ishak, Gisele E; O'Roak, Brian J; Hiatt, Joseph B; Roden, William H; Gunter, Sonya A; Christian, Susan L; Collins, Sarah; Adams, Carissa; Rivière, Jean-Baptiste; St-Onge, Judith; Ojemann, Jeffrey G; Shendure, Jay; Hevner, Robert F; Dobyns, William B

    2015-06-01

    Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum. © The Author (2015). Published by Oxford University Press

  13. Effect of dehydroepiandrosterone (DHEA) on Akt and protein kinase C zeta (PKCζ) phosphorylation in different tissues of C57BL6, insulin receptor substrate (IRS)1(-/-), and IRS2(-/-) male mice fed a high-fat diet.

    Science.gov (United States)

    Aoki, Kazutaka; Tajima, Kazuki; Taguri, Masataka; Terauchi, Yasuo

    2016-05-01

    We have previously reported that dehydroepiandrosterone (DHEA) suppresses the activity and mRNA expression of the hepatic gluconeogenic enzyme glucose-6-phosphatase (G6Pase), and hepatic glucose production in db/db mice. Tyrosine phosphorylation levels of Insulin receptor substrate (IRS)1 and IRS2 reportedly differ between the liver and muscle tissue and the effect of DHEA on insulin signaling has not been elucidated. Therefore, we examined DHEA's effect on the liver and muscle tissue of IRS1(-/-) and IRS2(-/-) mice. Eight-week-old male C57BL6, IRS1(-/-), and IRS2(-/-) mice were fed a high-fat diet (HFD), or an HFD containing 0.2% DHEA for 4 weeks. In a separate experiment, 8-week-old male C57BL6 mice were fed an HFD or an HFD containing 0.2% androstenedione for 4 weeks. In an insulin tolerance test, DHEA administration decreased the initial plasma glucose levels in the C57BL6, IRS1(-/-), and IRS2(-/-) mice but did not decrease the ratios to the basal blood glucose level. Although DHEA administration increased Akt phosphorylation in the liver of the C57BL6, IRS1(-/-), and IRS2(-/-) mice, androstenedione administration did not increase Akt phosphorylation in the liver of C57BL6 mice. DHEA administration did not increase Akt and PKCζ phosphorylation in the muscle tissue of C57BL6, IRS1(-/-), or IRS2(-/-) mice. However, androstenedione administration increased Akt and PKCζ phosphorylation in the muscle tissue of C57BL6 mice. These findings suggest that the effect of DHEA on insulin action in the liver is self-mediated by DHEA or DHEA sulfate (DHEA-S) in the presence of IRS1, IRS2, or both. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Tirucallic acids are novel pleckstrin homology domain-dependent Akt inhibitors inducing apoptosis in prostate cancer cells.

    Science.gov (United States)

    Estrada, Aydee C; Syrovets, Tatiana; Pitterle, Kai; Lunov, Oleg; Büchele, Berthold; Schimana-Pfeifer, Judith; Schmidt, Thomas; Morad, Samy A F; Simmet, Thomas

    2010-03-01

    Activation of the serine/threonine kinase Akt is associated with aggressive clinical behavior of prostate cancer. We found that the human prostate cancer cell lines LNCaP and PC-3 express predominantly Akt1 and Akt2. Selective down-regulation of Akt1, but not Akt2, by short-hairpin RNA reduced the viability of prostate cancer cells. In addition, structurally different Akt inhibitors were cytotoxic for the prostate cancer cells, confirming that the Akt pathway is indispensable for their viability. We have purified the tetracyclic triterpenoids 3-oxo-tirucallic acid, 3-alpha-acetoxy-tirucallic acid, and 3-beta-acetoxy-tirucallic acid from the oleogum resin of Boswellia carterii to chemical homogeneity. The acetoxy-derivatives in particular potently inhibited the activities of human recombinant Akt1 and Akt2 and of constitutively active Akt immunoprecipitated from PC-3 cells, whereas inhibitor of nuclear factor-kappaB kinases remained unaffected. Docking data indicated that these tetracyclic triterpenoids form hydrogen bonds within the phosphatidylinositol binding pocket of the Akt pleckstrin homology domain. Accordingly, 3-beta-acetoxy-tirucallic acid did not inhibit the activity of Akt1 lacking the pleckstrin homology domain. In the prostate cancer cell lines investigated, these compounds inhibited the phosphorylation of cellular Akt and the Akt signaling pathways, including glycogen synthase kinase-3beta and BAD phosphorylation, nuclear accumulation of p65, the androgen receptor, beta-catenin, and c-Myc. These events culminated in the induction of apoptosis in prostate cancer, but not in nontumorigenic cells. The tirucallic acid derivatives inhibited proliferation and induced apoptosis in tumors xenografted onto chick chorioallantoic membranes and decreased the growth of pre-established prostate tumors in nude mice without overt systemic toxicity. Thus, tirucallic acid derivatives represent a new class of Akt inhibitors with antitumor properties.

  15. Resveratrol Reduces Prostate Cancer Growth and Metastasis by Inhibiting the Akt/MicroRNA-21 Pathway

    Science.gov (United States)

    Sheth, Sandeep; Jajoo, Sarvesh; Kaur, Tejbeer; Mukherjea, Debashree; Sheehan, Kelly; Rybak, Leonard P.; Ramkumar, Vickram

    2012-01-01

    The consumption of foods containing resveratrol produces significant health benefits. Resveratrol inhibits cancer by reducing cell proliferation and metastasis and by inducing apoptosis. These actions could be explained by its ability to inhibit (ERK-1/2), Akt and suppressing the levels of estrogen and insulin growth factor -1 (IGF-1) receptor. How these processes are manifested into the antitumor actions of resveratrol is not clear. Using microarray studies, we show that resveratrol reduced the expression of various prostate-tumor associated microRNAs (miRs) including miR-21 in androgen-receptor negative and highly aggressive human prostate cancer cells, PC-3M-MM2. This effect of resveratrol was associated with reduced cell viability, migration and invasiveness. Additionally, resveratrol increased the expression of tumor suppressors, PDCD4 and maspin, which are negatively regulated by miR-21. Short interfering (si) RNA against PDCD4 attenuated resveratrol’s effect on prostate cancer cells, and similar effects were observed following over expression of miR-21 with pre-miR-21 oligonucleotides. PC-3M-MM2 cells also exhibited high levels of phospho-Akt (pAkt), which were reduced by both resveratrol and LY294002 (a PI3-kinase inhibitor). MiR-21 expression in these cells appeared to be dependent on Akt, as LY294002 reduced the levels of miR-21 along with a concurrent increase in PDCD4 expression. These in vitro findings were further corroborated in a severe combined immunodeficient (SCID) mouse xenograft model of prostate cancer. Oral administration of resveratrol not only inhibited the tumor growth but also decreased the incidence and number of metastatic lung lesions. These tumor- and metastatic-suppressive effects of resveratrol were associated with reduced miR-21 and pAkt, and elevated PDCD4 levels. Similar anti-tumor effects of resveratrol were observed in DU145 and LNCaP prostate cancer cells which were associated with suppression of Akt and PDCD4, but

  16. Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Valeria Gabriela Antico Arciuch

    Full Text Available Akt is a serine/threonine kinase involved in cell proliferation, apoptosis, and glucose metabolism. Akt is differentially activated by growth factors and oxidative stress by sequential phosphorylation of Ser(473 by mTORC2 and Thr(308 by PDK1. On these bases, we investigated the mechanistic connection of H(2O(2 yield, mitochondrial activation of Akt1 and cell cycle progression in NIH/3T3 cell line with confocal microscopy, in vivo imaging, and directed mutagenesis. We demonstrate that modulation by H(2O(2 entails the entrance of cytosolic P-Akt1 Ser(473 to mitochondria, where it is further phosphorylated at Thr(308 by constitutive PDK1. Phosphorylation of Thr(308 in mitochondria determines Akt1 passage to nuclei and triggers genomic post-translational mechanisms for cell proliferation. At high H(2O(2, Akt1-PDK1 association is disrupted and P-Akt1 Ser(473 accumulates in mitochondria in detriment to nuclear translocation; accordingly, Akt1 T308A is retained in mitochondria. Low Akt1 activity increases cytochrome c release to cytosol leading to apoptosis. As assessed by mass spectra, differential H(2O(2 effects on Akt1-PDK interaction depend on the selective oxidation of Cys(310 to sulfenic or cysteic acids. These results indicate that Akt1 intramitochondrial-cycling is central for redox modulation of cell fate.

  17. Akt recruits Dab2 to albumin endocytosis in the proximal tubule.

    Science.gov (United States)

    Koral, Kelly; Li, Hui; Ganesh, Nandita; Birnbaum, Morris J; Hallows, Kenneth R; Erkan, Elif

    2014-12-15

    Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule.

  18. Cbl-b and PI3K/Akt pathway are differently involved in oxygen-glucose deprivation preconditioning in PC12 cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; YU Huan; ZOU Wei; WANG Yan-fu; LIANG Xiao-feng; ZHANG Bo; KONG Jing-jing

    2013-01-01

    Background Transient sublethal ischemia is known as ischemic preconditioning,which enables cells and tissues to survive subsequent prolonged lethal ischemic injury.Ischemic preconditioning exerts neuroprotection through phosphatidylinositol 3-kinase (PI3K)/Akt pathway.Cbl-b belongs to the Casitas B-lineage lymphoma (Cbl) family,and it can regulate the cell signal transduction.The roles of ubiquitin ligase Cbl-b and PI3K/Akt pathway and the relationship between them in oxygen-glucose deprivation preconditioning (OGDPC) in PC12 cells were investigated in the present study.Methods Oxygen and glucose deprivation (OGD) model in PC12 cells was used in the present study.The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay,nuclear staining with Hoechst 33258,and Western blotting were applied to explore the roles of Cbl-b and PI3K/Akt pathway and the relationship between them in OGDPC in PC12 cells.Results Cell viability was significantly changed by OGD and OGDPC.OGD significantly decreased cell viability compared with the control group (P <0.05),and preconditioning could rescue this damage was demonstrated by the increase of cell viability (P <0.05).The expression of Cbl-b was significantly increased after OGD treatment.However,the activation of Akt and GSK3β was greatly inhibited.Preconditioning could inhibit the increase of Cbl-b caused by OGD and increase the activation of Akt and GSK3β.LY294002,a specific inhibitor of PI3K,could effectively inhibit the increase of Akt and GSK3β after preconditioning treatment.It partly inhibited the decrease of Cbl-b expression after preconditioning treatment.Conclusion Ubiquitin ligase Cbl-b and PI3K/Akt pathway are differently involved in OGDPC in PC12 cells.

  19. Insulin Regulates Adipocyte Lipolysis via an Akt-Independent Signaling Pathway ▿

    Science.gov (United States)

    Choi, Sarah M.; Tucker, David F.; Gross, Danielle N.; Easton, Rachael M.; DiPilato, Lisa M.; Dean, Abigail S.; Monks, Bob R.; Birnbaum, Morris J.

    2010-01-01

    After a meal, insulin suppresses lipolysis through the activation of its downstream kinase, Akt, resulting in the inhibition of protein kinase A (PKA), the main positive effector of lipolysis. During insulin resistance, this process is ineffective, leading to a characteristic dyslipidemia and the worsening of impaired insulin action and obesity. Here, we describe a noncanonical Akt-independent, phosphoinositide-3 kinase (PI3K)-dependent pathway that regulates adipocyte lipolysis using restricted subcellular signaling. This pathway selectively alters the PKA phosphorylation of its major lipid droplet-associated substrate, perilipin. In contrast, the phosphorylation of another PKA substrate, hormone-sensitive lipase (HSL), remains Akt dependent. Furthermore, insulin regulates total PKA activity in an Akt-dependent manner. These findings indicate that localized changes in insulin action are responsible for the differential phosphorylation of PKA substrates. Thus, we identify a pathway by which insulin regulates lipolysis through the spatially compartmentalized modulation of PKA. PMID:20733001

  20. Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway.

    Science.gov (United States)

    Choi, Sarah M; Tucker, David F; Gross, Danielle N; Easton, Rachael M; DiPilato, Lisa M; Dean, Abigail S; Monks, Bob R; Birnbaum, Morris J

    2010-11-01

    After a meal, insulin suppresses lipolysis through the activation of its downstream kinase, Akt, resulting in the inhibition of protein kinase A (PKA), the main positive effector of lipolysis. During insulin resistance, this process is ineffective, leading to a characteristic dyslipidemia and the worsening of impaired insulin action and obesity. Here, we describe a noncanonical Akt-independent, phosphoinositide-3 kinase (PI3K)-dependent pathway that regulates adipocyte lipolysis using restricted subcellular signaling. This pathway selectively alters the PKA phosphorylation of its major lipid droplet-associated substrate, perilipin. In contrast, the phosphorylation of another PKA substrate, hormone-sensitive lipase (HSL), remains Akt dependent. Furthermore, insulin regulates total PKA activity in an Akt-dependent manner. These findings indicate that localized changes in insulin action are responsible for the differential phosphorylation of PKA substrates. Thus, we identify a pathway by which insulin regulates lipolysis through the spatially compartmentalized modulation of PKA.

  1. PI3K-Akt signaling pathway upregulates hepatitis C virus RNA translation through the activation of SREBPs.

    Science.gov (United States)

    Shi, Qing; Hoffman, Brett; Liu, Qiang

    2016-03-01

    Hepatitis C virus (HCV) activates PI3K-Akt signaling to enhance entry and replication. Here, we found that this pathway also increased HCV translation. Knocking down the three Akt isoforms significantly decreased, whereas ectopic expression increased HCV translation. HCV translation upregulation by Akt required their kinase activities because Akt kinase-dead mutants downregulated HCV translation; and was dependent on PI3K activity since it was sensitive to PI3K inhibitor wortmannin. The viral 3'UTR was not involved in translation upregulation by Akt. HCV NS5A increased Akt phosphorylation/activity and HCV translation in the absence of the viral 3'UTR. Sterol regulatory element-binding proteins (SREBPs) were the downstream effectors of the PI3K-Akt pathway in regulating HCV translation because Akt1 and Akt2 activated both SREBP-1 and SREBP-2, whereas Akt3 upregulated SREBP-1. Knocking down SREBPs significantly decreased, while ectopic expression of SREBPs increased HCV translation. Taken together, we showed that the PI3K-Akt signaling pathway positively regulates HCV translation through SREBPs.

  2. The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance.

    Science.gov (United States)

    Dai, Bing; Wu, Qinxuan; Zeng, Chengxi; Zhang, Jiani; Cao, Luting; Xiao, Zizeng; Yang, Menglin

    2016-11-04

    Liuwei Dihaung decoction (LWDHT) is a well-known classic traditional Chinese medicine formula, consists of six herbs including Rehmannia glutinosa Libosch.(family: Scrophulariaceae), Cornus officinalis Sieb.(family: Cornaceae), Dioscorea opposite Thunb.(family: Dioscoreaceae), Alisma orientale(G. Samuelsson) Juz (family: Alismataceae), Poria cocos (Schw.) Wolf (family: Polyporaceae) and Paeonia suffruticosa Andrews (family: Paeoniaceae). It has been used in the treatment of many types of diseases with signs of deficiency of Yin in the kidneys in China clinically. This study is aimed at investigating the effect of Liuwei dihuang decoction on PI3K/Akt signaling pathway in liver of T2DM rats with insulin resistance. T2DM model was induced in male Sprague-Dawley (SD) rats by high sugar and high fat diets combined with small dose of streptozocin (STZ) injection. The successful T2DM rats were randomly allocated three group--vehicle group, positive control group and Liuwei Dihuang decoction group. After 12-weeks treatment with distilled water, rosiglitazone and LWDHT by intragastric administration respectively, the rats were put to death in batches. The variance of fasting blood glucose (FBG) and fasting insulin (FINS) in serum were determined, the pathological changes of each rats' liver were observed by hematoxylin-eosin (HE) staining, the expression of insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase (PI3K) and protein kinas B (Akt) involving the canonical PI3K/Akt signaling pathway were detected by Real-time fluorescent quantitative PCR (RT-PCR), and the expression level of IRS2, PI3K, Akt protein and phosphorylated IRS2, PI3K, Akt protein were evaluated by Western Blot. All the data were analyzed by SPSS 17.0. Four weeks of treatment with LWDHT could significantly decrease the level of FBG and FINS in serum, improve the cellular morphology of liver, kidney, pancreas tissue, and the expression of IRS2, PI3K, Akt mRNA and phosphorylated IRS2, PI3K, Akt

  3. Visual detection of Akt mRNA in living cell using gold nanoparticle beacon

    Science.gov (United States)

    Ma, Yi; Tian, Caiping; Li, Siwen; Wang, Zhaohui; Gu, Yueqing

    2014-09-01

    PI3K-Akt signaling pathway plays the key role in cell apoptosis and survival, and the components of PI3K /Akt signaling pathway are often abnormally expressed in human tumors. Therefore, determination of the Akt (protein kinase B, PKB) messenger ribonucleic acid (mRNA) expression is significantly important in understanding the mechanism of tumor progression. In this study, we designed a special hairpin deoxyribonucleic acid (DNA) functionalized with gold nanoparticles and fluorescein isothiocyanate(FITC) as a beacon for detecting human Akt mRNA. Spectrofluorometer was used to detect the fluorescence quenching and recovery of the beacons, and laser confocal scanning microscopy was adopted to image Akt mRNA in cells. The results showed that this beacon could sensitively and quantitatively measure the Akt mRNA in living cells . This strategy is potentially useful for the cellular imaging of RNA or protein expression in living cells.

  4. Effect of paired using tangerine peel and ternate pinellia tuber on the expressions of phosphatidylinositol 3-kinase and phosphorylation of protein kinase B/Akt in rabbits with carotid atherosclerosis%配对使用陈皮半夏对颈动脉粥样硬化家兔磷脂酰肌醇3激酶和磷酸化蛋白激酶B表达的影响

    Institute of Scientific and Technical Information of China (English)

    陈文强; 黄小波; 王宁群; 陈玉静

    2014-01-01

    Objective To investigate paired using tangerine peel and ternate pinellia tuber to regulate phosphatidylinositol 3-kinase (PI3K)and protein kinase B (p-Akt)signal pathways in rabbits in order to treat carotid atherosclerosis. Methods According to a random number table,20 rabbits were divided into 4 groups:a control,a model,a tangerine peel and ternate pinellia tuber,and a tangerine peel and ternate pinellia tuber+LY294002 (a PI3K/Akt signal pathway specific inhibitor)group (n=5 in each group). The rabbits in the control group were fed with basal diet,while those in other groups were given high-cholesterol diet and air drying of carotid artery intima were performed. After procedure,the rabbits in the tangerine peel and ternate pinellia tuber group and the tangerine peel and ternate pinellia tuber +LY294002 group were treated with the decoction of traditional Chinese medicine. Carotid atherosclerosis was observed via HE staining;the effect of tangerine peel and ternate pinellia tuber on the expressions of PI3K and p-Akt in rabbits with carotid atherosclerosis was observed by western blot. Results (1)the expressions of PI3K and p-Akt in carotid in the model group were 107. 0 ± 2. 6 and 113. 0 ± 1. 7,and those in the tangerine peel and ternate pinellia tuber group were 174. 7 ± 14. 5 and 186. 3 ± 18. 3. There were significant differences between the two groups (P <0. 01). After using PI3K/Akt signal pathway specific inhibitor LY294002,the expressions of PI3K and p-Akt (117. 0 ± 4. 0,127. 3 ± 4. 7)were lower than the tangerine peel and ternate pinellia tuber group. There were significant differences between the two groups (P <0. 01). (2)The tangerine peel and ternate pinellia tuber group had mild intimal hyperplasia and foam cell formation under the artery intima,however,they were better than those of the model group and the tangerine peel and ternate pinellia tuber+LY294002 group. Conclusion Tangerine peel and ternate pinellia tuber may play a role in the

  5. Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells.

    Science.gov (United States)

    Gu, Zhennan; Wu, Jiansheng; Wang, Shihua; Suburu, Janel; Chen, Haiqin; Thomas, Michael J; Shi, Lihong; Edwards, Iris J; Berquin, Isabelle M; Chen, Yong Q

    2013-09-01

    AKT is a serine-threonine protein kinase that plays important roles in cell growth, proliferation and apoptosis. It is activated after binding to phosphatidylinositol phosphates (PIPs) with phosphate groups at positions 3,4 and 3,4,5 on the inositol ring. In spite of extensive research on AKT, one aspect has been largely overlooked, namely the role of the fatty acid chains on PIPs. PIPs are phospholipids composed of a glycerol backbone with fatty acids at the sn-1 and sn-2 position and inositol at the sn-3 position. Here, we show that polyunsaturated fatty acids (PUFAs) modify phospholipid content. Docosahexaenoic acid (DHA), an ω3 PUFA, can replace the fatty acid at the sn-2 position of the glycerol backbone, thereby changing the species of phospholipids. DHA also inhibits AKT(T308) but not AKT(S473) phosphorylation, alters PI(3,4,5)P3 (PIP3) and phospho-AKT(S473) protein localization, decreases pPDPK1(S241)-AKT and AKT-BAD interaction and suppresses prostate tumor growth. Our study highlights a potential novel mechanism of cancer inhibition by ω3 PUFA through alteration of PIP3 and AKT localization and affecting the AKT signaling pathway.

  6. Akt2 Deficiency is Associated with Anxiety and Depressive Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Christina Leibrock

    2013-09-01

    Full Text Available Background: The economic burden associated with major depressive disorder and anxiety disorders render both disorders the most common and debilitating psychiatric illnesses. To date, the exact cellular and molecular mechanisms underlying the pathophysiology, successful treatment and prevention of these highly associated disorders have not been identified. Akt2 is a key protein in the phosphatidylinositide-3 (PI3K / glycogen synthase 3 kinase (GSK3 signaling pathway, which in turn is involved in brain-derived neurotrophic factor (BDNF effects on fear memory, mood stabilisation and action of several antidepressant drugs. The present study thus explored the impact of Akt2 on behaviour of mice. Methods: Behavioural studies (Open-Field, Light-Dark box, O-Maze, Forced Swimming Test, Emergence Test, Object Exploration Test, Morris Water Maze, Radial Maze have been performed with Akt2 knockout mice (akt-/- and corresponding wild type mice (akt+/+. Results: Anxiety and depressive behavior was significantly higher in akt-/- than in akt+/+ mice. The akt-/- mice were cognitively unimpaired but displayed increased anxiety in several behavioral tests (O-Maze test, Light-Dark box, Open Field test. Moreover, akt-/- mice spent more time floating in the Forced Swimming test, which is a classical feature of experimental depression. Conclusion: Akt2 might be a key factor in the pathophysiology of depression and anxiety.

  7. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Adi, Y. A., E-mail: yudi.adi@math.uad.ac.id [Department of Mathematic Faculty of MIPA Universitas Ahmad Dahlan (Indonesia); Department of Mathematic Faculty of MIPA Universitas Gadjah Mada (Indonesia); Kusumo, F. A.; Aryati, L. [Department of Mathematic Faculty of MIPA Universitas Gadjah Mada (Indonesia); Hardianti, M. S. [Department of Internal Medicine, Faculty of Medicine, Universitas Gadjah Mada (Indonesia)

    2016-04-06

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  8. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    Science.gov (United States)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  9. Akt-mediated regulation of antidepressant-sensitive serotonin transporter function, cell-surface expression and phosphorylation.

    Science.gov (United States)

    Rajamanickam, Jeyaganesh; Annamalai, Balasubramaniam; Rahbek-Clemmensen, Troels; Sundaramurthy, Santhanalakshmi; Gether, Ulrik; Jayanthi, Lankupalle D; Ramamoorthy, Sammanda

    2015-05-15

    The serotonin [5-HT (5-hydroxytryptamine)] transporter (SERT) controls serotonergic neurotransmission in the brain by rapid clearance of 5-HT from the synaptic cleft into presynaptic neurons. SERTs are primary targets for antidepressants for therapeutic intervention of mood disorders. Our previous studies have identified the involvement of several signalling pathways and protein kinases in regulating SERT function, trafficking and phosphorylation. However, whether Akt/PKB (protein kinase) regulates SERT function is not known. In the present study, we made the novel observation that inhibition of Akt resulted in the down-regulation of SERT function through the regulation of SERT trafficking and phosphorylation. Akt inhibitor Akt X {10-(4'-[N-diethylamino)butyl]-2-chlorophenoxazine} reduced the endogenously phosphorylated Akt and significantly decreased 5-HT uptake and 5-HT-uptake capacity. Furthermore, SERT activity is also reduced by siRNA down-regulation of total and phospho-Akt levels. The reduction in SERT activity is paralleled by lower levels of cell-surface SERT protein, reduced SERT exocytosis with no effect on SERT endocytosis and accumulation of SERT in intracellular endocytic compartments with the most prominent localization to late endosomes and lysosomes. Akt2 inhibitor was more effective than Akt1 inhibitor in inhibiting SERT activity. Inhibition of downstream Akt kinase GSK3α/β (glycogen synthase kinase α/β) stimulates SERT function. Akt inhibition leads to a decrease in SERT basal phosphorylation. Our results provide evidence that Akt regulates SERT function and cell-surface expression by regulating the intracellular SERT distribution and plasma membrane availability, which perhaps may be linked to SERT phosphorylation state. Thus any changes in the activation of Akt and/or GSK3α/β could alter SERT-mediated 5-HT clearance and subsequently serotonergic neurotransmission.

  10. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Wada, Eiji, E-mail: gacchu1@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Zammit, Peter S., E-mail: peter.zammit@kcl.ac.uk [Randall Division of Cell and Molecular Biophysics, King' s College London, London SE1 1UL (United Kingdom); Shiozuka, Masataka, E-mail: cmuscle@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Matsuda, Ryoichi, E-mail: cmatsuda@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan)

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  11. Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury via PI3K/Akt pathway.

    Science.gov (United States)

    Wang, Jun-Kuan; Yu, Li-Na; Zhang, Feng-Jiang; Yang, Mei-Juan; Yu, Jing; Yan, Min; Chen, Gao

    2010-10-21

    Emerging evidence has demonstrated that postconditioning with sevoflurane provided neuroprotection. In this study, we investigated the neuroprotective effect of different concentrations of sevoflurane in rats with middle cerebral artery occlusion (MCAO). Furthermore, we tested the hypothesis that the neuroprotective effect of postconditioning with sevoflurane is associated with inhibition of apoptosis and mediated by activation of the phosphoinositide-3-kinase/Akt (PI3K/Akt) pathway. Adult male Sprague-Dawley rats were subjected to MCAO for 90 min and then treated with sevoflurane at the beginning of reperfusion. The infarct volume, neurological deficit scores and brain edema were evaluated at 24 hours. Spatial learning and memory was examined by Morris water maze. Apoptosis and apoptosis-related proteins were studied by TUNEL, immunohistochemistry and western blot. The neuroprotective effect and the amount of p-Akt after sevoflurane administration with or without wortmannin were analyzed. Postconditioning with sevoflurane 1.0 minimum alveolar concentration (MAC) and 1.5 MAC significantly decreased neurological deficit scores, infarct volume and brain edema and markedly improved spatial learning and memory. Postconditioning also reduced apoptotic cells, upregulated Bcl-2 and downregulated P53 and Bax. Wortmannin abolished the neuroprotective effect and prevented the increasing of p-Akt. Our data suggest postconditioning with sevoflurane (1.0 MAC and 1.5 MAC) not only reduced infarct volume but also improved learning and memory. Our study further showed that this neuroprotective effect may be partly due to the activation of PI3K/Akt pathway and inhibiting neuronal apoptosis.

  12. Activation of Akt by the bacterial inositol phosphatase, SopB, is wortmannin insensitive.

    Directory of Open Access Journals (Sweden)

    Kendal G Cooper

    Full Text Available Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on phosphatidyl inositide 3 kinase (PI3K. Here we have investigated these two distinct processes in Salmonella infected HeLa cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85α and p85ß by RNAi had no inhibitory effect on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases, PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella ruffles and suggest that this is mediated by phosphoinositide (3,4 P(2 rather than phosphoinositide (3,4,5 P(3. Altogether these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-independent process that incorporates some essential elements of the canonical pathway.

  13. The role of mouse Akt2 in insulin-dependent suppression of adipocyte lipolysis in vivo

    Science.gov (United States)

    Koren, Shlomit; DiPilato, Lisa M.; Emmett, Matthew J.; Shearin, Abigail L.; Chu, Qingwei; Monks, Bob; Birnbaum, Morris J.

    2015-01-01

    Aim/hypothesis The release of fatty acids from adipocytes, i.e. lipolysis, is maintained under tight control, primarily by the opposing actions of catecholamines and insulin. A widely accepted model is that insulin antagonises catecholamine-dependent lipolysis through phosphorylation and activation of cAMP phosphodiesterase 3B (PDE3B) by the serine-threonine protein kinase Akt (protein kinase B). Recently, this hypothesis has been challenged, as in cultured adipocytes insulin appears, under some conditions, to suppress lipolysis independently of Akt. Methods To address the requirement for Akt2, the predominant isoform expressed in classic insulin target tissues, in the suppression of fatty acid release in vivo, we assessed lipolysis in mice lacking Akt2. Results In the fed state and following an oral glucose challenge, Akt2 null mice were glucose intolerant and hyperinsulinaemic, but nonetheless exhibited normal serum NEFA and glycerol levels, suggestive of normal suppression of lipolysis. Furthermore, insulin partially inhibited lipolysis in Akt2 null mice during an insulin tolerance test (ITT) and hyperinsulinaemic–euglycaemic clamp, respectively. In support of these in vivo observations, insulin antagonised catecholamine-induced lipolysis in primary brown fat adipocytes from Akt2-deficient nice. Conclusion These data suggest that suppression of lipolysis by insulin in hyperinsulinaemic states can take place in the absence of Akt2. PMID:25740694

  14. Interleukin-10-induced gene expression and suppressive function are selectively modulated by the PI3K-Akt-GSK3 pathway

    Science.gov (United States)

    Antoniv, Taras T; Ivashkiv, Lionel B

    2011-01-01

    Interleukin-10 (IL-10) is an immunosuppressive cytokine that inhibits inflammatory gene expression. Phosphatidylinositol 3-kinase (PI3K) -mediated signalling regulates inflammatory responses and can induce IL-10 production, but a role for PI3K signalling in cellular responses to IL-10 is not known. In this study we investigated the involvement of the PI3K-Akt-GSK3 signalling pathway in IL-10-induced gene expression and IL-10-mediated suppression of Toll-like receptor-induced gene expression in primary human macrophages. A combination of loss and gain of function approaches using kinase inhibitors, expression of constitutively active Akt, and RNA interference in primary human macrophages showed that expression of a subset of IL-10-inducible genes was dependent on PI3K-Akt signalling. The effects of PI3K-Akt signalling on IL-10 responses were mediated at least in part by glycogen synthase kinase 3 (GSK3). In accordance with a functional role for PI3K pathways in contributing to the suppressive actions of IL-10, PI3K signalling augmented IL-10-mediated inhibition of lipopolysaccharide-induced IL-1, IL-8 and cyclo-oxygenase-2 expression. The PI3K signalling selectively modulated IL-10 responses, as it was not required for inhibition of tumour necrosis factor expression or for induction of certain IL-10-inducible genes such as SOCS3. These findings identify a new mechanism by which PI3K-mediated signalling can suppress inflammation by regulating IL-10-mediated gene induction and anti-inflammatory function. PMID:21255011

  15. Association of MTOR and AKT Gene Polymorphisms with Susceptibility and Survival of Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Ying Piao

    Full Text Available The phosphoinositide 3-kinase (PI3K/protein kinase B (PKB, AKT/mammalian target of rapamycin (mTOR signaling pathway plays a critical role in angiogenesis and cell growth, proliferation, metabolism, migration, differentiation, and apoptosis. Genetic diversity in key factors of this pathway may influence protein function and signal transduction, contributing to disease initiation and progression. Studies suggest that MTOR rs1064261 and AKT rs1130233 polymorphisms are associated with risk and/or prognosis of multiple cancer types. However, this relationship with gastric cancer (GC remains unclear. The aim of this study was to investigate the role of MTOR and AKT polymorphisms in the risk and prognosis of GC.The Sequenom MassARRAY platform was used to genotype 1842 individuals for MTOR rs1064261 T→C and AKT rs1130233 G→A polymorphisms. ELISA was used to detect Helicobacter pylori antibodies in serum. Immunohistochemical analysis was used to detect total and phosphorylated MTOR and AKT proteins.The MTOR rs1064261 (TC+CC genotype and the AKT rs1130233 (GA+AA genotype were associated with increased risk of GC in men (P = 0.049, P = 0.030. In H. pylori-negative individuals, the AKT rs1130233 GA and (GA+AA genotypes were related to increased risk of atrophic gastritis (AG; P = 0.012, P = 0.024. Notably, the AKT rs1130233 (GA+AA genotype demonstrated significant interactions with H. pylori in disease progression from healthy controls (CON to AG (P = 0.013 and from AG to GC (P = 0.049. Additionally, for individuals with the AKT rs1130233 variant, those in the H. pylori-positive group had higher levels of phosphorylated AKT (p-AKT expression. The AKT rs1130233 genotype was found to be associated with clinicopathological parameters including lymph node metastasis and alcohol drinking (P<0.05.MTOR rs1064261and AKT rs1130233 polymorphisms were associated with increased GC risk in males and increased AG risk in H. pylori-negative individuals. A significant

  16. A critical role of the small GTPase Rac1 in Akt2-mediated GLUT4 translocation in mouse skeletal muscle.

    Science.gov (United States)

    Takenaka, Nobuyuki; Izawa, Rumi; Wu, Junyuan; Kitagawa, Kaho; Nihata, Yuma; Hosooka, Tetsuya; Noguchi, Tetsuya; Ogawa, Wataru; Aiba, Atsu; Satoh, Takaya

    2014-03-01

    Insulin promotes glucose uptake in skeletal muscle by inducing the translocation of the glucose transporter GLUT4 to the plasma membrane. The serine/threonine kinase Akt2 has been implicated as a key regulator of this insulin action. However, the mechanisms whereby Akt2 regulates multiple steps of GLUT4 translocation remain incompletely understood. Recently, the small GTPase Rac1 has been identified as a skeletal muscle-specific regulator of insulin-stimulated glucose uptake. Here, we show that Rac1 is a critical downstream component of the Akt2 pathway in mouse skeletal muscle as well as cultured myocytes. GLUT4 translocation induced by constitutively activated Akt2 was totally dependent on the expression of Rac1 in L6 myocytes. Moreover, we observed the activation of Rac1 when constitutively activated Akt2 was ectopically expressed. Constitutively activated Akt2-triggered Rac1 activation was diminished by knockdown of FLJ00068, a guanine nucleotide exchange factor for Rac1. Knockdown of Akt2, on the other hand, markedly reduced Rac1 activation by a constitutively activated mutant of phosphoinositide 3-kinase. In mouse skeletal muscle, constitutively activated mutants of Akt2 and phosphoinositide 3-kinase, when ectopically expressed, induced GLUT4 translocation. Muscle-specific rac1 knockout markedly diminished Akt2- or phosphoinositide 3-kinase-induced GLUT4 translocation, highlighting a crucial role of Rac1 downstream of Akt2. Taken together, these results strongly suggest a novel regulatory link between Akt2 and Rac1 in insulin-dependent signal transduction leading to glucose uptake in skeletal muscle.

  17. Quercetin Inhibits Angiogenesis Mediated Human Prostate Tumor Growth by Targeting VEGFR- 2 Regulated AKT/mTOR/P70S6K Signaling Pathways

    Science.gov (United States)

    Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok; Wang, Xin; Zhang, Zhuo; Ding, Songze; Wang, Lei; Hitron, Andrew; Lee, Jeong-Chae; Xu, Mei; Chen, Gang; Luo, Jia; Shi, Xianglin

    2012-01-01

    Angiogenesis is a crucial step in the growth and metastasis of cancers, since it enables the growing tumor to receive oxygen and nutrients. Cancer prevention using natural products has become an integral part of cancer control. We studied the antiangiogenic activity of quercetin using ex vivo, in vivo and in vitro models. Rat aortic ring assay showed that quercetin at non-toxic concentrations significantly inhibited microvessel sprouting and exhibited a significant inhibition in the proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Most importantly, quercetin treatment inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Western blot analysis showed that quercetin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, mTOR, and ribosomal protein S6 kinase in HUVECs. Quercetin (20 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that quercetin inhibited tumorigenesis by targeting angiogenesis. Furthermore, quercetin reduced the cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Collectively the findings in the present study suggest that quercetin inhibits tumor growth and angiogenesis by targeting VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy. PMID:23094058

  18. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways.

    Directory of Open Access Journals (Sweden)

    Poyil Pratheeshkumar

    Full Text Available Angiogenesis is a crucial step in the growth and metastasis of cancers, since it enables the growing tumor to receive oxygen and nutrients. Cancer prevention using natural products has become an integral part of cancer control. We studied the antiangiogenic activity of quercetin using ex vivo, in vivo and in vitro models. Rat aortic ring assay showed that quercetin at non-toxic concentrations significantly inhibited microvessel sprouting and exhibited a significant inhibition in the proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Most importantly, quercetin treatment inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM and matrigel plug assay. Western blot analysis showed that quercetin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, mTOR, and ribosomal protein S6 kinase in HUVECs. Quercetin (20 mg/kg/d significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that quercetin inhibited tumorigenesis by targeting angiogenesis. Furthermore, quercetin reduced the cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Collectively the findings in the present study suggest that quercetin inhibits tumor growth and angiogenesis by targeting VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy.

  19. Targeting the AKT pathway: Repositioning HIV protease inhibitors as radiosensitizers

    Directory of Open Access Journals (Sweden)

    Jayant S Goda

    2016-01-01

    Full Text Available Cellular resistance in tumour cells to different therapeutic approaches has been a limiting factor in the curative treatment of cancer. Resistance to therapeutic radiation is a common phenomenon which significantly reduces treatment options and impacts survival. One of the mechanisms of acquiring resistance to ionizing radiation is the overexpression or activation of various oncogenes like the EGFR (epidermal growth factor receptor, RAS (rat sarcoma oncogene or loss of PTEN (phosphatase and tensin homologue which in turn activates the phosphatidyl inositol 3-kinase/protein kinase B (PI3-K/AKT pathway responsible for radiation resistance in various tumours. Blocking the pathway enhances the radiation response both in vitro and in vivo. Due to the differential activation of this pathway (constitutively activated in tumour cells and not in the normal host cells, it is an excellent candidate target for molecular targeted therapy to enhance radiation sensitivity. In this regard, HIV protease inhibitors (HPIs known to interfere with PI3-K/AKT signaling in tumour cells, have been shown to sensitize various tumour cells to radiation both in vitro and in vivo. As a result, HPIs are now being investigated as possible radiosensitizers along with various chemotherapeutic drugs. This review describes the mechanisms by which PI3-K/AKT pathway causes radioresistance and the role of HIV protease inhibitors especially nelfinavir as a potential candidate drug to target the AKT pathway for overcoming radioresistance and its use in various clinical trials for different malignancies.

  20. Targeting the AKT pathway: Repositioning HIV protease inhibitors as radiosensitizers.

    Science.gov (United States)

    Goda, Jayant S; Pachpor, Tejaswini; Basu, Trinanjan; Chopra, Supriya; Gota, Vikram

    2016-02-01

    Cellular resistance in tumour cells to different therapeutic approaches has been a limiting factor in the curative treatment of cancer. Resistance to therapeutic radiation is a common phenomenon which significantly reduces treatment options and impacts survival. One of the mechanisms of acquiring resistance to ionizing radiation is the overexpression or activation of various oncogenes like the EGFR (epidermal growth factor receptor), RAS (rat sarcoma) oncogene or loss of PTEN (phosphatase and tensin homologue) which in turn activates the phosphatidyl inositol 3-kinase/protein kinase B (PI3-K)/AKT pathway responsible for radiation resistance in various tumours. Blocking the pathway enhances the radiation response both in vitro and in vivo. Due to the differential activation of this pathway (constitutively activated in tumour cells and not in the normal host cells), it is an excellent candidate target for molecular targeted therapy to enhance radiation sensitivity. In this regard, HIV protease inhibitors (HPIs) known to interfere with PI3-K/AKT signaling in tumour cells, have been shown to sensitize various tumour cells to radiation both in vitro and in vivo. As a result, HPIs are now being investigated as possible radiosensitizers along with various chemotherapeutic drugs. This review describes the mechanisms by which PI3-K/AKT pathway causes radioresistance and the role of HIV protease inhibitors especially nelfinavir as a potential candidate drug to target the AKT pathway for overcoming radioresistance and its use in various clinical trials for different malignancies.

  1. Role of Akt and mammalian target of rapamycin in functional outcome after concussive brain injury in mice.

    Science.gov (United States)

    Zhu, Xiaoxia; Park, Juyeon; Golinski, Julianne; Qiu, Jianhua; Khuman, Jugta; Lee, Christopher C H; Lo, Eng H; Degterev, Alexei; Whalen, Michael J

    2014-09-01

    Akt (protein kinase B) and mammalian target of rapamycin (mTOR) have been implicated in the pathogenesis of cell death and cognitive outcome after cerebral contusion in mice; however, a role for Akt/mTOR in concussive brain injury has not been well characterized. In a mouse closed head injury (CHI) concussion traumatic brain injury (TBI) model, phosphorylation of Akt (p-Akt), mTOR (p-mTOR), and S6RP (p-S6RP) was increased by 24 hours in cortical and hippocampal brain homogenates (Pconcussion TBI independent of cell death that may contribute to improved outcome by Nec-1.

  2. Genetic Association between Akt1 Polymorphisms and Alzheimer's Disease in a Japanese Population

    Directory of Open Access Journals (Sweden)

    Nobuto Shibata

    2011-01-01

    Full Text Available A recent paper reported that Aβ oligomer causes neuronal cell death through the phosphatidylinositol-3-OH kinase (PI3K-Akt-mTOR signaling pathway. Intraneuronal Aβ, a main pathological finding of Alzheimer's disease (AD, is also known as inhibiting activation of Akt. This study aims to investigate whether single nucleotide polymorphisms (SNPs of the Akt1 gene are associated with AD. SNPs genotyped using TaqMan technology was analyzed using a case-control study design. Our case-control dataset consisted of 180 AD patients and 130 age-matched controls. Although two SNPs showed superficial positive, Hardy-Weinberg equilibrium (HWE tests, and linkage disequilibrium (LD analyses suggested that genetic regions of the gene are highly polymorphic. We failed to detect any synergetic association among Akt1 polymorphisms, Apolipoprotein E (APO E, and AD. Further genetic studies are needed to clarify the relationship between the Akt1 and AD.

  3. Systematic Analysis Reveals Elongation Factor 2 and α-Enolase as Novel Interaction Partners of AKT2.

    Directory of Open Access Journals (Sweden)

    Katharina Bottermann

    Full Text Available AKT2 is one of the three isoforms of the protein kinase AKT being involved in the modulation of cellular metabolism. Since protein-protein interactions are one possibility to convey specificity in signal transduction, we performed AKT2-protein interaction analysis to elucidate their relevance for AKT2-dependent cellular functions. We identified heat shock protein 90 kDa (HSP90, Cdc37, heat shock protein 70 kDa (HSP70, 78 kDa glucose regulated protein (GRP78, tubulin, GAPDH, α-enolase and elongation factor 2 (EF2 as AKT2-interacting proteins by a combination of tandem affinity purification and mass spectrometry in HEK293T cells. Quantitative MS-analysis using stable isotope labeling by amino acids in cell culture (SILAC revealed that only HSP90 and Cdc37 interact stably with AKT2, whereas the other proteins interact with low affinity with AKT2. The interactions of AKT2 with α-enolase and EF2 were further analyzed in order to uncover the functional relevance of these newly discovered binding partners. Despite the interaction of AKT2 and α-enolase, which was additionally validated by proximity ligation assay (PLA, no significant impact of AKT on α-enolase activity was detected in activity measurements. AKT stimulation via insulin and/or inhibition with the ATP-competitive inhibitor CCT128930 did not alter enzymatic activity of α-enolase. Interestingly, the direct interaction of AKT2 and EF2 was found to be dynamically regulated in embryonic rat cardiomyocytes. Treatment with the PI3-kinase inhibitor LY294002 before stimulation with several hormones stabilized the complex, whereas stimulation alone led to complex dissociation which was analyzed in situ with PLA. Taken together, these findings point to new aspects of AKT2-mediated signal transduction in protein synthesis and glucose metabolism.

  4. PI3K / Akt signaling regulates epithelialmesenchymal transition of peritoneal mesothelial cells in peritoneal dialysis

    Institute of Scientific and Technical Information of China (English)

    彭翔

    2014-01-01

    Objective To investigate the role of PI3K/Akt signaling in the regulation of epithelial-mesenchymal transition(EMT)of peritoneal mesothelial cells(PMCs)in peritoneal dialysis in vitro and in vivo.Methods The level of phosphorylated serine/threonine kinase Akt and the expression of EMT associated gene and protein,including ZO-1,Vimentin and FN,were measured in mice EMT model.In vitro study,phosphorylation level and

  5. Luteolin enhances cholinergic activities in PC12 cells through ERK1/2 and PI3K/Akt pathways.

    Science.gov (United States)

    El Omri, Abdelfatteh; Han, Junkyu; Kawada, Kiyokazu; Ben Abdrabbah, Manef; Isoda, Hiroko

    2012-02-09

    Luteolin, a 3', 4', 5, 7-tetrahydroxyflavone, is an active compound in Rosmarinus officinalis (Lamiacea), and has been reported to exert several benefits in neuronal cells. However cholinergic-induced activities of luteolin still remain unknown. Neuronal differentiation encompasses an elaborate developmental program which plays a key role in the development of the nervous system. The advent of several cell lines, like PC12 cells, able to differentiate in culture proved to be the turning point for gaining and understanding of molecular neuroscience. In this work, we investigated the ability of luteolin to induce PC12 cell differentiation and its effect on cholinergic activities. Our findings showed that luteolin treatment significantly induced neurite outgrowth extension, enhanced acetylcholinesterase (AChE) activity, known as neuronal differentiation marker, and increased the level of total choline and acetylcholine in PC12 cells. In addition, luteolin persistently, activated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; while the addition of pharmacological MEK/ERK1/2 inhibitor (U0126) and PI3k/Akt inhibitor (LY294002) attenuated luteolin-induced AChE activity and neurite outgrowth in PC12 cells. The above findings suggest that luteolin induces neurite outgrowth and enhanced cholinergic activities, at least in part, through the activation of ERK1/2 and Akt signaling.

  6. Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237 on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway

    Directory of Open Access Journals (Sweden)

    Niu NK

    2015-03-01

    mesenchymal transition (EMT and the underlying mechanisms in two human OS cell lines U-2 OS and MG-63. The results showed that ALS had potent growth inhibitory, pro-apoptotic, pro-autophagic, and EMT inhibitory effects on U-2 OS and MG-63 cells. ALS remarkably induced G2/M arrest and down-regulated the expression levels of cyclin-dependent kinases 1 and 2 and cyclin B1 in both U-2 OS and MG-63 cells. ALS markedly induced mitochondria-mediated apoptosis with a significant increase in the expression of key pro-apoptotic proteins and a decrease in main anti-apoptotic proteins. Furthermore, ALS promoted autophagic cell death via the inhibition of phosphatidylinositol 3-kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR and p38 mitogen-activated protein kinase (p38 MAPK signaling pathways, and activation of 5'-AMP-dependent kinase (AMPK signaling pathway. Inducers or inhibitors of apoptosis or autophagy simultaneously altered ALS-induced apoptotic and autophagic death in both U-2 OS and MG-63 cells, suggesting a crosstalk between these two primary modes of programmed cell death. Moreover, ALS suppressed EMT-like phenotypes with a marked increase in the expression of E-cadherin but a decrease in N-cadherin in U-2 OS and MG-63 cells. ALS treatment also induced reactive oxygen species (ROS generation but inhibited the expression levels of sirtuin 1 and nuclear factor-erythroid-2-related factor 2 (Nrf2 in both cell lines. Taken together, these findings show that ALS promotes apoptosis and autophagy but inhibits EMT via PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways with involvement of ROS- and sirtuin 1-associated pathways in U-2 OS and MG-63 cells. ALS is a promising anticancer agent in OS treatment and further studies are needed to confirm its efficacy and safety in OS chemotherapy. Keywords: ALS, autophagy, apoptosis, osteosarcoma, PI3K/Akt/mTOR pathway, EMT

  7. Bimatoprost protects retinal neuronal damage via Akt pathway.

    Science.gov (United States)

    Takano, Norihito; Tsuruma, Kazuhiro; Ohno, Yuta; Shimazawa, Masamitsu; Hara, Hideaki

    2013-02-28

    Worldwide, prostaglandin analogs, such as bimatoprost, have become the major therapeutic class for medical treatment of glaucoma because of their efficacy and generally well tolerated systemic safety profile. However, the detailed mechanism of the direct action of bimatoprost on retinal ganglion cells (RGC) has rarely been understood. Thus, in this study, we elucidated the mechanism of the protective effects of bimatoprost on RGC against oxidative stress. To examine the protective effects of bimatoprost, cultured RGC with various concentrations of bimatoprost (in both free acid and amide form) were exposed to l-buthionin-(S,R)-sulfoximine (BSO) plus glutamate or serum depletion in vitro and intravitreal injection of N-methyl-D-aspartate (NMDA) was used to induce retinal damage in vivo. To elucidate the protective mechanism of bimatoprost, we used western blot analysis to investigate the phosphorylation of Akt and extracellular signal-regulated kinase (ERK). Bimatoprost significantly reduced BSO plus glutamate- and serum deprivation-induced death in concentration-dependent manners. Bimatoprost induced activation of Akt and ERK, and a phosphatidylinositol 3-kinase inhibitor, LY294002, attenuated the protective effect of bimatoprost. On the other hand, a mitogen-activated protein kinase kinase inhibitor, U0126, exhibited protective effect unexpectedly. Moreover, ERK was more phosphorylated by attenuation of Akt activity in cultured RGC. In an in vivo study, bimatoprost reduced NMDA-induced RGC death. Taken together, these findings indicate that bimatoprost has protective effects on in vitro and in vivo retinal damage, suggesting that the mechanism underlying may be via the Akt pathway, which may modulate the ERK pathway.

  8. Targeting the Akt1 allosteric site to identify novel scaffolds through virtual screening.

    Science.gov (United States)

    Yilmaz, Oya Gursoy; Olmez, Elif Ozkirimli; Ulgen, Kutlu O

    2014-02-01

    Preclinical data and tumor specimen studies report that AKT kinases are related to many human cancers. Therefore, identification and development of small molecule inhibitors targeting AKT and its signaling pathway can be therapeutic in treatment of cancer. Numerous studies report inhibitors that target the ATP-binding pocket in the kinase domains, but the similarity of this site, within the kinase family makes selectivity a major problem. The sequence identity amongst PH domains is significantly lower than that in kinase domains and developing more selective inhibitors is possible if PH domain is targeted. This in silico screening study is the first time report toward the identification of potential allosteric inhibitors expected to bind the cavity between kinase and PH domains of Akt1. Structural information of Akt1 was used to develop structure-based pharmacophore models comprising hydrophobic, acceptor, donor and ring features. The 3D structural information of previously identified allosteric Akt inhibitors obtained from literature was employed to develop a ligand-based pharmacophore model. Database was generated with drug like subset of ZINC and screening was performed based on 3D similarity to the selected pharmacophore hypotheses. Binding modes and affinities of the ligands were predicted by Glide software. Top scoring hits were further analyzed considering 2D similarity between the compounds, interactions with Akt1, fitness to pharmacophore models, ADME, druglikeness criteria and Induced-Fit docking. Using virtual screening methodologies, derivatives of 3-methyl-xanthine, quinoline-4-carboxamide and 2-[4-(cyclohexa-1,3-dien-1-yl)-1H-pyrazol-3-yl]phenol were proposed as potential leads for allosteric inhibition of Akt1.

  9. Integrin αIIb-mediated PI3K/Akt activation in platelets.

    Directory of Open Access Journals (Sweden)

    Haixia Niu

    Full Text Available Integrin αIIbβ3 mediated bidirectional signaling plays a critical role in thrombosis and haemostasis. Signaling mediated by the β3 subunit has been extensively studied, but αIIb mediated signaling has not been characterized. Previously, we reported that platelet granule secretion and TxA2 production induced by αIIb mediated outside-in signaling is negatively regulated by the β3 cytoplasmic domain residues R(724KEFAKFEEER(734. In this study, we identified part of the signaling pathway utilized by αIIb mediated outside-in signaling. Platelets from humans and gene deficient mice, and genetically modified CHO cells as well as a variety of kinase inhibitors were used for this work. We found that aggregation of TxA2 production and granule secretion by β3Δ724 human platelets initiated by αIIb mediated outside-in signaling was inhibited by the Src family kinase inhibitor PP2 and the PI3K inhibitor wortmannin, respectively, but not by the MAPK inhibitor U0126. Also, PP2 and wortmannin, and the palmitoylated β3 peptide R(724KEFAKFEEER(734, each inhibited the phosphorylation of Akt residue Ser473 and prevented TxA2 production and storage granule secretion. Similarly, Akt phosphorylation in mouse platelets stimulated by the PAR4 agonist peptide AYPGKF was αIIbβ3-dependent, and blocked by PP2, wortmannin and the palmitoylated peptide p-RKEFAKFEEER. Akt was also phosphorylated in response to mAb D3 plus Fg treatment of CHO cells in suspension expressing αIIbβ3-Δ724 or αIIbβ3E(724AERKFERKFE(734, but not in cells expressing wild type αIIbβ3. In summary, SFK(s and PI3K/Akt signaling is utilized by αIIb-mediated outside-in signaling to activate platelets even in the absence of all but 8 membrane proximal residues of the β3 cytoplasmic domain. Our results provide new insight into the signaling pathway used by αIIb-mediated outside-in signaling in platelets.

  10. Complex regulation of PKCβ2 and PDK-1/AKT by ROCK2 in diabetic heart.

    Directory of Open Access Journals (Sweden)

    Guorong Lin

    Full Text Available OBJECTIVES: The RhoA/ROCK pathway contributes to diabetic cardiomyopathy in part by promoting the sustained activation of PKCβ2 but the details of their interaction are unclear. The purpose of this study was to investigate if over-activation of ROCK in the diabetic heart leads to direct phosphorylation and activation of PKCβ2, and to determine if their interaction affects PDK-1/Akt signaling. METHODS: Regulation by ROCK of PKCβ2 and related kinases was investigated by Western blotting and co-immunoprecipitation in whole hearts and isolated cardiomyocytes from 12 to 14-week diabetic rats. Direct ROCK2 phosphorylation of PKCβ2 was examined in vitro. siRNA silencing was used to confirm role of ROCK2 in PKCβ2 phosphorylation in vascular smooth muscle cells cultured in high glucose. Furthermore, the effect of ROCK inhibition on GLUT4 translocation was determined in isolated cardiomyocytes by confocal microscopy. RESULTS: Expression of ROCK2 and expression and phosphorylation of PKCβ2 were increased in diabetic hearts. A physical interaction between the two kinases was demonstrated by reciprocal immunoprecipitation, while ROCK2 directly phosphorylated PKCβ2 at T641 in vitro. ROCK2 siRNA in vascular smooth muscle cells or inhibition of ROCK in diabetic hearts reduced PKCβ2 T641 phosphorylation, and this was associated with attenuation of PKCβ2 activity. PKCβ2 also formed a complex with PDK-1 and its target AKT, and ROCK inhibition resulted in upregulation of the phosphorylation of PDK-1 and AKT, and increased translocation of glucose transporter 4 (GLUT4 to the plasma membrane in diabetic hearts. CONCLUSION: This study demonstrates that over-activation of ROCK2 contributes to diabetic cardiomyopathy by multiple mechanisms, including direct phosphorylation and activation of PKCβ2 and interference with the PDK-1-mediated phosphorylation and activation of AKT and translocation of GLUT4. This suggests that ROCK2 is a critical node in the

  11. CARMA1 is required for Akt-mediated NF-kappaB activation in T cells.

    Science.gov (United States)

    Narayan, Preeti; Holt, Brittany; Tosti, Richard; Kane, Lawrence P

    2006-03-01

    Many details of the generic pathway for induction of NF-kappaB have been delineated, but it is still not clear how multiple, diverse receptor systems are able to converge on this evolutionarily conserved family of transcription factors. Recent studies have shown that the CARMA1, Bcl10, and MALT1 proteins are critical for coupling the common elements of the NF-kappaB pathway to the T-cell receptor (TCR) and CD28. We previously demonstrated a role for the serine/threonine kinase Akt in CD28-mediated NF-kappaB induction. Using a CARMA1-deficient T-cell line, we have now found that the CARMA complex is required for induction of NF-kappaB by Akt, in cooperation with protein kinase C activation. Furthermore, using a novel selective inhibitor of Akt, we confirm that Akt plays a modulatory role in NF-kappaB induction by the TCR and CD28. Finally, we provide evidence for a physical and functional interaction between Akt and CARMA and for Akt-dependent phosphorylation of Bcl10. Therefore, in T cells, Akt impinges upon NF-kappaB signaling through at least two separate mechanisms.

  12. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  13. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Joo Young, E-mail: joolee@catholic.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); College of Pharmacy, The Catholic University of Korea, Bucheon 420-743 (Korea, Republic of)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K/Akt

  14. Akt: A Double-Edged Sword in Cell Proliferation and Genome Stability

    Directory of Open Access Journals (Sweden)

    Naihan Xu

    2012-01-01

    Full Text Available The Akt family of serine/threonine protein kinases are key regulators of multiple aspects of cell behaviour, including proliferation, survival, metabolism, and tumorigenesis. Growth-factor-activated Akt signalling promotes progression through normal, unperturbed cell cycles by acting on diverse downstream factors involved in controlling the G1/S and G2/M transitions. Remarkably, several recent studies have also implicated Akt in modulating DNA damage responses and genome stability. High Akt activity can suppress ATR/Chk1 signalling and homologous recombination repair (HRR via direct phosphorylation of Chk1 or TopBP1 or, indirectly, by inhibiting recruitment of double-strand break (DSB resection factors, such as RPA, Brca1, and Rad51, to sites of damage. Loss of checkpoint and/or HRR proficiency is therefore a potential cause of genomic instability in tumor cells with high Akt. Conversely, Akt is activated by DNA double-strand breaks (DSBs in a DNA-PK- or ATM/ATR-dependent manner and in some circumstances can contribute to radioresistance by stimulating DNA repair by nonhomologous end joining (NHEJ. Akt therefore modifies both the response to and repair of genotoxic damage in complex ways that are likely to have important consequences for the therapy of tumors with deregulation of the PI3K-Akt-PTEN pathway.

  15. Lysosomal interaction of Akt with Phafin2: a critical step in the induction of autophagy.

    Directory of Open Access Journals (Sweden)

    Mami Matsuda-Lennikov

    Full Text Available Autophagy is an evolutionarily conserved mechanism for the gross disposal of intracellular proteins in mammalian cells and dysfunction in this pathway has been associated with human disease. Although the serine threonine kinase Akt is suggested to play a role in this process, little is known about the molecular mechanisms by which Akt induces autophagy. Using a yeast two-hybrid screen, Phafin2 (EAPF or PLEKHF2, a lysosomal protein with a unique structure of N-terminal PH (pleckstrin homology domain and C-terminal FYVE (Fab 1, YOTB, Vac 1, and EEA1 domain was found to interact with Akt. A sucrose gradient fractionation experiment revealed that both Akt and Phafin2 co-existed in the same lysosome enriched fraction after autophagy induction. Confocal microscopic analysis and BiFC analysis demonstrated that both Akt and Phafin2 accumulate in the lysosome after induction of autophagy. BiFC analysis using PtdIns (3P interaction defective mutant of Phafin2 demonstrated that lysosomal accumulation of the Akt-Phafin2 complex and subsequent induction of autophagy were lysosomal PtdIns (3P dependent events. Furthermore, in murine macrophages, both Akt and Phafin2 were required for digestion of fluorescent bacteria and/or LPS-induced autophagy. Taken together, these findings establish that lysosomal accumulation of Akt and Phafin2 is a critical step in the induction of autophagy via an interaction with PtdIns (3P.

  16. Akt2 negatively regulates assembly of the POSH-MLK-JNK signaling complex.

    Science.gov (United States)

    Figueroa, Claudia; Tarras, Samantha; Taylor, Jennifer; Vojtek, Anne B

    2003-11-28

    We demonstrate that POSH, a scaffold for the JNK signaling pathway, binds to Akt2. A POSH mutant that is unable to bind Akt2 (POSH W489A) exhibits enhanced-binding to MLK3, and this increase in binding is accompanied by increased activation of the JNK signaling pathway. In addition, we show that the association of MLK3 with POSH is increased upon inhibition of the endogenous phosphatidylinositol 3-kinase/Akt signaling pathway. Thus, the assembly of an active JNK signaling complex by POSH is negatively regulated by Akt2. Further, the level of Akt-phosphorylated MLK3 is reduced in cells expressing the Akt2 binding domain of POSH, which acts as a dominant interfering protein. Taken together, our results support a model in which Akt2 binds to a POSH-MLK-MKK-JNK complex and phosphorylates MLK3; phosphorylation of MLK3 by Akt2 results in the disassembly of the JNK complex bound to POSH and down-regulation of the JNK signaling pathway.

  17. Low-power laser irradiation inhibits Aβ25-35-induced cell apoptosis through Akt activation

    Science.gov (United States)

    Zhang, Zhigang; Tang, Yonghong

    2009-08-01

    Low-power laser irradiation (LPLI) can modulate various cellular processes such as proliferation, differentiation and apoptosis. Recently, LPLI has been applied to moderate Alzheimer's disease (AD), but the underlying mechanism remains unknown. The protective role of LPLI against the amyloid beta peptide (Aβ), a major constituent of AD plaques, has not been studied. PI3K/Akt pathway is extremely important in protecting cells from apoptosis caused by diverse stress stimuli. However, whether LPLI can inhibit Aβ-induced apoptosis through Akt activation is still unclear. In current study, using FRET (fluorescence resonance energy transfer) technique, we investigated the activity of Akt in response to LPLI treatment. B kinase activity reporter (BKAR), a recombinant FRET probe of Akt, was utilized to dynamically detect the activation of Akt after LPLI treatment. The results show that LPLI promoted the activation of Akt. Moreover, LPLI inhibits apoptosis induced by Aβ25-35 and the apoptosis inhibition can be abolished by wortmannin, a specific inhibitor of PI3K/Akt. Taken together, these results suggest that LPLI can inhibit Aβ25-35-induced cell apoptosis through Akt activation.

  18. Activation of Akt is increased in the dysplasia-carcinoma sequence in Barrett's oesophagus and contributes to increased proliferation and inhibition of apoptosis: a histopathological and functional study

    Directory of Open Access Journals (Sweden)

    El-Amin Khalid

    2007-06-01

    Full Text Available Abstract Background The incidence of oesophageal adenocarcinoma is increasing rapidly in the developed world. The serine-threonine protein kinase and proto-oncogene Akt has been reported to regulate proliferation and apoptosis in several tissues but there are no data on the involvement of Akt in oesophageal carcinogenesis. Therefore we have examined the activation of Akt in Barrett's oesophagus and oesophageal adenocarcinoma and the functional effects of Akt activation in vitro. Methods Expression of total and active (phosphorylated Akt were determined in endoscopic biopsies and surgical resection specimens using immunohistochemistry. The functional effects of Akt were examined using Barrett's adenocarcinoma cells in culture. Results In normal squamous oesophagus, erosive oesophagitis and non-dysplastic Barrett's oesophagus, phospho-Akt was limited to the basal 1/3 of the mucosa. Image analysis confirmed that Akt activation was significantly increased in non-dysplastic Barrett's oesophagus compared to squamous epithelium and further significantly increased in high-grade dysplasia and adenocarcinoma. In all cases of high grade dysplasia and adenocarcinoma Akt was activated in the luminal 1/3 of the epithelium. Transient acid exposure and the obesity hormone leptin activated Akt, stimulated proliferation and inhibited apoptosis: the combination of acid and leptin was synergistic. Inhibition of Akt phosphorylation with LY294002 increased apoptosis and blocked the effects of acid and leptin both alone and in combination. Activation of Akt was associated with downstream phosphorylation and deactivation of the pro-apoptotic protein Bad and phosphorylation of the Forkhead family transcription factor FOXO1. Conclusion Akt is abnormally activated in Barrett's oesophagus, high grade dysplasia and adenocarcinoma. Akt activation promotes proliferation and inhibits apoptosis in Barrett's adenocarcinoma cells and both transient acid exposure and leptin

  19. Akt and MAPK signaling mediate pregnancy-induced cardiac adaptation.

    Science.gov (United States)

    Chung, Eunhee; Yeung, Fan; Leinwand, Leslie A

    2012-05-01

    Although the signaling pathways underlying exercise-induced cardiac adaptation have been extensively studied, little is known about the molecular mechanisms that result in the response of the heart to pregnancy. The objective of this study was to define the morphological, functional, and gene expression patterns that define the hearts of pregnant mice, and to identify the signaling pathways that mediate this response. Mice were divided into three groups: nonpregnant diestrus control, midpregnancy, and late pregnancy. Both time points of pregnancy were associated with significant cardiac hypertrophy. The prosurvival signaling cascades of Akt and ERK1/2 were activated in the hearts of pregnant mice, while the stress kinase, p38, was decreased. Given the activation of Akt in pregnancy and its known role in cardiac hypertrophy, the hypertrophic response to pregnancy was tested in mice expressing a cardiac-specific activated (myristoylated) form of Akt (myrAkt) or a cardiac-specific constitutively active (antipathologic hypertrophic) form of its downstream target, glycogen synthase kinase 3β (caGSK3β). The pregnancy-induced hypertrophic responses of hearts from these mice were significantly attenuated. Finally, we tested whether pregnancy-associated sex hormones could induce hypertrophy and alter signaling pathways in isolated neonatal rat ventricular myocytes (NRVMs). In fact, progesterone, but not estradiol treatment increased NRVM cell size via phosphorylation of ERK1/2. Inhibition of MEK1 effectively blocked progesterone-induced cellular hypertrophy. Taken together, our study demonstrates that pregnancy-induced cardiac hypertrophy is mediated by activation of Akt and ERK1/2 pathways.

  20. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-κB signalling in macrophages.

    Science.gov (United States)

    Liu, Xin-Hua; Pan, Li-Long; Jia, Yao-Ling; Wu, Dan; Xiong, Qing-Hui; Wang, Yang; Zhu, Yi-Zhun

    2013-05-15

    A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2-ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)], derived from Danshensu, exerted cytoprotective effects by anti-oxidative and anti-apoptotic activities in vitro. Herein, we reported the protective effects of DSC on lipopolysaccharide (LPS)-induced inflammatory responses in murine RAW264.7 macrophages and the underlying mechanisms. We showed that DSC concentration-dependently attenuated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression with less cytotoxicity. Signal transduction studies indicated that DSC significantly inhibited LPS-induced phosphorylation of Akt, but not c-Jun N-terminal kinase 1/2, p38, or extracellular signal-regulated kinase 1/2. Meanwhile, LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) p65 was decreased by DSC. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 significantly suppressed LPS-induced NF-κB p65 nuclear translocation, iNOS expression, and NO production, which was also mimicked by pretreatment with DSC. These results suggested that DSC attenuated LPS-induced inflammatory response in macrophages, at least in part, through suppression of PI3K/Akt signaling and NF-κB activation.

  1. Salidroside attenuates colistin-induced neurotoxicity in RSC96 Schwann cells through PI3K/Akt pathway.

    Science.gov (United States)

    Lu, Ziyin; Jiang, Guozheng; Chen, Ying; Wang, Jian; Muhammad, Ishfaq; Zhang, Ling; Wang, Rui; Liu, Fangping; Li, Rui; Qian, Feng; Li, Jichang

    2017-06-01

    Neurotoxicity is a key dose-limiting factor for colistin therapy. This study aimed to investigate the protective effect of Salidroside on colistin-induced neurotoxicity in RSC96 Schwann cells and the underlying mechanisms. After Salidroside (12.5, 25, 50 μg/mL) treatment for 2 h, the cells were cultured with 250 μg/mL colistin for 24 h. In order to investigate the role of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway, the cells were pre-treated with LY294002 (12.5 μmol/L, a specific inhibitor of PI3K phosphorylation) for 1 h before Salidroside (50 μg/mL) treatment, then were co-cultured with colistin (250 μg/mL) for 24 h. The results showed that colistin treatment could induce apoptotic cell death which was associated with oxidative stress injury. Salidroside could reduce colistin-induced neurotoxicity, decrease the effect of colistin on the reduced expression levels of p-Akt and Bcl-2, and increased the expresion of Bax, release of Cyt c, and activation of caspase-3. However, the protective effect of Salidroside against colistin-induced apoptosis was partly abolished by LY294002. These findings suggest that Salidroside could attenuate colistin-induced neurotoxicity in RSC96 Schwann cells via the PI3K/Akt pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Mechanical Stress Regulates Osteogenesis and Adipogenesis of Rat Mesenchymal Stem Cells through PI3K/Akt/GSK-3β/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Fanglong Song

    2017-01-01

    Full Text Available Osteogenesis and adipogenesis of bone marrow mesenchymal stem cells (BMSCs are regarded as being of great importance in the regulation of bone remodeling. In this study, rat BMSCs were exposed to different levels of cyclic mechanical stress generated by liquid drops and cultured in general medium or adipogenic medium. Markers of osteogenic (Runx2 and Collagen I and adipogenic (C/EBPα, PPARγ, and lipid droplets differentiation were detected using Western blot and histological staining. The protein levels of members of the phosphatidylinositol 3-kinase (PI3K/Akt/glycogen synthase kinase 3β (GSK-3β/β-catenin signaling pathway were also examined. Results showed that small-magnitude stress significantly upregulated Runx2 and Collagen I and downregulated PPARγ and C/EBPα expression in BMSCs cultured in adipogenic medium, while large-magnitude stress reversed the effect when compared with unloading groups. The PI3K/Akt signaling pathway could be strongly activated by mechanical stimulation; however, large-magnitude stress led to decreased activation of the signaling pathway when compared with small-magnitude stress. Activation of β-catenin with LiCl led to increased expression of Runx2 and Collagen I and reduction of C/EBPα and PPARγ expression in BMSCs. Inhibition of PI3K/Akt signaling partially blocked the expression of β-catenin. Taken together, our results indicate that mechanical stress-regulated osteogenesis and adipogenesis of rat BMSCs are mediated, at least in part, by the PI3K/Akt/GSK-3β/β-catenin signaling pathway.

  3. AKT induces erythroid-cell maturation of JAK2-deficient fetal liver progenitor cells and is required for Epo regulation of erythroid-cell differentiation.

    Science.gov (United States)

    Ghaffari, Saghi; Kitidis, Claire; Zhao, Wei; Marinkovic, Dragan; Fleming, Mark D; Luo, Biao; Marszalek, Joseph; Lodish, Harvey F

    2006-03-01

    AKT serine threonine kinase of the protein kinase B (PKB) family plays essential roles in cell survival, growth, metabolism, and differentiation. In the erythroid system, AKT is known to be rapidly phosphorylated and activated in response to erythropoietin (Epo) engagement of Epo receptor (EpoR) and to sustain survival signals in cultured erythroid cells. Here we demonstrate that activated AKT complements EpoR signaling and supports erythroid-cell differentiation in wild-type and JAK2-deficient fetal liver cells. We show that erythroid maturation of AKT-transduced cells is not solely dependent on AKT-induced cell survival or proliferation signals, suggesting that AKT transduces also a differentiation-specific signal downstream of EpoR in erythroid cells. Down-regulation of expression of AKT kinase by RNA interference, or AKT activity by expression of dominant negative forms, inhibits significantly fetal liver-derived erythroid-cell colony formation and gene expression, demonstrating that AKT is required for Epo regulation of erythroid-cell maturation.

  4. Therapeutic Implications of Targeting AKT Signaling in Melanoma

    Directory of Open Access Journals (Sweden)

    SubbaRao V. Madhunapantula

    2011-01-01

    Full Text Available Identification of key enzymes regulating melanoma progression and drug resistance has the potential to lead to the development of novel, more effective targeted agents for inhibiting this deadly form of skin cancer. The Akt3, also known as protein kinase B gamma, pathway enzymes regulate diverse cellular processes including proliferation, survival, and invasion thereby promoting the development of melanoma. Accumulating preclinical evidence demonstrates that therapeutic agents targeting these kinases alone or in combination with other pathway members could be effective for the long-term treatment of advanced-stage disease. However, currently, no selective and effective therapeutic agent targeting these kinases has been identified for clinical use. This paper provides an overview of the key enzymes of the PI3K pathway with emphasis placed on Akt3 and the negative regulator of this kinase called PTEN (phosphatase and tensin homolog deleted on chromosome 10. Mechanisms regulating these enzymes, their substrates and therapeutic implications of targeting these proteins to treat melanoma are also discussed. Finally, key issues that remain to be answered and future directions for interested researchers pertaining to this signaling cascade are highlighted.

  5. AKT/GSK3β signaling pathway is critically involved in human pluripotent stem cell survival

    Science.gov (United States)

    Romorini, Leonardo; Garate, Ximena; Neiman, Gabriel; Luzzani, Carlos; Furmento, Verónica Alejandra; Guberman, Alejandra Sonia; Sevlever, Gustavo Emilio; Scassa, María Elida; Miriuka, Santiago Gabriel

    2016-01-01

    Human embryonic and induced pluripotent stem cells are self-renewing pluripotent stem cells (PSC) that can differentiate into a wide range of specialized cells. Basic fibroblast growth factor is essential for PSC survival, stemness and self-renewal. PI3K/AKT pathway regulates cell viability and apoptosis in many cell types. Although it has been demonstrated that PI3K/AKT activation by bFGF is relevant for PSC stemness maintenance its role on PSC survival remains elusive. In this study we explored the molecular mechanisms involved in the regulation of PSC survival by AKT. We found that inhibition of AKT with three non-structurally related inhibitors (GSK690693, AKT inhibitor VIII and AKT inhibitor IV) decreased cell viability and induced apoptosis. We observed a rapid increase in phosphatidylserine translocation and in the extent of DNA fragmentation after inhibitors addition. Moreover, abrogation of AKT activity led to Caspase-9, Caspase-3, and PARP cleavage. Importantly, we demonstrated by pharmacological inhibition and siRNA knockdown that GSK3β signaling is responsible, at least in part, of the apoptosis triggered by AKT inhibition. Moreover, GSK3β inhibition decreases basal apoptosis rate and promotes PSC proliferation. In conclusion, we demonstrated that AKT activation prevents apoptosis, partly through inhibition of GSK3β, and thus results relevant for PSC survival. PMID:27762303

  6. Akt1 is essential for postnatal mammary gland development, function, and the expression of Btn1a1.

    Directory of Open Access Journals (Sweden)

    Jessica LaRocca

    Full Text Available Akt1, a serine-threonine protein kinase member of the PKB/Akt gene family, plays critical roles in the regulation of multiple cellular processes, and has previously been implicated in lactation and breast cancer development. In this study, we utilized Akt1+/+ and Akt1-/- C57/Bl6 female mice to assess the role that Akt1 plays in normal mammary gland postnatal development and function. We examined postnatal morphology at multiple time points, and analyzed gene and protein expression changes that persist into adulthood. Akt1 deficiency resulted in several mammary gland developmental defects, including ductal outgrowth and defective terminal end bud formation. Adult Akt1-/- mammary gland composition remained altered, exhibiting fewer alveolar buds coupled with increased epithelial cell apoptosis. Microarray analysis revealed that Akt1 deficiency altered expression of genes involved in numerous biological processes in the mammary gland, including organismal development, cell death, and tissue morphology. Of particular importance, a significant decrease in expression of Btn1a1, a gene involved in milk lipid secretion, was observed in Akt1-/- mammary glands. Additionally, pseudopregnant Akt1-/- females failed to induce Btn1a1 expression in response to hormonal stimulation compared to their wild-type counterparts. Retroviral-mediated shRNA knockdown of Akt1 and Btn1a1 in MCF-7 human breast epithelial further illustrated the importance of Akt1 in mammary epithelial cell proliferation, as well as in the regulation of Btn1a1 and subsequent expression of ß-casein, a gene that encodes for milk protein. Overall these findings provide mechanistic insight into the role of Akt1 in mammary morphogenesis and function.

  7. Astaxanthin reduces isoflurane-induced neuroapoptosis via the PI3K/Akt pathway.

    Science.gov (United States)

    Wang, Chun-Mei; Cai, Xiao-Lan; Wen, Qing-Ping

    2016-05-01

    Astaxanthin is an oxygen-containing derivative of carotenoids that effectively suppresses reactive oxygen and has nutritional and medicinal value. The mechanisms underlying the effects of astaxanthin on isoflurane‑induced neuroapoptosis remain to be fully understood. The present study was conducted to evaluate the protective effect of astaxanthin to reduce isoflurane‑induced neuroapoptosis and to investigate the underlying mechanisms. The results demonstrated that isoflurane induced brain damage, increased caspase‑3 activity and suppressed the phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (Akt) signaling pathway in an in vivo model. However, treatment with astaxanthin significantly inhibited brain damage, suppressed caspase‑3 activity and upregulated the PI3K/Akt pathway in the isoflurane‑induced rats. Furthermore, isoflurane suppressed cell growth, induced cell apoptosis, enhanced caspase‑3 activity and downregulated the PI3K/Akt pathway in organotypic hippocampal slice culture. Administration of astaxanthin significantly promoted cell growth, reduced cell apoptosis and caspase‑3 activity, and upregulated the PI3K/Akt pathway and isoflurane‑induced neuroapoptosis. The present study demonstrated that downregulation of the PI3K/Akt pathway reduced the effect of astaxanthin to protect against isoflurane‑induced neuroapoptosis in the in vitro model. The results of the current study suggested that the protective effect of astaxanthin reduces the isoflurane-induced neuroapoptosis via activation of the PI3K/Akt signaling pathway.

  8. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun-Seok [Department of Applied Biochemistry, Division of Life Science, College of Health and Biomedical Science, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kang, Shin-il [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of); Yoo, Kyu-dong [Hazardous Substances Analysis Division, Gwangju Regional Food and Drug Administration, Gwangju (Korea, Republic of); Lee, Mi-Yea [Department of Nursing Kyungbok University, Pocheon (Korea, Republic of); Yoo, Hwan-Soo; Hong, Jin-Tae [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of); Shin, Hwa-Sup [Department of Applied Biochemistry, Division of Life Science, College of Health and Biomedical Science, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, Bokyung [Department of Physiology, Konkuk Medical School, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Yun, Yeo-Pyo, E-mail: ypyun@chungbuk.ac.kr [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of)

    2013-04-15

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway.

  9. Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling.

    Directory of Open Access Journals (Sweden)

    Qing-Bai She

    Full Text Available BACKGROUND: Dysregulated PI3K/Akt signaling occurs commonly in breast cancers and is due to HER2 amplification, PI3K mutation or PTEN inactivation. The objective of this study was to determine the role of Akt activation in breast cancer as a function of mechanism of activation and whether inhibition of Akt signaling is a feasible approach to therapy. METHODOLOGY/PRINCIPAL FINDINGS: A selective allosteric inhibitor of Akt kinase was used to interrogate a panel of breast cancer cell lines characterized for genetic lesions that activate PI3K/Akt signaling: HER2 amplification or PI3K or PTEN mutations in order to determine the biochemical and biologic consequences of inhibition of this pathway. A variety of molecular techniques and tissue culture and in vivo xenograft models revealed that tumors with mutational activation of Akt signaling were selectively dependent on the pathway. In sensitive cells, pathway inhibition resulted in D-cyclin loss, G1 arrest and induction of apoptosis, whereas cells without pathway activation were unaffected. Most importantly, the drug effectively inhibited Akt kinase and its downstream effectors in vivo and caused complete suppression of the growth of breast cancer xenografts with PI3K mutation or HER2 amplification, including models of the latter selected for resistance to Herceptin. Furthermore, chronic administration of the drug was well-tolerated, causing only transient hyperglycemia without gross toxicity to the host despite the pleiotropic normal functions of Akt. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that breast cancers with PI3K mutation or HER2 amplification are selectively dependent on Akt signaling, and that effective inhibition of Akt in tumors is feasible and effective in vivo. These findings suggest that direct inhibition of Akt may represent a therapeutic strategy for breast and other cancers that are addicted to the pathway including tumors with resistant to Herceptin.

  10. Mechanistic Analysis of AKT1 Regulation by the CBL-CIPK-PP2CA Interactions

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhi Lan; Sung-Chul Lee; Yu-Fen Che; Yuan-Qing Jiang; Sheng Luan

    2011-01-01

    T Arabidopsis K+ transporter 1 (AKT1) participates in K+ uptake in roots, especially under low-K conditions. We recently identified a Ca2+ signaling pathway consisting of multiple calcineurin B-like calcium sensors (CBLs) and multiple target kinases (CBL-interacting protein kinases or CIPKs) that phosphorylate and activate AKT1, whereas a specific PP2C-type phosphatase inactivates CIPK-dependent AKT1 activity. In this study, we analyzed the interactions between PP2Cs and the CBL-CIPK pathway and found previously unsuspected mechanisms underlying the CBL-CIPK-PP2C signaling processes. The interaction between the CIPKs and PP2Cs involves the kinase domain of the CIPK component, in addition to the protein phosphatase interacting motif (PPI) in the regulatory domain. Furthermore, specific CBLs physically interact with and inactivate PP2C phosphatases to recover the CIPK-dependent AKT1 channel activity. These findings provide further insights into the signaling network consisting of CBL-CIPK-PP2C interactions in the activation of the AKT1 channel.

  11. DNA-PK Mediates AKT Activation and Apoptosis Inhibition in Clinically Acquired Platinum Resistance

    Directory of Open Access Journals (Sweden)

    Euan A. Stronach

    2011-11-01

    Full Text Available Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinumresistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK, and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Re-sensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage–mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors.

  12. Redox-sensitive Akt and Src regulate coronary collateral growth in metabolic syndrome.

    Science.gov (United States)

    Reed, Ryan; Potter, Barry; Smith, Erika; Jadhav, Rashmi; Villalta, Patricia; Jo, Hanjoong; Rocic, Petra

    2009-06-01

    We have recently shown that the inability of repetitive ischemia (RI) to activate p38 MAPK (p38) and Akt in metabolic syndrome [JCR:LA-cp (JCR)] rats was associated with impaired coronary collateral growth (CCG). Furthermore, Akt and p38 activation correlated with optimal O(2)(-). levels and were altered in JCR rats, and redox-sensitive p38 activation was required for CCG. Here, we determined whether the activation of Src, a possible upstream regulator, was altered in JCR rats and whether redox-dependent Src and Akt activation were required for CCG. CCG was assessed by myocardial blood flow (microspheres) and kinase activation was assessed by Western blot analysis in the normal zone and collateral-dependent zone (CZ). RI induced Src activation (approximately 3-fold) in healthy [Wistar-Kyoto (WKY)] animals but not in JCR animals. Akt inhibition decreased (approximately 50%), and Src inhibition blocked RI-induced CCG in WKY rats. Src inhibition decreased p38 and Akt activation. Myocardial oxidative stress (O(2)(-). and oxidized/reduced thiols) was measured quantitatively (X-band electron paramagnetic resonance). An antioxidant, apocynin, reduced RI-induced oxidative stress in JCR rats to levels induced by RI in WKY rats versus the reduction in WKY rats to very low levels. This resulted in a significant restoration of p38 (approximately 80%), Akt (approximately 65%), and Src (approximately 90%) activation in JCR rats but decreased the activation in WKY rats (p38: approximately 45%, Akt: approximately 65%, and Src: approximately 100%), correlating with reduced CZ flow in WKY rats (approximately 70%), but significantly restored CZ flow in JCR rats (approximately 75%). We conclude that 1) Akt and Src are required for CCG, 2) Src is a redox-sensitive upstream regulator of RI-induced p38 and Akt activation, and 3) optimal oxidative stress levels are required for RI-induced p38, Akt, and Src activation and CCG.

  13. HDAC inhibition elicits myocardial protective effect through modulation of MKK3/Akt-1.

    Directory of Open Access Journals (Sweden)

    Ting C Zhao

    Full Text Available We and others have demonstrated that HDAC inhibition protects the heart against myocardial injury. It is known that Akt-1 and MAP kinase play an essential role in modulation of myocardial protection and cardiac preconditioning. Our recent observations have shown that Akt-1 was activated in post-myocardial infarction following HDAC inhibition. However, it remains unknown whether MKK3 and Akt-1 are involved in HDAC inhibition-induced myocardial protection in acute myocardial ischemia and reperfusion injury. We sought to investigate whether the genetic disruption of Akt-1 and MKK3 eliminate cardioprotection elicited by HDAC inhibition and whether Akt-1 is associated with MKK3 to ultimately achieve protective effects. Adult wild type and MKK3⁻/⁻, Akt-1⁻/⁻ mice received intraperitoneal injections of trichostatin A (0.1 mg/kg, a potent inhibitor of HDACs. The hearts were subjected to 30 min myocardial ischemia/30 min reperfusion in the Langendorff perfused heart after twenty four hours to elicit pharmacologic preconditioning. Left ventricular function was measured, and infarct size was determined. Acetylation and phosphorylation of MKK3 were detected and disruption of Akt-1 abolished both acetylation and phosphorylation of MKK3. HDAC inhibition produces an improvement in left ventricular functional recovery, but these effects were abrogated by disruption of either Akt-1 or MKK3. Disruption of Akt-1 or MKK3 abolished the effects of HDAC inhibition-induced reduction of infarct size. Trichostatin A treatment resulted in an increase in MKK3 phosphorylation or acetylation in myocardium. Taken together, these results indicate that stimulation of the MKK3 and Akt-1 pathway is a novel approach to HDAC inhibition -induced cardioprotection.

  14. AKT1 loss correlates with episomal HPV16 in vulval intraepithelial neoplasia.

    Directory of Open Access Journals (Sweden)

    Arucha L Ekeowa-Anderson

    Full Text Available Anogenital malignancy has a significant association with high-risk mucosal alpha-human papillomaviruses (alpha-PV, particularly HPV 16 and 18 whereas extragenital SCC has been linked to the presence of cutaneous beta and gamma-HPV types. Vulval skin may be colonised by both mucosal and cutaneous (beta-, mu-, nu- and gamma- PV types, but there are few systematic studies investigating their presence and their relative contributions to vulval malignancy. Dysregulation of AKT, a serine/threonine kinase, plays a significant role in several cancers. Mucosal HPV types can increase AKT phosphorylation and activity whereas cutaneous HPV types down-regulate AKT1 expression, probably to weaken the cornified envelope to promote viral release. We assessed the presence of mucosal and cutaneous HPV in vulval malignancy and its relationship to AKT1 expression in order to establish the corresponding HPV and AKT1 profile of normal vulval skin, vulval intraepithelial neoplasia (VIN and vulval squamous cell carcinoma (vSCC. We show that HPV16 is the principle HPV type present in VIN, there were few detectable beta types present and AKT1 loss was not associated with the presence of these cutaneous HPV. We show that HPV16 early gene expression reduced AKT1 expression in transgenic mouse epidermis. AKT1 loss in our VIN cohort correlated with presence of high copy number, episomal HPV16. Maintained AKT1 expression correlated with low copy number, an increased frequency of integration and increased HPV16E7 expression, a finding we replicated in another untyped cohort of vSCC. Since expression of E7 reflects tumour progression, these findings suggest that AKT1 loss associated with episomal HPV16 may have positive prognostic implications in vulval malignancy.

  15. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    Dajani Olav

    2011-10-01

    Full Text Available Abstract Background Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells. Methods Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF. DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting. Results Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC, whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K, TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells. Conclusions While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116

  16. Neuroprotection by sodium ferulate against glutamate-induced apoptosis is mediated by ERK and P13 kinase pathways

    Institute of Scientific and Technical Information of China (English)

    Ying JIN; En-zhi YAN; Ying FAN; Xiao-li GUO; Yan-jie ZHAO; Zhi-hong ZONG; Zhuo LIU

    2007-01-01

    Aim: To investigate whether sodium ferulate (SF) can protect cortical neurons from glutamate-induced neurotoxicity and the mechanisms responsible for this protection. Methods: Cultured cortical neurons were incubated with 50 μmol/L glutamate for either 30 min or 24 h, with or without pre-incubation with SF (100, 200, and 500 μmol/L, respectively). LY294002, wortmannin, PD98059, and U0126 were added respectively to the cells 1 h prior to SF treatment. After incubation with glutamate for 24 h, neuronal apoptosis was quantified by scoring the per- centage of ceils with apoptotic nuclear morphology after Hoechst 33258 staining. After incubation with glutamate for either 30 min or 24 h, cellular extracts were prepared for Western blotting of active caspase-3, poly (ADP-ribose) polymerase (PARP), μ-calpain, Bcl-2, phospho-Akt, phosphorylated ribosomal protein S6 pro- tein kinase (p70S6K), phospho-mitogen-activated protein kinase kinase (MEK1/2) and phosphorylated extracellular signal-regulated kinase (ERK) 1/2. Results: SF reduced glutamate-evoked apoptotic morphology, active caspase-3 protein expression, and PARP cleavage and inhibited the glutamate-induced upregulation of the μ-calpain protein level. The inhibition of the phosphatidylinositol 3-kinase (PI3K) and the MEK/ERK1/2 pathways partly abrogated the protective effect ot SF against glutamate-induced neuronal apoptosis. SF prevented the glutamate-induced decrease in the activity of the PI3K/Akt/p70S6K and the MEK/ERK1/2 pathways. Moreover, incubation of cortical neurons with SF for 30 min inhibited the reduction of the Bcl-2 expression induced by glutamate. Conclusion: The results indicate that PI3K/Akt/p70S6K and the MEK/ERK signaling pathways play important roles in the protective effect of SF against glutamate toxicity in cortical neurons.

  17. Akt Regulates Axon Wrapping and Myelin Sheath Thickness in the PNS

    Science.gov (United States)

    Baloui, Hasna; Meng, Xiaosong; Zhang, Yanqing; Deinhardt, Katrin; Dupree, Jeff L.; Einheber, Steven; Chrast, Roman

    2016-01-01

    The signaling pathways that regulate myelination in the PNS remain poorly understood. Phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, activated in Schwann cells by neuregulin and the extracellular matrix, has an essential role in the early events of myelination. Akt/PKB, a key effector of phosphatidylinositol-4,5-bisphosphate 3-kinase 1A, was previously implicated in CNS, but not PNS myelination. Here we demonstrate that Akt plays a crucial role in axon ensheathment and in the regulation of myelin sheath thickness in the PNS. Pharmacological inhibition of Akt in DRG neuron-Schwann cell cocultures dramatically decreased MBP and P0 levels and myelin sheath formation without affecting expression of Krox20/Egr2, a key transcriptional regulator of myelination. Conversely, expression of an activated form of Akt in purified Schwann cells increased expression of myelin proteins, but not Krox20/Egr2, and the levels of activated Rac1. Transgenic mice expressing a membrane-targeted, activated form of Akt under control of the 2′,3′-cyclic nucleotide 3′-phosphodiesterase promoter, exhibited thicker PNS and CNS myelin sheaths, and PNS myelin abnormalities, such as tomacula and myelin infoldings/outfoldings, centered around the paranodes and Schmidt Lanterman incisures. These effects were corrected by rapamycin treatment in vivo. Importantly, Akt activity in the transgenic mice did not induce myelination of nonmyelinating Schwann cells in the sympathetic trunk or Remak fibers of the dorsal roots, although, in those structures, they wrapped membranes redundantly around axons. Together, our data indicate that Akt is crucial for PNS myelination driving axonal wrapping by unmyelinated and myelinated Schwann cells and enhancing myelin protein synthesis in myelinating Schwann cells. SIGNIFICANCE STATEMENT Although the role of the key serine/threonine kinase Akt in promoting CNS myelination has been demonstrated, its role in the PNS has not been established and remains

  18. Activation of Akt by advanced glycation end products (AGEs: involvement of IGF-1 receptor and caveolin-1.

    Directory of Open Access Journals (Sweden)

    Su-Jung Yang

    Full Text Available Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs. AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(PH oxidase inhibitor DPI, suggesting the involvement of Src and NAD(PH oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(PH oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptorβsubunit (IGF-1Rβ on Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1 receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1 levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1Rβ and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(PH oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1

  19. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7.

    Science.gov (United States)

    Taylor, Kathryn M; Hiscox, Stephen; Nicholson, Robert I; Hogstrand, Christer; Kille, Peter

    2012-02-07

    The transition element zinc, which has recently been identified as an intracellular second messenger, has been implicated in various signaling pathways, including those leading to cell proliferation. Zinc channels of the ZIP (ZRT1- and IRT1-like protein) family [also known as solute carrier family 39A (SLC39A)] transiently increase the cytosolic free zinc (Zn(2+)) concentration in response to extracellular signals. We show that phosphorylation of evolutionarily conserved residues in endoplasmic reticulum zinc channel ZIP7 is associated with the gated release of Zn(2+) from intracellular stores, leading to activation of tyrosine kinases and the phosphorylation of AKT and extracellular signal-regulated kinases 1 and 2. Through pharmacological manipulation, proximity ligation assay, and mutagenesis, we identified protein kinase CK2 as the kinase responsible for ZIP7 activation. Together, the present results show that transition element channels in eukaryotes can be activated posttranslationally by phosphorylation, as part of a cell signaling cascade. Our study links the regulated release of zinc from intracellular stores to phosphorylation of kinases involved in proliferative responses and cell migration, suggesting a functional role for ZIP7 and zinc signals in these events. The connection with proliferation and migration, as well as the activation of ZIP7 by CK2, a kinase that is antiapoptotic and promotes cell division, suggests that ZIP7 may provide a target for anticancer drug development.

  20. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia

    Science.gov (United States)

    Tosello, Valeria; Herranz, Daniel; Ambesi-Impiombato, Alberto; Da Silva, Ana Carolina; Sanchez-Martin, Marta; Perez-Garcia, Arianne; Rigo, Isaura; Castillo, Mireia; Indraccolo, Stefano; Cross, Justin R; de Stanchina, Elisa; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M; Tallman, Martin S; Basso, Giuseppe; Meijerink, Jules P; Cordon-Cardo, Carlos; Califano, Andrea; Ferrando, Adolfo A.

    2013-01-01

    SUMMARY Glucocorticoid resistance is a major driver of therapeutic failure in T-cell acute lymphoblastic leukemia (T-ALL). Here we identify the AKT1 kinase as a major negative regulator of the NR3C1 glucocorticoid receptor protein activity driving glucocorticoid resistance in T-ALL. Mechanistically, AKT1 impairs glucocorticoid-induced gene expression by direct phosphorylation of NR3C1 at position S134 and blocking glucocorticoid-induced NR3C1 translocation to the nucleus. Moreover, we demonstrate that loss of PTEN and consequent AKT1 activation can effectively block glucocorticoid induced apoptosis and induce resistance to glucocorticoid therapy. Conversely, pharmacologic inhibition of AKT with MK2206 effectively restores glucocorticoid-induced NR3C1 translocation to the nucleus, increases the response of T-ALL cells to glucocorticoid therapy and effectively reverses glucocorticoid resistance in vitro and in vivo. PMID:24291004

  1. Platelet-derived growth factor-BB-mediated glycosaminoglycan synthesis is transduced through Akt.

    Science.gov (United States)

    Cartel, Nicholas J; Wang, Jinxia; Post, Martin

    2002-04-01

    Previously we have demonstrated that the phosphoinositide 3-kinase (PI-3K) signal-transduction pathway mediates platelet-derived growth factor (PDGF)-BB-induced glycosaminoglycan (GAG) synthesis in fetal lung fibroblasts. In the present study we further investigated the signal-transduction pathway(s) that results in PDGF-BB-induced GAG synthesis. Over-expression of a soluble PDGF beta-receptor as well as a mutated form of the beta-receptor, unable to bind PI-3K, diminished GAG synthesis in fetal lung fibroblasts subsequent to PDGF-BB stimulation. The PI-3K inhibitor wortmannin blocked PDGF-BB-induced Akt activity as well as significantly diminishing PDGF-BB-mediated GAG synthesis. Expression of dominant-negative PI-3K also abrogated Akt activity and GAG synthesis. Furthermore, expression of dominant-negative Akt abrogated endogenous Akt activity, Rab3D phosphorylation and GAG synthesis, whereas expression of constitutively activated Akt stimulated Rab3D phosphorylation and GAG synthesis in the absence of PDGF-BB. Over-expression of wild-type PTEN (phosphatase and tensin homologue deleted in chromosome 10) inhibited Akt activity and concomitantly attenuated GAG synthesis in fibroblasts stimulated with PDGF-BB. These data suggest that Akt is an integral protein involved in PDGF-BB-mediated GAG regulation in fetal lung fibroblasts.

  2. Increased Akt signaling in the mosquito fat body increases adult survivorship.

    Science.gov (United States)

    Arik, Anam J; Hun, Lewis V; Quicke, Kendra; Piatt, Michael; Ziegler, Rolf; Scaraffia, Patricia Y; Badgandi, Hemant; Riehle, Michael A

    2015-04-01

    Akt signaling regulates diverse physiologies in a wide range of organisms. We examine the impact of increased Akt signaling in the fat body of 2 mosquito species, the Asian malaria mosquito Anopheles stephensi and the yellow fever mosquito Aedes aegypti. Overexpression of a myristoylated and active form of A. stephensi and Ae. aegypti Akt in the fat body of transgenic mosquitoes led to activation of the downstream signaling molecules forkhead box O (FOXO) and p70 S6 kinase in a tissue and blood meal-specific manner. In both species, increased Akt signaling in the fat body after blood feeding significantly increased adult survivorship relative to nontransgenic sibling controls. In A. stephensi, survivorship was increased by 15% to 45%, while in Ae. aegypti, it increased 14% to 47%. Transgenic mosquitoes fed only sugar, and thus not expressing active Akt, had no significant difference in survivorship relative to nontransgenic siblings. Expression of active Akt also increased expression of fat body vitellogenin, but the number of viable eggs did not differ significantly between transgenic and nontransgenic controls. This work demonstrates a novel mechanism of enhanced survivorship through increased Akt signaling in the fat bodies of multiple mosquito genera and provides new tools to unlock the molecular underpinnings of aging in eukaryotic organisms.

  3. Protein Kinase B Controls Transcriptional Programs that Direct Cytotoxic T Cell Fate but Is Dispensable for T Cell Metabolism

    Science.gov (United States)

    Macintyre, Andrew N.; Finlay, David; Preston, Gavin; Sinclair, Linda V.; Waugh, Caryll M.; Tamas, Peter; Feijoo, Carmen; Okkenhaug, Klaus; Cantrell, Doreen A.

    2011-01-01

    Summary In cytotoxic T cells (CTL), Akt, also known as protein kinase B, is activated by the T cell antigen receptor (TCR) and the cytokine interleukin 2 (IL-2). Akt can control cell metabolism in many cell types but whether this role is important for CTL function has not been determined. Here we have shown that Akt does not mediate IL-2- or TCR-induced cell metabolic responses; rather, this role is assumed by other Akt-related kinases. There is, however, a nonredundant role for sustained and strong activation of Akt in CTL to coordinate the TCR- and IL-2-induced transcriptional programs that control expression of key cytolytic effector molecules, adhesion molecules, and cytokine and chemokine receptors that distinguish effector versus memory and naive T cells. Akt is thus dispensable for metabolism, but the strength and duration of Akt activity dictates the CTL transcriptional program and determines CTL fate. PMID:21295499

  4. Protein kinase C-beta II (PKC-betaII) expression in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise; Lindebjerg, Jan; Lahn, Michael;

    2009-01-01

    PURPOSE: Current development of targeted agents for the treatment of colorectal cancer include the clinical evaluation of kinase inhibitors, such as enzastaurin, a serine/threonine kinase inhibitor designed to suppress signaling through Protein Kinase C (PKC) and AKT pathways. Little is known abo...

  5. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis.

    Science.gov (United States)

    Mancini, Maria L; Lien, Evan C; Toker, Alex

    2016-04-05

    One of the most frequently deregulated signaling pathways in breast cancer is the PI 3-K/Akt cascade. Genetic lesions are commonly found in PIK3CA, PTEN, and AKT, which lead to excessive and constitutive activation of Akt and downstream signaling that results in uncontrolled proliferation and increased cellular survival. One such genetic lesion is the somatic AKT1(E17K) mutation, which has been identified in 4-8% of breast cancer patients. To determine how this mutation contributes to mammary tumorigenesis, we constructed a genetically engineered mouse model that conditionally expresses human AKT1(E17K) in the mammary epithelium. Although AKT1(E17K) is only weakly constitutively active and does not promote proliferation in vitro, it is capable of escaping negative feedback inhibition to exhibit sustained signaling dynamics in vitro. Consistently, both virgin and multiparous AKT1(E17K) mice develop mammary gland hyperplasia that do not progress to carcinoma. This hyperplasia is accompanied by increased estrogen receptor expression, although exposure of the mice to estrogen does not promote tumor development. Moreover, AKT1(E17K) prevents HER2-driven mammary tumor formation, in part through negative feedback inhibition of RTK signaling. Analysis of TCGA breast cancer data revealed that the mRNA expression, total protein levels, and phosphorylation of various RTKs are decreased in human tumors harboring AKT1(E17K).

  6. Neuronal AKAP150 coordinates PKA and Epac-mediated PKB/Akt phosphorylation

    NARCIS (Netherlands)

    Nijholt, Ingrid M.; Dolga, Amalia M.; Ostroveanu, Anghelus; Luiten, Paul G. M.; Schmidt, Martina; Eisel, Ulrich L. M.

    2008-01-01

    In diverse neuronal processes ranging from neuronal survival to synaptic plasticity cyclic adenosine monophosphate (cAMP)-dependent signaling is tightly connected with the protein kinase B (PKB)/Akt pathway but the precise nature of this connection remains unknown. In the current study we investigat

  7. Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes

    DEFF Research Database (Denmark)

    Calay, Damien; Vind-Kezunovic, Dina; Frankart, Aurelie;

    2010-01-01

    of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Raft disruption was achieved in normal human keratinocytes and precancerous (HaCaT) or transformed (A431) keratinocytes by cholesterol extraction or inactivation with methyl-beta-cyclodextrin, filipin III, or 5-cholestene-5-beta-ol. Lipid raft disruption did not affect...

  8. mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Panayiotidis Panayiotis

    2010-11-01

    Full Text Available Abstract Activating mutations of the FLT3 gene mediate leukemogenesis, at least in part, through activation of PI3K/AKT. The mammalian target of rapamycin (mTOR-Raptor signaling pathway is known to act downstream of AKT. Here we show that the mTOR effectors, 4EBP1, p70S6K and rpS6, are highly activated in cultured and primary FLT3-mutated acute myeloid leukemia (AML cells. Introduction of FLT3-ITD expressing constitutively activated FLT3 kinase further activates mTOR and its downstream effectors in BaF3 cells. We also found that mTOR signaling contributes to tumor cell survival, as demonstrated by pharmacologic inhibition of PI3K/AKT/mTOR, or total silencing of the mTOR gene. Furthermore, inhibition of FLT3 kinase results in downregulation of mTOR signaling associated with decreased survival of FLT3-mutated AML cells. These findings suggest that mTOR signaling operates downstream of activated FLT3 kinase thus contributing to tumor cell survival, and may represent a promising therapeutic target for AML patients with mutated-FLT3.

  9. Dual fluorescent molecular substrates selectively report the activation, sustainability and reversibility of cellular PKB/Akt activity

    Science.gov (United States)

    Shen, Duanwen; Bai, Mingfeng; Tang, Rui; Xu, Baogang; Ju, Xiaoming; Pestell, Richard G.; Achilefu, Samuel

    2013-04-01

    Using a newly developed near-infrared (NIR) dye that fluoresces at two different wavelengths (dichromic fluorescence, DCF), we discovered a new fluorescent substrate for Akt, also known as protein kinase B, and a method to quantitatively report this enzyme's activity in real time. Upon insulin activation of cellular Akt, the enzyme multi-phosphorylated a single serine residue of a diserine DCF substrate in a time-dependent manner, culminating in monophospho- to triphospho-serine products. The NIR DCF probe was highly selective for the Akt1 isoform, which was demonstrated using Akt1 knockout cells derived from MMTV-ErbB2 transgenic mice. The DCF mechanism provides unparalleled potential to assess the stimulation, sustainability, and reversibility of Akt activation longitudinally. Importantly, NIR fluorescence provides a pathway to translate findings from cells to living organisms, a condition that could eventually facilitate the use of these probes in humans.

  10. Relative role of upstream regulators of Akt, ERK and CREB in NCAM- and FGF2-mediated signalling

    DEFF Research Database (Denmark)

    Ditlevsen, D.K.; Owczarek, S.; Berezin, V.

    2008-01-01

    demonstrated previously to be involved in NCAM signalling. For comparison, we also evaluated the role of upstream signalling cascades on fibroblast growth factor 2 (FGF2)-mediated phosphorylation of ERK, Akt, and CREB and found that FGF2 required the activity of both FGFR and Src-family kinases...... for phosphorylation of ERK, Akt, and CREB. MEK was required for phosphorylation of ERK and CREB, but not Akt, whereas G(0)/G(i)-proteins were necessary for phosphorylation of Akt and CREB, and cGMP was necessary for Akt phosphorylation. We thus demonstrate that even though NCAM and FGF2 have many signalling features...... in common, and even though both are known to activate FGFR, there are a number of differences in the intracellular signalling network activated by the NCAM ligand C3d and the FGFR ligand FGF2....

  11. Polyphenols isolated from Allium cepa L. induces apoptosis by suppressing IAP-1 through inhibiting PI3K/Akt signaling pathways in human leukemic cells.

    Science.gov (United States)

    Han, Min Ho; Lee, Won Sup; Jung, Ji Hyun; Jeong, Jae-Hun; Park, Cheol; Kim, Hye Jung; Kim, GonSup; Jung, Jin-Myung; Kwon, Taeg Kyu; Kim, Gi-Young; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun

    2013-12-01

    Allium cepa Linn is commonly used as supplementary folk remedy for cancer therapy. Evidence suggests that Allium extracts have anti-cancer properties. However, the mechanisms of the anti-cancer activity of A. cepa Linn are not fully elucidated in human cancer cells. In this study, we investigated anti-cancer effects of polyphenols extracted from lyophilized A. cepa Linn (PEAL) in human leukemia cells and their mechanisms. PEAL inhibited cancer cell growth by inducing caspase-dependent apoptosis. The apoptosis was suppressed by caspase 8 and 9 inhibitors. PEAL also up-regulated TNF-related apoptosis-inducing ligand (TRAIL) receptor DR5 and down-regulated survivin and cellular inhibitor of apoptosis 1 (cIAP-1). We confirmed these findings in other leukemic cells (THP-1, K562 cells). In addition, PEAL suppressed Akt activity and the PEAL-induced apoptosis was significantly attenuated in Akt-overexpressing U937 cells. In conclusion, our data suggested that PEAL induced caspase-dependent apoptosis in several human leukemic cells including U937 cells. The apoptosis was triggered through extrinsic pathway by up-regulating DR5 modulating as well as through intrinsic pathway by modulating IAP family members. In addition, PEAL induces caspase-dependent apoptosis at least in part through the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. This study provides evidence that PEAL might be useful for the treatment of leukemia.

  12. Research development of AKT/PKB pathway in non-small cell lung cancer%AKT/PKB通路在非小细胞肺癌中作用的研究进展

    Institute of Scientific and Technical Information of China (English)

    蒲蓉; 李为民

    2009-01-01

    AKT/~白激酶B(protein kinase B,PKB)是一种丝氨酸/苏氨酸蛋白激酶,传递生长因子等胞外刺激信号,参与调节细胞凋亡、增生、分化和代谢等一系列生理活动.目前在肿瘤的研究中发现AKT/PKB的激活与肿瘤的发生、发展以及肿瘤血管的形成都有密切的关系.本文就AKT/PKB通路在非小细胞肺癌中作用的研究进展进行综述.%AKT/protein kinase B(PKB)is a kind of serine/thyring kinases.It plays a role in the transportation of extracellular stimuli signal,such as growth factor,and participates in a series of physiological activities,such as cell apoptosis,proliferation,differation and metabolism.At present,manyresearches show AKT/PKB has close relationship with tumor genesis,development and angiogenesis.The article reviews the role of AKT/PKB pathway in non-small cell lung cancer.

  13. Pharmacological manipulation of the akt signaling pathway regulates myxoma virus replication and tropism in human cancer cells.

    Science.gov (United States)

    Werden, Steven J; McFadden, Grant

    2010-04-01

    Viruses have evolved an assortment of mechanisms for regulating the Akt signaling pathway to establish a cellular environment more favorable for viral replication. Myxoma virus (MYXV) is a rabbit-specific poxvirus that encodes many immunomodulatory factors, including an ankyrin repeat-containing host range protein termed M-T5 that functions to regulate tropism of MYXV for rabbit lymphocytes and certain human cancer cells. MYXV permissiveness in these human cancer cells is dependent upon the direct interaction between M-T5 and Akt, which has been shown to induce the kinase activity of Akt. In this study, an array of compounds that selectively manipulate Akt signaling was screened and we show that only a subset of Akt inhibitors significantly decreased the ability of MYXV to replicate in previously permissive human cancer cells. Furthermore, reduced viral replication efficiency was correlated with lower levels of phosphorylated Akt. In contrast, the PP2A-specific phosphatase inhibitor okadaic acid promoted increased Akt kinase activation and rescued MYXV replication in human cancer cells that did not previously support viral replication. Finally, phosphorylation of Akt at residue Thr308 was shown to dictate the physical interaction between Akt and M-T5, which then leads to phosphorylation of Ser473 and permits productive MYXV replication in these human cancer cells. The results of this study further characterize the mechanism by which M-T5 exploits the Akt signaling cascade and affirms this interaction as a major tropism determinant that regulates the replication efficiency of MYXV in human cancer cells.

  14. CSTP1, a novel protein phosphatase, blocks cell cycle, promotes cell apoptosis, and suppresses tumor growth of bladder cancer by directly dephosphorylating Akt at Ser473 site.

    Directory of Open Access Journals (Sweden)

    De-Xiang Zhuo

    Full Text Available Akt/protein kinase B is a pivotal component downstream of phosphatidylinositol 3-kinase (PI3K pathway, whose activity regulates the balance between cell survival and apoptosis. Phosphorylation of Akt occurs at two key sites either at Thr308 site in the activation loop or at Ser473 site in the hydrophobic motif. The phosphorylated form of Akt (pAkt is activated to promote cell survival. The mechanisms of pAkt dephosphorylation and how the signal transduction of Akt pathway is terminated are still largely unknown. In this study, we identified a novel protein phosphatase CSTP1(complete s transactivated protein 1, which interacts and dephosphorylates Akt specifically at Ser473 site in vivo and in vitro, blocks cell cycle progression and promotes cell apoptosis. The effects of CSTP1 on cell survival and cell cycle were abrogated by depletion of phosphatase domain of CSTP1 or by expression of a constitutively active form of Akt (S473D, suggesting Ser473 site of Akt as a primary cellular target of CSTP1. Expression profile analysis showed that CSTP1 expression is selectively down-regulated in non-invasive bladder cancer tissues and over-expression of CSTP1 suppressed the size of tumors in nude mice. Kaplan-Meier curves revealed that decreased expression of CSTP1 implicated significantly reduced recurrence-free survival in patients suffered from non-invasive bladder cancers.

  15. Effects of AFP-activated PI3K/Akt signaling pathway on cell proliferation of liver cancer.

    Science.gov (United States)

    Zheng, Lu; Gong, Wei; Liang, Ping; Huang, XiaoBing; You, Nan; Han, Ke Qiang; Li, Yu Ming; Li, Jing

    2014-05-01

    This study aims to investigate effects of alpha-fetoprotein (AFP)-activated phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway on hepatocellular carcinoma cell proliferation. Active cirrhosis patients after hepatitis B infection (n = 20) and viral hepatitis patients with hepatocellular carcinoma (HCC) (n = 20) were selected as the subjects of the present study. Another 20 healthy subjects were selected as the control group. The serum AFP expression and liver tissue PI3K and Akt gene mRNA expression were detected. The hepatoma cell model HepG2 which had a stable expression of AFP gene was used. Real-time quantitative PCR and Western blot and other methods were used to analyze the intracellular PI3K and Akt protein levels. Compared with control group and cirrhosis group, the serum AFP levels in HCC group significantly increased, and the tissue PI3K and Akt mRNA expression also significantly increased. HepG2 cells were intervened using AFP, in which the PIK and Akt protein expression significantly increased. After intervention by use of AFP monoclonal antibodies or LY294002 inhibitor, the PIK and Akt protein expression in HepG2 cell was significantly decreased (P AFP can promote the proliferation of hepatoma cells via activation of PI3K/Akt signaling pathway.

  16. 4-Hydroxy-3-Methoxybenzoic Acid Methyl Ester: A Curcumin Derivative Targets Akt/NFκB Cell Survival Signaling Pathway: Potential for Prostate Cancer Management

    Directory of Open Access Journals (Sweden)

    Addanki P. Kumar

    2003-05-01

    Full Text Available Transcription factor NFKB and the serine/threonine kinase Akt play critical roles in mammalian cell survival signaling and have been shown to be activated in various malignancies including prostate cancer (PCA. We have developed an analogue of curcumin called 4hydroxy-3-methoxybenzoic acid methyl ester (HMBME that targets the Akt/NFκB signaling pathway. Here, we demonstrate the ability of this novel compound to inhibit the proliferation of human and mouse PCA cells. HMBME-induced apoptosis in these cells was tested by using multiple biochemical approaches, in addition to morphological analysis. Overexpression of constitutively active Akt reversed the HMBME-induced growth inhibition and apoptosis, illustrating the direct role of Akt signaling in HMBME-mediated growth inhibition and apoptosis. Further, investigation of the molecular events associated with its action in LNCaP cells shows that: 1 HMBME reduces the level of activated form of Akt (phosphorylated Akt; and 2 inhibits the Akt kinase activity. Further, the transcriptional activity of NFκB, the DNA-binding activity of NFκB, and levels of p65 were all significantly reduced following treatment with HMBME. Overexpression of constitutively active Akt, but not the kinase dead mutant of Akt, activated the basal NFκB transcriptional activity. HMBME treatment had no influence on this constitutively active Aktaugmented NFκB transcriptional activity. These data indicate that HMBME-mediated inhibition of Akt kinase activity may have a potential in suppressing/decreasing the activity of major survival/antiapoptotic pathways. The potential use of HMBME as an agent that targets survival mechanisms in PCA cells is discussed.

  17. Identification and Targeting of Upstream Tyrosine Kinases Mediating PI3 Kinase Activation in PTEN Deficient Prostate Cancer

    Science.gov (United States)

    2011-06-01

    pAkt, phospho-Akt; Ab, antibody ; EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; GPCR , G protein-coupled receptor...tyrosine phosphorylated proteins, but they were not recognized by an anti-pYxxM motif antibody and were not found in PTEN deficient PC3 PCa cells. LC/MS/MS...immunoblotted the p85 immunoprecipitates with a pYxxM motif specific antibody . This antibody weakly detected several discrete p85 associated proteins

  18. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury

    Science.gov (United States)

    Murashov, A. K.; Ul Haq, I.; Hill, C.; Park, E.; Smith, M.; Wang, X.; Wang, X.; Goldberg, D. J.; Wolgemuth, D. J.

    2001-01-01

    The p38 stress-activated protein kinase pathway is involved in regulation of phosphorylation of Hsp25, which in turn regulates actin filament dynamic in non-neuronal cells. We report that p38, Hsp25 and Akt signaling pathways were specifically activated in spinal motor neurons after sciatic nerve axotomy. The activation of the p38 kinase was required for induction of Hsp25 expression. Furthermore, Hsp25 formed a complex with Akt, a member of PI-3 kinase pathway that prevents neuronal cell death. Together, our observations implicate Hsp25 as a central player in a complex system of signaling that may both promote regeneration of nerve fibers and prevent neuronal cell death in the injured spinal cord.

  19. The Role of PI3K/Akt/mTOR Signaling in Gastric Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Tasuku [Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Yashiro, Masakazu, E-mail: m9312510@med.osaka-cu.ac.jp [Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan)

    2014-07-07

    The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is one of the key signaling pathways induced by various receptor-tyrosine kinases. Accumulating evidence shows that this pathway is an important promoter of cell growth, metabolism, survival, metastasis, and resistance to chemotherapy. Genetic alterations in the PI3K/Akt/mTOR pathway in gastric carcinoma have often been demonstrated. Many kinds of molecular targeting therapies are currently undergoing clinical testing in patients with solid tumors. However, with the exception of the ErbB2-targeting antibody, targeting agents, including PI3K/Akt/mTOR inhibitors, have not been approved for treatment of patients with gastric carcinoma. This review summarizes the current knowledge on PI3K/Akt/mTOR signaling in the pathogenesis of gastric carcinoma and the possible therapeutic targets for gastric carcinoma. Improved knowledge of the PI3K/Akt/mTOR pathway in gastric carcinoma will be useful in understanding the mechanisms of tumor development and for identifying ideal targets of anticancer therapy for gastric carcinoma.

  20. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport

    Directory of Open Access Journals (Sweden)

    Nobuhiko Satoh

    2015-01-01

    Full Text Available A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2 and stimulates sodium-bicarbonate cotransporter (NBCe1, resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC and epithelial sodium channel (ENaC activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1 mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK. Moreover, sodium-proton exchanger 3 (NHE3 in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport.

  1. The Role of PI3K/Akt/mTOR Signaling in Gastric Carcinoma

    Science.gov (United States)

    Matsuoka, Tasuku; Yashiro, Masakazu

    2014-01-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is one of the key signaling pathways induced by various receptor-tyrosine kinases. Accumulating evidence shows that this pathway is an important promoter of cell growth, metabolism, survival, metastasis, and resistance to chemotherapy. Genetic alterations in the PI3K/Akt/mTOR pathway in gastric carcinoma have often been demonstrated. Many kinds of molecular targeting therapies are currently undergoing clinical testing in patients with solid tumors. However, with the exception of the ErbB2-targeting antibody, targeting agents, including PI3K/Akt/mTOR inhibitors, have not been approved for treatment of patients with gastric carcinoma. This review summarizes the current knowledge on PI3K/Akt/mTOR signaling in the pathogenesis of gastric carcinoma and the possible therapeutic targets for gastric carcinoma. Improved knowledge of the PI3K/Akt/mTOR pathway in gastric carcinoma will be useful in understanding the mechanisms of tumor development and for identifying ideal targets of anticancer therapy for gastric carcinoma. PMID:25003395

  2. Scaffold oriented synthesis. Part 3: design, synthesis and biological evaluation of novel 5-substituted indazoles as potent and selective kinase inhibitors employing [2+3] cycloadditions.

    Science.gov (United States)

    Akritopoulou-Zanze, Irini; Wakefield, Brian D; Gasiecki, Alan; Kalvin, Douglas; Johnson, Eric F; Kovar, Peter; Djuric, Stevan W

    2011-03-01

    We report the synthesis and biological evaluation of 5-substituted indazoles and amino indazoles as kinase inhibitors. The compounds were synthesized in a parallel synthesis fashion from readily available starting materials employing [2+3] cycloaddition reactions and were evaluated against a panel of kinase assays. Potent inhibitors were identified for numerous kinases such as Rock2, Gsk3β, Aurora2 and Jak2.

  3. Nuclear Akt associates with PKC-phosphorylated Ebp1, preventing DNA fragmentation by inhibition of caspase-activated DNase

    Science.gov (United States)

    Ahn, Jee-Yin; Liu, Xia; Liu, Zhixue; Pereira, Lorena; Cheng, Dongmei; Peng, Junmin; Wade, Paul A; Hamburger, Anne W; Ye, Keqiang

    2006-01-01

    Akt promotes cell survival through phosphorylation. The physiological functions of cytoplasmic Akt have been well defined, but little is known about the nuclear counterpart. Employing a cell-free apoptotic assay and NGF-treated PC12 nuclear extracts, we purified Ebp1 as a factor, which contributes to inhibition of DNA fragmentation by CAD. Depletion of Ebp1 from nuclear extracts or knockdown of Ebp1 in PC12 cells abolishes the protective effects of nerve growth factor, whereas overexpression of Ebp1 prevents apoptosis. Ebp1 (S360A), which cannot be phosphorylated by PKC, barely binds Akt or inhibits DNA fragmentation, whereas Ebp1 S360D, which mimics phosphorylation, strongly binds Akt and suppresses apoptosis. Further, phosphorylated nuclear but not cytoplasmic Akt interacts with Ebp1 and enhances its antiapoptotic action independent of Akt kinase activity. Moreover, knocking down of Akt diminishes the antiapoptotic effect of Ebp1 in the nucleus. Thus, nuclear Akt might contribute to suppressing apoptosis through interaction with Ebp1. PMID:16642037

  4. PKD1 mediates negative feedback of PI3K/Akt activation in response to G protein-coupled receptors.

    Directory of Open Access Journals (Sweden)

    Yang Ni

    Full Text Available We examined whether protein kinase D1 (PKD1 mediates negative feeback of PI3K/Akt signaling in intestinal epithelial cells stimulated with G protein-coupled receptor (GPCR agonists. Exposure of intestinal epithelial IEC-18 cells to increasing concentrations of the PKD family inhibitor kb NB 142-70, at concentrations that inhibited PKD1 activation, strikingly potentiated Akt phosphorylation at Thr(308 and Ser(473 in response to the mitogenic GPCR agonist angiotensin II (ANG II. Enhancement of Akt activation by kb NB 142-70 was also evident in cells with other GPCR agonists, including vasopressin and lysophosphatidic acid. Cell treatment with the structurally unrelated PKD family inhibitor CRT0066101 increased Akt phosphorylation as potently as kb NB 142-70 [corrected]. Knockdown of PKD1 with two different siRNAs strikingly enhanced Akt phosphorylation in response to ANG II stimulation in IEC-18 cells. To determine whether treatment with kb NB 142-70 enhances accumulation of phosphatidylinositol (3,4,5-trisphosphate (PIP3 in the plasma membrane, we monitored the redistribution of Akt-pleckstrin homology domain-green fluorescent protein (Akt-PH-GFP in single IEC-18 cells. Exposure to kb NB 142-70 strikingly increased membrane accumulation of Akt-PH-GFP in response to ANG II. The translocation of the PIP3 sensor to the plasma membrane and the phosphorylation of Akt was completed prevented by prior exposure to the class I p110α specific inhibitor A66. ANG II markedly increased the phosphorylation of p85α detected by a PKD motif-specific antibody and enhanced the association of p85α with PTEN. Transgenic mice overexpressing PKD1 showed a reduced phosphorylation of Akt at Ser(473 in intestinal epithelial cells compared to wild type littermates. Collectively these results indicate that PKD1 activation mediates feedback inhibition of PI3K/Akt signaling in intestinal epithelial cells in vitro and in vivo.

  5. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    Science.gov (United States)

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  6. Hydrogen Sulfide and/or Ammonia Reduces Spermatozoa Motility through AMPK/AKT Related Pathways

    Science.gov (United States)

    Zhao, Yong; Zhang, Wei-Dong; Liu, Xin-Qi; Zhang, Peng-Fei; Hao, Ya-Nan; Li, Lan; Chen, Liang; Shen, Wei; Tang, Xiang-Fang; Min, Ling-Jiang; Meng, Qing-Shi; Wang, Shu-Kun; Yi, Bao; Zhang, Hong-Fu

    2016-11-01

    A number of emerging studies suggest that air pollutants such as hydrogen sulfide (H2S) and ammonia (NH3) may cause a decline in spermatozoa motility. The impact and underlying mechanisms are currently unknown. Boar spermatozoa (in vitro) and peripubertal male mice (in vivo) were exposed to H2S and/or NH3 to evaluate the impact on spermatozoa motility. Na2S and/or NH4Cl reduced the motility of boar spermatozoa in vitro. Na2S and/or NH4Cl disrupted multiple signaling pathways including decreasing Na+/K+ ATPase activity and protein kinase B (AKT) levels, activating Adenosine 5‧-monophosphate (AMP)-activated protein kinase (AMPK) and phosphatase and tensin homolog deleted on chromosome ten (PTEN), and increasing reactive oxygen species (ROS) to diminish boar spermatozoa motility. The increase in ROS might have activated PTEN, which in turn diminished AKT activation. The ATP deficiency (indicated by reduction in Na+/K+ ATPase activity), transforming growth factor (TGFβ) activated kinase-1 (TAK1) activation, and AKT deactivation stimulated AMPK, which caused a decline in boar spermatozoa motility. Simultaneously, the deactivation of AKT might play some role in the reduction of boar spermatozoa motility. Furthermore, Na2S and/or NH4Cl declined the motility of mouse spermatozoa without affecting mouse body weight gain in vivo. Findings of the present study suggest that H2S and/or NH3 are adversely associated with spermatozoa motility.

  7. Orexins protect neuronal cell cultures against hypoxic stress: an involvement of Akt signaling.

    Science.gov (United States)

    Sokołowska, Paulina; Urbańska, Anna; Biegańska, Kaja; Wagner, Waldemar; Ciszewski, Wojciech; Namiecińska, Magdalena; Zawilska, Jolanta B

    2014-01-01

    Orexins A and B are peptides produced mainly by hypothalamic neurons that project to numerous brain structures. We have previously demonstrated that rat cortical neurons express both types of orexin receptors, and their activation by orexins initiates different intracellular signals. The present study aimed to determine the effect of orexins on the Akt kinase activation in the rat neuronal cultures and the significance of that response in neurons subjected to hypoxic stress. We report the first evidence that orexins A and B stimulated Akt in cortical neurons in a concentration- and time-dependent manner. Orexin B more potently than orexin A increased Akt phosphorylation, but the maximal effect of both peptides on the kinase activation was very similar. Next, cultured cortical neurons were challenged with cobalt chloride, an inducer of reactive oxygen species and hypoxia-mediated signaling pathways. Under conditions of chemical hypoxia, orexins potently increased neuronal viability and protected cortical neurons against oxidative stress. Our results also indicate that Akt kinase plays an important role in the pro-survival effects of orexins in neurons, which implies a possible mechanism of the orexin-induced neuroprotection.

  8. Mutation of genes of the PI3K/AKT pathway in breast cancer supports their potential importance as biomarker for breast cancer aggressiveness.

    Science.gov (United States)

    Tserga, Aggeliki; Chatziandreou, Ilenia; Michalopoulos, Nicolaos V; Patsouris, Efstratios; Saetta, Angelica A

    2016-07-01

    Deregulation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is closely associated with cancer development and cancer progression. PIK3CA, AKT1, and PTEN are the fundamental molecules of the PI3K/AKT pathway with increased mutation rates in cancer cases leading to aberrant regulation of the pathway. Even though molecular alterations of the PI3K/AKT pathway have been studied in breast cancer, correlations between specific molecular alterations and clinicopathological features remain contradictory. In this study, we examined mutations of the PI3K/AKT pathway in 75 breast carcinomas using high-resolution melting analysis and pyrosequencing, in parallel with analysis of relative expression of PIK3CA and AKT2 genes. Mutations of PIK3CA were found in our cohort in 21 cases (28 %), 10 (13 %) in exon 9 and 11(15 %) in exon 20. Mutation frequency of AKT1 and PTEN genes was 4 and 3 %, respectively. Overall, alterations in the PI3K/AKT signaling cascade were detected in 35 % of the cases. Furthermore, comparison of 50 breast carcinomas with adjacent normal tissues showed elevated PIK3CA messenger RNA (mRNA) levels in 18 % of tumor cases and elevated AKT2 mRNA levels in 14 %. Our findings, along with those of previous studies, underline the importance of the PI3K/AKT pathway components as potential biomarkers for breast carcinogenesis.

  9. Ankrd2/ARPP is a novel Akt2 specific substrate and regulates myogenic differentiation upon cellular exposure to H2O2

    Science.gov (United States)

    Cenni, Vittoria; Bavelloni, Alberto; Beretti, Francesca; Tagliavini, Francesca; Manzoli, Lucia; Lattanzi, Giovanna; Maraldi, Nadir M.; Cocco, Lucio; Marmiroli, Sandra

    2011-01-01

    Activation of Akt-mediated signaling pathways is crucial for survival, differentiation, and regeneration of muscle cells. A proteomic-based search for novel substrates of Akt was therefore undertaken in C2C12 murine muscle cells exploiting protein characterization databases in combination with an anti–phospho-Akt substrate antibody. A Scansite database search predicted Ankrd2 (Ankyrin repeat domain protein 2, also known as ARPP) as a novel substrate of Akt. In vitro and in vivo studies confirmed that Akt phosphorylates Ankrd2 at Ser-99. Moreover, by kinase assay with recombinant Akt1 and Akt2, as well as by single-isoform silencing, we demonstrated that Ankrd2 is a specific substrate of Akt2. Ankrd2 is typically found in skeletal muscle cells, where it mediates the transcriptional response to stress conditions. In an attempt to investigate the physiological implications of Ankrd2 phosphorylation by Akt2, we found that oxidative stress induced by H2O2 triggers this phosphorylation. Moreover, the forced expression of a phosphorylation-defective mutant form of Ankrd2 in C2C12 myoblasts promoted a faster differentiation program, implicating Akt-dependent phosphorylation at Ser-99 in the negative regulation of myogenesis in response to stress conditions. PMID:21737686

  10. Chloroquine stimulates glucose uptake and glycogen synthase in muscle cells through activation of Akt.

    Science.gov (United States)

    Halaby, Marie-Jo; Kastein, Brandon K; Yang, Da-Qing

    2013-06-14

    Chloroquine is a pharmaceutical agent that has been widely used to treat patients with malaria. Chloroquine has also been reported to have hypoglycemic effects on humans and animal models of diabetes. Despite many previous studies, the mechanism responsible for its hypoglycemic effect is still unclear. Chloroquine was recently reported to be an activator of ATM, the protein deficient in the Ataxia-telagiectasia (A-T) disease. Since ATM is also known as an insulin responsive protein that mediates Akt activation, we tested the effect of chloroquine on the activity of Akt and its downstream targets. In L6 muscle cells treated with insulin and chloroquine, the phosphorylation of Akt and glucose uptake were dramatically increased compared to cells treated with insulin alone, suggesting that chloroquine is a potent activator of Akt and glucose uptake in these cells. We also found that the reduction of insulin-mediated Akt activity in muscle tissues of insulin resistant rats was partially reversed by chloroquine treatment. Moreover, insulin-mediated phosphorylation of glycogen synthase kinase-3β in L6 cells was greatly enhanced by chloroquine. A substantial decrease in phosphorylation of glycogen synthase was also observed in chloroquine-treated L6 cells, indicating enhanced activity of glycogen synthase. Taken together, our results not only show that chloroquine is a novel activator of Akt that stimulates glucose uptake and glycogen synthase, but also validate chloroquine as a potential therapeutic agent for patients with type 2 diabetes mellitus. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes

    Institute of Scientific and Technical Information of China (English)

    Ipsita PAL; Mahitosh MANDAL

    2012-01-01

    The PI3K-Akt pathway is a vital regulator of cell proliferation and survival.Alterations in the PIK3CA gene that lead to enhanced PI3K kinase activity have been reported in many human cancer types,including cancers of the colon,breast,brain,liver,stomach and lung.Deregulation of PI3K causes aberrant Akt activity.Therefore targeting this pathway could have implications for cancer treatment.The first generation PI3K-Akt inhibitors were proven to be highly effective with a low IC50,but later,they were shown to have toxic side effects and poor pharmacological properties and selectivity.Thus,these inhibitors were only effective in preclinical models.However,derivatives of these first generation inhibitors are much more selective and are quite effective in targeting the PI3K-Akt pathway,either alone or in combination.These second-generation inhibitors are essentially a specific chemical moiety that helps to form a strong hydrogen bond interaction with the PI3K/Akt molecule.The goal of this review is to delineate the current efforts that have been undertaken to inhibit the various components of the PI3K and Akt pathway in different types of cancer both in vitro and in vivo.Our focus here is on these novel therapies and their inhibitory effects that depend upon their chemical nature,as well as their development towards clinical trials.

  12. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  13. Testosterone and Voluntary Exercise, Alone or Together Increase Cardiac Activation of AKT and ERK1/2 in Diabetic Rats

    Science.gov (United States)

    Chodari, Leila; Mohammadi, Mustafa; Mohaddes, Gisou; Alipour, Mohammad Reza; Ghorbanzade, Vajiheh; Dariushnejad, Hassan; Mohammadi, Shima

    2016-01-01

    Background Impaired angiogenesis in cardiac tissue is a major complication of diabetes. Protein kinase B (AKT) and extracellular signal regulated kinase (ERK) signaling pathways play important role during capillary-like network formation in angiogenesis process. Objectives To determine the effects of testosterone and voluntary exercise on levels of vascularity, phosphorylated Akt (P- AKT) and phosphorylated ERK (P-ERK) in heart tissue of diabetic and castrated diabetic rats. Methods Type I diabetes was induced by i.p injection of 50 mg/kg of streptozotocin in animals. After 42 days of treatment with testosterone (2mg/kg/day) or voluntary exercise alone or in combination, heart tissue samples were collected and used for histological evaluation and determination of P-AKT and P-ERK levels by ELISA method. Results Our results showed that either testosterone or exercise increased capillarity, P-AKT, and P-ERK levels in the heart of diabetic rats. Treatment of diabetic rats with testosterone and exercise had a synergistic effect on capillarity, P-AKT, and P-ERK levels in heart. Furthermore, in the castrated diabetes group, capillarity, P-AKT, and P-ERK levels significantly decreased in the heart, whereas either testosterone treatment or exercise training reversed these effects. Also, simultaneous treatment of castrated diabetic rats with testosterone and exercise had an additive effect on P-AKT and P-ERK levels. Conclusion Our findings suggest that testosterone and exercise alone or together can increase angiogenesis in the heart of diabetic and castrated diabetic rats. The proangiogenesis effects of testosterone and exercise are associated with the enhanced activation of AKT and ERK1/2 in heart tissue.

  14. Scaffold oriented synthesis. Part 4: design, synthesis and biological evaluation of novel 5-substituted indazoles as potent and selective kinase inhibitors employing heterocycle forming and multicomponent reactions.

    Science.gov (United States)

    Akritopoulou-Zanze, Irini; Wakefield, Brian D; Gasiecki, Alan; Kalvin, Douglas; Johnson, Eric F; Kovar, Peter; Djuric, Stevan W

    2011-03-01

    We report the synthesis and biological evaluation of 5-substituted indazoles as kinase inhibitors. The compounds were synthesized in a parallel synthesis fashion from readily available starting materials employing heterocycle forming and multicomponent reactions and were evaluated against a panel of kinase assays. Potent inhibitors were identified for Gsk3β, Rock2, and Egfr.

  15. Progress in protein kinase B%蛋白激酶B的研究进展

    Institute of Scientific and Technical Information of China (English)

    王华祖; 龚兴国

    2003-01-01

    Protein kinase B (Akt) is a Ser/Thr kinase, which in mammals comprise three highly ho-mologous members known as PKBα/Aktl, PKBβ/Akt2 and PKBγ/Akt3. PKB is activated by hormones,growth factor and extra cellular matrix. The activation occurs downstream of PI3K. PKB phosphorylates and regulates the function of many cellular protein involved in processes that include survival, apoptosis, proliferation,glycogen metabolism and cancer progression. Although many mechanisms remains to be fully characterized, the research of PKB is thought to have a useful profect.

  16. Akt protects the heart against ischaemia-reperfusion injury by modulating mitochondrial morphology.

    Science.gov (United States)

    Ong, Sang-Bing; Hall, Andrew R; Dongworth, Rachel K; Kalkhoran, Siavash; Pyakurel, Aswin; Scorrano, Luca; Hausenloy, Derek J

    2015-03-01

    The mechanism through which the protein kinase Akt (also called PKB), protects the heart against acute ischaemia-reperfusion injury (IRI) is not clear. Here, we investigate whether Akt mediates its cardioprotective effect by modulating mitochondrial morphology. Transfection of HL-1 cardiac cells with constitutively active Akt (caAkt) changed mitochondrial morphology as evidenced by an increase in the proportion of cells displaying predominantly elongated mitochondria (73 ± 5.0 % caAkt vs 49 ± 5.8 % control: N=80 cells/group; pmitochondrial permeability transition pore (MPTP) opening (by 2.4 ± 0.5 fold; N=80 cells/group: pmitochondrial morphology, MPTP opening, and cell survival post-IRI, were demonstrated with pharmacological activation of Akt using the known cardioprotective cytokine, erythropoietin (EPO). The effect of Akt on inducing mitochondrial elongation was found to be dependent on the mitochondrial fusion protein, Mitofusin-1 (Mfn1), as ablation of Mfn1 in mouse embryonic fibroblasts (MEFs) abrogated Akt-mediated mitochondrial elongation. Finally, in vivo pre-treatment with EPO reduced myocardial infarct size (as a % of the area at risk) in adult mice subjected to IRI (26.2 ± 2.6 % with EPO vs 46.1 ± 6.5 % in control; N=7/group: pmitochondrial fragmentation observed by electron microscopy in adult murine hearts subjected to ischaemia from 5.8 ± 1.0 % to 2.2 ± 1.0 % (N=5 hearts/group; pmitochondrial morphology.

  17. Dopamine D2 receptor-mediated Akt/PKB signalling: initiation by the D2S receptor and role in quinpirole-induced behavioural activation.

    Science.gov (United States)

    Chen, Han-Ting; Ruan, Nan-Yu; Chen, Jin-Chung; Lin, Tzu-Yung

    2012-09-24

    The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively) are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3). To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney)-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2) activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase) inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.

  18. Dopamine D2 receptor-mediated Akt/PKB signalling: initiation by the D2S receptor and role in quinpirole-induced behavioural activation

    Directory of Open Access Journals (Sweden)

    Jin‑Chung Chen

    2012-09-01

    Full Text Available The short and long isoforms of the dopamine D2 receptor (D2S and D2L respectively are highly expressed in the striatum. Functional D2 receptors activate an intracellular signalling pathway that includes a cAMP-independent route involving Akt/GSK3 (glycogen synthase kinase 3. To investigate the Akt/GSK3 response to the seldom-studied D2S receptor, we established a rat D2S receptor-expressing cell line [HEK (human embryonic kidney-293/rD2S]. We found that in HEK-293/rD2S cells, the D2/D3 agonists bromocriptine and quinpirole significantly induced Akt and GSK3 phosphorylation, as well as ERK1/2 (extracellular-signal-regulated kinase 1/2 activation. The D2S receptor-induced Akt signals were profoundly inhibited by the internalization blockers monodansyl cadaverine and concanavalin A. Activation of the D2S receptor in HEK-293/rD2S cells appeared to trigger Akt/phospho-Akt translocation to the cell membrane. In addition to our cell culture experiments, we studied D2 receptor-dependent Akt in vivo by systemic administration of the D2/D3 agonist quinpirole. The results show that quinpirole evoked Akt-Ser473 phosphorylation in the ventral striatum. Furthermore, intra-accumbens administration of wortmannin, a PI3K (phosphoinositide 3-kinase inhibitor, significantly suppressed the quinpirole-evoked behavioural activation. Overall, we demonstrate that activation of the dopamine D2S receptor stimulates Akt/GSK3 signalling. In addition, in vivo Akt activity in the ventral striatum appears to play an important role in systemic D2/D3 agonist-induced behavioural activation.

  19. Akt Requires Glucose Metabolism to Suppress Puma Expression and Prevent Apoptosis of Leukemic T Cells*

    Science.gov (United States)

    Coloff, Jonathan L.; Mason, Emily F.; Altman, Brian J.; Gerriets, Valerie A.; Liu, Tingyu; Nichols, Amanda N.; Zhao, Yuxing; Wofford, Jessica A.; Jacobs, Sarah R.; Ilkayeva, Olga; Garrison, Sean P.; Zambetti, Gerard P.; Rathmell, Jeffrey C.

    2011-01-01

    The PI3K/Akt pathway is activated in stimulated cells and in many cancers to promote glucose metabolism and prevent cell death. Although inhibition of Akt-mediated cell survival may provide a means to eliminate cancer cells, this survival pathway remains incompletely understood. In particular, unlike anti-apoptotic Bcl-2 family proteins that prevent apoptosis independent of glucose, Akt requires glucose metabolism to inhibit cell death. This glucose dependence may occur in part through metabolic regulation of pro-apoptotic Bcl-2 family proteins. Here, we show that activated Akt relies on glycolysis to inhibit induction of Puma, which was uniquely sensitive to metabolic status among pro-apoptotic Bcl-2 family members and was rapidly up-regulated in glucose-deficient conditions. Importantly, preventing Puma expression was critical for Akt-mediated cell survival, as Puma deficiency protected cells from glucose deprivation and Akt could not readily block Puma-mediated apoptosis. In contrast, the pro-apoptotic Bcl-2 family protein Bim was induced normally even when constitutively active Akt was expressed, yet Akt could provide protection from Bim cytotoxicity. Up-regulation of Puma appeared mediated by decreased availability of mitochondrial metabolites rather than glycolysis itself, as alternative mitochondrial fuels could suppress Puma induction and apoptosis upon glucose deprivation. Metabolic regulation of Puma was mediated through combined p53-dependent transcriptional induction and control of Puma protein stability, with Puma degraded in nutrient-replete conditions and long lived in nutrient deficiency. Together, these data identify a key role for Bcl-2 family proteins in Akt-mediated cell survival that may be critical in normal immunity and in cancer through Akt-dependent stimulation of glycolysis to suppress Puma expression. PMID:21159778

  20. Inhibition of hydrogen peroxide signaling by 4-hydroxynonenal due to differential regulation of Akt1 and Akt2 contributes to decreases in cell survival and proliferation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Shearn, Colin T; Reigan, Philip; Petersen, Dennis R

    2012-07-01

    Dysregulation of cell signaling by electrophiles such as 4-hydroxynonenal (4-HNE) is a key component in the pathogenesis of chronic inflammatory liver disease. Another consequence of inflammation is the perpetuation of oxidative damage by the production of reactive oxidative species such as hydrogen peroxide. Previously, we have demonstrated Akt2 as a direct target of 4-HNE in hepatocellular carcinoma cells. In the present study, we used the hepatocellular carcinoma cell line HepG2 as model to understand the combinatorial effects of 4-HNE and hydrogen peroxide. We demonstrate that 4-HNE inhibits hydrogen peroxide-mediated phosphorylation of Akt1 but not Akt2. Pretreatment of HepG2 cells with 4-HNE prevented hydrogen peroxide stimulation of Akt-dependent phosphorylation of downstream targets and intracellular Akt activity compared with untreated control cells. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment resulted in carbonylation of Akt1, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt1 (rAkt1) with 20 or 40 μΜ 4-HNE inhibited rAkt1 activity by 29 and 60%, respectively. We further demonstrate that 4-HNE activates Erk via a PI3 kinase and PP2A-dependent mechanism leading to increased Jnk phosphorylation. At higher concentrations, 4-HNE decreased both cell survival and proliferation as evidenced by MTT assays and EdU incorporation as well as decreased expression of cyclin D1 and β-catenin, an effect only moderately increased by the addition of hydrogen peroxide. The ability of 4-HNE to exert combinatorial effects on Erk, Jnk, and Akt-dependent cell survival pathways provides additional insight into the mechanisms of cellular damage associated with chronic inflammation.

  1. Identifying a kinase network regulating FGF14:Nav1.6 complex assembly using split-luciferase complementation.

    Directory of Open Access Journals (Sweden)

    Wei-Chun Hsu

    Full Text Available Kinases play fundamental roles in the brain. Through complex signaling pathways, kinases regulate the strength of protein:protein interactions (PPI influencing cell cycle, signal transduction, and electrical activity of neurons. Changes induced by kinases on neuronal excitability, synaptic plasticity and brain connectivity are linked to complex brain disorders, but the molecular mechanisms underlying these cellular events remain for the most part elusive. To further our understanding of brain disease, new methods for rapidly surveying kinase pathways in the cellular context are needed. The bioluminescence-based luciferase complementation assay (LCA is a powerful, versatile toolkit for the exploration of PPI. LCA relies on the complementation of two firefly luciferase protein fragments that are functionally reconstituted into the full luciferase enzyme by two interacting binding partners. Here, we applied LCA in live cells to assay 12 kinase pathways as regulators of the PPI complex formed by the voltage-gated sodium channel, Nav1.6, a transmembrane ion channel that elicits the action potential in neurons and mediates synaptic transmission, and its multivalent accessory protein, the fibroblast growth factor 14 (FGF14. Through extensive dose-dependent validations of structurally-diverse kinase inhibitors and hierarchical clustering, we identified the PI3K/Akt pathway, the cell-cycle regulator Wee1 kinase, and protein kinase C (PKC as prospective regulatory nodes of neuronal excitability through modulation of the FGF14:Nav1.6 complex. Ingenuity Pathway Analysis shows convergence of these pathways on glycogen synthase kinase 3 (GSK3 and functional assays demonstrate that inhibition of GSK3 impairs excitability of hippocampal neurons. This combined approach provides a versatile toolkit for rapidly surveying PPI signaling, allowing the discovery of new modular pathways centered on GSK3 that might be the basis for functional alterations between the

  2. Ganoderma atrum polysaccharide improves aortic relaxation in diabetic rats via PI3K/Akt pathway.

    Science.gov (United States)

    Zhu, Ke-Xue; Nie, Shao-Ping; Li, Chuan; Gong, Deming; Xie, Ming-Yong

    2014-03-15

    A newly identified polysaccharide (PSG-1) has been purified from Ganoderma atrum. The study was to investigate the protective effect of PSG-1 on diabetes-induced endothelial dysfunction in rat aorta. Rats were fed a high fat diet for 8 weeks and then injected with a low dose of streptozotocin to induce type 2 diabetes. The diabetic rats were orally treated with PSG-1 for 4 weeks. It was found that administration of PSG-1 significantly reduced levels of fasting blood glucose, improved endothelium-dependent aortic relaxation, increased levels of phosphoinositide 3-kinase (PI3K), phospho-Akt (p-Akt), endothelial nitric oxide synthase (eNOS) and nitric oxide in the aorta from diabetic rats, compared to un-treated diabetics. These results suggested that the protective effects of PSG-1 against endothelial dysfunction may be related to activation of the PI3K/Akt/eNOS pathway.

  3. Diacylglycerol kinase β knockout mice exhibit lithium-sensitive behavioral abnormalities.

    Directory of Open Access Journals (Sweden)

    Kenichi Kakefuda

    Full Text Available BACKGROUND: Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol (DG to produce phosphatidic acid (PA. DGKβ is widely distributed in the central nervous system, such as the olfactory bulb, cerebral cortex, striatum, and hippocampus. Recent studies reported that the splice variant at the COOH-terminal of DGKβ was related to bipolar disorder, but its detailed mechanism is still unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we performed behavioral tests using DGKβ knockout (KO mice to investigate the effects of DGKβ deficits on psychomotor behavior. DGKβ KO mice exhibited some behavioral abnormalities, such as hyperactivity, reduced anxiety, and reduced depression. Additionally, hyperactivity and reduced anxiety were attenuated by the administration of the mood stabilizer, lithium, but not haloperidol, diazepam, or imipramine. Moreover, DGKβ KO mice showed impairment in Akt-glycogen synthesis kinase (GSK 3β signaling and cortical spine formation. CONCLUSIONS/SIGNIFICANCE: These findings suggest that DGKβ KO mice exhibit lithium-sensitive behavioral abnormalities that are, at least in part, due to the impairment of Akt-GSK3β signaling and cortical spine formation.

  4. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division

    Directory of Open Access Journals (Sweden)

    Anthony J. Robertson

    2013-03-01

    In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB, which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.

  5. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division

    KAUST Repository

    Robertson, Anthony J.

    2013-03-25

    In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB), which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.

  6. The E3 Ubiquitin Ligase SCF(Cyclin F) Transmits AKT Signaling to the Cell-Cycle Machinery.

    Science.gov (United States)

    Choudhury, Rajarshi; Bonacci, Thomas; Wang, Xianxi; Truong, Andrew; Arceci, Anthony; Zhang, Yanqiong; Mills, Christine A; Kernan, Jennifer L; Liu, Pengda; Emanuele, Michael J

    2017-09-26

    The oncogenic AKT kinase is a key regulator of apoptosis, cell growth, and cell-cycle progression. Despite its important role in proliferation, it remains largely unknown how AKT is mechanistically linked to the cell cycle. We show here that cyclin F, a substrate receptor F-box protein for the SCF (Skp1/Cul1/F-box) family of E3 ubiquitin ligases, is a bona fide AKT substrate. Cyclin F expression oscillates throughout the cell cycle, a rare feature among the 69 human F-box proteins, and all of its known substrates are involved in proliferation. AKT phosphorylation of cyclin F enhances its stability and promotes assembly into productive E3 ligase complexes. Importantly, expression of mutant versions of cyclin F that cannot be phosphorylated by AKT impair cell-cycle entry. Our data suggest that cyclin F transmits mitogen signaling through AKT to the core cell-cycle machinery. This discovery has potential implications for proliferative control in malignancies where AKT is activated. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. AKT Hyperactivation and the Potential of AKT-Targeted Therapy in Diffuse Large B-Cell Lymphoma

    DEFF Research Database (Denmark)

    Wang, Jinfen; Xu-Monette, Zijun Y; Jabbar, Kausar J

    2017-01-01

    AKT signaling is important for proliferation and survival of tumor cells. The clinical significance of AKT activation in diffuse large B-cell lymphoma (DLBCL) is not well analyzed. Here, we assessed expression of phosphorylated AKT (p-AKT) in 522 DLBCL patients. We found high levels of p-AKT nucl...

  8. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway.

    Science.gov (United States)

    Polivka, Jiri; Janku, Filip

    2014-05-01

    Aberrations in various cellular signaling pathways are instrumental in regulating cellular metabolism, tumor development, growth, proliferation, metastasis and cytoskeletal reorganization. The fundamental cellular signaling cascade involved in these processes, the phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR), closely related to the mitogen-activated protein kinase (MAPK) pathway, is a crucial and intensively explored intracellular signaling pathway in tumorigenesis. Various activating mutations in oncogenes together with the inactivation of tumor suppressor genes are found in diverse malignancies across almost all members of the pathway. Substantial progress in uncovering PI3K/AKT/mTOR alterations and their roles in tumorigenesis has enabled the development of novel targeted molecules with potential for developing efficacious anticancer treatment. Two approved anticancer drugs, everolimus and temsirolimus, exemplify targeted inhibition of PI3K/AKT/mTOR in the clinic and many others are in preclinical development as well as being tested in early clinical trials for many different types of cancer. This review focuses on targeted PI3K/AKT/mTOR signaling from the perspective of novel molecular targets for cancer therapy found in key pathway members and their corresponding experimental therapeutic agents. Various aberrant prognostic and predictive biomarkers are also discussed and examples are given. Novel approaches to PI3K/AKT/mTOR pathway inhibition together with a better understanding of prognostic and predictive markers have the potential to significantly improve the future care of cancer patients in the current era of personalized cancer medicine.

  9. Activation of Akt protects alveoli from neonatal oxygen-induced lung injury.

    Science.gov (United States)

    Alphonse, Rajesh S; Vadivel, Arul; Coltan, Lavinia; Eaton, Farah; Barr, Amy J; Dyck, Jason R B; Thébaud, Bernard

    2011-02-01

    Bronchopulmonary dysplasia (BPD) is the main complication of extreme prematurity, resulting in part from mechanical ventilation and oxygen therapy. Currently, no specific treatment exists for BPD. BPD is characterized by an arrest in alveolar development and increased apoptosis of alveolar epithelial cells (AECs). Type 2 AECs are putative distal lung progenitor cells, capable of regenerating alveolar homeostasis after injury. We hypothesized that the protection of AEC2 death via the activation of the prosurvival Akt pathway prevents arrested alveolar development in experimental BPD. We show that the pharmacologic inhibition of the prosurvival factor Akt pathway with wortmannin during the critical period of alveolar development impairs alveolar development in newborn rats, resulting in larger and fewer alveoli, reminiscent of BPD. Conversely, in an experimental model of BPD induced by oxygen exposure of newborn rats, alveolar simplification is associated with a decreased activation of lung Akt. In vitro studies with rat lung epithelial (RLE) cells cultured in hyperoxia (95% O(2)) showed decreased apoptosis and improved cell survival after the forced expression of active Akt by adenovirus-mediated gene transfer. In vivo, adenovirus-mediated Akt gene transfer preserves alveolar architecture in the newborn rat model of hyperoxia-induced BPD. We conclude that inhibition of the prosurvival factor Akt disrupts normal lung development, whereas the expression of active Akt in experimental BPD preserves alveolar development. We speculate that the modulation of apoptosis may have therapeutic potential in lung diseases characterized by alveolar damage.

  10. The PI3K/Akt Signaling Pathway Mediates the High Glucose-Induced Expression of Extracellular Matrix Molecules in Human Retinal Pigment Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Dong Qin

    2015-01-01

    Full Text Available Prolonged hyperglycemia is an important risk factor of the pathogenesis of diabetic retinopathy (DR. Extracellular matrix molecules, such as fibronectin, collagen IV, and laminin, are associated with fibrotic membranes. In this study, we investigated the expression of fibronectin, collagen IV, and laminin in RPE cells under high glucose conditions. Furthermore, we also detected the phosphorylation of protein kinase B (Akt under high glucose conditions in RPE cells. Our results showed that high glucose upregulated fibronectin, collagen IV, and laminin expression, and activated Akt in RPE cells. We also found that pretreatment with LY294002 (an inhibitor of phosphatidylinositol 3-kinase abolished high glucose-induced expression of fibronectin, collagen IV, and laminin in RPE cells. Thus, high glucose induced the expression of fibronectin, collagen IV, and laminin through PI3K/Akt signaling pathway in RPE cells, and the PI3K/Akt signaling pathway may contribute to the formation of fibrotic membrane during the development of DR.

  11. Homing of circulating blood endothelial progenitor cells after myocardial infarction is mediated by Akt-SDF-1-signal pathway

    Institute of Scientific and Technical Information of China (English)

    赵岚

    2013-01-01

    Objective To investigate the expressions of protein kinase B(Akt) and stromal cell-derived factor-1(SDF-1) and their relations with circulating blood endothelial progenitor cell homing after myocardial infarction(MI). Methods MI was induced in the

  12. Targeting FAK Radiosensitizes 3-Dimensional Grown Human HNSCC Cells Through Reduced Akt1 and MEK1/2 Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hehlgans, Stephanie [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt am Main (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Eke, Iris [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Cordes, Nils, E-mail: Nils.Cordes@OncoRay.de [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany)

    2012-08-01

    Purpose: Focal adhesion kinase (FAK), a main regulator of integrin signaling and cell migration, is frequently overexpressed and hyperphosphorylated in human head-and-neck squamous cell carcinoma (HNSCC). We have previously shown that pharmacologic FAK inhibition leads to radiosensitization of 3-dimensionally grown HNSCC cell lines. To further evaluate the role of FAK in radioresistance and as a potential cancer target, we examined FAK and FAK downstream signaling in HNSCC cell lines grown in more physiologic extracellular matrix-based 3-dimensional cell cultures. Methods and Materials: Seven HNSCC cell lines were grown in 3-dimensional extracellular matrix and the clonogenic radiation survival, expression, and phosphorylation of FAK, paxillin, Akt1, extracellular signal-regulated kinase (ERK)1/2, and MEK1/2 were analyzed after siRNA-mediated knockdown of FAK, Akt1, MEK1, FAK+Akt1, or FAK+MEK1 compared with controls or stable overexpression of FAK. The role of MEK1/2 for clonogenic survival and signaling was investigated using the MEK inhibitor U0126 with or without irradiation. Results: FAK knockdown moderately or significantly enhanced the cellular radiosensitivity of 3-dimensionally grown HNSCC cells. The FAK downstream targets paxillin, Akt1, and ERK1/2 were substantially dephosphorylated under FAK depletion. FAK overexpression, in contrast, increased radiation survival and paxillin, Akt1, and ERK1/2 phosphorylation. The degree of radiosensitization upon Akt1, ERK1/2, or MEK1 depletion or U0126 was superimposable to FAK knockdown. Combination knockdown conditions (ie, Akt1/FAK, MEK1/FAK, or U0126/FAK) failed to provide additional radiosensitization. Conclusions: Our data provide further evidence for FAK as important determinant of radiation survival, which acts in the same signaling axis as Akt1 and ERK1/2. These data strongly support our hypothesis that FAK is a relevant molecular target for HNSCC radiotherapy.

  13. PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex.

    Science.gov (United States)

    Itoh, Yasuhiro; Higuchi, Maiko; Oishi, Koji; Kishi, Yusuke; Okazaki, Tomohiko; Sakai, Hiroshi; Miyata, Takaki; Nakajima, Kazunori; Gotoh, Yukiko

    2016-05-24

    Neurons migrate a long radial distance by a process known as locomotion in the developing mammalian neocortex. During locomotion, immature neurons undergo saltatory movement along radial glia fibers. The molecular mechanisms that regulate the speed of locomotion are largely unknown. We now show that the serine/threonine kinase Akt and its activator phosphoinositide-dependent protein kinase 1 (PDK1) regulate the speed of locomotion of mouse neocortical neurons through the cortical plate. Inactivation of the PDK1-Akt pathway impaired the coordinated movement of the nucleus and centrosome, a microtubule-dependent process, during neuronal migration. Moreover, the PDK1-Akt pathway was found to control microtubules, likely by regulating the binding of accessory proteins including the dynactin subunit p150(glued) Consistent with this notion, we found that PDK1 regulates the expression of cytoplasmic dynein intermediate chain and light intermediate chain at a posttranscriptional level in the developing neocortex. Our results thus reveal an essential role for the PDK1-Akt pathway in the regulation of a key step of neuronal migration.

  14. PPARδ activation acts cooperatively with 3-phosphoinositide-dependent protein kinase-1 to enhance mammary tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Claire B Pollock

    Full Text Available Peroxisome proliferator-activated receptorδ (PPARδ is a transcription factor that is associated with metabolic gene regulation and inflammation. It has been implicated in tumor promotion and in the regulation of 3-phosphoinositide-dependent kinase-1 (PDK1. PDK1 is a key regulator of the AGC protein kinase family, which includes the proto-oncogene AKT/PKB implicated in several malignancies, including breast cancer. To assess the role of PDK1 in mammary tumorigenesis and its interaction with PPARδ, transgenic mice were generated in which PDK1 was expressed in mammary epithelium under the control of the MMTV enhancer/promoter region. Transgene expression increased pT308AKT and pS9GSK3β, but did not alter phosphorylation of mTOR, 4EBP1, ribosomal protein S6 and PKCα. The transgenic mammary gland also expressed higher levels of PPARδ and a gene expression profile resembling wild-type mice maintained on a diet containing the PPARδ agonist, GW501516. Both wild-type and transgenic mice treated with GW501516 exhibited accelerated rates of tumor formation that were more pronounced in transgenic animals. GW501516 treatment was accompanied by a distinct metabolic gene expression and metabolomic signature that was not present in untreated animals. GW501516-treated transgenic mice expressed higher levels of fatty acid and phospholipid metabolites than treated wild-type mice, suggesting the involvement of PDK1 in enhancing PPARδ-driven energy metabolism. These results reveal that PPARδ activation elicits a distinct metabolic and metabolomic profile in tumors that is in part related to PDK1 and AKT signaling.

  15. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    Science.gov (United States)

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  16. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases.

    Science.gov (United States)

    Chen, Sen; Jiang, Xinnong; Gewinner, Christina A; Asara, John M; Simon, Nicholas I; Cai, Changmeng; Cantley, Lewis C; Balk, Steven P

    2013-05-28

    The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases.

  17. Novel agents and associated toxicities of inhibitors of the pi3k/Akt/mtor pathway for the treatment of breast cancer

    OpenAIRE

    Chia, S.; Gandhi, S.; Joy, A.A.; Edwards, S.; Gorr, M.; Hopkins, S; Kondejewski, J.; Ayoub, J.P.; Califaretti, N.; Rayson, D.; Dent, S.F.

    2015-01-01

    The pi3k/Akt/mtor (phosphatidylinositol 3 kinase/ Akt/mammalian target of rapamycin) signalling pathway is an established driver of oncogenic activity in human malignancies. Therapeutic targeting of this pathway holds significant promise as a treatment strategy. Everolimus, an mtor inhibitor, is the first of this class of agents approved for the treatment of hormone receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer. Everolimus has been associated with...

  18. Expression of proline-rich Akt-substrate PRAS40 in cell survival pathway and carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Bei HUANG; Gavin PORTER

    2005-01-01

    Aim: To study the expression of proline-rich Akt-substrate PRAS40 in the cell survival pathway and tumor progression. Methods: The effects of three key kinase inhibitors on PRAS40 activity in the cell survival pathway, serum withdrawal,H2O2 and overexpression of Akt were tested. The expression of PRAS40, Akt, Raf and 14-3-3 in normal cells and cancer cell lines was determined by Western blot.Results: The PI3K inhibitors worthmannin and Ly294002, but not rapamycin, completely inhibited the phosphorylation of Akt and PRAS40. The phosphorylation level of Akt decreased after serum withdrawal and treatment with the MEK inhibitor Uo126, but increased after treatment with H2O2 at low concentration, whereas none of these treatments changed PRAS40 activity. 14-3-3 is a PRAS40 binding protein, and the expression of 14-3-3, like that of PRAS40, was higher in HeLa cells than in HEK293 cells; PRAS40 had a stronger phosphorylation activity in A549 and HeLa cancer cells than in HEK293 normal cells. In the breast cancer model (MCF10A/MCF7) and lung cancer model (BEAS/H1198/H1170) we also found the same result: PRAS40 was constitutively active in H1198/H1170 and MCF7 premalignant and malignant cancer cells, but weakly expressed in MCF10A and BEAS normal cell. We also discussed PRAS40 activity in other NSCLC cell lines.Conclusion: The PI3K-Akt survival pathway is the main pathway that PRAS40 is involved in; PRAS40 is a substrate for Akt, but can also be activated by an Aktindependent mechanisms. PRAS40 activation is an early event during breast and lung carcinogenesis.

  19. Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling.

    Science.gov (United States)

    Han, Yong-Seok; Lee, Jun Hee; Lee, Sang Hun

    2015-05-01

    We identified a novel Akt signaling mechanism that mediates fucoidan-induced suppression of human colon cancer cell (HT29) proliferation and anticancer effects. Fucoidan treatment significantly inhibited growth, induced G1-phase-associated upregulation of p21WAF1 expression, and suppressed cyclin and cyclin-dependent kinase expression in HT29 colon cancer cells. Additionally, fucoidan treatment activated the Akt signaling pathway, which was inhibited by treatment with an Akt inhibitor. The inhibition of Akt activation reversed the fucoidan-induced decrease in cell proliferation, the induction of G1-phase-associated p21WAF1 expression, and the reduction in cell cycle regulatory protein expression. Intraperitoneal injection of fucoidan reduced tumor volume; this enhanced antitumor efficacy was associated with induction of apoptosis and decreased angiogenesis. These data suggest that the activation of Akt signaling is involved in the growth inhibition of colon cancer cells treated with fucoidan. Thus, fucoidan may serve as a potential therapeutic agent for colon cancer.

  20. Akt signaling is critical for memory CD8(+) T-cell development and tumor immune surveillance.

    Science.gov (United States)

    Rogel, Anne; Willoughby, Jane E; Buchan, Sarah L; Leonard, Henry J; Thirdborough, Stephen M; Al-Shamkhani, Aymen

    2017-02-14

    Memory CD8(+) T cells confer long-term immunity against tumors, and anticancer vaccines therefore should maximize their generation. Multiple memory CD8(+) T-cell subsets with distinct functional and homing characteristics exist, but the signaling pathways that regulate their development are ill defined. Here we examined the role of the serine/threonine kinase Akt in the generation of protective immunity by CD8(+) T cells. Akt is known to be activated by the T-cell antigen receptor and the cytokine IL-2, but its role in T-cell immunity in vivo has not been explored. Using CD8(+) T cells from pdk1(K465E/K465E) knockin mice, we found that decreased Akt activity inhibited the survival of T cells during the effector-to-memory cell transition and abolished their differentiation into C-X-C chemokine receptor 3 (CXCR3)(lo)CD43(lo) effector-like memory cells. Consequently, antitumor immunity by CD8(+) T cells that display defective Akt signaling was substantially diminished during the memory phase. Reduced memory T-cell survival and altered memory cell differentiation were associated with up-regulation of the proapoptotic protein Bim and the T-box transcription factor eomesodermin, respectively. These findings suggest an important role for effector-like memory CD8(+) T cells in tumor immune surveillance and identify Akt as a key signaling node in the development of protective memory CD8(+) T-cell responses.

  1. Mutant AKT1-E17K is oncogenic in lung epithelial cells

    Science.gov (United States)

    De Marco, Carmela; Malanga, Donatella; Rinaldo, Nicola; De Vita, Fernanda; Scrima, Marianna; Lovisa, Sara; Fabris, Linda; Carriero, Maria Vincenza; Franco, Renato; Rizzuto, Antonia; Baldassarre, Gustavo; Viglietto, Giuseppe

    2015-01-01

    The hotspot E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. In this manuscript, we sought to determine whether this AKT1 variant is a bona-fide activating mutation and plays a role in the development of lung cancer. Here we report that in immortalized human bronchial epithelial cells (BEAS-2B cells) mutant AKT1-E17K promotes anchorage-dependent and -independent proliferation, increases the ability to migrate, invade as well as to survive and duplicate in stressful conditions, leading to the emergency of cells endowed with the capability to form aggressive tumours at high efficiency. We provide also evidence that the molecular mechanism whereby AKT1-E17K is oncogenic in lung epithelial cells involves phosphorylation and consequent cytoplasmic delocalization of the cyclin-dependent kinase (cdk) inhibitor p27. In agreement with these results, cytoplasmic p27 is preferentially observed in primary NSCLCs with activated AKT and predicts poor survival. PMID:26053093

  2. Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN

    OpenAIRE

    Makoto Nakakido; Zhenzhong Deng; Takehiro Suzuki; Naoshi Dohmae; Yusuke Nakamura; Ryuji Hamamoto

    2015-01-01

    Phosphatase and tensin homologue (PTEN), one of the well-characterized tumor suppressor proteins, counteracts the phosphatidylinositol 3-kinase-AKT pathway through its unique lipid phosphatase activity. The functions of PTEN are regulated by a variety of posttranslational modifications such as acetylation, oxidation, ubiquitylation, phosphorylation, and SUMOylation. However, methylation of PTEN has not been reported so far. In this study, we demonstrated that the oncogenic protein lysine meth...

  3. Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner.

    Directory of Open Access Journals (Sweden)

    Hong Wa Yung

    Full Text Available Endoplasmic reticulum (ER stress is a common factor in the pathophysiology of diverse human diseases that are characterised by contrasting cellular behaviours, from proliferation in cancer to apoptosis in neurodegenerative disorders. Coincidently, dysregulation of AKT/PKB activity, which is the central regulator of cell growth, proliferation and survival, is often associated with the same diseases. Here, we demonstrate that ER stress modulates AKT substrate specificity in a severity-dependent manner, as shown by phospho-specific antibodies against known AKT targets. ER stress also reduces both total and phosphorylated AKT in a severity-dependent manner, without affecting activity of the upstream kinase PDK1. Normalisation to total AKT revealed that under ER stress phosphorylation of Thr308 is suppressed while that of Ser473 is increased. ER stress induces GRP78, and siRNA-mediated knock-down of GRP78 enhances phosphorylation at Ser473 by 3.6 fold, but not at Thr308. Substrate specificity is again altered. An in-situ proximity ligation assay revealed a physical interaction between GRP78 and AKT at the plasma membrane of cells following induction of ER stress. Staining was weak in cells with normal nuclear morphology but stronger in those displaying rounded, condensed nuclei. Co-immunoprecipitation of GRP78 and P-AKT(Ser473 confirmed the immuno-complex consists of non-phosphorylated AKT (Ser473 and Thr308. The interaction is likely specific as AKT did not bind to all molecular chaperones, and GRP78 did not bind to p70 S6 kinase. These findings provide one mechanistic explanation for how ER stress contributes to human pathologies demonstrating contrasting cell fates via modulation of AKT signalling.

  4. CYP2J2 and its metabolites (epoxyeicosatrienoic acids) attenuate cardiac hypertrophy by activating AMPKα2 and enhancing nuclear translocation of Akt1.

    Science.gov (United States)

    Wang, Bei; Zeng, Hesong; Wen, Zheng; Chen, Chen; Wang, Dao Wen

    2016-10-01

    Cytochrome P450 epoyxgenase 2J2 and epoxyeicosatrienoic acids (EETs) are known to protect against cardiac hypertrophy and heart failure, which involve the activation of 5'-AMP-activated protein kinase (AMPK) and Akt. Although the functional roles of AMPK and Akt are well established, the significance of cross talk between them in the development of cardiac hypertrophy and antihypertrophy of CYP2J2 and EETs remains unclear. We investigated whether CYP2J2 and its metabolites EETs protected against cardiac hypertrophy by activating AMPKα2 and Akt1. Moreover, we tested whether EETs enhanced cross talk between AMPKα2 and phosphorylated Akt1 (p-Akt1), and stimulated nuclear translocation of p-Akt1, to exert their antihypertrophic effects. AMPKα2(-/-) mice that overexpressed CYP2J2 in heart were treated with Ang II for 2 weeks. Interestingly, overexpression of CYP2J2 suppressed cardiac hypertrophy and increased levels of atrial natriuretic peptide (ANP) in the heart tissue and plasma of wild-type mice but not AMPKα2(-/-) mice. The CYP2J2 metabolites, 11,12-EET, activated AMPKα2 to induce nuclear translocation of p-Akt1 selectively, which increased the production of ANP and therefore inhibited the development of cardiac hypertrophy. Furthermore, by co-immunoprecipitation analysis, we found that AMPKα2β2γ1 and p-Akt1 interact through the direct binding of the AMPKγ1 subunit to the Akt1 protein kinase domain. This interaction was enhanced by 11,12-EET. Our studies reveal a novel mechanism in which CYP2J2 and EETs enhanced Akt1 nuclear translocation through interaction with AMPKα2β2γ1 and protect against cardiac hypertrophy and suggest that overexpression of CYP2J2 might have clinical potential to suppress cardiac hypertrophy and heart failure. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Constitutive Activation of AKT Pathway Inhibits TNF-induced Apoptosis in Mitochondrial DNA-Deficient human myelogenous leukemia ML-1a

    OpenAIRE

    Suzuki, Seigo; Naito, Akihiro; Asano, Takayuki; Evans, Teresa T; Reddy, Shrikanth A.G.; Higuchi, Masahiro

    2008-01-01

    TNF plus protein synthesis inhibitor cycloheximide induced apoptosis in human myelogenous leukemia ML-1a but not in C19, respiration minus mitochondrial DNA deficient C19 cells, derived from ML-1a. To investigate how mitochondrial DNA depletion inhibits apoptosis, we investigated AKT. Both AKT and its phosphorylated form were observed only in C19, indicating that depletion of mtDNA increased protein and the active form of AKT. Treatment of C19 with LY294002, which inhibits PI-3 kinase and inh...

  6. An atlas of human kinase regulation.

    Science.gov (United States)

    Ochoa, David; Jonikas, Mindaugas; Lawrence, Robert T; El Debs, Bachir; Selkrig, Joel; Typas, Athanasios; Villén, Judit; Santos, Silvia Dm; Beltrao, Pedro

    2016-12-01

    The coordinated regulation of protein kinases is a rapid mechanism that integrates diverse cues and swiftly determines appropriate cellular responses. However, our understanding of cellular decision-making has been limited by the small number of simultaneously monitored phospho-regulatory events. Here, we have estimated changes in activity in 215 human kinases in 399 conditions derived from a large compilation of phosphopeptide quantifications. This atlas identifies commonly regulated kinases as those that are central in the signaling network and defines the logic relationships between kinase pairs. Co-regulation along the conditions predicts kinase-complex and kinase-substrate associations. Additionally, the kinase regulation profile acts as a molecular fingerprint to identify related and opposing signaling states. Using this atlas, we identified essential mediators of stem cell differentiation, modulators of Salmonella infection, and new targets of AKT1. This provides a global view of human phosphorylation-based signaling and the necessary context to better understand kinase-driven decision-making. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Effects of streptozotocin-induced type 1 maternal diabetes on PI3K/AKT signaling pathway in the hippocampus of rat neonates.

    Science.gov (United States)

    Hami, Javad; Kerachian, Mohammad-Amin; Karimi, Razieh; Haghir, Hossein; Sadr-Nabavi, Ariane

    2016-01-01

    Diabetes in pregnancy impairs hippocampus development in offspring, leading to behavioral problems and learning deficits. Phosphatidylinositol 3-kinase/protein kinase B (PKB/Akt) signaling pathway plays a pivotal role in the regulation of neuronal proliferation, survival and death. The present study was designed to examine the effects of maternal diabetes on PKB/Akt expression and phosphorylation in the developing rat hippocampus. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at first postnatal day (P1). The hippocampal expression and phosphorylation level of PKB/Akt, one of the key molecules in PI3K/AKT signaling pathway, was evaluated using real-time polymerase chain reaction (PCR) and western blot analysis. We found a significant bilateral downregulation of AKT1 gene expression in the hippocampus of pups born to diabetic mothers (p diabetic and insulin-treated groups compared with control (p diabetic group. These results represent that diabetes during pregnancy strongly influences the regulation of PKB/AKT in the developing rat hippocampus. Furthermore, although the control of glycemia by insulin administration is not sufficient to prevent the alterations in PKB/Akt expression, it modulates the phosphorylation process, thus ultimately resulting in a situation comparable to that found in the normal condition.

  8. The PI3K/Akt pathway is involved in early infection of some exogenous avian leukosis viruses.

    Science.gov (United States)

    Feng, Shao-zhen; Cao, Wei-sheng; Liao, Ming

    2011-07-01

    Avian leukosis virus (ALV) is an enveloped and oncogenic retrovirus. Avian leukosis caused by the members of ALV subgroups A, B and J has become one of the major problems challenging the poultry industry in China. However, the cellular factors such as signal transduction pathways involved in ALV infection are not well defined. In this study, our data demonstrated that ALV-J strain NX0101 infection in primary chicken embryo fibroblasts or DF-1 cells was correlated with the activity and phosphorylation of Akt. Akt activation was initiated at a very early stage of infection independently of NX0101 replication. The specific phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 or wortmannin could suppress Akt phosphorylation, indicating that NX0101-induced Akt phosphorylation is PI3K-dependent. ALV-A strain GD08 or ALV-B strain CD08 infection also demonstrated a similar profile of PI3K/Akt activation. Treatment of DF-1 cells with the drug 5-(N, N-hexamethylene) amiloride that inhibits the activity of chicken Na(+)/H(+) exchanger type 1 significantly reduced Akt activation induced by NX0101, but not by GD08 and CD08. Akt activation triggered by GD08 or CD08 was abolished by clathrin-mediated endocytosis inhibitor chlorpromazine. Receptor-mediated endocytosis inhibitor dansylcadaverine had a negligible effect on all ALV-induced Akt phosphorylation. Moreover, viral replication of ALV was suppressed by LY294002 in a dose-dependent manner, which was due to the inhibition of virus infection by LY294002. These data suggest that the activation of the PI3K/Akt signalling pathway by exogenous ALV infection plays an important role in viral entry, yet the precise mechanism remains under further investigation.

  9. Dynamic Akt/mTOR Signaling in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Onore, Charity; Yang, Houa; Van de Water, Judy; Ashwood, Paul

    2017-01-01

    Autism spectrum disorder (ASD) is a behaviorally defined disorder affecting 1 in 68 children. Currently, there is no known cause for the majority of ASD cases nor are there physiological diagnostic tools or biomarkers to aid behavioral diagnosis. Whole-genome linkage studies, genome-wide association studies, copy number variation screening, and SNP analyses have identified several ASD candidate genes, but which vary greatly among individuals and family clusters, suggesting that a variety of genetic mutations may result in a common pathology or alter a common mechanistic pathway. The Akt/mammalian target of rapamycin (mTOR) pathway is involved in many cellular processes including synaptic plasticity and immune function that can alter neurodevelopment. In this study, we examined the activity of the Akt/mTOR pathway in cells isolated from children with ASD and typically developing controls. We observed higher activity of mTOR, extracellular receptor kinase, and p70S6 kinase and lower activity of glycogen synthase kinase 3 (GSK3)α and tuberin (TSC2) in cells from children with ASD. These data suggest a phosphorylation pattern indicative of higher activity in the Akt/mTOR pathway in children with general/idiopathic ASD and may suggest a common pathological pathway of interest for ASD.

  10. Isorhamnetin protects against cardiac hypertrophy through blocking PI3K-AKT pathway.

    Science.gov (United States)

    Gao, Lu; Yao, Rui; Liu, Yuzhou; Wang, Zheng; Huang, Zhen; Du, Binbin; Zhang, Dianhong; Wu, Leiming; Xiao, Lili; Zhang, Yanzhou

    2017-05-01

    Isorhamnetin, a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L., is well known for its anti-inflammatory, anti-oxidative, anti-adipogenic, anti-proliferative, and anti-tumor activities. However, the role of isorhamnetin in cardiac hypertrophy has not been reported. The aims of the present study were to find whether isorhamnetin could alleviate cardiac hypertrophy and to define the underlying molecular mechanisms. Here, we investigated the effects of isorhamnetin (100 mg/kg/day) on cardiac hypertrophy induced by aortic banding in mice. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. Our data demonstrated that isorhamnetin could inhibit cardiac hypertrophy and fibrosis 8 weeks after aortic banding. The results further revealed that the effect of isorhamnetin on cardiac hypertrophy was mediated by blocking the activation of phosphatidylinositol 3-kinase-AKT signaling pathway. In vitro studies performed in neonatal rat cardiomyocytes confirmed that isorhamnetin could attenuate cardiomyocyte hypertrophy induced by angiotensin II, which was associated with phosphatidylinositol 3-kinase-AKT signaling pathway. In conclusion, these data indicate for the first time that isorhamnetin has protective potential for targeting cardiac hypertrophy by blocking the phosphatidylinositol 3-kinase-AKT signaling pathway. Thus, our study suggests that isorhamnetin may represent a potential therapeutic strategy for the treatment of cardiac hypertrophy and heart failure.

  11. B7-H4 Treatment of T Cells Inhibits ERK, JNK, p38, and AKT Activation.

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    Full Text Available B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3(+ T cells with a B7-H4.Ig fusion protein inhibits anti-CD3 elicited T-cell receptor (TCR/CD28 signaling events, including phosphorylation of the MAP kinases, ERK, p38, and JNK. B7-H4.Ig treatment also inhibited the phosphorylation of AKT kinase and impaired its kinase activity as assessed by the phosphorylation of its endogenous substrate GSK-3. Expression of IL-2 is also reduced by B7-H4. In contrast, the phosphorylation state of the TCR proximal tyrosine kinases ZAP70 and lymphocyte-specific protein tyrosine kinase (LCK are not affected by B7-H4 ligation. These results indicate that B7-H4 inhibits T-cell proliferation and IL-2 production through interfering with activation of ERK, JNK, and AKT, but not of ZAP70 or LCK.

  12. Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. Part 2: the synthesis and biological activities of RPR127963 an orally bioavailable inhibitor.

    Science.gov (United States)

    He, Wei; Myers, Michael R; Hanney, Barbara; Spada, Alfred P; Bilder, Glenda; Galzcinski, Helen; Amin, Dilip; Needle, Saul; Page, Ken; Jayyosi, Zaid; Perrone, Mark H

    2003-09-15

    RPR127963 demonstrates an excellent pharmacokinetic profile in several species and was found to be efficacious in the prevention of restenosis in a Yucatan mini-pig model upon oral administration of 1-5 mg/kg. The in vitro selectivity profile and SAR of the highly optimized PDGF-R tyrosine kinase inhibitor are highlighted.

  13. Angiotensin II inhibits insulin-stimulated GLUT4 translocation and Akt activation through tyrosine nitration-dependent mechanisms.

    Directory of Open Access Journals (Sweden)

    Alfredo Csibi

    Full Text Available Angiotensin II (Ang II plays a major role in the pathogenesis of insulin resistance and diabetes by inhibiting insulin's metabolic and potentiating its trophic effects. Whereas the precise mechanisms involved remain ill-defined, they appear to be associated with and dependent upon increased oxidative stress. We found Ang II to block insulin-dependent GLUT4 translocation in L6 myotubes in an NO- and O(2(*--dependent fashion suggesting the involvement of peroxynitrite. This hypothesis was confirmed by the ability of Ang II to induce tyrosine nitration of the MAP kinases ERK1/2 and of protein kinase B/Akt (Akt. Tyrosine nitration of ERK1/2 was required for their phosphorylation on Thr and Tyr and their subsequent activation, whereas it completely inhibited Akt phosphorylation on Ser(473 and Thr(308 as well as its activity. The inhibitory effect of nitration on Akt activity was confirmed by the ability of SIN-1 to completely block GSK3alpha phosphorylation in vitro. Inhibition of nitric oxide synthase and NAD(PHoxidase and scavenging of free radicals with myricetin restored insulin-stimulated Akt phosphorylation and GLUT4 translocation in the presence of Ang II. Similar restoration was obtained by inhibiting the ERK activating kinase MEK, indicating that these kinases regulate Akt activation. We found a conserved nitration site of ERK1/2 to be located in their kinase domain on Tyr(156/139, close to their active site Asp(166/149, in agreement with a permissive function of nitration for their activation. Taken together, our data show that Ang II inhibits insulin-mediated GLUT4 translocation in this skeletal muscle model through at least two pathways: first through the transient activation of ERK1/2 which inhibit IRS-1/2 and second through a direct inhibitory nitration of Akt. These observations indicate that not only oxidative but also nitrative stress play a key role in the pathogenesis of insulin resistance. They underline the role of protein

  14. Neurogenesis and Increase in Differentiated Neural Cell Survival via Phosphorylation of Akt1 after Fluoxetine Treatment of Stem Cells

    Directory of Open Access Journals (Sweden)

    Anahita Rahmani

    2013-01-01

    Full Text Available Fluoxetine (FLX is a selective serotonin reuptake inhibitor (SSRI. Its action is possibly through an increase in neural cell survival. The mechanism of improved survival rate of neurons by FLX may relate to the overexpression of some kinases such as Akt protein. Akt1 (a serine/threonine kinase plays a key role in the modulation of cell proliferation and survival. Our study evaluated the effects of FLX on mesenchymal stem cell (MSC fate and Akt1 phosphorylation levels in MSCs. Evaluation tests included reverse transcriptase polymerase chain reaction, western blot, and immunocytochemistry assays. Nestin, MAP-2, and β-tubulin were detected after neurogenesis as neural markers. Ten μM of FLX upregulated phosphorylation of Akt1 protein in induced hEnSC significantly. Also FLX did increase viability of these MSCs. Continuous FLX treatment after neurogenesis elevated the survival rate of differentiated neural cells probably by enhanced induction of Akt1 phosphorylation. This study addresses a novel role of FLX in neurogenesis and differentiated neural cell survival that may contribute to explaining the therapeutic action of fluoxetine in regenerative pharmacology.

  15. Inhibition of heat-induced apoptosis in rat small intestine and IEC-6 cells through the AKT signaling pathway.

    Science.gov (United States)

    Gao, Zhimin; Liu, Fenghua; Yin, Peng; Wan, Changrong; He, Shasha; Liu, Xiaoxi; Zhao, Hong; Liu, Tao; Xu, Jianqin; Guo, Shining

    2013-12-02

    As the world warms up, heat stress is becoming a major cause of economic loss in the livestock industry. Long-time exposure of animals to hyperthermia causes extensive cell apoptosis, which is harmful to them. AKT and AKT-related serine-threonine kinases are known to be involved in signaling cascades that regulate cell survival, but the mechanism remains elusive. In the present study, we demonstrate that phosphoinositide 3-kinase (PI3K) /AKT signal pathway provides protection against apoptosis induced by heat stress to ascertain the key point for treatment. Under heat stress, rats showed increased shedding of intestinal epithelial cells. These rats also had elevated levels of serum cortisol and improved expression of heat shock proteins (Hsp27, Hsp70 and Hsp90) in response to heat stress. Apoptosis analysis by TUNEL assay revealed a higher number of villi epithelial cells that were undergoing apoptosis in heat-treated rats than in the normal control. This is supported by gene expression analysis, which showed an increased ratio of Bax/Bcl-2 (p IEC-6 cell line, a significant higher level of AKT phosphorylation was observed at 2 h after heat exposure. This coincided with a marked reduction of apoptosis. Together, these results suggest that heat stress caused damages to rat jejunum and induced apoptosis to a greater degree. HSPs and pro-survival factors were involved in response to heat stress. Among them, AKT played a key role in inhibiting heat-induced apoptosis.

  16. Does progesterone show neuroprotective effects on traumatic brain injury through increasing phosphorylation of Akt in the hippocampus?

    Institute of Scientific and Technical Information of China (English)

    Richard Justin Garling; Lora Talley Watts; Shane Sprague; Lauren Fletcher; David F Jimenez; Murat Digicaylioglu

    2014-01-01

    There are currently no federally approved neuroprotective agents to treat traumatic brain injury. Progesterone, a hydrophobic steroid hormone, has been shown in recent studies to exhibit neu-roprotective effects in controlled cortical impact rat models. Akt is a protein kinase known to play a role in cell signaling pathways that reduce edema, inlfammation, apoptosis, and promote cell growth in the brain. This study aims to determine if progesterone modulates the phosphor-ylation of Aktvia its threonine 308 phosphorylation site. Phosphorylation at the threonine 308 site is one of several sites responsible for activating Akt and enabling the protein kinase to carry out its neuroprotective effects. To assess the effects of progesterone on Akt phosphorylation, C57BL/6 mice were treated with progesterone (8 mg/kg) at 1 (intraperitonally), 6, 24, and 48 hours (subcutaneously) post closed-skull traumatic brain injury. The hippocampus was harvest-ed at 72 hours post injury and prepared for western blot analysis. Traumatic brain injury caused a signiifcant decrease in Akt phosphorylation compared to sham operation. However, mice treat-ed with progesterone following traumatic brain injury had an increase in phosphorylation of Akt compared to traumatic brain injury vehicle. Our ifndings suggest that progesterone is a viable treatment option for activating neuroprotective pathways after traumatic brain injury.

  17. Age-dependent accumulation of soluble amyloid beta (Abeta) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-alpha (sAPP(alpha)) by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3beta pathway in Alzheimer mouse model.

    Science.gov (United States)

    Jimenez, Sebastian; Torres, Manuel; Vizuete, Marisa; Sanchez-Varo, Raquel; Sanchez-Mejias, Elisabeth; Trujillo-Estrada, Laura; Carmona-Cuenca, Irene; Caballero, Cristina; Ruano, Diego; Gutierrez, Antonia; Vitorica, Javier

    2011-05-27

    Neurotrophins, activating the PI3K/Akt signaling pathway, control neuronal survival and plasticity. Alterations in NGF, BDNF, IGF-1, or insulin signaling are implicated in the pathogenesis of Alzheimer disease. We have previously characterized a bigenic PS1×APP transgenic mouse displaying early hippocampal Aβ deposition (3 to 4 months) but late (17 to 18 months) neurodegeneration of pyramidal cells, paralleled to the accumulation of soluble Aβ oligomers. We hypothesized that PI3K/Akt/GSK-3β signaling pathway could be involved in this apparent age-dependent neuroprotective/neurodegenerative status. In fact, our data demonstrated that, as compared with age-matched nontransgenic controls, the Ser-9 phosphorylation of GSK-3β was increased in the 6-month PS1×APP hippocampus, whereas in aged PS1×APP animals (18 months), GSK-3β phosphorylation levels displayed a marked decrease. Using N2a and primary neuronal cell cultures, we demonstrated that soluble amyloid precursor protein-α (sAPPα), the predominant APP-derived fragment in young PS1×APP mice, acting through IGF-1 and/or insulin receptors, activated the PI3K/Akt pathway, phosphorylated the GSK-3β activity, and in consequence, exerted a neuroprotective action. On the contrary, several oligomeric Aβ forms, present in the soluble fractions of aged PS1×APP mice, inhibited the induced phosphorylation of Akt/GSK-3β and decreased the neuronal survival. Furthermore, synthetic Aβ oligomers blocked the effect mediated by different neurotrophins (NGF, BDNF, insulin, and IGF-1) and sAPPα, displaying high selectivity for NGF. In conclusion, the age-dependent appearance of APP-derived soluble factors modulated the PI3K/Akt/GSK-3β signaling pathway through the major neurotrophin receptors. sAPPα stimulated and Aβ oligomers blocked the prosurvival signaling. Our data might provide insights into the selective vulnerability of specific neuronal groups in Alzheimer disease.

  18. Novel Library of Selenocompounds as Kinase Modulators

    Directory of Open Access Journals (Sweden)

    Carmen Sanmartín

    2011-07-01

    Full Text Available Although the causes of cancer lie in mutations or epigenic changes at the genetic level, their molecular manifestation is the dysfunction of biochemical pathways at the protein level. The 518 protein kinases encoded by the human genome play a central role in various diseases, a fact that has encouraged extensive investigations on their biological function and three dimensional structures. Selenium (Se is an important nutritional trace element involved in different physiological functions with antioxidative, antitumoral and chemopreventive properties. The mechanisms of action for selenocompounds as anticancer agents are not fully understood, but kinase modulation seems to be a possible pathway. Various organosulfur compounds have shown antitumoral and kinase inhibition effects but, in many cases, the replacement of sulfur by selenium improves the antitumoral effect of compounds. Although Se atom possesses a larger atomic volume and nucleophilic character than sulfur, Se can also formed interactions with aminoacids of the catalytic centers of proteins. So, we propose a novel chemical library that includes organoselenium compounds as kinase modulators. In this study thirteen selenocompounds have been evaluated at a concentration of 3 or 10 µM in a 24 kinase panel using a Caliper LabChip 3000 Drug Discover Platform. Several receptor (EGFR, IGFR1, FGFR1… and non-receptor (Abl kinases have been selected, as well as serine/threonine/lipid kinases (AurA, Akt, CDKs, MAPKs… implicated in main cancer pathways: cell cycle regulation, signal transduction, angiogenesis regulation among them. The obtained results showed that two compounds presented inhibition values higher than 50% in at least four kinases and seven derivatives selectively inhibited one or two kinases. Furthermore, three compounds selectively activated IGF-1R kinase with values ranging from −98% to −211%. In conclusion, we propose that the replacement of sulfur by selenium seems to be

  19. Expression of Phosphatase and Tensin Homologue, phospho-Akt, and p53 in Acral Benign and Malignant Melanocytic Neoplasms (Benign Nevi, Dysplastic Nevi, and Acral Melanomas)

    Science.gov (United States)

    Lyu, So Min; Wu, Ju Yeon; Byun, Ji Yeon; Choi, Hae Young; Park, Sang Hee

    2016-01-01

    Background The role of the phosphatidylinositol-3 kinase signaling pathway in the development of acral melanoma has recently gained evidence. Phosphatase and tensin homologue (PTEN), one of the key molecules in the pathway, acts as a tumor suppressor through either an Akt-dependent or Akt-independent pathway. Akt accelerates degradation of p53. Objective We assessed the expression of PTEN, phospho-Akt (p-Akt), and p53 by immunohistochemistry in benign acral nevi, acral dysplastic nevi, and acral melanomas in the radial growth phase and with a vertical growth component. Methods Ten specimens in each group were included. Paraffin-embedded specimens were immunostained with antibodies for PTEN, p-Akt, and p53. We scored both the staining intensity and the proportion of positive cells. The final score was calculated by multiplying the intensity score by the proportion score. Results All specimens of benign acral nevi except one showed some degree of PTEN-negative cells. The numbers of p-Akt and p53-positive cells were higher in acral dysplastic nevi and melanoma than in benign nevi. P-Akt scores were 1.7, 1.8, 2.6, and 4.4, and p53 scores were 2.0, 2.1, 3.8, and 4.1 in each group. PTEN and p-Akt scores in advanced acral melanoma were higher than in the other neoplasms. Conclusion The expression of PTEN was decreased and the expression of p-Akt was increased in acral melanoma, especially in advanced cases. The PTEN-induced pathway appears to affect the late stage of melanomagenesis. Altered expression of p-Akt is thought to be due to secondary changes following the loss of PTEN. PMID:27746632

  20. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki; Watanabe, Takumi; Odaka, Yoshiaki; Ozaki, Kakeru; Yoneda, Yukio, E-mail: yyoneda@p.kanazawa-u.ac.jp

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.

  1. Sporoderm-Broken Spores of Ganoderma lucidum Inhibit the Growth of Lung Cancer: Involvement of the Akt/mTOR Signaling Pathway.

    Science.gov (United States)

    Chen, Yali; Lv, Jing; Li, Kun; Xu, Jing; Li, Mingyan; Zhang, Wen; Pang, Xiufeng

    2016-10-01

    The sporoderm-broken spores of Ganoderma lucidum (SBGS) and their extracts exhibited a wide range of biological activities. In the present study, we prepare ethanol/ethanol extract (E/E-SBGS) and ethanol/aqueous extract (E/A-SBGS) from SBGS and examine their antitumor activities against human lung cancer. Our results showed that E/E-SBGS, not E/A-SBGS, inhibited the survival and migration of lung cancer cells in a dose-dependent manner. E/E-SBGS arrested cell cycle at G2/M phase and triggered apoptosis by decreasing the expression and activity of cell cycle regulators, cyclin B1 and cdc2, as well as anti-apoptotic proteins, Bcl-2 and Bcl-xl. Consequently, colony formation of lung cancer cells was markedly blocked by E/E-SBGS at subtoxic concentrations. Oral administration of both E/E-SBGS and SBGS significantly suppressed tumor volume and tumor weight without gross toxicity in mice. Mechanism study showed that E/E-SBGS dose-dependently suppressed the activation of Akt, the mammalian target of rapamycin (mTOR) and their downstream molecules S6 kinase and 4E-BP1 in treated tumor cells. Taken together, these results indicate that the ethanol extract of sporoderm-broken spores of G. lucidum suppresses the growth of human lung cancer, at least in part, through inhibition of the Akt/mTOR signaling pathway, suggesting its potential role in cancer treatments.

  2. Inhibition of AKT signaling by supercritical CO2 extract of mango ginger (Curcuma amada Roxb.) in human glioblastoma cells.

    Science.gov (United States)

    Ramachandran, Cheppail; Portalatin, Gilda; Quirin, Karl-W; Escalon, Enrique; Khatib, Ziad; Melnick, Steven J

    2015-12-01

    Mango ginger (Curcuma amada Roxb.) is a less-investigated herb for anticancer properties than other related Curcuma species. AKT (a serine/threonine protein kinase B, originally identified as an oncogene in the transforming retrovirus AKT8) plays a central role in the development and promotion of cancer. In this investigation, we have analyzed the effect of supercritical CO2 extract of mango ginger (CA) on the genetic pathways associated with AKT signaling in human glioblastoma cells. The inhibitory effect of supercritical CO2 extract of mango ginger (Curcuma amada) on AKT signaling was investigated in U-87MG glioblastoma cells. CA was highly cytotoxic to glioblastoma cell line (IC50=4.92±0.81 µg/mL) compared to mHypoE-N1 normal mouse hypothalamus cell line (IC50=40.57±0.06 µg/mL). CA inhibits AKT (protein Kinase B) and adenosine monophophate -activated protein kinase α (AMPKα) phosphorylation significantly in a dose-dependent manner. The cell migration which is necessary for invasion and metastasis was also inhibited by CA treatment, with about 43% reduction at 20 µg/mL concentration. Analysis of mRNA and protein expression of genes associated with apoptosis, cell proliferation and angiogenesis showed that CA modulates expression of genes associated with apoptosis (Bax, Bcl-2, Bcl-X, BNIP3, caspase-3, mutant p53 and p21), cell proliferation (Ki67) and angiogenesis vascular endothelial growth factor (VEGF). Additionally, heat shock protein 90 (HSP90) and AMPKα genes interacting with the AKT signaling pathway were also downregulated by CA treatment. These results indicate the molecular targets and mechanisms underlying the anticancer effect of CA in human glioblastoma cells.

  3. Improving pharmacological targeting of AKT in melanoma.

    Science.gov (United States)

    Kuzu, Omer F; Gowda, Raghavendra; Sharma, Arati; Noory, Mohammad A; Dinavahi, Saketh S; Kardos, Gregory; Drabick, Joseph J; Robertson, Gavin P

    2017-09-28

    Targeting AKT with pharmacological agents inhibiting this protein in the melanoma clinic is ineffective. This is a major contradiction considering the substantial preclinical data suggesting AKT as an effective target. Various approaches have been undertaken to unravel this contradiction and drug combinations sought that could resolve this concern. We have shown that genetic targeting AKT3 or WEE1 can be effective for inhibiting tumor growth in preclinical animal models. However, no one has examined whether combining pharmacological agents targeting each of these enzymes could be more effective than inhibiting each alone and enhance the efficacy of targeting AKT in melanoma. This report shows that combining the AKT inhibitors (AZD5363 or MK1775) with the WEE1 inhibitor, AZD5363, can synergistically kill cultured melanoma cells and decrease melanoma tumor growth by greater than 90%. Co-targeting AKT and WEE1 led to enhanced deregulation of the cell cycle and DNA damage repair pathways by modulating the transcription factors p53 and FOXM1, as well as the proteins whose expression is regulated by these two proteins. Thus, this study identifies a unique combination of pharmacological agents and the ratio needed for efficacy that could be used to potentially improve the therapeutic effectiveness of targeting AKT in the clinic. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Silica induced α-SMA expression in HBE cell line by targeting the PI3K/Akt pathway].

    Science.gov (United States)

    Li, Ai-ping; Hou, Zhi-guo; Fan, Jing-jing; Ji, Xiao-ming; Wang, Ting; Ni, Chun-hui

    2012-12-01

    To explore the role of the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway in silica-induced α-SMA (α smooth muscle actin) expression in HEB (human bronchial epithelial) cell. The cultured HBE cells were divided into 5 groups: control, silica, PI3K inhibitor (Ly294002), both PI3K inhibitor (Ly294002) and silica at the same time and the inhibitor 24 h ahead of silica. The final concentrations of PI3K inhibitor and silica were 10 µmol/L and 100 µg/ml, respectively. Western blots were used to detect protein expressions of Akt, p-Akt, TGF-β and α-SMA. The location and expression of α-SMA were measured by immunofluorescence assay. HBE cell line exposed to silica can induce Akt phosphorylation, in which expressions of p-Akt were up regulated 1 times at 48 and the highest at 72 h. The expressions of TGFβ increased remarkably at 12 h and the peak at 48 h after silica exposure, while the expressions of α-SMA increased at 24 h and the highest at 72 h. However, the PI3K inhibitor (Ly294002) significantly down regulated α-SMA expression. When the cell line exposed to the PI3K inhibitor ahead of silica 24 h, the expressions of p-Akt and α-SMA were more remarkably down regulated which were decreased 1.5 times and 7.6 times respectively compare to silica exposure group. But no significant changes were found for TGFβ expressions. The immunofluorescence assay showed that silica can induce α-SMA expression, which located in cytoplasma, and PI3K inhibitor can decrease the expression. Silica induced α-SMA expression in HBE cell line is by targeting the PI3K/Akt pathway and PI3K inhibitor can repress α-SMA expression.

  5. Acute mechanical stretch promotes eNOS activation in venous endothelial cells mainly via PKA and Akt pathways.

    Directory of Open Access Journals (Sweden)

    Zhenqian Hu

    Full Text Available In the vasculature, physiological levels of nitric oxide (NO protect against various stressors, including mechanical stretch. While endothelial NO production in response to various stimuli has been studied extensively, the precise mechanism underlying stretch-induced NO production in venous endothelial cells remains incompletely understood. Using a model of continuous cellular stretch, we found that stretch promoted phosphorylation of endothelial NO synthase (eNOS at Ser¹¹⁷⁷, Ser⁶³³ and Ser⁶¹⁵ and NO production in human umbilical vein endothelial cells. Although stretch activated the kinases AMPKα, PKA, Akt, and ERK1/2, stretch-induced eNOS activation was only inhibited by kinase-specific inhibitors of PKA and PI3K/Akt, but not of AMPKα and Erk1/2. Similar results were obtained with knockdown by shRNAs targeting the PKA and Akt genes. Furthermore, inhibition of PKA preferentially attenuated eNOS activation in the early phase, while inhibition of the PI3K/Akt pathway reduced eNOS activation in the late phase, suggesting that the PKA and PI3K/Akt pathways play distinct roles in a time-dependent manner. Finally, we investigated the role of these pathways in stretch-induced endothelial exocytosis and leukocyte adhesion. Interestingly, we found that inhibition of the PI3K/Akt pathway increased stretch-induced Weibel-Palade body exocytosis and leukocyte adhesion, while inhibition of the PKA pathway had the opposite effects, suggesting that the exocytosis-promoting effect of PKA overwhelms the inhibitory effect of PKA-mediated NO production. Taken together, the results suggest that PKA and Akt are important regulators of eNOS activation in venous endothelial cells under mechanical stretch, while playing different roles in the regulation of stretch-induced endothelial exocytosis and leukocyte adhesion.

  6. AKT signaling mediates IGF-I survival actions on otic neural progenitors.

    Directory of Open Access Journals (Sweden)

    Maria R Aburto

    Full Text Available BACKGROUND: Otic neurons and sensory cells derive from common progenitors whose transition into mature cells requires the coordination of cell survival, proliferation and differentiation programmes. Neurotrophic support and survival of post-mitotic otic neurons have been intensively studied, but the bases underlying the regulation of programmed cell death in immature proliferative otic neuroblasts remains poorly understood. The protein kinase AKT acts as a node, playing a critical role in controlling cell survival and cell cycle progression. AKT is activated by trophic factors, including insulin-like growth factor I (IGF-I, through the generation of the lipidic second messenger phosphatidylinositol 3-phosphate by phosphatidylinositol 3-kinase (PI3K. Here we have investigated the role of IGF-dependent activation of the PI3K-AKT pathway in maintenance of otic neuroblasts. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of organotypic cultures of chicken (Gallus gallus otic vesicles and acoustic-vestibular ganglia, Western blotting, immunohistochemistry and in situ hybridization, we show that IGF-I-activation of AKT protects neural progenitors from programmed cell death. IGF-I maintains otic neuroblasts in an undifferentiated and proliferative state, which is characterised by the upregulation of the forkhead box M1 (FoxM1 transcription factor. By contrast, our results indicate that post-mitotic p27(Kip-positive neurons become IGF-I independent as they extend their neuronal processes. Neurons gradually reduce their expression of the Igf1r, while they increase that of the neurotrophin receptor, TrkC. CONCLUSIONS/SIGNIFICANCE: Proliferative otic neuroblasts are dependent on the activation of the PI3K-AKT pathway by IGF-I for survival during the otic neuronal progenitor phase of early inner ear development.

  7. PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Amir M Hossini

    Full Text Available Apoptosis is a highly conserved biochemical mechanism which is tightly controlled in cells. It contributes to maintenance of tissue homeostasis and normally eliminates highly proliferative cells with malignant properties. Induced pluripotent stem cells (iPSCs have recently been described with significant functional and morphological similarities to embryonic stem cells. Human iPSCs are of great hope for regenerative medicine due to their broad potential to differentiate into specialized cell types in culture. They may be useful for exploring disease mechanisms and may provide the basis for future cell-based replacement therapies. However, there is only poor insight into iPSCs cell signaling as the regulation of apoptosis. In this study, we focused our attention on the apoptotic response of Alzheimer fibroblast-derived iPSCs and two other Alzheimer free iPSCs to five biologically relevant kinase inhibitors as well as to the death ligand TRAIL. To our knowledge, we are the first to report that the relatively high basal apoptotic rate of iPSCs is strongly suppressed by the pancaspase inhibitor QVD-Oph, thus underlining the dependency on proapoptotic caspase cascades. Furthermore, wortmannin, an inhibitor of phosphoinositid-3 kinase / Akt signaling (PI3K-AKT, dramatically and rapidly induced apoptosis in iPSCs. In contrast, parental fibroblasts as well as iPSC-derived neuronal cells were not responsive. The resulting condensation and fragmentation of DNA and decrease of the membrane potential are typical features of apoptosis. Comparable effects were observed with an AKT inhibitor (MK-2206. Wortmannin resulted in disappearance of phosphorylated AKT and activation of the main effector caspase-3 in iPSCs. These results clearly demonstrate for the first time that PI3K-AKT represents a highly essential survival signaling pathway in iPSCs. The findings provide improved understanding on the underlying mechanisms of apoptosis regulation in iPSCs.

  8. Hydrogen Sulfide Prevents Synaptic Plasticity from VD-Induced Damage via Akt/GSK-3β Pathway and Notch Signaling Pathway in Rats.

    Science.gov (United States)

    Liu, Chunhua; Xu, Xiaxia; Gao, Jing; Zhang, Tao; Yang, Zhuo

    2016-08-01

    Our previous study has demonstrated that hydrogen sulfide (H2S) attenuates neuronal injury induced by vascular dementia (VD) in rats, but the mechanism is still poorly understood. In this study, we aimed to investigate whether the neuroprotection of H2S was associated with synaptic plasticity and try to interpret the potential underlying mechanisms. Adult male Wistar rats were suffered the ligation of bilateral common carotid arteries. At 24 h after surgery, rats were administered intraperitoneally with sodium hydrosulfide (NaHS, 5.6 mg·kg(-1)·day(-1)), a H2S donor, for 3 weeks in the VD+NaHS group and treated intraperitoneally with saline in the VD group respectively. Our results demonstrated that NaHS significantly decreased the level of glutamate. It obviously ameliorated cognitive flexibility as well as the spatial learning and memory abilities by Morris water maze. Moreover, NaHS significantly improved the long-term depression (LTD), and was able to elevate the expression of N-methyl-D-aspartate receptor subunit 2A, which plays a pivotal role in synaptic plasticity. Interestingly, NaHS decreased the phosphorylation of Akt, and it could maintain the activity of glycogen synthase kinase-3β (GSK-3β). Surprisingly, NaHS triggered the canonical Notch pathway by increasing expressions of Jagged-1 and Hes-1. These findings suggest that NaHS prevents synaptic plasticity from VD-induced damage partly via Akt/GSK-3β pathway and Notch signaling pathway.Hydrogen sulfide modulated the ratio of NMDAR 2A/2B and improved the synaptic plasticity via Akt/GSK-3β pathway and Notch signaling pathway in VD rats.

  9. Antiangiogenic effects of indole-3-carbinol and 3,3'-diindolylmethane are associated with their differential regulation of ERK1/2 and Akt in tube-forming HUVEC.

    Science.gov (United States)

    Kunimasa, Kazuhiro; Kobayashi, Tomomi; Kaji, Kazuhiko; Ohta, Toshiro

    2010-01-01

    We previously reported that indole-3-carbinol (I3C), found in cruciferous vegetables, suppresses angiogenesis in vivo and in vitro. However, the underlying molecular mechanisms still remain unclear. Antiangiogenic effects of its major metabolite, 3,3'-diindolylmethane (DIM), also have not been fully elucidated. In this study, we investigated the effects of these indoles on angiogenesis and tested a hypothesis that I3C and DIM inhibit angiogenesis and induce apoptosis by affecting angiogenic signal transduction in human umbilical vein endothelial cells (HUVEC). We found that I3C and DIM at 25 micromol/L significantly inhibited tube formation and only DIM induced a significant increase in apoptosis in tube-forming HUVEC. DIM showed a stronger antiangiogenic activity than I3C. At the molecular level, I3C and DIM markedly inactivated extracellular signal-regulated kinase 1/2 (ERK1/2) and the inhibitory effect of DIM was significantly greater than that of I3C. DIM treatment also resulted in activation of the caspase pathway and inactivation of Akt, whereas I3C did not affect them. These results indicate that I3C and DIM had a differential potential in the regulation of the 2 principal survival signals, ERK1/2 and Akt, in endothelial cells. We also demonstrated that pharmacological inhibition of ERK1/2 and/or Akt was enough to inhibit tube formation and induce caspase-dependent apoptosis in tube-forming HUVEC. We conclude that both I3C and DIM inhibit angiogenesis at least in part via inactivation of ERK1/2 and that inactivation of Akt by DIM is responsible for its stronger antiangiogenic effects than those of I3C.

  10. Mechanical stretch increases MMP-2 production in vascular smooth muscle cells via activation of PDGFR-β/Akt signaling pathway.

    Directory of Open Access Journals (Sweden)

    Kyo Won Seo

    Full Text Available Increased blood pressure, leading to mechanical stress on vascular smooth muscle cells (VSMC, is a known risk factor for vascular remodeling via increased activity of matrix metalloproteinase (MMP within the vascular wall. This study aimed to identify cell surface mechanoreceptors and intracellular signaling pathways that influence VSMC to produce MMP in response to mechanical stretch (MS. When VSMC was stimulated with MS (0-10% strain, 60 cycles/min, both production and gelatinolytic activity of MMP-2, but not MMP-9, were increased in a force-dependent manner. MS-enhanced MMP-2 expression and activity were inhibited by molecular inhibition of Akt using Akt siRNA as well as by PI3K/Akt inhibitors, LY293002 and AI, but not by MAPK inhibitors such as PD98059, SP600125 and SB203580. MS also increased Akt phosphorylation in VSMC, which was attenuated by AG1295, a PDGF receptor (PDGFR inhibitor, but not by inhibitors for other receptor tyrosine kinase including EGF, IGF, and FGF receptors. Although MS activated PDGFR-α as well as PDGFR-β in VSMC, MS-induced Akt phosphorylation was inhibited by molecular deletion of PDGFR-β using siRNA, but not by inhibition of PDGFR-α. Collectively, our data indicate that MS induces MMP-2 production in VSMC via activation of Akt pathway, that is mediated by activation of PDGFR-β signaling pathways.

  11. Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer

    DEFF Research Database (Denmark)

    Ekstrand, Anna Isinger; Jönsson, Mats; Lindblom, Annika;

    2010-01-01

    The phosphatidylinositol 3-kinases-AKT-mammalian target of rapamycin pathway (PI3K/AKT/mTOR) is central in colorectal tumors. Data on its role in hereditary cancers are, however, scarce and we therefore characterized mutations in PIK3CA and KRAS, and expression of PIK3CA, phosphorylated AKT...... and PTEN in 58 HNPCC-associated colorectal cancers. Derangements of at least one of the PI3K/AKT/mTOR components analyzed were found in 51/58 (88%) tumors. Mutations in PIK3CA and KRAS were identified in 14 and 31% of the tumors respectively. Overexpression of PIK3CA and phosphorylated AKT occurred in 59...... and 75% and were strongly associated (P = 0.005). Reduced/lost PTEN expression was found in 63% of the tumors. Though HNPCC-associated colorectal cancers show simple genetic profiles with few chromosomal alterations, we demonstrate frequent and repeated targeting of the PI3K/AKT/mTOR pathway, which...

  12. Phenylbutyric acid induces the cellular senescence through an Akt/p21{sup WAF1} signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hag Dong [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of); Jang, Chang-Young [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Choe, Jeong Min [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of); Department of Biochemistry, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Korean Institute of Molecular Medicine and Nutrition, Seoul 136-705 (Korea, Republic of); Sohn, Jeongwon, E-mail: biojs@korea.ac.kr [Department of Biochemistry, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Korean Institute of Molecular Medicine and Nutrition, Seoul 136-705 (Korea, Republic of); Kim, Joon, E-mail: joonkim@korea.ac.kr [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Phenylbutyric acid induces cellular senescence. Black-Right-Pointing-Pointer Phenylbutyric acid activates Akt kinase. Black-Right-Pointing-Pointer The knockdown of PERK also can induce cellular senescence. Black-Right-Pointing-Pointer Akt/p21{sup WAF1} pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that can reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21{sup WAF1} induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21{sup WAF1} pathway by PERK inhibition.

  13. Tetrahydroindazoles as Interleukin-2 Inducible T-Cell Kinase Inhibitors. Part II. Second-Generation Analogues with Enhanced Potency, Selectivity, and Pharmacodynamic Modulation in Vivo.

    Science.gov (United States)

    Burch, Jason D; Barrett, Kathy; Chen, Yuan; DeVoss, Jason; Eigenbrot, Charles; Goldsmith, Richard; Ismaili, M Hicham A; Lau, Kevin; Lin, Zhonghua; Ortwine, Daniel F; Zarrin, Ali A; McEwan, Paul A; Barker, John J; Ellebrandt, Claire; Kordt, Daniel; Stein, Daniel B; Wang, Xiaolu; Chen, Yong; Hu, Baihua; Xu, Xiaofeng; Yuen, Po-Wai; Zhang, Yamin; Pei, Zhonghua

    2015-05-14

    The medicinal chemistry community has directed considerable efforts toward the discovery of selective inhibitors of interleukin-2 inducible T-cell kinase (ITK), given its role in T-cell signaling downstream of the T-cell receptor (TCR) and the implications of this target for inflammatory disorders such as asthma. We have previously disclosed a structure- and property-guided lead optimization effort which resulted in the discovery of a new series of tetrahydroindazole-containing selective ITK inhibitors. Herein we disclose further optimization of this series that resulted in further potency improvements, reduced off-target receptor binding liabilities, and reduced cytotoxicity. Specifically, we have identified a correlation between the basicity of solubilizing elements in the ITK inhibitors and off-target antiproliferative effects, which was exploited to reduce cytotoxicity while maintaining kinase selectivity. Optimized analogues were shown to reduce IL-2 and IL-13 production in vivo following oral or intraperitoneal dosing in mice.

  14. Critical Role of AKT Protein in Myeloma-induced Osteoclast Formation and Osteolysis*

    Science.gov (United States)

    Cao, Huiling; Zhu, Ke; Qiu, Lugui; Li, Shuai; Niu, Hanjie; Hao, Mu; Yang, Shengyong; Zhao, Zhongfang; Lai, Yumei; Anderson, Judith L.; Fan, Jie; Im, Hee-Jeong; Chen, Di; Roodman, G. David; Xiao, Guozhi

    2013-01-01

    Abnormal osteoclast formation and osteolysis are the hallmarks of multiple myeloma (MM) bone disease, yet the underlying molecular mechanisms are incompletely understood. Here, we show that the AKT pathway was up-regulated in primary bone marrow monocytes (BMM) from patients with MM, which resulted in sustained high expression of the receptor activator of NF-κB (RANK) in osteoclast precursors. The up-regulation of RANK expression and osteoclast formation in the MM BMM cultures was blocked by AKT inhibition. Conditioned media from MM cell cultures activated AKT and increased RANK expression and osteoclast formation in BMM cultures. Inhibiting AKT in cultured MM cells decreased their growth and ability to promote osteoclast formation. Of clinical significance, systemic administration of the AKT inhibitor LY294002 blocked the formation of tumor tissues in the bone marrow cavity and essentially abolished the MM-induced osteoclast formation and osteolysis in SCID mice. The level of activating transcription factor 4 (ATF4) protein was up-regulated in the BMM cultures from multiple myeloma patients. Adenoviral overexpression of ATF4 activated RANK expression in osteoclast precursors. These results demonstrate a new role of AKT in the MM promotion of osteoclast formation and bone osteolysis through, at least in part, the ATF4-dependent up-regulation of RANK expression in osteoclast precursors. PMID:24005670

  15. Shikonin promotes autophagy in BXPC-3 human pancreatic cancer cells through the PI3K/Akt signaling pathway

    OpenAIRE

    SHI, SHUQING; CAO, HAIMEI

    2014-01-01

    The present study aimed to investigate the effect of shikonin on autophagy in BXPC-3 human pancreatic cancer cells and its underlying mechanism. Cell viability was assessed using the Cell Counting Kit-8 assay and the expression of light chain (LC) 3, p62, phosphoinositide 3-kinase (PI3K), Akt, phosphorylated (p)-PI3K and p-Akt was analyzed using western blot analysis. Following treatment with 1 μmol/l shikonin for 48 h and 2.5 and 5 μmol/l shikonin for 24 and 48 h, the viability of the BXPC-3...

  16. Akt-dependent and Akt-independent pathways are involved in protein synthesis activation during reloading of disused soleus muscle.

    Science.gov (United States)

    Mirzoev, Timur M; Tyganov, Sergey A; Shenkman, Boris S

    2017-03-01

    The purpose of our study was to assess the contribution of insulin growth factor-1-dependent and phosphatidic acid-dependent signaling pathways to activation of protein synthesis (PS) in rat soleus muscle during early recovery from unloading. Wistar rats were divided into: Control, 14HS [14-day hindlimb suspension (HS)], 3R+placebo (3-day reloading + saline administration), 3R+Wort (3-day reloading + wortmannin administration), 3R+But (3-day reloading + 1-butanol administration). SUnSET and Western blot analyses were used in this study. Wortmannin and 1-butanol induced a decrease in protein kinase B (phospho-Akt) and the rate of PS (P Muscle Nerve 55: 393-399, 2017. © 2016 Wiley Periodicals, Inc.

  17. Acemannan accelerates cell proliferation and skin wound healing through AKT/mTOR signaling pathway.

    Science.gov (United States)

    Xing, Wei; Guo, Wei; Zou, Cun-Hua; Fu, Ting-Ting; Li, Xiang-Yun; Zhu, Ming; Qi, Jun-Hua; Song, Jiao; Dong, Chen-Hui; Li, Zhuang; Xiao, Yong; Yuan, Pei-Song; Huang, Hong; Xu, Xiang

    2015-08-01

    Acemannan is a bioactive polysaccharides promoting tissue repair. However, the roles of acemannan in skin wound healing and the underlying molecular mechanisms are largely unclear. The goal of this study is to investigate the positive role of acemannan in cutaneous wound healing and its mechanism. Mouse skin wound model and skin primary fibroblasts were used to demonstrate the positive effect of acemannan on cutaneous wound healing. The expressions of cell proliferation nuclear antigen ki-67, cyclin D1 and activity of AKT/mTOR signaling were analyzed in acemannan-treated fibroblasts and mice. Rapamycin and AKT inhibitor VIII were used to determine the key role of AKT/mTOR signaling in acemannan-promoting cutaneous wound healing. We found that acemannan significantly accelerated skin wound closure and cell proliferation. Acemannan promoted the expression of cyclin D1 in cultured fibroblasts, which was mediated by AKT/mTOR signal pathway leading to enhanced activity of the eukaryotic translation initiation factor-4F (eIF4F) and increased translation of cyclin D1. In contrast, pharmaceutical blockade of AKT/mTOR signaling by mTOR inhibitor rapamycin or AKT inhibitor VIII abolished acemannan-induced cyclin D1 translation and cell proliferation. In vivo studies confirmed that the activation of AKT/mTOR by acemannan played a key role in wound healing, which could be reversed by rapamycin. Acemannan promoted skin wound healing partly through activating AKT/mTOR-mediated protein translation mechanism, which may represent an alternative therapy approach for cutaneous wound. Copyright © 2015. Published by Elsevier Ireland Ltd.

  18. DARPP-32 and Akt regulation in ethanol-preferring AA and ethanol-avoiding ANA rats.

    Science.gov (United States)

    Nuutinen, Saara; Kiianmaa, Kalervo; Panula, Pertti

    2011-09-26

    Ethanol and other addictive drugs affect many intracellular phosphorylation and dephosphorylation cascades. These cascades are thought to be highly important in the regulation of neuronal activity. The present experiments characterized the regulation of three key signaling molecules, DARPP-32 (dopamine and cAMP regulated phosphoprotein, 32kDa), Akt kinase and ERK1/2 (extracellular signal-regulated kinase 1 and 2) in ethanol-preferring AA (Alko, alcohol) and ethanol-avoiding ANA (Alko, non-alcohol) rat lines. Radioactive in situ hybridization was used in drug naïve animals and Western blotting after acute ethanol administration in striatum, hippocampus and prefrontal cortex. The mRNA levels of DARPP-32 in striatal areas were higher in ANA rats than in AA rats. There was no difference in the striatal enriched phosphatase (STEP61), the downstream target of DARPP-32 expression between the rat lines. Ethanol (1.5g/kg) increased phosphorylation of DARPP-32 at threonine 34 in both AA and in ANA rats indicating that acute ethanol activates DARPP-32 similarly in these rat lines. The expression of Akt kinase was higher in the CA1 of hippocampus in ANA than in AA rats and acute ethanol activated Akt in hippocampus in ANA but not in AA rats. No significant alterations in the regulation of ERK1/2 were found in either rat line. Our findings suggest that DARPP-32 and Akt are regulated by ethanol and differences in the regulation of these molecules might contribute to the dramatically different ethanol drinking patterns seen in AA and ANA rats.

  19. Insulin improves cardiac myocytes contractile function recovery in simulated ischemia-reperfusion: Key role of Akt

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; ZHANG Haifeng; FAN Qian; MA Xinliang; GAO Feng

    2003-01-01

    The present study examined cardiac myocyte contractile and Ca2+ transient responses to insulin during simulated ischemia/reperfusion (I/R) and furtherinvestigated the role of protein kinase B (Akt) in the insulin- induced inotropic effect. Ventricular myocytes were enzymatically isolated from adult Sprague-Dawley rats and perfused with Tyrode solution while electrically field-stimulated. Simulated I/R was induced by perfusing the cells with chemical anoxic solution including sodium cyanide-sodium lactate for 15 min followed by reperfusion with normal oxygenated Tyrode solution with or without insulin. It is found that insulin only at concentration as high as 10 IU/L could increase cell shortening (16±5%, P < 0.05) in normal myocytes, whereas it concentration-dependently (0.01-10 IU/L) increased the contraction,the velocity of shortening/releng- theningand Ca2+ transient in I/R myocytes. In addition, insulin treatment (1 IU/L) increased Akt phosphorylation of I/R cardiomyocytes by 2.4-fold compared with that of the control (P < 0.01). Most importantly, pretreatment with LY 294002, a specific inhibitor of phosphatidylinositol 3′-kinase (PI3-kinase), significantly inhibited both Akt phosphorylation and the positive inotropic response to insulin in the I/R cardiomyocytes. These results suggest that insulin exerts direct positive inotropic effect by increasing Ca2+ transient of cardiomyocytes, which is enhanced in the pathological condition of I/R. Akt activation plays an important role in the insulin-induced improvement of myocyte contractile function following I/R.

  20. Inhibition of formyl peptide-stimulated superoxide anion generation by Fal-002-2 occurs mainly through the blockade of the p21-activated kinase and protein kinase C signaling pathways in ratneutrophils.

    Science.gov (United States)

    Tsai, Ya-Ru; Huang, Li-Jiau; Lin, Hui-Yi; Hung, Yun-Jie; Lee, Miau-Rong; Kuo, Sheng-Chu; Hsu, Mei-Feng; Wang, Jih-Pyang

    2013-02-15

    In formyl-Met-Leu-Phe (fMLP)-stimulated rat neutrophils, a synthetic compound, 6-chloro-2-(2-chlorophenyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (Fal-002-2), inhibited superoxide anion (O2(•-)) generation with an IC50 value of about 11μM, which was not mediated by scavenging the generated O2(•-) or by a cytotoxic effect on neutrophils. Fal-002-2 effectively attenuated the phosphorylation of Ser residues in p47(phox) and the association between p47(phox) and p22(phox) in fMLP-stimulated neutrophils. The interaction of p47(phox) with protein kinase C (PKC) isoforms (α, βI, βII, δ and ζ) was attenuated by Fal-002-2 with a similar IC50 value to that required for inhibition of O2(•-) generation, whereas Fal-002-2 had no prominent effect on PKC isoform membrane translocation and did not affect the kinase activity. Moreover, Fal-002-2 had no effect on the phosphorylation of Akt and downstream glycogen synthase kinase-3β, only slightly affected the intracellular free Ca(2+) concentration, phosphorylation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase (MAPK), but effectively attenuated the downstream MAPK-activated protein kinase-2 phosphorylation. The interaction of p21-activated kinase (PAK) 1with p47(phox), phosphorylation of PAK1 (Thr423/Ser144) and the membrane recruitment of PAK1 were effectively inhibited by Fal-002-2. Fal-002-2 also blocked the activation of Rac1 and Cdc42 in a concentration range that effectively inhibited PAK activation. Taken together, these results suggest that Fal-002-2 inhibits fMLP-stimulated O2(•-) generation in neutrophils mainly through the blockade of PKC and PAK signaling pathways and partly through p38 MAPK signaling.

  1. PI3K/Akt signaling pathway involved in regulation of T lymphocyte activation and apoptosis mediated by CD3e

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To study the expression and kinase activity of phosphatidylinositol 3′-kinase (PI3K) and protein kinase B (PKB or Akt) during activation and apoptosis of human Jurkat T lymphocytes (TJK) with stable expression of CD8e chimera fused human CD8a extracellular and transmembra-ne domains to intracellular domain of mouse CD3e, Western blot, kinase activities detection and immunoprecipitation were carried out. It was shown that Jurkat cells with expres-sion of wild type chimera CD8e died by apoptosis after con-tinuous stimulation of anti-CD8 monoclonal antibody. The expressions of PI3K and Akt, and the kinase activity of Akt remarkably increased during the process. However, this phenomenon did not occur in the Jurkat cells (T1JK) with expression of the mutant of CD8e chimera (Y170F), sug-gesting that PI3K/Akt signaling pathway is involved in acti-vation and apoptosis of T lymphocyte mediated by CD3e.

  2. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Sam Coffey

    Full Text Available Diabetes mellitus (DM has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160 and cytoplasmic tail of megalin. Mice with type 1 DM (T1D displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN at an earlier stage.

  3. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells.

    Science.gov (United States)

    Coffey, Sam; Costacou, Tina; Orchard, Trevor; Erkan, Elif

    2015-01-01

    Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage.

  4. Expression of AKT1 along with AKT2 in granulosa-lutein cells of hyperandrogenic PCOS patients.

    Science.gov (United States)

    Nekoonam, Saeid; Naji, Mohammad; Nashtaei, Maryam Shabani; Mortezaee, Keywan; Koruji, Morteza; Safdarian, Leili; Amidi, Fardin

    2017-04-01

    AKTs have a pivotal role in the granulosa-lutein cell (GC) proliferation and folliculogenesis, and there is a reciprocal feedback between AKT with androgen. Therefore, we aimed to evaluate the role of AKTs in GCs of hyperandrogenic (+HA) PCOS cases. There were three groups: control, +HA PCOS and -HA (non-hyperandrogenic) PCOS. All groups were subjected to GnRH antagonist protocol for stimulation of ovulation. Follicular fluid was aspirated from large follicles, and GCs were isolated using cell strainer method. AKT1, AKT2, AKT3, and androgen receptor (AR) mRNA expressions were analyzed with quantitative real-time PCR (qRT-PCR), and total-AKT and p-AKT (Ser(473) & Thr(308)) were investigated using western blotting. There were high levels of AKT1, AKT2, and AR mRNA expressions and high levels of p-AKT protein expression in the +HA PCOS group (p ≤ 0.05). There was a direct positive correlation between free testosterone (FT) and total testosterone (TT) with the levels of AKT1, AKT2, and p-AKT (Ser(473)), and also between FT with the levels of AR. High expressions of AKT1 and AKT2 through possible relation with androgen may cause GCs dysfunction in the +HA PCOS patients.

  5. Novel PI3K/Akt inhibitors screened by the cytoprotective function of human immunodeficiency virus type 1 Tat.

    Directory of Open Access Journals (Sweden)

    Yuri Kim

    Full Text Available The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors.

  6. The Akt inhibitor MK-2206 enhances the cytotoxicity of paclitaxel (Taxol) and cisplatin in ovarian cancer cells.

    Science.gov (United States)

    Lin, Ying-Hsi; Chen, Bert Yu-Hung; Lai, Wei-Ting; Wu, Shao-Fu; Guh, Jih-Hwa; Cheng, Ann-Lii; Hsu, Lih-Ching

    2015-01-01

    Abnormalities in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway are commonly observed in human cancers and contribute to chemotherapy resistance. Combination therapy, involving the use of molecular targeted agents and traditional cytotoxic drugs, may represent a promising strategy to lower resistance and enhance cytotoxicity. Here, we demonstrate the efficacy of an Akt inhibitor, MK-2206, in increasing the cytotoxic effect of either paclitaxel (Taxol) or cisplatin against the ovarian cancer cell lines SKOV3 (with constitutively active Akt) and ES2 (with inactive Akt). Sequential treatment of Taxol or cisplatin, followed by MK-2206, induced a synergistic inhibition of cell proliferation and effectively promoted cell death, either by inhibiting the phosphorylation of Akt and its downstream effectors 4E-BP1 and p70S6K in SKOV3 cells or by restoring p53 levels, which were downregulated after Taxol or cisplatin treatment, in ES2 cells. Combination treatment also downregulated the pro-survival protein Bcl-2 in both SKOV3 and ES2 cells, which may have contributed to cell death. In addition, we discovered that Taxol/MK-2206 or cisplatin/MK-2206 combination treatment resulted in significant enhancement of intracellular reactive oxygen species (ROS) induced by MK-2206, in both SKOV3 and ES2 cells; however, MK-2206-induced growth inhibition was reversed by a ROS scavenger only in ES2 cells. MK-2206 also suppressed DNA repair, particularly in SKOV3 cells. Taken together, our results demonstrate that the Akt inhibitor MK-2206 enhances the efficacy of cytotoxic agents in both Akt-active and Akt-inactive ovarian cancer cells but through different mechanisms.

  7. An integrative genomic and proteomic analysis of PIK3CA, PTEN and AKT mutations in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Stemke-Hale, Katherine; Gonzalez-Angulo, Ana Maria; Lluch, Ana; Neve, Richard M.; Kuo, Wen-Lin; Davies, Michael; Carey, Mark; Hu, Zhi; Guan, Yinghui; Sahin, Aysegul; Symmans, W. Fraser; Pusztai, Lajos; Nolden, Laura K.; Horlings, Hugo; Berns, Katrien; Hung, Mien-Chie; van de Vijver, Marc J.; Valero, Vicente; Gray, Joe W.; Bernards, Rene; Mills, Gordon B.; Hennessy, Bryan T.

    2008-05-06

    Phosphatidylinositol-3-kinase (PI3K)/AKT pathway aberrations are common in cancer. By applying mass spectroscopy-based sequencing and reverse phase protein arrays to 547 human breast cancers and 41 cell lines, we determined the subtype specificity and signaling effects of PIK3CA, AKT and PTEN mutations, and the effects of PIK3CA mutations on responsiveness to PI3K inhibition in-vitro and on outcome after adjuvant tamoxifen. PIK3CA mutations were more common in hormone receptor positive (33.8%) and HER2-positive (24.6%) than in basal-like tumors (8.3%). AKT1 (1.4%) and PTEN (2.3%) mutations were restricted to hormone receptor-positive cancers with PTEN protein levels also being significantly lower in hormone receptor-positive cancers. Unlike AKT1 mutations, PIK3CA (39%) and PTEN (20%) mutations were more common in cell lines than tumors, suggesting a selection for these but not AKT1 mutations during adaptation to culture. PIK3CA mutations did not have a significant impact on outcome in 166 hormone receptor-positive breast cancer patients after adjuvant tamoxifen. PIK3CA mutations, in comparison with PTEN loss and AKT1 mutations, were associated with significantly less and indeed inconsistent activation of AKT and of downstream PI3K/AKT signaling in tumors and cell lines, and PTEN loss and PIK3CA mutation were frequently concordant, suggesting different contributions to pathophysiology. PTEN loss but not PIK3CA mutations rendered cells sensitive to growth inhibition by the PI3K inhibitor LY294002. Thus, PI3K pathway aberrations likely play a distinct role in the pathogenesis of different breast cancer subtypes. The specific aberration may have implications for the selection of PI3K-targeted therapies in hormone receptor-positive breast cancer.

  8. Novel PI3K/Akt Inhibitors Screened by the Cytoprotective Function of Human Immunodeficiency Virus Type 1 Tat

    Science.gov (United States)

    Kim, Dong-Hyun; Kim, Baek

    2011-01-01

    The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors. PMID:21765914

  9. Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis.

    Science.gov (United States)

    Sury, Matthias D; Vorlet-Fawer, Lorianne; Agarinis, Claudia; Yousefi, Shida; Grandgirard, Denis; Leib, Stephen L; Christen, Stephan

    2011-01-01

    Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis.

  10. Etk/Bmx transactivates vascular endothelial growth factor 2 and recruits phosphatidylinositol 3-kinase to mediate the tumor necrosis factor-induced angiogenic pathway.

    Science.gov (United States)

    Zhang, Rong; Xu, Yingqian; Ekman, Niklas; Wu, Zhenhua; Wu, Jiong; Alitalo, Kari; Min, Wang

    2003-12-19

    Tumor necrosis factor (TNF), via its receptor 2 (TNFR2), induces Etk (or Bmx) activation and Etk-dependent endothelial cell (EC) migration and tube formation. Because TNF receptor 2 lacks an intrinsic kinase activity, we examined the kinase(s) mediating TNF-induced Etk activation. TNF induces a coordinated phosphorylation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and Etk, which is blocked by VEGFR2-specific inhibitors. In response to TNF, Etk and VEGFR2 form a complex resulting in a reciprocal activation between the two kinases. Subsequently, the downstream phosphatidylinositol 3-kinase (PI3K)-Akt signaling (but not signaling through phospholipase C-gamma) was initiated and directly led to TNF-induced EC migration, which was significantly inhibited by VEGFR2-, PI3K-, or Akt-specific inhibitors. Phosphorylation of VEGFR2 at Tyr-801 and Tyr-1175, the critical sites for VEGF-induced PI3K-Akt signaling, was not involved in TNF-mediated Akt activation. However, TNF induces phosphorylation of Etk at Tyr-566, directly mediating the recruitment of the p85 subunit of PI3K. Furthermore, TNF- but not VEGF-induced activation of VEGFR2, Akt, and EC migration are blunted in EC genetically deficient with Etk. Taken together, our data demonstrated that TNF induces transactivation between Etk and VEGFR2, and Etk directly activates PI3K-Akt angiogenic signaling independent of VEGF-induced VEGFR2-PI3K-Akt signaling pathway.

  11. CCN1 acutely increases nitric oxide production via integrin αvβ3-Akt-S6K-phosphorylation of endothelial nitric oxide synthase at the serine 1177 signaling axis.

    Science.gov (United States)

    Hwang, Soojin; Lee, Hyeon-Ju; Kim, Gyungah; Won, Kyung-Jong; Park, Yoon Shin; Jo, Inho

    2015-12-01

    Although CCN1 (also known as cysteine-rich, angiogenic inducer 61, CYR61) has been reported to promote angiogenesis and neovascularization in endothelial cells (ECs), its effects on endothelial nitric oxide (NO) production have never been studied. Using human umbilical vein ECs, we investigated whether and how CCN1 regulates NO production. CCN1 acutely increased NO production in a time- and dose-dependent manner, which was accompanied by increased phosphorylation of endothelial NO synthase (eNOS) at serine 1177 (eNOS-Ser(1177)), but not that of eNOS-Thr(495) or eNOS-Ser(114). The level of total eNOS expression was unaltered. Treatment with either LY294002, a selective inhibitor of phosphoinositide 3-kinase known as an upstream kinase of Akt, or H-89, an inhibitor of protein kinase A, mitogen- and stress-activated protein kinase 1, Rho-associated protein kinase 2, and ribosomal protein S6 kinase (S6K), inhibited CCN1-stimulated eNOS-Ser(1177) phosphorylation and subsequent NO production. Ectopic expression of small interfering RNA against Akt and S6K significantly inhibited the effects of CCN1. Consistently, CCN1 increased the phosphorylation of Akt-Ser(473) and S6K-Thr(389). However, CCN1 did not alter the expression or secretion of VEGF, a known downstream factor of CCN1 and a potential upstream factor of Akt-mediated eNOS-Ser(1177) phosphorylation. Furthermore, neutralization of integrin αvβ3 with corresponding antibody completely reversed all of the observed effects of CCN1. Moreover, CCN1 increased acetylcholine-induced relaxation in the rat aortas. Finally, we also found that CCN1-stimulated eNOS-Ser(1177) phosphorylation and NO production are true for other types of EC tested. In conclusion, CCN1 acutely increases NO production via activation of a signaling axis in integrin αvβ3-Akt-S6K-eNOS-Ser(1177) phosphorylation, suggesting an important role for CCN1 in vasodilation.

  12. Sesamin protects mouse liver against nickel-induced oxidative DNA damage and apoptosis by the PI3K-Akt pathway.

    Science.gov (United States)

    Liu, Chan-Min; Zheng, Gui-Hong; Ming, Qing-Lei; Chao, Cheng; Sun, Jian-Mei

    2013-02-06

    Sesamin (Ses), one of the major lignans in sesame seeds and oil, has been reported to have many benefits and medicinal properties. However, its protective effects against nickel (Ni)-induced injury in liver have not been clarified. The aim of the present study was to investigate the effects of sesamin on hepatic oxidative DNA injury and apoptosis in mice exposed to nickel. Kunming mice were exposed to nickel sulfate with or without sesamin coadministration for 20 days. The data showed that sesamin significantly prevented nickel-induced hepatotoxicity in a dose-dependent manner, indicated by both diagnostic indicators of liver damage (serum aminotransferase activities) and histopathological analysis. Moreover, nickel-induced profound elevation of reactive oxygen species (ROS) production and oxidative stress, as evidenced by an increase of the lipid peroxidation level and depletion of the intracellular reduced glutathione (GSH) level in liver, were suppressed by treatment with sesamin. Sesamin also restored the activities of antioxidant enzymes (T-SOD, CAT, and GPx) and decreased 8-hydroxy-2-deoxyguanosine (8-OHdG) levels in nickel-treated mice. Furthermore, a TUNEL assay showed that nickel-induced apoptosis in mouse liver was significantly inhibited by sesamin. Exploration of the underlying mechanisms of sesamin action revealed that activities of caspase-3 were markedly inhibited by the treatment of sesamin in the liver of nickel-treated mice. Sesamin increased expression levels of phosphoinositide-3-kinase (PI3K) and phosphorylated protein kinase B (PBK/Akt) in liver, which in turn inactivated pro-apoptotic signaling events, restoring the balance between pro- and anti-apoptotic Bcl-2 proteins in the liver of nickel-treated mice. In conclusion, these results suggested that the inhibition of nickel-induced apoptosis by sesamin is due at least in part to its antioxidant activity and its ability to modulate the PI3K-Akt signaling pathway.

  13. The Drosophila IKK-related kinase (Ik2 and Spindle-F proteins are part of a complex that regulates cytoskeleton organization during oogenesis

    Directory of Open Access Journals (Sweden)

    Shaanan Boaz

    2008-09-01

    Full Text Available Abstract Background IkappaB kinases (IKKs regulate the activity of Rel/NF-kappaB transcription factors by targeting their inhibitory partner proteins, IkappaBs, for degradation. The Drosophila genome encodes two members of the IKK family. Whereas the first is a kinase essential for activation of the NF-kappaB pathway, the latter does not act as IkappaB kinase. Instead, recent findings indicate that Ik2 regulates F-actin assembly by mediating the function of nonapoptotic caspases via degradation of DIAP1. Also, it has been suggested that ik2 regulates interactions between the minus ends of the microtubules and the actin-rich cortex in the oocyte. Since spn-F mutants display oocyte defects similar to those of ik2 mutant, we decided to investigate whether Spn-F could be a direct regulatory target of Ik2. Results We found that Ik2 binds physically to Spn-F, biomolecular interaction analysis of Spn-F and Ik2 demonstrating that both proteins bind directly and form a complex. We showed that Ik2 phosphorylates Spn-F and demonstrated that this phosphorylation does not lead to Spn-F degradation. Ik2 is localized to the anterior ring of the oocyte and to punctate structures in the nurse cells together with Spn-F protein, and both proteins are mutually required for their localization. Conclusion We conclude that Ik2 and Spn-F form a complex, which regulates cytoskeleton organization during Drosophila oogenesis and in which Spn-F is the direct regulatory target for Ik2. Interestingly, Ik2 in this complex does not function as a typical IKK in that it does not direct SpnF for degradation following phosphorylation.

  14. Amide-based inhibitors of p38alpha MAP kinase. Part 2: design, synthesis and SAR of potent N-pyrimidyl amides.

    Science.gov (United States)

    Tester, Richland; Tan, Xuefei; Luedtke, Gregory R; Nashashibi, Imad; Schinzel, Kurt; Liang, Weiling; Jung, Joon; Dugar, Sundeep; Liclican, Albert; Tabora, Jocelyn; Levy, Daniel E; Do, Steven

    2010-04-15

    Optimization of a tri-substituted N-pyridyl amide led to the discovery of a new class of potent N-pyrimidyl amide based p38alpha MAP kinase inhibitors. Initial SAR studies led to the identification of 5-dihydrofuran as an optimal hydrophobic group. Additional side chain modifications resulted in the introduction of hydrogen bond interactions. Through extensive SAR studies, analogs bearing free amino groups and alternatives to the parent (S)-alpha-methyl benzyl moiety were identified. These compounds exhibited improved cellular activities and maintained balance between p38alpha and CYP3A4 inhibition.

  15. Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells.

    Science.gov (United States)

    Häggblad Sahlberg, Sara; Mortensen, Anja C; Haglöf, Jakob; Engskog, Mikael K R; Arvidsson, Torbjörn; Pettersson, Curt; Glimelius, Bengt; Stenerlöw, Bo; Nestor, Marika

    2017-01-01

    AKT is a central protein in many cellular pathways such as cell survival, proliferation, glucose uptake, metabolism, angiogenesis, as well as radiation and drug response. The three isoforms of AKT (AKT1, AKT2 and AKT3) are proposed to have different physiological functions, properties and expression patterns in a cell type-dependent manner. As of yet, not much is known about the influence of the different AKT isoforms in the genome and their effects in the metabolism of colorectal cancer cells. In the present study, DLD-1 isogenic AKT1, AKT2 and AKT1/2 knockout colon cancer cell lines were used as a model system in conjunction with the parental cell line in order to further elucidate the differences between the AKT isoforms and how they are involved in various cellular pathways. This was done using genome wide expression analyses, metabolic profiling and cell migration assays. In conclusion, downregulation of genes in the cell adhesion, extracellular matrix and Notch-pathways and upregulation of apoptosis and metastasis inhibitory genes in the p53-pathway, confirm that the knockout of both AKT1 and AKT2 will attenuate metastasis and tumor cell growth. This was verified with a reduction in migration rate in the AKT1 KO and AKT2 KO and most explicitly in the AKT1/2 KO. Furthermore, the knockout of AKT1, AKT2 or both, resulted in a reduction in lactate and alanine, suggesting that the metabolism of carbohydrates and glutathione was impaired. This was further verified in gene expression analyses, showing downregulation of genes involved in glucose metabolism. Additionally, both AKT1 KO and AKT2 KO demonstrated an impaired fatty acid metabolism. However, genes were upregulated in the Wnt and cell proliferation pathways, which could oppose this effect. AKT inhibition should therefore be combined with other effectors to attain the best effect.

  16. AKT2 Blocks Nucleus Translocation of Apoptosis-Inducing Factor (AIF and Endonuclease G (EndoG While Promoting Caspase Activation during Cardiac Ischemia

    Directory of Open Access Journals (Sweden)

    Shuai Yang

    2017-03-01

    Full Text Available The AKT (protein kinase B, PKB family has been shown to participate in diverse cellular processes, including apoptosis. Previous studies demonstrated that protein kinase B2 (AKT2−/− mice heart was sensitized to apoptosis in response to ischemic injury. However, little is known about the mechanism and apoptotic signaling pathway. Here, we show that AKT2 inhibition does not affect the development of cardiomyocytes but increases cell death during cardiomyocyte ischemia. Caspase-dependent apoptosis of both the extrinsic and intrinsic pathway was inactivated in cardiomyocytes with AKT2 inhibition during ischemia, while significant mitochondrial disruption was observed as well as intracytosolic translocation of cytochrome C (Cyto C together with apoptosis-inducing factor (AIF and endonuclease G (EndoG, both of which are proven to conduct DNA degradation in a range of cell death stimuli. Therefore, mitochondria-dependent cell death was investigated and the results suggested that AIF and EndoG nucleus translocation causes cardiomyocyte DNA degradation during ischemia when AKT2 is blocked. These data are the first to show a previous unrecognized function and mechanism of AKT2 in regulating cardiomyocyte survival during ischemia by inducing a unique mitochondrial-dependent DNA degradation pathway when it is inhibited.

  17. Pancreas-specific Pten deficiency causes partial resistance to diabetes and elevated hepatic AKT signaling

    Institute of Scientific and Technical Information of China (English)

    Zan Tong; Yan Fan; Weiqi Zhang; Jun Xu; Jing Cheng; Mingxiao Ding; Hongkui Deng

    2009-01-01

    PTEN, a negative regulator of the phosphatidylinositol-3-kinase/AKT pathway, is an important modulator of insu-lin signaling. To determine the metabolic function of pancreatic Pten, we generated pancreas-specific Pten knockout (PPKO) mice. PPKO mice had enlarged pancreas and elevated proliferation of acinar cells. They also exhibited hy-poglycemia, hypoinsulinemia, and altered amino metabolism. Notably, PPKO mice showed delayed onset of strepto-zotocin (STZ)-induced diabetes and sex-biased resistance to high-fat-diet (HFD)-induced diabetes. To investigate the mechanism for the resistance to HFD-induced hyperglycemia in PPKO mice, we evaluated AKT phosphorylation in major insulin-responsive tissues: the liver, muscle, and fat. We found that Pten loss in the pancreas causes the eleva-tion of AKT signaling in the liver. The phosphorylation of AKT and its downstream substrate GSK3β was increased in the liver of PPKO mice, while PTEN level was decreased without detectable excision of Pten allele in the liver of PPKO mice. Proteomics analysis revealed dramatically decreased level of 78-kDa glucose-regulated protein (GRP78) in the liver of PPKO mice, which may also contribute to the lower blood glucose level of PPKO mice fed with HFD. Together, our findings reveal a novel response in the liver to pancreatic defect in metabolic regulation, adding a new dimension to understanding diabetes resistance.

  18. Akt- and CREB-Mediated Prostate Cancer Cell Proliferation Inhibition by Nexrutine, a Phellodendron amurense Extract

    Directory of Open Access Journals (Sweden)

    Gretchen E. Garcia

    2006-06-01

    Full Text Available Evidence from epidemiological studies suggests that plant-based diets can reduce the risk of prostate cancer. However, very little information is available concerning the use of botanicals in preventing prostate cancer. As a first step toward developing botanicals as prostate cancer preventives, we examined the effect of Nexrutine on human prostate cancer cells. Nexrutine is a herbal extract developed from Phellodendron amurense. Phellodendron extracts have been used traditionally in Chinese medicine for hundreds of years as an antidiarrheal, astringent, and anti-inflammatory agent. The present study investigated its potential antitumor effect on human prostate cancer cells. Our results suggest that it inhibits tumor cell proliferation through apoptosis induction and inhibition of cell survival signaling. The results of the present study indicate that Nexrutine treatment 1 inhibits the proliferation of both androgenresponsive and androgen-independent human prostate cancer cells through induction of apoptosis; 2 reduces levels of pAkt, phosphorylated cAMP response-binding protein (pCREB, and CREB DNA-binding activity; and 3 induces apoptosis in prostate cancer cells stably overexpressing Bcl-2. Further Akt kinase activity was reduced in cells treated with Nexrutine, and ectopic expression of myristoylated Akt protected from Nexrutine induced inhibition of proliferation, implicating a role for Akt signaling.

  19. Omentin-1 Stimulates Human Osteoblast Proliferation through PI3K/Akt Signal Pathway

    Directory of Open Access Journals (Sweden)

    Shan-Shan Wu

    2013-01-01

    Full Text Available It has been presumed that adipokines deriving from adipose tissue may play important roles in bone metabolism. Omentin-1, a novel adipokine, which is selectively expressed in visceral adipose tissue, has been reported to stimulate proliferation and inhibit differentiation of mouse osteoblast. However, little information refers to the effect of omentin-1 on human osteoblast (hOB proliferation. The current study examined the potential effects of omentin-1 on proliferation in hOB and the signal pathway involved. Omentin-1 promoted hOB proliferation in a dose-dependent manner as determined by [3H]thymidine incorporation. Western blot analysis revealed that omentin-1 induced activation of Akt (phosphatidylinositol-3 kinase downstream effector and such effect was impeded by transfection of hOB with Akt-siRNA. Furthermore, LY294002 (a selective PI3K inhibitor and HIMO (a selective Akt inhibitor abolished the omentin-1-induced hOB proliferation. These findings indicate that omentin-1 induces hOB proliferation via the PI3K/Akt signaling pathway and suggest that osteoblast is a direct target of omentin-1.

  20. Ghrelin Protects against the Detrimental Consequences of Porphyromonas gingivalis-Induced Akt Inactivation through S-Nitrosylation on Salivary Mucin Synthesis

    Directory of Open Access Journals (Sweden)

    Bronislaw L. Slomiany

    2011-01-01

    Full Text Available Disturbances in nitric oxide synthase isozyme system and the impairment in salivary mucin synthesis are well-recognized features associated with oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis. In this study, using rat sublingual gland acinar cells, we report that P. gingivalis LPS-induced impairment in mucin synthesis and associated suppression in Akt kinase activity were accompanied by a decrease in constitutive nitric oxide synthase (cNOS activity and an induction in inducible nitric oxide synthase (iNOS expression. The LPS effect on Akt inactivation was manifested in the kinase S-nitrosylation and a decrease in its phosphorylation at Ser473. Further, we demonstrate that a peptide hormone, ghrelin, countered the LPS-induced impairment in mucin synthesis. This effect of ghrelin was reflected in the suppression of iNOS and the increase in Akt activation, associated with the loss in S-nitrosylation and the increase in phosphorylation, as well as cNOS activation through phosphorylation. Our findings suggest that induction in iNOS expression by P. gingivalis-LPS leads to Akt kinase inactivation through S-nitrosylation that detrimentally impacts cNOS activation through phosphorylation as well as mucin synthesis. We also show that the countering effect of ghrelin on P. gingivalis-induced impairment in mucin synthesis is associated with Akt activation through phosphorylation.