WorldWideScience

Sample records for akap5 disrupt dendritic

  1. Effects of AKAP5 Pro100Leu Genotype on Working Memory for Emotional Stimuli

    OpenAIRE

    Sylvia Richter; Xenia Gorny; Judith Machts; Gusalija Behnisch; Torsten Wüstenberg; Maike C Herbort; Münte, Thomas F.; Seidenbecher, Constanze I.; Schott, Björn H.

    2013-01-01

    Recent investigations addressing the role of the synaptic multiadaptor molecule AKAP5 in human emotion and behavior suggest that the AKAP5 Pro100Leu polymorphism (rs2230491) contributes to individual differences in affective control. Carriers of the less common Leu allele show a higher control of anger as indicated by behavioral measures and dACC brain response on emotional distracters when compared to Pro homozygotes. In the current fMRI study we used an emotional working memory task accordi...

  2. Effects of AKAP5 Pro100Leu genotype on working memory for emotional stimuli.

    Directory of Open Access Journals (Sweden)

    Sylvia Richter

    Full Text Available Recent investigations addressing the role of the synaptic multiadaptor molecule AKAP5 in human emotion and behavior suggest that the AKAP5 Pro100Leu polymorphism (rs2230491 contributes to individual differences in affective control. Carriers of the less common Leu allele show a higher control of anger as indicated by behavioral measures and dACC brain response on emotional distracters when compared to Pro homozygotes. In the current fMRI study we used an emotional working memory task according to the n-back scheme with neutral and negative emotional faces as target stimuli. Pro homozygotes showed a performance advantage at the behavioral level and exhibited enhanced activation of the amygdala and fusiform face area during working memory for emotional faces. On the other hand, Leu carriers exhibited increased activation of the dACC during performance of the 2-back condition. Our results suggest that AKAP5 Pro100Leu effects on emotion processing might be task-dependent with Pro homozygotes showing lower control of emotional interference, but more efficient processing of task-relevant emotional stimuli.

  3. Effects of AKAP5 Pro100Leu genotype on working memory for emotional stimuli.

    Science.gov (United States)

    Richter, Sylvia; Gorny, Xenia; Machts, Judith; Behnisch, Gusalija; Wüstenberg, Torsten; Herbort, Maike C; Münte, Thomas F; Seidenbecher, Constanze I; Schott, Björn H

    2013-01-01

    Recent investigations addressing the role of the synaptic multiadaptor molecule AKAP5 in human emotion and behavior suggest that the AKAP5 Pro100Leu polymorphism (rs2230491) contributes to individual differences in affective control. Carriers of the less common Leu allele show a higher control of anger as indicated by behavioral measures and dACC brain response on emotional distracters when compared to Pro homozygotes. In the current fMRI study we used an emotional working memory task according to the n-back scheme with neutral and negative emotional faces as target stimuli. Pro homozygotes showed a performance advantage at the behavioral level and exhibited enhanced activation of the amygdala and fusiform face area during working memory for emotional faces. On the other hand, Leu carriers exhibited increased activation of the dACC during performance of the 2-back condition. Our results suggest that AKAP5 Pro100Leu effects on emotion processing might be task-dependent with Pro homozygotes showing lower control of emotional interference, but more efficient processing of task-relevant emotional stimuli. PMID:23383244

  4. Dendrite Array Disruption by Bubbles during Re-melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.

    2012-01-01

    As part of the Pore Formation and Mobility Investigation (PFMI), Succinonitrile Water alloys consisting of aligned dendritic arrays were re-melted prior to conducting directional solidification experiments in the microgravity environment aboard the International Space Station. Thermocapillary convection initiated by bubbles at the solid-liquid interface during controlled melt back of the alloy was observed to disrupt the initial dendritic alignment. Disruption ranged from detaching large arrays to the transport of small dendrite fragments at the interface. The role of bubble size and origin is discussed along with subsequent consequences upon reinitiating controlled solidification.

  5. Disruption of an Aligned Dendritic Network by Bubbles During Re-Melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2012-01-01

    The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.

  6. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting the maturation of dendritic spine synapses

    OpenAIRE

    Clement, James P.; Aceti, Massimiliano; Creson, Thomas K.; Ozkan, Emin D.; Shi, Yulin; Reish, Nicholas J.; Almonte, Antoine G.; Miller, Brooke H.; Wiltgen, Brian J.; Miller, Courtney A.; Xu, Xiangmin; Rumbaugh, Gavin

    2012-01-01

    Mutations that cause Intellectual Disability (ID) and Autism Spectrum Disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with...

  7. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation

    OpenAIRE

    Jiang, Aimin; Bloom, Ona; Ono, Satoru; Cui, Weiguo; Unternaehrer, Juli; Jiang, Shan; Whitney, J. Andrew; Connolly, John; Banchereau, Jacques; Mellman, Ira

    2007-01-01

    The maturation of dendritic cells (DCs) following exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We now find that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induces the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events...

  8. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis

    Science.gov (United States)

    Cubillos-Ruiz, Juan R.; Silberman, Pedro C.; Rutkowski, Melanie R.; Chopra, Sahil; Perales-Puchalt, Alfredo; Song, Minkyung; Zhang, Sheng; Bettigole, Sarah E.; Gupta, Divya; Holcomb, Kevin; Ellenson, Lora H.; Caputo, Thomas; Lee, Ann-Hwee; Conejo-Garcia, Jose R.; Glimcher, Laurie H.

    2015-01-01

    SUMMARY Dendritic cells (DCs) are required to initiate and sustain T cell-dependent anti-cancer immunity. However, tumors often evade immune control by crippling normal DC function. The endoplasmic reticulum (ER) stress response factor XBP1 promotes intrinsic tumor growth directly, but whether it also regulates the host anti-tumor immune response is not known. Here we show that constitutive activation of XBP1 in tumor-associated DCs (tDCs) drives ovarian cancer (OvCa) progression by blunting anti-tumor immunity. XBP1 activation, fueled by lipid peroxidation byproducts, induced a triglyceride biosynthetic program in tDCs leading to abnormal lipid accumulation and subsequent inhibition of tDC capacity to support anti-tumor T cells. Accordingly, DC-specific XBP1 deletion or selective nanoparticle-mediated XBP1 silencing in tDCs restored their immunostimulatory activity in situ and extended survival by evoking protective type 1 anti-tumor responses. Targeting the ER stress response should concomitantly inhibit tumor growth and enhance anti-cancer immunity, thus offering a unique approach to cancer immunotherapy. PMID:26073941

  9. Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection

    Science.gov (United States)

    Xu, Jintao; Eastman, Alison J.; Flaczyk, Adam; Neal, Lori M.; Zhao, Guolei; Carolan, Jacob; Malachowski, Antoni N.; Stolberg, Valerie R.; Yosri, Mohammed; Chensue, Stephen W.; Curtis, Jeffrey L.; Osterholzer, John J.

    2016-01-01

    ABSTRACT Anti-tumor necrosis factor alpha (anti-TNF-α) therapies have been increasingly used to treat inflammatory diseases and are associated with increased risk of invasive fungal infections, including Cryptococcus neoformans infection. Using a mouse model of cryptococcal infection, we investigated the mechanism by which disruption of early TNF-α signaling results in the development of nonprotective immunity against C. neoformans. We found that transient depletion of TNF-α inhibited pulmonary fungal clearance and enhanced extrapulmonary dissemination of C. neoformans during the adaptive phase of the immune response. Higher fungal burdens in TNF-α-depleted mice were accompanied by markedly impaired Th1 and Th17 responses in the infected lungs. Furthermore, early TNF-α depletion also resulted in disrupted transcriptional initiation of the Th17 polarization program and subsequent upregulation of Th1 genes in CD4+ T cells in the lung-associated lymph nodes (LALN) of C. neoformans-infected mice. These defects in LALN T cell responses were preceded by a dramatic shift from a classical toward an alternative activation of dendritic cells (DC) in the LALN of TNF-α-depleted mice. Taken together, our results indicate that early TNF-α signaling is required for optimal DC activation, and the initial Th17 response followed by Th1 transcriptional prepolarization of T cells in the LALN, which further drives the development of protective immunity against cryptococcal infection in the lungs. Thus, administration of anti-TNF-α may introduce a particularly greater risk for newly acquired fungal infections that require generation of protective Th1/Th17 responses for their containment and clearance. PMID:27406560

  10. Developmental disorders of the brain can be caused by PCBs; low doses of hydroxy-PCBs disrupt thyroid hormone-dependent dendrite formation from Purkinje neurons in culture

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Y.; Kimura-Kuroda, J. [Tokyo Metropol. Inst. for Neuroscience, Tokyo (Japan); Nagata, I. [CREST/ JST, Tokyo (Japan)

    2004-09-15

    Exposure to some environmental chemicals during the perinatal period causes developmental disorders of the brain. Cognitive impairment and hyperactivity in infants were reported in Taiwan, known as Yu-cheng incidents caused by the accidental contamination of polychlorinated biphenyls (PCBs). Together with recent experimental data, Kuroda proposes a hypothesis that spatio-temporal disruptions of developing neuronal circuits by PCB exposure can cause the comobidity of learning disorders (LD), attention deficit hyperactivity disorder (ADHD) and autsm with the co-exposure to other environmental chemicals. PCBs and hydroxylated PCBs (OH-PCBs) have similar chemical structures to thyroid hormones (TH), thyroxine (T4) and triiodothyronine (T3). TH deficiency in the perinatal period causes cretinism children with severe cognitive and mental retardation. In primate model, Rice demonstrates that postnatal exposure to PCBs can dramatically influence later behavioral function. Epidemiological studies also indicate the possible developmental neurotoxicity of PCBs accumulated in human bodies. However, the precise underlying mechanisms and which types of PCB or OH-PCB with such effects have yet to be elucidated. It is important to establish a simple, reproducible, and sensitive in vitro assay for determining the effects of PCBs and OH-PCBs on the development of the central nervous system. Recently Iwasaki et al. established a reporter assay system and disclosed that low doses of PCBs potentially interfere TH-dependent gene expressions. This is the first demonstration that PCBs and OH-PCBs directly affect TH-receptor (TR)-mediated gene expressions crucial to the brain development, through unique mechanism. We also have demonstrated TH-dependent development of Purkinje neurons in vitro using a serum-free chemically defined medium. The degree of dendritic development of Purkinje cells is TH dose-dependent and exhibits high sensitivity in the pM order. Therefore, in the present study

  11. Development of dendrite polarity in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Hill Sarah E

    2012-10-01

    Full Text Available Abstract Background Drosophila neurons have dendrites that contain minus-end-out microtubules. This microtubule arrangement is different from that of cultured mammalian neurons, which have mixed polarity microtubules in dendrites. Results To determine whether Drosophila and mammalian dendrites have a common microtubule organization during development, we analyzed microtubule polarity in Drosophila dendritic arborization neuron dendrites at different stages of outgrowth from the cell body in vivo. As dendrites initially extended, they contained mixed polarity microtubules, like mammalian neurons developing in culture. Over a period of several days this mixed microtubule array gradually matured to a minus-end-out array. To determine whether features characteristic of dendrites were localized before uniform polarity was attained, we analyzed dendritic markers as dendrites developed. In all cases the markers took on their characteristic distribution while dendrites had mixed polarity. An axonal marker was also quite well excluded from dendrites throughout development, although this was perhaps more efficient in mature neurons. To confirm that dendrite character could be acquired in Drosophila while microtubules were mixed, we genetically disrupted uniform dendritic microtubule organization. Dendritic markers also localized correctly in this case. Conclusions We conclude that developing Drosophila dendrites initially have mixed microtubule polarity. Over time they mature to uniform microtubule polarity. Dendrite identity is established before the mature microtubule arrangement is attained, during the period of mixed microtubule polarity.

  12. The HPV16 E7 Oncoprotein Disrupts Dendritic Cell Function and Induces the Systemic Expansion of CD11b+Gr1+ Cells in a Transgenic Mouse Model

    Science.gov (United States)

    Damian-Morales, Gabriela; Serafín-Higuera, Nicolás; Moreno-Eutimio, Mario Adán; Cortés-Malagón, Enoc M.; Bonilla-Delgado, José; Rodríguez-Uribe, Genaro; Ocadiz-Delgado, Rodolfo; Lambert, Paul F.

    2016-01-01

    Objective. The aim of this study was to analyze the effects of the HPV16 E7 oncoprotein on dendritic cells (DCs) and CD11b+Gr1+ cells using the K14E7 transgenic mouse model. Materials and Methods. The morphology of DCs was analyzed in male mouse skin on epidermal sheets using immunofluorescence and confocal microscopy. Flow cytometry was used to determine the percentages of DCs and CD11b+Gr1+ cells in different tissues and to evaluate the migration of DCs. Results. In the K14E7 mouse model, the morphology of Langerhans cells and the migratory activity of dendritic cells were abnormal. An increase in CD11b+Gr1+ cells was observed in the blood and skin of K14E7 mice, and molecules related to CD11b+Gr1+ chemoattraction (MCP1 and S100A9) were upregulated. Conclusions. These data suggest that the HPV16 E7 oncoprotein impairs the function and morphology of DCs and induces the systemic accumulation of CD11b+Gr1+ cells. PMID:27478837

  13. Spiraling eutectic dendrites

    OpenAIRE

    Pusztai, Tamás; Rátkai, László; Szállás, Attila; Gránásy, László

    2013-01-01

    Eutectic dendrites forming in a model ternary system have been studied using the phase-field theory. The eutectic and one-phase dendrites have similar forms, and the tip radius scales with the interface free energy as for one-phase dendrites. The steady-state eutectic patterns appearing on these two-phase dendrites include concentric rings, and single- to multiarm spirals, of which the fluctuations choose, a stochastic phenomenon characterized by a peaked probability distribution. The number ...

  14. Influence of lipid rafts on CD1d presentation by dendritic cells

    DEFF Research Database (Denmark)

    Peng, Wei; Martaresche, Cecile; Escande-Beillard, Nathalie; Cédile, Oriane; Reynier-Vigouroux, Anne; Boucraut, Jose

    Our main objective was to analyze the role of lipid rafts in the activation of Valpha-14(-) and Valpha-14(+) T hybridomas by dendritic cells. We showed that activation of Valpha-14(+) hybridomas by dendritic cells or other CD1d-expressing cells was altered by disruption of lipid rafts with the...

  15. Family Disruptions

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Life Listen Español Text Size Email Print Share Family Disruptions Page Content Article Body No matter how ...

  16. NMDA spike/plateau potentials in dendrites of thalamocortical neurons.

    Science.gov (United States)

    Augustinaite, Sigita; Kuhn, Bernd; Helm, Paul Johannes; Heggelund, Paul

    2014-08-13

    Dendritic NMDA spike/plateau potentials, first discovered in cortical pyramidal neurons, provide supralinear integration of synaptic inputs on thin and distal dendrites, thereby increasing the impact of these inputs on the soma. The more specific functional role of these potentials has been difficult to clarify, partly due to the complex circuitry of cortical neurons. Thalamocortical (TC) neurons in the dorsal lateral geniculate nucleus participate in simpler circuits. They receive their primary afferent input from retina and send their output to visual cortex. Cortex, in turn, regulates this output through massive feedback to distal dendrites of the TC neurons. The TC neurons can operate in two modes related to behavioral states: burst mode prevailing during sleep, when T-type calcium bursts largely disrupt the transfer of signals from retina to cortex, and tonic mode, which provides reliable transfer of retinal signals to cortex during wakefulness. We studied dendritic potentials in TC neurons with combined two-photon calcium imaging and whole-cell recording of responses to local dendritic glutamate iontophoresis in acute brain slices from mice. We found that NMDA spike/plateaus can be elicited locally at distal dendrites of TC neurons. We suggest that these dendritic potentials have important functions in the cortical regulation of thalamocortical transmission. NMDA spike/plateaus can induce shifts in the functional mode from burst to tonic by blockade of T-type calcium conductances. Moreover, in tonic mode, they can facilitate the transfer of retinal signals to cortex by depolarization of TC neurons. PMID:25122891

  17. Random fractal dendrites

    OpenAIRE

    Croydon, David (David Alexander); Hambly, Ben M.; Dr. Ben Hambly

    2006-01-01

    Dendrites are tree-like topological spaces, and in this thesis, the physical characteristics of various random fractal versions of this type of set are investigated. This work will contribute to the development of analysis on fractals, an area which has grown considerably over the last twenty years. First, a collection of random self-similar dendrites is constructed, and their Hausdorff dimension is calculated. Previous results determining this quantity for random self-simi...

  18. Radioresistance of dendritic cells

    International Nuclear Information System (INIS)

    To evaluate radiation sensitivity of dendritic cells in comparison with lymphocytes. T lymphocytes captured from peripheral blood were irradiated by 0 Gy, 10 Gy, 30 Gy. Apoptosis was measured by flowcytometry for staining of annexin V 4 hours after irradiation. Immature and mature dendritic cells processed from blood hematopoietic stem cell were irradiated by 0 Gy, 10 Gy, 30 Gy, 100 Gy respectively and apoptosis was measured by flowcytometry with time differences as 4h, 24h and 48h after irradiation. Morphometric analysis by percent nucleus was measured in three cell groups, also. Lymphocytes showed radiation sensitivity by increasing apoptotic fraction according to radiation dose. However, both mature and immature dendritic cells showed consistent fraction of apoptosis in spite of increasing radiation dose. Percent nucleus ratio is significantly higher in lymphocytes than that of mature or immature dendritic cells. Stimulation of T-cell by dendritic cells was not changed after irradiation. Dendritic cells showed radioresistance which was associated with small size of nucleus in comparison with lymphocytes and this result would be used as a basal data of radio-labelling for the cellular trafficking studies in nuclear medicine fields

  19. Disrupting Business

    DEFF Research Database (Denmark)

    Cox, Geoff; Bazzichelli, Tatiana

    Disruptive Business explores some of the interconnections between art, activism and the business concept of disruptive innovation. With a backdrop of the crisis of financial capitalism, austerity cuts in the cultural sphere, the idea is to focus on potential art strategies in relation to a broken...... economy. In a perverse way, we ask whether this presents new opportunities for cultural producers to achieve more autonomy over their production process. If it is indeed possible, or desirable, what alternative business models emerge? The book is concerned broadly with business as material for reinvention...

  20. Organization of TNIK in dendritic spines.

    Science.gov (United States)

    Burette, Alain C; Phend, Kristen D; Burette, Susan; Lin, Qingcong; Liang, Musen; Foltz, Gretchen; Taylor, Noël; Wang, Qi; Brandon, Nicholas J; Bates, Brian; Ehlers, Michael D; Weinberg, Richard J

    2015-09-01

    Tumor necrosis factor receptor-associated factor 2 (TRAF2)- and noncatalytic region of tyrosine kinase (NCK)-interacting kinase (TNIK) has been identified as an interactor in the psychiatric risk factor, Disrupted in Schizophrenia 1 (DISC1). As a step toward deciphering its function in the brain, we performed high-resolution light and electron microscopic immunocytochemistry. We demonstrate here that TNIK is expressed in neurons throughout the adult mouse brain. In striatum and cerebral cortex, TNIK concentrates in dendritic spines, especially in the vicinity of the lateral edge of the synapse. Thus, TNIK is highly enriched at a microdomain critical for glutamatergic signaling. PMID:25753355

  1. Disrupted Disclosure

    DEFF Research Database (Denmark)

    Krause Hansen, Hans; Uldam, Julie

    While projects of governance by transparency have become widespread over the past decades, theyare usually investigated and theorized in isolation from the wider field of visibility and surveillancein which they are embedded. Building on theories of governance, visibility and surveillance...... appearances become challenged through disruptive disclosures in mediaenvironments characterized by multiple levels of visibility, with companies both observing andbeing observed by civil society groups that criticize them; (c) why and how the mobilization aroundtransparency and ensuing practices...

  2. Dendritic Polymers for Theranostics

    Science.gov (United States)

    Ma, Yuan; Mou, Quanbing; Wang, Dali; Zhu, Xinyuan; Yan, Deyue

    2016-01-01

    Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications.

  3. Modification of dendritic development.

    Science.gov (United States)

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  4. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity.

    Science.gov (United States)

    Molumby, Michael J; Keeler, Austin B; Weiner, Joshua A

    2016-05-01

    Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs), have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron's dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes. PMID:27117416

  5. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity

    Directory of Open Access Journals (Sweden)

    Michael J. Molumby

    2016-05-01

    Full Text Available Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs, have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron’s dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  6. Magnetic and dendritic catalysts.

    Science.gov (United States)

    Wang, Dong; Deraedt, Christophe; Ruiz, Jaime; Astruc, Didier

    2015-07-21

    The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them. We then describe new chemistry that combines the benefits of these two methods of catalysis. Classic dendritic catalysis has involved either attaching the catalyst covalently at the branch termini or within the dendrimer core. We have used chelating pyridyltriazole ligands to insolubilize catalysts at the termini of dendrimers, providing an efficient, recyclable heterogeneous catalysts. With the addition of dendritic unimolecular micelles olefin metathesis reactions catalyzed by commercial Grubbs-type ruthenium-benzylidene complexes in water required unusually low amounts of catalyst. When such dendritic micelles include intradendritic ligands, both the micellar effect and ligand acceleration promote faster catalysis in water. With these types of catalysts, we could carry out azide alkyne cycloaddition ("click") chemistry with only ppm amounts of CuSO4·5H2O and sodium ascorbate under ambient conditions. Alternatively we can attach catalysts to the surface of superparamagnetic iron oxide nanoparticles (SPIONs), essentially magnetite (Fe3O4) or maghemite (γ-Fe2O3), offering the opportunity to recover the catalysts using magnets. Taking advantage of the merits of both of these strategies, we and others have developed a new generation of recyclable catalysts: dendritic magnetically recoverable catalysts. In particular, some of our catalysts with a γ-Fe2O3@SiO2 core and 1,2,3-triazole tethers and loaded with Pd nanoparticles generate strong positive dendritic effects with respect to ligand loading, catalyst loading, catalytic activity and

  7. Dendritic Cells and Liver Fibrosis

    OpenAIRE

    Rahman, Adeeb H.; Aloman, Costica

    2013-01-01

    Dendritic cells are a relative rare population of specialized antigen presenting cells that are distributed through most lymphoid and non-lymphoid tissues and play a critical role in linking the innate and adaptive arms of the immune system. The liver contains a heterogeneous population of dendritic cells that may contribute to liver inflammation and fibrosis through a number of mechanisms. This review summarizes current knowledge on the development and characterization of liver dendritic cel...

  8. Protein kinase LKB1 regulates polarized dendrite formation of adult hippocampal newborn neurons.

    Science.gov (United States)

    Huang, Wei; She, Liang; Chang, Xing-ya; Yang, Rong-rong; Wang, Liang; Ji, Hong-bin; Jiao, Jian-wei; Poo, Mu-ming

    2014-01-01

    Adult-born granule cells in the dentate gyrus of the rodent hippocampus are important for memory formation and mood regulation, but the cellular mechanism underlying their polarized development, a process critical for their incorporation into functional circuits, remains unknown. We found that deletion of the serine-threonine protein kinase LKB1 or overexpression of dominant-negative LKB1 reduced the polarized initiation of the primary dendrite from the soma and disrupted its oriented growth toward the molecular layer. This abnormality correlated with the dispersion of Golgi apparatus that normally accumulated at the base and within the initial segment of the primary dendrite, and was mimicked by disrupting Golgi organization via altering the expression of Golgi structural proteins GM130 or GRASP65. Thus, besides its known function in axon formation in embryonic pyramidal neurons, LKB1 plays an additional role in regulating polarized dendrite morphogenesis in adult-born granule cells in the hippocampus. PMID:24367100

  9. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  10. Dendritic cells in asthma.

    Science.gov (United States)

    van Helden, Mary J; Lambrecht, Bart N

    2013-12-01

    The lungs are constantly exposed to antigens, most of which are non-pathogenic and do not require the induction of an immune response. Dendritic cells (DCs) are situated at the basolateral site of the lungs and continuously scan the environment to detect the presence of pathogens and subsequently initiate an immune response. They are a heterogeneous population of antigen-presenting cells that exert specific functions. Compelling evidence is now provided that DCs are both sufficient and necessary to induce allergic responses against several inhaled harmless allergens. How various DC subsets exactly contribute to the induction of allergic asthma is currently a subject of intense investigation. We here review the current progress in this field. PMID:24455765

  11. Can dendritic cells see light?

    Science.gov (United States)

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.

    2010-02-01

    There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is proinflammatory or anti-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.

  12. The Deterministic Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    The Dendritic Cell Algorithm is an immune-inspired algorithm orig- inally based on the function of natural dendritic cells. The original instantiation of the algorithm is a highly stochastic algorithm. While the performance of the algorithm is good when applied to large real-time datasets, it is difficult to anal- yse due to the number of random-based elements. In this paper a deterministic version of the algorithm is proposed, implemented and tested using a port scan dataset to provide a controllable system. This version consists of a controllable amount of parameters, which are experimented with in this paper. In addition the effects are examined of the use of time windows and variation on the number of cells, both which are shown to influence the algorithm. Finally a novel metric for the assessment of the algorithms output is introduced and proves to be a more sensitive metric than the metric used with the original Dendritic Cell Algorithm.

  13. An inverse approach for elucidating dendritic function

    Directory of Open Access Journals (Sweden)

    Benjamin Torben-Nielsen

    2010-09-01

    Full Text Available We outline an inverse approach for investigating dendritic function-structure relationships by optimizing dendritic trees for a-priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a `hypothesis generator' in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a `function confirmation' by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions.

  14. Intrinsic and extrinsic mechanisms of dendritic morphogenesis.

    Science.gov (United States)

    Dong, Xintong; Shen, Kang; Bülow, Hannes E

    2015-01-01

    The complex, branched morphology of dendrites is a cardinal feature of neurons and has been used as a criterion for cell type identification since the beginning of neurobiology. Regulated dendritic outgrowth and branching during development form the basis of receptive fields for neurons and are essential for the wiring of the nervous system. The cellular and molecular mechanisms of dendritic morphogenesis have been an intensely studied area. In this review, we summarize the major experimental systems that have contributed to our understandings of dendritic development as well as the intrinsic and extrinsic mechanisms that instruct the neurons to form cell type-specific dendritic arbors. PMID:25386991

  15. Monocyte-derived dendritic cells

    OpenAIRE

    Kuhn, Sabine; Ronchese, Franca

    2013-01-01

    The elicitation of efficient antitumor immune responses requires the optimal activation of tumor-associated dendritic cells (DCs). Our comparison of the effect of various immunostimulatory treatments on DCs revealed that the best predictor of the success of immunotherapy is not the activation of existing DC populations, but the appearance of a population of monocyte-derived DC in tumor-draining lymph nodes.

  16. Fast generation of dendritic cells

    DEFF Research Database (Denmark)

    Kvistborg, P; Bøgh, Marie; Claesson, M H; Pedersen, A W

    2009-01-01

    Dendritic cells (DC) are potent antigen presenting cells capable of inducing immune responses. DC are widely used as vaccine adjuvant in experimental clinical settings. DC-based vaccines are normally generated using a standard 8day DC protocol (SDDC). In attempts to shorten the vaccine production...

  17. Optimization of human dendritic cell sample preparation for mass spectrometry-based proteomics studies

    OpenAIRE

    Zhang, Ying; Bottinelli, Dario; Lisacek, Frédérique; Luban, Jeremy; De Castillia, Caterina Strambio; Varesio, Emmanuel; Hopfgartner, Gérard

    2015-01-01

    Dendritic cells (DCs) are specialized leukocytes that orchestrate the adaptive immune response. Mass spectrometry based proteomic study of these cells presents technical challenges, especially when the DCs are human in origin due to the paucity of available biological material. Here, to maximize mass spectrometry coverage of the global human DC proteome, different cell disruption methods, lysis conditions, protein precipitation, and protein pellet solubilisation and denaturation methods were ...

  18. Microtubule nucleation and organization in dendrites.

    Science.gov (United States)

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W

    2016-07-01

    Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  19. Phase field modeling of dendritic coarsening during isothermal

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo

    2011-08-01

    Full Text Available Dendritic coarsening in Al-2mol%Si alloy during isothermal solidification at 880K was investigated by phase field modeling. Three coarsening mechanisms operate in the alloy: (a melting of small dendrite arms; (b coalescence of dendrites near the tips leading to the entrapment of liquid droplets; (c smoothing of dendrites. Dendrite melting is found to be dominant in the stage of dendritic growth, whereas coalescence of dendrites and smoothing of dendrites are dominant during isothermal holding. The simulated results provide a better understanding of dendrite coarsening during isothermal solidification.

  20. Understanding disruptions in tokamaks

    International Nuclear Information System (INIS)

    This paper describes progress achieved since 2007 in understanding disruptions in tokamaks, when the effect of plasma current sharing with the wall was introduced into theory. As a result, the toroidal asymmetry of the plasma current measurements during vertical disruption event (VDE) on the Joint European Torus was explained. A new kind of plasma equilibria and mode coupling was introduced into theory, which can explain the duration of the external kink 1/1 mode during VDE. The paper presents first results of numerical simulations using a free boundary plasma model, relevant to disruptions.

  1. Disrupting Vestibular Activity Disrupts Body Ownership.

    Science.gov (United States)

    Hoover, Adria E N; Harris, Laurence R

    2015-01-01

    People are more sensitive at detecting asynchrony between a self-generated movement and visual feedback concerning that movement when the movement is viewed from a first-person perspective. We call this the 'self-advantage' and interpret it as an objective measure of self. Here we ask if disruption of the vestibular system in healthy individuals affects the self-advantage. Participants performed finger movements while viewing their hand in a first-person ('self') or third-person ('other') perspective and indicated which of two periods (one with minimum delay and the other with an added delay of 33-264 ms) was delayed. Their sensitivity to the delay was calculated from the psychometric functions obtained. During the testing, disruptive galvanic vestibular stimulation (GVS) was applied in five-minute blocks interleaved with five minutes of no stimulation for a total of 40 min. We confirmed the self-advantage under no stimulation (31 ms). In the presence of disruptive GVS this advantage disappeared and there was no longer a difference in performance between perspectives. The threshold delay for the 'other' perspective was not affected by the GVS. These results suggest that an intact vestibular signal is required to distinguish 'self' from 'other' and to maintain a sense of body ownership. PMID:26595957

  2. Drosophila Sensory Neurons Require Dscam for Dendritic Self Avoidance and Proper Dendritic Field Organization

    OpenAIRE

    Soba, Peter; Zhu, Sijun; Emoto, Kazuo; Younger, Susan; Yang, Shun-Jen; Yu, Hung-Hsiang; Lee, Tzumin; Jan, Lily Yeh; Jan, Yuh-Nung

    2007-01-01

    A neuron’s dendrites typically do not cross one another. This intrinsic self-avoidance mechanism ensures unambiguous processing of sensory or synaptic inputs. Moreover, some neurons respect the territory of others of the same type, a phenomenon known as tiling. Different types of neurons, however, often have overlapping dendritic fields. We found that Down’s syndrome Cell Adhesion Molecule (Dscam) is required for dendritic self-avoidance of all four classes of Drosophila dendritic arborizatio...

  3. Search and Disrupt

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders

    This paper analyzes how external search is affected by strategic interest alignment among knowledge sources. I focus on misalignment arising from the heterogeneous effects of disruptive technologies by analyzing the influence of incumbents on 2,855 non-incumbents? external knowledge search efforts....... The efforts most likely to solve innovation problems obtained funding from the European Commission?s 7th Framework Program (2007-2013). The results show that involving incumbents improves search in complementary technologies, while demoting it when strategic interests are misaligned in disruptive...... technologies. However, incumbent sources engaged in capability reconfiguration to accommodate disruption improve search efforts in disruptive technologies. The paper concludes that the value of external sources is contingent on more than their knowledge. Specifically, interdependence of sources in search gives...

  4. Homophilic Dscam interactions control complex dendrite morphogenesis

    OpenAIRE

    Michael E Hughes; Bortnick, Rachel; Tsubouchi, Asako; Bäumer, Philipp; Kondo, Masahiro; Uemura, Tadashi; Schmucker, Dietmar

    2007-01-01

    The morphogenesis of complex dendritic fields requires highly specific patterning and dendrite-dendrite recognition mechanisms. Alternative splicing of the Drosophila cell surface receptor Dscam results in up to 38,016 different receptor isoforms and in vitro binding studies suggested that sequence variability in immunoglobulin-like ecto-domains determines the specificity of strictly homophilic interactions. We report that diverse Dscam receptors play an important role in controlling cell-int...

  5. Precipitation dendrites in turbulent pipe flows

    Science.gov (United States)

    Angheluta, Luiza; Hawkins, Christopher; Hammer, Øyvind; Jamtveit, Bjørn

    2013-04-01

    Surface precipitation in pipelines, as well as freezing in water pipes is of great concern in many industrial applications where scaling phenomena becomes a control problem of pipe-clogging or an efficiency reduction in transport. Flow blockage often occurs even when only a small fraction is deposited non-uniformly on the walls in the form of dendrites. Dendritic patterns are commonly encountered in surface precipitation from supersaturated solutions, e.g. calcite dendrites, as well as in solidification from undercooled liquids, e.g. freezing of water into ice dendrites. We explore the mathematical similarities between precipitation and freezing processes and, in particular, investigate the effect of fluid flow on the precipitation dendrites on pipe walls. We use a phase field approach to model surface growth coupled with a lattice Boltzmann method that simulates a channel flow at varying Reynolds number. The dendrites orientation and shape depend non-trivially on the ratio between advection and diffusion, i.e. the Peclet number, as well as the Reynolds number. Roughness induced vortices near growing dendrites at high flow rates further affect the branch splitting of dendrites. We show how the transport rate in a pipeline may depend on the different dendritic morphologies, and provide estimates for the flow conditions that correspond to most efficient transport regimes.

  6. Hierarchical assembly of diphenylalanine into dendritic nanoarchitectures.

    Science.gov (United States)

    Han, Tae Hee; Oh, Jun Kyun; Lee, Gyoung-Ja; Pyun, Su-Il; Kim, Sang Ouk

    2010-09-01

    Highly ordered, multi-dimensional dendritic nanoarchitectures were created via self-assembly of diphenylalanine from an acidic buffer solution. The self-similarity of dendritic structures was characterized by examining their fractal dimensions with the box-counting method. The fractal dimension was determined to be 1.7, which demonstrates the fractal dimension of structures generated by diffusion limited aggregation on a two-dimensional substrate surface. By confining the dendritic assembly of diphenylalanine within PDMS microchannels, the self-similar dendritic growth could be hierarchically directed to create linearly assembled nanoarchitectures. Our approach offers a novel pathway for creating and directing hierarchical nanoarchitecture from biomolecular assembly. PMID:20605423

  7. Disruption prediction at JET

    International Nuclear Information System (INIS)

    The sudden loss of the plasma magnetic confinement, known as disruption, is one of the major issue in a nuclear fusion machine as JET (Joint European Torus). Disruptions pose very serious problems to the safety of the machine. The energy stored in the plasma is released to the machine structure in few milliseconds resulting in forces that at JET reach several Mega Newtons. The problem is even more severe in the nuclear fusion power station where the forces are in the order of one hundred Mega Newtons. The events that occur during a disruption are still not well understood even if some mechanisms that can lead to a disruption have been identified and can be used to predict them. Unfortunately it is always a combination of these events that generates a disruption and therefore it is not possible to use simple algorithms to predict it. This thesis analyses the possibility of using neural network algorithms to predict plasma disruptions in real time. This involves the determination of plasma parameters every few milliseconds. A plasma boundary reconstruction algorithm, XLOC, has been developed in collaboration with Dr. D. O'Brien and Dr. J. Ellis capable of determining the plasma wall/distance every 2 milliseconds. The XLOC output has been used to develop a multilayer perceptron network to determine plasma parameters as li and qψ with which a machine operational space has been experimentally defined. If the limits of this operational space are breached the disruption probability increases considerably. Another approach for prediction disruptions is to use neural network classification methods to define the JET operational space. Two methods have been studied. The first method uses a multilayer perceptron network with softmax activation function for the output layer. This method can be used for classifying the input patterns in various classes. In this case the plasma input patterns have been divided between disrupting and safe patterns, giving the possibility of

  8. Renal dendritic cells: an update

    OpenAIRE

    Velázquez, Peter; Dustin, Michael L.; Peter J Nelson

    2009-01-01

    Discovery into the role of renal dendritic cells (rDCs) in health and disease of the kidney is rapidly accelerating. Progress in deciphering DC precursors and the heterogeneity of monocyte subsets in mice and humans are providing insights into the biology of rDCs. Recent findings have extended knowledge of the origins, anatomy, and function of the rDC network at steady-state and during periods of injury to the renal parenchyma. This brief review highlights these new findings and provides an u...

  9. Search and Disrupt

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders

    Extant research on external knowledge search and open innovation assumes that collaborators are aligned in their strategic interests towards solving innovation problems. However, disruptive innovation is known to threaten the competitive advantage of incumbent firms, thereby creating a potential...... conflict of interest between these firms and their collaborators. This paper explores the extent to which strategic interests influence joint problem solving in both complementary and disruptive technologies by analyzing the effects of incumbent collaboration. The analysis disentangles inability and...... strategic intent to find that non-incumbents experience suppression of problem solving likelihood within disruptive technologies when incumbent collaborators are not strategically committed. The paper contributes to extant theory by showing the influence of firms’ underlying strategic interests on their...

  10. Interruptions disrupt reading comprehension.

    Science.gov (United States)

    Foroughi, Cyrus K; Werner, Nicole E; Barragán, Daniela; Boehm-Davis, Deborah A

    2015-06-01

    Previous research suggests that being interrupted while reading a text does not disrupt the later recognition or recall of information from that text. This research is used as support for Ericsson and Kintsch's (1995) long-term working memory (LT-WM) theory, which posits that disruptions while reading (e.g., interruptions) do not impair subsequent text comprehension. However, to fully comprehend a text, individuals may need to do more than recognize or recall information that has been presented in the text at a later time. Reading comprehension often requires individuals to connect and synthesize information across a text (e.g., successfully identifying complex topics such as themes and tones) and not just make a familiarity-based decision (i.e., recognition). The goal for this study was to determine whether interruptions while reading disrupt reading comprehension when the questions assessing comprehension require participants to connect and synthesize information across the passage. In Experiment 1, interruptions disrupted reading comprehension. In Experiment 2, interruptions disrupted reading comprehension but not recognition of information from the text. In Experiment 3, the addition of a 15-s time-out prior to the interruption successfully removed these negative effects. These data suggest that the time it takes to process the information needed to successfully comprehend text when reading is greater than that required for recognition. Any interference (e.g., an interruption) that occurs during the comprehension process may disrupt reading comprehension. This evidence supports the need for transient activation of information in working memory for successful text comprehension and does not support LT-WM theory. PMID:25867225

  11. Vertical solidification of dendritic binary alloys

    Science.gov (United States)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  12. Early events in axon/dendrite polarization.

    Science.gov (United States)

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure. PMID:22715881

  13. Engineering crystals of dendritic molecules.

    Science.gov (United States)

    Lukin, Oleg; Schubert, Dirk; Müller, Claudia M; Schweizer, W Bernd; Gramlich, Volker; Schneider, Julian; Dolgonos, Grygoriy; Shivanyuk, Alexander

    2009-07-01

    A detailed single-crystal X-ray study of conformationally flexible sulfonimide-based dendritic molecules with systematically varied molecular architectures was undertaken. Thirteen crystal structures reported in this work include 9 structures of the second-generation dendritic sulfonimides decorated with different aryl groups, 2 compounds bearing branches of both second and first generation, and 2 representatives of the first generation. Analysis of the packing patterns of 9 compounds bearing second-generation branches shows that despite their lack of strong directive functional groups there is a repeatedly reproduced intermolecular interaction mode consisting in an anchor-type packing of complementary second-generation branches of neighbouring molecules. The observed interaction tolerates a wide range of substituents in meta- and para-positions of the peripheral arylsulfonyl rings. Quantum chemical calculations of the molecule-molecule interaction energies agree at the qualitative level with the packing preferences found in the crystalline state. The calculations can therefore be used as a tool to rationalize and predict molecular structures with commensurate and non-commensurate branches for programming of different packing modes in crystal. PMID:19549870

  14. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites.

    Science.gov (United States)

    Norkett, Rosalind; Modi, Souvik; Birsa, Nicol; Atkin, Talia A; Ivankovic, Davor; Pathania, Manav; Trossbach, Svenja V; Korth, Carsten; Hirst, Warren D; Kittler, Josef T

    2016-01-01

    The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development. PMID:26553875

  15. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites*

    Science.gov (United States)

    Norkett, Rosalind; Modi, Souvik; Birsa, Nicol; Atkin, Talia A.; Ivankovic, Davor; Pathania, Manav; Trossbach, Svenja V.; Korth, Carsten; Hirst, Warren D.; Kittler, Josef T.

    2016-01-01

    The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development. PMID:26553875

  16. Dendritic cells in lung immunopathology.

    Science.gov (United States)

    Cook, Peter C; MacDonald, Andrew S

    2016-07-01

    Dendritic cells (DCs) lie at the heart of the innate immune system, specialised at recognising danger signals in many forms including foreign material, infection or tissue damage and initiating powerful adaptive immune and inflammatory responses. In barrier sites such as the lung, the instrumental role that DCs play at the interface between the environment and the host places them in a pivotal position in determining the severity of inflammatory disease. The past few years has seen a significant increase in our fundamental understanding of the subsets of DCs involved in pulmonary immunity, as well as the mechanisms by which they are activated and which they may use to coordinate downstream inflammation and pathology. In this review, we will summarise current understanding of the multi-faceted role that DCs play in the induction, maintenance and regulation of lung immunopathology, with an emphasis on allergic pulmonary disease. PMID:27256370

  17. Dendritic Cells for Anomaly Detection

    CERN Document Server

    Greensmith, Julie; Aickelin, Uwe

    2010-01-01

    Artificial immune systems, more specifically the negative selection algorithm, have previously been applied to intrusion detection. The aim of this research is to develop an intrusion detection system based on a novel concept in immunology, the Danger Theory. Dendritic Cells (DCs) are antigen presenting cells and key to the activation of the human signals from the host tissue and correlate these signals with proteins know as antigens. In algorithmic terms, individual DCs perform multi-sensor data fusion based on time-windows. The whole population of DCs asynchronously correlates the fused signals with a secondary data stream. The behaviour of human DCs is abstracted to form the DC Algorithm (DCA), which is implemented using an immune inspired framework, libtissue. This system is used to detect context switching for a basic machine learning dataset and to detect outgoing portscans in real-time. Experimental results show a significant difference between an outgoing portscan and normal traffic.

  18. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration

    OpenAIRE

    Heiman, Maxwell G.; Shaham, Shai

    2009-01-01

    Cells are devices whose structures delimit function. For example, in the nervous system, neuronal and glial shapes dictate paths of information flow. To understand how cells acquire their shapes, we examined the formation of a sense organ in C. elegans. Using time-lapse imaging, we found that sensory dendrites form by stationary anchoring of dendritic tips during cell-body migration. A genetic screen identified DEX-1 and DYF-7, extracellular proteins required for dendritic tip anchoring, whic...

  19. Endocrine disrupting compounds

    DEFF Research Database (Denmark)

    Bøgh, I B; Christensen, P; Dantzer, V;

    2001-01-01

    With the growing concern that environmental chemicals might impair human and animal fertility, it is important to investigate the possible influence of these substances on sexual differentiation and genital development of mammals. Many of these substances are suspected to interfere with endocrine...... of alkylphenols, these are disseminated in the environment with sewage sludge, and domestic animals and humans are likely to be exposed via the food chain. Using the pig as an in vivo model, we studied the effect of intrauterine exposure to tertiary octylphenol (OP) on essential reproductive...... usefulness of in vivo animal or embryo models for the evaluation of possible consequences of human exposure to endocrine disrupting compounds is discussed. Furthermore, possible consequences of exposure to endocrine disrupting compounds for the embryo transfer industry are addressed....

  20. Coincident disruptive coloration

    OpenAIRE

    Cuthill, Innes C.; Székely, Aron

    2008-01-01

    Even if an animal matches its surroundings perfectly in colour and texture, any mismatch between the spatial phase of its pattern and that of the background, or shadow created by its three-dimensional relief, is potentially revealing. Nevertheless, for camouflage to be fully broken, the shape must be recognizable. Disruptive coloration acts against object recognition by the use of high-contrast internal colour boundaries to break up shape and form. As well as the general outline, characterist...

  1. Schematically disruptive game design

    OpenAIRE

    Howell, Peter

    2011-01-01

    Many games focus their resources at satiating player ‘needs’, and meeting perceived expectations that players have of how games should behave and of what constitutes enjoyable, gratifying gameplay. This paper outlines an alternate position on game design – one which focuses on disrupting these expectations, on designing games that players cannot succeed in simply by relying on their pre-acquired gameplay experiences. A critique of current game design trends is offered, and possible future out...

  2. Search and Disrupt

    OpenAIRE

    Ørding Olsen, Anders

    2015-01-01

    This paper analyzes how external search is affected by strategic interest alignment among knowledge sources. I focus on misalignment arising from the heterogeneous effects of disruptive technologies by analyzing the influence of incumbents on 2,855 non-incumbents? external knowledge search efforts. The efforts most likely to solve innovation problems obtained funding from the European Commission?s 7th Framework Program (2007-2013). The results show that involving incumbents improv...

  3. Celibacy and Family Disruption

    OpenAIRE

    Emaletdinov B. M.

    2013-01-01

    Causes for celibacy, divorces and successful marriage are discussed in the article. Absence of true love and inability to build and keep it are the main reasons for family disruption. Amorousness, immature love and various forms of false or flawed love substitute the true feeling. It is caused by increased women’s independence, loss of mutual understanding and trust (due to infidelity or jealousy), incompatibility of characters or values. Celibacy is often conditioned by physical disability, ...

  4. Dendritic Spine Pathology in Neurodegenerative Diseases.

    Science.gov (United States)

    Herms, Jochen; Dorostkar, Mario M

    2016-05-23

    Substantial progress has been made toward understanding the neuropathology, genetic origins, and epidemiology of neurodegenerative diseases, including Alzheimer's disease; tauopathies, such as frontotemporal dementia; α-synucleinopathies, such as Parkinson's disease or dementia with Lewy bodies; Huntington's disease; and amyotrophic lateral sclerosis with dementia, as well as prion diseases. Recent evidence has implicated dendritic spine dysfunction as an important substrate of the pathogenesis of dementia in these disorders. Dendritic spines are specialized structures, extending from the neuronal processes, on which excitatory synaptic contacts are formed, and the loss of dendritic spines correlates with the loss of synaptic function. We review the literature that has implicated direct or indirect structural alterations at dendritic spines in the pathogenesis of major neurodegenerative diseases, focusing on those that lead to dementias such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as frontotemporal dementia and prion diseases. We stress the importance of in vivo studies in animal models. PMID:26907528

  5. Artificial Dendritic Cells: Multi-faceted Perspectives

    CERN Document Server

    Greensmith, Julie

    2009-01-01

    Dendritic cells are the crime scene investigators of the human immune system. Their function is to correlate potentially anomalous invading entities with observed damage to the body. The detection of such invaders by dendritic cells results in the activation of the adaptive immune system, eventually leading to the removal of the invader from the host body. This mechanism has provided inspiration for the development of a novel bio-inspired algorithm, the Dendritic Cell Algorithm. This algorithm processes information at multiple levels of resolution, resulting in the creation of information granules of variable structure. In this chapter we examine the multi-faceted nature of immunology and how research in this field has shaped the function of the resulting Dendritic Cell Algorithm. A brief overview of the algorithm is given in combination with the details of the processes used for its development. The chapter is concluded with a discussion of the parallels between our understanding of the human immune system a...

  6. Free energy and dendritic self-organisation

    Directory of Open Access Journals (Sweden)

    Stefan J Kiebel

    2011-10-01

    Full Text Available In this paper, we pursue recent observations that, through selective dendritic filtering, single neurons respond to specific sequences of presynaptic inputs. We try to provide a principled and mechanistic account of this selectivity by applying the free energy principle to a dendrite that is immersed in its neuropil or environment. We assume that neurons self-organize to minimise a free energy bound on the self-information or surprise of presynaptic inputs that are sampled. We model this as a selective pruning of dendritic spines that are expressed on a dendritic branch. This pruning occurs when the optimized postsynaptic gain falls below a threshold. Crucially, postsynaptic gain is itself optimized with respect to free energy. Pruning suppresses free energy as the dendrite selects presynaptic signals that conform to its expectations, specified by a generative model implicit in its intracellular kinetics. Not only does this provide a principled account of how neurons organize and selectively sample the myriad of potential presynaptic inputs they are exposed to, but it also connects the optimization of elemental neuronal (dendritic processing to generic (surprise or evidence-based schemes in statistics and machine learning, such as Bayesian model selection and automatic relevance determination.

  7. Disruption - Access cards service

    CERN Document Server

    2014-01-01

    We would like to inform you that between 10 November and 15 December 2014, the access cards service in Building 55 will be disrupted, as the GS Department has decided to improve the facilities for users of this building. During the work, you will find the registration, biometric registration and dosimeter exchange services on the second floor of Building 55 and the vehicle sticker service on the ground floor along with the access cards service. We thank you for your understanding and apologise for any inconvenience caused.

  8. Sustainable Disruption Management

    DEFF Research Database (Denmark)

    Vaaben, Bo Valdemar

    The world we live in is globalized. Goods are seldom made in the place where they are used or consumed, and we do increasingly travel to other countries for either business or pleasure. In our everyday lives we rely on well-functioning global transportations systems to continue the standard of li...... disruption management. The real-world results show considerable yearly savings of above 5.1 million USD for a medium size airline operating in European airspace, which is significantly affected by airspace congestions....

  9. Celibacy and Family Disruption

    Directory of Open Access Journals (Sweden)

    Emaletdinov B. M.

    2013-01-01

    Full Text Available Causes for celibacy, divorces and successful marriage are discussed in the article. Absence of true love and inability to build and keep it are the main reasons for family disruption. Amorousness, immature love and various forms of false or flawed love substitute the true feeling. It is caused by increased women’s independence, loss of mutual understanding and trust (due to infidelity or jealousy, incompatibility of characters or values. Celibacy is often conditioned by physical disability, revaluation of freedom and independence, huge requirements to partners, consumer attitude to life, infertility, alcohol and drug abuse, abnormalities in personality and sexuality.

  10. Formation of dendritic metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Nitesh; Mertig, Michael [Institute for Materials Science, Max Bergmann Center of Biomaterials, Dresden University of Technology, D-01062 Dresden (Germany); Vinzelberg, Hartmut [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany)

    2009-07-01

    Recently, we reported an electrical-field-controlled growth process for the directed bottom-up assembly of one-dimensional palladium nanowires between micro-fabricated electrodes. The wires, grown from an aqueous palladium salt solution by dielectrophoresis, had a thickness of only 5-10 nm and a length of up to several micrometers. The growth process was found to depend largely on the deposition conditions like the strength and the frequency of the applied AC field and the concentration of the metal salt solution. Here, we report the formation of thin, but straight and dendritic metallic nanowires, obtained in the low-frequency regime. The morphology of the wires was characterized by scanning force microscopy (SFM), scanning electron microscopy and transmission electron microscopy. SFM investigations revealed that the palladium nanowires grown over the glass and silicon substrates have a typical thickness of about 25 nm. Room temperature I-V measurements show them to be Ohmic in nature with a resistance of about 80 kOhm. Low-temperature measurements show the phenomenon of zero bias anomaly. The investigated growth method is capable of controllable in-place formation of complex circuit patterns for future nanoelectronics.

  11. Relativistic tidal disruption events

    Directory of Open Access Journals (Sweden)

    Levan A.

    2012-12-01

    Full Text Available In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s−1 at peak, rapid X-ray variability (factors of >100 on timescales of 100 seconds and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ∼ 2 − 5, created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  12. Disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    For a successful reactor, it will be useful to predict the occurrence of disruptions and to understand disruption effects including how a plasma disrupts onto the wall and how reproducibly it does so. Studies of disruptions on TFTR at both high-βpol and high-density have shown that, in both types, a fast growing m/n=1/1 mode plays an important role. In highdensity disruptions, a newly observed fast m/n = 1/1 mode occurs early in the thermal decay phase. For the first time in TFTR q-profile measurements just prior to disruptions have been made. Experimental studies of heat deposition patterns on the first wall of TFTR due to disruptions have provided information on MHD phenomena prior to or during the disruption, how the energy is released to the wall, and the reproducibility of the heat loads from disruptions. This information is important in the design of future devices such as ITER. Several new processes of runaway electron generation are theoretically suggested and their application to TFTR and ITER is considered, together with a preliminary assessment of x-ray data from runaways generated during disruptions

  13. Cell disruption for microalgae biorefineries.

    Science.gov (United States)

    Günerken, E; D'Hondt, E; Eppink, M H M; Garcia-Gonzalez, L; Elst, K; Wijffels, R H

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies. PMID:25656098

  14. Dendrites Inhibition in Rechargeable Lithium Metal Batteries

    Science.gov (United States)

    Aryanfar, Asghar

    The specific high energy and power capacities of rechargeable lithium metal (Li0) batteries are ideally suited to portable devices and are valuable as storage units for intermittent renewable energy sources. Lithium, the lightest and most electropositive metal, would be the optimal anode material for rechargeable batteries if it were not for the fact that such devices fail unexpectedly by short-circuiting via the dendrites that grow across electrodes upon recharging. This phenomenon poses a major safety issue because it triggers a series of adverse events that start with overheating, potentially followed by the thermal decomposition and ultimately the ignition of the organic solvents used in such devices. In this thesis, we developed experimental platform for monitoring and quantifying the dendrite populations grown in a Li battery prototype upon charging under various conditions. We explored the effects of pulse charging in the kHz range and temperature on dendrite growth, and also on loss capacity into detached "dead" lithium particles. Simultaneously, we developed a computational framework for understanding the dynamics of dendrite propagation. The coarse-grained Monte Carlo model assisted us in the interpretation of pulsing experiments, whereas MD calculations provided insights into the mechanism of dendrites thermal relaxation. We also developed a computational framework for measuring the dead lithium crystals from the experimental images.

  15. Disruptive camouflage impairs object recognition

    OpenAIRE

    Richard J. Webster; Hassall, Christopher; Herdman, Chris M.; Godin, Jean-Guy J.; Sherratt, Thomas N.

    2013-01-01

    Whether hiding from predators, or avoiding battlefield casualties, camouflage is widely employed to prevent detection. Disruptive coloration is a seemingly well-known camouflage mechanism proposed to function by breaking up an object's salient features (for example their characteristic outline), rendering objects more difficult to recognize. However, while a wide range of animals are thought to evade detection using disruptive patterns, there is no direct experimental evidence that disruptive...

  16. Endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Mandrup, Karen

    BACKGROUND: Endocrine disrupting chemicals (EDCs) may contribute to reproductive changes in boys in the Western world, however, less is known about influence of EDCs in women. The incidence of precocious breast development is increasing in USA and Europe and mammary gland development has been...... examination showed changes in epithelial morphology in male (hypertrophic epithelium) and female (lobuloalveolar morphology) mammary glands in adult rats exposed to phytoestrogens. Anti-androgenic chemicals showed signs of feminisation of adult male mammary glands. No effects of anti-androgens were observed...... in female mammary glands. The histological changes observed in adult female and male mammary glands were not present consistently in the groups of estrogenic or anti-androgenic chemicals and may be due to other modes of action of thechemicals. Female genital malformations were affected by the potent...

  17. Detecting Danger: The Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Cayzer, Steve

    2010-01-01

    The Dendritic Cell Algorithm (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders in the form of pathogens. In this research, and abstract model of DC behaviour is developed and subsequently used to form an algorithm, the DCA. The abstraction process was facilitated through close collaboration with laboratory- based immunologists, who performed bespoke experiments, the results of which are used as an integral part of this algorithm. The DCA is a population based algorithm, with each agent in the system represented as an 'artificial DC'. Each DC has the ability to combine multiple data streams and can add context to data suspected as anomalous. In this chapter the abstraction process and details of the resultant algorithm are given. The algorithm is applied to numerous intrusion detection problems in computer security including the detection of p...

  18. The Dendritic Hypothesis for Alzheimer’s Disease Pathophysiology

    OpenAIRE

    Cochran, J. Nicholas; Hall, Alicia M.; Roberson, Erik D.

    2013-01-01

    Converging evidence indicates that processes occurring in and around neuronal dendrites are central to the pathogenesis of Alzheimer’s disease. These data support the concept of a “dendritic hypothesis” of AD, closely related to the existing synaptic hypothesis. Here we detail dendritic neuropathology in the disease and examine how Aβ, tau, and AD genetic risk factors affect dendritic structure and function. Finally, we consider potential mechanisms by which these key drivers could affect den...

  19. Silicon dendritic web growth thermal analysis task

    Science.gov (United States)

    Richter, R.; Bhandari, P.

    1985-01-01

    A thermal analysis model is presented which describes the dendritic ribbon process. The model uses a melt-dendrite interface which projects out of the bulk melt as the basic interpretation of the ribbon production process. This is a marked departure from the interpretations of the interface phenomena which were used previously. The model was extensively illustrated with diagrams and pictures of ribbon samples. This model should have great impact on the analyses of experimental data as well as on future design modifications of ribbon-pulling equipment.

  20. The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons

    OpenAIRE

    Kim, Michael D.; Jan, Lily Yeh; Jan, Yuh Nung

    2006-01-01

    Dendrites exhibit a wide range of morphological diversity, and their arborization patterns are critical determinants of proper neural connectivity. How different neurons acquire their distinct dendritic branching patterns during development is not well understood. Here we report that Spineless (Ss), the Drosophila homolog of the mammalian aryl hydrocarbon (dioxin) receptor (Ahr), regulates dendrite diversity in the dendritic arborization (da) sensory neurons. In loss-of-function ss mutants, c...

  1. Repartnering after First Union Disruption

    Science.gov (United States)

    Wu, Zheng; Schimmele, Christoph M.

    2005-01-01

    Using data from the 1995 General Social Survey (N= 2,639), this study examines two competing repartnering choices made by Canadians after first union disruption: marriage or cohabitation. About 42% of women and 54% of men form a second union 5 years after union disruption, with cohabitation being the most prevalent choice. The timing of second…

  2. Incomplete spontaneous ureteral disruption

    International Nuclear Information System (INIS)

    Background. The aim of the authors was to present the case of spontaneous partial ureteral rupture during a renal colic, caused by an anorganic concrement in the proximal part of the left ureter, at the level of the transverse processus of L3. Case report. On the excretory urography imaging, the dilatation of the canal system, cups, necks and pyelon, was observed. At the level of the pyeloureteric passage, the contrast medium was leaking. The leakage was found to be extending along the psoas muscle to the pelvis. On the transversal CT imaging scans, the contrast medium was seen along the medial and dorsal part of the perirenal space, and in the distal part, along the psoas muscle to the pelvis. The ureter was imaged from the pyeloureterical rupture to the site of the concrement. No signs of the damage of the renal parenchyma or perirenal bleeding were detected. During surgery, the site of the rupture was found and also a lot of the perirenal and periureteral liquid. After the extraction of the concrement, the suture of the rupture was made. Postoperative urography and CT showed a normal ureteral image. Conclusions. At the spontaneous partial disruption of the ureter, the contrast medium is still seen in the ureter, distally from the site of the rupture and as extravasation along the psoas muscle. (author)

  3. Disrupting Ethnography through Rhizoanalysis

    Directory of Open Access Journals (Sweden)

    Diana Masny

    2014-10-01

    Full Text Available This article interrogates principles of ethnography in education proposed by Mills and Morton: raw tellings, analytic pattern, vignette and empathy. This article adopts a position that is uncomfortable, unconventional and interesting. It involves a deterritorialization/ rupture of ethnography in education in order to reterritorialize a different concept: rhizoanalysis, a way to position theory and data that is multilayered, complex and messy. Rhizoanalysis, the main focus of this article is not a method. It is an approach to research conditioned by a reality in which Deleuze and Guattari disrupt representation, interpretation and subjectivity. In this article, Multiple Literacies Theory, a theoretical and practical framework, becomes a lens to examine a rhizomatic study of a Korean family recently arrived to Australia and attending English as a second language classes. Observations and interviews recorded the daily lives of the family. The vignettes were selected by reading data intensively and immanently through a process of palpation, an innovative approach to educational research. Rhizoanalysis proposes to abandon the given and invent different ways of thinking about and doing research and what might happen when reading data differently, intensively and immanently, through Multiple Literacies Theory. Rhizoanalysis, a game-changer in the way research can be conducted, affords a different lens to tackle issues in education through research.

  4. Model of Primary Austenite Dendrite Structure in Hypoeutectic Cast Iron

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The solidification of primary austenite in hypoeutectic gray cast iron was studied by stepped grinding and quantitative metallography. The dendrite structure of primary austenite can be described by three models: typical dendrite crystal model, metamorphic dendrite crystal model and network dendrite crystal model. The dendrite crystals formed according to 3rd model is much more than those formed according to other models in this experiment. The primary austenites are connected each other, and the primary stems of austenite could be regarded as secondary arms and vice versa.

  5. Numerical Simulations of Equiaxed Dendrite Growth Using Phase Field Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growthin a metallic system. In this paper, the equiaxed dendrite evolution during the solidification of a pure material wasnumerically simulated using the phase field model. The equiaxed dendrite growth in a two-dimensional square domainof undercooled melt (nickel) with four-fold anisotropy was simulated. The phase field model equations was solvedusing the explicit finite difference method on a uniform mesh. The formation of various equiaxed dendrite patternswas shown by a series of simulations, and the effect of anisotropy on equiaxed dendrite morphology was investigated.

  6. Dendritic cells in peripheral tolerance and immunity

    DEFF Research Database (Denmark)

    Gad, Monika; Claesson, Mogens Helweg; Pedersen, Anders Elm

    Dendritic cells capable of influencing immunity exist as functionally distinct subsets, T cell-tolerizing and T cell-immunizing subsets. The present paper reviews how these subsets of DCs develop, differentiate and function in vivo and in vitro at the cellular and molecular level. In particular...

  7. Skin Dendritic Cells in Burn Patients

    OpenAIRE

    D’Arpa, N.; D’Amelio, L.; Accardo-Palumbo, A.; Pileri, D.; Mogavero, R.; Amato, G.; Napoli, B.; Alessandro, G.; Lombardo, C.; F. Conte

    2009-01-01

    The body's immunological response to burn injury has been a subject of great inquiry in recent years. Burn injury disturbs the immune system, resulting in a progressive suppression of the immune response that is thought to contribute to the development of sepsis. Dendritic cells (DCs) are potent antigen-presenting cells that possess the ability to stimulate naïve T cells.

  8. Generation of Immune Inhibitory Dendritic Cells and

    Directory of Open Access Journals (Sweden)

    Abediankenari Saeid

    2009-03-01

    Full Text Available Variety of positive as well as negative regulatory signals are provided by antigen presenting cell in particular by dendritic cells. In this research, we studied the capacity of dendritic cells to expand antigen-specific T regulatory cells.We also investigated the role of TGF-beta in induction inhibitory functions of dendritic cells in mixed leukocyte reactions.Dendritic cells were generated from blood CD14+ monocytes with granulocyte-Monocyte colony stimulating factor and interleukin-4 with or without TGF-beta (TGF-β-GM-DC or GM-DC. CD4+ T cell were isolated to assess lymphocyte proliferation by lymphocyte transformation test assay and the ratio of CD4+FOXp3+ CD25+ T cells were determined by fluorescene-activated cell sorter. T cell proliferation responses in GM-DC showed a significance antigen-specific proliferative response comparing with TGFβ-GM -DC. T Cell proliferation was inhibited in co-culture system containing DC-treated TGF-β. It can be suggested that the expsansion of T regulatory by TGF-β-GM-DC provides a means for antigen specific control of unwanted immune reactions.

  9. Antigen dynamics of follicular dendritic cells

    NARCIS (Netherlands)

    Heesters, B.A.

    2015-01-01

    Stromal-derived follicular dendritic cells (FDCs) are a major depot for antigen that are essential for formation of germinal centers, the site where memory and effector B cells differentiate and high-affinity antibody production takes place. Historically, FDCs have been characterized as ‘accessory’

  10. ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS

    Science.gov (United States)

    The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...

  11. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration.

    Science.gov (United States)

    Heiman, Maxwell G; Shaham, Shai

    2009-04-17

    Cells are devices whose structures delimit function. For example, in the nervous system, neuronal and glial shapes dictate paths of information flow. To understand how cells acquire their shapes, we examined the formation of a sense organ in C. elegans. Using time-lapse imaging, we found that sensory dendrites form by stationary anchoring of dendritic tips during cell-body migration. A genetic screen identified DEX-1 and DYF-7, extracellular proteins required for dendritic tip anchoring, which act cooperatively at the time and place of anchoring. DEX-1 and DYF-7 contain, respectively, zonadhesin and zona pellucida domains, and DYF-7 self-associates into multimers important for anchoring. Thus, unlike other dendrites, amphid dendritic tips are positioned by DEX-1 and DYF-7 without the need for long-range guidance cues. In sequence and function, DEX-1 and DYF-7 resemble tectorins, which anchor stereocilia in the inner ear, suggesting that a sensory dendrite anchor may have evolved into part of a mechanosensor. PMID:19344940

  12. Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures

    International Nuclear Information System (INIS)

    Evidence that children are widely exposed to organophosphorus pesticides (OPs) and that OPs cause developmental neurotoxicity in animal models raises significant concerns about the risks these compounds pose to the developing human nervous system. Critical to assessing this risk is identifying specific neurodevelopmental events targeted by OPs. Observations that OPs alter brain morphometry in developing rodents and inhibit neurite outgrowth in neural cell lines suggest that OPs perturb neuronal morphogenesis. However, an important question yet to be answered is whether the dysmorphogenic effect of OPs reflects perturbation of axonal or dendritic growth. We addressed this question by quantifying axonal and dendritic growth in primary cultures of embryonic rat sympathetic neurons derived from superior cervical ganglia (SCG) following in vitro exposure to chlorpyrifos (CPF) or its metabolites CPF-oxon (CPFO) and trichloropyridinol (TCP). Axon outgrowth was significantly inhibited by CPF or CPFO, but not TCP, at concentrations ≥0.001 μM or 0.001 nM, respectively. In contrast, all three compounds enhanced BMP-induced dendritic growth. Acetylcholinesterase was inhibited only by the highest concentrations of CPF (≥1 μM) and CPFO (≥1 nM); TCP had no effect on this parameter. In summary, these compounds perturb neuronal morphogenesis via opposing effects on axonal and dendritic growth, and both effects are independent of acetylcholinesterase inhibition. These findings have important implications for current risk assessment practices of using acetylcholinesterase inhibition as a biomarker of OP neurotoxicity and suggest that OPs may disrupt normal patterns of neuronal connectivity in the developing nervous system

  13. Alterations in dendrite and spine morphology of cortical pyramidal neurons in DISC1-binding zinc finger protein (DBZ Knockout mice

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hattori

    2015-04-01

    Full Text Available Dendrite and dendritic spine formation are crucial for proper brain function. DISC1-binding zinc finger protein (DBZ was first identified as a Disrupted-In-Schizophrenia1 (DISC1 binding partner. DBZ is highly expressed in the cerebral cortex of developing and adult rodents and is involved in neurite formation, cell positioning, and the development of interneurons and oligodendrocytes. The functional roles of DBZ in postnatal brain remain unknown; thus we investigated cortical pyramidal neuron morphology in DBZ knockout (KO mice. Morphological analyses by Golgi staining alone in DBZ KO mice revealed decreased dendritic arborization, increased spine density. A morphological analysis of the spines revealed markedly increased numbers of thin spines. To investigate whole spine structure in detail, electron tomographic analysis using ultra-high voltage electron microscopy combined with Golgi staining was performed. Tomograms and three-dimensional models of spines revealed that the spines of DBZ KO mice exhibited two types of characteristic morphology, filopodia-like spines and abnormal thin-necked spines having an extremely thin spine neck. Moreover, conventional electron microscopy revealed significantly decreased number of postsynaptic densities (PSDs in spines of DBZ KO mice. In conclusion, DBZ deficiency impairs the morphogenesis of dendrites and spines in cortical pyramidal neurons.

  14. Alterations in dendrite and spine morphology of cortical pyramidal neurons in DISC1-binding zinc finger protein (DBZ) knockout mice.

    Science.gov (United States)

    Koyama, Yoshihisa; Hattori, Tsuyoshi; Nishida, Tomoki; Hori, Osamu; Tohyama, Masaya

    2015-01-01

    Dendrite and dendritic spine formation are crucial for proper brain function. DISC1-binding zinc finger protein (DBZ) was first identified as a Disrupted-In-Schizophrenia1 (DISC1) binding partner. DBZ is highly expressed in the cerebral cortex of developing and adult rodents and is involved in neurite formation, cell positioning, and the development of interneurons and oligodendrocytes. The functional roles of DBZ in postnatal brain remain unknown; thus we investigated cortical pyramidal neuron morphology in DBZ knockout (KO) mice. Morphological analyses by Golgi staining alone in DBZ KO mice revealed decreased dendritic arborization, increased spine density. A morphological analysis of the spines revealed markedly increased numbers of thin spines. To investigate whole spine structure in detail, electron tomographic analysis using ultra-high voltage electron microscopy (UHVEM) combined with Golgi staining was performed. Tomograms and three-dimensional models of spines revealed that the spines of DBZ KO mice exhibited two types of characteristic morphology, filopodia-like spines and abnormal thin-necked spines having an extremely thin spine neck. Moreover, conventional electron microscopy revealed significantly decreased number of postsynaptic densities (PSDs) in spines of DBZ KO mice. In conclusion, DBZ deficiency impairs the morphogenesis of dendrites and spines in cortical pyramidal neurons. PMID:25983680

  15. When Disruptive Approaches Meet Disruptive Technologies: Learning at a Distance.

    Science.gov (United States)

    Gibson, Chere Campbell

    2000-01-01

    Reviews research on constructivism in learning and selection of learning strategies. Suggests linking constructivism with instructional technologies for continuing medical education in order to "disrupt" reactive, habitual ways of learning and encourage active engagement. (SK)

  16. Endocrine Effects of Circadian Disruption.

    Science.gov (United States)

    Bedrosian, Tracy A; Fonken, Laura K; Nelson, Randy J

    2016-01-01

    Disruption of circadian rhythms, provoked by artificial lighting at night, inconsistent sleep-wake schedules, and transmeridian air travel, is increasingly prevalent in modern society. Desynchrony of biological rhythms from environmental light cycles has dramatic consequences for human health. In particular, disrupting homeostatic oscillations in endocrine tissues and the hormones that these tissues regulate can have cascading effects on physiology and behavior. Accumulating evidence suggests that chronic disruption of circadian organization of endocrine function may lead to metabolic, reproductive, sleep, and mood disorders. This review discusses circadian control of endocrine systems and the consequences of distorting rhythmicity of these systems. PMID:26208951

  17. Asymmetry in signal propagation between the soma and dendrites plays a key role in determining dendritic excitability in motoneurons.

    Directory of Open Access Journals (Sweden)

    Hojeong Kim

    Full Text Available It is widely recognized that propagation of electrophysiological signals between the soma and dendrites of neurons differs depending on direction, i.e. it is asymmetric. How this asymmetry influences the activation of voltage-gated dendritic channels, and consequent neuronal behavior, remains unclear. Based on the analysis of asymmetry in several types of motoneurons, we extended our previous methodology for reducing a fully reconstructed motoneuron model to a two-compartment representation that preserved asymmetric signal propagation. The reduced models accurately replicated the dendritic excitability and the dynamics of the anatomical model involving a persistent inward current (PIC dispersed over the dendrites. The relationship between asymmetric signal propagation and dendritic excitability was investigated using the reduced models while varying the asymmetry in signal propagation between the soma and the dendrite with PIC density constant. We found that increases in signal attenuation from soma to dendrites increased the activation threshold of a PIC (hypo-excitability, whereas increases in signal attenuation from dendrites to soma decreased the activation threshold of a PIC (hyper-excitability. These effects were so strong that reversing the asymmetry in the soma-to-dendrite vs. dendrite-to-soma attenuation, reversed the correlation between PIC threshold and distance of this current source from the soma. We propose the tight relation of the asymmetric signal propagation to the input resistance in the dendrites as a mechanism underlying the influence of the asymmetric signal propagation on the dendritic excitability. All these results emphasize the importance of maintaining the physiological asymmetry in dendritic signaling not only for normal function of the cells but also for biophysically realistic simulations of dendritic excitability.

  18. Vortex disruption by magnetohydrodynamic feedback

    CERN Document Server

    Mak, Julian; Hughes, D W

    2016-01-01

    In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses --- and thus the degree of disruption --- that depends on the strength of the background magnetic field (measured by the parameter $M$, a ratio between the Alfv\\'en speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number $\\mbox{Rm}$). The resulting estimate suggests that significant disruption occurs when $M^{2}\\mbox{Rm} = O(1)$. To test our prediction, we analyse direct numerical simulations of vortices generated by the breakup of unstable shear flo...

  19. Beam emittance and beam disruption

    International Nuclear Information System (INIS)

    Beam disruption during the collision of intense relativistic bunches has been studied by R. Hollebeek. In the case of oppositely charged bunches, focussing effects occur causing a decrease in the effective bunch cross section, and thereby an increase of luminosity by an enhancement factor H. The term disruption derives from the fact that the beam emittance changes markedly during the collision. 1 ref., 1 fig., 1 tab

  20. Macrophage and dendritic cell subsets in IBD: ALDH+ cells are reduced in colon tissue of patients with ulcerative colitis regardless of inflammation

    OpenAIRE

    Maria K Magnusson; Brynjólfsson, Siggeir F; Dige, Anders; Uronen-Hansson, Heli; Börjesson, Lars G.; Bengtsson, Jonas L.; Gudjonsson, Sigurdur; Öhman, Lena; Agnholt, Jørgen; Sjövall, Henrik; Agace, William W; Wick, Mary Jo

    2015-01-01

    Disruption of the homeostatic balance of intestinal dendritic cells (DCs) and macrophages (MQs) may contribute to inflammatory bowel disease. We characterized DC and MQ populations, including their ability to produce retinoic acid, in clinical material encompassing Crohn’s ileitis, Crohn’s colitis and ulcerative colitis (UC) as well as mesenteric lymph nodes (MLNs) draining these sites. Increased CD14+DRint MQs characterized inflamed intestinal mucosa while total CD141+ or CD1c+ DCs numbers w...

  1. Sleeping dendrites: fiber-optic measurements of dendritic calcium activity in freely moving and sleeping animals

    Directory of Open Access Journals (Sweden)

    Julie Seibt

    2014-03-01

    Full Text Available Dendrites are the post-synaptic sites of most excitatory and inhibitory synapses in the brain, making them the main location of cortical information processing and synaptic plasticity. Although current hypotheses suggest a central role for sleep in proper cognitive function and brain plasticity, virtually nothing is known about changes in dendritic activity across the sleep-wake cycle and how waking experience modifies this activity. To start addressing these questions, we developed a method that allows long-term recordings of EEGs/EMG combined with in vivo cortical calcium (Ca2+ activity in freely moving and sleeping rats. We measured Ca2+ activity from populations of dendrites of layer (L 5 pyramidal neurons (n = 13 rats that we compared with Ca2+ activity from populations of neurons in L2/3 (n = 11 rats. L5 and L2/3 neurons were labelled using bolus injection of OGB1-AM or GCaMP6 (1. Ca2+ signals were detected using a fiber-optic system (cannula diameter = 400µm, transmitting the changes in fluorescence to a photodiode. Ca2+ fluctuations could then be correlated with ongoing changes in brain oscillatory activity during 5 major brain states: active wake [AW], quiet wake [QW], NREM, REM and NREM-REM transition (or intermediate state, [IS]. Our Ca2+ recordings show large transients in L5 dendrites and L2/3 neurons that oscillate predominantly at frequencies In summary, we show that this technique is successful in monitoring fluctuations in ongoing dendritic Ca2+ activity during natural brain states and allows, in principle, to combine behavioral measurement with imaging from various brain regions (e.g. deep structures in freely behaving animals. Using this method, we show that Ca2+ transients from populations of L2/3 neurons and L5 dendrites are deferentially regulated across the sleep/wake cycle, with dendritic activity being the highest during the IS sleep. Our correlation analysis suggests that specific sleep EEG activity during NREM and IS

  2. Phosphorylation of β-Tubulin by the Down Syndrome Kinase, Minibrain/DYRK1a, Regulates Microtubule Dynamics and Dendrite Morphogenesis.

    Science.gov (United States)

    Ori-McKenney, Kassandra M; McKenney, Richard J; Huang, Hector H; Li, Tun; Meltzer, Shan; Jan, Lily Yeh; Vale, Ronald D; Wiita, Arun P; Jan, Yuh Nung

    2016-05-01

    Dendritic arborization patterns are consistent anatomical correlates of genetic disorders such as Down syndrome (DS) and autism spectrum disorders (ASDs). In a screen for abnormal dendrite development, we identified Minibrain (MNB)/DYRK1a, a kinase implicated in DS and ASDs, as a regulator of the microtubule cytoskeleton. We show that MNB is necessary to establish the length and cytoskeletal composition of terminal dendrites by controlling microtubule growth. Altering MNB levels disrupts dendrite morphology and perturbs neuronal electrophysiological activity, resulting in larval mechanosensation defects. Using in vivo and in vitro approaches, we uncover a molecular pathway whereby direct phosphorylation of β-tubulin by MNB inhibits tubulin polymerization, a function that is conserved for mammalian DYRK1a. Our results demonstrate that phosphoregulation of microtubule dynamics by MNB/DYRK1a is critical for dendritic patterning and neuronal function, revealing a previously unidentified mode of posttranslational microtubule regulation in neurons and uncovering a conserved pathway for a DS- and ASD-associated kinase. PMID:27112495

  3. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis.

    Science.gov (United States)

    Misra, Mala; Edmund, Hendia; Ennis, Darragh; Schlueter, Marissa A; Marot, Jessica E; Tambasco, Janet; Barlow, Ida; Sigurbjornsdottir, Sara; Mathew, Renjith; Vallés, Ana Maria; Wojciech, Waldemar; Roth, Siegfried; Davis, Ilan; Leptin, Maria; Gavis, Elizabeth R

    2016-01-01

    Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling. PMID:27260999

  4. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    Science.gov (United States)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  5. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    Science.gov (United States)

    Misra, Mala; Edmund, Hendia; Ennis, Darragh; Schlueter, Marissa A.; Marot, Jessica E.; Tambasco, Janet; Barlow, Ida; Sigurbjornsdottir, Sara; Mathew, Renjith; Vallés, Ana Maria; Wojciech, Waldemar; Roth, Siegfried; Davis, Ilan; Leptin, Maria; Gavis, Elizabeth R.

    2016-01-01

    Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling. PMID:27260999

  6. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    Directory of Open Access Journals (Sweden)

    Mala Misra

    2016-08-01

    Full Text Available Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.

  7. Simulation of dendritic growth reveals necessary and sufficient parameters to describe the shapes of dendritic trees

    Science.gov (United States)

    Trottier, Olivier; Ganguly, Sujoy; Bowne-Anderson, Hugo; Liang, Xin; Howard, Jonathon

    For the last 120 years, the development of neuronal shapes has been of great interest to the scientific community. Over the last 30 years, significant work has been done on the molecular processes responsible for dendritic development. In our ongoing research, we use the class IV sensory neurons of the Drosophila melanogaster larva as a model system to understand the growth of dendritic arbors. Our main goal is to elucidate the mechanisms that the neuron uses to determine the shape of its dendritic tree. We have observed the development of the class IV neuron's dendritic tree in the larval stage and have concluded that morphogenesis is defined by 3 distinct processes: 1) branch growth, 2) branching and 3) branch retraction. As the first step towards understanding dendritic growth, we have implemented these three processes in a computational model. Our simulations are able to reproduce the branch length distribution, number of branches and fractal dimension of the class IV neurons for a small range of parameters.

  8. Dendritic nanocomposite for delivery of antibacterial agent

    Institute of Scientific and Technical Information of China (English)

    Pureti Madhu Kumar; PSrinivasa Babu; Shaik Rasheed; Ramadoss Karthikeyan

    2013-01-01

    Objective: To develop and explore the use of PEGylated poly (propylene imine) dendritic architecture for the delivery of an anti bacterial bioactive, Trimethoprim. Methods: For this study, PEGylated poly(propylene imine) dendritic architecture was synthesized and loaded with Trimethoprim and targeted to the resistant producing strains of both gram positive and gram negative. The antibacterial activity was carried out by agar well-diffusion method to compare zone of inhibition with standard drug and plain PPI dendrimer. Results: The study showed that the Trimethoprim loaded dendrimer has significant antibacterial activity than the plain PPI dendrimer, but standard drug was not shown zone of inhibition upon both microorganisms butKlebsiella pneumoniae (K. pneumoniae) the pure drug showed activity. Conclusions: In this study antibacterial activity of synthesized system is also relatively safer and holds potential to deliver any other antibacterial agent to the resistant producing strains.

  9. Dendritic Cells for SYN Scan Detection

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    Artificial immune systems have previously been applied to the problem of intrusion detection. The aim of this research is to develop an intrusion detection system based on the function of Dendritic Cells (DCs). DCs are antigen presenting cells and key to activation of the human immune system, behaviour which has been abstracted to form the Dendritic Cell Algorithm (DCA). In algorithmic terms, individual DCs perform multi-sensor data fusion, asynchronously correlating the the fused data signals with a secondary data stream. Aggregate output of a population of cells, is analysed and forms the basis of an anomaly detection system. In this paper the DCA is applied to the detection of outgoing port scans using TCP SYN packets. Results show that detection can be achieved with the DCA, yet some false positives can be encountered when simultaneously scanning and using other network services. Suggestions are made for using adaptive signals to alleviate this uncovered problem.

  10. Pulmonary dendritic cells: thinking globally, acting locally

    OpenAIRE

    Randall, Troy D.

    2010-01-01

    The phrase “think globally, act locally” was coined in the early 1970s and directed individuals to clean up their local environment with the ultimate goal of improving the health of the entire planet. Several recent studies indicate that similar considerations apply to the immune system, in which small numbers of leukocytes, such as pulmonary dendritic cells, can modify the local immune environment in the lung and promote a positive outcome for the organism.

  11. Dendritic cells and aging: consequences for autoimmunity

    OpenAIRE

    Agrawal, Anshu; Sridharan, Aishwarya; Prakash, Sangeetha; Agrawal, Harsh

    2012-01-01

    The immune system has evolved to mount immune responses against foreign pathogens and to remain silent against self-antigens. A balance between immunity and tolerance is required as any disturbance may result in chronic inflammation or autoimmunity. Dendritic cells (DCs) actively participate in maintaining this balance. Under steady-state conditions, DCs remain in an immature state and do not mount an immune response against circulating self-antigens in the periphery, which maintains a state ...

  12. Plasmacytoid Dendritic Cells: From Heart to Vessels

    OpenAIRE

    Rosalinda Sorrentino; Silvana Morello; Aldo Pinto

    2010-01-01

    Cardiovascular diseases, formerly only attributed to the alterations of the stromal component, are now recognized as immune-based pathologies. Plasmacytoid Dendritic Cells (pDCs) are important immune orchestrators in heart and vessels. They highly produce IFN type I that promote the polarization of T cells towards a Th1 phenotype; however, pDCs can also participate to suppressive networks via the recruitment of T regulatory cells that downmodulate proinflammatory responses. pDCs populate the ...

  13. Harnessing dendritic cells in inflammatory skin diseases

    OpenAIRE

    Chu, Chung-Ching; di Meglio, Paola; Nestle, Frank O

    2011-01-01

    The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-de...

  14. Follicular dendritic cells in health and disease

    OpenAIRE

    El Shikh, Mohey Eldin M.; Costantino ePitzalis

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerise Ags and present them polyvalently to B cells in periodically arranged arrays that extensively crosslink the B...

  15. Follicular dendritic cells in health and disease

    OpenAIRE

    El Shikh, Mohey Eldin M.; Pitzalis, Costantino

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B...

  16. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  17. SKIN DENDRITIC CELLS: ACTIVATION, MATURATION AND MIGRATION

    OpenAIRE

    Eaton, Laura

    2012-01-01

    Langerhans’ cells (LC) are the dendritic cells (DC) of the epidermis and, as sentinels of the immune system, act as a bridge between the innate and adaptive immune responses. When LC, and other DC, recognise an antigen or pathogen they mature and are stimulated to migrate to the lymph nodes, where they orchestrate immune responses. Pathogen derived toll-like receptor (TLR) ligands, and chemical allergens, are recognised as being potentially harmful and stimulate LC to mobilise and mature. Cyt...

  18. Bacterial Probiotic Modulation of Dendritic Cells

    OpenAIRE

    Drakes, Maureen; Blanchard, Thomas; Czinn, Steven

    2004-01-01

    Intestinal dendritic cells are continually exposed to ingested microorganisms and high concentrations of endogenous bacterial flora. These cells can be activated by infectious agents and other stimuli to induce T-cell responses and to produce chemokines which recruit other cells to the local environment. Bacterial probiotics are of increasing use against intestinal disorders such as inflammatory bowel disease. They act as nonpathogenic stimuli within the gut to regain immunologic quiescence. ...

  19. Imaging membrane potential in dendritic spines

    OpenAIRE

    Nuriya, Mutsuo; Jiang, Jiang; Nemet, Boaz; Eisenthal, Kenneth B.; Yuste, Rafael

    2006-01-01

    Dendritic spines mediate most excitatory inputs in the brain. Although it is clear that spines compartmentalize calcium, it is still unknown what role, if any, they play in integrating synaptic inputs. To investigate the electrical function of spines directly, we used second harmonic generation (SHG) imaging of membrane potential in pyramidal neurons from hippocampal cultures and neocortical brain slices. With FM 4-64 as an intracellular SHG chromophore, we imaged membrane potential in the so...

  20. The Isothermal Dendritic Growth Experiment Archive

    Science.gov (United States)

    Koss, Matthew

    2009-03-01

    The growth of dendrites is governed by the interplay between two simple and familiar processes---the irreversible diffusion of energy, and the reversible work done in the formation of new surface area. To advance our understanding of these processes, NASA sponsored a project that flew on the Space Shuttle Columbia is 1994, 1996, and 1997 to record and analyze benchmark data in an apparent-microgravity ``laboratory.'' In this laboratory, energy transfer by gravity driven convection was essentially eliminated and one could test independently, for the first time, both components of dendritic growth theory. The analysis of this data shows that although the diffusion of energy can be properly accounted for, the results from interfacial physics appear to be in disagreement and alternate models should receive increased attention. Unfortunately, currently and for the foreseeable future, there is no access or financial support to develop and conduct additional experiments of this type. However, the benchmark data of 35mm photonegatives, video, and all supporting instrument data are now available at the IDGE Archive at the College of the Holy Cross. This data may still have considerable relevance to researchers working specifically with dendritic growth, and more generally those working in the synthesis, growth & processing of materials, multiscale computational modeling, pattern formation, and systems far from equilibrium.

  1. Neural pattern formation in networks with dendritic structure

    Science.gov (United States)

    Bressloff, P. C.; De Souza, B.

    1998-04-01

    We present a detailed analysis of a recently proposed model of neural pattern formation that is based on the combined effect of diffusion along a neuron's dendritic tree and recurrent interactions along axo-dendritic synaptic connections. For concreteness, we consider a one-dimensional array of analog neurons with the dendritic tree idealized as a one-dimensional cable. Linear stability analysis and bifurcation theory together with numerical simulations are used to establish conditions for the onset of a Turing instability leading to the formation of stable spatial patterns of network output activity. It is shown that the presence of dendritic structure can induce dynamic (time-periodic) spatial pattern formation. Moreover, correlations between the dendritic location of a synapse and the relative positions of neurons in the network are shown to result in spatially oscillating patterns of activity along the dendrites of each neuron.

  2. Molecular identity of dendritic voltage-gated sodium channels.

    Science.gov (United States)

    Lorincz, Andrea; Nusser, Zoltan

    2010-05-14

    Active invasion of the dendritic tree by action potentials (APs) generated in the axon is essential for associative synaptic plasticity and neuronal ensemble formation. In cortical pyramidal cells (PCs), this AP back-propagation is supported by dendritic voltage-gated Na+ (Nav) channels, whose molecular identity is unknown. Using a highly sensitive electron microscopic immunogold technique, we revealed the presence of the Nav1.6 subunit in hippocampal CA1 PC proximal and distal dendrites. Here, the subunit density is lower by a factor of 35 to 80 than that found in axon initial segments. A gradual decrease in Nav1.6 density along the proximodistal axis of the dendritic tree was also detected without any labeling in dendritic spines. Our results reveal the characteristic subcellular distribution of the Nav1.6 subunit, identifying this molecule as a key substrate enabling dendritic excitability. PMID:20466935

  3. Numerical Modeling of Dendrite Growth in Al Alloys

    Institute of Scientific and Technical Information of China (English)

    许庆彦; 柳百成

    2004-01-01

    Dendritic grains are the most often observed microstructure in metals and alloys. In the past decade, more and more attention has been paid to the modeling and simulation of dendritic microstructures. This paper describes a modified diffusion-limited aggregation model to simulate the complex shape of the dendrite grains during metal solidification. The fractal model was used to simulate equiaxed dendrite growth. The fractal dimensions of simulated Al alloy structures range from 1.63-1.88 which compares well with the experimentally-measured fractal dimension of 1.85; therefore, the model accurately predicts not only the dendritic structure morphology, but also the fractal dimension of the dendrite structure formed during solidification.

  4. Special fractal growth of dendrite copper using a hydrothermal method

    Science.gov (United States)

    Zheng, Yan; Zhang, Zhejuan; Guo, Pingsheng; He, Pingang; Sun, Zhuo

    2011-08-01

    Special fractal dendrite Cu nanostructures have been synthesized through a simple hydrothermal method, and the effects of the volume ratio between glycerol and water and the concentration of H 3PO 3 on the morphologies of dendrite Cu have been studied in detail. The Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used to characterize these Cu products. The results indicate that rhombic diamond and different morphologies of fractal dendrite were prepared because of the accumulation of Cu nuclei based on the diffusion-limited aggregation (DLA) and the nucleation-limited aggregation (NLA) model. Fortunately, symmetrical leaf-like dendrite Cu nanostructures different from Cu dendrites reported before have been obtained. Additionally, an explanation for the growth of fractal dendrite Cu has been discussed carefully.

  5. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  6. Pathological Consequence of Misguided Dendritic Cell Differentiation in Histiocytic Diseases

    OpenAIRE

    Berres, Marie-Luise; Allen, Carl E.; Merad, Miriam

    2013-01-01

    Histiocytic disorders represent a group of complex pathologies characterized by the accumulation of histiocytes, an old term for tissue-resident macrophages and dendritic cells. Langerhans cell histiocytosis is the most frequent of histiocytosis in humans and has been thought to arise from the abnormal accumulation of epidermal dendritic cells called Langerhans cells. In this chapter, we discuss the origin and differentiation of Langerhans cells and dendritic cells and present accumulated evi...

  7. Murid herpesvirus-4 exploits dendritic cells to infect B cells

    OpenAIRE

    Miguel Gaspar; May, Janet S.; Soumi Sukla; Bruno Frederico; Michael B Gill; Smith, Christopher M.; Belz, Gabrielle T.; Stevenson, Philip G.

    2011-01-01

    Author Summary We detect invading viruses with dendritic cells and eliminate them with lymphocytes. A key interaction is lymphocyte activation by dendritic cells presenting viral antigens. Not all viruses can be eliminated, and some that persist deliberately colonize lymphocytes and dendritic cells, such that parasitism and host defence co-exist within the same sites. Once established, these infections are very hard to eliminate. Therefore to vaccinate against them we must determine how infec...

  8. Nanoparticle-aggregated 3D monocrystalline gold dendritic nanostructures

    International Nuclear Information System (INIS)

    In this paper, through a simple and fast electroless metal deposition route, gold dendritic nanostructures are synthesized in aqueous conditions. The gold dendrites with a threefold symmetric characteristic were built up of numerous nanoparticles roughly 5-10 nm in size. The aggregated nanoparticles spontaneously experience a self-assembly process along crystallographic orientations and finally form a monocrystalline dendrite. An oriented attachment mechanism can be used to explain the nanoparticle-aggregated self-assembly process

  9. Disruption studies on ASDEX upgrade

    International Nuclear Information System (INIS)

    Disruptions generate large thermal and mechanical stresses on the tokamak components and are occasionally responsible for damages to the machine. For a future reactor disruptions have a significant impact on the design since all loading conditions must be analyzed in accordance with stricter design criteria (due to safety or difficult maintenance). Therefore the uncertainties affecting the predicted stresses must be reduced as much as possible with a more comprehensive set of measurements and analyses in this generation of experimental machines, and avoidance/predictive methods must be developed further. Disruption studies on ASDEX Upgrade are focused on these subjects, namely on: (1) understanding the physical mechanisms leading to this phenomenon in order to learn to avoid it or to predict its occurrence and to mitigate its effects; (2) analyzing the effects of disruptions on the machine to determine the functional dependence of the thermal and mechanical loads upon the discharge parameters. This allows, firstly, to dimension or reinforce the machine components to withstand these loads and, secondly, to extrapolate them to tokamaks still in the design phase; (3) learning to mitigate the consequence of disruptions, i.e. thermal loads, mechanical forces and runaways with injection of impurity pellets or gas. This paper is focused on most recent results concerning points, i.e. on the analysis of the degree of asymmetry of the forces and on the use of impurity puff for mitigation

  10. Disruption studies in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Disruption generate large thermal and mechanical stresses on the tokamak components. For a future reactor disruptions have a significant impact on the design since all loading conditions must be analyzed in accordance with stricter design criteria (due to safety or difficult maintenance). Therefore the uncertainties affecting the predicted stresses must be reduced as much as possible with a more comprehensive set of measurements and analyses in this generation of experimental machines, and avoidance/ predictive methods must be developed further. The study of disruptions on ASDEX Upgrade is focused on these subjects, namely on: (1) understanding the physical mechanisms leading to this phenomenon and learning to avoid it or to predict its occurrence (with neural networks, for example) and to mitigate its effects; (2) analyzing the effects of disruptions on the machine to determine the functional dependence of the thermal and mechanical loads upon the discharge parameters. This allows to dimension or reinforce the machine components to withstand these loads and to extrapolate them to tokamaks still in the design phase; (3) learning to mitigate the consequence of disruptions. (author)

  11. CTAB-Influenced Electrochemical Dissolution of Silver Dendrites.

    Science.gov (United States)

    O'Regan, Colm; Zhu, Xi; Zhong, Jun; Anand, Utkarsh; Lu, Jingyu; Su, Haibin; Mirsaidov, Utkur

    2016-04-19

    Dendrite formation on the electrodes of a rechargeable battery during the charge-discharge cycle limits its capacity and application due to short-circuits and potential ignition. However, understanding of the underlying dendrite growth and dissolution mechanisms is limited. Here, the electrochemical growth and dissolution of silver dendrites on platinum electrodes immersed in an aqueous silver nitrate (AgNO3) electrolyte solution was investigated using in situ liquid-cell transmission electron microscopy (TEM). The dissolution of Ag dendrites in an AgNO3 solution with added cetyltrimethylammonium bromide (CTAB) surfactant was compared to the dissolution of Ag dendrites in a pure aqueous AgNO3 solution. Significantly, when CTAB was added, dendrite dissolution proceeded in a step-by-step manner, resulting in nanoparticle formation and transient microgrowth stages due to Ostwald ripening. This resulted in complete dissolution of dendrites and "cleaning" of the cell of any silver metal. This is critical for practical battery applications because "dead" lithium is known to cause short circuits and high-discharge rates. In contrast to this, in a pure aqueous AgNO3 solution, without surfactant, dendrites dissolved incompletely back into solution, leaving behind minute traces of disconnected silver particles. Finally, a mechanism for the CTAB-influenced dissolution of silver dendrites was proposed based on electrical field dependent binding energy of CTA(+) to silver. PMID:27017834

  12. Synaptically evoked dendritic action potentials in rat neocortical pyramidal neurons.

    Science.gov (United States)

    Schwindt, P C; Crill, W E

    1998-05-01

    In a previous study iontophoresis of glutamate on the apical dendrite of layer 5 pyramidal neurons from rat neocortex was used to identify sites at which dendritic depolarization evoked small, prolonged Ca2+ spikes and/or low-threshold Na+ spikes recorded by an intracellular microelectrode in the soma. These spikes were identified as originating in the dendrite. Here we evoke similar dendritic responses by electrical stimulation of presynaptic elements near the tip of the iontophoretic electrode with the use of a second extracellular electrode. In 9 of 12 recorded cells, electrically evoked excitatory postsynaptic potentials (EPSPs) above a minimum size triggered all-or-none postsynaptic responses similar to those evoked by dendritic glutamate iontophoresis at the same site. Both the synaptically evoked and the iontophoretically evoked depolarizations were abolished reversibly by blockade of glutamate receptors. In all recorded cells, the combination of iontophoresis and an EPSP, each of which was subthreshold for the dendritic spike when given alone, evoked a dendritic spike similar to that evoked by a sufficiently large iontophoresis. In one cell tested, dendritic spikes could be evoked by the summation of two independent subthreshold EPSPs evoked by stimulation at two different locations. We conclude that the dendritic spikes are not unique to the use of glutamate iontophoresis because similar spikes can be evoked by EPSPs. We discuss the implications of these results for synaptic integration and for the interpretation of recorded synaptic potentials. PMID:9582218

  13. Semi-solid Forming of a Damper Housing with Dendritic and Non-dendritic Al-Si-Mg Alloy

    Institute of Scientific and Technical Information of China (English)

    ChenCM; YangCC; ChaoCG

    2001-01-01

    A motorcycle component of damper housing was made by semi-solid forming process. This was used to investigate the effect of microstructures of feedstock on the formability of semisolid process. The soundness and microstructures of casting parts made by dendritic and non-dendritic feedstock were investigated. Separating of liquid phase was found in the casting produced by dendritic feedstock, which might result in defects of porosity, while uniform microstructures were found in the casting produced by no...

  14. Ternary eutectic dendrites: Pattern formation and scaling properties

    Energy Technology Data Exchange (ETDEWEB)

    Rátkai, László; Szállás, Attila; Pusztai, Tamás [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest (Hungary); Mohri, Tetsuo [Center for Computational Materials Science, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Gránásy, László, E-mail: granasy.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest (Hungary); Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendritesdendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.

  15. Ternary eutectic dendrites: Pattern formation and scaling properties

    International Nuclear Information System (INIS)

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendritesdendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations

  16. Social play in juvenile hamsters alters dendritic morphology in the medial prefrontal cortex and attenuates effects of social stress in adulthood.

    Science.gov (United States)

    Burleson, Cody A; Pedersen, Robert W; Seddighi, Sahba; DeBusk, Lauren E; Burghardt, Gordon M; Cooper, Matthew A

    2016-08-01

    Social play is a fundamental aspect of behavioral development in many species. Social play deprivation in rats alters dendritic morphology in the ventromedial prefrontal cortex (vmPFC) and we have shown that this brain region regulates responses to social defeat stress in Syrian hamsters. In this study, we tested whether play deprivation during the juvenile period disrupts dendritic morphology in the prefrontal cortex and potentiates the effects of social defeat stress. At weaning, male hamsters were either group-housed with peers or pair-housed with their mother, with whom they do not play. In adulthood, animals received acute social defeat stress or no-defeat control treatment. The hamsters were then tested for a conditioned defeat response in a social interaction test with a novel intruder, and were also tested for social avoidance of a familiar opponent. Brains were collected for Golgi-Cox staining and analysis of dendritic morphology in the infralimbic (IL), prelimbic (PL), and orbitofrontal cortex (OFC). Play-deprived animals showed an increased conditioned defeat response and elevated avoidance of a familiar opponent compared with play-exposed animals. Furthermore, play-deprived animals showed increased total length and branch points in apical dendrites of pyramidal neurons in the IL and PL cortices, but not in the OFC. These findings suggest that social play deprivation in juvenile hamsters disrupts neuronal development in the vmPFC and increases vulnerability to the effects of social stress in adulthood. Overall, these results suggest that social play is necessary for the natural dendritic pruning process during adolescence and promotes coping with stress in adulthood. (PsycINFO Database Record PMID:27176563

  17. CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion

    DEFF Research Database (Denmark)

    Pedersen, Anders E; Ronchese, Franca

    2007-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and critical for the priming of CD8+ T cells. Therefore the use of these cells as adjuvant cells has been tested in a large number of experimental and clinical vaccination studies, in particular cancer vaccine studies. A number of protocols...

  18. JET and COMPASS asymmetrical disruptions

    Czech Academy of Sciences Publication Activity Database

    Gerasimov, S.N.; Abreu, P.; Baruzzo, M.; Drozdov, V.; Dvornova, A.; Havlíček, Josef; Hender, T.C.; Hronová-Bilyková, Olena; Kruezi, U.; Li, X.; Markovič, Tomáš; Pánek, Radomír; Rubinacci, G.; Tsalas, M.; Ventre, S.; Villone, F.; Zakharov, L.E.

    2015-01-01

    Roč. 55, č. 11 (2015), s. 113006-113006. ISSN 0029-5515 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : tokamak * asymmetrical disruption * JET * COMPASS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014

  19. Disruptive Innovation in Healthcare & Rehabilitation

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2014-01-01

    Disruption is a powerful body of theory that describes how people interact and react, how behavior is shaped, how organizational cultures form and influence decisions. Innovation is the process of translating an idea or invention into a product or service that creates value or for which customers...

  20. Supply disruption cost for power network planning

    International Nuclear Information System (INIS)

    A description is given of the method of approach to calculate the total annual socio-economic cost of power supply disruption and non-supplied energy, included the utilities' cost for planning. The total socio-economic supply disruption cost is the sum of the customers' disruption cost and the utilities' cost for failure and disruption. The mean weighted disruption cost for Norway for one hour disruption is NOK 19 per kWh. The customers' annual disruption cost is calculated with basis in the specific disruption cost referred to heavy load (January) and dimensioning maximum loads. The loads are reduced by factors taking into account the time variations of the failure frequency, duration, the loads and the disruption cost. 6 refs

  1. Dendritic cells modified by vitamin D

    DEFF Research Database (Denmark)

    Pedersen, Ayako Wakatsuki; Claesson, Mogens Helweg; Zocca, Mai-Britt

    2011-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells of the immune system, express nuclear receptors for 1,25-dihydroxyvitamin D(3) (VD3) and they are one of its main targets. In the presence of VD3, DCs differentiate into a phenotype that resembles semimature DCs, with reduced T cell...... costimulatory molecules and hampered IL-12 production. These VD3-modulated DCs induce T cell tolerance in vitro using multiple mechanisms such as rendering T cells anergic, dampening of Th1 responses, and recruiting and differentiating regulatory T cells. Due to their ability to specifically target pathological...

  2. Buoyancy effects of a growing, isolated dendrite

    Science.gov (United States)

    Canright, D.; Davis, S. H.

    1991-01-01

    The buoyancy effect of a growing isolated dendrite on the solidification process in the undercooling liquid material was investigated by developing an analytic solution to the growth/convection problem in powers of a buoyancy parameter G. The solution depends on the Prandtl number P and the Stefan number S (undercooling) for the local velocity and thermal fields and also the buoyant alteration of the interface shape. Results suggest that buoyancy effect for metals (low P) may be qualitatively different from that for organics (high P).

  3. Plasticity of dendritic spines: subcompartmentalization of signaling.

    Science.gov (United States)

    Colgan, Lesley A; Yasuda, Ryohei

    2014-01-01

    The ability to induce and study neuronal plasticity in single dendritic spines has greatly advanced our understanding of the signaling mechanisms that mediate long-term potentiation. It is now clear that in addition to compartmentalization by the individual spine, subcompartmentalization of biochemical signals occurs at specialized microdomains within the spine. The spatiotemporal coordination of these complex cascades allows for the concomitant remodeling of the postsynaptic density and actin spinoskeleton and for the regulation of membrane traffic to express functional and structural plasticity. Here, we highlight recent findings in the signaling cascades at spine microdomains as well as the challenges and approaches to studying plasticity at the spine level. PMID:24215443

  4. Gliadin fragments promote migration of dendritic cells

    Czech Academy of Sciences Publication Activity Database

    Chládková, Barbara; Kamanová, Jana; Palová-Jelínková, Lenka; Cinová, Jana; Šebo, Peter; Tučková, Ludmila

    2011-01-01

    Roč. 15, č. 4 (2011), 938-948. ISSN 1582-1838 R&D Projects: GA ČR GA310/07/0414; GA ČR GD310/08/H077; GA ČR GA310/08/0447; GA AV ČR IAA500200801; GA AV ČR IAA500200914 Institutional research plan: CEZ:AV0Z50200510 Keywords : celiac disease * gliadin * dendritic cell Subject RIV: EC - Immunology Impact factor: 4.125, year: 2011

  5. Metamaterial absorber with random dendritic cells

    Science.gov (United States)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  6. Harnessing Dendritic Cells for Tumor Antigen Presentation

    International Nuclear Information System (INIS)

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8+ and CD4+ T cells; the in vitro loading of DCs with tumor antigens

  7. Viruses, dendritic cells and the lung

    Directory of Open Access Journals (Sweden)

    Graham Barney S

    2001-06-01

    Full Text Available Abstract The interaction between viruses and dendritic cells (DCs is varied and complex. DCs are key elements in the development of a host response to pathogens such as viruses, but viruses have developed survival tactics to either evade or diminish the immune system that functions to kill and eliminate these micro-organisms. In the present review we summarize current concepts regarding the function of DCs in the immune system, our understanding of how viruses alter DC function to attenuate both the virus-specific and global immune response, and how we may be able to exploit DC function to prevent or treat viral infections.

  8. Measles Virus Induces Functional TRAIL Production by Human Dendritic Cells

    Science.gov (United States)

    Vidalain, Pierre-Olivier; Azocar, Olga; Lamouille, Barbara; Astier, Anne; Rabourdin-Combe, Chantal; Servet-Delprat, Christine

    2000-01-01

    Measles virus infection induces a profound immunosuppression that can lead to serious secondary infections. Here we demonstrate that measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression in human monocyte-derived dendritic cells. Moreover, measles virus-infected dendritic cells are shown to be cytotoxic via the TRAIL pathway. PMID:10590149

  9. Measles Virus Induces Functional TRAIL Production by Human Dendritic Cells

    OpenAIRE

    Vidalain, Pierre-Olivier; Azocar, Olga; Lamouille, Barbara; Astier, Anne; Rabourdin-Combe, Chantal; Servet-Delprat, Christine

    2000-01-01

    Measles virus infection induces a profound immunosuppression that can lead to serious secondary infections. Here we demonstrate that measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression in human monocyte-derived dendritic cells. Moreover, measles virus-infected dendritic cells are shown to be cytotoxic via the TRAIL pathway.

  10. Dendritic Spines in Depression: What We Learned from Animal Models

    OpenAIRE

    Hui Qiao; Ming-Xing Li; Chang Xu; Hui-Bin Chen; Shu-Cheng An; Xin-Ming Ma

    2016-01-01

    Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have ...

  11. Contribution of sublinear and supralinear dendritic integration to neuronal computations

    Directory of Open Access Journals (Sweden)

    Alexandra eTran-Van-Minh

    2015-03-01

    Full Text Available Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output transformations conferred by dendrites. Like supralinear operations, sublinear dendritic operations also increase the repertoire of neuronal computations, but feature extraction requires different synaptic connectivity strategies for each of these operations. In this article we will review the experimental and theoretical findings describing the biophysical determinants of the three primary classes of dendritic operations: linear, sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified neuron models, which provides insight into how dendritic operations influence neuronal computations. We highlight how neuronal computations are critically dependent on the interplay of dendritic properties (morphology and voltage-gated channel expression, spiking threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we describe how global (scattered and local (clustered integration strategies permit the implementation of similar classes of computations, one example being the object feature binding problem.

  12. JNK1 Controls Dendritic Field Size in L2/3 and L5 of the Motor Cortex, Constrains Soma Size and Influences Fine Motor Coordination

    Directory of Open Access Journals (Sweden)

    Emilia eKomulainen

    2014-09-01

    Full Text Available Genetic anomalies on the JNK pathway confer susceptibility to autism spectrum disorders, schizophrenia and intellectual disability. The mechanism whereby a gain or loss of function in JNK signaling predisposes to these prevalent dendrite disorders, with associated motor dysfunction, remains unclear. Here we find that JNK1 regulates the dendritic field of L2/3 and L5 pyramidal neurons of the mouse motor cortex (M1, the main excitatory pathway controlling voluntary movement. In Jnk1-/- mice, basal dendrite branching of L5 pyramidal neurons is increased in M1, as is cell soma size, whereas in L2/3, dendritic arborization is decreased. We show that JNK1 phosphorylates rat HMW-MAP2 on T1619, T1622 and T1625 (Uniprot P15146 corresponding to mouse T1617, T1620, T1623, to create a binding motif, that is critical for MAP2 interaction with and stabilization of microtubules, and dendrite growth control. Targeted expression in M1 of GFP-HMW-MAP2 that is pseudo-phosphorylated on T1619, T1622 and T1625 increases dendrite complexity in L2/3 indicating that JNK1 phosphorylation of HMW-MAP2 regulates the dendritic field. Consistent with the morphological changes observed in L2/3 and L5, Jnk1-/- mice exhibit deficits in limb placement and motor coordination, while stride length is reduced in older animals. In summary, JNK1 phosphorylates HMW-MAP2 to increase its stabilization of microtubules while at the same time controlling dendritic fields in the main excitatory pathway of M1. Moreover, JNK1 contributes to normal functioning of fine motor coordination. We report for the first time, a quantitative sholl analysis of dendrite architecture, and of motor behavior in Jnk1-/- mice. Our results illustrate the molecular and behavioral consequences of interrupted JNK1 signaling and provide new ground for mechanistic understanding of those prevalent neuropyschiatric disorders where genetic disruption of the JNK pathway is central.

  13. Disrupted-in-schizophrenia 1 regulates transport of ITPR1 mRNA for synaptic plasticity.

    Science.gov (United States)

    Tsuboi, Daisuke; Kuroda, Keisuke; Tanaka, Motoki; Namba, Takashi; Iizuka, Yukihiko; Taya, Shinichiro; Shinoda, Tomoyasu; Hikita, Takao; Muraoka, Shinsuke; Iizuka, Michiro; Nimura, Ai; Mizoguchi, Akira; Shiina, Nobuyuki; Sokabe, Masahiro; Okano, Hideyuki; Mikoshiba, Katsuhiko; Kaibuchi, Kozo

    2015-05-01

    Disrupted-in-schizophrenia 1 (DISC1) is a susceptibility gene for major psychiatric disorders, including schizophrenia. DISC1 has been implicated in neurodevelopment in relation to scaffolding signal complexes. Here we used proteomic analysis to screen for DISC1 interactors and identified several RNA-binding proteins, such as hematopoietic zinc finger (HZF), that act as components of RNA-transporting granules. HZF participates in the mRNA localization of inositol-1,4,5-trisphosphate receptor type 1 (ITPR1), which plays a key role in synaptic plasticity. DISC1 colocalizes with HZF and ITPR1 mRNA in hippocampal dendrites and directly associates with neuronal mRNAs, including ITPR1 mRNA. The binding potential of DISC1 for ITPR1 mRNA is facilitated by HZF. Studies of Disc1-knockout mice have revealed that DISC1 regulates the dendritic transport of Itpr1 mRNA by directly interacting with its mRNA. The DISC1-mediated mRNA regulation is involved in synaptic plasticity. We show that DISC1 binds ITPR1 mRNA with HZF, thereby regulating its dendritic transport for synaptic plasticity. PMID:25821909

  14. Immune Monitoring Using mRNA-Transfected Dendritic Cells.

    Science.gov (United States)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by mRNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA. PMID:27236804

  15. Synthesis and field emission properties of Cu dendritic nanostructures

    Science.gov (United States)

    Xu, Jianwen; Yu, Ke; Zhu, Ziqiang

    2010-03-01

    Cu dendritic nanostructures were synthesized on ITO glass substructure by electrochemical deposition. SEM images showed that these Cu dendritic nanostuctures revealed a clear and well-defined dendritic fractal structure with a pronounced trunk and highly ordered branches distributed on both sides of the trunk. The diffusion-limited aggregation (DLA) model was used to explain the fractal growth of Cu dendritic nanostructures. Field emission properties of these Cu dendritic nanostructures were measured, which have possessed good performance with the turn-on field of 7.5 V/μm (defined as the electric field required to be detected at a current density of 0.1 mA/cm 2) and the field enhancement factor β of 1094.

  16. Dendrite coherency of Al-Si-Cu alloys

    Science.gov (United States)

    Veldman, Natalia L. M.; Dahle, Arne K.; Stjohn, David H.; Arnberg, Lars

    2001-01-01

    The dendrite coherency point of Al-Si-Cu alloys was determined by thermal analysis and rheological measurement methods by performing parallel measurements at two cooling rates for aluminum alloys across a wide range of silicon and copper contents. Contrary to previous findings, the two methods yield significantly different values for the fraction solid at the dendrite coherency point. This disparity is greatest for alloys of low solute concentration. The results from this study also contradict previously reported trends in the effect of cooling rate on the dendritic coherency point. Consideration of the results shows that thermal analysis is not a valid technique for the measurement of coherency. Analysis of the results from rheological testing indicates that silicon concentration has a dominant effect on grain size and dendritic morphology, independent of cooling rate and copper content, and thus is the factor that determines the fraction solid at dendrite coherency for Al-Si-Cu alloys.

  17. Analyzing dendritic growth in a population of immature neurons in the adult dentate gyrus using laminar quantification of disjointed dendrites

    Directory of Open Access Journals (Sweden)

    ShiraRosenzweig

    2011-03-01

    Full Text Available In the dentate gyrus of the hippocampus, new granule neurons are continuously produced throughout adult life. A prerequisite for the successful synaptic integration of these neurons is the sprouting and extension of dendrites into the molecular layer of the dentate gyrus. Thus, studies aimed at investigating the developmental stages of adult neurogenesis often use dendritic growth as an important indicator of neuronal health and maturity. Based on the known topography of the dentate gyrus, characterized by distinct laminar arrangement of granule neurons and their extensions, we have developed a new method for analysis of dendritic growth in immature adult-born granule neurons. The method is comprised of laminar quantification of cell bodies, primary, secondary and tertiary dendrites separately and independently from each other. In contrast to most existing methods, laminar quantification of dendrites does not require the use of exogenous markers and does not involve arbitrary selection of individual neurons. The new method relies on immonuhistochemical detection of endogenous markers such as doublecortin to perform a comprehensive analysis of a sub-population of immature neurons. Disjointed, “orphan” dendrites that often appear in the thin histological sections are taken into account. Using several experimental groups of rats and mice, we demonstrate here the suitable techniques for quantifying neurons and dendrites, and explain how the ratios between the quantified values can be used in a comparative analysis to indicate variations in dendritic growth and complexity.

  18. Dendritic Cells in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    HuiWan; MarcelDupasquier

    2005-01-01

    Dendritic cells (DC) are crucial cells of the immune system, and bridged the essential connection between innate and adaptive immunity. They reside in the periphery as sentinels where they take up antigens. Upon activation, they migrate to lymphoid organs and present there the processed antigens to T cells, thereby activating them and eliciting a potent immune response. Dendritic cells are bone marrow-derived cells, still big controversies exist about their in vivo development. In vitro, DC can be generated from multiple precursor cells, among them lymphoid and myeloid committed progenitors. Although it remains unknown how DC are generated in vivo, studying the functions of in vitro generated DC results in fundamental knowledge of the DC biology with promising applications for future medicine. Therefore, in this review, we present current protocols for the generation of DC from precursors in vitro. We will do this for the mouse system, where most research occurs and for the human system, where research concentrates on implementing DC biology in disease treatments. Cellular & Molecular Immunology. 2005;2(1):28-35.

  19. Dendritic Cells in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    Hui Wan; Marcel Dupasquier

    2005-01-01

    Dendritic cells (DC) are crucial cells of the immune system, and bridged the essential connection between innate and adaptive immunity. They reside in the periphery as sentinels where they take up antigens. Upon activation,they migrate to lymphoid organs and present there the processed antigens to T cells, thereby activating them and eliciting a potent immune response. Dendritic cells are bone marrow-derived cells, still big controversies exist about their in vivo development. In vitro, DC can be generated from multiple precursor cells, among them lymphoid and myeloid committed progenitors. Although it remains unknown how DC are generated in vivo,studying the functions of in vitro generated DC results in fundamental knowledge of the DC biology with promising applications for future medicine. Therefore, in this review, we present current protocols for the generation of DC from precursors in vitro. We will do this for the mouse system, where most research occurs and for the human system, where research concentrates on implementing DC biology in disease treatments.

  20. Specific disruption of hippocampal mossy fiber synapses in a mouse model of familial Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Scott A Wilke

    Full Text Available The earliest stages of Alzheimer's disease (AD are characterized by deficits in memory and cognition indicating hippocampal pathology. While it is now recognized that synapse dysfunction precedes the hallmark pathological findings of AD, it is unclear if specific hippocampal synapses are particularly vulnerable. Since the mossy fiber (MF synapse between dentate gyrus (DG and CA3 regions underlies critical functions disrupted in AD, we utilized serial block-face electron microscopy (SBEM to analyze MF microcircuitry in a mouse model of familial Alzheimer's disease (FAD. FAD mutant MF terminal complexes were severely disrupted compared to control - they were smaller, contacted fewer postsynaptic spines and had greater numbers of presynaptic filopodial processes. Multi-headed CA3 dendritic spines in the FAD mutant condition were reduced in complexity and had significantly smaller sites of synaptic contact. Significantly, there was no change in the volume of classical dendritic spines at neighboring inputs to CA3 neurons suggesting input-specific defects in the early course of AD related pathology. These data indicate a specific vulnerability of the DG-CA3 network in AD pathogenesis and demonstrate the utility of SBEM to assess circuit specific alterations in mouse models of human disease.

  1. Optimal Disruption of Complex Networks

    CERN Document Server

    Zhao, Jin-Hua

    2016-01-01

    The collection of all the strongly connected components in a directed graph, among each cluster of which any node has a path to another node, is a typical example of the intertwining structure and dynamics in complex networks, as its relative size indicates network cohesion and it also composes of all the feedback cycles in the network. Here we consider finding an optimal strategy with minimal effort in removal arcs (for example, deactivation of directed interactions) to fragment all the strongly connected components into tree structure with no effect from feedback mechanism. We map the optimal network disruption problem to the minimal feedback arc set problem, a non-deterministically polynomial hard combinatorial optimization problem in graph theory. We solve the problem with statistical physical methods from spin glass theory, resulting in a simple numerical method to extract sub-optimal disruption arc sets with significantly better results than a local heuristic method and a simulated annealing method both...

  2. Disrupting the habit of interviewing

    Directory of Open Access Journals (Sweden)

    Eileen Honan

    2014-06-01

    Full Text Available This paper contributes to the growing domain of ‘post-qualitative’ research and experiments with a new (representational form to move away from traditional and clichéd descriptions of research methods. In this paper, I want to interrogate the category of interview, and the habit of interviewing, to disrupt the clichés, so as to allow thinking of different ways of writing/speaking/representing the interactions between researcher and researched that will breathe new life into qualitative inquiries. I will attempt to flatten and shred, destabilise and disrupt our common-sense ideas about interview, including those held most sacred to the qualitative community, that of anonymity and confidentiality, as well as the privilege of the ‘transcript’ in re-presenting interview data.

  3. Disruptive technologies in higher education

    Directory of Open Access Journals (Sweden)

    Michael Flavin

    2012-08-01

    Full Text Available This paper analyses the role of “disruptive” innovative technologies in higher education. In this country and elsewhere, Higher Education Institutions (HEIs have invested significant sums in learning technologies, with Virtual Learning Environments (VLEs being more or less universal, but these technologies have not been universally adopted and used by students and staff. Instead, other technologies not owned or controlled by HEIs are widely used to support learning and teaching. According to Christensen's theory of Disruptive Innovation, these disruptive technologies are not designed explicitly to support learning and teaching in higher education, but have educational potential. This study uses Activity Theory and Expansive Learning to analyse data regarding the impact of disruptive technologies. The data were obtained through a questionnaire survey about awareness and use of technologies, and through observation and interviews, exploring participants’ actual practice. The survey answers tended to endorse Disruptive Innovation theory, with participants establishing meanings for technologies through their use of them, rather than in keeping with a designer's intentions. Observation revealed that learners use a narrow range of technologies to support learning, but with a tendency to use resources other than those supplied by their HEIs. Interviews showed that participants use simple and convenient technologies to support their learning and teaching. This study identifies a contradiction between learning technologies made available by HEIs, and technologies used in practice. There is no evidence to suggest that a wide range of technologies is being used to support learning and teaching. Instead, a small range of technologies is being used for a wide range of tasks. Students and lecturers are not dependent on their HEIs to support learning and teaching. Instead, they self-select technologies, with use weighted towards established brands. The

  4. Thyroid effects of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Boas, Malene; Feldt-Rasmussen, Ulla; Main, Katharina M

    2012-01-01

    In recent years, many studies of thyroid-disrupting effects of environmental chemicals have been published. Of special concern is the exposure of pregnant women and infants, as thyroid disruption of the developing organism may have deleterious effects on neurological outcome. Chemicals may exert ...... thyroid-disrupting effects, and there is emerging evidence that also phthalates, bisphenol A, brominated flame retardants and perfluorinated chemicals may have thyroid disrupting properties....

  5. HOW TO IDENTIFY DISRUPTIVE NEW BUSINESSES

    OpenAIRE

    Elizabeth Robles

    2015-01-01

    In almost any industry, the most dramatic stories of growth and success were launched from a platform of disruptive innovation (Christensen et al., 2002). The probability of creating a successful, new growth business is 10 times greater if the innovators pursue a disruptive strategy rather than a sustaining one. Genuinely disruptive innovations are the ones that result in the creation of entirely new markets and business models. Few companies have introduced these innovations. Disruptive inno...

  6. Turbulence and disruptions in Tokamaks

    International Nuclear Information System (INIS)

    In the first part of this thesis, the possible explanation of the electron abnormal thermal conductivity with electromagnetic drift modes rather than simply electrostatic is discussed. A variational form is established in non collisional conditions; linear modes principal possibilities are reviewed, then quasilinear theory is used to calculate the transport phenomenon associated to each mode. They are compared to experimental results. Electron abnormal thermal conductibility is not better explained by electromagnetic modes than by electrostatic modes. In the second part, disruptions are examined; experimental manifestations are briefly recalled. Existing interpretations of these phenomenons are reviewed, which are based on magnetic islands non-linear evolution. A detailed analytical study of the case l=1, m=1 is made. Other disruptions are studied; it is shown that the disruptive process is indissociable from sudden apparition of small scale magnetic turbulence. The possibility of such a turbulence is studied. Its predictable effects are compared to experiment. Such a turbulence, is assumed to exist permanently in an attenuated form, which could justify the electronic transport anomalies in quiescent state

  7. Pharmacological disruption of maladaptive memory.

    Science.gov (United States)

    Taylor, Jane R; Torregrossa, Mary M

    2015-01-01

    Many psychiatric disorders are characterized by intrusive, distracting, and disturbing memories that either perpetuate the illness or hinder successful treatment. For example, posttraumatic stress disorder (PTSD) involves such strong reemergence of memories associated with a traumatic event that the individual feels like the event is happening again. Furthermore, drug addiction is characterized by compulsive use and repeated relapse that is often driven by internal memories of drug use and/or by exposure to external stimuli that were associated with drug use. Therefore, identifying pharmacological methods to weaken the strength of maladaptive memories is a major goal of research efforts aimed at finding new treatments for these disorders. The primary mechanism by which memories could be pharmacologically disrupted or altered is through manipulation of memory reconsolidation. Reconsolidation occurs when an established memory is remembered or reactivated, reentering a labile state before again being consolidated into long-term memory storage. Memories are subject to disruption during this labile state. In this chapter we will discuss the preclinical and clinical studies identifying potential pharmacological methods for disrupting the integrity of maladaptive memory to treat mental illness. PMID:25977090

  8. Engineering analysis of TFTR disruption

    International Nuclear Information System (INIS)

    This report covers an engineering approach quantifying the currents, forces, and times, as well as plasma position, for the worst-case disruption based on engineerign circuit assumptions for the plasma. As the plasma moves toward the wall during the current-decay phase of disruption, the wall currents affect the rate of movement and, hence, the decay time. The calculated structure-induced currents differ considerably from those calculated using a presently available criterion, which specifies that the plasma remains stationary in the center of the torus while decaying in 10 ms. This report outlines the method and basis for the engineering calculation used to determine the current and forces as a function of the circuit characteristics. It provides specific calculations for the Tokamak Fusion Test Reactor (TFTR) with variations in parameters such as the thermal decay time, the torus resistance, and plasma temperature during the current decay. The study reviews possible ways to reduce the disruption damage of TFTR by reducing the magnitude of the plasma external field energy that is absorbed by the plasma during the current decay

  9. Cutting edge: B220+CCR9- dendritic cells are not plasmacytoid dendritic cells but are precursors of conventional dendritic cells.

    Science.gov (United States)

    Segura, Elodie; Wong, June; Villadangos, José A

    2009-08-01

    Mouse lymphoid organs contain two major subsets of dendritic cells (DC) that differ in their phenotype and functions: conventional DC (cDC) and plasmacytoid DC (pDC). Recently, it has been proposed that differential expression of CCR9 could distinguish functionally distinct pDC subsets. We show that B220(+)CCR9(-) DC do not express classical pDC markers and have a developmental origin different from that of pDC. Furthermore, B220(+)CCR9(-) DC do not secrete IFN-alpha in response to CpG and, unlike pDC, can efficiently present exogenous Ags. Our results demonstrate that B220(+)CCR9(-) DC do not represent a subset of pDC. After in vivo transfer, these cells down-regulate B220 expression and convert into the two major cDC subsets, showing that they are a developmental stage of cDC differentiation. PMID:19570827

  10. The disruptive instability in Tokamak plasmas

    NARCIS (Netherlands)

    Salzedas, F.J.B.

    2001-01-01

    Studies performed in RTP (Rijnhuizen Tokamak Project) of the most violent and dangerous instability in tokamak plasmas, the major disruption, are presented. A particular class of disruptions is analyzed, namely the density limit disruption, which occur in high density plasmas. The radiative te

  11. Dendritic solidification morphology viewed from the perspective of constructal theory

    International Nuclear Information System (INIS)

    In this paper we focus on the application of the constructal theory in predicting the dendritic solid structure. First we analyse the marginal stability criterion from the perspective of the constructal principle. Having as a guiding principle the constructal law we have shown that among the whole range of possible dendrite tip radiuses predicted by the stability analysis the dendrite tip will choose the smallest one, that is a radius equal with the smallest perturbation wavelength leading to instabilities. We identify as well the existence of a competition between the diffusion controlled growth and the dendritic growth. Second, we develop a model for the secondary arm spacing. We identify a competition between the lateral diffusion controlled growth of a needle and the dendritic growth of lateral secondary arms. By analysing this competition we are able to characterize the sidebranching mechanism and to finally compute the secondary arm spacing. The result is in good agreement with the experimental results. Finally, the primary arm spacing is analysed from the perspective of the constructal law. The constructal law predicts that the only way the columnar tips can optimize the solidification process is to minimize the spacing between two adjacent tips, namely λ1. By quantifying the two mechanisms responsible for the selection of λ1, the dendrite division and the dendrite overgrown mechanisms, we were finally able to obtain a model for the primary arm spacing. This model is also validated against various experimental data

  12. Dendritic mitochondria reach stable positions during circuit development

    Science.gov (United States)

    Faits, Michelle C; Zhang, Chunmeng; Soto, Florentina; Kerschensteiner, Daniel

    2016-01-01

    Mitochondria move throughout neuronal dendrites and localize to sites of energy demand. The prevailing view of dendritic mitochondria as highly motile organelles whose distribution is continually adjusted by neuronal activity via Ca2+-dependent arrests is based on observations in cultured neurons exposed to artificial stimuli. Here, we analyze the movements of mitochondria in ganglion cell dendrites in the intact retina. We find that whereas during development 30% of mitochondria are motile at any time, as dendrites mature, mitochondria all but stop moving and localize stably to synapses and branch points. Neither spontaneous nor sensory-evoked activity and Ca2+ transients alter motility of dendritic mitochondria; and pathological hyperactivity in a mouse model of retinal degeneration elevates rather than reduces motility. Thus, our findings indicate that dendritic mitochondria reach stable positions during a critical developmental period of high motility, and challenge current views about the role of activity in regulating mitochondrial transport in dendrites. DOI: http://dx.doi.org/10.7554/eLife.11583.001 PMID:26742087

  13. Adolescent cocaine exposure simplifies orbitofrontal cortical dendritic arbors

    Directory of Open Access Journals (Sweden)

    Lauren M DePoy

    2014-10-01

    Full Text Available Cocaine and amphetamine remodel dendritic spines within discrete cortico-limbic brain structures including the orbitofrontal cortex (oPFC. Whether dendrite structure is similarly affected, and whether pre-existing cellular characteristics influence behavioral vulnerabilities to drugs of abuse, remain unclear. Animal models provide an ideal venue to address these issues because neurobehavioral phenotypes can be defined both before, and following, drug exposure. We exposed mice to cocaine from postnatal days 31-35, corresponding to early adolescence, using a dosing protocol that causes impairments in an instrumental reversal task in adulthood. We then imaged and reconstructed excitatory neurons in deep-layer oPFC. Prior cocaine exposure shortened and simplified arbors, particularly in the basal region. Next, we imaged and reconstructed orbital neurons in a developmental-genetic model of cocaine vulnerability – the p190rhogap+/- mouse. p190RhoGAP is an actin cytoskeleton regulatory protein that stabilizes dendrites and dendritic spines, and p190rhogap+/- mice develop rapid and robust locomotor activation in response to cocaine. Despite this, oPFC dendritic arbors were intact in drug-naïve p190rhogap+/- mice. Together, these findings provide evidence that adolescent cocaine exposure has long-term effects on dendrite structure in the oPFC, and they suggest that cocaine-induced modifications in dendrite structure may contribute to the behavioral effects of cocaine more so than pre-existing structural abnormalities in this cell population.

  14. Control of dendritic morphogenesis by Trio in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Madhuri Shivalkar

    Full Text Available Abl tyrosine kinase and its effectors among the Rho family of GTPases each act to control dendritic morphogenesis in Drosophila. It has not been established, however, which of the many GTPase regulators in the cell link these signaling molecules in the dendrite. In axons, the bifunctional guanine exchange factor, Trio, is an essential link between the Abl tyrosine kinase signaling pathway and Rho GTPases, particularly Rac, allowing these systems to act coordinately to control actin organization. In dendritic morphogenesis, however, Abl and Rac have contrary rather than reinforcing effects, raising the question of whether Trio is involved, and if so, whether it acts through Rac, Rho or both. We now find that Trio is expressed in sensory neurons of the Drosophila embryo and regulates their dendritic arborization. trio mutants display a reduction in dendritic branching and increase in average branch length, whereas over-expression of trio has the opposite effect. We further show that it is the Rac GEF domain of Trio, and not its Rho GEF domain that is primarily responsible for the dendritic function of Trio. Thus, Trio shapes the complexity of dendritic arbors and does so in a way that mimics the effects of its target, Rac.

  15. Design of tumor-specific immunotherapies using dendritic cells - effect of bromelain on dendritic cell maturation

    OpenAIRE

    Karlsen, Marie

    2009-01-01

    Immunotherapy using dendritic cells (DC) has shown promising results in clinical trials, but few relevant successes are recorded. Therefore, the choice of an appropriate DC population is critical for the outcome of this treatment. The DC used today in immunotherapy are often matured with a cytokine cocktail consisting of TNF-α, IL-1β, IL-6 and PGE2. These cells have deficits in their cytokine production, and also their migratory capacity in vivo needs improvement. After being introduced to br...

  16. Fractal structures of dendrites in GaSe crystals

    Science.gov (United States)

    Kolesnikov, N. N.; Borisenko, E. B.; Borisenko, D. N.; Bozhko, S. I.

    2008-07-01

    Solidification of melts at substantial supercooling is associated with instability on the growth front. This causes growth of dendrites, which form as a branched tree in a crystal. In the layered melt-grown GaSe crystals dendrites are observed, if growth rates are rather high [N.N. Kolesnikov, E.B. Borisenko, D.N. Borisenko, V.K. Gartman, Influence of growth conditions on microstructure and properties of GaSe crystals, J. Crystal Growth 300 (2) (2007) 294-298]. Models based on solution of the thermal diffusion problem are traditionally used to describe dendrite growth. Solution of this problem requires information about several physical parameters, such as diffusion coefficient, heat conductivity coefficient and supercooling at the solid/liquid interface. The study of scale invariance of dendrites formed in a crystal provides a new approach to solution of the dynamic growth problem. The calculated fractal dimensionality of the experimentally observed dendrites in GaSe crystals is D=1.7. It coincides with dimensionality of the clusters obtained through computer simulation in terms of the model of diffusion-limited aggregation (DLA). This result provides a new approach to description of the dynamics of dendrite growth. We have shown that the dendrite growth mechanism in the layered semiconductor crystals can be described by a two-dimensional DLA model. It is shown that probabilistic simulation can be used to show the development of a dendrite in any material. In contrast to the classical theories of dendrite growth, this approach does not require information on physical parameters.

  17. Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Tedesco, Gianni

    2010-01-01

    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when the algorithm was applied to anomaly detection for the detection of port scans. The results show the Dendritic Cell Algorithm is sucessful at detecting port scans.

  18. Follicular Dendritic Cell Sarcoma of the Abdomen: the Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae Wook; Lee, Soon Jin; Song, Hye Jong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-04-15

    Follicular dendritic cell sarcoma is a rare neoplasm that originates from follicular dendritic cells in lymphoid follicles. This disease usually involves the lymph nodes, and especially the head and neck area. Rarely, extranodal sites may be affected, including tonsil, the oral cavity, liver, spleen and the gastrointestinal tract. We report here on the imaging findings of follicular dendritic cell sarcoma of the abdomen that involved the retroperitoneal lymph nodes and colon. It shows as a well-defined, enhancing homogenous mass with internal necrosis and regional lymphadenopathy.

  19. Harnessing dendritic cells in inflammatory skin diseases.

    Science.gov (United States)

    Chu, Chung-Ching; Di Meglio, Paola; Nestle, Frank O

    2011-02-01

    The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-derived molecules or selectively modulate DC subsets is a convincing strategy to tackle inflammatory skin diseases. In this review we discuss recent advances underlining the functional specialization of skin DCs and discuss the potential implication for future DC-based therapeutic strategies. PMID:21295490

  20. Isolation of Human Skin Dendritic Cell Subsets.

    Science.gov (United States)

    Gunawan, Merry; Jardine, Laura; Haniffa, Muzlifah

    2016-01-01

    Dendritic cells (DCs) are specialized leukocytes with antigen-processing and antigen-presenting functions. DCs can be divided into distinct subsets by anatomical location, phenotype and function. In human, the two most accessible tissues to study leukocytes are peripheral blood and skin. DCs are rare in human peripheral blood (Nestle et al., J Immunol 151:6535-6545, 1993). These factors led to the extensive use of skin DCs as the "prototype" migratory DCs in human studies. In this chapter, we detail the protocols to isolate DCs and resident macrophages from human skin. We also provide a multiparameter flow cytometry gating strategy to identify human skin DCs and to distinguish them from macrophages. PMID:27142012

  1. Dendritic Cells and Humoral Immunity in Humans

    Science.gov (United States)

    Ueno, Hideki; Schmitt, Nathalie; Palucka, A. Karolina; Banchereau, Jacques

    2010-01-01

    Summary Dendritic cells (DCs) orchestrate the innate and adaptive immune systems to induce tolerance and immunity. DC plasticity and subsets are prominent determinants in the regulation of immune responses. Our recent studies suggest that humoral and cellular immunity is regulated by different myeloid DC subsets with distinct intrinsic properties in humans. While antibody response is preferentially mediated by CD14+ dermal DCs, cytotoxic T cell response is preferentially mediated by Langerhans cells (LCs). Thus, mechanisms whereby DCs induce humoral and cellular immunity appear to be fundamentally distinct. In this review, we will focus on the role of DCs in the development of humoral immunity. We will also discuss the mechanisms whereby DCs induce CD4+ T cells associated with the help of B cell response, including T follicular helper (Tfh) cells, and why human LCs lack this ability. PMID:20309010

  2. Harnessing Human Dendritic Cell Subsets for Medicine

    Science.gov (United States)

    Ueno, Hideki; Schmitt, Nathalie; Klechevsky, Eynav; Pedroza-Gonzales, Alexander; Matsui, Toshimichi; Zurawski, Gerard; Oh, SangKon; Fay, Joseph; Pascual, Virginia; Banchereau, Jacques; Palucka, Karolina

    2010-01-01

    Summary Immunity results from a complex interplay between the antigen-nonspecific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors and helicases. B and T lymphocytes of the adaptive immune system employ clonal receptors recognizing antigens or their derived peptides in a highly specific manner. An essential link between innate and adaptive immunity is provided by dendritic cells (DCs). DCs can induce such contrasting states as immunity and tolerance. The recent years have brought a wealth of information on the biology of DCs revealing the complexity of this cell system. Indeed, DC plasticity and subsets are prominent determinants of the type and quality of elicited immune responses. Here we summarize our recent studies aimed at a better understanding of the DC system to unravel the pathophysiology of human diseases and design novel human vaccines. PMID:20193020

  3. Immunotherapy of hematological malignancies using dendritic cells.

    Science.gov (United States)

    Van de Velde, Ann L R; Berneman, Zwi N; Van Tendeloo, Viggo F I

    2008-03-01

    The arsenal of therapeutic weapons against hematological malignancies is constantly growing. Unravelling the secrets of tumor immunobiology has allowed researchers to manipulate the immune system in order to stimulate tumor immunity or to bypass tumor-induced immunosuppression. An area of great interest is active specific immunotherapy where dendritic cell (DC)-based therapeutic vaccines for cancer have definitely grabbed the spotlight. DC are intensively investigated as cellular adjuvants to harness the immune system to fight off cancer by augmenting the number and effector functions of tumor-specific CD8+ cytotoxic T lymphocytes. In the present review we present a comprehensive synopsis and an update of the use of DC in hematological malignancies. In the future, more basic research as well as more clinical trials are warranted to fully establish the value of DC vaccination as an adjuvant therapy for modern hematological oncology. PMID:18390412

  4. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  5. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  6. Plasmacytoid Dendritic Cells: From Heart to Vessels

    Directory of Open Access Journals (Sweden)

    Rosalinda Sorrentino

    2010-01-01

    Full Text Available Cardiovascular diseases, formerly only attributed to the alterations of the stromal component, are now recognized as immune-based pathologies. Plasmacytoid Dendritic Cells (pDCs are important immune orchestrators in heart and vessels. They highly produce IFN type I that promote the polarization of T cells towards a Th1 phenotype; however, pDCs can also participate to suppressive networks via the recruitment of T regulatory cells that downmodulate proinflammatory responses. pDCs populate the vessel wall layers during pathological conditions, such as atherosclerosis. It is thus clear that a better identification of pDCs activity in cardiovascular diseases can not only elucidate pathological mechanisms but also lead to new therapeutic approaches.

  7. Platinum dendritic nanoparticles with magnetic behavior

    International Nuclear Information System (INIS)

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  8. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease. PMID:20357073

  9. Probiotics, dendritic cells and bladder cancer.

    Science.gov (United States)

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette

  10. GATA2 regulates dendritic cell differentiation.

    Science.gov (United States)

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2016-07-28

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin(-)Sca-1(+)Kit(+) cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation. PMID:27259979

  11. Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions

    OpenAIRE

    Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris

    2013-01-01

    Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where den...

  12. Optimization of human dendritic cell sample preparation for mass spectrometry-based proteomic studies.

    Science.gov (United States)

    Zhang, Ying; Bottinelli, Dario; Lisacek, Frédérique; Luban, Jeremy; Strambio-De-Castillia, Caterina; Varesio, Emmanuel; Hopfgartner, Gérard

    2015-09-01

    Dendritic cells (DCs) are specialized leukocytes that orchestrate the adaptive immune response. Mass spectrometry (MS)-based proteomic study of these cells presents technical challenges, especially when the DCs are human in origin due to the paucity of available biological material. Here, to maximize MS coverage of the global human DC proteome, different cell disruption methods, lysis conditions, protein precipitation, and protein pellet solubilization and denaturation methods were compared. Mechanical disruption of DC cell pellets under cryogenic conditions, coupled with the use of RIPA (radioimmunoprecipitation assay) buffer, was shown to be the method of choice based on total protein extraction and on the solubilization and identification of nuclear proteins. Precipitation by acetone was found to be more efficient than that by 10% trichloroacetic acid (TCA)/acetone, allowing in excess of 28% more protein identifications. Although being an effective strategy to eliminate the detergent residue, the acetone wash step caused a loss of protein identifications. However, this potential drawback was overcome by adding 1% sodium deoxycholate into the dissolution buffer, which enhanced both solubility of the precipitated proteins and digestion efficiency. This in turn resulted in 6 to 11% more distinct peptides and 14 to 19% more total proteins identified than using 0.5M triethylammonium bicarbonate alone, with the greatest increase (34%) for hydrophobic proteins. PMID:25983236

  13. Optimization of human dendritic cell sample preparation for mass spectrometry-based proteomics studies

    Science.gov (United States)

    Zhang, Ying; Bottinelli, Dario; Lisacek, Frédérique; Luban, Jeremy; De Castillia, Caterina Strambio; Varesio, Emmanuel; Hopfgartner, Gérard

    2016-01-01

    Dendritic cells (DCs) are specialized leukocytes that orchestrate the adaptive immune response. Mass spectrometry based proteomic study of these cells presents technical challenges, especially when the DCs are human in origin due to the paucity of available biological material. Here, to maximize mass spectrometry coverage of the global human DC proteome, different cell disruption methods, lysis conditions, protein precipitation, and protein pellet solubilisation and denaturation methods were compared. Mechanical disruption of DC cell pellets under cryogenic conditions, coupled with the use of RIPA buffer, was shown to be the method of choice based on total protein extraction and on the solubilisation and identification of nuclear proteins. Precipitation by acetone was found to be more efficient than by 10% TCA/acetone, allowing greater than 28% more protein identifications. Although being an effective strategy to eliminate the detergent residue, the acetone-wash step caused a loss of protein identifications. However, this potential drawback was overcome by adding 1% sodium deoxycholate in the dissolution buffer, which enhanced both solubility of the precipitated proteins and digestion efficiency. This in turn resulted in 6-11% more distinct peptides and 14-19% more total proteins identified than using 0.5M triethylammonium bicarbonate alone with the greatest increase (34%) for hydrophobic proteins. PMID:25983236

  14. Disruptive Innovation in Numerical Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Waltz, Jacob I. [Los Alamos National Laboratory

    2012-09-06

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  15. Environmental alkylphenols modulate cytokine expression in plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Chih-Hsing Hung

    Full Text Available BACKGROUND: Alkylphenols, such as nonylphenol (NP and 4-octylphenol (4-OP, have the potential to disturb immune system due to their weak estrogen-like activity, an effect with potential serious public health impact due to the worldwide distribution of these substances. Plasmacytoid dendritic cells (PDCs can secrete large amounts of type I IFNs and are critical in immune regulation. However, there has been limited study about the influence of alkylphenols on the function of pDCs. OBJECTIVE: The aim of this study was to examine the effect of alkylphenols on pDC functions in vitro and in vivo and then further explored the involved signaling pathways and epigenetic changes. METHODS: Circulating pDCs from human peripheral blood mononuclear cells were treated with alkylphenols with or without CpG stimulation. Alkylphenol-associated cytokine responses, signaling events, histone modifications and viral activity were further examined. In NP-exposed mice, the effect of NP on splenic pDC function and allergic lung inflammation were also assessed. RESULTS: The results showed that NP increased the expression of TNF-α, but suppressed IL-10 production in the range of physiological doses, concomitant with activation of the MKK3/6-p38 signaling pathway and enhanced levels of acetylated histone 3 as well as histone 4 at the TNFA gene locus. Further, in CpG-stimulated pDCs, NP suppressed type I IFNs production, associated with down-regulation of IRF-7 and MKK1/2-ERK-Elk-1 pathways and led to the impaired anti-enterovirus 71 activity in vitro. Additionally, splenic pDCs from NP-exposed mice showed similar cytokine changes upon CpG stimulation under conditions relevant to route and level of exposure in humans. NP treatment also enhanced allergic lung inflammation in vivo. CONCLUSION: Alkylphenols may influence pDCs' functions via their abilities to induce expression of a pro-inflammatory cytokine, TNF-α, and to suppress regulatory cytokines, including IL-10, IFN

  16. Actin Remodeling and Polymerization Forces Control Dendritic Spine Morphology

    CERN Document Server

    Miermans, Karsten; Storm, Cornelis; Hoogenraad, Casper

    2015-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. This striking progression is coincident with the (re)configuration of the neuronal network during early development, learning and memory formation, and has been conjectured to be part of the machinery that encodes these processes at the scale of individual neuronal connections. It is well established that the structural plasticity of spines is strongly dependent upon the actin cytoskeleton inside the spine. A general framework that details the precise role of actin in directing the transitions between the various spine shapes is lacking. We address this issue, and present...

  17. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh; Møller, Bjarne Kuno

    CD163 and CD91 are scavenging receptors with highly increased expression during the differentiation of monocytes into the anti-inflammatory macrophage phenotype. In addition, CD91 is expressed in monocyte-derived dendritic cells (MoDCs), where the receptor is suggested to be important for...... internalization of CD91-targeted antigens to be presented on the dendritic cell surface for T-cell stimulation. Despite their overlap in functionality, the expression of CD91 and CD163 has never been compared and the expression of CD163 in the monocyte-dendritic cell lineage is not yet characterized. CD163...... expression in dendritic cells (DCs) was investigated using multicolor flow cytometry in peripheral blood from 31 healthy donors and 15 HIV-1 patients in addition to umbilical cord blood from 5 newborn infants. Total RNA was isolated from MACS purified DCs and CD163 mRNA was determined with real-time reverse...

  18. Supramolecular effects in dendritic systems containing photoactive groups

    Directory of Open Access Journals (Sweden)

    GIANLUCA CAMILLO AZZELLINI

    2000-03-01

    Full Text Available In this article are described dendritic structures containing photoactive groups at the surface or in the core. The observed supramolecular effects can be attributed to the nature of the photoactive group and their location in the dendritic architecture. The peripheric azobenzene groups in these dendrimeric compounds can be regarded as single residues that retain the spectroscopic and photochemical properties of free azobenzene moiety. The E and Z forms of higher generation dendrimer, functionalized with azobenzene groups, show different host ability towards eosin dye, suggesting the possibility of using such dendrimer in photocontrolled host-guest systems. The photophysical properties of many dendritic-bipyridine ruthenium complexes have been investigated. Particularly in aerated medium more intense emission and a longer excited-state lifetime are observed as compared to the parent unsubstituted bipyridine ruthenium complexes. These differences can be attributed to a shielding effect towards dioxygen quenching originated by the dendritic branches.

  19. CUB and Sushi multiple domains 3 regulates dendrite development.

    Science.gov (United States)

    Mizukami, Tomoharu; Kohno, Takao; Hattori, Mitsuharu

    2016-09-01

    CUB and Sushi multiple domains 3 (CSMD3) is a large protein expressed in fetal and adult brain. Recently, mutations of the CSMD3 gene were identified in schizophrenia and autism patients. However, biochemical properties and functions of the CSMD3 protein remain unknown. Here, we demonstrate that CSMD3 is an oligomeric type I transmembrane protein localized in the apical dendrites of hippocampal pyramidal neurons in the postnatal brain. In cultured hippocampal neurons, CSMD3 is expressed only after 7 days in vitro. Overexpression of CSMD3 induced dendritic branching in hippocampal neurons. Regulation of dendritic morphology by CSMD3 depended on the presence of its extracellular region, while CSMD3 intracellular region was dispensable for this activity. These results suggest that CSMD3 acts as a co-receptor of an unidentified membrane protein to regulate dendrite development. Therefore, malfunctions of CSMD3 may be one of the factors in the pathogenesis of psychiatric disorders. PMID:27033969

  20. Iso-response methods provide direct insight into dendritic computations.

    Directory of Open Access Journals (Sweden)

    Stefan Häusler

    2014-04-01

    These results demonstrate that iso-response methods are well suited to unravel complex dendritic computations in model neurons and that they can provide a powerful tool for experimental research with applications in multi-patch or optogenetic recordings.

  1. Lithium Dendrite Suppression with UV-Curable Polysilsesquioxane Separator Binders.

    Science.gov (United States)

    Na, Wonjun; Lee, Albert S; Lee, Jin Hong; Hwang, Seung Sang; Kim, Eunkyoung; Hong, Soon Man; Koo, Chong Min

    2016-05-25

    For the first time, an inorganic-organic hybrid polymer binder was used for the coating of hybrid composites on separators to enhance thermal stability and to prevent formation of lithium dendrite in lithium metal batteries. The fabricated hybrid-composite-coated separators exhibited minimal thermal shrinkage compared with the previous composite separators (separators revealed excellent C-rate and cyclability performance due to the prevention of lithium dendrite growth on the lithium anode even after 200 cycles under 0.2-5C (charge-discharge) conditions. The mechanism for lithium dendrite prevention was attributed to exceptional nanoscale surface mechanical properties of the hybrid composite coating layer compared with the lithium metal anode, as the elastic modulus of the hybrid-composite-coated separator far exceeded those of both the lithium metal anode and the required threshold for lithium metal dendrite prevention. PMID:27148625

  2. Dendritic Cells, Viruses, and the Development of Atopic Disease

    Directory of Open Access Journals (Sweden)

    Jonathan S. Tam

    2012-01-01

    Full Text Available Dendritic cells are important residents of the lung environment. They have been associated with asthma and other inflammatory diseases of the airways. In addition to their antigen-presenting functions, dendritic cells have the ability to modulate the lung environment to promote atopic disease. While it has long been known that respiratory viral infections associate with the development and exacerbation of atopic diseases, the exact mechanisms have been unclear. Recent studies have begun to show the critical importance of the dendritic cell in this process. This paper focuses on these data demonstrating how different populations of dendritic cells are capable of bridging the adaptive and innate immune systems, ultimately leading to the translation of viral illness into atopic disease.

  3. Human plasmacytoid dendritic cells: from molecules to intercellular communication network

    OpenAIRE

    Till Sebastian Manuel Mathan; Carl Gustav Figdor; Sonja Ingrid Buschow

    2013-01-01

    Plasmacytoid Dendritic Cells (pDCs) are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presenting cells (APCs), making them an interesting target for immunotherapy against cancer. However, the modes of action of pDCs are not restricted to antigen presentation and IFN secretion alone. In this ...

  4. Human Plasmacytoid Dendritic Cells: From Molecules to Intercellular Communication Network

    OpenAIRE

    Mathan, Till S. M.; Figdor, Carl G.; Buschow, Sonja I.

    2013-01-01

    Plasmacytoid dendritic cells (pDCs) are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presenting cells, making them an interesting target for immunotherapy against cancer. However, the modes of action of pDCs are not restricted to antigen presentation and IFN secretion alone. In this review ...

  5. Follicular dendritic cell sarcoma of the pharyngeal region

    OpenAIRE

    HU, TENGPENG; Wang, Xinhua; Yu, Chang; YAN, JIAQIN; ZHANG, XUNDONG; Li, Ling; Li, Xin; Zhang, Lei; Wu, Jingjing; MA, WANG; Li, Wencai; Wang, Guannan; ZHAO, WUGAN; GAO, XIANZHENG; Zhang, Dandan

    2013-01-01

    Follicular dendritic cell sarcoma (FDCS) is a rare neoplasm arising most commonly from follicular dendritic cells in the lymph nodes. It is exceedingly rare in extranodal sites, particularly in the pharyngeal region. The present study reports 3 cases occurring in the pharyngeal region. Case 1 had tonsil and cervical lymph node involvement, while case 3 also had tonsil involvement. Cases 1 and 3 relapsed locally at 3 and 17 months after surgery, respectively. Case 2 was diagnosed with a tumor ...

  6. Interstitial and Langerhans' dendritic cells in chronic periodontitis and gingivitis

    OpenAIRE

    Patricia Ramos Cury; Cristiane Furuse; Ana Elisa Amaro Rodrigues; José Alexandre Barbuto; Cavalcanti de Araújo; Ney Soares de Araújo

    2008-01-01

    The aim of the present study was to compare quantitatively the distribution of dendritic cell subpopulations in chronic periodontitis and gingivitis. Fourteen biopsies from patients with chronic periodontitis and fifteen from patients with gingivitis were studied. An immunoperoxidase technique was used to quantify the number of Langerhans' cells (CD1a) and interstitial dendritic cells (factor XIIIa) in the oral and sulcular and junctional/pocket epithelia and in the lamina propria. A greater ...

  7. Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm

    OpenAIRE

    Greensmith, Julie; Aickelin, Uwe; Tedesco, Gianni

    2010-01-01

    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial im...

  8. Dendritic Cells and Innate Immunity in Kidney Transplantation

    OpenAIRE

    Zhuang, Quan; Lakkis, Fadi G.

    2015-01-01

    Summary This review summarizes emerging concepts related to the roles of dendritic cells and innate immunity in organ transplant rejection. First, it highlights the primary role that recipient, rather than donor, dendritic cells have in rejection and reviews their origin and function in the transplanted kidney. Second, it introduces the novel concept that recognition of allogeneic non-self by host monocytes (referred to here as innate allorecognition) is necessary for initiating rejection by ...

  9. Disruption mitigation experiment on Tore Supra

    International Nuclear Information System (INIS)

    Disruptions can cause serious damages to tokamaks due to the resulting forces on the machine's structures and to the flux of accelerated runaway electrons. Mitigation techniques are thus required. A promising method is massive gas injection (MGI), the impact of this method on runaway electrons has been investigated on Tore-Supra where runaway electrons are observed in a majority of disruptions. Helium has been injected in either stable or pre-disruptive phases. A statistical comparison of several disruptions either spontaneous or triggered by MGI indicates that MGI disruptions are less violent, with a good benefit for machine's structures. Compared to a standard disruption, a MGI disruption enables an easy plasma recovery for the next pulse without noticeable helium pollution of following plasmas. The most important effect of MGI disruptions is the total disappearance of the runaway electron production. The capability of MGI to stop already accelerated electrons has also been investigated, it is shown that MGI is not able to stop already accelerated runaways. This points to the absolute necessity to develop disruption precursor techniques to identify disruptions sufficiently in advance (6-10 ms) to allow MGI to penetrate the plasma core before the current quenches. (A.C.)

  10. Dendritic bundles, minicolumns, columns, and cortical output units

    Directory of Open Access Journals (Sweden)

    Giorgio Innocenti

    2010-03-01

    Full Text Available The search for the fundamental building block of the cerebral cortex has highlighted three structures, perpendicular to the cortical surface: i columns of neurons with radially invariant response properties, e.g., receptive field position, sensory modality, stimulus orientation or direction, frequency tuning etc. ii minicolumns of radially aligned cell bodies and iii bundles, constituted by the apical dendrites of pyramidal neurons with cell bodies in different layers. The latter were described in detail, and sometimes quantitatively, in several species and areas. It was recently suggested that the dendritic bundles consist of apical dendrites belonging to neurons projecting their axons to specific targets. We review the concept above and suggest that another structural and computational unit of cerebral cortex is the cortical output unit (COU, i.e. an assembly of bundles of apical dendrites and their parent cell bodies including each of the outputs to distant cortical or subcortical structures, of a given cortical locus (area or part of an area. This somato-dendritic assembly receives inputs some of which are common to the whole assembly and determine its radially invariant response properties, others are specific to one or more dendritic bundles, and determine the specific response signature of neurons in the different cortical layers and projecting to different targets.

  11. Measured currents in JET limiters during disruptions

    International Nuclear Information System (INIS)

    Structures mounted inside a tokamak must be able to withstand the electromagnetic forces which arise during disruptions of the plasma. This paper reports on halo current measurements in the JET tokamak during disruptions. A toroidally distributed array of current sensing tiles reveal that in many disruptions a high degree of toroidal uniformity exists. However in exceptional disruptions the halo current measured at different toroidal positions varies by more than a factor of 2. This latter class of disruption has been observed to result in an asymmetric displacement of the vacuum vessel. The total halo current is estimated to be up to 15% of the initial plasma current. The halo current width for a particular disruption is estimated to be 8 cm

  12. Deletion of collapsin response mediator protein 4 results in abnormal layer thickness and elongation of mitral cell apical dendrites in the neonatal olfactory bulb.

    Science.gov (United States)

    Tsutiya, Atsuhiro; Watanabe, Hikaru; Nakano, Yui; Nishihara, Masugi; Goshima, Yoshio; Ohtani-Kaneko, Ritsuko

    2016-05-01

    Collapsin response mediator protein 4 (CRMP4), a member of the CRMP family, is involved in the pathogenesis of neurodevelopmental disorders such as schizophrenia and autism. Here, we first compared layer thickness of the olfactory bulb between wild-type (WT) and CRMP4-knockout (KO) mice. The mitral cell layer (MCL) was significantly thinner, whereas the external plexiform layer (EPL) was significantly thicker in CRMP4-KO mice at postnatal day 0 (PD0) compared with WTs. However, differences in layer thickness disappeared by PD14. No apoptotic cells were found in the MCL, and the number of mitral cells (MCs) identified with a specific marker (i.e. Tbx21 antibody) did not change in CRMP4-KO neonates. However, DiI-tracing showed that the length of mitral cell apical dendrites was greater in CRMP4-KO neonates than in WTs. In addition, expression of CRMP4 mRNA in WT mice was most abundant in the MCL at PD0 and decreased afterward. These results suggest that CRMP4 contributes to dendritic elongation. Our in vitro studies showed that deletion or knockdown of CRMP4 resulted in enhanced growth of MAP2-positive neurites, whereas overexpression of CRMP4 reduced their growth, suggesting a new role for CRMP4 as a suppressor of dendritic elongation. Overall, our data suggest that disruption of CRMP4 produces a temporary alteration in EPL thickness, which is constituted mainly of mitral cell apical dendrites, through the enhanced growth of these dendrites. PMID:26739921

  13. Numerical Simulation of Dendritic Growth of Continuously Cast High Carbon Steel

    Science.gov (United States)

    Wang, Weiling; Luo, Sen; Zhu, Miaoyong

    2015-01-01

    Considering the influence of the latent heat released during the solidification of high carbon liquid steel, a cellular automaton (CA) model coupled with the heat transfer was developed to investigate the growth of equiaxed dendrites which is controlled by the solute diffusion during the continuous casting process. Additionally, the growth of columnar dendrites and primary dendrite arm spacings were predicted and measured. The results show that the CA model is able to describe the growth behavior of equiaxed dendrites, especially at 5 K to 7 K melt undercoolings, and the approach adjusting the cooling medium temperature is reliable to keep the undercooling condition stable for equiaxed dendrites although its hysteresis is reinforced as the pre-set undercooling increases. With the increase of the melt undercooling, the growth of equiaxed dendrites becomes faster, and the thickness of dendritic arms increases slightly, however, the thickness of the diffusion layer in front of dendritic tips keeps constant. The growth of thin and tiny columnar dendrites will be confined due to the competition and absorbed by neighboring strong columnar dendrites, giving rise to the coarsening of columnar dendrites, which is observed both from the experimental observation and the numerical simulation. With the decrease of the cooling intensity, columnar dendrites get sparser, primary dendrite arm spacings increase, and secondary dendritic arms become undeveloped.

  14. Plasma characteristics during soft disruptions

    International Nuclear Information System (INIS)

    A significant class of disruptive discharges in tokamaks is characterized by an irreversible but rather slow current decay occurring while the electron temperature is still high. For definitiveness we refer to typical JET cases, where the observed rate of current decay is of the order of 2-3MA/s and the electron temperature Te measured by the ECE polychromator may decay as fast as 6keV/s in the center and 1.5 keV/s at the position of the q=2 surface. The influx of impurities is moderate and Zeff ∼6. The Ohmic resistance ROhm calculated with the proper plasma geometry and the ECE profiles is of the order of 1 μΩ plasma during the disruptive decay and these observations cannot be reconciled with the model of a choking effect of the plasma caused solely by a sudden inflow of impurities which may drive a radiative collapse of the plasma temperature to a few eV on a ms time scale. The discharge evolution is conveniently described by the trajectories on the plane of the parameters li (internal inductance) and q(a) (safety factor). Inspection of the path followed shows that the soft disruption phase often traces backwards the current ramp up phase, where an accelerated peaking up of the current profile may be associated to the effects of observed enhancement of MHD activity, as measured by the poloidal and toroidal magnetic pick-up coils. The observed irreversible process suggests that the effective resistance Reff of the plasma may be due indeed to temperature independent MHD effects. The problem is discussed comparing the difference between the effective and the Ohmic resistances with the expected value of a model based on the coupling of unstable tearing modes with resonant surfaces close together, around the q=2 surface where a saturated background mode is assumed. The time scales of the process observed require that the power input to the plasma be evaluated considering the full coupling with the external active and passive circuit elements since it is incorrect

  15. Disrupted Sleep: From Molecules to Cognition

    OpenAIRE

    Someren, E.J.W.; Cirelli, C.; Dijk, D.-J.; Van Cauter, E; Schwartz, Sophie; Chee, M. W. L.

    2015-01-01

    Although the functions of sleep remain to be fully elucidated, it is clear that there are far-reaching effects of its disruption, whether by curtailment for a single night, by a few hours each night over a long period, or by disruption in sleep continuity. Epidemiological and experimental studies of these different forms of sleep disruption show deranged physiology from subcellular levels to complex affective behavior. In keeping with the multifaceted influence of sleep on health and well-bei...

  16. Disrupted Sleep: From Molecules to Cognition

    OpenAIRE

    Van Someren, Eus J. W.; Cirelli, Chiara; Dijk, Derk-Jan; Van Cauter, Eve; Schwartz, Sophie; Chee, Michael W. L.

    2015-01-01

    UNLABELLED: Although the functions of sleep remain to be fully elucidated, it is clear that there are far-reaching effects of its disruption, whether by curtailment for a single night, by a few hours each night over a long period, or by disruption in sleep continuity. Epidemiological and experimental studies of these different forms of sleep disruption show deranged physiology from subcellular levels to complex affective behavior. In keeping with the multifaceted influence of sleep on health ...

  17. Multistage Logistic Network Optimization under Disruption Risk

    OpenAIRE

    Rusman, Muhammad

    2013-01-01

    Getting over disruptions risk has been a challenging issue for many companies under the globalization that will link to potential external source such as demand uncertainties, natural disasters, and terrorist attacks. The disruption is an unexpected event that disturbs normal flows of products and materials within a supply chain. The disruption at one members of supply chain will propagate the offers and finally affect significant impacts on the entire chain. If we look back...

  18. Towards a Framework of Digital Platform Disruption

    OpenAIRE

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    2014-01-01

    Digital platforms are disruptive information technology (IT) artifacts that erode conventional business logic associated with traditional market structures. This paper presents a framework for examining the disruptive potential of digital platforms whereby we postulate that the strategic interplay of governance regimes and platform layers is deterministic of whether disruptive derivatives are permitted to flourish. This framework has been employed in a comparative case study betwe...

  19. Disruption management in passenger railway transportation.

    OpenAIRE

    Jespersen-Groth, J.; Potthoff, Daniel; Clausen, J.; Huisman, Dennis; Kroon, Leo; Maróti, Gábor; Nielsen, M.N.

    2007-01-01

    textabstractThis paper deals with disruption management in passenger railway transportation. In the disruption management process, many actors belonging to different organizations play a role. In this paper we therefore describe the process itself and the roles of the different actors. Furthermore, we discuss the three main subproblems in railway disruption management: timetable adjustment, and rolling stock and crew re-scheduling. Next to a general description of these problems, we give an o...

  20. Activated protein C modulates the proinflammatory activity of dendritic cells

    Directory of Open Access Journals (Sweden)

    Matsumoto T

    2015-05-01

    Full Text Available Takahiro Matsumoto,1,2* Yuki Matsushima,1* Masaaki Toda,1 Ziaurahman Roeen,1 Corina N D'Alessandro-Gabazza,1,5 Josephine A Hinneh,1 Etsuko Harada,1,3 Taro Yasuma,4 Yutaka Yano,4 Masahito Urawa,1,5 Tetsu Kobayashi,5 Osamu Taguchi,5 Esteban C Gabazza1 1Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, 2BONAC Corporation, BIO Factory 4F, Fukuoka, 3Iwade Research Institute of Mycology, 4Department of Endocrinology, Diabetes and Metabolism, 5Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, Japan *These authors contributed equally to this work Background: Previous studies have demonstrated the beneficial activity of activated protein C in allergic diseases including bronchial asthma and rhinitis. However, the exact mechanism of action of activated protein C in allergies is unclear. In this study, we hypothesized that pharmacological doses of activated protein C can modulate allergic inflammation by inhibiting dendritic cells. Materials and methods: Dendritic cells were prepared using murine bone marrow progenitor cells and human peripheral monocytes. Bronchial asthma was induced in mice that received intratracheal instillation of ovalbumin-pulsed dendritic cells. Results: Activated protein C significantly increased the differentiation of tolerogenic plasmacytoid dendritic cells and the secretion of type I interferons, but it significantly reduced lipopolysaccharide-mediated maturation and the secretion of inflammatory cytokines in myeloid dendritic cells. Activated protein C also inhibited maturation and the secretion of inflammatory cytokines in monocyte-derived dendritic cells. Activated protein C-treated dendritic cells were less effective when differentiating naïve CD4 T-cells from Th1 or Th2 cells, and the cellular effect of activated protein C was mediated by its receptors. Mice that received adoptive transfer of activated protein C

  1. Stochastic hybrid model of spontaneous dendritic NMDA spikes

    International Nuclear Information System (INIS)

    Following recent advances in imaging techniques and methods of dendritic stimulation, active voltage spikes have been observed in thin dendritic branches of excitatory pyramidal neurons, where the majority of synapses occur. The generation of these dendritic spikes involves both Na+ ion channels and M-methyl-D-aspartate receptor (NMDAR) channels. During strong stimulation of a thin dendrite, the resulting high levels of glutamate, the main excitatory neurotransmitter in the central nervous system and an NMDA agonist, modify the current-voltage (I–V) characteristics of an NMDAR so that it behaves like a voltage-gated Na+ channel. Hence, the NMDARs can fire a regenerative dendritic spike, just as Na+ channels support the initiation of an action potential following membrane depolarization. However, the duration of the dendritic spike is of the order 100 ms rather than 1 ms, since it involves slow unbinding of glutamate from NMDARs rather than activation of hyperpolarizing K+ channels. It has been suggested that dendritic NMDA spikes may play an important role in dendritic computations and provide a cellular substrate for short-term memory. In this paper, we consider a stochastic, conductance-based model of dendritic NMDA spikes, in which the noise originates from the stochastic opening and closing of a finite number of Na+ and NMDA receptor ion channels. The resulting model takes the form of a stochastic hybrid system, in which membrane voltage evolves according to a piecewise deterministic dynamics that is coupled to a jump Markov process describing the opening and closing of the ion channels. We formulate the noise-induced initiation and termination of a dendritic spike in terms of a first-passage time problem, under the assumption that glutamate unbinding is negligible, which we then solve using a combination of WKB methods and singular perturbation theory. Using a stochastic phase-plane analysis we then extend our analysis to take proper account of the

  2. Current disruption in toroidal devices

    International Nuclear Information System (INIS)

    Attempts at raising the density or the plasma current in a tokamak above certain critical values generally result in termination of the discharge by a disruption. This sudden end of the plasma current and plasma confinement is accompanied by large induced voltages and currents in the outer structures which, in large tokamaks, can only be handled with considerable effort, and which will probably only be tolerable in reactors as rare accidents. Because of its crucial importance for the construction and operation of tokamaks, this phenomenon and its theoretical interpretation were the subject of a three-day symposium organized by the International Atomic Energy Agency and Max-Planck-Institut fuer Plasmaphysik at Garching from February 14 to 16. (orig./HT)

  3. Catastrophic disruption experiments: Recent results

    Science.gov (United States)

    Martelli, G.; Ryan, E. V.; Nakamura, A. M.; Giblin, I.

    1994-01-01

    This paper presents a review of the progress in the field of catastrophic disruption experiments over the past 4 years, since the publication of the review paper by Fujiwara et al. (1989). We describe the development of new techniques to produce shattering impacts relevant to the study of the collisional evolution of the asteroids, and summarize the results from numerous experiments which have been performed to date, using a variety of materials for both the impactor and the targets. Some of these, such as ice-on-ice, loose aggregates and pressurized targets, are quite new and have provided novel and exciting results. Some of the gaps existing previously in the data on fragment ejection-angle distributions, as well as translational and rotational velocity fields (including fine fragments) have been filled, and these new results will be surveyed.

  4. Disrupting Entanglement of Black Holes

    CERN Document Server

    Leichenauer, Stefan

    2014-01-01

    We study entanglement in thermofield double states of strongly coupled CFTs by analyzing two-sided Reissner-Nordstrom solutions in AdS. The central object of study is the mutual information between a pair of regions, one on each asymptotic boundary of the black hole. For large regions the mutual information is positive and for small ones it vanishes; we compute the critical length scale, which goes to infinity for extremal black holes, of the transition. We also generalize the butterfly effect of Shenker and Stanford to a wide class of charged black holes, showing that mutual information is disrupted upon perturbing the system and waiting for a time of order $\\log E/\\delta E$ in units of the temperature. We conjecture that the parametric form of this timescale is universal.

  5. Traffic disruption and recovery in road networks

    Science.gov (United States)

    Zhang, Lele; de Gier, Jan; Garoni, Timothy M.

    2014-05-01

    We study the impact of disruptions on road networks, and the recovery process after the disruption is removed from the system. Such disruptions could be caused by vehicle breakdown or illegal parking. We analyze the transient behavior using domain wall theory, and compare these predictions with simulations of a stochastic cellular automaton model. We find that the domain wall model can reproduce the time evolution of flow and density during the disruption and the recovery processes, for both one-dimensional systems and two-dimensional networks.

  6. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  7. Dendritic cells in inflammatory sinonasal diseases.

    Science.gov (United States)

    Cao, P-P; Shi, L-L; Xu, K; Yao, Y; Liu, Z

    2016-07-01

    Dendritic cells (DCs) are critical in linking the innate and adaptive immune responses, which have been implicated in the pathogenesis of many immune and inflammatory diseases as well as the development of tumours. The role of DCs in the pathophysiology of lung diseases has been widely studied. However, the phenotype, subset and function of DCs in upper airways under physiological or pathological conditions remain largely undefined. Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are two important upper airway diseases with a high worldwide prevalence. Aberrant innate and adaptive immune responses have been considered to play an important role in the pathogenesis of AR and CRS. To this end, understanding the function of DCs in shaping the immune responses in sinonasal mucosa is critical in exploring the pathogenic mechanisms underlying AR and CRS as well as in developing novel therapeutic strategies. This review summarizes the phenotype, subset, function and regulation of DCs in sinonasal mucosa, particularly in the setting of AR and CRS. Furthermore, this review discusses the perspectives for future research and potential clinical utility focusing on DC pathways in the context of AR and CRS. PMID:27159777

  8. Baicalin induced dendritic cell apoptosis in vitro

    Directory of Open Access Journals (Sweden)

    HuahuaZhang

    2011-03-01

    Full Text Available This study was aimed to investigate the effects of Baicalin (BA, a major flavonoid constituent found in the herb Baikal skullcap, on dendritic cells (DCs. DCs were generated by culturing murine bone marrow cells for 6 days with granulocyte-macrophage colony-stimulating factor and interleukin-4, and lipopolysaccharide (LPS was added on day 5 to stimulate DCs maturation. The expression levels of DC maturity markers (CD80/CD86 were assessed by flow cytometry using direct immunofluorescence method. Interleukin-12 (IL-12 levels in the culture supernatants were assayed by ELISA. Apoptosis of DCs was analyzed by flow cytometry after Annexin V/propidium iodide staining. The mitochondrial membrane potential changes were measured by using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1. Exposure of DCs to BA (2-50 microM during bone marrow cell differentiation showed no effects on the up-regulation of CD80/CD86 expression on DCs in response to LPS stimulation, but reduced DCs recovery by inducing apoptosis, and significantly inhibited the release of IL-12 to culture supernatants. BA induced DC apoptosis in a time- and dose-dependent way, and immature DCs were more sensitive for BA-induced apoptosis than mature DC. BA also induced mitochondrial membrane potential changes in DCs. These results demonstrate that BA induces selective apoptosis in immature DCs possibly through mitochondria-mediated pathway.

  9. Macrophages and Dendritic Cells: Partners in Atherogenesis.

    Science.gov (United States)

    Cybulsky, Myron I; Cheong, Cheolho; Robbins, Clinton S

    2016-02-19

    Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field. PMID:26892963

  10. Follicular dendritic cells in health and disease

    Directory of Open Access Journals (Sweden)

    Mohey Eldin M El Shikh

    2012-09-01

    Full Text Available Follicular dendritic cells (FDCs are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags in the form of highly immunogenic immune complexes (ICs consisting of Ag plus specific antibody (Ab and/or complement proteins. FDCs multimerise Ags and present them polyvalently to B cells in periodically arranged arrays that extensively crosslink the B cell receptors for Ag (BCRs. FDC-Fc-gamma-RIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6 and -C4bBP, are essential for the induction of the germinal centre (GC reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses.

  11. Follicular dendritic cells in health and disease.

    Science.gov (United States)

    El Shikh, Mohey Eldin M; Pitzalis, Costantino

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses. PMID:23049531

  12. Sodium pump organization in dendritic spines.

    Science.gov (United States)

    Blom, Hans; Bernhem, Kristoffer; Brismar, Hjalmar

    2016-10-01

    Advancement in fluorescence imaging with the invention of several super-resolution microscopy modalities (e.g., PALM/STORM and STED) has opened up the possibility of deciphering molecular distributions on the nanoscale. In our quest to better elucidate postsynaptic protein distribution in dendritic spines, we have applied these nanoscopy methods, where generated results could help improve our understanding of neuronal functions. In particular, we have investigated the principal energy transformer in the brain, i.e., the [Formula: see text]-ATPase (or sodium pump), an essential protein responsible for maintaining resting membrane potential and a major controller of intracellular ion homeostasis. In these investigations, we have focused on estimates of protein amount, giving assessments of how variations may depend on labeling strategies, sample analysis, and choice of nanoscopic imaging method, concluding that all can be critical factors for quantification. We present a comparison of these results and discuss the influences this may have for homeostatic sodium regulation in neurons and energy consumption. PMID:27175374

  13. Deciphering dendritic cell heterogenity in immunity

    Directory of Open Access Journals (Sweden)

    Michaël eChopin

    2012-02-01

    Full Text Available Dendritic cells (DCs are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These finding open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle – identification of similar DC populations in mouse and man – now set the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection.

  14. Macrophage and dendritic cell subsets in IBD: ALDH+ cells are reduced in colon tissue of patients with ulcerative colitis regardless of inflammation

    DEFF Research Database (Denmark)

    Magnusson, M. K.; Brynjólfsson, S. F.; Dige, A.;

    2016-01-01

    Disruption of the homeostatic balance of intestinal dendritic cells (DCs) and macrophages (MQs) may contribute to inflammatory bowel disease. We characterized DC and MQ populations, including their ability to produce retinoic acid, in clinical material encompassing Crohn’s ileitis, Crohn’s colitis......) activity, reflecting retinoic acid synthesis, in UC colon, both in active disease and remission, were reduced compared to controls and inflamed Crohn’s colon. In contrast, no difference in the frequency of ALDH+ cells among blood precursors was detected between UC patients and non-inflamed controls. This...

  15. Tau causes synapse loss without disrupting calcium homeostasis in the rTg4510 model of tauopathy.

    Directory of Open Access Journals (Sweden)

    Katherine J Kopeikina

    Full Text Available Neurofibrillary tangles (NFTs of tau are one of the defining hallmarks of Alzheimer's disease (AD, and are closely associated with neuronal degeneration. Although it has been suggested that calcium dysregulation is important to AD pathogenesis, few studies have probed the link between calcium homeostasis, synapse loss and pathological changes in tau. Here we test the hypothesis that pathological changes in tau are associated with changes in calcium by utilizing in vivo calcium imaging in adult rTg4510 mice that exhibit severe tau pathology due to over-expression of human mutant P301L tau. We observe prominent dendritic spine loss without disruptions in calcium homeostasis, indicating that tangles do not disrupt this fundamental feature of neuronal health, and that tau likely induces spine loss in a calcium-independent manner.

  16. Manufacturing doubt about endocrine disrupter science

    DEFF Research Database (Denmark)

    Bergman, Åke; Becher, Georg; Blumberg, Bruce;

    2015-01-01

    We present a detailed response to the critique of "State of the Science of Endocrine Disrupting Chemicals 2012" (UNEP/WHO, 2013) by financial stakeholders, authored by Lamb et al. (2014). Lamb et al.'s claim that UNEP/WHO (2013) does not provide a balanced perspective on endocrine disruption is b...

  17. Rurality and Patterns of Social Disruption.

    Science.gov (United States)

    Wilkinson, Kenneth P.

    1984-01-01

    Argues that structural cleavages provoke social disruptions where opportunities are conducive. Thus, combinations of rurality with particular structural cleavages predict specific disruption patterns. Data from northeastern United States indicate that rurality, combined with other population characteristics (provocation, ascriptive inequality,…

  18. Disruptive School Peers and Student Outcomes

    DEFF Research Database (Denmark)

    Kristoffersen, Jannie H. G.; Krægpøth, Morten Visby; Skyt Nielsen, Helena;

    identify three groups of potentially disruptive and emotionally sensitive children from detailed Danish register data: children with divorced parents, children with parents convicted of crime, and children with a psychiatric diagnosis. We find that adding potentially disruptive children lowers the academic...

  19. Facile synthesis of size controllable dendritic mesoporous silica nanoparticles.

    Science.gov (United States)

    Yu, Ye-Jun; Xing, Jun-Ling; Pang, Jun-Ling; Jiang, Shu-Hua; Lam, Koon-Fung; Yang, Tai-Qun; Xue, Qing-Song; Zhang, Kun; Wu, Peng

    2014-12-24

    The synthesis of highly uniform mesoporous silica nanospheres (MSNs) with dendritic pore channels, particularly ones with particle sizes below 200 nm, is extremely difficult and remains a grand challenge. By a combined synthetic strategy using imidazolium ionic liquids (ILs) with different alkyl lengths as cosurfactants and Pluronic F127 nonionic surfactants as inhibitors of particle growth, the preparation of dendritic MSNs with controlled diameter between 40 and 300 nm was successfully realized. An investigation of dendritic MSNs using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen physisorption revealed that the synthesis of dendritic MSNs at larger size (100-300 nm) strongly depends on the alkyl lengths of cationic imidazolium ILs; while the average size of dendritic MSNs can be controlled within the range of 40-100 nm by varying the amount of Pluronic F127. The Au@MSNs can be used as a catalyst for the reduction of 4-nitrophenol by NaBH4 into 4-aminophenol and exhibit excellent catalytic performance. The present discovery of the extended synthesis conditions offers reproducible, facile, and large-scale synthesis of the monodisperse spherical MSNs with precise size control and, thus, has vast prospects for future applications of ultrafine mesostructured nanoparticle materials in catalysis and biomedicine. PMID:25454255

  20. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  1. Mammalian Pumilio 2 regulates dendrite morphogenesis and synaptic function.

    Science.gov (United States)

    Vessey, John P; Schoderboeck, Lucia; Gingl, Ewald; Luzi, Ettore; Riefler, Julia; Di Leva, Francesca; Karra, Daniela; Thomas, Sabine; Kiebler, Michael A; Macchi, Paolo

    2010-02-16

    In Drosophila, Pumilio (Pum) is important for neuronal homeostasis as well as learning and memory. We have recently characterized a mammalian homolog of Pum, Pum2, which is found in discrete RNA-containing particles in the somatodendritic compartment of polarized neurons. In this study, we investigated the role of Pum2 in developing and mature neurons by RNA interference. In immature neurons, loss of Pum2 led to enhanced dendritic outgrowth and arborization. In mature neurons, Pum2 down-regulation resulted in a significant reduction in dendritic spines and an increase in elongated dendritic filopodia. Furthermore, we observed an increase in excitatory synapse markers along dendritic shafts. Electrophysiological analysis of synaptic function of neurons lacking Pum2 revealed an increased miniature excitatory postsynaptic current frequency. We then identified two specific mRNAs coding for a known translational regulator, eIF4E, and for a voltage-gated sodium channel, Scn1a, which interacts with Pum2 in immunoprecipitations from brain lysates. Finally, we show that Pum2 regulates translation of the eIF4E mRNA. Taken together, our data reveal a previously undescribed role for Pum2 in dendrite morphogenesis, synapse function, and translational control. PMID:20133610

  2. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    Directory of Open Access Journals (Sweden)

    Bardia F Behabadi

    Full Text Available Neocortical pyramidal neurons (PNs receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  3. Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans

    OpenAIRE

    Cao, Yun; Bender, Ingrid K.; Konstantinidis, Athanasios K.; Shin, Soon Cheon; Jewell, Christine M.; Cidlowski, John A; Schleimer, Robert P.; Lu, Nick Z.

    2013-01-01

    Mature, but not immature, dendritic cells are sensitive to glucocorticoid-induced apoptosis.Mature, but not immature, dendritic cells express proapoptotic glucocorticoid receptor translational isoforms.

  4. Simulation of runaway electrons in Tokamak disruptions

    International Nuclear Information System (INIS)

    Self-consistent modelling of the generation of runaway electrons and the evolution of the toroidal electric field during tokamak disruptions is presented. The process of runaway generation is analysed by combining a relativistic kinetic equation for the electrons with Maxwell's equations for the electric field. Such modelling allows for a quantitative assessment of the runaway generation during disruptions in present day tokamak experiments, and to extrapolate to future tokamaks like ITER. It is found that the current profile can change dramatically during a disruption, such that the post disruption current, carried mainly by the runaway electrons, is significantly more peaked than the current profile before the disruption. In fact, it is found that the central current density can increase in spite of a reduction in the total current. (authors)

  5. Airline Disruption Management - Perspectives, Experiences and Outlook

    DEFF Research Database (Denmark)

    Kohl, Niklas; Larsen, Allan; Larsen, Jesper;

    2004-01-01

    Over the past decade, airlines have become more concerned with developing an optimal flight schedule, with very little slack left to accommodate for any form of variation from the optimal solution. During operation the planned schedules often have to be revised due to disruptions caused by for...... disruptions. The purpose of this paper is twofold. In the first part it o ers an introduction to airline disruption management, provides the readers with a description of the planning processes and delivers a detailed overview of the numerous aspects of airline disruption management. In the second part we...... report on experiences from a large research and development project on airline disruption management. Within the project the first prototype of a multiple resource decision support system at the operations control center in a major airline, has been implemented....

  6. Ion channels modulating mouse dendritic cell functions.

    Science.gov (United States)

    Matzner, Nicole; Zemtsova, Irina M; Nguyen, Thi Xuan; Duszenko, Michael; Shumilina, Ekaterina; Lang, Florian

    2008-11-15

    Ca(2+)-mediated signal transduction pathways play a central regulatory role in dendritic cell (DC) responses to diverse Ags. However, the mechanisms leading to increased [Ca(2+)](i) upon DC activation remained ill-defined. In the present study, LPS treatment (100 ng/ml) of mouse DCs resulted in a rapid increase in [Ca(2+)](i), which was due to Ca(2+) release from intracellular stores and influx of extracellular Ca(2+) across the cell membrane. In whole-cell voltage-clamp experiments, LPS-induced currents exhibited properties similar to the currents through the Ca(2+) release-activated Ca(2+) channels (CRAC). These currents were highly selective for Ca(2+), exhibited a prominent inward rectification of the current-voltage relationship, and showed an anomalous mole fraction and a fast Ca(2+)-dependent inactivation. In addition, the LPS-induced increase of [Ca(2+)](i) was sensitive to margatoxin and ICAGEN-4, both inhibitors of voltage-gated K(+) (Kv) channels Kv1.3 and Kv1.5, respectively. MHC class II expression, CCL21-dependent migration, and TNF-alpha and IL-6 production decreased, whereas phagocytic capacity increased in LPS-stimulated DCs in the presence of both Kv channel inhibitors as well as the I(CRAC) inhibitor SKF-96365. Taken together, our results demonstrate that Ca(2+) influx in LPS-stimulated DCs occurs via Ca(2+) release-activated Ca(2+) channels, is sensitive to Kv channel activity, and is in turn critically important for DC maturation and functions. PMID:18981098

  7. Dendritic cell reprogramming by the hypoxic environment.

    Science.gov (United States)

    Bosco, Maria Carla; Varesio, Luigi

    2012-12-01

    Myeloid dendritic cells (DCs) are professional antigen-presenting cells central to the orchestration of innate and acquired immunity and the maintenance of self-tolerance. The local microenvironment contributes to the regulation of DC development and functions, and deregulated DC responses may result in amplification of inflammation, loss of tolerance, or establishment of immune escape mechanisms. DC generation from monocytic precursors recruited at sites of inflammation, tissue damage, or neoplasia occurs under condition of low partial oxygen pressure (pO(2), hypoxia). We reviewed the literature addressing the phenotypic and functional changes triggered by hypoxia in monocyte-derived immature (i) and mature (m) DCs. The discussion will revolve around in vitro studies of gene expression profile, which give a comprehensive representation of the complexity of response of these cells to low pO(2). The gene expression pattern of hypoxic DC will be discussed to address the question of the relationship with a specific maturation stage. We will summarize data relative to the regulation of the chemotactic network, which points to a role for hypoxia in promoting a migratory phenotype in iDCs and a highly proinflammatory state in mDCs. Current knowledge of the strict regulatory control exerted by hypoxia on the expression of immune-related cell surface receptors will also be addressed, with a particular focus on a newly identified marker of hypoxic DCs endowed with proinflammatory properties. Furthermore, we discuss the literature on the transcription mechanisms underlying hypoxia-regulated gene expression in DCs, which support a major role for the HIF/HRE pathway. Finally, recent advances shedding light on the in vivo influence of the local hypoxic microenvironment on DCs infiltrating the inflamed joints of juvenile idiopathic arthritis patients are outlined. PMID:22901977

  8. Progress in Modeling Nonlinear Dendritic Evolution in Two and Three Dimensions, and Its Mathematical Justification

    Science.gov (United States)

    Tanveer, S.; Foster, M. R.

    2002-01-01

    We report progress in three areas of investigation related to dendritic crystal growth. Those items include: 1. Selection of tip features dendritic crystal growth; 2) Investigation of nonlinear evolution for two-sided model; and 3) Rigorous mathematical justification.

  9. MicroRNA-9 controls dendritic development by targeting REST

    Science.gov (United States)

    Giusti, Sebastian A; Vogl, Annette M; Brockmann, Marisa M; Vercelli, Claudia A; Rein, Martin L; Trümbach, Dietrich; Wurst, Wolfgang; Cazalla, Demian; Stein, Valentin; Deussing, Jan M; Refojo, Damian

    2014-01-01

    MicroRNAs (miRNAs) are conserved noncoding RNAs that function as posttranscriptional regulators of gene expression. miR-9 is one of the most abundant miRNAs in the brain. Although the function of miR-9 has been well characterized in neural progenitors, its role in dendritic and synaptic development remains largely unknown. In order to target miR-9 in vivo, we developed a transgenic miRNA sponge mouse line allowing conditional inactivation of the miR-9 family in a spatio-temporal-controlled manner. Using this novel approach, we found that miR-9 controls dendritic growth and synaptic transmission in vivo. Furthermore, we demonstrate that miR-9-mediated downregulation of the transcriptional repressor REST is essential for proper dendritic growth. DOI: http://dx.doi.org/10.7554/eLife.02755.001 PMID:25406064

  10. Complete response of metastatic renal cancer with dendritic cell vaccine

    Directory of Open Access Journals (Sweden)

    Dall'Oglio Marcos

    2003-01-01

    Full Text Available INTRODUCTION: We report a case of metastatic renal cell carcinoma that presented involution following therapy with dendritic cells. CASE REPORT: Male, 51-year old patient underwent left radical nephrectomy in September 1999 due to renal cell carcinoma, evolved with recurrence of the neoplasia in January 2002, confirmed by resection of the lesion. A vaccine therapy based on dendritic cells was then performed during 5 months (4 applications. After this period, there was occurrence of new lesions, whose resection revealed areas of necrosis and inflammatory infiltrate. DISCUSSION: The outcome of renal cell carcinoma is influenced by prognostic factors that confer more aggressive tumor characteristics. However, in cases of recurrence, the systemic therapy with dendritic cells-based vaccine can be associated with a better outcome with regression of disease.

  11. Robust Type-specific Hemisynapses Induced by Artificial Dendrites

    Science.gov (United States)

    Kim, Eun Joong; Jeon, Chang Su; Lee, Soo Youn; Hwang, Inseong; Chung, Taek Dong

    2016-04-01

    Type-specificity of synapses, excitatory and inhibitory, regulates information process in neural networks via chemical neurotransmitters. To lay a foundation of synapse-based neural interfaces, artificial dendrites are generated by covering abiotic substrata with ectodomains of type-specific synaptogenic proteins that are C-terminally tagged with biotinylated fluorescent proteins. The excitatory artificial synapses displaying engineered ectodomains of postsynaptic neuroligin-1 (NL1) induce the formation of excitatory presynapses with mixed culture of neurons in various developmental stages, while the inhibitory artificial dendrites displaying engineered NL2 and Slitrk3 induce inhibitory presynapses only with mature neurons. By contrast, if the artificial dendrites are applied to the axonal components of micropatterned neurons, correctly-matched synaptic specificity emerges regardless of the neuronal developmental stages. The hemisynapses retain their initially established type-specificity during neuronal development and maintain their synaptic strength provided live neurons, implying the possibility of durable synapse-based biointerfaces.

  12. Involvement of dendritic cells in autoimmune diseases in children

    Directory of Open Access Journals (Sweden)

    Reed Ann M

    2007-07-01

    Full Text Available Abstract Dendritic cells (DCs are professional antigen-presenting cells that are specialized in the uptake of antigens and their transport from peripheral tissues to the lymphoid organs. Over the last decades, the properties of DCs have been intensely studied and much knowledge has been gained about the role of DCs in various diseases and health conditions where the immune system is involved, particularly in cancer and autoimmune disorders. Emerging clues in autoimmune diseases, suggest that dendritic cell dysregulation might be involved in the development of various autoimmune disorders in both adults and children. However, studies investigating a possible contribution of DCs in autoimmune diseases in the pediatric population alone are scanty. The purpose of this review is to give a general overview of the current literature on the relevance of dendritic cells in the most common autoimmune conditions of childhood.

  13. A Model of Dendritic Cell Therapy for Melanoma

    Directory of Open Access Journals (Sweden)

    Ami eRadunskaya

    2013-03-01

    Full Text Available Dendritic cells are a promising immunotherapy tool for boosting an individual's antigen specific immune response to cancer. We develop a mathematical model using differential and delay-differential equations to describe the interactions between dendritic cells, effector-immune cells and tumor cells. We account for the trafficking of immune cells between lymph, blood, and tumor compartments. Our model reflects experimental results both for dendritic-cell trafficking and for immune suppression of tumor growth in mice. In addition, in silico experiments suggest more effective immunotherapy treatment protocols can be achieved by modifying dose location and schedule. A sensitivity analysis of the model reveals which patient-specific parameters have the greatest impact on treatment efficacy.

  14. The dendritic density field of a cortical pyramidal cell

    Directory of Open Access Journals (Sweden)

    Hermann eCuntz

    2012-02-01

    Full Text Available Much is known about the computation in individual neurons in the cortical column. Also, the selective connectivity between many cortical neuron types has been studied in great detail. But due to the complexity of this microcircuitry its functional role within the cortical column remains a mystery. Some of the wiring behavior between neurons can be interpreted directly from their particular dendritic and axonal shapes. Here, I describe the dendritic density field as one key element that remains to be better understood. I sketch an approach to relate dendritic density fields in general to their underlying potential connectivity schemes. As an example, I show how the characteristic shape of a cortical pyramidal cell appears as a direct consequence of connecting inputs arranged in two separate parallel layers.

  15. Estimation of primary dendrite arm spacings in continuous casting products

    Energy Technology Data Exchange (ETDEWEB)

    Cicutti, C. [Centro de Investigacion Industrial-FUDETEC, Campana (Argentina); Bilmes, P.; Boeri, R.

    1997-09-01

    The proportion of steels produced by continuous casting has grown drastically during the last two decades, increasing to such an extent that in some countries, several grades of steel are exclusively made by this process. Many investigations recognized the significant influence of the solidification structure on the quality of cast products, and pointed out the importance of the development of appropriate tools to predict the microstructure as a function of thermal and physical parameters. The estimation of secondary dendrite arm spacings in continuously cast steel products has received some attention. However, very little effort has been focused on the prediction of primary dendrite arm spacings, to the best of the authors` knowledge. The main objective of this study is to develop simple expressions to estimate the variation of primary dendrite arm spacings through the section of continuous casting steel products.

  16. Facile fabrication of dendritic silver structures and their surface enhanced Raman spectroscopic properties

    Indian Academy of Sciences (India)

    Jisheng Yang; Zhengdong Jiang

    2015-01-01

    A simple and efficient approach was developed to fabricate silver dendrites by Cu reducing Ag+ in AgNO3 solution. The growth speed, morphologies and structures of the silver dendrites strongly depend on AgNO3 concentration and reaction time. The silver dendrites were formed from nanosheets and the crystal structure is face-centered cubic. Rhodamine 6G was used as probe molecule to show that the silver dendrites have high sensitivity to surface enhanced Raman spectroscopy response.

  17. Age-related dendritic hypertrophy and sexual dimorphism in rat basolateral amygdala

    OpenAIRE

    Rubinow, Marisa J.; Drogos, Lauren L.; Juraska, Janice M.

    2007-01-01

    Little research has examined the influence of aging or sex on anatomical measures in the basolateral amygdala. We quantified spine density and dendritic material in Golgi-Cox stained tissue of the basolateral nucleus in young adult (3–5 months) and aged (20–24 months) male and female Long-Evans rats. Dendritic branching and spine density were measured in principal neurons. Age, but not sex, influenced the dendritic tree, with aged animals displaying significantly more dendritic material. Prev...

  18. Long-term depression is differentially expressed in distinct lamina of hippocampal CA1 dendrites

    Directory of Open Access Journals (Sweden)

    Binu eRamachandran

    2015-02-01

    Full Text Available Information storage in CA1 hippocampal pyramidal neurons is compartmentalized in proximal versus distal apical dendrites, cell bodies, and basal dendrites. This compartmentalization is thought to be essential for synaptic integration. Differences in the expression of LTP in each of these compartments have been described, but less is known regarding potential differences in LTD. Here, to directly compare LTD expression in each compartment and to bypass possible differences in input-specificity and stimulation of presynaptic inputs, we used global application of NMDA to induce LTD. We then examined LTD expression in each dendritic sub-region - proximal and distal apical, and basal dendrites - and in cell bodies. Interestingly, we found that distal apical dendrites exhibited the greatest magnitude of LTD of all areas tested and this LTD was maintained, whereas LTD in proximal apical dendrites was not maintained. In basal dendrites, LTD was also maintained, but the magnitude of LTD was less than in distal apical dendrites. Blockade of inhibition blocked LTD maintenance in both distal apical and basal dendrites. Population spikes recorded from the cell body layer correlated with apical dendrite fEPSPs, where LTD was maintained in distal dendrites and decayed in proximal dendrites. On the other hand, LTD of basal dendrite fEPSPs was maintained but population spike responses were not. Thus E-S coupling was distinct in basal and apical dendrites. Our data demonstrate cell autonomous differential information processing in somas and dendritic sub-regions of CA1 pyramidal neurons in the hippocampus, where LTD expression is intrinsic to distinct dendritic regions, and does not depend on the nature of stimulation and input specificity.

  19. Blastic plasmacytoid dendritic cell neoplasm with absolute monocytosis at presentation

    Directory of Open Access Journals (Sweden)

    Jaworski JM

    2015-02-01

    Full Text Available Joseph M Jaworski,1,2 Vanlila K Swami,1 Rebecca C Heintzelman,1 Carrie A Cusack,3 Christina L Chung,3 Jeremy Peck,3 Matthew Fanelli,3 Micheal Styler,4 Sanaa Rizk,4 J Steve Hou1 1Department of Pathology and Laboratory Medicine, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 2Department of Pathology, Mercy Fitzgerald Hospital, Darby, PA, USA; 3Department of Dermatology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 4Department of Hematology/Oncology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA Abstract: Blastic plasmacytoid dendritic cell neoplasm is an uncommon malignancy derived from precursors of plasmacytoid dendritic cells. Nearly all patients present initially with cutaneous manifestations, with many having extracutaneous disease additionally. While response to chemotherapy initially is effective, relapse occurs in most, with a leukemic phase ultimately developing. The prognosis is dismal. While most of the clinical and pathologic features are well described, the association and possible prognostic significance between peripheral blood absolute monocytosis (>1.0 K/µL and blastic plasmacytoid dendritic cell neoplasm have not been reported. We report a case of a 68-year-old man who presented with a rash for 4–5 months. On physical examination, there were multiple, dull-pink, indurated plaques on the trunk and extremities. Complete blood count revealed thrombocytopenia, absolute monocytosis of 1.7 K/µL, and a negative flow cytometry study. Biopsy of an abdominal lesion revealed typical features of blastic plasmacytoid dendritic cell neoplasm. Patients having both hematologic and nonhematologic malignancies have an increased incidence of absolute monocytosis. Recent studies examining Hodgkin and non-Hodgkin lymphoma patients have suggested that this is a negative prognostic factor. The association between

  20. Dendritic Heterojunction Nanowire Arrays for High-Performance Supercapacitors

    OpenAIRE

    Rujia Zou; Zhenyu Zhang; Muk Fung Yuen; Junqing Hu; Chun-Sing Lee; Wenjun Zhang

    2015-01-01

    Herein, we designed and synthesized for the first time a series of 3D dendritic heterojunction arrays on Ni foam substrates, with NiCo2S4 nanowires as cores and NiCo2O4, NiO, Co3O4, and MnO2 nanowires as branches, and studied systematically their electrochemical performance in comparison with their counterparts in core/shell structure. Attributed to the following reasons: (1) both core and branch are pseudocapacitively active materials, (2) the special dendritic structure with considerable in...

  1. Ternary eutectic dendrites: Pattern formation and scaling properties

    OpenAIRE

    Rátkai, László; Szállás, Attila; Pusztai, Tamás; Mohri, Tetsuo; Gránásy, László

    2015-01-01

    Extending previous work [T. Pusztai, L. R\\'atkai, A. Sz\\'all\\'as, and L. Gr\\'an\\'asy, Phys. Rev. E {\\bf 87}, 032402 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae $\\rightarrow$ eutectic colonies $\\rightarrow$ eutectic de...

  2. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite

    DEFF Research Database (Denmark)

    Chen, Wei R; Shen, Gongyu Y; Shepherd, Gordon M;

    2002-01-01

    The mitral cell primary dendrite plays an important role in transmitting distal olfactory nerve input from olfactory glomerulus to the soma-axon initial segment. To understand how dendritic active properties are involved in this transmission, we have combined dual soma and dendritic patch recordi...

  3. Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells

    NARCIS (Netherlands)

    J.J. García-Vallejo; M. Ambrosini; A. Overbeek; W.E. van Riel; K. Bloem; W.W.J. Unger; F. Chiodo; J.G. Bolscher; K. Nazmi; H. Kalay; Y. van Kooyk

    2013-01-01

    Dendritic cells are the most powerful type of antigen presenting cells. Current immunotherapies targeting dendritic cells have shown a relative degree of success but still require further improvement. One of the most important issues to solve is the efficiency of antigen delivery to dendritic cells

  4. File list: Unc.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Dendritic_Cells mm9 Unclassified Blood Dendritic Cells SRX185717,S...RX122427,SRX122425,SRX122423,SRX122424,SRX122422,SRX122426 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.50.AllAg.Dendritic_Cells.bed ...

  5. File list: InP.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Dendritic_Cells mm9 Input control Blood Dendritic Cells SRX122480,...82,SRX667878,SRX667880,SRX667876,SRX667874 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.50.AllAg.Dendritic_Cells.bed ...

  6. File list: Unc.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...189,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.Dendritic_Cells.bed ...

  7. File list: Oth.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Dendritic_Cells hg19 TFs and others Blood Dendritic Cells SRX62742...8,SRX627430 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.50.AllAg.Dendritic_Cells.bed ...

  8. File list: Pol.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Dendritic_Cells mm9 RNA polymerase Blood Dendritic Cells SRX330713...88,SRX122458 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.50.AllAg.Dendritic_Cells.bed ...

  9. File list: Oth.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Dendritic_Cells hg19 TFs and others Blood Dendritic Cells SRX62742...8,SRX627430 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.05.AllAg.Dendritic_Cells.bed ...

  10. File list: ALL.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Dendritic_Cells hg19 All antigens Blood Dendritic Cells SRX818200,...95,SRX818194 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.05.AllAg.Dendritic_Cells.bed ...

  11. File list: ALL.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Dendritic_Cells hg19 All antigens Blood Dendritic Cells SRX818200,...96,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.50.AllAg.Dendritic_Cells.bed ...

  12. File list: Pol.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Dendritic_Cells mm9 RNA polymerase Blood Dendritic Cells SRX330713...88,SRX891789 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.10.AllAg.Dendritic_Cells.bed ...

  13. File list: Unc.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...181,SRX818182,SRX818188,SRX818202,SRX818195,SRX818194 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.Dendritic_Cells.bed ...

  14. File list: InP.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Dendritic_Cells mm9 Input control Blood Dendritic Cells SRX122480,...83,SRX667878,SRX667880,SRX667876,SRX667874 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.20.AllAg.Dendritic_Cells.bed ...

  15. File list: Unc.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Dendritic_Cells mm9 Unclassified Blood Dendritic Cells SRX185717,S...RX122424,SRX122426,SRX122422,SRX122425,SRX122427,SRX122423 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.05.AllAg.Dendritic_Cells.bed ...

  16. File list: His.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Dendritic_Cells mm9 Histone Blood Dendritic Cells SRX835924,SRX835...2835,SRX742821,SRX742837 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.AllAg.Dendritic_Cells.bed ...

  17. File list: Unc.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...203,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Dendritic_Cells.bed ...

  18. File list: InP.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Dendritic_Cells mm9 Input control Blood Dendritic Cells SRX885956,...76,SRX122481,SRX667880,SRX667874,SRX667878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.05.AllAg.Dendritic_Cells.bed ...

  19. File list: Oth.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Dendritic_Cells mm9 TFs and others Blood Dendritic Cells SRX122407...RX122577,SRX122506,SRX122505 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.20.AllAg.Dendritic_Cells.bed ...

  20. File list: ALL.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Dendritic_Cells mm9 All antigens Blood Dendritic Cells SRX122407,S...424,SRX122422,SRX122426 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.20.AllAg.Dendritic_Cells.bed ...

  1. File list: Oth.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Dendritic_Cells hg19 TFs and others Blood Dendritic Cells SRX62742...8,SRX627430 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.10.AllAg.Dendritic_Cells.bed ...

  2. File list: ALL.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Dendritic_Cells hg19 All antigens Blood Dendritic Cells SRX818200,...94,SRX818182 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.10.AllAg.Dendritic_Cells.bed ...

  3. File list: InP.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627429...,SRX627427 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.Dendritic_Cells.bed ...

  4. File list: ALL.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Dendritic_Cells mm9 All antigens Blood Dendritic Cells SRX835924,S...427,SRX122423,SRX122425 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.10.AllAg.Dendritic_Cells.bed ...

  5. File list: Pol.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Dendritic_Cells mm9 RNA polymerase Blood Dendritic Cells SRX330713...90,SRX891788 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.AllAg.Dendritic_Cells.bed ...

  6. File list: His.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Dendritic_Cells mm9 Histone Blood Dendritic Cells SRX835924,SRX835...2836,SRX742837,SRX742834 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.AllAg.Dendritic_Cells.bed ...

  7. File list: InP.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627427...,SRX627429 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.50.AllAg.Dendritic_Cells.bed ...

  8. File list: InP.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627429...,SRX627427 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.05.AllAg.Dendritic_Cells.bed ...

  9. File list: Unc.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...195,SRX818202,SRX818181,SRX818188,SRX818194,SRX818182 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.10.AllAg.Dendritic_Cells.bed ...

  10. File list: Unc.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Dendritic_Cells mm9 Unclassified Blood Dendritic Cells SRX185717,S...RX122427,SRX122425,SRX122423,SRX122424,SRX122422,SRX122426 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.20.AllAg.Dendritic_Cells.bed ...

  11. File list: His.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Dendritic_Cells mm9 Histone Blood Dendritic Cells SRX835922,SRX835...2837,SRX742836,SRX742834 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.AllAg.Dendritic_Cells.bed ...

  12. File list: Oth.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Dendritic_Cells mm9 TFs and others Blood Dendritic Cells SRX122407...RX708765,SRX041328,SRX041331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.50.AllAg.Dendritic_Cells.bed ...

  13. File list: His.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Dendritic_Cells mm9 Histone Blood Dendritic Cells SRX835924,SRX835...2820,SRX742836,SRX742834 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.AllAg.Dendritic_Cells.bed ...

  14. File list: ALL.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Dendritic_Cells hg19 All antigens Blood Dendritic Cells SRX818200,...96,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.20.AllAg.Dendritic_Cells.bed ...

  15. File list: ALL.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Dendritic_Cells mm9 All antigens Blood Dendritic Cells SRX122407,S...765,SRX041328,SRX041331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.50.AllAg.Dendritic_Cells.bed ...

  16. File list: Oth.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Dendritic_Cells mm9 TFs and others Blood Dendritic Cells SRX122407...RX122520,SRX122522,SRX122577 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.10.AllAg.Dendritic_Cells.bed ...

  17. Disrupted Stars in Unusual Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    Tidal disruption events (TDEs) occur when a star passes a little too close to a supermassive black hole at the center of a galaxy. Tidal forces from the black hole cause the passing star to be torn apart, resulting in a brief flare of radiation as the stars material accretes onto the black hole. A recent study asks the following question: do TDEs occur most frequently in an unusual type of galaxy?A Trend in DisruptionsSo far, we have data from eight candidate TDEs that peaked in optical and ultraviolet wavelengths. The spectra from these observations have shown an intriguing trend: many of these TDEs host galaxies exhibit weak line emission (indicating little or no current star-formation activity), and yet they show strong Balmer absorption lines (indicating star formation activity occurred within the last Gyr). These quiescent, Balmer-strong galaxies likely underwent a period of intense star formation that recently ended.To determine if TDEs are overrepresented in such galaxies, a team of scientists led by Decker French (Steward Observatory, University of Arizona) has quantified the fraction of galaxies in the Sloan Digital Sky Survey (SDSS) that exhibit similar properties to those of TDE hosts.Quantifying OverrepresentationSpectral characteristics of SDSS galaxies (gray) and TDE candidate host galaxies (colored points): line emission vs. Balmer absorption. The lower right-hand box identifies thequiescent, Balmer-strong galaxies which contain most TDE events, yet are uncommon among the galaxy sample as a whole. Click for a better look! [French et al. 2016]French and collaborators compare the optical spectra of the TDE host galaxies to those of nearly 600,000 SDSS galaxies, using two different cutoffs for the Balmer absorption the indicator of past star formation. Their strictest cut, filtering for very high Balmer absorption, selected only 0.2% of the SDSS galaxies, yet 38% of the TDEs are hosted in such galaxies. Using a more relaxed cutoff selects 2.3% of

  18. OF SYSTEMS THAT HAVE DISRUPTABLE CONSTRAINS

    Directory of Open Access Journals (Sweden)

    Chernov Yuriy Tikhonovich

    2012-07-01

    Formulas of equivalent static loads, with the help of which the systems are analyzed when constraints are disrupted, are generated. No inertial force is to be derived to obtain equivalent static loads. This is important in view of their application in dynamic analyses . Analysis of the static system in the event of disrupted constraints is based on the equations derived by the authors. The result of the analysis represents an inverse linear relation of static loading and relative stiffness of the system with disrupted constraints. This means that the lower the stiffness of the system, the higher the static loading.

  19. Periodic disruptions in the MT-1 tokamak

    International Nuclear Information System (INIS)

    Disruptive instabilities are common phenomena in toroidal devices, especially in tokamaks. Three types can be distinguished: internal, minor and major disruptions. Periodic minor disruptions in the MT-1 tokamak were measured systematically with values of the limiter safety factor between 4 and 10. The density limit as a function of plasma current and horizontal displacement was investigated. Precursor oscillations always appear before the instability with increasing amplitude but can be observed at the density limit with quasi-stationary amplitude. Phase correlation between precursor oscillations were measured with Mirnov coils and x-ray detectors, and they show good agreement with a simple magnetic island model. (R.P.) 11 refs.; 6 figs

  20. DISRUPTIVE BEHAVIOUR AMONGST DOCTORS, MYTH OR REALITY?

    Directory of Open Access Journals (Sweden)

    Avtar Singh

    2014-01-01

    Full Text Available BACKGROUND : Disruptive behavior in a medical setting is defined as objectionable or offensive interpersonal behavior that leads to disruption of professional activities in the workplace. 1 It has been observed that majority of doctors do not show disruptive behavior in their day today conduct and only few doctors are identified for their disruptive behavior . Special commi ttee on professional conduct and ethics defines disruptive behavior in physicians as aberrant behavior manifested through personal interaction with physicians , hospital personnel , health care professionals , patients , family members or others which interferes with patient care or could reasonably be expected to interfere with the process of delivering quality care. 2 Common forms of disruptive behaviors generally seen amongst young doctors are use of abusive language , yelling or shouting at patients , colleagues and subordinate staff , showing in disciplined behavior and at times indulging in physical abuse. 3 - 4 STUDY DESIGN : Study was conducted at a tertiary care hospital where 614 health care professionals participated which included 108 doctors 432 nurs ing staff and 74 paramedical staff METHOD : Data collection was done by semi structured pretested questionnaire and was entered in Microsoft Excel and analyzed for frequency and percentages . RESULTS : 64 % doctor , 66% nursing staff and 50% of the paramedicals answered that they have seen doctors showing disruptive behavior at one time or the other . Not all the doctors show disruptive behavior but this type of aberrant behavior is seen mainly in2 - 3 percent of doctors only. While answering to the que stion as to the type of disruptive behavior , 57% health care professionals reported that commonest form of disruptive behavior noticed by them amongst doctors was yelling or shouting on junior staff , patients and colleagues . 47% answered that doctors with disruptive behavior do not follow laid down orders or

  1. Disruptive Innovation in Chinese and Indian Businesses

    DEFF Research Database (Denmark)

    markets, has made these emerging economies fertile ground for developing and applying disruptive innovations. A novel mix of key attributes distinctive from those of established technologies or business models, disruptive innovations are typically inferior, yet affordable and "good-enough" products or...... services, which originate in lower-end market segments, but later move up to compete with those provided by incumbent firms. This book sheds new light on disruptive innovations both from and for the bottom of the pyramid in China and India, from the point of view of local entrepreneurs and international...

  2. Report on Criteria for Endocrine Disrupters

    DEFF Research Database (Denmark)

    Holbech, Henrik

    This report has been prepared by the Danish Centre on Endocrine Disrupters as a project contracted by the Danish Environmental Protection Agency. The Danish Centre on Endocrine Disrupters is an interdisciplinary scientific network without walls. The main purpose of the Centre is to build and gather...... overall aim of this project is to provide a science based proposal for criteria for endocrine disrupters. The terms of reference for the project specify elements to be included and/or addressed when developing the criteria (Annex 1). Also, several international reports and papers dealing with assessment...

  3. Disruptions, Disruptivity, and Safer Operating Windows in the High-β Spherical Torus NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, S P; Diallo, A; Gates, D; LeBlanc, B P; Menard, J E; Mueller, D; Sabbagh, S A; Soukhanovskii, V; Tritz, K

    2012-09-27

    This paper discusses disruption rates, disruption causes, and disruptivity statistics in the high- βN National Spherical Torus Experiment (NSTX) [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While the overall disruption rate is rather high, configurations with high βN , moderate q*, strong boundary shaping, sufficient rotation, and broad pressure and current profiles are found to have the lowest disruptivity; active n=1 control further reduces the disruptivity. The disruptivity increases rapidly for q*<2.7, which is substantially above the ideal MHD current limit. In quiescent conditions, qmin >1.25 is generally acceptable for avoiding the onset of core rotating n=1 kink/tearing modes; when EPM and ELM disturbances are present, the required qmin for avoiding those modes is raised to ~1.5. The current ramp and early flat-top phase of the discharges are prone to n=1 core rotating modes locking to the wall, leading to a disruption. Small changes to the discharge fueling during this phase can often mitigate the rotation damping associated with these modes and eliminate the disruption. The largest stored energy disruptions are those that occur at high current when a plasma current rampdown is initiated incorrectly.

  4. The role of ongoing dendritic oscillations in single-neuron dynamics.

    Science.gov (United States)

    Remme, Michiel W H; Lengyel, Máté; Gutkin, Boris S

    2009-09-01

    The dendritic tree contributes significantly to the elementary computations a neuron performs while converting its synaptic inputs into action potential output. Traditionally, these computations have been characterized as both temporally and spatially localized. Under this localist account, neurons compute near-instantaneous mappings from their current input to their current output, brought about by somatic summation of dendritic contributions that are generated in functionally segregated compartments. However, recent evidence about the presence of oscillations in dendrites suggests a qualitatively different mode of operation: the instantaneous phase of such oscillations can depend on a long history of inputs, and under appropriate conditions, even dendritic oscillators that are remote may interact through synchronization. Here, we develop a mathematical framework to analyze the interactions of local dendritic oscillations and the way these interactions influence single cell computations. Combining weakly coupled oscillator methods with cable theoretic arguments, we derive phase-locking states for multiple oscillating dendritic compartments. We characterize how the phase-locking properties depend on key parameters of the oscillating dendrite: the electrotonic properties of the (active) dendritic segment, and the intrinsic properties of the dendritic oscillators. As a direct consequence, we show how input to the dendrites can modulate phase-locking behavior and hence global dendritic coherence. In turn, dendritic coherence is able to gate the integration and propagation of synaptic signals to the soma, ultimately leading to an effective control of somatic spike generation. Our results suggest that dendritic oscillations enable the dendritic tree to operate on more global temporal and spatial scales than previously thought; notably that local dendritic activity may be a mechanism for generating on-going whole-cell voltage oscillations. PMID:19730677

  5. Runaway electron generation in tokamak disruptions

    International Nuclear Information System (INIS)

    The time evolution of the plasma current during a tokamak disruption is calculated by solving the equations for runaway electron production simultaneously with the induction equation for the toroidal electric field. The resistive diffusion time in a post-disruption plasma is typically comparable to the runaway avalanche growth time. Accordingly, the toroidal electric field induced after the thermal quench of a disruption diffuses radially through the plasma at the same time as it accelerates runaway electrons, which in turn back-react on the electric field. When these processes are accounted for in a self-consistent way, it is found that (1) the efficiency and time scale of runaway generation agrees with JET experiments; (2) the runaway current profile typically becomes more peaked than the pre-disruption current profile; and (3) can easily become radially in the shape of filaments. It is also shown that higher runaway electron generation is expected if the thermal quench is sufficiently fast. (authors)

  6. Operational limits and disruptions in tokamaks

    International Nuclear Information System (INIS)

    This report contains a concise description on status of knowledge in the area of operational limits and disruption characteristics, based on the results of workshops held during the ITER Definition Phase (1988). (author)

  7. Shell Galaxies, Dynamical Friction, and Dwarf Disruption

    CERN Document Server

    Ebrova, Ivana; Canalizo, Gabriela; Bennert, Nicola; Jilkova, Lucie

    2009-01-01

    Using N-body simulations of shell galaxies created in nearly radial minor mergers, we investigate the error of collision dating, resulting from the neglect of dynamical friction and of gradual disruption of the cannibalized dwarf.

  8. Glaciological parameters of disruptive event analysis

    International Nuclear Information System (INIS)

    The following disruptive events caused by ice sheets are considered: continental glaciation, erosion, loading and subsidence, deep ground water recharge, flood erosion, isostatic rebound rates, melting, and periodicity of ice ages

  9. Passive runaway electron suppression in tokamak disruptions

    International Nuclear Information System (INIS)

    Runaway electrons created in disruptions pose a serious problem for tokamaks with large current. It would be desirable to have a runaway electron suppression method which is passive, i.e., a method that does not rely on an uncertain disruption prediction system. One option is to let the large electric field inherent in the disruption drive helical currents in the wall. This would create ergodic regions in the plasma and increase the runaway losses. Whether these regions appear at a suitable time and place to affect the formation of the runaway beam depends on disruption parameters, such as electron temperature and density. We find that it is difficult to ergodize the central plasma before a beam of runaway current has formed. However, the ergodic outer region will make the Ohmic current profile contract, which can lead to instabilities that yield large runaway electron losses

  10. Surfactant assisted synthesis of In2S3 dendrites and their characterization

    International Nuclear Information System (INIS)

    Partially crystalline indium sulfide dendrites were obtained via precipitation in presence of CTAB. In absence of CTAB, crude self-assembly of particles was noted. With increasing CTAB concentration and aging time of the solutions, particles were found to self-assemble in a progressive manner to extended hierarchical dendrites. Unlike in commonly known cases where dendrites are unstable but well crystallized, partially crystallized particles can also self-assemble to well-formed dendrites especially when assisted by the surfactant molecules. The X-ay analysis, TEM studies confirmed the partially crystallized nature of the samples. Optical properties when investigated, the dendrites were found to show quantum confinement effects

  11. Principles of self-assembly of helical pores from dendritic dipeptides

    OpenAIRE

    Percec, Virgil; Dulcey, Andrés E.; Peterca, Mihai; Ilies, Monica; Nummelin, Sami; Sienkowska, Monika J.; Heiney, Paul A.

    2006-01-01

    The self-assembly of the dendritic dipeptides (4-3,4-3,5)nG2-CH2-Boc-l-Tyr-l-Ala-OMe and their achiral dendritic alcohol (4-3,4-3,5)nG2-CH2OH precursors, both with n = 1–16, where n represents the number of methylenic units in the alkyl groups of the dendron, are reported. All chiral dendritic dipeptides and achiral dendritic alcohols self-assemble into helical porous columns that are stable in both solution and solid state. The pore diameter (Dpore) of the columns self-assembled from dendrit...

  12. Characteristics of the Dendrite Growth in the Electrochemical Alane Production Process

    Directory of Open Access Journals (Sweden)

    Park Hyun-Kyu

    2016-01-01

    Full Text Available The electrochemical alane production process was proposed for a feasible production of alane. The operation of process was difficult because of short circuit by a dendrite growth in the reactor. Therefore, characteristics of the dendrite growth in the process were investigated. We conducted the electrochemical alane production process using Teflon block for inhibition of the dendrite growth. The obtained dendrite was characterized by XRD, SEM and ICP-AES. It was concluded that the dendrite growth was attributed to a melting and agglomeration of Al fine particles existed in the solution.

  13. Endocrine Disrupting Chemicals and Disease Susceptibility

    OpenAIRE

    Schug, Thaddeus T.; Janesick, Amanda; Blumberg, Bruce; Heindel, Jerrold J.

    2011-01-01

    Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are tho...

  14. Improved gene disruption method for Torulaspora delbrueckii.

    Science.gov (United States)

    Pacheco, Andreia; Almeida, Maria Judite; Sousa, Maria João

    2009-02-01

    PCR-based disruption cassettes are one of the most commonly used strategies for gene targeting in Saccharomyces cerevisiae. The efficiencies of gene disruption using this conventional method are highly variable among species, and often quite low with nonconventional yeasts. Here we describe an improved strategy to obtain deletion mutants in baker's yeast Torulaspora delbrueckii, one of the most abundant non-Saccharomyces species, present in home-made corn and rye bread dough. PMID:19016885

  15. Anastomotic disruption after large bowel resection

    OpenAIRE

    NasirKhan, Mohammad U; Abir, Farshad; Longo, Walter; Kozol, Robert

    2006-01-01

    Anastomotic disruption is a feared and serious complication of colon surgery. Decades of research have identified factors favoring successful healing of anastomoses as well as risk factors for anastomotic disruption. However, some factors, such as the role of mechanical bowel preparation, remain controversial. Despite proper caution and excellent surgical technique, some anastomotic leaks are inevitable. The rapid identification of anastomotic leaks and the timely treatment in these cases are...

  16. Sleep and circadian rhythm disruption in schizophrenia†

    OpenAIRE

    Wulff, Katharina; Dijk, Derk-Jan; Middleton, Benita; Foster, Russell G.; Joyce, Eileen M.

    2012-01-01

    Background Sleep disturbances comparable with insomnia occur in up to 80% of people with schizophrenia, but very little is known about the contribution of circadian coordination to these prevalent disruptions. Aims A systematic exploration of circadian time patterns in individuals with schizophrenia with recurrent sleep disruption. Method We examined the relationship between sleep-wake activity, recorded actigraphically over 6 weeks, along with ambient light exposure and simultaneous circadia...

  17. BUSINESS MODEL PATTERNS FOR DISRUPTIVE TECHNOLOGIES

    OpenAIRE

    BENJAMIN AMSHOFF; CHRISTIAN DÜLME; JULIAN ECHTERFELD; JÜRGEN GAUSEMEIER

    2015-01-01

    Companies nowadays face a myriad of business opportunities as a direct consequence of manifold disruptive technology developments. As a basic characteristic, disruptive technologies lead to a severe shift in value-creation networks giving rise to new market segments. One of the key challenges is to anticipate the business logics within these nascent and formerly unknown markets. Business model patterns promise to tackle this challenge. They can be interpreted as proven business model elements...

  18. On asymmetric collisions with large disruption parameters

    International Nuclear Information System (INIS)

    Collisions between a weak electron bunch and a strong positron bunch are studied within a flat model. Electrons are tracked through the transverse space charge field of the positron bunch, and it is shown that positrons in a storage ring may remain stable after asymmetric collisions with a weak electron bunch in spite of large values of the electron disruption parameter. The plasma oscillations that affect collisions with large disruption parameters may be suppressed by properly matching the electrons. 8 refs., 5 figs

  19. Anastomotic disruption after large bowel resection

    Institute of Scientific and Technical Information of China (English)

    Mohammad U NasirKhan; Farshad Abir; Walter Longo; Robert Kozol

    2006-01-01

    Anastomotic disruption is a feared and serious complication of colon surgery. Decades of research have identified factors favoring successful healing of anastomoses as well as risk factors for anastomotic disruption. However, some factors, such as the role of mechanical bowel preparation, remain controversial.Despite proper caution and excellent surgical technique,some anastomotic leaks are inevitable. The rapid identification of anastomotic leaks and the timely treatment in these cases are paramount.

  20. Technoligical Life Cycles Regional Clusters Facing Disruption

    OpenAIRE

    Bent Dalum; Pedersen, Christian Ø. R.; Gert Villumsen

    2002-01-01

    The phenomenon of technological life cycles is argued to be of great importance in the development of regional clusters. New 'disruptive' technologies may initiate the emergence of new regional industrial clusters and/or create new opportunities for further development of existing ones. However, they may also result in stagnation and decline of the latter. The term disruptive refers to such significant changes in the basic technologies that may change the industrial landscape, even in the sho...

  1. Behaviour of disruption generated runaways in JET

    International Nuclear Information System (INIS)

    Experiments have established the regions of parameter space in JET that lead to runaway generation in disruptions. Previous measurements on the structure of the runaway beam have been confirmed. The delay in runaway generation following temperature collapse is found to be caused by the very high density generated by the disruption. It is shown that runaway generation in JET can be best modelled and understood by including avalanche processes. (author)

  2. Disruptive Technologies and the Emergence of Competition

    OpenAIRE

    Adner, Ron; Zemsky, Peter

    2003-01-01

    We formalize the phenomenon of disruptive technologies (Christensen, 1997) that initially serve isolated market niches and, as they mature, expand to displace established technologies from mainstream segments. Using a model of horizontal and vertical differentiation with discrete customer segmentation, we show how the threat of disruption varies with the rate of technological advance, the number of firms using each technology, segments sizes, marginal costs, and the ability of firms to price ...

  3. ENDOCRINE DISRUPTING EFFECTS OF BUTYLPARABEN: A REVIEW

    OpenAIRE

    Pallabi Goswami; J.C Kalita

    2013-01-01

    In recent years, there has been an increasing concern in the field of endocrine disruption over the presence of various endocrine disrupting chemicals in Pharmaceuticals and Personal care products (PPCPs). This concern has also been as PPCPs are most widely used and had led to introduction of thousands of new and complex chemicals that enter the environment in large quantities. The effect of the chemicals has not only been restricted to human who are exposed directly to the chemicals or the a...

  4. Mesenchymal stem cells abrogate experimental asthma by altering dendritic cell function.

    Science.gov (United States)

    Zeng, Shao-Lin; Wang, Li-Hui; Li, Ping; Wang, Wei; Yang, Jiong

    2015-08-01

    Mesenchymal stem cells (MSCs) have been investigated in the treatment of numerous autoimmune diseases. However, the immune properties of MSCs on the development of asthma have remained to be fully elucidated. Airway dendritic cells (DCs) have an important role in the pathogenesis of allergic asthma, and disrupting their function may be a novel therapeutic approach. The present study used a mouse model of asthma to demonstrate that transplantation of MSCs suppressed features of asthma by targeting the function of lung myeloid DCs. MSCs suppressed the maturation and migration of lung DCs to the mediastinal lymph nodes, and thereby reducing the allergen-specific T helper type 2 (Th2) response in the nodes. In addition, MSC-treated DCs were less potent in activating naive and effector Th2 cells and the capacity of producing chemokine (C-C motif) ligand 17 (CCL17) and CCL22, which are chemokines attracting Th2 cells, to the airways was reduced. These results supported that MSCs may be used as a potential treatment for asthma. PMID:25936350

  5. Kicking off adaptive immunity: the discovery of dendritic cells

    OpenAIRE

    Katsnelson, Alla

    2006-01-01

    In 1973, Ralph Steinman and Zanvil Cohn discovered an unusual looking population of cells with an unprecedented ability to activate naive T cells. Dubbed “dendritic cells,” these cells are now known as the primary instigators of adaptive immunity.

  6. Role of plasmacytoid dendritic cells in breast cancer bone dissemination

    OpenAIRE

    Sawant, Anandi; Ponnazhagan, Selvarangan

    2013-01-01

    Elevated levels of plasmacytoid dendritic cells (pDC) have been observed as breast cancer disseminates to the bone. The selective depletion of pDC in mice led to a total abrogation of bone metastasis as well as to an increase in TH1 antitumor response, suggesting that pDC may be considered as a potential therapeutic target for metastatic breast cancer.

  7. Plasmacytoid dendritic cells migrate in afferent skin lymph.

    Science.gov (United States)

    Pascale, Florentina; Pascale, Florentia; Contreras, Vanessa; Bonneau, Michel; Courbet, Alexandre; Chilmonczyk, Stefan; Bevilacqua, Claudia; Epardaud, Mathieu; Eparaud, Mathieu; Niborski, Violeta; Riffault, Sabine; Balazuc, Anne-Marie; Foulon, Eliane; Guzylack-Piriou, Laurence; Riteau, Beatrice; Hope, Jayne; Bertho, Nicolas; Charley, Bernard; Schwartz-Cornil, Isabelle

    2008-05-01

    Conventional dendritic cells enter lymph nodes by migrating from peripheral tissues via the lymphatic route, whereas plasmacytoid dendritic cells (pDC), also called IFN-producing cells (IPC), are described to gain nodes from blood via the high endothelial venules. We demonstrate here that IPC/pDC migrate in the afferent lymph of two large mammals. In sheep, injection of type A CpG oligodinucleotide (ODN) induced lymph cells to produce type I IFN. Furthermore, low-density lymph cells collected at steady state produced type I IFN after stimulation with type A CpG ODN and enveloped viruses. Sheep lymph IPC were found within a minor B(neg)CD11c(neg) subset expressing CD45RB. They presented a plasmacytoid morphology, expressed high levels of TLR-7, TLR-9, and IFN regulatory factor 7 mRNA, induced IFN-gamma production in allogeneic CD4(pos) T cells, and differentiated into dendritic cell-like cells under viral stimulation, thus fulfilling criteria of bona fide pDC. In mini-pig, a CD4(pos)SIRP(pos) subset in afferent lymph cells, corresponding to pDC homologs, produced type I IFN after type A CpG-ODN triggering. Thus, pDC can link innate and acquired immunity by migrating from tissue to draining node via lymph, similarly to conventional dendritic cells. PMID:18424716

  8. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity

    NARCIS (Netherlands)

    J. Jaworski; L.C. Kapitein; S. Montenegro Gouveia; B.R. Dortland; P.S. Wulf; I. Grigoriev; P. Camera; S.A. Spangler; P. Di Stefano; J. Demmers; H. Krugers; P. Defilippi; A. Akhmanova; C.C. Hoogenraad

    2009-01-01

    Dendritic spines are the major sites of excitatory synaptic input, and their morphological changes have been linked to learning and memory processes. Here, we report that growing microtubule plus ends decorated by the microtubule tip-tracking protein EB3 enter spines and can modulate spine morpholog

  9. Dendritic Spines in Depression: What We Learned from Animal Models.

    Science.gov (United States)

    Qiao, Hui; Li, Ming-Xing; Xu, Chang; Chen, Hui-Bin; An, Shu-Cheng; Ma, Xin-Ming

    2016-01-01

    Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms. PMID:26881133

  10. Synthesis, magnetic and microwave electromagnetic properties of dendritic iron

    Science.gov (United States)

    Yan, Gongqin; He, Fei; Zhao, Guanlin; Wei, Pengwan; Jiang, Anbang

    2015-09-01

    Iron dendritic micropines are synthesized by a hydrogen reduction, where the hematite dendritic micropines prepared by a hydrothermal method are used as starting materials. The as-obtained dendritic iron exhibits enhanced coercivity and remanent magnetization at room temperature and high complex permittivity at 2-18 GHz due to the peculiar shape anisotropy and good crystallinity. The negative imaginary permeability is observed at 14.5-18.0 GHz, suggesting it has a potential as a left-handed material. The paraffin-based composites containing 30 wt% dendritic irons show large permittivity resulting from the charge polarization and the conductivity and have a minimal reflection loss (RL) of -37.4 dB at 7.4 GHz when the thickness ( d) is 2.0 mm. The RL values less than -20 dB are obtained in the frequency range of 5.5-12.9 GHz when d increases from 0.9 to 3.0 mm.

  11. Dendritic assembly of gold nanoparticles during fuel-forming electrocatalysis.

    Science.gov (United States)

    Manthiram, Karthish; Surendranath, Yogesh; Alivisatos, A Paul

    2014-05-21

    We observe the dendritic assembly of alkanethiol-capped gold nanoparticles on a glassy carbon support during electrochemical reduction of protons and CO2. We find that the primary mechanism by which surfactant-ligated gold nanoparticles lose surface area is by taking a random walk along the support, colliding with their neighbors, and fusing to form dendrites, a type of fractal aggregate. A random walk model reproduces the fractal dimensionality of the dendrites observed experimentally. The rate at which the dendrites form is strongly dependent on the solubility of the surfactant in the electrochemical double layer under the conditions of electrolysis. Since alkanethiolate surfactants reductively desorb at potentials close to the onset of CO2 reduction, they do not poison the catalytic activity of the gold nanoparticles. Although catalyst mobility is typically thought to be limited for room-temperature electrochemistry, our results demonstrate that nanoparticle mobility is significant under conditions at which they electrochemically catalyze gas evolution, even in the presence of a high surface area carbon and binder. A careful understanding of the electrolyte- and polarization-dependent nanoparticle aggregation kinetics informs strategies for maintaining catalyst dispersion during fuel-forming electrocatalysis. PMID:24766431

  12. Synaptic integration in dendrites: exceptional need for speed.

    Science.gov (United States)

    Golding, Nace L; Oertel, Donata

    2012-11-15

    Some neurons in the mammalian auditory system are able to detect and report the coincident firing of inputs with remarkable temporal precision. A strong, low-voltage-activated potassium conductance (g(KL)) at the cell body and dendrites gives these neurons sensitivity to the rate of depolarization by EPSPs, allowing neurons to assess the coincidence of the rising slopes of unitary EPSPs. Two groups of neurons in the brain stem, octopus cells in the posteroventral cochlear nucleus and principal cells of the medial superior olive (MSO), extract acoustic information by assessing coincident firing of their inputs over a submillisecond timescale and convey that information at rates of up to 1000 spikes s(-1). Octopus cells detect the coincident activation of groups of auditory nerve fibres by broadband transient sounds, compensating for the travelling wave delay by dendritic filtering, while MSO neurons detect coincident activation of similarly tuned neurons from each of the two ears through separate dendritic tufts. Each makes use of filtering that is introduced by the spatial distribution of inputs on dendrites. PMID:22930273

  13. Dendritic Cell Protection from Cisplatin Nephrotoxicity Is Independent of Neutrophils

    Directory of Open Access Journals (Sweden)

    Raghu K. Tadagavadi

    2015-08-01

    Full Text Available Cisplatin is a very effective chemotherapeutic agent used against a wide range of solid tumors. A major adverse effect of cisplatin therapy is acute kidney injury (AKI. Neutrophils are reported to infiltrate and exacerbate injury in a wide range of sterile inflammatory models of tissue injury. Here, we studied the kinetics of neutrophil infiltration into kidneys and their role in cisplatin-mediated AKI. Mice treated with cisplatin showed an increase in circulating neutrophils 24 and 48 h after cisplatin administration. Cisplatin treatment caused an increase in kidney leukocytes with neutrophils accounting for the majority of the infiltrating leukocytes. The extent of neutrophil infiltration coincided with the severity of kidney injury and renal dysfunction. To examine the functional relevance of infiltrating neutrophils in cisplatin nephrotoxicity, we depleted neutrophils using a neutrophil-specific antibody (anti-Ly-6G. This antibody resulted in greater than 90% depletion of neutrophils in both the blood and kidney. Of note, depletion of neutrophils had no impact on the extent of cisplatin-induced AKI as compared to non-depleted mice. Earlier, we reported that dendritic cell depletion in CD11c-DTRtg mice causes exacerbation of AKI and a dramatic increase in renal neutrophils. Thus, we also examined the role of neutrophils in dendritic cell-depleted mice treated with cisplatin. Dendritic cell depletion exacerbated AKI in spite of neutrophil depletion. These data demonstrate that cisplatin nephrotoxicity is not mediated by neutrophils and that dendritic cells protect kidneys via neutrophil-independent mechanisms.

  14. Dendritic Spines in Depression: What We Learned from Animal Models

    Directory of Open Access Journals (Sweden)

    Hui Qiao

    2016-01-01

    Full Text Available Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS, chronic unpredictable mild stress (CUMS, and chronic social defeat stress (CSDS, have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms.

  15. Genetically modified dendritic cell-based cancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 47, č. 5 (2001), s. 153-155. ISSN 0015-5500 R&D Projects: GA MZd NC5526 Keywords : dendritic cells * cancer vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.519, year: 2001

  16. Genetically engineered dendritic cell-based cancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 18, č. 3 (2001), s. 475-478. ISSN 1019-6439 R&D Projects: GA MZd NC5526 Keywords : dendritic cells * tumour vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.330, year: 2001

  17. Activation of human dendritic cells by gliadin and LPS

    Czech Academy of Sciences Publication Activity Database

    Pecharová, Barbara; Palová-Jelínková, Lenka; Roková, D.; Cinová, Jana; Šedivá, A.; Tlaskalová, Helena; Spíšek, R.; Tučková, Ludmila

    New York : Columbia University, 2006, s. 54-54. [International Celiac Disease Symposium /12./. New York (US), 09.11.2006-11.11.2006] R&D Projects: GA ČR GA310/05/2245 Institutional research plan: CEZ:AV0Z50200510 Keywords : dendritic cells * gliadin * peptides Subject RIV: EE - Microbiology, Virology

  18. Stimulation effects of gliadin to human dendritic cells

    Czech Academy of Sciences Publication Activity Database

    Pecharová, Barbara; Palová-Jelínková, Lenka; Rožková, D.; Bártová, J.; Šedivá, A.; Tlaskalová, Helena; Spíšek, R.; Tučková, Ludmila

    Praha : Verlag, 2006, s. 93-93. [Meeting of European Mucosal Immunology Group /5./. Praha (CZ), 05.10.2006-07.10.2006] R&D Projects: GA AV ČR IAA5020210 Institutional research plan: CEZ:AV0Z50200510 Keywords : dendritic cells * antigen * gliadin peptides Subject RIV: EE - Microbiology, Virology

  19. Lithium dendrite growth through solid polymer electrolyte membranes

    Science.gov (United States)

    Harry, Katherine; Schauser, Nicole; Balsara, Nitash

    2015-03-01

    Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.

  20. Bisphenol-A rapidly promotes dynamic changes in hippocampal dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDA receptor subunit NR2B

    International Nuclear Information System (INIS)

    Bisphenol-A (BPA) is known to be a potent endocrine disrupter. Evidence is emerging that estrogen exerts a rapid influence on hippocampal synaptic plasticity and the dendritic spine density, which requires activation of NMDA receptors. In the present study, we investigated the effects of BPA (ranging from 1 to 1000 nM), focusing on the rapid dynamic changes in dendritic filopodia and the expressions of estrogen receptor (ER) β and NMDA receptor, as well as the phosphorylation of NMDA receptor subunit NR2B in the cultured hippocampal neurons. A specific ER antagonist ICI 182,780 was used to examine the potential involvement of ERs. The results demonstrated that exposure to BPA (ranging from 10 to 1000 nM) for 30 min rapidly enhanced the motility and the density of dendritic filopodia in the cultured hippocampal neurons, as well as the phosphorylation of NR2B (pNR2B), though the expressions of NMDA receptor subunits NR1, NR2B, and ERβ were not changed. The antagonist of ERs completely inhibited the BPA-induced increases in the filopodial motility and the number of filopodia extending from dendrites. The increased pNR2B induced by BPA (100 nM) was also completely eliminated. Furthermore, BPA attenuated the effects of 17β-estradiol (17β-E2) on the dendritic filopodia outgrowth and the expression of pNR2B when BPA was co-treated with 17β-E2. The present results suggest that BPA, like 17β-E2, rapidly results in the enhanced motility and density of dendritic filopodia in the cultured hippocampal neurons with the concomitant activation of NMDA receptor subunit NR2B via an ER-mediated signaling pathway. Meanwhile, BPA suppressed the enhancement effects of 17β-E2 when it coexists with 17β-E2. These results provided important evidence suggesting the neurotoxicity of the low levels of BPA during the early postnatal development of the brain.

  1. Dendritic development of Drosophila high order visual system neurons is independent of sensory experience

    Directory of Open Access Journals (Sweden)

    Reuter John E

    2003-06-01

    Full Text Available Abstract Background The complex and characteristic structures of dendrites are a crucial part of the neuronal architecture that underlies brain function, and as such, their development has been a focal point of recent research. It is generally believed that dendritic development is controlled by a combination of endogenous genetic mechanisms and activity-dependent mechanisms. Therefore, it is of interest to test the relative contributions of these two types of mechanisms towards the construction of specific dendritic trees. In this study, we make use of the highly complex Vertical System (VS of motion sensing neurons in the lobula plate of the Drosophila visual system to gauge the importance of visual input and synaptic activity to dendritic development. Results We find that the dendrites of VS1 neurons are unchanged in dark-reared flies as compared to control flies raised on a 12 hour light, 12 hour dark cycle. The dendrites of these flies show no differences from control in dendrite complexity, spine number, spine density, or axon complexity. Flies with genetically ablated eyes show a slight but significant reduction in the complexity and overall length of VS1 dendrites, although this effect may be due to a reduction in the overall size of the dendritic field in these flies. Conclusions Overall, our results indicate no role for visual experience in the development of VS dendrites, while spontaneous activity from photoreceptors may play at most a subtle role in the formation of fully complex dendrites in these high-order visual processing neurons.

  2. A Rayleigh number based dendrite fragmentation criterion for detachment of solid crystals during solidification

    International Nuclear Information System (INIS)

    Movement of solid crystals in the form of dendrite fragments causes severe macro-segregation in solidified products. Dendrite fragmentation in the developing mushy zone occurs as a result of remelting (causing dissolution) and subsequent breakage of dendritic side arms from the dendritic stalks. An understanding of the mechanisms of dendrite fragmentation is essential for predicting the transport of fragmented solid crystals for possible control of macro-segregation. In this work, a Rayleigh number based fragmentation criterion is developed for detachment of dendrites from the developing mushy zone, which determines the conditions favourable for fragmentation of dendrites. The Rayleigh number, defined in this paper, measures the ratio of the driving buoyancy force for the flow in the mushy zone to the retarding frictional force associated with the permeability of the mush. The criterion developed is a function of the concentration difference, liquid fraction, permeability, growth rate of mushy layer and thermophysical properties of the material

  3. Differential Dendritic Integration of Synaptic Potentials and Calcium in Cerebellar Interneurons.

    Science.gov (United States)

    Tran-Van-Minh, Alexandra; Abrahamsson, Therése; Cathala, Laurence; DiGregorio, David A

    2016-08-17

    Dendritic voltage integration determines the transformation of synaptic inputs into output firing, while synaptic calcium integration drives plasticity mechanisms thought to underlie memory storage. Dendritic calcium integration has been shown to follow the same synaptic input-output relationship as dendritic voltage, but whether similar operations apply to neurons exhibiting sublinear voltage integration is unknown. We examined the properties and cellular mechanisms of these dendritic operations in cerebellar molecular layer interneurons using dendritic voltage and calcium imaging, in combination with synaptic stimulation or glutamate uncaging. We show that, while synaptic potentials summate sublinearly, concomitant dendritic calcium signals summate either linearly or supralinearly depending on the number of synapses activated. The supralinear dendritic calcium triggers a branch-specific, short-term suppression of neurotransmitter release that alters the pattern of synaptic activation. Thus, differential voltage and calcium integration permits dynamic regulation of neuronal input-output transformations without altering intrinsic nonlinear integration mechanisms. PMID:27537486

  4. Morphological analysis of dendrites and spines by hybridization of ridge detection with twin support vector machine.

    Science.gov (United States)

    Wang, Shuihua; Chen, Mengmeng; Li, Yang; Shao, Ying; Zhang, Yudong; Du, Sidan; Wu, Jane

    2016-01-01

    Dendritic spines are described as neuronal protrusions. The morphology of dendritic spines and dendrites has a strong relationship to its function, as well as playing an important role in understanding brain function. Quantitative analysis of dendrites and dendritic spines is essential to an understanding of the formation and function of the nervous system. However, highly efficient tools for the quantitative analysis of dendrites and dendritic spines are currently undeveloped. In this paper we propose a novel three-step cascaded algorithm-RTSVM- which is composed of ridge detection as the curvature structure identifier for backbone extraction, boundary location based on differences in density, the Hu moment as features and Twin Support Vector Machine (TSVM) classifiers for spine classification. Our data demonstrates that this newly developed algorithm has performed better than other available techniques used to detect accuracy and false alarm rates. This algorithm will be used effectively in neuroscience research. PMID:27547530

  5. Serum inducible kinase is a positive regulator of cortical dendrite development and is required for BDNF-promoted dendritic arborization

    Institute of Scientific and Technical Information of China (English)

    Shun-Ling Guo; Guo-He Tan; Shuai Li; Xue-Wen Cheng; Ya Zhou; Yun-Fang Jia; Hui Xiong; Jiong Tao; Zhi-Qi Xiong

    2012-01-01

    Serum inducible kinase (SNK),also known as (p)olo-(l)ike (k)inase 2 (PLK2),is a known regulator of mitosis,synaptogenesis and synaptic homeostasis.However,its role in early cortical development is unknown.Herein,we show that snk is expressed in the cortical plate from embryonic day 14,but not in the ventricular/subventricular zones (VZ/SVZ),and SNK protein localizes to the soma and dendrites of cultured immature cortical neurons.Loss of SNK impaired dendritic but not axonal arborization in a dose-dependent manner and overexpression had opposite effects,both in vitro and in vivo.Overexpression of SNK also caused abnormal branching of the leading process of migrating cortical neurons in electroporated cortices.The kinase activity was necessary for these effects.Extracellular signalregulated kinase (ERK) pathway activity downstream of brain-derived neurotrophic factor (BDNF) stimulation led to increases in SNK protein expression via transcriptional regulation,and this upregulation was necessary for the growth-promoting effect of BDNF on dendritic arborization.Taken together,our results indicate that SNK is essential for dendrite morphogenesis in cortical neurons.

  6. Dynamics of intrinsic dendritic calcium signaling during tonic firing of thalamic reticular neurons.

    Directory of Open Access Journals (Sweden)

    Patrick Chausson

    Full Text Available The GABAergic neurons of the nucleus reticularis thalami that control the communication between thalamus and cortex are interconnected not only through axo-dendritic synapses but also through gap junctions and dendro-dendritic synapses. It is still unknown whether these dendritic communication processes may be triggered both by the tonic and the T-type Ca(2+ channel-dependent high frequency burst firing of action potentials displayed by nucleus reticularis neurons during wakefulness and sleep, respectively. Indeed, while it is known that activation of T-type Ca(2+ channels actively propagates throughout the dendritic tree, it is still unclear whether tonic action potential firing can also invade the dendritic arborization. Here, using two-photon microscopy, we demonstrated that dendritic Ca(2+ responses following somatically evoked action potentials that mimic wake-related tonic firing are detected throughout the dendritic arborization. Calcium influx temporally summates to produce dendritic Ca(2+ accumulations that are linearly related to the duration of the action potential trains. Increasing the firing frequency facilitates Ca(2+ influx in the proximal but not in the distal dendritic compartments suggesting that the dendritic arborization acts as a low-pass filter in respect to the back-propagating action potentials. In the more distal compartment of the dendritic tree, T-type Ca(2+ channels play a crucial role in the action potential triggered Ca(2+ influx suggesting that this Ca(2+ influx may be controlled by slight changes in the local dendritic membrane potential that determine the T-type channels' availability. We conclude that by mediating Ca(2+ dynamic in the whole dendritic arborization, both tonic and burst firing of the nucleus reticularis thalami neurons might control their dendro-dendritic and electrical communications.

  7. Mechanical algal disruption for efficient biodiesel extraction

    Science.gov (United States)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  8. Human monocyte-derived dendritic cells turn into foamy dendritic cells with IL-17A.

    Science.gov (United States)

    Salvatore, Giulia; Bernoud-Hubac, Nathalie; Bissay, Nathalie; Debard, Cyrille; Daira, Patricia; Meugnier, Emmanuelle; Proamer, Fabienne; Hanau, Daniel; Vidal, Hubert; Aricò, Maurizio; Delprat, Christine; Mahtouk, Karène

    2015-06-01

    Interleukin 17A (IL-17A) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases. In the field of immunometabolism, we have studied the impact of IL-17A on the lipid metabolism of human in vitro-generated monocyte-derived dendritic cells (DCs). Microarrays and lipidomic analysis revealed an intense remodeling of lipid metabolism induced by IL-17A in DCs. IL-17A increased 2-12 times the amounts of phospholipids, cholesterol, triglycerides, and cholesteryl esters in DCs. Palmitic (16:0), stearic (18:0), and oleic (18:ln-9c) acid were the main fatty acid chains present in DCs. They were strongly increased in response to IL-17A while their relative proportion remained unchanged. Capture of extracellular lipids was the major mechanism of lipid droplet accumulation, visualized by electron microscopy and Oil Red O staining. Besides this foamy phenotype, IL-17A induced a mixed macrophage-DC phenotype and expression of the nuclear receptor NR1H3/liver X receptor-α, previously identified in the context of atherosclerosis as the master regulator of cholesterol homeostasis in macrophages. These IL-17A-treated DCs were as competent as untreated DCs to stimulate allogeneic naive T-cell proliferation. Following this first characterization of lipid-rich DCs, we propose to call these IL-17A-dependent cells "foamy DCs" and discuss the possible existence of foamy DCs in atherosclerosis, a metabolic and inflammatory disorder involving IL-17A. PMID:25833686

  9. Disruptions and vertical displacement events in JET

    International Nuclear Information System (INIS)

    Major disruptions and vertical displacement events (VDEs) represent a serious problem for the integrity of large devices such as ITER and a reactor. This arises from the localized power deposition on the divertor target and first wall, the production of runaway electrons in the post-disruptive plasma and the substantial forces transmitted to the vacuum vessel by eddy and halo currents. Extensive experiments have been performed in JET to characterize the phenomena associated with disruptions and VDEs and to investigate the underlying physics. In addition, the installation of a disruption feedback stabilization system based on a set of four internal saddle coils driven by high power (3 kA/1.5 kV), high frequency (0-10 kHz) amplifiers has allowed initial experiments on the control of disruptions by suppression of the n = 1 mhd precursor. This system has also been used to study fundamental aspects of the physics of error field induced modes, which is of direct application to ITER (author). 3 refs, 8 figs

  10. REMOD: a computational tool for remodeling neuronal dendrites

    Directory of Open Access Journals (Sweden)

    Panagiotis Bozelos

    2014-05-01

    Full Text Available In recent years, several modeling studies have indicated that dendritic morphology is a key determinant of how individual neurons acquire a unique signal processing profile. The highly branched dendritic structure that originates from the cell body, explores the surrounding 3D space in a fractal-like manner, until it reaches a certain amount of complexity. Its shape undergoes significant alterations not only in various neuropathological conditions, but in physiological, too. Yet, despite the profound effect that these alterations can have on neuronal function, the causal relationship between structure and function remains largely elusive. The lack of a systematic approach for remodeling neuronal cells and their dendritic trees is a key limitation that contributes to this problem. In this context, we developed a computational tool that allows the remodeling of any type of neurons, given a set of exemplar morphologies. The tool is written in Python and provides a simple GUI that guides the user through various options to manipulate selected neuronal morphologies. It provides the ability to load one or more morphology files (.swc or .hoc and choose specific dendrites to operate one of the following actions: shrink, remove, extend or branch (as shown in Figure 1. The user retains complete control over the extent of each alteration and if a chosen action is not possible due to pre-existing structural constraints, appropriate warnings are produced. Importantly, the tool can also be used to extract morphology statistics for one or multiple morphologies, including features such as the total dendritic length, path length to the root, branch order, diameter tapering, etc. Finally, an experimental utility enables the user to remodel entire dendritic trees based on preloaded statistics from a database of cell-type specific neuronal morphologies. To our knowledge, this is the first tool that allows (a the remodeling of existing –as opposed to the de novo

  11. Murine and Human Model Systems for the Study of Dendritic Cell Immunobiology.

    Science.gov (United States)

    Hargadon, Kristian M

    2016-03-01

    Dendritic cells are a population of innate immune cells that possess their own effector functions as well as numerous regulatory properties that shape the activity of other innate and adaptive cells of the immune system. Following their development from either lymphoid or myeloid progenitors, the function of dendritic cells is tightly linked to their maturation and activation status. Differentiation into specialized subsets of dendritic cells also contributes to the diverse immunologic functions of these cells. Because of the key role played by dendritic cells in the regulation of both immune tolerance and activation, significant efforts have been focused on understanding dendritic cell biology. This review highlights the model systems currently available to study dendritic cell immunobiology and emphasizes the advantages and disadvantages to each system in both murine and human settings. In particular, in vitro cell culture systems involving immortalized dendritic cell lines, ex vivo systems for differentiating and expanding dendritic cells from their precursor populations, and systems for expanding, ablating, and manipulating dendritic cells in vivo are discussed. Emphasis is placed on the contribution of these systems to our current understanding of the development, function, and immunotherapeutic applications of dendritic cells, and insights into how these models might be extended in the future to answer remaining questions in the field are discussed. PMID:25203775

  12. Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jinwang; Tartakovsky, Alexandre M.; Ferris, Kim F.; Ryan, Emily M.

    2016-01-01

    Dendrite formation on the electrode surface of high energy density lithium (Li) batteries causes safety problems and limits their applications. Suppressing dendrite growth could significantly improve Li battery performance. Dendrite growth and morphology is a function of the mixing in the electrolyte near the anode interface. Most research into dendrites in batteries focuses on dendrite formation in isotropic electrolytes (i.e., electrolytes with isotropic diffusion coefficient). In this work, an anisotropic diffusion reaction model is developed to study the anisotropic mixing effect on dendrite growth in Li batteries. The model uses a Lagrangian particle-based method to model dendrite growth in an anisotropic electrolyte solution. The model is verified by comparing the numerical simulation results with analytical solutions, and its accuracy is shown to be better than previous particle-based anisotropic diffusion models. Several parametric studies of dendrite growth in an anisotropic electrolyte are performed and the results demonstrate the effects of anisotropic transport on dendrite growth and morphology, and show the possible advantages of anisotropic electrolytes for dendrite suppression.

  13. Computational study of electro-convection effects on dendrite growth in batteries

    Science.gov (United States)

    Tan, Jinwang; Ryan, Emily M.

    2016-08-01

    Dendrite formation on the anode surface of a battery is closely related to the safety and capacity of high energy density batteries, thus suppressing dendrite growth will significantly improve the performance of batteries. Many experimental reports reveal that convection near the dendrite nucleation site can change the local mass transport, and ultimately affect dendrite growth. Investigation of the convection effect in batteries will guide the development of strategies to suppress dendrite growth in a convective electrolyte. Most of the existing electro-convection computational models for dendrite growth studies are based on Eulerian frameworks. These methods have difficulty modeling the moving boundaries associated with dendrite growth and are less computationally efficient in simulating convective fluid motion. In this paper we adopt a mesh-free particle based Lagrangian method to address the challenges of previous grid based Eulerian electro-convection models. The developed model is verified by comparison to analytical solutions, including verification of ion migration and the electric potential. Simulation results show that the predicted dendrite growth and electro-convective flow patterns compare well with experimental results during early dendrite growth stages. Parametric studies reveal that low viscosity electrolytes suppress the dendrite growth by increasing the mass transport of ions near the anode/electrolyte interface.

  14. Mechanical algal disruption for efficient biodiesel extraction

    Science.gov (United States)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  15. Nectin-1 spots regulate the branching of olfactory mitral cell dendrites.

    Science.gov (United States)

    Fujiwara, Takeshi; Inoue, Takahito; Maruo, Tomohiko; Rikitake, Yoshiyuki; Ieki, Nao; Mandai, Kenji; Kimura, Kazushi; Kayahara, Tetsuro; Wang, Shujie; Itoh, Yu; Sai, Kousyoku; Mori, Masahiro; Mori, Kensaku; Takai, Yoshimi; Mizoguchi, Akira

    2015-09-01

    Olfactory mitral cells extend lateral secondary dendrites that contact the lateral secondary and apical primary dendrites of other mitral cells in the external plexiform layer (EPL) of the olfactory bulb. The lateral dendrites further contact granule cell dendrites, forming dendrodendritic reciprocal synapses in the EPL. These dendritic structures are critical for odor information processing, but it remains unknown how they are formed. We recently showed that the immunoglobulin-like cell adhesion molecule nectin-1 constitutes a novel adhesion apparatus at the contacts between mitral cell lateral dendrites, between mitral cell lateral and apical dendrites, and between mitral cell lateral dendrites and granule cell dendritic spine necks in the deep sub-lamina of the EPL of the developing mouse olfactory bulb and named them nectin-1 spots. We investigated here the role of the nectin-1 spots in the formation of dendritic structures in the EPL of the mouse olfactory bulb. We showed that in cultured nectin-1-knockout mitral cells, the number of branching points of mitral cell dendrites was reduced compared to that in the control cells. In the deep sub-lamina of the EPL in the nectin-1-knockout olfactory bulb, the number of branching points of mitral cell lateral dendrites and the number of dendrodendritic reciprocal synapses were reduced compared to those in the control olfactory bulb. These results indicate that the nectin-1 spots regulate the branching of mitral cell dendrites in the deep sub-lamina of the EPL and suggest that the nectin-1 spots are required for odor information processing in the olfactory bulb. PMID:26169026

  16. Dendritic thickness: a morphometric parameter to classify mouse retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    L.D. Loopuijt

    2007-10-01

    Full Text Available To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37 on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively. Three cells (4.5% were bistratified, having thick dendrites, and the others (95.5% were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40% and 2 groups with inner (50-100% stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.

  17. A model for disruption generated runaway electrons

    International Nuclear Information System (INIS)

    One of the possible consequences of disruptions in tokamaks is the generation of runaway electrons which can impact plasma facing components and cause damage, owing to high local energy deposition. This problem becomes more serious as the machine size and plasma current increase. Since large size and high currents are characteristics of proposed future machines, control of runaway generation is an important design consideration. A lumped circuit model for disruption runaway electron generation indicates that impurity concentration and type, as well as plasma motion, can strongly influence runaway behaviour. A comparison of disruption data from several runs on JET and DIII-D with model results demonstrate the effects of impurities, and plasma motion, on runaway number density and energy. The model is also applied to the calculation of runaway currents for ITER. (author). 16 refs, 13 figs

  18. Disc formation from stellar tidal disruptions

    CERN Document Server

    Bonnerot, Clément; Lodato, Giuseppe; Price, Daniel J

    2015-01-01

    The potential of tidal disruption of stars to probe otherwise quiescent supermassive black holes cannot be exploited, if their dynamics is not fully understood. So far, the observational appearance of these events has been commonly derived from analytical extrapolations of the debris dynamical properties just after the stellar disruption. In this paper, we perform hydrodynamical simulations of stars in highly eccentric orbits, that follow the stellar debris after disruption and investigate their ultimate fate. We demonstrate that gas debris circularize on an orbital timescale because relativistic apsidal precession causes the stream to self-cross. The higher the eccentricity and/or the deeper the encounter, the faster is the circularization. If the internal energy deposited by shocks during stream self-interaction is readily radiated, the gas forms a narrow ring at the circularization radius. It will then proceed to accrete viscously at a super-Eddington rate, puffing up under radiation pressure. If instead c...

  19. Disruption Management in Passenger Railway Transportation

    DEFF Research Database (Denmark)

    Groth, Julie Jespersen; Potthoff, Daniel; Clausen, Jens;

    2009-01-01

    This paper deals with disruption management in passenger railway transportation. In the disruption management process, many actors belonging to different organizations play a role. In this paper we therefore describe the process itself and the roles of the different actors. Furthermore, we discuss...... the three main subproblems in railway disruption management: timetable adjustment, and rolling stock and crew re-scheduling. Next to a general description of these problems, we give an overview of the existing literature and we present some details of the specific situations at DSB S-tog and NS. These...... are the railway operators in the suburban area of Copenhagen, Denmark, and on the main railway lines in The Netherlands, respectively. Finally, we address the integration of the re-scheduling processes of the timetable, and the resources rolling stock and crew....

  20. Mermaid syndrome with amniotic band disruption.

    Science.gov (United States)

    Managoli, Sanjeev; Chaturvedi, Pushpa; Vilhekar, Krishna Y; Iyenger, Janaki

    2003-01-01

    An association of Amniotic Band Disruption Sequence and Mermaid Syndrome in a newborn having multiple congenital anomalies is being reported. The newborn had aberrant string like tissues attached to the amputed fingers and toes. Adhesions of amniotic bands had disrupted the fetal parts especially anteriorly in the midline, causing multiple anomalies. Apart from these features of Amniotic Band Disruption Sequence, the newborn had complete fusion of the lower limbs by cutaneous tissue, a characteristic of Mermaid Syndrome (Sirenomelia). Associated malformations were anal stenosis, rectal atresia, small horseshoe kidney, hypoplastic urinary bladder and a bicomuate uterus. The single umbilical artery had a high origin, arising directly from the aorta just distal to the celiac axis, which is unique to sirenomelia. Theories put forward regarding the etiopathogenesis of both the conditions are discussed. PMID:12619964

  1. Disruptive event analysis: volcanism and igneous intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity.

  2. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity

  3. Tidal disruption of stars by SMBHs

    Science.gov (United States)

    Komossa, S.

    2016-06-01

    The tidal disruption and subsequent accretion of stars by supermassive black holes produces spectacular flares in the X-ray sky. First found with ROSAT, ongoing and upcoming sky surveys will find these events in the 1000s. In X-rays, tidal disruption events (TDEs) provide us with powerful new probes of accretion physics under extreme conditions, of the formation of disk winds, of relativistic effects near the SMBH, and of the presence of supermassive binary black holes. This talk reviews the status of observations, and discusses future prospects. XMM-Newton will continue to play an important role in identifying new events and carry out spectroscopic follow-ups.

  4. Airline Disruption Management - Perspectives, Experiences and Outlook

    DEFF Research Database (Denmark)

    Kohl, Niklas; Larsen, Allan; Larsen, Jesper;

    2007-01-01

    Over the past decade, airlines have become more concerned with developing an optimal flight schedule, with very little slack left to accommodate for any form of variation from the optimal solution. During operation the planned schedules often have to be revised due to disruptions caused by for ex...... part we report on experiences from a large research and development project on airline disruption management. Within the project the first prototype of a multiple resource decision support system at the operations control center in a major airline, has been implemented....

  5. Disruptive Technologies and Networking in Telecom Industries

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer; Hartington, Simon Preuthun

    2015-01-01

    developed around the introduction of the smart phone and looking closer into the reactions of major players such as Apple, Google, Microsoft and Nokia, we find evidence supporting the finding in the literature of an inadequate strategies among incumbent companies. Large incumbent companies are focused too...... telecommunication industry and finds significant similarities between the industry development and the literature on disruptive technology, which finds that incumbent companies are not able to react in a successful way when disruptions occur in their industry. By studying how the telecommunication industry...

  6. Disruptive technologies and networking in telecom industries

    DEFF Research Database (Denmark)

    Madsen, Erik Strøjer; Hartington, Simon

    developed around the introduction of the smart phone and looking closer into the reactions of major players such as Apple, Google, Microsoft and Nokia, we find evidence supporting the finding in the literature of an inadequate strategies among incumbent companies. Large incumbent companies are focused too...... telecommunication industry and finds significant similarities between the industry development and the literature on disruptive technology, which finds that incumbent companies are not able to react in a successful way when disruptions occur in their industry. By studying how the telecommunication industry...

  7. Abundance Anomalies In Tidal Disruption Events

    OpenAIRE

    Kochanek, C. S.

    2015-01-01

    The ~10% of tidal disruption events (TDEs) due to stars more massive than the Sun should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ~25% on average because it becomes inaccessible once it is sequestered in the high density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main sequence star can be enhanced in helium by factors of ...

  8. Engineering aspects of disruption current decay

    International Nuclear Information System (INIS)

    Engineering features associated with the configuration of a tokamak can affect the amount of energy that produces melting and damage to the limiters or internal wall surfaces as the result of a major disruption. During the current decay period of a major thermal disruption, the energy that can damage a wall or limiter comes from the external magnetic field. By providing a good conducting torus near the plasma and increasing the plasma circuit resistance, this magnetic energy (transferred by way of the plasma circuit) can be minimized. This report addresses engineering design features to reduce the energy deposited on the inner torus surface that produces melting of the structures

  9. Dendrite maps whose every periodic point is a fixed point

    International Nuclear Information System (INIS)

    Let D be a dendrite and f:D⟶D be a continuous map. In this note, we show: (1) Every periodic point of f is a fixed point of f if and only if fn(x) and f(x) are contained in the same connected component of D-{x} for any x∈D with f(x)≠x and any natural number n. (2) If {fn(x)}n=1∞ is convergent for any x∈D, then every periodic point of f is a fixed point of f. Besides, we construct a dendrite D and a continuous map f from D to D which every periodic point is a fixed point but {fn(x)}n=1∞ is not convergent for some x∈D

  10. Clinical application of dendritic cells in cancer vaccination therapy

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Soot, Mette Line; Buus, Søren;

    2003-01-01

    for large-scale generation of dendritic cells for clinical applications has made possible phase I/II studies designed to analyze the toxicity, feasibility and efficacy of this approach. In clinical trials, DC-based vaccination of patients with advanced cancer has in many cases led to immunity......During the last decade use of dendritic cells (DC) has moved from murine and in vitro studies to clinical trials as adjuvant in cancer immunotherapy. Here they function as delivery vehicles for exogenous tumor antigens, promoting an efficient antigen presentation. The development of protocols...... and in selected patients to tumor regression. However, the majority of clinical trials are still in phase I, and interpretations are hampered by pronounced variation in study design related to technical aspects of DC preparation, treatment and schedule, monitoring of immune response, and clinically relevant...

  11. Dendritic Growth with Fluid Flow for Pure Materials

    Science.gov (United States)

    Jeong, Jun-Ho; Dantzig, Jonathan A.; Goldenfeld, Nigel

    2003-01-01

    We have developed a three-dimensional, adaptive, parallel finite element code to examine solidification of pure materials under conditions of forced flow. We have examined the effect of undercooling, surface tension anisotropy and imposed flow velocity on the growth. The flow significantly alters the growth process, producing dendrites that grow faster, and with greater tip curvature, into the flow. The selection constant decreases slightly with flow velocity in our calculations. The results of the calculations agree well with the transport solution of Saville and Beaghton at high undercooling and high anisotropy. At low undercooling, significant deviations are found. We attribute this difference to the influence of other parts of the dendrite, removed from the tip, on the flow field.

  12. Two cases of extranodal follicular dendritic cell sarcoma

    Institute of Scientific and Technical Information of China (English)

    王坚; 孔蕴仪; 陆洪芬; 许越香

    2003-01-01

    @@ Follicular dendritic cell (FDC) is an essential component of the nonlymphoid, nonphagocytic immunoaccessory reticulum cells of the peripheral lymphoid tissue.1 Follicular dendritic cell sarcoma (FDCs) are confined largely to the primary and secondary B-cell follicles, where they form a tight interlacing meshwork. They play a role in the capture and presentation of antigens, generation and regulation of immune complexes. FDCs can be recognized morphologically by their indistinct cellular borders, pale eosinophilic cytoplasm, round-to-ovoid nuclei with delicate nuclear membranes and clear-to-vesicular chromatin with inconspicuous or small nucleoli. FDCs are best identified through immunostaining using CD21, CD35, R4/23, KiM4, KiM4p and Ki-FDC1p.

  13. Mussel-inspired dendritic polymers as universal multifunctional coatings.

    Science.gov (United States)

    Wei, Qiang; Achazi, Katharina; Liebe, Hendrik; Schulz, Andrea; Noeske, Paul-Ludwig Michael; Grunwald, Ingo; Haag, Rainer

    2014-10-20

    A rapid and universal approach for multifunctional material coatings was developed based on a mussel-inspired dendritic polymer. This new kind of polymer mimics not only the functional groups of mussel foot proteins (mfps) but also their molecular weight and molecular structure. The large number of catechol and amine groups set the basis for heteromultivalent anchoring and crosslinking. The molecular weight reaches 10 kDa, which is similar to the most adhesive mussel foot protein mfp-5. Also, the dendritic structure exposes its functional groups on the surface like the folded proteins. As a result, a very stable coating can be prepared on virtually any type of material surface within 10 min by a simple dip-coating method, which is as fast as the formation of mussel byssal threads in nature. PMID:25200129

  14. Colored visible light metamaterials based on random dendritic cells

    CERN Document Server

    Song, K; Liu, B Q; Zhao, X P

    2011-01-01

    Optical metamaterials(OMs) at visible wavelengths have been extensively developed. OMs reported presently are all composed of periodic structure, and fabricated by top-down approaches. Here, the colored visible light frequencies metamaterials composed of double layer array disordered and geometrical variational dendritic cells are demonstrated, fabricating by a novel bottom-up approach. The experiment demonstrated that the OMs composed of random silver dendritic cells caused the appearance of multiple transmission passbands at red and yellow light frequencies. The slab focusing experiment reveals a clear point image in the range of half-wavelength with an intensity of 5% higher than that of the light source. Proposed colored OMs will open a new way to prepare the cloak and the perfect lens suitable for optical frequency.

  15. Mnemonic Functions for Nonlinear Dendritic Integration in Hippocampal Pyramidal Circuits.

    Science.gov (United States)

    Kaifosh, Patrick; Losonczy, Attila

    2016-05-01

    We present a model for neural circuit mechanisms underlying hippocampal memory. Central to this model are nonlinear interactions between anatomically and functionally segregated inputs onto dendrites of pyramidal cells in hippocampal areas CA3 and CA1. We study the consequences of such interactions using model neurons in which somatic burst-firing and synaptic plasticity are controlled by conjunctive processing of these separately integrated input pathways. We find that nonlinear dendritic input processing enhances the model's capacity to store and retrieve large numbers of similar memories. During memory encoding, CA3 stores heavily decorrelated engrams to prevent interference between similar memories, while CA1 pairs these engrams with information-rich memory representations that will later provide meaningful output signals during memory recall. While maintaining mathematical tractability, this model brings theoretical study of memory operations closer to the hippocampal circuit's anatomical and physiological properties, thus providing a framework for future experimental and theoretical study of hippocampal function. PMID:27146266

  16. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André;

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...... still require optimization. An alternative technique for providing antigens to DC consists of the direct fusion of dendritic cells with tumor cells. These resulting hybrid cells may express both major histocompatibility complex (MHC) class I and II molecules associated with tumor antigens and the...... appropriate co-stimulatory molecules required for T-cell activation. Initially tested in animal models, this approach has now been evaluated in clinical trials, although with limited success. We summarize and discuss the results from the animal studies and first clinical trials. We also present a new approach...

  17. Dendritic cells in asthma: a function beyond sensitization

    OpenAIRE

    Rijt, Leonie

    2004-01-01

    textabstractThe aim of this thesis is to characterize the involvement of dendritic cells in the induction and maintenance of the secondary immune response leading to an eosinophilic airway inflammation as seen in asthma. Special attention was attributed to the mechanisms by which these cells accumulate in the airways of challenged mice, to their interaction with primed CD4+ T cells as well as to their functional contribution to primed T cell activation. These questions were addressed in a wel...

  18. Leishmania donovani Lipophosphoglycan : Modulation of Macrophage and Dendritic Cell Function

    OpenAIRE

    Tejle, Katarina

    2006-01-01

    Leishmania donovani is a blood-borne tropicial parasite, which infects humans through bites by Phlebotomus sandflies. The parasite survives and multiplies inside macrophages in inner organs, and causes the deadly disease visceral leishmaniasis (Kala-Azar). Macrophages and dendritic cells (DC) are professional antigen-presenting cells involved in the initiation of immune responses. Immature DC are present in all tissues where they internalise and process antigen, in response to which they migr...

  19. Dendritic Cell Responses to Surface Properties of Clinical Titanium Surfaces

    OpenAIRE

    Kou, Peng Meng; Schwartz, Zvi; Boyan, Barbara D; Babensee, Julia E.

    2010-01-01

    Dendritic cells (DCs) play pivotal roles in responding to foreign entities during an innate immune response and initiating effective adaptive immunity as well as maintaining immune tolerance. The sensitivity of DCs to foreign stimuli also makes them useful cells to assess the inflammatory response to biomaterials. Elucidating the material property-DC phenotype relationships using a well-defined biomaterial system is expected to provide criteria for immuno-modulatory biomaterial design. Clinic...

  20. Mammalian Pumilio 2 regulates dendrite morphogenesis and synaptic function

    OpenAIRE

    Vessey, John P.; Schoderboeck, Lucia; Gingl, Ewald; Luzi, Ettore; Riefler, Julia; Di Leva, Francesca; Karra, Daniela; Thomas, Sabine; Kiebler, Michael A.; Macchi, Paolo

    2010-01-01

    In Drosophila, Pumilio (Pum) is important for neuronal homeostasis as well as learning and memory. We have recently characterized a mammalian homolog of Pum, Pum2, which is found in discrete RNA-containing particles in the somatodendritic compartment of polarized neurons. In this study, we investigated the role of Pum2 in developing and mature neurons by RNA interference. In immature neurons, loss of Pum2 led to enhanced dendritic outgrowth and arborization. In mature neurons, Pum2 down-regul...

  1. Follicular Dendritic Cells Emerge from Ubiquitous Perivascular Precursors

    OpenAIRE

    Krautler, Nike Julia; Kana, Veronika; Kranich, Jan; Tian, Yinghua; Perera, Dushan; Lemm, Doreen; Schwarz, Petra; Armulik, Annika; Browning, Jeffrey L.; Tallquist, Michelle; Buch, Thorsten; Oliveira-Martins, José B.; Zhu, Caihong; Hermann, Mario; Wagner, Ulrich

    2012-01-01

    The differentiation of follicular dendritic cells (FDC) is essential to the remarkable microanatomic plasticity of lymphoid follicles. Here we show that FDC arise from ubiquitous perivascular precursors (preFDC) expressing platelet-derived growth factor receptor β (PDGFRβ). PDGFRβ-Cre-driven reporter gene recombination resulted in FDC labeling, whereas conditional ablation of PDGFRβ+-derived cells abolished FDC, indicating that FDC originate from PDGFRβ+ cells. Lymphotoxin-α-overexpressing pr...

  2. Follicular Dendritic Cells and Dissemination of Creutzfeldt-Jakob Disease

    OpenAIRE

    Manuelidis, Laura; Zaitsev, Igor; Koni, Pandelakis; Yun Lu, Zhi; Richard A Flavell; Fritch, William

    2000-01-01

    The contribution of immune system cells to the propagation of transmissible encephalopathies is not well understood. To determine how follicular dendritic cells (FDC) may act, we challenged lymphotoxin β null and wild-type (wt) controls with a Creutzfeldt-Jakob disease (CJD) agent. There was only a small difference in incubation time to clinical disease even after peripheral challenge with low infectious doses (31 in a total of 410 days). Brain pathology with extensive microglial infiltration...

  3. Oral acyclovir (Zovirax) in herpes simplex dendritic corneal ulceration.

    OpenAIRE

    Collum, L M; McGettrick, P.; Akhtar, J.; Lavin, J.; Rees, P J

    1986-01-01

    Sixty patients with simple dendritic corneal ulceration were randomly assigned to double blind treatment with either acyclovir tablets (400 mg) or acyclovir ophthalmic ointment administered five times daily. There was no significant difference in the proportions of patients healed in either treatment group (88.9% on oral acyclovir and 96.6% on acyclovir ointment). The median healing time was five days in both groups. No systemic or significant local side effects were noted in either treatment...

  4. The influence of infectious factors on dendritic cell apoptosis

    OpenAIRE

    Kubicka-Sierszen, Agata; Grzegorczyk, Janina Ł.

    2015-01-01

    Pathogens can have a negative influence on dendritic cells (DCs), causing their apoptosis, which prevents active presentation of foreign antigens. It results in a state of immunosuppression which makes the body susceptible to secondary infections. Infected immature DCs have lower expression of co-stimulatory and adhesion molecules, reduced ability to secrete cytokines and an inhibited maturation process and are incapable of effective antigen presentation and activation of T-lymphocytes. In so...

  5. Estimating neuronal connectivity from axonal and dendritic density fields

    Directory of Open Access Journals (Sweden)

    Jaap evan Pelt

    2013-11-01

    Full Text Available Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the way neurons innervate space. A neuron may therefore be characterized by the spatial distribution of its axonal and dendritic 'mass'. A population mean 'mass' density field of a particular neuron type can be obtained by averaging over the individual variations in neuron geometries. Connectivity in terms of candidate synaptic contacts between neurons can be determined directly on the basis of their arborizations but also indirectly on the basis of their density fields. To decide when a candidate synapse can be formed, we previously developed a criterion defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal distance less than a threshold value. In this paper, we developed new methodology for applying this criterion to density fields. We show that estimates of the number of contacts between neuron pairs calculated from their density fields are fully consistent with the number of contacts calculated from the actual arborizations. However, the estimation of the connection probability and the expected number of contacts per connection cannot be calculated directly from density fields, because density fields do not carry anymore the correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two connectivity measures can be estimated from the expected number of contacts by using empirical mapping functions. The neurons used for the validation studies were generated by our neuron simulator NETMORPH. An example is given of the estimation of average connectivity and Euclidean pre- and postsynaptic distance distributions in a network of neurons represented by their population

  6. Phenotypic Characterization of Five Dendritic Cell Subsets in Human Tonsils

    OpenAIRE

    Summers, Kelly L.; Hock, Barry D.; McKenzie, Judith L.; Hart, Derek N.J.

    2001-01-01

    Heterogeneous expression of several antigens on the three currently defined tonsil dendritic cell (DC) subsets encouraged us to re-examine tonsil DCs using a new method that minimized DC differentiation and activation during their preparation. Three-color flow cytometry and dual-color immunohistology was used in conjunction with an extensive panel of antibodies to relevant DC-related antigens to analyze lin− HLA-DR+ tonsil DCs. Here we identify, quantify, and locate five tonsil DC subsets bas...

  7. Harnessing Human Dendritic Cell Subsets to Design Novel Vaccines

    Science.gov (United States)

    Banchereau, Jacques; Klechevsky, Eynav; Schmitt, Nathalie; Morita, Rimpei; Palucka, Karolina; Ueno, Hideki

    2009-01-01

    Summary Dendritic cells (DCs) orchestrate a repertoire of immune responses that endow resistance to infection and tolerance to self. DC plasticity and subsets are prominent determinants of the quality of elicited immune responses. Different DC subsets display different receptors and surface molecules, and express different sets of cytokines/chemokines, all of which lead to distinct immunological outcomes. Recent findings on human DC subsets and their functional specialization have provided insights for the design of novel human vaccines. PMID:19769733

  8. Dendritic Cells for Real-Time Anomaly Detection

    OpenAIRE

    Greensmith, Julie; Aickelin, Uwe

    2006-01-01

    Dendritic Cells (DCs) are innate immune system cells which have the power to activate or suppress the immune system. The behaviour of human DCs is abstracted to form an algorithm suitable for anomaly detection. We test this algorithm on the real-time problem of port scan detection. Our results show a significant difference in artificial DC behaviour for an outgoing portscan when compared to behaviour for normal processes.

  9. Dendritic spine shape analysis using disjunctive normal shape models

    OpenAIRE

    Ghani, Muhammad Usman; Mesadi, Fitsum; Demir Kanık, Sümerya Ümmühan; Demir Kanik, Sumerya Ummuhan; Argunşah, Ali Özgür; Argunsah, Ali Ozgur; Israely, Inbal; Ünay, Devrim; Unay, Devrim; Taşdizen, Tolga; Tasdizen, Tolga; Çetin, Müjdat; Cetin, Mujdat

    2016-01-01

    Analysis of dendritic spines is an essential task to understand the functional behavior of neurons. Their shape variations are known to be closely linked with neuronal activities. Spine shape analysis in particular, can assist neuroscientists to identify this relationship. A novel shape representation has been proposed recently, called Disjunctive Normal Shape Models (DNSM). DNSM is a parametric shape representation and has proven to be successful in several segmentation problems. In this pap...

  10. On comparison of manifold learning techniques for dendritic spine classification

    OpenAIRE

    Ghani, Muhammad Usman; Argunşah, Ali Özgür; Argunsah, Ali Ozgur; Israely, Inbal; Ünay, Devrim; Unay, Devrim; Taşdizen, Tolga; Tasdizen, Tolga; Çetin, Müjdat; Cetin, Mujdat

    2016-01-01

    Dendritic spines are one of the key functional components of neurons. Their morphological changes are correlated with neuronal activity. Neuroscientists study spine shape variations to understand their relation with neuronal activity. Currently this analysis performed manually, the availability of reliable automated tools would assist neuroscientists and accelerate this research. Previously, morphological features based spine analysis has been performed and reported in the literature. In this...

  11. Regulation of B cell function by plasmacytoid dendritic cells

    OpenAIRE

    Gujer, Cornelia

    2011-01-01

    Dendritic cells (DCs) are early sentinels of pathogen exposure and central in the initiation and orchestration of adaptive immune responses. Apart from the prominent role of DCs in the activation of T cells, DCs have been shown to influence humoral B cell mediated responses. DCs are therefore important cells for regulating immune responses to vaccines. Many of the vaccines under development today are against pathogens such as Mycobacterium tuberculosis and HIV-1 that likely r...

  12. Simian Immunodeficiency Virus Interactions with Macaque Dendritic Cells

    OpenAIRE

    Teleshova, Natalia; Derby, Nina; Martinelli, Elena; Pugach, Pavel; Calenda, Giulia; Robbiani, Melissa

    2013-01-01

    This chapter summarizes advances in the following areas: (1) dendritic cell (DC)-mediated simian immunodeficiency virus (SIV) transmission, (2) role of DCs in innate and adaptive immunity against SIV, and (3) approaches to harness DC function to induce anti-SIV responses. The nonhuman primate (NHP) model of human immunodeficiency virus (HIV) infection in rhesus macaques and other Asian NHP species is highly relevant to advance the understanding of virus–host interactions critical for transmis...

  13. Utilization of oncoprotein-pulsed dendritic cells as tumor vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 127, č. 8 (2001), s. 463-466. ISSN 0171-5216 R&D Projects: GA MZd NC5526; GA MZd NC45011; GA ČR GA312/98/0826; GA ČR GA312/99/0542; GA ČR GA301/00/0114 Institutional research plan: CEZ:AV0Z5052915 Keywords : dendritic cells * tumor vaccines * oncoproteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.194, year: 2001

  14. Asymptotic parameterization in inverse limit spaces of dendrites

    OpenAIRE

    Hamilton, Brent

    2012-01-01

    In this paper, we study asymptotic behavior arising in inverse limit spaces of dendrites. In particular, the inverse limit is constructed with a single unimodal bonding map, for which points have unique itineraries and the critical point is periodic. Using symbolic dynamics, sufficient conditions for two rays in the inverse limit space to have asymptotic parameterizations are given. Being a topological invariant, the classification of asymptotic parameterizations would be a useful tool when d...

  15. Retinal Ganglion Cell Dendritic Atrophy in DBA/2J Glaucoma

    OpenAIRE

    Williams, Pete A.; Howell, Gareth R.; Barbay, Jessica M.; Braine, Catherine E.; Sousa, Gregory L.; John, Simon W. M.; Morgan, James E.

    2013-01-01

    Glaucoma is a complex disease affecting an estimated 70 million people worldwide, characterised by the progressive degeneration of retinal ganglion cells and accompanying visual field loss. The common site of damage to retinal ganglion cells is thought to be at the optic nerve head, however evidence from other optic neuropathies and neurodegenerative disorders suggests that dendritic structures undergo a prolonged period of atrophy that may accompany or even precede soma loss and neuronal cel...

  16. Dendritic Cells for Real-Time Anomaly Detection

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    Dendritic Cells (DCs) are innate immune system cells which have the power to activate or suppress the immune system. The behaviour of human of human DCs is abstracted to form an algorithm suitable for anomaly detection. We test this algorithm on the real-time problem of port scan detection. Our results show a significant difference in artificial DC behaviour for an outgoing portscan when compared to behaviour for normal processes.

  17. Articulation and Clarification of the Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Twycross, Jamie

    2009-01-01

    The Dendritic Cell algorithm (DCA) is inspired by recent work in innate immunity. In this paper a formal description of the DCA is given. The DCA is described in detail, and its use as an anomaly detector is illustrated within the context of computer security. A port scan detection task is performed to substantiate the influence of signal selection on the behaviour of the algorithm. Experimental results provide a comparison of differing input signal mappings.

  18. Redefining the role of dendritic cells in periodontics

    OpenAIRE

    Gomathinayagam Venkatesan; Ashita Uppoor; Naik, Dilip G.

    2013-01-01

    A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells (DCs) are required to explain how this remarkable system is energized and directed. DCs consist of a family of antigen presenting cells, which are bone-marrow-derived cells that patrol all tissues of the body with the possible exceptions of the brain and te...

  19. Dendritic cell-based cancer immunotherapy for colorectal cancer

    OpenAIRE

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are curr...

  20. Natural antibodies sustain differentiation and maturation of human dendritic cells

    OpenAIRE

    Bayry, Jagadeesh; Lacroix-Desmazes, Sébastien; Donkova-Petrini, Vladimira; Carbonneil, Cédric; Misra, Namita; Lepelletier, Yves; Delignat, Sandrine; Varambally, Sooryanarayana; Oksenhendler, Eric; Lévy, Yves; Debré, Marianne; Kazatchkine, Michel D.; Hermine, Olivier; Kaveri, Srini V.

    2004-01-01

    The differentiation and maturation of dendritic cells (DCs) is governed by various signals in the microenvironment. Monocytes and DCs circulate in peripheral blood, which contains high levels of natural antibodies (NAbs). NAbs are germ-line-encoded and occur in the absence of deliberate immunization or microbial aggression. To assess the importance of NAbs in the milieu on DC development, we examined the status of DCs in patients with X-linked agammaglobulinemia, a disease characterized by pa...

  1. Dendritic cell-based in vitro assays for vaccine immunogenicity

    OpenAIRE

    Vandebriel, Rob J.; Hoefnagel, Marcel H. N.

    2012-01-01

    Dendritic cells (DC) are pivotal in the induction of adaptive immune responses because they can activate naive T-cells. Moreover, they steer these adaptive immune responses by integrating various stimuli, such as from different pathogen associated molecular patterns and the cytokine milieu. Immature DC are very well capable of ingesting protein antigens, whereas mature DC are efficient presenters of peptides to naive T cells. Human DC can be readily cultured from peripheral blood mononuclear ...

  2. Signal Propagation in Oblique Dendrites of CA1 Pyramidal Cells

    OpenAIRE

    Migliore, Michele; Ferrante, Michele; Ascoli, Giorgio A.

    2005-01-01

    The electrophysiological properties of the oblique branches of CA1 pyramidal neurons are largely unknown and very difficult to investigate experimentally. These relatively thin dendrites make up the majority of the apical tree surface area and constitute the main target of Schaffer collateral axons from CA3. Their electrogenic properties might have an important role in defining the computational functions of CA1 neurons. It is thus important to determine if and to what extent the back- and fo...

  3. Multifunctional Dendritic Scaffolds: Synthesis, Characterization and Potential applications

    OpenAIRE

    Hed, Yvonne

    2013-01-01

    The development of materials for advanced applications requires innovative macromolecules with well-defined structures and the inherent ability to be tailored in a straightforward manner. Dendrimers, being a subgroup of the dendritic polymer family, possess properties which fulfill such demands. They have a highly branched architecture with a high number of functional groups and are one of the most well-defined types of macromolecules ever synthesized. However, despite their well-defined natu...

  4. Dextromethorphan inhibits activations and functions in dendritic cells.

    Science.gov (United States)

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN- γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF- κ B translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  5. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Der-Yuan Chen

    2013-01-01

    Full Text Available Dendritic cells (DCs play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM, a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS, proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs. These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases.

  6. Overview of the Tusas Code for Simulation of Dendritic Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Amelia J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Newman, Christopher Kyle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Francois, Marianne M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-07

    The aim of this project is to conduct a parametric investigation into the modeling of two dimensional dendrite solidification, using the phase field model. Specifically, we use the Tusas code, which is for coupled heat and phase-field simulation of dendritic solidification. Dendritic solidification, which may occur in the presence of an unstable solidification interface, results in treelike microstructures that often grow perpendicular to the rest of the growth front. The interface may become unstable if the enthalpy of the solid material is less than that of the liquid material, or if the solute is less soluble in solid than it is in liquid, potentially causing a partition [1]. A key motivation behind this research is that a broadened understanding of phase-field formulation and microstructural developments can be utilized for macroscopic simulations of phase change. This may be directly implemented as a part of the Telluride project at Los Alamos National Laboratory (LANL), through which a computational additive manufacturing simulation tool is being developed, ultimately to become part of the Advanced Simulation and Computing Program within the U.S. Department of Energy [2].

  7. Dendrite Suppression by Shock Electrodeposition in Charged Porous Media

    Science.gov (United States)

    Han, Ji-Hyung; Wang, Miao; Bai, Peng; Brushett, Fikile R.; Bazant, Martin Z.

    2016-06-01

    It is shown that surface conduction can stabilize electrodeposition in random, charged porous media at high rates, above the diffusion-limited current. After linear sweep voltammetry and impedance spectroscopy, copper electrodeposits are visualized by scanning electron microscopy and energy dispersive spectroscopy in two different porous separators (cellulose nitrate, polyethylene), whose surfaces are modified by layer-by-layer deposition of positive or negative charged polyelectrolytes. Above the limiting current, surface conduction inhibits growth in the positive separators and produces irregular dendrites, while it enhances growth and suppresses dendrites behind a deionization shock in the negative separators, also leading to improved cycle life. The discovery of stable uniform growth in the random media differs from the non-uniform growth observed in parallel nanopores and cannot be explained by classic quasi-steady “leaky membrane” models, which always predict instability and dendritic growth. Instead, the experimental results suggest that transient electro-diffusion in random porous media imparts the stability of a deionization shock to the growing metal interface behind it. Shock electrodeposition could be exploited to enhance the cycle life and recharging rate of metal batteries or to accelerate the fabrication of metal matrix composite coatings.

  8. The Current Immune Function of Hepatic Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Willy Hsu; Shang-An Shu; Eric Gershwin; Zhe-Xiong Lian

    2007-01-01

    While only a small percentage of the liver as dendritic cells, they play a major role in the regulation of liver immunity. Four major types of dendritic cell subsets include myeloid CD8α-B220-, lymphoid CD8α+B220-,plasmacytoid CD8α-B220+, and natural killer dendritic cell with CD8α-B220-NK1.1+ phenotype. Although these subsets have slightly different characteristics, they are all poor na(i)ve T cell stimulators. In exchange for their reduced capacity for allostimulation, hepatic DCs are equipped with an enhanced ability to secrete cytokines in response to TLR stimulation. In addition, they have increased level of phagocytosis. Both of these traits suggest hepatic DC as part of the innate immune system. With such a high rate of exposure to the dietary and commensal antigens, it is important for the hepatic DCs to have an enhanced innate response while maintaining a tolerogenic state to avoid chronic inflammation. Only upon secondary infectivity does the hepatic DC activate memory T cells for rapid eradication of recurring pathogen. On the other hand, overly tolerogenic characteristics of hepatic DC may be responsible for the increase prevalence of autoimmunity or liver malignancies.

  9. Evaluation of two different dendritic cell preparations with BCG reactivity

    Directory of Open Access Journals (Sweden)

    Fol Marek

    2016-01-01

    Full Text Available Dendritic cells (DCs play a key-role in the immune response against intracellular bacterial pathogens, including mycobacteria. Monocyte-derived dendritic cells (MoDCs are considered to behave as inflammatory cell populations. Different immunomagnetic methods (positive and negative can be used to purify monocytes before their in vitro differentiation and their culture behavior can be expected to be different. In this study we evaluated the reactivity of two dendritic cell populations towards the Bacillus Calmette-Guérin (BCG antigen. Monocytes were obtained from the blood of healthy donors, using positive and negative immunomagnetic separation methods. The expression of DC-SIGN, CD86, CD80, HLA-DR and CD40 on MoDCs was estimated by flow cytometry. The level of IL-12p70, IL-10 and TNF-α was measured by ELISA. Neither of the tested methods affected the surface marker expression of DCs. No significant alteration in immunological response, measured by cytokine production, was noted either. After BCG stimulation, the absence of IL-12, but the IL-23 production was observed in both cell preparations. Positive and negative magnetic separation methods are effective techniques to optimize the preparation of monocytes as the source of MoDCs for potential clinical application.

  10. Anti tumor vaccination with hybrid dendritic-tumour cells

    International Nuclear Information System (INIS)

    Dendritic cells are the most potent antigen-presenting cells, and the possibility of their use for cancer vaccination has renewed the interest in this therapeutic modality. Nevertheless, the ideal immunization protocol with these cells has not been described yet. In this paper we describe the preliminary results of a protocol using autologous tumor and allogeneic dendritic hybrid cell vaccination every 6 weeks, for metastatic melanoma and renal cell carcinoma (RCC) patients. Thirty-five patients were enrolled between March 2001 and March 2003. Though all patients included presented with large tumor burdens and progressive diseases, 71% of them experienced stability after vaccination, with durations up to 19 months. Among RCC patients 3/22 (14%) presented objective responses. The median time to progression was 4 months for melanoma and 5.7 months for RCC patients; no significant untoward effects were noted. Furthermore, immune function, as evaluated by cutaneous delayed-type hypersensitivity reactions to recall antigens and by peripheral blood proliferative responses to tumor-specific and nonspecific stimuli, presented a clear tendency to recover in vaccinated patients. These data indicate that dendritic cell-tumor cell hybrid vaccination affects the natural history of advanced cancer and provide support for its study in less advanced patients, who should, more likely, benefit even more from this approach. (author)

  11. Xenopus laevis retinal ganglion cell dendritic arbors develop independently of visual stimulation

    Directory of Open Access Journals (Sweden)

    Rebecca L. Rigel

    2004-06-01

    Full Text Available Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arborization. Neuronal activity is known to be an important factor in shaping dendritic and axonal arborization. Thus, we reared tadpoles in dark and light environments then used rhodamine dextran retrograde labeling to identify RGCs in the retina. When we compared RGC dendritic arbors from tadpoles reared in dark and light environments, we found no morphological differences, suggesting that physiological visual activity did not contribute to the morphological development of Xenopus RGC dendritic arbors.

  12. Xenopus laevis Retinal Ganglion Cell Dendritic Arbors Develop Independently of Visual Stimulation

    Directory of Open Access Journals (Sweden)

    Barbara Lom

    2004-01-01

    Full Text Available Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arborization. Neuronal activity is known to be an important factor in shaping dendritic and axonal arborization. Thus, we reared tadpoles in dark and light environments then used rhodamine dextran retrograde labeling to identify RGCs in the retina. When we compared RGC dendritic arbors from tadpoles reared in dark and light environments, we found no morphological differences, suggesting that physiological visual activity did not contribute to the morphological development of Xenopus RGC dendritic arbors.

  13. Statistical physics of neural systems with non-additive dendritic coupling

    CERN Document Server

    Breuer, David; Memmesheimer, Raoul-Martin

    2015-01-01

    How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such non-additive dendritic processing on single neuron responses and the performance of associative memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain net...

  14. Morphology of Pyramidal Neurons in the Rat Prefrontal Cortex: Lateralized Dendritic Remodeling by Chronic Stress

    Directory of Open Access Journals (Sweden)

    Claudia Perez-Cruz

    2007-01-01

    Full Text Available The prefrontal cortex (PFC plays an important role in the stress response. We filled pyramidal neurons in PFC layer III with neurobiotin and analyzed dendrites in rats submitted to chronic restraint stress and in controls. In the right prelimbic cortex (PL of controls, apical and distal dendrites were longer than in the left PL. Stress reduced the total length of apical dendrites in right PL and abolished the hemispheric difference. In right infralimbic cortex (IL of controls, proximal apical dendrites were longer than in left IL, and stress eliminated this hemispheric difference. No hemispheric difference was detected in anterior cingulate cortex (ACx of controls, but stress reduced apical dendritic length in left ACx. These data demonstrate interhemispheric differences in the morphology of pyramidal neurons in PL and IL of control rats and selective effects of stress on the right hemisphere. In contrast, stress reduced dendritic length in the left ACx.

  15. Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans.

    Science.gov (United States)

    Salzberg, Yehuda; Díaz-Balzac, Carlos A; Ramirez-Suarez, Nelson J; Attreed, Matthew; Tecle, Eillen; Desbois, Muriel; Kaprielian, Zaven; Bülow, Hannes E

    2013-10-10

    Sensory dendrites depend on cues from their environment to pattern their growth and direct them toward their correct target tissues. Yet, little is known about dendrite-substrate interactions during dendrite morphogenesis. Here, we describe MNR-1/menorin, which is part of the conserved Fam151 family of proteins and is expressed in the skin to control the elaboration of "menorah"-like dendrites of mechanosensory neurons in Caenorhabditis elegans. We provide biochemical and genetic evidence that MNR-1 acts as a contact-dependent or short-range cue in concert with the neural cell adhesion molecule SAX-7/L1CAM in the skin and through the neuronal leucine-rich repeat transmembrane receptor DMA-1 on sensory dendrites. Our data describe an unknown pathway that provides spatial information from the skin substrate to pattern sensory dendrite development nonautonomously. PMID:24120132

  16. Dendritic cell podosome dynamics does not depend on the F-actin regulator SWAP-70.

    Directory of Open Access Journals (Sweden)

    Anne Götz

    Full Text Available In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides adhesion and migration, podosomes enable dendritic cells to degrade connective tissue by matrix metalloproteinases. SWAP-70 interacts with RhoGTPases and F-actin and regulates migration of dendritic cells. SWAP-70 deficient osteoclasts are impaired in F-actin-ring formation and bone resorption. In the present study, we demonstrate that SWAP-70 is not required for podosome formation and F-actin turnover in dendritic cells. Furthermore, we found that toll-like receptor 4 ligand induced podosome disassembly and podosome-mediated matrix degradation is not affected by SWAP-70 in dendritic cells. Thus, podosome formation and function in dendritic cells is independent of SWAP-70.

  17. Heavy Metals Acting as Endocrine Disrupters

    Directory of Open Access Journals (Sweden)

    Bogdan Georgescu

    2011-10-01

    Full Text Available Last years researches focused on several natural and synthetic compounds that may interfere with the major functionsof the endocrine system and were termed endocrine disrupters. Endocrine disrupters are defined as chemicalsubstances with either agonist or antagonist endocrine effects in human and animals. These effects may be achievedby interferences with the biosynthesis or activity of several endogenous hormones. Recently, it was demonstratedthat heavy metals such as cadmium (Cd, arsen (As, mercury (Hg, nickel (Ni, lead (Pb and zinc (Zn may exhibitendocrine-disrupting activity in animal experiments. Emerging evidence of the intimate mechanisms of action ofthese heavy metals is accumulating. It was revealed, for example, that the Zn atom from the Zn fingers of theestrogen receptor can be replaced by several heavy metal molecules such as copper, cobalt, Ni and Cd. By replacingthe Zn atom with Ni or copper, binding of the estrogen receptor to the DNA hormone responsive elements in the cellnucleus is prevented. In both males and females, low-level exposure to Cd interferes with the biological effects ofsteroid hormones in reproductive organs. Arsen has the property to bind to the glucocorticoid receptor thusdisturbing glucocorticoids biological effects. With regard to Hg, this may induce alterations in male and femalefertility, may affect the function of the hypothalamo-pituitary-thyroid axis or the hypothalamo-pituitary-adrenal axis,and disrupt biosynthesis of steroid hormones.

  18. Analysis of recent fuel-disruption experiments

    International Nuclear Information System (INIS)

    Recent USDOE-sponsored DEH, FGR, and TREAT F series fuel-disruption experiments are analyzed with existing analytical models. The experiments are interpreted and the results used to evaluate the models. Calculations are presented using the FRAS3 fission-gas-behavior code and the DiMelfi-Deitrich fuel-response model

  19. 75 FR 30306 - Responding To Disruptive Patients

    Science.gov (United States)

    2010-06-01

    ... recommendations is not disruptive under this section. Unfunded Mandates The Unfunded Mandates Reform Act requires... patient care area (e.g., private exam room near an exit); (3) Arranging for medical and any other services..., Health professions, Health records, Homeless, Medical and dental schools, Medical devices,...

  20. Towards a Framework of Digital Platform Disruption

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    2014-01-01

    of governance regimes and platform layers is deterministic of whether disruptive derivatives are permitted to flourish. This framework has been employed in a comparative case study between centralized (i.e., PayPal) and decentralized (i.e., Coinkite) digital payment platforms to illustrate its...

  1. Maternal Characteristics Predicting Young Girls' Disruptive Behavior

    Science.gov (United States)

    van der Molen, Elsa; Hipwell, Alison E.; Vermeiren, Robert; Loeber, Rolf

    2011-01-01

    Little is known about the relative predictive utility of maternal characteristics and parenting skills on the development of girls' disruptive behavior. The current study used five waves of parent- and child-report data from the ongoing Pittsburgh Girls Study to examine these relationships in a sample of 1,942 girls from age 7 to 12 years.…

  2. JET disruption studies in support of ITER

    Czech Academy of Sciences Publication Activity Database

    Riccardo, V.; Arnoux, G.; Cahyna, Pavel; Hender, T.C.; Huber, A.; Jachmich, S.; Kiptily, V.; Koslowski, R.; Krlín, Ladislav; Lehnen, M.; Loarte, A.; Nardon, E.; Papřok, R.; Tskhakaya, D.

    2010-01-01

    Roč. 52, č. 12 (2010), s. 124018. ISSN 0741-3335. [European Physical Society Conference on Plasma Physics/37th/. Dublin, 21.06.2010-25.06.2010] Institutional research plan: CEZ:AV0Z20430508 Keywords : ITER * JET * disruption * runaway electrons Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.466, year: 2010

  3. Traffic disruption route Einstein near building 170

    CERN Multimedia

    A Lopez - TS/CE

    2005-01-01

    The TS/CE Group informs you that, for the duration of the work at Building 170, there may be some disruption to traffic on route Einstein in the vicinity of Building 170. The work is due to take place from the 14th to 18th February. For more information, please contact 165029. A. Lopez TS/CE

  4. The Relative Ineffectiveness of Criminal Network Disruption

    Science.gov (United States)

    Duijn, Paul A. C.; Kashirin, Victor; Sloot, Peter M. A.

    2014-02-01

    Researchers, policymakers and law enforcement agencies across the globe struggle to find effective strategies to control criminal networks. The effectiveness of disruption strategies is known to depend on both network topology and network resilience. However, as these criminal networks operate in secrecy, data-driven knowledge concerning the effectiveness of different criminal network disruption strategies is very limited. By combining computational modeling and social network analysis with unique criminal network intelligence data from the Dutch Police, we discovered, in contrast to common belief, that criminal networks might even become `stronger', after targeted attacks. On the other hand increased efficiency within criminal networks decreases its internal security, thus offering opportunities for law enforcement agencies to target these networks more deliberately. Our results emphasize the importance of criminal network interventions at an early stage, before the network gets a chance to (re-)organize to maximum resilience. In the end disruption strategies force criminal networks to become more exposed, which causes successful network disruption to become a long-term effort.

  5. The Relative Ineffectiveness of Criminal Network Disruption

    NARCIS (Netherlands)

    P.A.C. Duijn; V. Kashirin; P.M.A. Sloot

    2014-01-01

    Researchers, policymakers and law enforcement agencies across the globe struggle to find effective strategies to control criminal networks. The effectiveness of disruption strategies is known to depend on both network topology and network resilience. However, as these criminal networks operate in se

  6. Disruptive School Peers and Student Outcomes

    DEFF Research Database (Denmark)

    Kristoffersen, Jannie H. G.; Krægpøth, Morten Visby; Nielsen, Helena Skyt;

    2015-01-01

    This paper estimates how peers’ achievement gains are affected by the presence of potentially disruptive and emotionally sensitive children in the school-cohort. We exploit that some children move between schools and thus generate variation in peer composition in the receiving school-cohort. We...... achievement of peers by about 1.7–2.3% of a standard deviation....

  7. Empathy in Boys with Disruptive Behavior Disorders

    Science.gov (United States)

    de Wied, Minet; Goudena, Paul P.; Matthys, Walter

    2005-01-01

    Background: The present study examined empathy in 8- to 12-year-old clinically referred boys with disruptive behavior disorders (DBD) (n = 25) and age-matched normal controls (n = 24). Method: Situational empathy was assessed by children's emotional and cognitive responses to six empathy-inducing vignettes (displaying sadness, anger or happiness).…

  8. Pesticides Provoke Endocrine Disruption A Review

    International Nuclear Information System (INIS)

    Increasing numbers of environmental chemicals,including pesticides, have the ability to produce endocrine disruption by various mechanisms. such substances may affect hormone secretion from an endocrine gland and may alter the rate of hormone elimination from the body. environmental chemicals may also disrupt regulatory feedback mechanisms that exist between two endocrine organs; or may interact with a hormone receptor either by mimicking or antagonizing the actions of the natural hormone. these chemicals are referred to endocrine disruptive chemicals (EDC's). EDC's act to alter the blood hormone levels or the subsequent action of hormones . the use of radioimmunoassay(RIA) constitutes a superior and unrivalled tool for the determination and quantification of hormones.the endocrine system participates in virtually all important functions of an organism, such as sexual differentiation before birth, sexual maturation during puberty, reproduction in adulthood, growth, metabolism, digestion, cardiovascular function and excretion. hormones are also implicated in the etiology of certain cancers of hormone- dependent tissues, such as those of the breast, uterus, and prostate gland. therefore, endocrine disruption can potentially produce widespread effects. scientists should not stick to the past belief which presumes that pesticides have limited effect on some hormones. A paradigm shift in which a wider vision of understanding of the wholesome complex effects of pesticides on the whole body rather than a narrow limited understanding should take place

  9. Study of Endocrine Disrupting Chemicals in Environment

    Directory of Open Access Journals (Sweden)

    Zoltán Juvancz

    2008-06-01

    Full Text Available Endocrine disrupting chemicals (EDC cause more and more seriousenvironmental pollutions. The EDCs show only ng-μg/l concentration level in theenvironment, therefore their determinations require multistep sample preparationprocesses and highly sophisticated instrumentation. This paper discuss the EDC effects,and show examples for determination of such compounds.

  10. Is Online Learning a Disruptive Innovation?

    Science.gov (United States)

    Meyer, Katrina A.

    2011-01-01

    In their desire to plan for the future, planners must assess the role of both internal and external influences on the institution. What then should people make of the idea that technology is disruptive? This perception fuels the views of Barone and Hagner (2001), who claimed that technology would "transform" higher education; Duderstadt (2000),…

  11. Disruptive School Peers and Student Outcomes

    DEFF Research Database (Denmark)

    Kristoffersen, Jannie H. Grøne; Krægpøth, Morten; Nielsen, Helena Skyt;

    This paper estimates how peers’ achievement gains are affected by the presence of potentially disruptive and emotionally sensitive children in the school-cohort. We exploit that some children move between schools and thus generate variation in peer composition in the receiving school-cohort. We i...

  12. E-Learning: Between Augmentation and Disruption?

    Science.gov (United States)

    Heilesen, Simon B.; Josephsen, Jens

    2008-01-01

    Based on a framework for analysis combining diffusion theory, content layer analysis and sense making, this paper discusses the theme of "e-learning as augmentation or disruption" from the point of view of technological innovation. Two cases of on-campus blended learning at Roskilde University, Denmark, are introduced to illustrate the discussion.…

  13. The Structure of Childhood Disruptive Behaviors

    Science.gov (United States)

    Martel, Michelle M.; Gremillion, Monica; Roberts, Bethan; von Eye, Alexander; Nigg, Joel T.

    2010-01-01

    Attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) frequently co-occur. Comorbidity of these 2 childhood disruptive behavior domains has not been satisfactorily explained at either a structural or etiological level. The current study evaluated a bifactor model, which allows for a "g" factor in addition to…

  14. Development of Disruptive Open Access Journals

    Science.gov (United States)

    Anderson, Terry; McConkey, Brigette

    2009-01-01

    Open access (OA) publication has emerged, with disruptive effects, as a major outlet for scholarly publication. OA publication is usually associated with on-line distribution and provides access to scholarly publications to anyone, anywhere--regardless of their ability to pay subscription fees or their association with an educational institution.…

  15. 75 FR 69881 - Responding to Disruptive Patients

    Science.gov (United States)

    2010-11-16

    ... that may: (1) Have an annual effect on the economy of $100 million or more or adversely affect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public... when a patient is disruptive and the procedures for implementing those measures. 75 FR 30,306....

  16. The Debris Streams from Tidal Disruption Events

    Science.gov (United States)

    Coughlin, Eric

    2016-01-01

    When a star comes within a critical distance of a supermassive black hole, the tidal force exerted by the hole overcomes the stellar self-gravity. The star is subsequently torn apart, creating a stream of tidally-shredded debris that initially recedes from the hole, eventually returns to pericenter, forms an accretion disk and generates a highly luminous event that can sometimes be accompanied by the production of relativistic jets. This entire process is known as a tidal disruption event (TDE), and dozens of these events have already been observed. I will discuss my most recent work that has analyzed the tidal disruption process, and in particular I will focus on the results of numerical and analytical investigations that show that the streams of debris produced during TDEs can be gravitationally unstable. Specifically, I will describe how compressive motions augment the importance of self-gravity not long after the star is disrupted, resulting in the fragmentation of the debris stream into small-scale clumps. These findings will be discussed in the context of the observational signatures of tidal disruption events, and I will also relate these results to my past investigations concerning accretion disk formation and jet launching during TDEs.

  17. TrkB-mediated activation of geranylgeranyltransferase I promotes dendritic morphogenesis

    OpenAIRE

    Zhou, Xiu-Ping; Wu, Kong-Yan; Liang, Bin; Fu, Xiu-Qing; Luo, Zhen-Ge

    2008-01-01

    Dendrite morphogenesis is regulated by neuronal activity or neurotrophins, which may function by activating intrinsic signaling proteins, including Rho family GTPases. Here we report that activity- and brain-derived neurotrophic factor (BDNF)–dependent dendritic morphogenesis requires activation of geranylgeranyltransferase I (GGT), a prenyltransferase that mediates lipid modification of Rho GTPases. Dendritic arborization in cultured hippocampal neurons was promoted by over-expression of GGT...

  18. Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites

    OpenAIRE

    Ludwig, Mike; Sabatier, Nancy; Bull, Philip M.; Landgraf, Rainer; Dayanithi, Govindan; Leng, Gareth

    2002-01-01

    Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals1–4. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and m...

  19. Xenopus laevis retinal ganglion cell dendritic arbors develop independently of visual stimulation

    OpenAIRE

    Barbara Lom; Rebecca L. Rigel

    2004-01-01

    Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC) dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arbo...

  20. Analyzing dendritic spine pathology in Alzheimer’s disease: problems and opportunities

    OpenAIRE

    Dorostkar, Mario M.; Zou, Chengyu; Blazquez-Llorca, Lidia; Herms, Jochen

    2015-01-01

    Synaptic failure is an immediate cause of cognitive decline and memory dysfunction in Alzheimer’s disease. Dendritic spines are specialized structures on neuronal processes, on which excitatory synaptic contacts take place and the loss of dendritic spines directly correlates with the loss of synaptic function. Dendritic spines are readily accessible for both in vitro and in vivo experiments and have, therefore, been studied in great detail in Alzheimer’s disease mouse models. To date, a large...

  1. Principles of self-assembly of helical pores from dendritic dipeptides

    Science.gov (United States)

    Percec, Virgil; Dulcey, Andrés E.; Peterca, Mihai; Ilies, Monica; Nummelin, Sami; Sienkowska, Monika J.; Heiney, Paul A.

    2006-01-01

    The self-assembly of the dendritic dipeptides (4-3,4-3,5)nG2-CH2-Boc-l-Tyr-l-Ala-OMe and their achiral dendritic alcohol (4-3,4-3,5)nG2-CH2OH precursors, both with n = 1–16, where n represents the number of methylenic units in the alkyl groups of the dendron, are reported. All chiral dendritic dipeptides and achiral dendritic alcohols self-assemble into helical porous columns that are stable in both solution and solid state. The pore diameter (Dpore) of the columns self-assembled from dendritic dipeptides is ≈10 Å larger than that of structures assembled from dendritic alcohols. The increase of the Dpore at the transition from dendritic alcohol to dendritic dipeptide is accompanied by a decreased solid angle of the building block. This trend is in agreement with previous pore size-solid angle dependences observed with different protective groups of the dipeptide and primary structures of the dendron. However, within the series of dendritic alcohols and dendritic dipeptides with various n, the Dpore increases when the solid angle increases. The results of these investigations together with those of previous studies on the role of dipeptide stereochemistry and protective groups on this self-assembly process provide the molecular principles required to program the construction of supramolecular helical pores with diameter controlled at the Å level from a single dendritic dipeptide architecture. These principles are expected to be valid for libraries of dendritic dipeptides based on dendrons and dipeptides with various primary structures. PMID:16469843

  2. Turtle Functions Downstream of Cut in Differentially Regulating Class Specific Dendrite Morphogenesis in Drosophila

    OpenAIRE

    Sulkowski, Mikolaj J.; Iyer, Srividya Chandramouli; Kurosawa, Mathieu S.; Iyer, Eswar Prasad R.; Cox, Daniel N.

    2011-01-01

    Background Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has ...

  3. Contextual Learning Induces Dendritic Spine Clustering in Retrosplenial Cortex

    Directory of Open Access Journals (Sweden)

    Adam C Frank

    2014-03-01

    Full Text Available Molecular and electrophysiological studies find convergent evidence suggesting that plasticity within a dendritic tree is not randomly dispersed, but rather clustered into functional groups. Further, results from in silico neuronal modeling show that clustered plasticity is able to increase storage capacity 45 times compared to dispersed plasticity. Recent in vivo work utilizing chronic 2-photon microscopy tested the clustering hypothesis and showed that repetitive motor learning is able to induce clustered addition of new dendritic spines on apical dendrites of L5 neurons in primary motor cortex; moreover, clustered spines were found to be more stable than non-clustered spines, suggesting a physiological role for spine clustering. To further test this hypothesis we used in vivo 2-photon imaging in Thy1-YFP-H mice to chronically examine dendritic spine dynamics in retrosplenial cortex (RSC during spatial learning. RSC is a key component of an extended spatial learning and memory circuit that includes hippocampus and entorhinal cortex. Importantly, RSC is known from both lesion and immediate early gene studies to be critically involved in spatial learning and more specifically in contextual fear conditioning. We utilized a modified contextual fear conditioning protocol wherein animals received a mild foot shock each day for five days; this protocol induces gradual increases in context freezing over several days before the animals reach a behavioral plateau. We coupled behavioral training with four separate in vivo imaging sessions, two before training begins, one early in training, and a final session after training is complete. This allowed us to image spine dynamics before training as well as early in learning and after animals had reached behavioral asymptote. We find that this contextual learning protocol induces a statistically significant increase in the formation of clusters of new dendritic spines in trained animals when compared to home

  4. EBSD Characterization of Dendrites in Synthetic and Natural Rocks

    Science.gov (United States)

    Hammer, J. E.; Tiley, J.; Shiveley, A.; Knox, S.; Viswanathan, G.

    2011-12-01

    Arborescent crystals in igneous rocks are associated with extreme crystallization environments: the protoplanary disk (chondrules), Earth's ultramafic Archean mantle (komatiite), and terrestrial submarine-erupted lavas (pillow basalts), although the role of morphological instabilities in more mundane settings such as magma reservoirs of modern oceanic islands is increasingly appreciated (see Welsch et al., V16). Fundamentals of dendrite formation are presumably well understood: branching morphologies belie crystal growth conditions in which the driving force for solidification produces a kinetic roughening transition, transforming an atomically smooth crystal-liquid interface into a rough, adhesive interface capable of extremely rapid advancement. However, not since photomicrograhic advances made possible close observations of snow crystals (Nakaya 1936), has there been a more promising set of analytical tools to characterize dendrites in natural and synthetic materials in pursuit of new insights. We are investigating clinopyroxene (cpx) in the quenched top of Fe-rich tholeiitic lava (Munro Township, Northeast Ontario; Fig. 1) and a synthetic basalt of similar character (Hammer 2006) with electron backscatter diffraction (EBSD), 3D reconstruction of optical serial sections, and TEM. Here we report intriguing phenomena observed with EBSD common to both samples. Severe thinning of dendrite trunks and repeated tip splitting destroys the self-similarity associated with classical dendrites and instead presages 'seaweed' morphology. Split tips manifest incremental trajectory deflections, producing gently arched trunks (Fig. 1A) as well as tightly curved (r, producing distinctive misorientation maps and pole figures (Fig. 1C). Parallel branches exhibit similar rotational trajectories, carving parallel arcs in the pole figure. The high incidence of side branching and tip splitting is consistent with very rapid growth velocity, associated with extremely high kinetic

  5. Overexpression of Androgen Receptors in Target Musculature Confers Androgen Sensitivity to Motoneuron Dendrites

    OpenAIRE

    Huguenard, Anna L.; Fernando, Shannon M.; Monks, D. Ashley; Sengelaub, Dale R.

    2010-01-01

    Androgen sensitivity of motoneuron dendrites is conferred indirectly via the enrichment of androgen receptors in the musculature in transgenic rats overexpressing androgen receptors in skeletal muscle.

  6. Electroless Growth of Aluminum Dendrites in NaCl-AlCl3 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H.A.; Berg, Rolf W.;

    1989-01-01

    The spontaneous growth of aluminum dendrites after deposition was observed and examined in sodium chloride-aluminumchloride melts. The concentration gradient of AlCl3 in the vicinity of the cathode surface resulting from electrolysisconstitutes a type of concentration cell with aluminum dendrites...... as electrodes. The short-circuit discharge of thecell is found to be the driving force for the growth of aluminum dendrites. Such a concentration gradient is proposed to beone of the causes for dendrite formation in the case of metal deposition....

  7. Synthesis and Properties of Dendritic Long-Chain Esters as Crude Oil Flow Improver Additives

    Institute of Scientific and Technical Information of China (English)

    Li Cuiqin; Sun Peng; Shi Weiguang; Wang Jun

    2016-01-01

    The efifciencies of 6 kinds of macromolecules with dendritic structure in improving the lfow properties of crude oil were investigated. The dendritic additives were synthesized using low-generation dendritic poly(amidoamine) and alkyl long-chain acrylic esters as starting materials, and their structures were characterized by the Fourier transform infrared spectroscopy, 1H-nuclear magnetic resonance and elemental analysis. The effects on the pour point and rheological properties of crude oil samples were studied. Efifciencies of dendritic long-chain esters were not only inlfuenced by the alky chain length, but also by the generation of dendrimer. The longer the alkyl chain of dendritic long-chain ester was, the better the effect in the reduction of pour point and apparent viscosity was. Efifciencies of 1.5 generation dendritic long-chain ester with 8 branched chains for the reduction of pour point and apparent viscosity were superior to those of 0.5 generation dendritic long-chain ester with 4 branched chains. Under the same conditions, efifciencies of 1.5 generation dendritic eighteen ester were superior to those of other 1.5 generation dendritic long-chain esters for the reduction of pour point and viscosity of crude oil.

  8. Development of Ag dendrites-reduced graphene oxide composite catalysts via galvanic replacement reaction

    Science.gov (United States)

    Fu, Li; Sokiransky, Mika Matsunaka; Wang, James; Lai, Guosong; Yu, Aimin

    2016-09-01

    Silver dendrites/reduced graphene oxide (AgD/RGO) composites were synthesized via a facile galvanic replacement method. The successful formation of Ag dendrites and the graphene oxide reduction were proved by a series of characterization techniques. The possible formation mechanism of Ag dendrites during the galvanic replacement reaction was discussed. The catalytic activity of the as-synthesized AgD/RGO composite was evaluated by its performance on the chemical reduction of an organic dye methylene blue. The AgD/RGO composite showed a much higher catalytic performance and stability than that of Ag dendrites.

  9. Phase field modeling of multiple dendrite growth of AI-Si binary alloy under isothermal solidification

    Institute of Scientific and Technical Information of China (English)

    Sun Qiang; Zhang Yutuo; Cui Haixia; Wang Chengzhi

    2008-01-01

    Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in Ai-2-mole-%-Si binary alloy under isothermal solidification was simulated using phase field model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidification. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.

  10. State-dependent firing determines intrinsic dendritic Ca2+ signaling in thalamocortical neurons.

    Science.gov (United States)

    Errington, Adam C; Renger, John J; Uebele, Victor N; Crunelli, Vincenzo

    2010-11-01

    Activity-dependent dendritic Ca(2+) signals play a critical role in multiple forms of nonlinear cellular output and plasticity. In thalamocortical neurons, despite the well established spatial separation of sensory and cortical inputs onto proximal and distal dendrites, respectively, little is known about the spatiotemporal dynamics of intrinsic dendritic Ca(2+) signaling during the different state-dependent firing patterns that are characteristic of these neurons. Here we demonstrate that T-type Ca(2+) channels are expressed throughout the entire dendritic tree of rat thalamocortical neurons and that they mediate regenerative propagation of low threshold spikes, typical of, but not exclusive to, sleep states, resulting in global dendritic Ca(2+) influx. In contrast, actively backpropagating action potentials, typical of wakefulness, result in smaller Ca(2+) influxes that can temporally summate to produce dendritic Ca(2+) accumulations that are linearly related to firing frequency but spatially confined to proximal dendritic regions. Furthermore, dendritic Ca(2+) transients evoked by both action potentials and low-threshold spikes are shaped by Ca(2+) uptake by sarcoplasmic/endoplasmic reticulum Ca(2+) ATPases but do not rely on Ca(2+)-induced Ca(2+) release. Our data demonstrate that thalamocortical neurons are endowed with intrinsic dendritic Ca(2+) signaling properties that are spatially and temporally modified in a behavioral state-dependent manner and suggest that backpropagating action potentials faithfully inform proximal sensory but not distal corticothalamic synapses of neuronal output, whereas corticothalamic synapses only "detect" Ca(2+) signals associated with low-threshold spikes. PMID:21048143

  11. Effect of strontium on primary dendrite and eutectic temperature of A357 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Chen Zhongwei

    2010-05-01

    Full Text Available Solidification process of A357 alloy with Sr addition was investigated in this paper. In particular, the effects of strontium and cooling rate on α-Al dendrite and Al-Si eutectic characteristic temperature were characterized by differential thermal analysis (DTA. Sr addition not only modifies the Al-Si eutectic, but also affects the morphology and structure of primary α-Al dendrite. Sr decreases the growth temperature of α-Al dendrite and Al-Si eutectic, and it also affects the dendrite growth mechanism. It has been found that such effect becomes more significant with higher cooling rate.

  12. A-kinase-anchoring proteins coordinate inflammatory responses to cigarette smoke in airway smooth muscle.

    Science.gov (United States)

    Poppinga, Wilfred J; Heijink, Irene H; Holtzer, Laura J; Skroblin, Philipp; Klussmann, Enno; Halayko, Andrew J; Timens, Wim; Maarsingh, Harm; Schmidt, Martina

    2015-04-15

    β2-Agonist inhibitors can relieve chronic obstructive pulmonary disease (COPD) symptoms by stimulating cyclic AMP (cAMP) signaling. A-kinase-anchoring proteins (AKAPs) compartmentalize cAMP signaling by establishing protein complexes. We previously reported that the β2-agonist fenoterol, direct activation of protein kinase A (PKA), and exchange factor directly activated by cAMP decrease cigarette smoke extract (CSE)-induced release of neutrophil attractant interleukin-8 (IL-8) from human airway smooth muscle (ASM) cells. In the present study, we tested the role of AKAPs in CSE-induced IL-8 release from ASM cells and assessed the effect of CSE on the expression levels of different AKAPs. We also studied mRNA and protein expression of AKAPs in lung tissue from patients with COPD. Our data show that CSE exposure of ASM cells decreases AKAP5 and AKAP12, both capable of interacting with β2-adrenoceptors. In lung tissue of patients with COPD, mRNA levels of AKAP5 and AKAP12 were decreased compared with lung tissue from controls. Using immunohistochemistry, we detected less AKAP5 protein in ASM of patients with COPD Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage II compared with control subjects. St-Ht31, which disrupts AKAP-PKA interactions, augmented CSE-induced IL-8 release from ASM cells and diminished its suppression by fenoterol, an effect mediated by disturbed ERK signaling. The modulatory role of AKAP-PKA interactions in the anti-inflammatory effects of fenoterol in ASM cells and the decrease in expression of AKAP5 and AKAP12 in response to cigarette smoke and in lungs of patients with COPD suggest that cigarette smoke-induced changes in AKAP5 and AKAP12 in patients with COPD may affect efficacy of pharmacotherapy. PMID:25637608

  13. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-4 (IL-4 stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS and interferon-γ (IFN-γ induction in order to characterize the usefulness of mature DCs (mDCs for immune therapy and to identify biomarkers for assessing the quality of mDCs. Methods Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA expression analysis. Results After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs. Conclusion DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.

  14. Disruptive behavior in school. Wired up - the relationship between disruptive behavior and new technology.

    OpenAIRE

    Solberg, Stine

    2014-01-01

    Background: The thesis is part of the research project Disruptive behavior in school, led by professor Liv Duesund at the Department of Special Needs Education, University of Oslo. Professor Duesund is the supervisor of the thesis. It is a cooperation project between University of Oslo and University of California, Berkeley and compares the educational cultures of Norway an the United States (Duesund, 2013). The focus is on disruptive behavior, and in what ways behavior can vary in the two ...

  15. Longitudinal association between marital disruption and child BMI and obesity.

    Science.gov (United States)

    Arkes, Jeremy

    2012-08-01

    This research examines whether family disruptions (i.e., divorces and separation) contribute to children's weight problems. The sample consists of 7,299 observations for 2,333 children, aged 5-14, over the 1986-2006 period, from a US representative sample from the Child and Young Adult Survey accompanying the National Longitudinal Survey of Youth (NLSY). The study uses individual-fixed-effects models in a longitudinal framework to compare children's BMI and weight problems before and after a disruption. Furthermore, besides doing a before-after comparison for children, the study also estimates the effects at various periods relative to the disruption in order to examine whether children are affected before the disruption and whether any effects change as time passes from the disruption, as some effects may be temporary or slow to develop. Despite having a larger sample than the previous studies, the results provide no evidence that, on average, children's BMI and BMI percentile scores (measured with continuous outcomes) are affected before the disruption, after the disruption, and as time passes from the disruption, relative to a baseline period a few years before the disruption. However, children experiencing a family disruption do have an increased risk of obesity (having a BMI percentile score of 95 or higher) in the two years leading up to the disruption as well as after the disruption, and as time passes from the disruption. PMID:22484366

  16. Effect of strontium on columnar growth of dendritic α phase in near-eutectic Al-11.6%Si alloys

    Institute of Scientific and Technical Information of China (English)

    廖恒成; 丁毅; 孙国雄

    2004-01-01

    For Al-11.6 % Si alloy, the influence of the addition of Sr on the morphology of the dendrite α phase was investigated, and the characteristic parameters of the dendrite α phase, the primary dendrite spacing and the secondary dendrite arm spacing, were also measured. The addition of strontium promotes the columnar dendrite growth and leads to a decrease of both the primary dendrite spacing and secondary dendrite arm spacing with the increase of the content of strontium in the modified near-eutectic Al-Si alloys. It is thought that the addition of Sr leads to a reduction of the solid-liquid interfacial energy of the dendrite α phase, consequently resulting in a decrease of the growth undercooling of dendrite tips. And hence, the nucleation of the equiaxed grains in the liquid in front of the columnar dendrite tips is restrained, thus the addition of strontium in Al-Si alloys promotes the growth of the columnar dendrites. The reduction of the solid-liquid interfacial energy also leads to the decreases in the primary dendrite spacing and the secondary dendrite arm spacing.

  17. Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes

    Science.gov (United States)

    Writer, J.H.; Barber, L.B.; Brown, G.K.; Taylor, H.E.; Kiesling, R.L.; Ferrey, M.L.; Jahns, N.D.; Bartell, S.E.; Schoenfuss, H.L.

    2010-01-01

    Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17??-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use. ?? 2010.

  18. Identification of genes influencing dendrite morphogenesis in developing peripheral sensory and central motor neurons

    Directory of Open Access Journals (Sweden)

    Chwalla Barbara

    2008-07-01

    Full Text Available Abstract Background Developing neurons form dendritic trees with cell type-specific patterns of growth, branching and targeting. Dendrites of Drosophila peripheral sensory neurons have emerged as a premier genetic model, though the molecular mechanisms that underlie and regulate their morphogenesis remain incompletely understood. Still less is known about this process in central neurons and the extent to which central and peripheral dendrites share common organisational principles and molecular features. To address these issues, we have carried out two comparable gain-of-function screens for genes that influence dendrite morphologies in peripheral dendritic arborisation (da neurons and central RP2 motor neurons. Results We found 35 unique loci that influenced da neuron dendrites, including five previously shown as required for da dendrite patterning. Several phenotypes were class-specific and many resembled those of known mutants, suggesting that genes identified in this study may converge with and extend known molecular pathways for dendrite development in da neurons. The second screen used a novel technique for cell-autonomous gene misexpression in RP2 motor neurons. We found 51 unique loci affecting RP2 dendrite morphology, 84% expressed in the central nervous system. The phenotypic classes from both screens demonstrate that gene misexpression can affect specific aspects of dendritic development, such as growth, branching and targeting. We demonstrate that these processes are genetically separable. Targeting phenotypes were specific to the RP2 screen, and we propose that dendrites in the central nervous system are targeted to territories defined by Cartesian co-ordinates along the antero-posterior and the medio-lateral axes of the central neuropile. Comparisons between the screens suggest that the dendrites of peripheral da and central RP2 neurons are shaped by regulatory programs that only partially overlap. We focused on one common

  19. Turtle functions downstream of Cut in differentially regulating class specific dendrite morphogenesis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Mikolaj J Sulkowski

    Full Text Available BACKGROUND: Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has been substantial progress in understanding the molecular mechanisms of dendrite morphogenesis, the specification of class-specific dendritic arbors remains largely unexplained. Furthermore, the presence of numerous regulators suggests that they must work in concert. However, presently, few genetic pathways regulating dendrite development have been defined. METHODOLOGY/PRINCIPAL FINDINGS: The Drosophila gene turtle belongs to an evolutionarily conserved class of immunoglobulin superfamily members found in the nervous systems of diverse organisms. We demonstrate that Turtle is differentially expressed in Drosophila da neurons. Moreover, MARCM analyses reveal Turtle acts cell autonomously to exert class specific effects on dendritic growth and/or branching in da neuron subclasses. Using transgenic overexpression of different Turtle isoforms, we find context-dependent, isoform-specific effects on mediating dendritic branching in class II, III and IV da neurons. Finally, we demonstrate via chromatin immunoprecipitation, qPCR, and immunohistochemistry analyses that Turtle expression is positively regulated by the Cut homeodomain transcription factor and via genetic interaction studies that Turtle is downstream effector of Cut-mediated regulation of da neuron dendrite morphology. CONCLUSIONS/SIGNIFICANCE: Our findings reveal that Turtle proteins differentially regulate the acquisition of class-specific dendrite morphologies. In addition, we have established a

  20. Science and policy on endocrine disrupters must not be mixed

    DEFF Research Database (Denmark)

    Bergman, Åke; Andersson, Anna-Maria; Becher, Georg;

    2013-01-01

    The "common sense" intervention by toxicology journal editors regarding proposed European Union endocrine disrupter regulations ignores scientific evidence and well-established principles of chemical risk assessment. In this commentary, endocrine disrupter experts express their concerns about a r...

  1. Endocrine disrupters. The case of estrogen xenobiotics

    Directory of Open Access Journals (Sweden)

    N. Olea Serrano

    2001-06-01

    Full Text Available Interest of the scientific community in chemical substances able to alter the hormone balance –endocrine disrupters- has grown with increasing evidence of the consequences for animal populations of exposure to these substances. As has occurred on previous occasions, observational data on animal populations have been sufficiently suggestive to cause concerns among clinicians that similar effects may be produced in human populations. Although data on the effects on populations of animals are more easily generated than those on individuals, clinical observations on human individuals alongside the few existing epidemiological studies have shown a certain parallelism. Indeed, in vitro and in vivo models have been able to designate many chemical compounds as hormonal mimics, including both natural and human-produced compounds to which there are exposure risks. The present work reviews the conceptual premises of endocrine disruption and the development of the use of this term.

  2. Disruption problematics in segmented-blanket concepts

    International Nuclear Information System (INIS)

    In tokamaks, the hostile operating environment originated by plasma disruption events requires that the first-wall/blanket/shield components sustain the large induced electromagnetic (EM) forces without significant structural deformation and within allowable material stresses. As a consequence, there is a need to improve the safety features of the segmented-blanket design concepts in order to satisfy the disruption problematics.The present paper describes recent investigations on internal blanket reinforcement systems needed in order to improve the first-wall/blanket/shield structural design for next-step and commercial fusion reactors. Particularly in the context of SEAFP and ITER activities, representative 3-D CAD models of the inboard and outboard blanket regions and the related magnetomechanical simulations are illustrated. (orig.)

  3. Disruption of cytoplasmic microtubules by ultraviolet radiation

    International Nuclear Information System (INIS)

    Ultraviolet (UV) irradiation of cultured human skin fibroblasts causes the disassembly of their microtubules. Using indirect immunofluorescence microscopy, we have now investigated whether damage to the microtubule precursor pool may contribute to the disruption of microtubules. Exposure to polychromatic UV radiation inhibits the reassembly of microtubules during cellular recovery from cold treatment. In addition, the ability of taxol to promote microtubule polymerization and bundling is inhibited in UV-irradiated cells. However, UV irradiation of taxol-pretreated cells or in situ detergent-extracted microtubules fails to disrupt the microtubule network. These data suggest that damage to dimeric tubulin, or another soluble factor(s) required for polymerization, contributes to the disassembly of microtubules in UV-irradiated human skin fibroblasts

  4. Disruption Management in Passenger Railway Transportation

    DEFF Research Database (Denmark)

    Jespersen-Groth, Julie; Potthoff, Daniel; Clausen, Jens;

    the three main subproblems in railway disruption management: timetable adjustment, and rolling stock and crew re-scheduling. Next to a general description of these problems, we give an overview of the existing literature and we present some details of the specific situations at DSB S-tog and NS. These...... are the railway operators in the suburban area of Copenhagen, Denmark, and on the main railway lines in the Netherlands, respectively. Since not much research has been carried out yet on Operations Research models for disruption management in the railway context, models and techniques that have been...... developed for related problems in the airline world are discussed as well. Finally, we address the integration of the re-scheduling processes of the timetable, and the resources rolling stock and crew....

  5. The hexagon hypothesis: Six disruptive scenarios.

    Science.gov (United States)

    Burtles, Jim

    2015-01-01

    This paper aims to bring a simple but effective and comprehensive approach to the development, delivery and monitoring of business continuity solutions. To ensure that the arguments and principles apply across the board, the paper sticks to basic underlying concepts rather than sophisticated interpretations. First, the paper explores what exactly people are defending themselves against. Secondly, the paper looks at how defences should be set up. Disruptive events tend to unfold in phases, each of which invites a particular style of protection, ranging from risk management through to business continuity to insurance cover. Their impact upon any business operation will fall into one of six basic scenarios. The hexagon hypothesis suggests that everyone should be prepared to deal with each of these six disruptive scenarios and it provides them with a useful benchmark for business continuity. PMID:26420396

  6. Disruption strategies for online child pornography networks

    OpenAIRE

    Joffres, Kilauea

    2012-01-01

    The advent of the Internet has allowed for the creation of online child pornography networks, in which websites link to one another and facilitate access to child pornographic materials. This project seeks to use social network analysis tools to identify effective disruption strategies against online child pornography networks. For this purpose, four networks of child exploitation material were extracted using a specially designed web-crawler. These networks were then submitted to three diffe...

  7. Disruption of vitamin A metabolism by dioxin

    OpenAIRE

    Högberg, Pi

    2003-01-01

    Vitamin A (retinoids) is a nutrient that plays a central role in development and remains essential for cell growth and differentiation throughout life. Dioxins are polychlorinated organic pollutants known to negatively affect the storage and body clearance of retinoids. This work aimed at studying mechanisms and consequences of dioxin-induced retinoid disruption in vivo. As model compound we used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and as model species adult male S...

  8. A model of major disruption in tokamaks

    International Nuclear Information System (INIS)

    A mechanism for the onset of the major disruption is proposed which considers the effect of magnetic stochasticity on the growth of the m=2 tearing mode. The toroidicity can cause stochasticity near the separatrix of the m=2 magnetic island which enhances the current viscosity, resulting in explosive growth. The threshold condition and the time scale of rapid growth are studied. The role of the toroidal coupling to the m=1 component is also discussed. (author)

  9. Mechanical properties and disruption of dental biofilms

    OpenAIRE

    Rmaile, Amir

    2013-01-01

    A literature review of dental plaque biofilms formation, progression and detachment mechanisms is presented in this thesis. Various strategies that have been employed to reduce or eliminate dental biofilms are discussed. The focus of the thesis was on the mechanical properties and disruption of dental biofilms, especially from hard-to-access areas of the oral cavity, such as the interproximal (IP) sites between the teeth. Various methods to measure mechanical properties of dental biofilms wer...

  10. Pathological tau disrupts ongoing network activity

    OpenAIRE

    Menkes-Caspi, Noa; Yamin, Hagar G; Kellner, Vered; Spires-Jones, Tara L; Cohen, Dana; Stern, Edward A.

    2015-01-01

    Pathological tau leads to dementia and neurodegeneration in tauopathies, including Alzheimer's disease. It has been shown to disrupt cellular and synaptic functions, yet its effects on the function of the intact neocortical network remain unknown. Using in vivo intracellular and extracellular recordings, we measured ongoing activity of neocortical pyramidal cells during various arousal states in the rTg4510 mouse model of tauopathy, prior to significant cell death, when only a fraction of the...

  11. Will disruptive innovations cure health care?

    Science.gov (United States)

    Christensen, C M; Bohmer, R; Kenagy, J

    2000-01-01

    It's no secret that health care delivery is convoluted, expensive, and often deeply dissatisfying to consumers. But what is less obvious is that a way out of this crisis exists. Simpler alternatives to expensive care are already here--everything from $5 eyeglasses that people can use to correct their own vision to angioplasty instead of open-heart surgery. Just as the PC replaced the mainframe and the telephone replaced the telegraph operator, disruptive innovations are changing the landscape of health care. Nurse practitioners, general practitioners, and even patients can do things in less-expensive, decentralized settings that could once be performed only by expensive specialists in centralized, inconvenient locations. But established institutions--teaching hospitals, medical schools, insurance companies, and managed care facilities--are fighting these innovations tooth and nail. Instead of embracing change, they're turning the thumbscrews on their old processes--laying off workers, delaying payments, merging, and adding layers of overhead workers. Not only is this at the root of consumer dissatisfaction with the present system, it sows the seeds of its own destruction. The history of disruptive innovations tells us that incumbent institutions will be replaced with ones whose business models are appropriate to the new technologies and markets. Instead of working to preserve the existing systems, regulators, physicians, and pharmaceutical companies need to ask how they can enable more disruptive innovations to emerge. If the natural process of disruption is allowed to proceed, the result will be higher quality, lower cost, more convenient health care for everyone. PMID:11143147

  12. The Impact of Disruptive Innovations in Orthopaedics

    OpenAIRE

    Hansen, Erik; Bozic, Kevin J.

    2009-01-01

    The US healthcare system is currently facing daunting demographic and economic challenges. Because musculoskeletal disorders and disease represent a substantial and growing portion of this healthcare burden, novel approaches will be needed to continue to provide high-quality, affordable, and accessible orthopaedic care to our population. The concept of “disruptive innovations,” which has been studied and popularized by Harvard Business School Professor Clayton Christensen, may offer a potenti...

  13. Cloning and disruption of Ustilago maydis genes.

    OpenAIRE

    Fotheringham, S.; Holloman, W K

    1989-01-01

    We have demonstrated that genes from Ustilago maydis can be cloned by direct complementation of mutants through the use of genomic libraries made in a high-frequency transformation vector. We isolated a gene involved in amino acid biosynthesis as an illustrative example and showed that integrative and one-step disruption methods can be used to create null mutations in the chromosomal copy of the gene by homologous recombination. The results of this investigation make it clear that one-step ge...

  14. Action-Specific Disruption of Perceptual Confidence

    OpenAIRE

    Stephen M. Fleming; Maniscalco, Brian; Ko, Yoshiaki; Amendi, Namema; Ro, Tony; Lau, Hakwan

    2015-01-01

    Theoretical models of perception assume that confidence is related to the quality or strength of sensory processing. Counter to this intuitive view, we showed in the present research that the motor system also contributes to judgments of perceptual confidence. In two experiments, we used transcranial magnetic stimulation (TMS) to manipulate response-specific representations in the premotor cortex, selectively disrupting postresponse confidence in visual discrimination judgments. Specifically,...

  15. Disrupted neural synchronization in toddlers with autism

    OpenAIRE

    Dinstein, Ilan; Pierce, Karen; Eyler, Lisa; Solso, Stephanie; Malach, Rafael; Behrmann, Marlene; Courchesne, Eric

    2011-01-01

    Autism is often described as a disorder of neural synchronization. However, it is unknown how early in development synchronization abnormalities emerge and whether they are related to the development of early autistic behavioral symptoms. Here, we show that disrupted synchronization is evident in the spontaneous cortical activity of naturally sleeping toddlers with autism, but not in toddlers with language delay or typical development. Toddlers with autism exhibited significantly weaker inter...

  16. Five disruptive technology directions for 5G

    DEFF Research Database (Denmark)

    Boccardi, Federico; W. Heath Jr., Robert; Lozano, Angel;

    2014-01-01

    New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive...... MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain....

  17. Language adapts to signal disruption in interaction

    OpenAIRE

    Macuch Silva, V.; Roberts, S

    2016-01-01

    Linguistic traits are often seen as reflecting cognitive biases and constraints (e.g. Christiansen & Chater, 2008). However, language must also adapt to properties of the channel through which communication between individuals occurs. Perhaps the most basic aspect of any communication channel is noise. Communicative signals can be blocked, degraded or distorted by other sources in the environment. This poses a fundamental problem for communication. On average, channel disruption accompanies p...

  18. Robust scheduling and disruption recovery for airlines

    OpenAIRE

    Eggenberg, Niklaus; Salani, Matteo

    2009-01-01

    Airline planning include complex and structured operations that must be planned in advance in order to exploit the available resources, provide a reliable and competitive service and forecast system's performances. Decisions regarding operations are based on data which is frequently due to uncertainty. Moreover, unpredicted events may disrupt the current schedule and force managers to take reactive decisions to recover to an operational state. On the other hand, proactive decisions, i.e. deci...

  19. Disruptive Discourses: Kenyan Maasai Schoolgirls Make Themselves

    OpenAIRE

    Switzer, Heather

    2009-01-01

    This abridged discussion of Maasai schoolgirls and disruptive discourses comes from my dissertation (in progress), Making the Maasai Schoolgirl: Developing Modernities on the Margins, an ethnographic case study of development at the local level that examines an emergent social category in contemporary Kenyan Maasai society: the “schoolgirl.” It is only recently, in the past generation, that Maasai females have attended school in any number, and access remains relatively limited. The dissertat...

  20. Influence of Dynamic Capabilities in Creating Disruptive Innovation

    OpenAIRE

    Čiutienė, R; Thattakath, E

    2014-01-01

    The aim of this paper is to demonstrate the influence of Dynamic Capabilities in creating Disruptive Innovation. For doing so the concepts of Dynamic Capabilities and Disruptive Innovation are reviewed. The criteria of an innovation named Disruptive Innovation are obtained by comparative study between the various innovation types. To demonstrate the role of Dynamic Capabilities in creating Disruptive Innovation, the Innovation Lifecycle is demonstrated with respect to Dynamic Capabilities. Th...

  1. Fortum, how an incumbent should deal with a disruptive innovation

    OpenAIRE

    Noteboom, Arno

    2014-01-01

    Solar PV as a disruptive innovation is changing the established energy industry. It forces energy incumbents to compete on a new market, and on new features. This research sets out to investigate how Fortum should be dealing with this disruptive innovation. This study is conducted in two parts, first it is analysed what the effects are of solar PV being labelled disruptive. This determines whether Fortum should at all be participating in this new disruptive market. The second part analyse...

  2. Influence of Dynamic Capabilities in Creating Disruptive Innovation

    OpenAIRE

    Čiutienė, R; Thattakath, E

    2015-01-01

    The aim of this paper is to demonstrate the influence of Dynamic Capabilities in creating Disruptive Innovation. For doing so the concepts of Dynamic Capabilities and Disruptive Innovation are reviewed. The criteria of an innovation named Disruptive Innovation are obtained by comparative study between the various innovation types. To demonstrate the role of Dynamic Capabilities in creating Disruptive Innovation, the Innovation Lifecycle is demonstrated with respect to Dynamic Capabilities. Th...

  3. Fungal tools for the degradation of endocrine disrupting compounds

    OpenAIRE

    Kabiersch, Grit

    2013-01-01

    Endocrine disrupting compounds are synthetic or natural compounds that mimic the action of hormones and thus disrupt or alter functions of the endocrine system usually through direct interactions with nuclear receptors. The main objective of this work was to develop strategies of how to degrade endocrine disrupting compounds and how to monitor the removal of the endocrine disrupting effect with focus on the estrogenic compound bisphenol A and on the virilizing compound tributyltin. Bisph...

  4. EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons.

    Science.gov (United States)

    Acker, Corey D; Hoyos, Erika; Loew, Leslie M

    2016-01-01

    EPSPs occur when the neurotransmitter glutamate binds to postsynaptic receptors located on small pleomorphic membrane protrusions called dendritic spines. To transmit the synaptic signal, these potentials must travel through the spine neck and the dendritic tree to reach the soma. Due to their small size, the electrical behavior of spines and their ability to compartmentalize electrical signals has been very difficult to assess experimentally. In this study, we developed a method to perform simultaneous two-photon voltage-sensitive dye recording with two-photon glutamate uncaging in order to measure the characteristics (amplitude and duration) of uncaging-evoked EPSPs in single spines on the basal dendrites of L5 pyramidal neurons in acute brain slices from CD1 control mice. We were able to record uncaging-evoked spine potentials that resembled miniature EPSPs at the soma from a wide range of spine morphologies. In proximal spines, these potentials averaged 13.0 mV (range, 6.5-30.8 mV; N = 20) for an average somatic EPSP of 0.59 mV, whereas the mean attenuation ratio (spine/soma) was found to be 25.3. Durations of spine EPSP waveforms were found to be 11.7 ms on average. Modeling studies demonstrate the important role that spine neck resistance (R neck) plays in spine EPSP amplitudes. Simulations used to estimate R neck by fits to voltage-sensitive dye measurements produced a mean of 179 MΩ (range, 23-420 MΩ; N = 19). Independent measurements based on fluorescence recovery after photobleaching of a cytosolic dye from spines of the same population of neurons produced a mean R neck estimate of 204 MΩ (range, 52-521 MΩ; N = 34). PMID:27257618

  5. Functional changes of dendritic cells in hypersensivity reactions to amoxicillin

    Directory of Open Access Journals (Sweden)

    C.M.F. Lima

    2010-10-01

    Full Text Available A better understanding of dendritic cell (DC involvement in responses to haptenic drugs is needed, because it represents a possible approach to the development of an in vitro test, which could identify patients prone to drug allergies. There are two main DC subsets: plasmacytoid DC (pDC and myeloid DC (mDC. β-lactams form hapten-carrier conjugates and may provide a suitable model to study DC behavior in drug allergy reactions. It has been demonstrated that drugs interact differently with DC in drug allergic and non-allergic patients, but there are no studies regarding these subsets. Our aim was to assess the functional changes of mDC and pDC harvested from an amoxicillin-hypersensitive 32-year-old woman who experienced a severe maculopapular exanthema as reflected in interleukin-6 (IL-6 production after stimulation with this drug and penicillin. We also aim to demonstrate, for the first time, the feasibility of this method for dendritic cell isolation followed by in vitro stimulation for studies of drug allergy physiopathology. DC were harvested using a double Percoll density gradient, which generates a basophil-depleted cell (BDC suspension. Further, pDC were isolated by blood DC antigen 4-positive magnetic selection and gravity filtration through magnetized columns. After stimulation with amoxicillin, penicillin and positive and negative controls, IL-6 production was measured by ELISA. A positive dose-response curve for IL-6 after stimulation with amoxicillin and penicillin was observed for pDC, but not for mDC or BDC suspension. These preliminary results demonstrate the feasibility of this methodology to expand the knowledge of the effect of dendritic cell activation by drug allergens.

  6. Dendrite Growth Kinetics in Undercooled Melts of Intermetallic Compounds

    Directory of Open Access Journals (Sweden)

    Dieter M. Herlach

    2015-09-01

    Full Text Available Solidification needs an undercooling to drive the solidification front. If large undercoolings are achieved, metastable solid materials are solidified from the undercooled melt. Containerless processing provides the conditions to achieve large undercoolings since heterogeneous nucleation on container walls is completely avoided. In the present contribution both electromagnetic and electrostatic levitation are applied. The velocity of rapidly advancing dendrites is measured as a function of undercooling by a High-Speed-Camera. The dendrite growth dynamics is investigated in undercooled melts of intermetallic compounds. The Al50Ni50 alloy is studied with respect to disorder trapping that leads to a disordered superlattice structure if the melt is undercooled beyond a critical undercooling. Disorder trapping is evidenced by in situ energy dispersive diffraction using synchrotron radiation of high intensity to record full diffraction pattern on levitated samples within a short time interval. Experiments on Ni2B using different processing techniques of varying the level of convection reveal convection-induced faceting of rapidly growing dendrites. Eventually, the growth velocity is measured in an undercooled melt of glass forming Cu50Zr50 alloy. A maximum in the growth velocity–undercooling relation is proved. This is understood by the fact that the temperature dependent diffusion coefficient counteracts the thermodynamic driving force for rapid growth if the temperature of the undercooled melt is approaching the temperature regime above the glass transition temperature. The analysis of this result allows for determining the activation energy of atomic attachment kinetics at the solid–liquid interface that is comparable to the activation energy of atomic diffusion as determined by independent measurements of the atomic diffusion in undercooled Cu50Zr50 alloy melt.

  7. Risk Evaluation of Endocrine-Disrupting Chemicals

    Science.gov (United States)

    Gioiosa, Laura; Palanza, Paola; vom Saal, Frederick S.

    2015-01-01

    We review here our studies on early exposure to low doses of the estrogenic endocrine-disrupting chemical bisphenol A (BPA) on behavior and metabolism in CD-1 mice. Mice were exposed in utero from gestation day (GD) 11 to delivery (prenatal exposure) or via maternal milk from birth to postnatal day 7 (postnatal exposure) to 10 µg/kg body weight/d of BPA or no BPA (controls). Bisphenol A exposure resulted in long-term disruption of sexually dimorphic behaviors. Females exposed to BPA pre- and postnatally showed increased anxiety and behavioral profiles similar to control males. We also evaluated metabolic effects in prenatally exposed adult male offspring of dams fed (from GD 9 to 18) with BPA at doses ranging from 5 to 50 000 µg/kg/d. The males showed an age-related significant change in a number of metabolic indexes ranging from food intake to glucose regulation at BPA doses below the no observed adverse effect level (5000 µg/kg/d). Consistent with prior findings, low but not high BPA doses produced significant effects for many outcomes. These findings provide further evidence of the potential risks that developmental exposure to low doses of the endocrine disrupter BPA may pose to human health, with fetuses and infants being highly vulnerable. PMID:26740806

  8. Disruptive Innovation Can Prevent the Next Pandemic.

    Science.gov (United States)

    Shaikh, Affan T; Ferland, Lisa; Hood-Cree, Robert; Shaffer, Loren; McNabb, Scott J N

    2015-01-01

    Public health surveillance (PHS) is at a tipping point, where the application of novel processes, technologies, and tools promise to vastly improve efficiency and effectiveness. Yet twentieth century, entrenched ideology and lack of training results in slow uptake and resistance to change. The term disruptive innovation - used to describe advances in technology and processes that change existing markets - is useful to describe the transformation of PHS. Past disruptive innovations used in PHS, such as distance learning, the smart phone, and field-based laboratory testing have outpaced older services, practices, and technologies used in the traditional classroom, governmental offices, and personal communication, respectively. Arguably, the greatest of these is the Internet - an infrastructural innovation that continues to enable exponential benefits in seemingly limitless ways. Considering the Global Health Security Agenda and facing emerging and reemerging infectious disease threats, evolving environmental and behavioral risks, and ever changing epidemiologic trends, PHS must transform. Embracing disruptive innovation in the structures and processes of PHS can be unpredictable. However, it is necessary to strengthen and unlock the potential to prevent, detect, and respond. PMID:26442242

  9. Extensor Mechanism Disruption in Knee Dislocation.

    Science.gov (United States)

    O'Malley, Michael; Reardon, Patrick; Pareek, Ayoosh; Krych, Aaron; Levy, Bruce A; Stuart, Michael J

    2016-05-01

    Disruption of the knee extensor mechanism is a challenging injury with no clear consensus on optimal treatment. Although rare in the setting of knee dislocations, these injuries should not be overlooked. Acute, complete rupture of either the quadriceps or patellar tendon necessitates primary repair with or without augmentation. Surgical management may also be required in the setting of a partial tear if a significant extensor lag is present or nonoperative treatment has failed. Tendon augmentation is used during primary repair if the native tissue is inadequate or after a failed primary repair. The purpose of this study is to evaluate extensor mechanism disruption incidence, injury patterns, associated injuries, and surgical options, including a novel tendon augmentation technique. This procedure consists of primary patellar or quadriceps tendon repair with semitendinosus autograft augmentation utilizing a distal or proximal patellar socket. Advantages of repair with tendon augmentation include accelerated rehabilitation, decreased risk of patellar fracture from transverse or longitudinal bone tunnels, and less hardware complications. We recommend consideration of this technique for selected cases of acute extensor mechanism disruption in the setting of tibiofemoral dislocation. PMID:26636488

  10. Bunina bodies in dendrites of patients with amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Kuroda,Shigetoshi

    1990-02-01

    Full Text Available We studied the brains of two cases of amyotrophic lateral sclerosis with dementia. Bunina bodies were found in the motor neurons of cranial nerve nuclei (trigeminal, facial and hypoglossal nerves as well as in the spinal motoneurons. They appeared mostly in the cytoplasm and occasionally in the neuronal processes. However, the present electron microscopic study disclosed clearly that Bunina bodies were present not only in the cell body but also in the dendrites. No Bunina bodies were observed in the axons. It is inferred that the Bunina bodies were degenerative products formed as a result of a protein metabolism disorder.

  11. Dendritic cell-based cancer immunotherapy for colorectal cancer

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients. PMID:27158196

  12. Targeting dendritic cells in vivo for cancer therapy

    Directory of Open Access Journals (Sweden)

    Irina eCaminschi

    2012-02-01

    Full Text Available Monoclonal antibodies that recognise cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC for induction of immune responses. The encouraging anti-tumour immunity elicited using this immunisation strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialisation of DC-subsets, the immunological outcomes of targeting different DC-subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumour immunity. Finally, we review preclinical experiments and the progress towards targeting human DC in vivo.

  13. A summary about dendritic cells in skin diseases

    Institute of Scientific and Technical Information of China (English)

    Jianguo Huang; Robert Gniadecki

    2005-01-01

    Dendritic cellls (DCs) comprise an essential component of the immune system, are crucial in the initiation of antigen specific immune responses. In this summary we focus on summarizing on the central role of DCs in skin diseases: Bullous dermatoses,Dermatitis, Psoriasis, Lichen Planus , Graft-versus-host disease, Connect Tissue Diseases, Virus Diseases, Fungi Diseases, HIV, Urticaria, Urticaria pigmentosa, Mastocytosis, Tumour, Solar dermatoses. Moreover, in this summary we review the distribution and phenotype of DCs in human skin. Markers and phenotyps ' s study have provided strong support for a concept in which DCs play an important role in the pothogenesis of some skin diseases.

  14. Selective Dendritic Fluorescent Sensors for Zn(II

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-04-01

    Full Text Available A series of dendritic 8-hydroxyquinoline (8-HQ and 5-dialkyl(arylaminomethyl-8-HQ derivatives were synthesized and their fluoroionophoric properties towardrepresentative alkali, alkaline earth, group IIIA and transition metal ions wereinvestigated. Among the selected ions, Zn(II enhanced the fluorescence of N-di-(methoxycarbonylethylaminoethyl-3-[4-(8-hydroxyquinolin-5-ylmethylpiperazin-1-yl]-propanoic amide] (7 by 31-fold, while Al(III caused enhancement to some extent. Theabsence of any significant fluorescence enhancement by the other ions examined renders 7a highly useful Zn(II-selective fluorescent sensor.

  15. Targeting Human Dendritic Cell Subsets for Improved Vaccines

    Science.gov (United States)

    Ueno, Hideki; Klechevsky, Eynav; Schmitt, Nathalie; Ni, Ling; Flamar, Anne-Laure; Zurawski, Sandra; Zurawski, Gerard; Palucka, Karolina; Banchereau, Jacques; Oh, SangKon

    2011-01-01

    Summary Dendritic cells (DCs) were discovered in 1973 by Ralph Steinman as a previously undefined cell type in the mouse spleen and are now recognized as a group of related cell populations that induce and regulate adaptive immune responses. Studies of the past decade show that, both in mice and humans, DCs are composed of subsets that differ in their localization, phenotype, and functions. These progresses in our understanding of DC biology provide a new framework for improving human health. In this review, we discuss human DC subsets in the context of their medical applications, with a particular focus on DC targeting. PMID:21277223

  16. Role of plasmacytoid dendritic cell subsets in allergic asthma

    OpenAIRE

    Maazi, Hadi; Lam, Jonathan; Lombardi, Vincent; Akbari, Omid

    2013-01-01

    Plasmacytoid dendritic cells (pDCs) are major type-I interferon producing cells that play important roles in antiviral immunity and tolerance induction. These cells share a common DC progenitor with conventional DCs and Fms-like tyrosine kinase-3 ligand is essential for their development. Several subsets of pDCs have been identified to date including CCR9+, CD9+ and CD2+ pDCs. Recently, three subsets of pDCs were described namely, CD8α−β−, CD8α+β− and CD8α+β+ subsets. Interestingly, CD8α+β− a...

  17. Bone marrow dendritic cell-based anticancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Indrová, Marie; Mendoza, Luis; Reiniš, Milan; Vonka, V.; Šmahel, M.; Němečková, Š.; Jandlová, Táňa; Bubeník, Jan

    2001-01-01

    Roč. 495, - (2001), s. 355-358. ISSN 0065-2598 R&D Projects: GA MZd NC5526; GA ČR GA312/98/0826; GA ČR GA312/99/0542; GA ČR GA301/00/0114; GA ČR GA301/01/0985; GA AV ČR IAA7052002 Institutional research plan: CEZ:AV0Z5052915 Keywords : HPV16 * dendritic cells * tumour vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.513, year: 2000

  18. Classification of dendritic cell phenotypes from gene expression data

    Directory of Open Access Journals (Sweden)

    Zolezzi Francesca

    2011-08-01

    Full Text Available Abstract Background The selection of relevant genes for sample classification is a common task in many gene expression studies. Although a number of tools have been developed to identify optimal gene expression signatures, they often generate gene lists that are too long to be exploited clinically. Consequently, researchers in the field try to identify the smallest set of genes that provide good sample classification. We investigated the genome-wide expression of the inflammatory phenotype in dendritic cells. Dendritic cells are a complex group of cells that play a critical role in vertebrate immunity. Therefore, the prediction of the inflammatory phenotype in these cells may help with the selection of immune-modulating compounds. Results A data mining protocol was applied to microarray data for murine cell lines treated with various inflammatory stimuli. The learning and validation data sets consisted of 155 and 49 samples, respectively. The data mining protocol reduced the number of probe sets from 5,802 to 10, then from 10 to 6 and finally from 6 to 3. The performances of a set of supervised classification models were compared. The best accuracy, when using the six following genes --Il12b, Cd40, Socs3, Irgm1, Plin2 and Lgals3bp-- was obtained by Tree Augmented Naïve Bayes and Nearest Neighbour (91.8%. Using the smallest set of three genes --Il12b, Cd40 and Socs3-- the performance remained satisfactory and the best accuracy was with Support Vector Machine (95.9%. These data mining models, using data for the genes Il12b, Cd40 and Socs3, were validated with a human data set consisting of 27 samples. Support Vector Machines (71.4% and Nearest Neighbour (92.6% gave the worst performances, but the remaining models correctly classified all the 27 samples. Conclusions The genes selected by the data mining protocol proposed were shown to be informative for discriminating between inflammatory and steady-state phenotypes in dendritic cells. The

  19. A novel cell subset: Interferon-producing killer dendritic cells

    Institute of Scientific and Technical Information of China (English)

    WANG JiongKun; XING FeiYue

    2008-01-01

    Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells (IKDCs). IKDCs not only secret type Ⅰ and type Ⅱ interferons to recognize and kill tumor cells effectively, but also express MHC-Ⅱ molecules to present antigens. Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.

  20. Spatiotemporal Dynamics of Dendritic Spines in the Living Brain

    Directory of Open Access Journals (Sweden)

    Chia-Chien eChen

    2014-05-01

    Full Text Available Dendritic spines are ubiquitous postsynaptic sites of most excitatory synapses in the mammalian brain, and thus may serve as structural indicators of functional synapses. Recent works have suggested that neuronal coding of memories may be associated with rapid alterations in spine formation and elimination. Technological advances have enabled researchers to study spine dynamics in vivo during development as well as under various physiological and pathological conditions. We believe that better understanding of the spatiotemporal patterns of spine dynamics will help elucidate the principles of experience-dependent circuit modification and information processing in the living brain.