WorldWideScience

Sample records for akap5 disrupt dendritic

  1. Isoform-Selective Disruption of AKAP-Localized PKA Using Hydrocarbon Stapled Peptides

    Science.gov (United States)

    2015-01-01

    A-kinase anchoring proteins (AKAPs) play an important role in the spatial and temporal regulation of protein kinase A (PKA) by scaffolding critical intracellular signaling complexes. Here we report the design of conformationally constrained peptides that disrupt interactions between PKA and AKAPs in an isoform-selective manner. Peptides derived from the A Kinase Binding (AKB) domain of several AKAPs were chemically modified to contain an all-hydrocarbon staple and target the docking/dimerization domain of PKA-R, thereby occluding AKAP interactions. The peptides are cell-permeable against diverse human cell lines, are highly isoform-selective for PKA-RII, and can effectively inhibit interactions between AKAPs and PKA-RII in intact cells. These peptides can be applied as useful reagents in cell-based studies to selectively disrupt AKAP-localized PKA-RII activity and block AKAP signaling complexes. In summary, the novel hydrocarbon-stapled peptides developed in this study represent a new class of AKAP disruptors to study compartmentalized RII-regulated PKA signaling in cells. PMID:24422448

  2. Selective disruption of the AKAP signaling complexes.

    Science.gov (United States)

    Kennedy, Eileen J; Scott, John D

    2015-01-01

    Synthesis of the second messenger cAMP activates a variety of signaling pathways critical for all facets of intracellular regulation. Protein kinase A (PKA) is the major cAMP-responsive effector. Where and when this enzyme is activated has profound implications on the cellular role of PKA. A-Kinase Anchoring Proteins (AKAPs) play a critical role in this process by orchestrating spatial and temporal aspects of PKA action. A popular means of evaluating the impact of these anchored signaling events is to biochemically interfere with the PKA-AKAP interface. Hence, peptide disruptors of PKA anchoring are valuable tools in the investigation of local PKA action. This article outlines the development of PKA isoform-selective disruptor peptides, documents the optimization of cell-soluble peptide derivatives, and introduces alternative cell-based approaches that interrogate other aspects of the PKA-AKAP interface.

  3. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA.

    Science.gov (United States)

    Das Banerjee, Tania; Dagda, Raul Y; Dagda, Marisela; Chu, Charleen T; Rice, Monica; Vazquez-Mayorga, Emmanuel; Dagda, Ruben K

    2017-08-01

    Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity. © 2017 International Society for Neurochemistry.

  4. Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules

    International Nuclear Information System (INIS)

    Kolobova, Elena; Efimov, Andrey; Kaverina, Irina; Rishi, Arun K.; Schrader, John W.; Ham, Amy-Joan; Larocca, M. Cecilia; Goldenring, James R.

    2009-01-01

    Recent investigations have highlighted the importance of subcellular localization of mRNAs to cell function. While AKAP350A, a multifunctional scaffolding protein, localizes to the Golgi apparatus and centrosomes, we have now identified a cytosolic pool of AKAP350A. Analysis of AKAP350A scaffolded complexes revealed two novel interacting proteins, CCAR1 and caprin-1. CCAR1, caprin-1 and AKAP350A along with G3BP, a stress granule marker, relocate to RNA stress granules after arsenite treatment. Stress also caused loss of AKAP350 from the Golgi and fragmentation of the Golgi apparatus. Disruption of microtubules with nocodazole altered stress granule formation and changed their morphology by preventing fusion of stress granules. In the presence of nocodazole, arsenite induced smaller granules with the vast majority of AKAP350A and CCAR1 separated from G3BP-containing granules. Similar to nocodazole treatment, reduction of AKAP350A or CCAR1 expression also altered the size and number of G3BP-containing stress granules induced by arsenite treatment. A limited set of 69 mRNA transcripts was immunoisolated with AKAP350A even in the absence of stress, suggesting the association of AKAP350A with mRNA transcripts. These results provide the first evidence for the microtubule dependent association of AKAP350A and CCAR1 with RNA stress granules

  5. Reciprocal Relationship between Head Size, an Autism Endophenotype, and Gene Dosage at 19p13.12 Points to AKAP8 and AKAP8L.

    Directory of Open Access Journals (Sweden)

    Rebecca A Nebel

    Full Text Available Microcephaly and macrocephaly are overrepresented in individuals with autism and are thought to be disease-related risk factors or endophenotypes. Analysis of DNA microarray results from a family with a low functioning autistic child determined that the proband and two additional unaffected family members who carry a rare inherited 760 kb duplication of unknown clinical significance at 19p13.12 are macrocephalic. Consideration alongside overlapping deletion and duplication events in the literature provides support for a strong relationship between gene dosage at this locus and head size, with losses and gains associated with microcephaly (p=1.11x10(-11 and macrocephaly (p=2.47x10(-11, respectively. Data support A kinase anchor protein 8 and 8-like (AKAP8 and AKAP8L as candidate genes involved in regulation of head growth, an interesting finding given previous work implicating the AKAP gene family in autism. Towards determination of which of AKAP8 and AKAP8L may be involved in the modulation of head size and risk for disease, we analyzed exome sequencing data for 693 autism families (2591 individuals where head circumference data were available. No predicted loss of function variants were observed, precluding insights into relationship to head size, but highlighting strong evolutionary conservation. Taken together, findings support the idea that gene dosage at 19p13.12, and AKAP8 and/or AKAP8L in particular, play an important role in modulation of head size and may contribute to autism risk. Exome sequencing of the family also identified a rare inherited variant predicted to disrupt splicing of TPTE / PTEN2, a PTEN homologue, which may likewise contribute to both macrocephaly and autism risk.

  6. Structure of smAKAP and its regulation by PKA-mediated phosphorylation

    Science.gov (United States)

    Burgers, Pepijn P.; Bruystens, Jessica; Burnley, Rebecca J.; Nikolaev, Viacheslav O.; Keshwani, Malik; Wu, Jian; Janssen, Bert J. C.; Taylor, Susan S.; Heck, Albert J. R.; Scholten, Arjen

    2016-01-01

    The A-kinase anchoring protein (AKAP) smAKAP has three extraordinary features; it is very small, it is anchored directly to membranes by acyl motifs, and it interacts almost exclusively with the type I regulatory subunits (RI) of cAMP-dependent kinase (PKA). Here, we determined the crystal structure of smAKAP’s A-kinase binding domain (smAKAP-AKB) in complex with the dimerization/docking (D/D) domain of RIα which reveals an extended hydrophobic interface with unique interaction pockets that drive smAKAP’s high specificity for RI subunits. We also identify a conserved PKA phosphorylation site at Ser66 in the AKB domain which we predict would cause steric clashes and disrupt binding. This correlates with in vivo colocalization and fluorescence polarization studies, where Ser66 AKB phosphorylation ablates RI binding. Hydrogen/deuterium exchange studies confirm that the AKB helix is accessible and dynamic. Furthermore, full-length smAKAP as well as the unbound AKB is predicted to contain a break at the phosphorylation site, and circular dichroism measurements confirm that the AKB domain loses its helicity following phosphorylation. As the active site of PKA’s catalytic subunit does not accommodate α-helices, we predict that the inherent flexibility of the AKB domain enables its phosphorylation by PKA. This represents a novel mechanism, whereby activation of anchored PKA can terminate its binding to smAKAP affecting the regulation of localized cAMP signaling events. PMID:27028580

  7. G protein-coupled receptor 30 (GPR30) forms a plasma membrane complex with membrane-associated guanylate kinases (MAGUKs) and protein kinase A-anchoring protein 5 (AKAP5) that constitutively inhibits cAMP production.

    Science.gov (United States)

    Broselid, Stefan; Berg, Kelly A; Chavera, Teresa A; Kahn, Robin; Clarke, William P; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2014-08-08

    GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Loss of Dendritic Complexity Precedes Neurodegeneration in a Mouse Model with Disrupted Mitochondrial Distribution in Mature Dendrites

    Directory of Open Access Journals (Sweden)

    Guillermo López-Doménech

    2016-10-01

    Full Text Available Correct mitochondrial distribution is critical for satisfying local energy demands and calcium buffering requirements and supporting key cellular processes. The mitochondrially targeted proteins Miro1 and Miro2 are important components of the mitochondrial transport machinery, but their specific roles in neuronal development, maintenance, and survival remain poorly understood. Using mouse knockout strategies, we demonstrate that Miro1, as opposed to Miro2, is the primary regulator of mitochondrial transport in both axons and dendrites. Miro1 deletion leads to depletion of mitochondria from distal dendrites but not axons, accompanied by a marked reduction in dendritic complexity. Disrupting postnatal mitochondrial distribution in vivo by deleting Miro1 in mature neurons causes a progressive loss of distal dendrites and compromises neuronal survival. Thus, the local availability of mitochondrial mass is critical for generating and sustaining dendritic arbors, and disruption of mitochondrial distribution in mature neurons is associated with neurodegeneration.

  9. AKAP-scaffolding proteins and regulation of cardiac physiology

    Science.gov (United States)

    Mauban, JRH; O'Donnell, M; Warrier, S; Manni, S; Bond, M

    2009-01-01

    A kinase anchoring proteins (AKAPs) compose a growing list of diverse but functionally related proteins defined by their ability to bind to the regulatory subunit of protein kinase A. AKAPs perform an integral role in the spatiotemporal modulation of a multitude of cellular signaling pathways. This review highlights the extensive role of AKAPs in cardiac excitation/contraction coupling and cardiac physiology. The literature shows that particular AKAPs are involved in cardiac Ca2+ influx, release, re-uptake, and myocyte repolarization. Studies have also suggested roles for AKAPs in cardiac remodeling. Transgenic studies show functional effects of AKAPs, not only in the cardiovascular system, but in other organ systems as well. PMID:19364910

  10. Dendrite Array Disruption by Bubbles during Re-melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.

    2012-01-01

    As part of the Pore Formation and Mobility Investigation (PFMI), Succinonitrile Water alloys consisting of aligned dendritic arrays were re-melted prior to conducting directional solidification experiments in the microgravity environment aboard the International Space Station. Thermocapillary convection initiated by bubbles at the solid-liquid interface during controlled melt back of the alloy was observed to disrupt the initial dendritic alignment. Disruption ranged from detaching large arrays to the transport of small dendrite fragments at the interface. The role of bubble size and origin is discussed along with subsequent consequences upon reinitiating controlled solidification.

  11. Role of plasma membrane-associated AKAPs for the regulation of cardiac IK1 current by protein kinase A.

    Science.gov (United States)

    Seyler, Claudia; Scherer, Daniel; Köpple, Christoph; Kulzer, Martin; Korkmaz, Sevil; Xynogalos, Panagiotis; Thomas, Dierk; Kaya, Ziya; Scholz, Eberhard; Backs, Johannes; Karle, Christoph; Katus, Hugo A; Zitron, Edgar

    2017-05-01

    The cardiac I K1 current stabilizes the resting membrane potential of cardiomyocytes. Protein kinase A (PKA) induces an inhibition of I K1 current which strongly promotes focal arrhythmogenesis. The molecular mechanisms underlying this regulation have only partially been elucidated yet. Furthermore, the role of A-kinase anchoring proteins (AKAPs) in this regulation has not been examined to date. The objective of this project was to elucidate the molecular mechanisms underlying the inhibition of I K1 by PKA and to identify novel molecular targets for antiarrhythmic therapy downstream β-adrenoreceptors. Patch clamp and voltage clamp experiments were used to record currents and co-immunoprecipitation, and co-localization experiments were performed to show spatial and functional coupling. Activation of PKA inhibited I K1 current in rat cardiomyocytes. This regulation was markedly attenuated by disrupting PKA-binding to AKAPs with the peptide inhibitor AKAP-IS. We observed functional and spatial coupling of the plasma membrane-associated AKAP15 and AKAP79 to Kir2.1 and Kir2.2 channel subunits, but not to Kir2.3 channels. In contrast, AKAPyotiao had no functional effect on the PKA regulation of Kir channels. AKAP15 and AKAP79 co-immunoprecipitated with and co-localized to Kir2.1 and Kir2.2 channel subunits in ventricular cardiomyocytes. In this study, we provide evidence for coupling of cardiac Kir2.1 and Kir2.2 subunits with the plasma membrane-bound AKAPs 15 and 79. Cardiac membrane-associated AKAPs are a functionally essential part of the regulatory cascade determining I K1 current function and may be novel molecular targets for antiarrhythmic therapy downstream from β-adrenoreceptors.

  12. PKA, PKC, and AKAP localization in and around the neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Newton Alexandra

    2001-10-01

    Full Text Available Abstract Background One mechanism that directs the action of the second messengers, cAMP and diacylglycerol, is the compartmentalization of protein kinase A (PKA and protein kinase C (PKC. A-kinase anchoring proteins (AKAPs can recruit both enzymes to specific subcellular locations via interactions with the various isoforms of each family of kinases. We found previously that a new class of AKAPs, dual-specific AKAPs, denoted D-AKAP1 and D-AKAP2, bind to RIα in addition to the RII subunits. Results Immunohistochemistry and confocal microscopy were used here to determine that D-AKAP1 colocalizes with RIα at the postsynaptic membrane of the vertebrate neuromuscular junction (NMJ and the adjacent muscle, but not in the presynaptic region. The labeling pattern for RIα and D-AKAP1 overlapped with mitochondrial staining in the muscle fibers, consistent with our previous work showing D-AKAP1 association with mitochondria in cultured cells. The immunoreactivity of D-AKAP2 was distinct from that of D-AKAP1. We also report here that even though the PKA type II subunits (RIIα and RIIβ are localized at the NMJ, their patterns are distinctive and differ from the other R and D-AKAP patterns examined. PKCβ appeared to colocalize with the AKAP, gravin, at the postsynaptic membrane. Conclusions The kinases and AKAPs investigated have distinct patterns of colocalization, which suggest a complex arrangement of signaling micro-environments. Because the labeling patterns for RIα and D-AKAP 1 are similar in the muscle fibers and at the postsynaptic membrane, it may be that this AKAP anchors RIα in these regions. Likewise, gravin may be an anchor of PKCβ at the NMJ.

  13. Molecular evolution of a-kinase anchoring protein (AKAP-7: implications in comparative PKA compartmentalization

    Directory of Open Access Journals (Sweden)

    Johnson Keven R

    2012-07-01

    Full Text Available Abstract Background A-Kinase Anchoring Proteins (AKAPs are molecular scaffolding proteins mediating the assembly of multi-protein complexes containing cAMP-dependent protein kinase A (PKA, directing the kinase in discrete subcellular locations. Splice variants from the AKAP7 gene (AKAP15/18 are vital components of neuronal and cardiac phosphatase complexes, ion channels, cardiac Ca2+ handling and renal water transport. Results Shown in evolutionary analyses, the formation of the AKAP7-RI/RII binding domain (required for AKAP/PKA-R interaction corresponds to vertebrate-specific gene duplication events in the PKA-RI/RII subunits. Species analyses of AKAP7 splice variants shows the ancestral AKAP7 splice variant is AKAP7α, while the ancestral long form AKAP7 splice variant is AKAP7γ. Multi-species AKAP7 gene alignments, show the recent formation of AKAP7δ occurs with the loss of native AKAP7γ in rats and basal primates. AKAP7 gene alignments and two dimensional Western analyses indicate that AKAP7γ is produced from an internal translation-start site that is present in the AKAP7δ cDNA of mice and humans but absent in rats. Immunofluorescence analysis of AKAP7 protein localization in both rat and mouse heart suggests AKAP7γ replaces AKAP7δ at the cardiac sarcoplasmic reticulum in species other than rat. DNA sequencing identified Human AKAP7δ insertion-deletions (indels that promote the production of AKAP7γ instead of AKAP7δ. Conclusions This AKAP7 molecular evolution study shows that these vital scaffolding proteins developed in ancestral vertebrates and that independent mutations in the AKAP7 genes of rodents and early primates has resulted in the recent formation of AKAP7δ, a splice variant of likely lesser importance in humans than currently described.

  14. Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure

    Directory of Open Access Journals (Sweden)

    Gabriele G. Schiattarella

    2018-05-01

    Full Text Available Left ventricular hypertrophy (LVH is a major contributor to the development of heart failure (HF. Alterations in cyclic adenosine monophosphate (cAMP-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA anchor proteins (AKAPs, tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 (Akap1-/-, Akap1 heterozygous (Akap1+/-, and their wild-type (wt littermates underwent transverse aortic constriction (TAC or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1-/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 (Siah2 knockout mice (Siah2-/-. Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.

  15. Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure.

    Science.gov (United States)

    Schiattarella, Gabriele G; Boccella, Nicola; Paolillo, Roberta; Cattaneo, Fabio; Trimarco, Valentina; Franzone, Anna; D'Apice, Stefania; Giugliano, Giuseppe; Rinaldi, Laura; Borzacchiello, Domenica; Gentile, Alessandra; Lombardi, Assunta; Feliciello, Antonio; Esposito, Giovanni; Perrino, Cinzia

    2018-01-01

    Left ventricular hypertrophy (LVH) is a major contributor to the development of heart failure (HF). Alterations in cyclic adenosine monophosphate (cAMP)-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA) anchor proteins (AKAPs), tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs) promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 ( Akap1 -/- ), Akap1 heterozygous ( Akap1 +/- ), and their wild-type ( wt ) littermates underwent transverse aortic constriction (TAC) or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1 -/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 ( Siah2 ) knockout mice ( Siah2 -/- ). Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.

  16. Subcellular Location of PKA Controls Striatal Plasticity: Stochastic Simulations in Spiny Dendrites

    Science.gov (United States)

    Oliveira, Rodrigo F.; Kim, MyungSook; Blackwell, Kim T.

    2012-01-01

    Dopamine release in the striatum has been implicated in various forms of reward dependent learning. Dopamine leads to production of cAMP and activation of protein kinase A (PKA), which are involved in striatal synaptic plasticity and learning. PKA and its protein targets are not diffusely located throughout the neuron, but are confined to various subcellular compartments by anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Experiments have shown that blocking the interaction of PKA with AKAPs disrupts its subcellular location and prevents LTP in the hippocampus and striatum; however, these experiments have not revealed whether the critical function of anchoring is to locate PKA near the cAMP that activates it or near its targets, such as AMPA receptors located in the post-synaptic density. We have developed a large scale stochastic reaction-diffusion model of signaling pathways in a medium spiny projection neuron dendrite with spines, based on published biochemical measurements, to investigate this question and to evaluate whether dopamine signaling exhibits spatial specificity post-synaptically. The model was stimulated with dopamine pulses mimicking those recorded in response to reward. Simulations show that PKA colocalization with adenylate cyclase, either in the spine head or in the dendrite, leads to greater phosphorylation of DARPP-32 Thr34 and AMPA receptor GluA1 Ser845 than when PKA is anchored away from adenylate cyclase. Simulations further demonstrate that though cAMP exhibits a strong spatial gradient, diffusible DARPP-32 facilitates the spread of PKA activity, suggesting that additional inactivation mechanisms are required to produce spatial specificity of PKA activity. PMID:22346744

  17. PKA and PDE4D3 anchoring to AKAP9 provides distinct regulation of cAMP signals at the centrosome

    Science.gov (United States)

    Terrin, Anna; Monterisi, Stefania; Stangherlin, Alessandra; Zoccarato, Anna; Koschinski, Andreas; Surdo, Nicoletta C.; Mongillo, Marco; Sawa, Akira; Jordanides, Niove E.; Mountford, Joanne C.

    2012-01-01

    Previous work has shown that the protein kinase A (PKA)–regulated phosphodiesterase (PDE) 4D3 binds to A kinase–anchoring proteins (AKAPs). One such protein, AKAP9, localizes to the centrosome. In this paper, we investigate whether a PKA–PDE4D3–AKAP9 complex can generate spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. Real-time imaging of fluorescence resonance energy transfer reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a consequence of increased autophosphorylation of its regulatory subunit at S114. Finally, disruption of the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell cycle progression as a result of accumulation of cells in prophase. Our findings describe a novel mechanism of PKA activity regulation that relies on binding to AKAPs and consequent modulation of the enzyme activation threshold rather than on overall changes in cAMP levels. Further, we provide for the first time direct evidence that control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals. PMID:22908311

  18. Differential PKA activation and AKAP association determines cell fate in cancer cells

    Science.gov (United States)

    2013-01-01

    Background The dependence of malignant properties of colorectal cancer (CRC) cells on IGF1R signaling has been demonstrated and several IGF1R antagonists are currently in clinical trials. Recently, we identified a novel pathway in which cAMP independent PKA activation by TGFβ signaling resulted in the destabilization of survivin/XIAP complex leading to increased cell death. In this study, we evaluated the effect of IGF1R inhibition or activation on PKA activation and its downstream cell survival signaling mechanisms. Methods Small molecule IGF1R kinase inhibitor OSI-906 was used to test the effect of IGF1R inhibition on PKA activation, AKAP association and its downstream cell survival signaling. In a complementary approach, ligand mediated activation of IGF1R was performed and AKAP/PKA signaling was analyzed for their downstream survival effects. Results We demonstrate that the inhibition of IGF1R in the IGF1R-dependent CRC subset generates cell death through a novel mechanism involving TGFβ stimulated cAMP independent PKA activity that leads to disruption of cell survival by survivin/XIAP mediated inhibition of caspase activity. Importantly, ligand mediated activation of the IGF1R in CRC cells results in the generation of cAMP dependent PKA activity that functions in cell survival by inhibiting caspase activity. Therefore, this subset of CRC demonstrates 2 opposing pathways organized by 2 different AKAPs in the cytoplasm that both utilize activation of PKA in a manner that leads to different outcomes with respect to life and death. The cAMP independent PKA activation pathway is dependent upon mitochondrial AKAP149 for its apoptotic functions. In contrast, Praja2 (Pja2), an AKAP-like E3 ligase protein was identified as a key element in controlling cAMP dependent PKA activity and pro-survival signaling. Genetic manipulation of AKAP149 and Praja2 using siRNA KD had opposing effects on PKA activity and survivin/XIAP regulation. Conclusions We had identified 2

  19. The C-terminal region of A-kinase anchor protein 350 (AKAP350A) enables formation of microtubule-nucleation centers and interacts with pericentriolar proteins.

    Science.gov (United States)

    Kolobova, Elena; Roland, Joseph T; Lapierre, Lynne A; Williams, Janice A; Mason, Twila A; Goldenring, James R

    2017-12-15

    Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.

  20. AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA.

    Science.gov (United States)

    Götz, Frank; Roske, Yvette; Schulz, Maike Svenja; Autenrieth, Karolin; Bertinetti, Daniela; Faelber, Katja; Zühlke, Kerstin; Kreuchwig, Annika; Kennedy, Eileen J; Krause, Gerd; Daumke, Oliver; Herberg, Friedrich W; Heinemann, Udo; Klussmann, Enno

    2016-07-01

    A-kinase anchoring proteins (AKAPs) interact with the dimerization/docking (D/D) domains of regulatory subunits of the ubiquitous protein kinase A (PKA). AKAPs tether PKA to defined cellular compartments establishing distinct pools to increase the specificity of PKA signalling. Here, we elucidated the structure of an extended PKA-binding domain of AKAP18β bound to the D/D domain of the regulatory RIIα subunits of PKA. We identified three hydrophilic anchor points in AKAP18β outside the core PKA-binding domain, which mediate contacts with the D/D domain. Such anchor points are conserved within AKAPs that bind regulatory RII subunits of PKA. We derived a different set of anchor points in AKAPs binding regulatory RI subunits of PKA. In vitro and cell-based experiments confirm the relevance of these sites for the interaction of RII subunits with AKAP18 and of RI subunits with the RI-specific smAKAP. Thus we report a novel mechanism governing interactions of AKAPs with PKA. The sequence specificity of each AKAP around the anchor points and the requirement of these points for the tight binding of PKA allow the development of selective inhibitors to unequivocally ascribe cellular functions to the AKAP18-PKA and other AKAP-PKA interactions. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  1. Nesprin-1α-Dependent Microtubule Nucleation from the Nuclear Envelope via Akap450 Is Necessary for Nuclear Positioning in Muscle Cells.

    Science.gov (United States)

    Gimpel, Petra; Lee, Yin Loon; Sobota, Radoslaw M; Calvi, Alessandra; Koullourou, Victoria; Patel, Rutti; Mamchaoui, Kamel; Nédélec, François; Shackleton, Sue; Schmoranzer, Jan; Burke, Brian; Cadot, Bruno; Gomes, Edgar R

    2017-10-09

    The nucleus is the main microtubule-organizing center (MTOC) in muscle cells due to the accumulation of centrosomal proteins and microtubule (MT) nucleation activity at the nuclear envelope (NE) [1-4]. The relocalization of centrosomal proteins, including Pericentrin, Pcm1, and γ-tubulin, depends on Nesprin-1, an outer nuclear membrane (ONM) protein that connects the nucleus to the cytoskeleton via its N-terminal region [5-7]. Nesprins are also involved in the recruitment of kinesin to the NE and play a role in nuclear positioning in skeletal muscle cells [8-12]. However, a function for MT nucleation from the NE in nuclear positioning has not been established. Using the proximity-dependent biotin identification (BioID) method [13, 14], we found several centrosomal proteins, including Akap450, Pcm1, and Pericentrin, whose association with Nesprin-1α is increased in differentiated myotubes. We show that Nesprin-1α recruits Akap450 to the NE independently of kinesin and that Akap450, but not other centrosomal proteins, is required for MT nucleation from the NE. Furthermore, we demonstrate that this mechanism is disrupted in congenital muscular dystrophy patient myotubes carrying a nonsense mutation within the SYNE1 gene (23560 G>T) encoding Nesprin-1 [15, 16]. Finally, using computer simulation and cell culture systems, we provide evidence for a role of MT nucleation from the NE on nuclear spreading in myotubes. Our data thus reveal a novel function for Nesprin-1α/Nesprin-1 in nuclear positioning through recruitment of Akap450-mediated MT nucleation activity to the NE. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Investigating PKA-RII specificity using analogs of the PKA:AKAP peptide inhibitor STAD-2.

    Science.gov (United States)

    Bendzunas, N George; Dörfler, Sabrina; Autenrieth, Karolin; Bertinetti, Daniela; Machal, Erik M F; Kennedy, Eileen J; Herberg, Friedrich W

    2018-03-15

    Generation of the second messenger molecule cAMP mediates a variety of cellular responses which are essential for critical cellular processes. In response to elevated cAMP levels, cAMP dependent protein kinase (PKA) phosphorylates serine and threonine residues on a wide variety of target substrates. In order to enhance the precision and directionality of these signaling events, PKA is localized to discrete locations within the cell by A-kinase anchoring proteins (AKAPs). The interaction between PKA and AKAPs is mediated via an amphipathic α-helix derived from AKAPs which binds to a stable hydrophobic groove formed in the dimerization/docking (D/D) domain of PKA-R in an isoform-specific fashion. Although numerous AKAP disruptors have previously been identified that can inhibit either RI- or RII-selective AKAPs, no AKAP disruptors have been identified that have isoform specificity for RIα versus RIβ or RIIα versus RIIβ. As a strategy to identify isoform-specific AKAP inhibitors, a library of chemically stapled protein-protein interaction (PPI) disruptors was developed based on the RII-selective AKAP disruptor, STAD-2. An alanine was substituted at each position in the sequence, and from this library it was possible to delineate the importance of longer aliphatic residues in the formation of a region which complements the hydrophobic cleft formed by the D/D domain. Interestingly, lysine residues that were added to both terminal ends of the peptide sequence to facilitate water solubility appear to contribute to isoform specificity for RIIα over RIIβ while having only weak interaction with RI. This work supports current hypotheses on the mechanisms of AKAP binding and highlights the significance of particular residue positions that aid in distinguishing between the RII isoforms and may provide insight into future design of isoform-selective AKAP disruptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. AKAP200 promotes Notch stability by protecting it from Cbl/lysosome-mediated degradation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Neeta Bala Tannan

    2018-01-01

    Full Text Available AKAP200 is a Drosophila melanogaster member of the "A Kinase Associated Protein" family of scaffolding proteins, known for their role in the spatial and temporal regulation of Protein Kinase A (PKA in multiple signaling contexts. Here, we demonstrate an unexpected function of AKAP200 in promoting Notch protein stability. In Drosophila, AKAP200 loss-of-function (LOF mutants show phenotypes that resemble Notch LOF defects, including eye patterning and sensory organ specification defects. Through genetic interactions, we demonstrate that AKAP200 interacts positively with Notch in both the eye and the thorax. We further show that AKAP200 is part of a physical complex with Notch. Biochemical studies reveal that AKAP200 stabilizes endogenous Notch protein, and that it limits ubiquitination of Notch. Specifically, our genetic and biochemical evidence indicates that AKAP200 protects Notch from the E3-ubiquitin ligase Cbl, which targets Notch to the lysosomal pathway. Indeed, we demonstrate that the effect of AKAP200 on Notch levels depends on the lysosome. Interestingly, this function of AKAP200 is fully independent of its role in PKA signaling and independent of its ability to bind PKA. Taken together, our data indicate that AKAP200 is a novel tissue specific posttranslational regulator of Notch, maintaining high Notch protein levels and thus promoting Notch signaling.

  4. AKAP200 promotes Notch stability by protecting it from Cbl/lysosome-mediated degradation in Drosophila melanogaster.

    Science.gov (United States)

    Bala Tannan, Neeta; Collu, Giovanna; Humphries, Ashley C; Serysheva, Ekatherina; Weber, Ursula; Mlodzik, Marek

    2018-01-01

    AKAP200 is a Drosophila melanogaster member of the "A Kinase Associated Protein" family of scaffolding proteins, known for their role in the spatial and temporal regulation of Protein Kinase A (PKA) in multiple signaling contexts. Here, we demonstrate an unexpected function of AKAP200 in promoting Notch protein stability. In Drosophila, AKAP200 loss-of-function (LOF) mutants show phenotypes that resemble Notch LOF defects, including eye patterning and sensory organ specification defects. Through genetic interactions, we demonstrate that AKAP200 interacts positively with Notch in both the eye and the thorax. We further show that AKAP200 is part of a physical complex with Notch. Biochemical studies reveal that AKAP200 stabilizes endogenous Notch protein, and that it limits ubiquitination of Notch. Specifically, our genetic and biochemical evidence indicates that AKAP200 protects Notch from the E3-ubiquitin ligase Cbl, which targets Notch to the lysosomal pathway. Indeed, we demonstrate that the effect of AKAP200 on Notch levels depends on the lysosome. Interestingly, this function of AKAP200 is fully independent of its role in PKA signaling and independent of its ability to bind PKA. Taken together, our data indicate that AKAP200 is a novel tissue specific posttranslational regulator of Notch, maintaining high Notch protein levels and thus promoting Notch signaling.

  5. Disruption of an Aligned Dendritic Network by Bubbles During Re-Melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2012-01-01

    The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.

  6. AKAP12 mediates barrier functions of fibrotic scars during CNS repair.

    Directory of Open Access Journals (Sweden)

    Jong-Ho Cha

    Full Text Available The repair process after CNS injury shows a well-organized cascade of three distinct stages: inflammation, new tissue formation, and remodeling. In the new tissue formation stage, various cells migrate and form the fibrotic scar surrounding the lesion site. The fibrotic scar is known as an obstacle for axonal regeneration in the remodeling stage. However, the role of the fibrotic scar in the new tissue formation stage remains largely unknown. We found that the number of A-kinase anchoring protein 12 (AKAP12-positive cells in the fibrotic scar was increased over time, and the cells formed a structure which traps various immune cells. Furthermore, the AKAP12-positive cells strongly express junction proteins which enable the structure to function as a physical barrier. In in vivo validation, AKAP12 knock-out (KO mice showed leakage from a lesion, resulting from an impaired structure with the loss of the junction complex. Consistently, focal brain injury in the AKAP12 KO mice led to extended inflammation and more severe tissue damage compared to the wild type (WT mice. Accordingly, our results suggest that AKAP12-positive cells in the fibrotic scar may restrict excessive inflammation, demonstrating certain mechanisms that could underlie the beneficial actions of the fibrotic scar in the new tissue formation stage during the CNS repair process.

  7. Curcumin Protects Neurons from Glutamate-Induced Excitotoxicity by Membrane Anchored AKAP79-PKA Interaction Network

    Directory of Open Access Journals (Sweden)

    Kui Chen

    2015-01-01

    Full Text Available Now stimulation of AMPA receptor as well as its downstream pathways is considered as potential central mediators in antidepressant mechanisms. As a signal integrator which binds to AMPA receptor, A-kinase anchoring protein 79-(AKAP79- PKA complex is regarded as a potential drug target to exert neuroprotective effects. A well-tolerated and multitarget drug curcumin has been confirmed to exert antidepressant-like effects. To explore whether AKAP79-PKA complex is involved in curcumin-mediated antiexcitotoxicity, we detected calcium signaling, subcellular location of AKAP79-PKA complex, phosphorylation of glutamate receptor, and ERK and AKT cascades. In this study, we found that curcumin protected neurons from glutamate insult by reducing Ca2+ influx and blocking the translocation of AKAP79 from cytomembrane to cytoplasm. In parallel, curcumin enhanced the phosphorylation of AMPA receptor and its downstream pathways in PKA-dependent manner. If we pretreated cells with PKA anchoring inhibitor Ht31 to disassociate PKA from AKAP79, no neuroprotective effects were observed. In conclusion, our results show that AKAP79-anchored PKA facilitated the signal relay from AMPA receptor to AKT and ERK cascades, which may be crucial for curcumin-mediated antiexcitotoxicity.

  8. Akap350 Recruits Eb1 to The Spindle Poles, Ensuring Proper Spindle Orientation and Lumen Formation in 3d Epithelial Cell Cultures.

    Science.gov (United States)

    Almada, Evangelina; Tonucci, Facundo M; Hidalgo, Florencia; Ferretti, Anabela; Ibarra, Solange; Pariani, Alejandro; Vena, Rodrigo; Favre, Cristián; Girardini, Javier; Kierbel, Arlinet; Larocca, M Cecilia

    2017-11-02

    The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.

  9. Regulated Assembly of Vacuolar ATPase Is Increased during Cluster Disruption-induced Maturation of Dendritic Cells through a Phosphatidylinositol 3-Kinase/mTOR-dependent Pathway*

    Science.gov (United States)

    Liberman, Rachel; Bond, Sarah; Shainheit, Mara G.; Stadecker, Miguel J.; Forgac, Michael

    2014-01-01

    The vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps composed of a peripheral V1 domain and a membrane-embedded V0 domain. Regulated assembly of V1 and V0 represents an important regulatory mechanism for controlling V-ATPase activity in vivo. Previous work has shown that V-ATPase assembly increases during maturation of bone marrow-derived dendritic cells induced by activation of Toll-like receptors. This increased assembly is essential for antigen processing, which is dependent upon an acidic lysosomal pH. Cluster disruption of dendritic cells induces a semi-mature phenotype associated with immune tolerance. Thus, semi-mature dendritic cells are able to process and present self-peptides to suppress autoimmune responses. We have investigated V-ATPase assembly in bone marrow-derived, murine dendritic cells and observed an increase in assembly following cluster disruption. This increased assembly is not dependent upon new protein synthesis and is associated with an increase in concanamycin A-sensitive proton transport in FITC-loaded lysosomes. Inhibition of phosphatidylinositol 3-kinase with wortmannin or mTORC1 with rapamycin effectively inhibits the increased assembly observed upon cluster disruption. These results suggest that the phosphatidylinositol 3-kinase/mTOR pathway is involved in controlling V-ATPase assembly during dendritic cell maturation. PMID:24273170

  10. AKAP localizes in a specific subset of TRPV1 and CaV1.2 positive nociceptive rat DRG neurons

    Science.gov (United States)

    Brandao, Katherine E.; Dell’Acqua, Mark L.; Levinson, Simon R.

    2016-01-01

    Modulation of phosphorylation states of ion channels is a critical step in the development of hyperalgesia during inflammation. Modulatory enhancement of channel activity may increase neuronal excitability and affect downstream targets such as gene transcription. The specificity required for such regulation of ion channels quickly occurs via targeting of protein kinases and phosphatases by the scaffolding A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 has been implicated in inflammatory pain by targeting PKA and PKC to the TRPV1 channel in peripheral sensory neurons, thus lowering threshold for activation by multiple inflammatory reagents. However, the expression pattern of AKAP79/150 in peripheral sensory neurons is unknown. In this study we use immunofluorescence microscopy to identify in DRG sections the peripheral neuron subtypes that express the rodent isoform AKAP150, as well as the subcellular distribution of AKAP150 and its potential target ion channels. We found that AKAP150 is predominantly expressed in a subset of small DRG sensory neurons where it is localized at the plasma membrane of the soma, axon initial segment and small fibers. The majority of these neurons is peripherin positive and produces c-fibers, though a small portion produces Aδ-fibers. Furthermore, we demonstrate that AKAP79/150 colocalizes with TRPV1 and CaV1.2 in the soma and axon initial segment. Thus AKAP150 is expressed in small, nociceptive DRG neurons where it is targeted to membrane regions and where it may play a role in the modulation of ion channel phosphorylation states required for hyperalgesia. PMID:21674494

  11. Chronic Stress Reduces Nectin-1 mRNA Levels and Disrupts Dendritic Spine Plasticity in the Adult Mouse Perirhinal Cortex

    Directory of Open Access Journals (Sweden)

    Qian Gong

    2018-03-01

    Full Text Available In adulthood, chronic exposure to stressful experiences disrupts synaptic plasticity and cognitive function. Previous studies have shown that perirhinal cortex-dependent object recognition memory is impaired by chronic stress. However, the stress effects on molecular expression and structural plasticity in the perirhinal cortex remain unclear. In this study, we applied the chronic social defeat stress (CSDS paradigm and measured the mRNA levels of nectin-1, nectin-3 and neurexin-1, three synaptic cell adhesion molecules (CAMs implicated in the adverse stress effects, in the perirhinal cortex of wild-type (WT and conditional forebrain corticotropin-releasing hormone receptor 1 conditional knockout (CRHR1-CKO mice. Chronic stress reduced perirhinal nectin-1 mRNA levels in WT but not CRHR1-CKO mice. In conditional forebrain corticotropin-releasing hormone conditional overexpression (CRH-COE mice, perirhinal nectin-1 mRNA levels were also reduced, indicating that chronic stress modulates nectin-1 expression through the CRH-CRHR1 system. Moreover, chronic stress altered dendritic spine morphology in the main apical dendrites and reduced spine density in the oblique apical dendrites of perirhinal layer V pyramidal neurons. Our data suggest that chronic stress disrupts cell adhesion and dendritic spine plasticity in perirhinal neurons, which may contribute to stress-induced impairments of perirhinal cortex-dependent memory.

  12. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to β-adrenergic-induced cardiac hypertrophy.

    Directory of Open Access Journals (Sweden)

    Matthew J Spindler

    Full Text Available A-kinase anchoring proteins (AKAPs are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA and D (PKD and an active Rho-guanine nucleotide exchange factor (Rho-GEF domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown.To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction.These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy.

  13. Human muscle-specific A-kinase anchoring protein (mAKAP) polymorphisms modulate the susceptibility to cardiovascular diseases by altering cAMP/ PKA signaling.

    Science.gov (United States)

    Suryavanshi, Santosh V; Jadhav, Shweta M; Anderson, Kody L; Katsonis, Panagiotis; Lichtarge, Olivier; McConnell, Bradley K

    2018-03-30

    One of the crucial cardiac signaling pathways is cAMP-mediated PKA signal transduction which is regulated by a family of scaffolding proteins, A-kinase anchoring proteins (AKAPs). Muscle-specific AKAP (mAKAP) partly regulates cardiac cAMP/PKA signaling by binding to PKA and phosphodiesterase4D3 (PDE4D3) among other proteins and plays a central role in modulating cardiac remodeling. Moreover, genetics plays an incomparable role in modifying the risk of cardiovascular diseases (CVDs). Especially, single nucleotide polymorphisms (SNPs) in various proteins have been shown to predispose individuals to CVDs. Hence, we hypothesized that human mAKAP polymorphisms found in humans with CVDs alter cAMP/PKA pathway influencing the susceptibility of individuals to CVDs. Our computational analyses revealed two mAKAP SNPs found in cardiac disease related patients with highest predicted deleterious effects, Ser(S) 1653 Arg(R) and Glu(E) 2124 Gly(G). Co-immunoprecipitation data in HEK293T cells showed that S1653R SNP, present in the PDE4D3 binding domain of mAKAP, changed the binding of PDE4D3 to mAKAP and E2124G SNP, flanking the 3'-PKA binding domain, changed the binding of PKA before and after stimulation with isoproterenol. These SNPs significantly altered intracellular cAMP levels, global PKA activity and cytosolic PDE activity when compared with the wild-type (WT) before and after isoproterenol stimulation. PKA-mediated phosphorylation of pathological markers was found to be up-regulated after cell stimulation in both mutants. In conclusion, human mAKAP polymorphisms may influence the propensity of developing CVDs by affecting cAMP/PKA signaling supporting the clinical significance of PKA-mAKAP-PDE4D3 interactions.

  14. The AKAP Cypher/Zasp contributes to β-adrenergic/PKA stimulation of cardiac CaV1.2 calcium channels.

    Science.gov (United States)

    Yu, Haijie; Yuan, Can; Westenbroek, Ruth E; Catterall, William A

    2018-06-04

    Stimulation of the L-type Ca 2+ current conducted by Ca V 1.2 channels in cardiac myocytes by the β-adrenergic/protein kinase A (PKA) signaling pathway requires anchoring of PKA to the Ca V 1.2 channel by an A-kinase anchoring protein (AKAP). However, the AKAP(s) responsible for regulation in vivo remain unknown. Here, we test the role of the AKAP Cypher/Zasp in β-adrenergic regulation of Ca V 1.2 channels using physiological studies of cardiac ventricular myocytes from young-adult mice lacking the long form of Cypher/Zasp (LCyphKO mice). These myocytes have increased protein levels of Ca V 1.2, PKA, and calcineurin. In contrast, the cell surface density of Ca V 1.2 channels and the basal Ca 2+ current conducted by Ca V 1.2 channels are significantly reduced without substantial changes to kinetics or voltage dependence. β-adrenergic regulation of these L-type Ca 2+ currents is also significantly reduced in myocytes from LCyphKO mice, whether calculated as a stimulation ratio or as net-stimulated Ca 2+ current. At 100 nM isoproterenol, the net β-adrenergic-Ca 2+ current conducted by Ca V 1.2 channels was reduced to 39 ± 12% of wild type. However, concentration-response curves for β-adrenergic stimulation of myocytes from LCyphKO mice have concentrations that give a half-maximal response similar to those for wild-type mice. These results identify Cypher/Zasp as an important AKAP for β-adrenergic regulation of cardiac Ca V 1.2 channels. Other AKAPs may work cooperatively with Cypher/Zasp to give the full magnitude of β-adrenergic regulation of Ca V 1.2 channels observed in vivo. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  15. Synthesis and growth mechanism of Zn0.5Cd0.5S nanohexagon dendrite

    Science.gov (United States)

    Yu, Wen; Fang, Pengfei; Wang, Shaojie

    2014-12-01

    Hierarchical Zn0.5Cd0.5S nanohexagon dendrites were synthesized by a one-step hydrothermal method. The Zn0.5Cd0.5S nanohexagon dendrites were made up of nanohexagons with a side length of about 90 nm. The nanohexagons were regularly arranged forming as embranchments which were parallel to each other along certain hexagonal directions. Furthermore, these embranchments made up primary trunks shaping as dendrites. The growth mechanism of Zn0.5Cd0.5S nanohexagon dendrites was proposed in which molecular soft template and lowest energy principle played key roles. By adjusting the composition of the reactants, a series of ZnxCd1-xS solid solutions could be obtained. The morphology of the synthesized ZnxCd1-xS depended much on the x value. The UV-vis spectra absorb edges of the ZnxCd1-xS samples continuously shifted indicating the changes of the band gap.

  16. AKAP3 synthesis is mediated by RNA binding proteins and PKA signaling during mouse spermiogenesis.

    Science.gov (United States)

    Xu, Kaibiao; Yang, Lele; Zhao, Danyun; Wu, Yaoyao; Qi, Huayu

    2014-06-01

    Mammalian spermatogenesis is regulated by coordinated gene expression in a spatiotemporal manner. The spatiotemporal regulation of major sperm proteins plays important roles during normal development of the male gamete, of which the underlying molecular mechanisms are poorly understood. A-kinase anchoring protein 3 (AKAP3) is one of the major components of the fibrous sheath of the sperm tail that is formed during spermiogenesis. In the present study, we analyzed the expression of sperm-specific Akap3 and the potential regulatory factors of its protein synthesis during mouse spermiogenesis. Results showed that the transcription of Akap3 precedes its protein synthesis by about 2 wk. Nascent AKAP3 was found to form protein complex with PKA and RNA binding proteins (RBPs), including PIWIL1, PABPC1, and NONO, as revealed by coimmunoprecipitation and protein mass spectrometry. RNA electrophoretic gel mobility shift assay showed that these RBPs bind sperm-specific mRNAs, of which proteins are synthesized during the elongating stage of spermiogenesis. Biochemical and cell biological experiments demonstrated that PIWIL1, PABPC1, and NONO interact with each other and colocalize in spermatids' RNA granule, the chromatoid body. In addition, NONO was found in extracytoplasmic granules in round spermatids, whereas PIWIL1 and PABPC1 were diffusely localized in cytoplasm of elongating spermatids, indicating their participation at different steps of mRNA metabolism during spermatogenesis. Interestingly, type I PKA subunits colocalize with PIWIL1 and PABPC1 in the cytoplasm of elongating spermatids and cosediment with the RBPs in polysomal fractions on sucrose gradients. Further biochemical analyses revealed that activation of PKA positively regulates AKAP3 protein synthesis without changing its mRNA level in elongating spermatids. Taken together, these results indicate that PKA signaling directly participates in the regulation of protein translation in postmeiotic male germ cells

  17. Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development.

    Science.gov (United States)

    Zhu, Yong-Chuan; Li, Dan; Wang, Lu; Lu, Bin; Zheng, Jing; Zhao, Shi-Lin; Zeng, Rong; Xiong, Zhi-Qi

    2013-05-28

    The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) is mutated in severe neurodevelopmental disorders, including some forms of atypical Rett syndrome, but the function and regulation of CDKL5 protein in neurons remain to be elucidated. Here, we show that CDKL5 binds to the scaffolding protein postsynaptic density (PSD)-95, and that this binding promotes the targeting of CDKL5 to excitatory synapses. Interestingly, this binding is not constitutive, but governed by palmitate cycling on PSD-95. Furthermore, pathogenic mutations that truncate the C-terminal tail of CDKL5 diminish its binding to PSD-95 and synaptic accumulation. Importantly, down-regulation of CDKL5 by RNA interference (RNAi) or interference with the CDKL5-PSD-95 interaction inhibits dendritic spine formation and growth. These results demonstrate a critical role of the palmitoylation-dependent CDKL5-PSD-95 interaction in localizing CDKL5 to synapses for normal spine development and suggest that disruption of this interaction by pathogenic mutations may be implicated in the pathogenesis of CDKL5-related disorders.

  18. Prompt meningeal reconstruction mediated by oxygen-sensitive AKAP12 scaffolding protein after central nervous system injury

    Science.gov (United States)

    Cha, Jong-Ho; Wee, Hee-Jun; Seo, Ji Hae; Ahn, Bum Ju; Park, Ji-Hyeon; Yang, Jun-Mo; Lee, Sae-Won; Lee, Ok-Hee; Lee, Hyo-Jong; Gelman, Irwin H.; Arai, Ken; Lo, Eng H.; Kim, Kyu-Won

    2015-01-01

    The meninges forms a critical epithelial barrier, which protects the central nervous system (CNS), and therefore its prompt reconstruction after CNS injury is essential for reducing neuronal damage. Meningeal cells migrate into the lesion site after undergoing an epithelial-mesenchymal transition (EMT) and repair the impaired meninges. However, the molecular mechanisms of meningeal EMT remain largely undefined. Here we show that TGF-β1 and retinoic acid (RA) released from the meninges, together with oxygen tension, could constitute the mechanism for rapid meningeal reconstruction. AKAP12 is an effector of this mechanism, and its expression in meningeal cells is regulated by integrated upstream signals composed of TGF-β1, RA and oxygen tension. Functionally, AKAP12 modulates meningeal EMT by regulating the TGF-β1-non-Smad-SNAI1 signalling pathway. Collectively, TGF-β1, RA and oxygen tension can modulate the dynamic change in AKAP12 expression, causing prompt meningeal reconstruction after CNS injury by regulating the transition between the epithelial and mesenchymal states of meningeal cells. PMID:25229625

  19. Palmitoylation-dependent CDKL5–PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development

    Science.gov (United States)

    Zhu, Yong-Chuan; Li, Dan; Wang, Lu; Lu, Bin; Zheng, Jing; Zhao, Shi-Lin; Zeng, Rong; Xiong, Zhi-Qi

    2013-01-01

    The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) is mutated in severe neurodevelopmental disorders, including some forms of atypical Rett syndrome, but the function and regulation of CDKL5 protein in neurons remain to be elucidated. Here, we show that CDKL5 binds to the scaffolding protein postsynaptic density (PSD)-95, and that this binding promotes the targeting of CDKL5 to excitatory synapses. Interestingly, this binding is not constitutive, but governed by palmitate cycling on PSD-95. Furthermore, pathogenic mutations that truncate the C-terminal tail of CDKL5 diminish its binding to PSD-95 and synaptic accumulation. Importantly, down-regulation of CDKL5 by RNA interference (RNAi) or interference with the CDKL5–PSD-95 interaction inhibits dendritic spine formation and growth. These results demonstrate a critical role of the palmitoylation-dependent CDKL5–PSD-95 interaction in localizing CDKL5 to synapses for normal spine development and suggest that disruption of this interaction by pathogenic mutations may be implicated in the pathogenesis of CDKL5-related disorders. PMID:23671101

  20. Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1.

    Directory of Open Access Journals (Sweden)

    Ronald A Merrill

    2011-04-01

    Full Text Available Mitochondrial shape is determined by fission and fusion reactions catalyzed by large GTPases of the dynamin family, mutation of which can cause neurological dysfunction. While fission-inducing protein phosphatases have been identified, the identity of opposing kinase signaling complexes has remained elusive. We report here that in both neurons and non-neuronal cells, cAMP elevation and expression of an outer-mitochondrial membrane (OMM targeted form of the protein kinase A (PKA catalytic subunit reshapes mitochondria into an interconnected network. Conversely, OMM-targeting of the PKA inhibitor PKI promotes mitochondrial fragmentation upstream of neuronal death. RNAi and overexpression approaches identify mitochondria-localized A kinase anchoring protein 1 (AKAP1 as a neuroprotective and mitochondria-stabilizing factor in vitro and in vivo. According to epistasis studies with phosphorylation site-mutant dynamin-related protein 1 (Drp1, inhibition of the mitochondrial fission enzyme through a conserved PKA site is the principal mechanism by which cAMP and PKA/AKAP1 promote both mitochondrial elongation and neuronal survival. Phenocopied by a mutation that slows GTP hydrolysis, Drp1 phosphorylation inhibits the disassembly step of its catalytic cycle, accumulating large, slowly recycling Drp1 oligomers at the OMM. Unopposed fusion then promotes formation of a mitochondrial reticulum, which protects neurons from diverse insults.

  1. CRISPR Epigenome Editing of AKAP150 in DRG Neurons Abolishes Degenerative IVD-Induced Neuronal Activation.

    Science.gov (United States)

    Stover, Joshua D; Farhang, Niloofar; Berrett, Kristofer C; Gertz, Jason; Lawrence, Brandon; Bowles, Robby D

    2017-09-06

    Back pain is a major contributor to disability and has significant socioeconomic impacts worldwide. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to back pain, but a better understanding of the interactions between the degenerative IVD and nociceptive neurons innervating the disc and treatment strategies that directly target these interactions is needed to improve our understanding and treatment of back pain. We investigated degenerative IVD-induced changes to dorsal root ganglion (DRG) neuron activity and utilized CRISPR epigenome editing as a neuromodulation strategy. By exposing DRG neurons to degenerative IVD-conditioned media under both normal and pathological IVD pH levels, we demonstrate that degenerative IVDs trigger interleukin (IL)-6-induced increases in neuron activity to thermal stimuli, which is directly mediated by AKAP and enhanced by acidic pH. Utilizing this novel information on AKAP-mediated increases in nociceptive neuron activity, we developed lentiviral CRISPR epigenome editing vectors that modulate endogenous expression of AKAP150 by targeted promoter histone methylation. When delivered to DRG neurons, these epigenome-modifying vectors abolished degenerative IVD-induced DRG-elevated neuron activity while preserving non-pathologic neuron activity. This work elucidates the potential for CRISPR epigenome editing as a targeted gene-based pain neuromodulation strategy. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  2. JNK1 Controls Dendritic Field Size in L2/3 and L5 of the Motor Cortex, Constrains Soma Size and Influences Fine Motor Coordination

    Directory of Open Access Journals (Sweden)

    Emilia eKomulainen

    2014-09-01

    Full Text Available Genetic anomalies on the JNK pathway confer susceptibility to autism spectrum disorders, schizophrenia and intellectual disability. The mechanism whereby a gain or loss of function in JNK signaling predisposes to these prevalent dendrite disorders, with associated motor dysfunction, remains unclear. Here we find that JNK1 regulates the dendritic field of L2/3 and L5 pyramidal neurons of the mouse motor cortex (M1, the main excitatory pathway controlling voluntary movement. In Jnk1-/- mice, basal dendrite branching of L5 pyramidal neurons is increased in M1, as is cell soma size, whereas in L2/3, dendritic arborization is decreased. We show that JNK1 phosphorylates rat HMW-MAP2 on T1619, T1622 and T1625 (Uniprot P15146 corresponding to mouse T1617, T1620, T1623, to create a binding motif, that is critical for MAP2 interaction with and stabilization of microtubules, and dendrite growth control. Targeted expression in M1 of GFP-HMW-MAP2 that is pseudo-phosphorylated on T1619, T1622 and T1625 increases dendrite complexity in L2/3 indicating that JNK1 phosphorylation of HMW-MAP2 regulates the dendritic field. Consistent with the morphological changes observed in L2/3 and L5, Jnk1-/- mice exhibit deficits in limb placement and motor coordination, while stride length is reduced in older animals. In summary, JNK1 phosphorylates HMW-MAP2 to increase its stabilization of microtubules while at the same time controlling dendritic fields in the main excitatory pathway of M1. Moreover, JNK1 contributes to normal functioning of fine motor coordination. We report for the first time, a quantitative sholl analysis of dendrite architecture, and of motor behavior in Jnk1-/- mice. Our results illustrate the molecular and behavioral consequences of interrupted JNK1 signaling and provide new ground for mechanistic understanding of those prevalent neuropyschiatric disorders where genetic disruption of the JNK pathway is central.

  3. Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Soledad Ferreras

    2017-11-01

    Full Text Available Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant’s effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine–induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine’s effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.

  4. [Saccharomyces boulardii modulates dendritic cell properties and intestinal microbiota disruption after antibiotic treatment].

    Science.gov (United States)

    Collignon, A; Sandré, C; Barc, M-C

    2010-09-01

    Saccharomyces boulardii is a non-pathogenic yeast with biotherapeutic properties that has been used successfully to prevent and to treat various infectious and antibiotic-associated diarrheas. The intestinal microbiota is responsible for colonization resistance and immune response to pathogens but can be disrupted by antibiotics and lose its barrier effect. Dendritic cells (DCs) are professional antigen-presenting cells of the immune system with the ability to initiate a primary immune response or immune tolerance. In a human microbiota-associated mouse model, we evaluated the influence of S. boulardii on the composition of the microbiota and on the properties of dendritic cells in normal homeostatic conditions and after antibiotic-induced stress. The DCs were derived from splenic precursors. Membrane antigen expression and phagocytosis of FITC-latex beads by DCs were evaluated by flow cytometry. The molecular analysis of the microbiota was performed with fluorescence in situ hybridization (FISH) combined with flow cytometry or confocal microscopy using group specific 16S rRNA targeted probes. This evaluation was conducted during and after a 7-day oral treatment with amoxicillin-clavulanic acid alone and in combination with the administration of the yeast. The antibiotic treatment increased the phagocytic activity of DCs. Their antigen presenting function (MHC class II antigen and CD 86 costimulatory molecule membrane expression) was up-regulated. This reflects a functional activation of DCs. In the presence of S. boulardii, the modification of membrane antigen expression was down regulated. To correlate these modifications to the microbiota disruption, we analyzed in parallel the composition of the intestinal microbiota. As previously shown, the amoxicillin-clavulanic acid treatment, both alone and with S. boulardii, did not quantitatively alter the total microbiota. In contrast, after one day of the antibiotic treatment the Clostridium coccoides group decreased

  5. Adrenergic Modulation Regulates the Dendritic Excitability of Layer 5 Pyramidal Neurons In Vivo

    Directory of Open Access Journals (Sweden)

    Christina Labarrera

    2018-04-01

    Full Text Available Summary: The excitability of the apical tuft of layer 5 pyramidal neurons is thought to play a crucial role in behavioral performance and synaptic plasticity. We show that the excitability of the apical tuft is sensitive to adrenergic neuromodulation. Using two-photon dendritic Ca2+ imaging and in vivo whole-cell and extracellular recordings in awake mice, we show that application of the α2A-adrenoceptor agonist guanfacine increases the probability of dendritic Ca2+ events in the tuft and lowers the threshold for dendritic Ca2+ spikes. We further show that these effects are likely to be mediated by the dendritic current Ih. Modulation of Ih in a realistic compartmental model controlled both the generation and magnitude of dendritic calcium spikes in the apical tuft. These findings suggest that adrenergic neuromodulation may affect cognitive processes such as sensory integration, attention, and working memory by regulating the sensitivity of layer 5 pyramidal neurons to top-down inputs. : Labarrera et al. show that noradrenergic neuromodulation can be an effective way to regulate the interaction between different input streams of information processed by an individual neuron. These findings may have important implications for our understanding of how adrenergic neuromodulation affects sensory integration, attention, and working memory. Keywords: cortical layer 5 pyramidal neuron, dendrites, norepinephrine, HCN, Ih, Ca2+ spike, apical tuft, guanfacine, ADHD, somatosensory cortex

  6. Phosphorylation of CRMP2 by Cdk5 Regulates Dendritic Spine Development of Cortical Neuron in the Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Xiaohua Jin

    2016-01-01

    Full Text Available Proper density and morphology of dendritic spines are important for higher brain functions such as learning and memory. However, our knowledge about molecular mechanisms that regulate the development and maintenance of dendritic spines is limited. We recently reported that cyclin-dependent kinase 5 (Cdk5 is required for the development and maintenance of dendritic spines of cortical neurons in the mouse brain. Previous in vitro studies have suggested the involvement of Cdk5 substrates in the formation of dendritic spines; however, their role in spine development has not been tested in vivo. Here, we demonstrate that Cdk5 phosphorylates collapsin response mediator protein 2 (CRMP2 in the dendritic spines of cultured hippocampal neurons and in vivo in the mouse brain. When we eliminated CRMP2 phosphorylation in CRMP2KI/KI mice, the densities of dendritic spines significantly decreased in hippocampal CA1 pyramidal neurons in the mouse brain. These results indicate that phosphorylation of CRMP2 by Cdk5 is important for dendritic spine development in cortical neurons in the mouse hippocampus.

  7. Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Shan Meltzer

    2017-10-01

    Full Text Available Disruptions in lipid homeostasis have been observed in many neurodevelopmental disorders that are associated with dendrite morphogenesis defects. However, the molecular mechanisms of how lipid homeostasis affects dendrite morphogenesis are unclear. We find that easily shocked (eas, which encodes a kinase with a critical role in phospholipid phosphatidylethanolamine (PE synthesis, and two other enzymes in this synthesis pathway are required cell autonomously in sensory neurons for dendrite growth and stability. Furthermore, we show that the level of Sterol Regulatory Element-Binding Protein (SREBP activity is important for dendrite development. SREBP activity increases in eas mutants, and decreasing the level of SREBP and its transcriptional targets in eas mutants largely suppresses the dendrite growth defects. Furthermore, reducing Ca2+ influx in neurons of eas mutants ameliorates the dendrite morphogenesis defects. Our study uncovers a role for EAS kinase and reveals the in vivo function of phospholipid homeostasis in dendrite morphogenesis.

  8. Polymorphism 1936A > G in the AKAP10 gene (encoding A-kinase-anchoring protein 10) is associated with higher cholesterol cord blood concentration in Polish full-term newsborns.

    Science.gov (United States)

    Łoniewska, Beata; Kaczmarczyk, Mariusz; Clark, Jeremy Simon; Kordek, Agnieszka; Ciechanowicz, Andrzej

    2013-03-01

    A-Kinase anchoring proteins (AKAPs) coordinate the specificity of protein kinase A signaling by localizing the kinase to subcellular sites. The 1936G (V646) AKAP10 allele has been associated with adults with low cholinergic/vagus nerve sensitivity and with newborns with increased blood pressure. Decreased activity of the parasympathetic system is associated with risk of metabolic syndrome. The aim of this study was to answer the question of whether 1936A > G AKAP10 polymorphism is associated with metabolic changes in full-term newborns that are predictive factors for the metabolic phenotype in adulthood. The study included 114 consecutive healthy Polish newborns born after the end of the 37 th week of gestation to healthy women with uncomplicated pregnancies. At birth, cord blood of neonates was obtained for isolation of genomic DNA and cholesterol as well as triglyceride concentration. The cholesterol level in homozygotes GG was significantly higher than that in 1936A variant carriers (AG + AA, recessive mode of inheritance). Our results demonstrate a possible association between the 1936G AKAP10 variant and the total cholesterol level in the cord blood of the Polish newborn population.

  9. Tracking human multiple myeloma xenografts in NOD-Rag-1/IL-2 receptor gamma chain-null mice with the novel biomarker AKAP-4

    International Nuclear Information System (INIS)

    Mirandola, Leonardo; Yu, Yuefei; Jenkins, Marjorie R; Chiaramonte, Raffaella; Cobos, Everardo; John, Constance M; Chiriva-Internati, Maurizio

    2011-01-01

    Multiple myeloma (MM) is a fatal malignancy ranking second in prevalence among hematological tumors. Continuous efforts are being made to develop innovative and more effective treatments. The preclinical evaluation of new therapies relies on the use of murine models of the disease. Here we describe a new MM animal model in NOD-Rag1null IL2rgnull (NRG) mice that supports the engraftment of cell lines and primary MM cells that can be tracked with the tumor antigen, AKAP-4. Human MM cell lines, U266 and H929, and primary MM cells were successfully engrafted in NRG mice after intravenous administration, and were found in the bone marrow, blood and spleen of tumor-challenged animals. The AKAP-4 expression pattern was similar to that of known MM markers, such as paraproteins, CD38 and CD45. We developed for the first time a murine model allowing for the growth of both MM cell lines and primary cells in multifocal sites, thus mimicking the disease seen in patients. Additionally, we validated the use of AKAP-4 antigen to track tumor growth in vivo and to specifically identify MM cells in mouse tissues. We expect that our model will significantly improve the pre-clinical evaluation of new anti-myeloma therapies

  10. Loss of CDKL5 in Glutamatergic Neurons Disrupts Hippocampal Microcircuitry and Leads to Memory Impairment in Mice.

    Science.gov (United States)

    Tang, Sheng; Wang, I-Ting Judy; Yue, Cuiyong; Takano, Hajime; Terzic, Barbara; Pance, Katarina; Lee, Jun Y; Cui, Yue; Coulter, Douglas A; Zhou, Zhaolan

    2017-08-02

    Cyclin-dependent kinase-like 5 (CDKL5) deficiency is a neurodevelopmental disorder characterized by epileptic seizures, severe intellectual disability, and autistic features. Mice lacking CDKL5 display multiple behavioral abnormalities reminiscent of the disorder, but the cellular origins of these phenotypes remain unclear. Here, we find that ablating CDKL5 expression specifically from forebrain glutamatergic neurons impairs hippocampal-dependent memory in male conditional knock-out mice. Hippocampal pyramidal neurons lacking CDKL5 show decreased dendritic complexity but a trend toward increased spine density. This morphological change is accompanied by an increase in the frequency of spontaneous miniature EPSCs and interestingly, miniature IPSCs. Using voltage-sensitive dye imaging to interrogate the evoked response of the CA1 microcircuit, we find that CA1 pyramidal neurons lacking CDKL5 show hyperexcitability in their dendritic domain that is constrained by elevated inhibition in a spatially and temporally distinct manner. These results suggest a novel role for CDKL5 in the regulation of synaptic function and uncover an intriguing microcircuit mechanism underlying impaired learning and memory. SIGNIFICANCE STATEMENT Cyclin-dependent kinase-like 5 (CDKL5) deficiency is a severe neurodevelopmental disorder caused by mutations in the CDKL5 gene. Although Cdkl5 constitutive knock-out mice have recapitulated key aspects of human symptomatology, the cellular origins of CDKL5 deficiency-related phenotypes are unknown. Here, using conditional knock-out mice, we show that hippocampal-dependent learning and memory deficits in CDKL5 deficiency have origins in glutamatergic neurons of the forebrain and that loss of CDKL5 results in the enhancement of synaptic transmission and disruptions in neural circuit dynamics in a spatially and temporally specific manner. Our findings demonstrate that CDKL5 is an important regulator of synaptic function in glutamatergic neurons and

  11. Activity-dependent trafficking of lysosomes in dendrites and dendritic spines.

    Science.gov (United States)

    Goo, Marisa S; Sancho, Laura; Slepak, Natalia; Boassa, Daniela; Deerinck, Thomas J; Ellisman, Mark H; Bloodgood, Brenda L; Patrick, Gentry N

    2017-08-07

    In neurons, lysosomes, which degrade membrane and cytoplasmic components, are thought to primarily reside in somatic and axonal compartments, but there is little understanding of their distribution and function in dendrites. Here, we used conventional and two-photon imaging and electron microscopy to show that lysosomes traffic bidirectionally in dendrites and are present in dendritic spines. We find that lysosome inhibition alters their mobility and also decreases dendritic spine number. Furthermore, perturbing microtubule and actin cytoskeletal dynamics has an inverse relationship on the distribution and motility of lysosomes in dendrites. We also find trafficking of lysosomes is correlated with synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. Strikingly, lysosomes traffic to dendritic spines in an activity-dependent manner and can be recruited to individual spines in response to local activation. These data indicate the position of lysosomes is regulated by synaptic activity and thus plays an instructive role in the turnover of synaptic membrane proteins. © 2017 Goo et al.

  12. Incorrect dosage of IQSEC2, a known intellectual disability and epilepsy gene, disrupts dendritic spine morphogenesis

    Science.gov (United States)

    Hinze, S J; Jackson, M R; Lie, S; Jolly, L; Field, M; Barry, S C; Harvey, R J; Shoubridge, C

    2017-01-01

    There is considerable genetic and phenotypic heterogeneity associated with intellectual disability (ID), specific learning disabilities, attention-deficit hyperactivity disorder, autism and epilepsy. The intelligence quotient (IQ) motif and SEC7 domain containing protein 2 gene (IQSEC2) is located on the X-chromosome and harbors mutations that contribute to non-syndromic ID with and without early-onset seizure phenotypes in both sexes. Although IQ and Sec7 domain mutations lead to partial loss of IQSEC2 enzymatic activity, the in vivo pathogenesis resulting from these mutations is not known. Here we reveal that IQSEC2 has a key role in dendritic spine morphology. Partial loss-of-function mutations were modeled using a lentiviral short hairpin RNA (shRNA) approach, which achieved a 57% knockdown of Iqsec2 expression in primary hippocampal cell cultures from mice. Investigating gross morphological parameters after 8 days of in vitro culture (8DIV) identified a 32% reduction in primary axon length, in contrast to a 27% and 31% increase in the number and complexity of dendrites protruding from the cell body, respectively. This increase in dendritic complexity and spread was carried through dendritic spine development, with a 34% increase in the number of protrusions per dendritic segment compared with controls at 15DIV. Although the number of dendritic spines had normalized by 21DIV, a reduction was noted in the number of immature spines. In contrast, when modeling increased dosage, overexpression of wild-type IQSEC2 led to neurons with shorter axons that were more compact and displayed simpler dendritic branching. Disturbances to dendritic morphology due to knockdown of Iqsec2 were recapitulated in neurons from Iqsec2 knockout mice generated in our laboratory using CRISPR/Cas9 technology. These observations provide evidence of dosage sensitivity for IQSEC2, which normally escapes X-inactivation in females, and links these disturbances in expression to alterations in

  13. Histone Deacetylase Rpd3 Regulates Olfactory Projection Neuron Dendrite Targeting via the Transcription Factor Prospero

    Science.gov (United States)

    Tea, Joy S.; Chihara, Takahiro; Luo, Liqun

    2010-01-01

    Compared to the mechanisms of axon guidance, relatively little is known about the transcriptional control of dendrite guidance. The Drosophila olfactory system with its stereotyped organization provides an excellent model to study the transcriptional control of dendrite wiring specificity. Each projection neuron (PN) targets its dendrites to a specific glomerulus in the antennal lobe and its axon stereotypically to higher brain centers. Using a forward genetic screen, we identified a mutation in Rpd3 that disrupts PN targeting specificity. Rpd3 encodes a class I histone deacetylase (HDAC) homologous to mammalian HDAC1 and HDAC2. Rpd3−/− PN dendrites that normally target to a dorsolateral glomerulus mistarget to medial glomeruli in the antennal lobe, and axons exhibit a severe overbranching phenotype. These phenotypes can be rescued by postmitotic expression of Rpd3 but not HDAC3, the only other class I HDAC in Drosophila. Furthermore, disruption of the atypical homeodomain transcription factor Prospero (Pros) yields similar phenotypes, which can be rescued by Pros expression in postmitotic neurons. Strikingly, overexpression of Pros can suppress Rpd3−/− phenotypes. Our study suggests a specific function for the general chromatin remodeling factor Rpd3 in regulating dendrite targeting in neurons, largely through the postmitotic action of the Pros transcription factor. PMID:20660276

  14. FRET biosensors reveal AKAP-mediated shaping of subcellular PKA activity and a novel mode of Ca(2+)/PKA crosstalk.

    Science.gov (United States)

    Schott, Micah B; Gonowolo, Faith; Maliske, Benjamin; Grove, Bryon

    2016-04-01

    Scaffold proteins play a critical role in cellular homeostasis by anchoring signaling enzymes in close proximity to downstream effectors. In addition to anchoring static enzyme complexes, some scaffold proteins also form dynamic signalosomes that can traffic to different subcellular compartments upon stimulation. Gravin (AKAP12), a multivalent scaffold, anchors PKA and other enzymes to the plasma membrane under basal conditions, but upon [Ca(2+)]i elevation, is rapidly redistributed to the cytosol. Because gravin redistribution also impacts PKA localization, we postulate that gravin acts as a calcium "switch" that modulates PKA-substrate interactions at the plasma membrane, thus facilitating a novel crosstalk mechanism between Ca(2+) and PKA-dependent pathways. To assess this, we measured the impact of gravin-V5/His expression on compartmentalized PKA activity using the FRET biosensor AKAR3 in cultured cells. Upon treatment with forskolin or isoproterenol, cells expressing gravin-V5/His showed elevated levels of plasma membrane PKA activity, but cytosolic PKA activity levels were reduced compared with control cells lacking gravin. This effect required both gravin interaction with PKA and localization at the plasma membrane. Pretreatment with calcium-elevating agents thapsigargin or ATP caused gravin redistribution away from the plasma membrane and prevented gravin from elevating PKA activity levels at the membrane. Importantly, this mode of Ca(2+)/PKA crosstalk was not observed in cells expressing a gravin mutant that resisted calcium-mediated redistribution from the cell periphery. These results reveal that gravin impacts subcellular PKA activity levels through the spatial targeting of PKA, and that calcium elevation modulates downstream β-adrenergic/PKA signaling through gravin redistribution, thus supporting the hypothesis that gravin mediates crosstalk between Ca(2+) and PKA-dependent signaling pathways. Based on these results, AKAP localization dynamics may

  15. FRET biosensors reveal AKAP-mediated shaping of subcellular PKA activity and a novel mode of Ca2+/PKA crosstalk

    Science.gov (United States)

    Schott, Micah; Gonowolo, Faith; Maliske, Ben; Grove, Bryon

    2016-01-01

    Scaffold proteins play a critical role in cellular homeostasis by anchoring signaling enzymes in close proximity to downstream effectors. In addition to anchoring static enzyme complexes, some scaffold proteins also form dynamic signalosomes that can traffic to different subcellular compartments upon stimulation. Gravin (AKAP12), a multivalent scaffold, anchors PKA and other enzymes to the plasma membrane under basal conditions, but upon [Ca2+]i elevation, is rapidly redistributed to the cytosol. Because gravin redistribution also impacts PKA localization, we postulate that gravin acts as a calcium “switch” that modulates PKA-substrate interactions at the plasma membrane, thus facilitating a novel crosstalk mechanism between Ca2+ and PKA-dependent pathways. To assess this, we measured the impact of gravin-V5/His expression on compartmentalized PKA activity using the FRET biosensor AKAR3 in cultured cells. Upon treatment with forskolin or isoproterenol, cells expressing gravin-V5/His showed elevated levels of plasma membrane PKA activity, but cytosolic PKA activity levels were reduced compared with control cells lacking gravin. This effect required both gravin interaction with PKA and localization at the plasma membrane. Pretreatment with calcium-elevating agents thapsigargin or ATP caused gravin redistribution away from the plasma membrane and prevented gravin from elevating PKA activity levels at the membrane. Importantly, this mode of Ca2+/PKA crosstalk was not observed in cells expressing a gravin mutant that resists calcium-mediated redistribution from the cell periphery. These results reveal that gravin impacts subcellular PKA activity levels through the spatial targeting of PKA, and that calcium elevation modulates downstream β-adrenergic/PKA signaling through gravin redistribution, thus supporting the hypothesis that gravin mediates crosstalk between Ca2+ and PKA-dependent signaling pathways. Based on these results, AKAP localization dynamics may

  16. 5GCHAMPION – disruptive 5G technologies for roll‐out in 2018

    OpenAIRE

    Calvanese Strinati, E. (Emilio); Mueck, M. (Markus); Clemente, A. (Antonio); Kim, J. (Junhyeong); Noh, G. (Gosan); Chung, H. (Heesang); Kim, I. (Ilgyu); Choi, T. (Taesang); Kim, Y. (Yeongjin); Chung, H. K. (Hyun Kyu); Destino, G. (Giuseppe); Pärssinen, A. (Aarno); Chuberre, N. (Nicolas); Vautherin, B. (Benoit); Deleu, T. (Thibault)

    2018-01-01

    Abstract The 5GCHAMPION Europe–Korea collaborative project provides the first fully‐integrated and operational 5G prototype in 2018, in conjunction with the 2018 PyeongChang Winter Olympic Games. The corresponding technological advances comprise both an evolution and optimization of existing technological solutions and disruptive new features, which substantially outpace previous generations of technology. In this article, we focus on a subset of three disruptive technological solutions de...

  17. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation*

    Science.gov (United States)

    Ramírez, Valerie T.; Ramos-Fernández, Eva; Henríquez, Juan Pablo; Lorenzo, Alfredo; Inestrosa, Nibaldo C.

    2016-01-01

    Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons. PMID:27402827

  18. Layer 5 Pyramidal Neurons’ Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    Directory of Open Access Journals (Sweden)

    Diana Urrego

    2015-01-01

    Full Text Available This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans.

  19. Layer 5 Pyramidal Neurons' Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    Science.gov (United States)

    Urrego, Diana; Troncoso, Julieta; Múnera, Alejandro

    2015-01-01

    This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans. PMID:26064916

  20. 5GCHAMPION – Disruptive 5G Technologies for Roll‐Out in 2018

    Directory of Open Access Journals (Sweden)

    Emilio Calvanese Strinati

    2018-02-01

    Full Text Available The 5GCHAMPION Europe–Korea collaborative project provides the first fully‐integrated and operational 5G prototype in 2018, in conjunction with the 2018 PyeongChang Winter Olympic Games. The corresponding technological advances comprise both an evolution and optimization of existing technological solutions and disruptive new features, which substantially outpace previous generations of technology. In this article, we focus on a subset of three disruptive technological solutions developed and experimented on by 5GCHAMPION during the 2018 PyeongChang Olympic Games: high speed communications, direct satellite‐user equipment communications, and post‐sale evolution of wireless equipment through software reconfiguration. Evaluating effectiveness and performing trials for these key 5G features permit us to learn about the actual maturity of 5G technology prototyping and the potential of new 5G services for vertical markets and end user enhanced experience two years before the launch of large‐scale 5G services.

  1. Sleeping dendrites: fiber-optic measurements of dendritic calcium activity in freely moving and sleeping animals

    Directory of Open Access Journals (Sweden)

    Julie Seibt

    2014-03-01

    Full Text Available Dendrites are the post-synaptic sites of most excitatory and inhibitory synapses in the brain, making them the main location of cortical information processing and synaptic plasticity. Although current hypotheses suggest a central role for sleep in proper cognitive function and brain plasticity, virtually nothing is known about changes in dendritic activity across the sleep-wake cycle and how waking experience modifies this activity. To start addressing these questions, we developed a method that allows long-term recordings of EEGs/EMG combined with in vivo cortical calcium (Ca2+ activity in freely moving and sleeping rats. We measured Ca2+ activity from populations of dendrites of layer (L 5 pyramidal neurons (n = 13 rats that we compared with Ca2+ activity from populations of neurons in L2/3 (n = 11 rats. L5 and L2/3 neurons were labelled using bolus injection of OGB1-AM or GCaMP6 (1. Ca2+ signals were detected using a fiber-optic system (cannula diameter = 400µm, transmitting the changes in fluorescence to a photodiode. Ca2+ fluctuations could then be correlated with ongoing changes in brain oscillatory activity during 5 major brain states: active wake [AW], quiet wake [QW], NREM, REM and NREM-REM transition (or intermediate state, [IS]. Our Ca2+ recordings show large transients in L5 dendrites and L2/3 neurons that oscillate predominantly at frequencies In summary, we show that this technique is successful in monitoring fluctuations in ongoing dendritic Ca2+ activity during natural brain states and allows, in principle, to combine behavioral measurement with imaging from various brain regions (e.g. deep structures in freely behaving animals. Using this method, we show that Ca2+ transients from populations of L2/3 neurons and L5 dendrites are deferentially regulated across the sleep/wake cycle, with dendritic activity being the highest during the IS sleep. Our correlation analysis suggests that specific sleep EEG activity during NREM and IS

  2. Soluble ICAM-5, a product of activity dependent proteolysis, increases mEPSC frequency and dendritic expression of GluA1.

    Directory of Open Access Journals (Sweden)

    Irina Lonskaya

    Full Text Available Matrix metalloproteinases (MMPs are zinc dependent endopeptidases that can be released from neurons in an activity dependent manner to play a role in varied forms of learning and memory. MMP inhibitors impair hippocampal long term potentiation (LTP, spatial memory, and behavioral correlates of drug addiction. Since MMPs are thought to influence LTP through a β1 integrin dependent mechanism, it has been suggested that these enzymes cleave specific substrates to generate integrin binding ligands. In previously published work, we have shown that neuronal activity stimulates rapid MMP dependent shedding of intercellular adhesion molecule-5 (ICAM-5, a synaptic adhesion molecule expressed on dendrites of the telencephalon. We have also shown that the ICAM-5 ectodomain can interact with β1 integrins to stimulate integrin dependent phosphorylation of cofilin, an event that occurs with dendritic spine maturation and LTP. In the current study, we investigate the potential for the ICAM-5 ectodomain to stimulate changes in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR dependent glutamatergic transmission. Single cell recordings show that the ICAM-5 ectodomain stimulates an increase in the frequency, but not the amplitude, of AMPA mini excitatory post synaptic currents (mEPSCs. With biotinylation and precipitation assays, we also show that the ICAM-5 ectodomain stimulates an increase in membrane levels of GluA1, but not GluA2, AMPAR subunits. In addition, we observe an ICAM-5 associated increase in GluA1 phosphorylation at serine 845. Concomitantly, ICAM-5 affects an increase in GluA1 surface staining along dendrites without affecting an increase in dendritic spine number. Together these data are consistent with the possibility that soluble ICAM-5 increases glutamatergic transmission and that post-synaptic changes, including increased phosphorylation and dendritic insertion of GluA1, could contribute. We suggest that future studies

  3. Five disruptive technology directions for 5G

    DEFF Research Database (Denmark)

    Boccardi, Federico; W. Heath Jr., Robert; Lozano, Angel

    2014-01-01

    New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive ...

  4. RAB-10 Regulates Dendritic Branching by Balancing Dendritic Transport

    Science.gov (United States)

    Taylor, Caitlin A.; Yan, Jing; Howell, Audrey S.; Dong, Xintong; Shen, Kang

    2015-01-01

    The construction of a large dendritic arbor requires robust growth and the precise delivery of membrane and protein cargoes to specific subcellular regions of the developing dendrite. How the microtubule-based vesicular trafficking and sorting systems are regulated to distribute these dendritic development factors throughout the dendrite is not well understood. Here we identify the small GTPase RAB-10 and the exocyst complex as critical regulators of dendrite morphogenesis and patterning in the C. elegans sensory neuron PVD. In rab-10 mutants, PVD dendritic branches are reduced in the posterior region of the cell but are excessive in the distal anterior region of the cell. We also demonstrate that the dendritic branch distribution within PVD depends on the balance between the molecular motors kinesin-1/UNC-116 and dynein, and we propose that RAB-10 regulates dendrite morphology by balancing the activity of these motors to appropriately distribute branching factors, including the transmembrane receptor DMA-1. PMID:26633194

  5. Homogeneous distribution of large-conductance calcium-dependent potassium channels on soma and apical dendrite of rat neocortical layer 5 pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2005-02-01

    Voltage-gated conductances on dendrites of layer 5 pyramidal neurons participate in synaptic integration and output generation. We investigated the properties and the distribution of large-conductance calcium-activated potassium channels (BK channels) in this cell type using excised patches in acute slice preparations of rat somatosensory cortex. BK channels were characterized by their large conductance and sensitivity to the specific blockers paxilline and iberiotoxin. BK channels showed a pronounced calcium-dependence with a maximal opening probability of 0.69 at 10 microm and 0.42 at 3 microm free calcium. Their opening probability and transition time constants between open and closed states are voltage-dependent. At depolarized potentials, BK channel gating is described by two open and one closed states. Depolarization increases the opening probability due to a prolongation of the open time constant and a shortening of the closed time constant. Calcium-dependence and biophysical properties of somatic and dendritic BK channels were identical. The presence of BK channels on the apical dendrite of layer 5 pyramidal neurons was shown by immunofluorescence. Patch-clamp recordings revealed a homogeneous density of BK channels on the soma and along the apical dendrite up to 850 microm with a mean density of 1.9 channels per microm(2). BK channels are expressed either isolated or in clusters containing up to four channels. This study shows the presence of BK channels on dendrites. Their activation might modulate the shape of sodium and calcium action potentials, their propagation along the dendrite, and thereby the electrotonic distance between the somatic and dendritic action potential initiation zones.

  6. DIXDC1 Phosphorylation and Control of Dendritic Morphology Are Impaired by Rare Genetic Variants

    Directory of Open Access Journals (Sweden)

    Vickie Kwan

    2016-11-01

    Full Text Available The development of neural connectivity is essential for brain function, and disruption of this process is associated with autism spectrum disorders (ASDs. DIX domain containing 1 (DIXDC1 has previously been implicated in neurodevelopmental disorders, but its role in postnatal brain function remains unknown. Using a knockout mouse model, we determined that DIXDC1 is a regulator of excitatory neuron dendrite development and synapse function in the cortex. We discovered that MARK1, previously linked to ASDs, phosphorylates DIXDC1 to regulate dendrite and spine development through modulation of the cytoskeletal network in an isoform-specific manner. Finally, rare missense variants in DIXDC1 were identified in ASD patient cohorts via genetic sequencing. Interestingly, the variants inhibit DIXDC1 isoform 1 phosphorylation, causing impairment to dendrite and spine growth. These data reveal that DIXDC1 is a regulator of cortical dendrite and synaptic development and provide mechanistic insight into morphological defects associated with neurodevelopmental disorders.

  7. Dendritic Spine Instability in a Mouse Model of CDKL5 Disorder Is Rescued by Insulin-like Growth Factor 1.

    Science.gov (United States)

    Della Sala, Grazia; Putignano, Elena; Chelini, Gabriele; Melani, Riccardo; Calcagno, Eleonora; Michele Ratto, Gian; Amendola, Elena; Gross, Cornelius T; Giustetto, Maurizio; Pizzorusso, Tommaso

    2016-08-15

    CDKL5 (cyclin-dependent kinase-like 5) is mutated in many severe neurodevelopmental disorders, including atypical Rett syndrome. CDKL5 was shown to interact with synaptic proteins, but an in vivo analysis of the role of CDKL5 in dendritic spine dynamics and synaptic molecular organization is still lacking. In vivo two-photon microscopy of the somatosensory cortex of Cdkl5(-/y) mice was applied to monitor structural dynamics of dendritic spines. Synaptic function and plasticity were measured using electrophysiological recordings of excitatory postsynaptic currents and long-term potentiation in brain slices and assessing the expression of synaptic postsynaptic density protein 95 (PSD-95). Finally, we studied the impact of insulin-like growth factor 1 (IGF-1) treatment on CDKL5 null mice to restore the synaptic deficits. Adult mutant mice showed a significant reduction in spine density and PSD-95-positive synaptic puncta, a reduction of persistent spines, and impaired long-term potentiation. In juvenile mutants, short-term spine elimination, but not formation, was dramatically increased. Exogenous administration of IGF-1 rescued defective rpS6 phosphorylation, spine density, and PSD-95 expression. Endogenous cortical IGF-1 levels were unaffected by CDKL5 deletion. These data demonstrate that dendritic spine stabilization is strongly regulated by CDKL5. Moreover, our data suggest that IGF-1 treatment could be a promising candidate for clinical trials in CDKL5 patients. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Dendritic cell vaccines.

    Science.gov (United States)

    Mosca, Paul J; Lyerly, H Kim; Clay, Timothy M; Morse, Michael A; Lyerly, H Kim

    2007-05-01

    Dendritic cells are antigen-presenting cells that have been shown to stimulate tumor antigen-specific T cell responses in preclinical studies. Consequently, there has been intense interest in developing dendritic cell based cancer vaccines. A variety of methods for generating dendritic cells, loading them with tumor antigens, and administering them to patients have been described. In recent years, a number of early phase clinical trials have been performed and have demonstrated the safety and feasibility of dendritic cell immunotherapies. A number of these trials have generated valuable preliminary data regarding the clinical and immunologic response to DC-based immunotherapy. The emphasis of dendritic cell immunotherapy research is increasingly shifting toward the development of strategies to increase the potency of dendritic cell vaccine preparations.

  9. Liberated PKA Catalytic Subunits Associate with the Membrane via Myristoylation to Preferentially Phosphorylate Membrane Substrates.

    Science.gov (United States)

    Tillo, Shane E; Xiong, Wei-Hong; Takahashi, Maho; Miao, Sheng; Andrade, Adriana L; Fortin, Dale A; Yang, Guang; Qin, Maozhen; Smoody, Barbara F; Stork, Philip J S; Zhong, Haining

    2017-04-18

    Protein kinase A (PKA) has diverse functions in neurons. At rest, the subcellular localization of PKA is controlled by A-kinase anchoring proteins (AKAPs). However, the dynamics of PKA upon activation remain poorly understood. Here, we report that elevation of cyclic AMP (cAMP) in neuronal dendrites causes a significant percentage of the PKA catalytic subunit (PKA-C) molecules to be released from the regulatory subunit (PKA-R). Liberated PKA-C becomes associated with the membrane via N-terminal myristoylation. This membrane association does not require the interaction between PKA-R and AKAPs. It slows the mobility of PKA-C and enriches kinase activity on the membrane. Membrane-residing PKA substrates are preferentially phosphorylated compared to cytosolic substrates. Finally, the myristoylation of PKA-C is critical for normal synaptic function and plasticity. We propose that activation-dependent association of PKA-C renders the membrane a unique PKA-signaling compartment. Constrained mobility of PKA-C may synergize with AKAP anchoring to determine specific PKA function in neurons. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    LENUS (Irish Health Repository)

    Michielsen, Adriana J

    2011-01-01

    Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  11. Dendritic thickness: a morphometric parameter to classify mouse retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    L.D. Loopuijt

    2007-10-01

    Full Text Available To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37 on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively. Three cells (4.5% were bistratified, having thick dendrites, and the others (95.5% were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40% and 2 groups with inner (50-100% stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.

  12. Dendritic cell neoplasms: an overview.

    Science.gov (United States)

    Kairouz, Sebastien; Hashash, Jana; Kabbara, Wadih; McHayleh, Wassim; Tabbara, Imad A

    2007-10-01

    Dendritic cell neoplasms are rare tumors that are being recognized with increasing frequency. They were previously classified as lymphomas, sarcomas, or histiocytic neoplasms. The World Health Organization (WHO) classifies dendritic cell neoplasms into five groups: Langerhans' cell histiocytosis, Langerhans' cell sarcoma, Interdigitating dendritic cell sarcoma/tumor, Follicular dendritic cell sarcoma/tumor, and Dendritic cell sarcoma, not specified otherwise (Jaffe, World Health Organization classification of tumors 2001; 273-289). Recently, Pileri et al. provided a comprehensive immunohistochemical classification of histiocytic and dendritic cell tumors (Pileri et al., Histopathology 2002;59:161-167). In this article, a concise overview regarding the pathological, clinical, and therapeutic aspects of follicular dendritic, interdigitating dendritic, and Langerhans' cell tumors is presented.

  13. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  14. Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2009-03-01

    Large-conductance calcium-dependent potassium channels (BK channels) are homogeneously distributed along the somatodendritic axis of layer 5 pyramidal neurons of the rat somatosensory cortex. The relevance of this conductance for dendritic calcium electrogenesis was studied in acute brain slices using somatodendritic patch clamp recordings and calcium imaging. BK channel activation reduces the occurrence of dendritic calcium spikes. This is reflected in an increased critical frequency of somatic spikes necessary to activate the distal initiation zone. Whilst BK channels repolarise the somatic spike, they dampen it only in the distal dendrite. Their activation reduces dendritic calcium influx via glutamate receptors. Furthermore, they prevent dendritic calcium electrogenesis and subsequent somatic burst discharges. However, the time window for coincident somatic action potential and dendritic input to elicit dendritic calcium events is not influenced by BK channels. Thus, BK channel activation in layer 5 pyramidal neurons affects cellular excitability primarily by establishing a high threshold at the distal action potential initiation zone.

  15. Effects of a new bifunctional psoralen, 4,4',5'-trimethylazapsoralen and ultraviolet-A radiation on murine dendritic epidermal cells.

    Science.gov (United States)

    Aubin, F; Alcalay, J; Dall'Acqua, F; Kripke, M L

    1990-06-01

    Although some psoralens are therapeutically active in the treatment of cutaneous hyperproliferative diseases when combined with UVA (320-400 nm) radiation, the toxic effects of these compounds have led physicians to seek new photochemotherapeutic agents. One such agent is 4,4',5'-trimethylazapsoralen (TMAP), a new bifunctional psoralen compound. We investigated the effects of repetitive treatments with TMAP plus UVA radiation on the number of dendritic immune cells in murine epidermis and on the induction of phototoxicity. Mice treated 3 times per week for 4 weeks with 129 microgram TMAP plus 10 kJ/m2 UVA radiation exhibited no gross or microscopic evidence of phototoxicity. During this treatment, the numbers of ATPase+, Ia+, and Thy-l+ dendritic epidermal cells were greatly reduced, and by the end of the treatment period, few dendritic immune cells could be detected. We conclude that morphological alterations of cutaneous immune cells can occur in the absence of overt phototoxicity, and that TMAP plus low-dose UVA radiation decreases the numbers of detectable Langerhans cells and Thy-1+ cells in murine skin.

  16. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates

    Science.gov (United States)

    Wang, Xu; Zeng, Wei; Hong, Liang; Xu, Wenwen; Yang, Haokai; Wang, Fan; Duan, Huigao; Tang, Ming; Jiang, Hanqing

    2018-03-01

    Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendrite growth mechanisms, and in particular, Li-plating-induced internal stress in Li metal and its effect on Li growth morphology are not well addressed. Here, we reveal the enabling role of plating residual stress in dendrite formation through depositing Li on soft substrates and a stress-driven dendrite growth model. We show that dendrite growth is mitigated on such soft substrates through surface-wrinkling-induced stress relaxation in the deposited Li film. We demonstrate that this dendrite mitigation mechanism can be utilized synergistically with other existing approaches in the form of three-dimensional soft scaffolds for Li plating, which achieves higher coulombic efficiency and better capacity retention than that for conventional copper substrates.

  17. Dendritic excitability modulates dendritic information processing in a purkinje cell model.

    Science.gov (United States)

    Coop, Allan D; Cornelis, Hugo; Santamaria, Fidel

    2010-01-01

    Using an electrophysiological compartmental model of a Purkinje cell we quantified the contribution of individual active dendritic currents to processing of synaptic activity from granule cells. We used mutual information as a measure to quantify the information from the total excitatory input current (I(Glu)) encoded in each dendritic current. In this context, each active current was considered an information channel. Our analyses showed that most of the information was encoded by the calcium (I(CaP)) and calcium activated potassium (I(Kc)) currents. Mutual information between I(Glu) and I(CaP) and I(Kc) was sensitive to different levels of excitatory and inhibitory synaptic activity that, at the same time, resulted in the same firing rate at the soma. Since dendritic excitability could be a mechanism to regulate information processing in neurons we quantified the changes in mutual information between I(Glu) and all Purkinje cell currents as a function of the density of dendritic Ca (g(CaP)) and Kca (g(Kc)) conductances. We extended our analysis to determine the window of temporal integration of I(Glu) by I(CaP) and I(Kc) as a function of channel density and synaptic activity. The window of information integration has a stronger dependence on increasing values of g(Kc) than on g(CaP), but at high levels of synaptic stimulation information integration is reduced to a few milliseconds. Overall, our results show that different dendritic conductances differentially encode synaptic activity and that dendritic excitability and the level of synaptic activity regulate the flow of information in dendrites.

  18. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Shintaro Seto

    Full Text Available Mycobacterium tuberculosis is an intracellular pathogen that can survive within phagocytic cells by inhibiting phagolysosome biogenesis. However, host cells can control the intracellular M. tuberculosis burden by the induction of autophagy. The mechanism of autophagosome formation to M. tuberculosis has been well studied in macrophages, but remains unclear in dendritic cells. We therefore characterized autophagosome formation in response to M. tuberculosis infection in dendritic cells. Autophagy marker protein LC3, autophagy adaptor protein p62/SQSTM1 (p62 and ubiquitin co-localized to M. tuberculosis in dendritic cells. Mycobacterial autophagosomes fused with lysosomes during infection, and major histcompatibility complex class II molecules (MHC II also localized to mycobacterial autophagosomes. The proteins p62 and Atg5 function in the initiation and progression of autophagosome formation to M. tuberculosis, respectively; p62 mediates ubiquitination of M. tuberculosis and Atg5 is involved in the trafficking of degradative vesicles and MHC II to mycobacterial autophagosomes. These results imply that the autophagosome formation to M. tuberculosis in dendritic cells promotes the antigen presentation of mycobacterial peptides to CD4(+ T lymphocytes via MHC II.

  19. Microtubule nucleation and organization in dendrites

    Science.gov (United States)

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  20. Neutrophils, dendritic cells and Toxoplasma.

    Science.gov (United States)

    Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya

    2004-03-09

    Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.

  1. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh

    2006-01-01

    CD163 and CD91 are scavenging receptors with highly increased expression during the differentiation of monocytes into the anti-inflammatory macrophage phenotype. In addition, CD91 is expressed in monocyte-derived dendritic cells (MoDCs), where the receptor is suggested to be important...... for internalization of CD91-targeted antigens to be presented on the dendritic cell surface for T-cell stimulation. Despite their overlap in functionality, the expression of CD91 and CD163 has never been compared and the expression of CD163 in the monocyte-dendritic cell lineage is not yet characterized. CD163...... expression in dendritic cells (DCs) was investigated using multicolor flow cytometry in peripheral blood from 31 healthy donors and 15 HIV-1 patients in addition to umbilical cord blood from 5 newborn infants. Total RNA was isolated from MACS purified DCs and CD163 mRNA was determined with real-time reverse...

  2. The potential contribution of disruptive low-carbon innovations to 1.5 °C climate mitigation

    OpenAIRE

    Wilson, C.; Pettifor, H.; Cassar, E.; Kerr, L.; Wilson, M.

    2018-01-01

    This paper investigates the potential for consumer-facing innovations to contribute emission reductions for limiting warming to 1.5 °C. First, we show that global integrated assessment models which characterise transformation pathways consistent with 1.5 °C mitigation are limited in their ability to analyse the emergence of novelty in energy end-use. Second, we introduce concepts of disruptive innovation which can be usefully applied to the challenge of 1.5 °C mitigation. Disruptive low-carbo...

  3. Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells.

    Science.gov (United States)

    Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D

    2006-09-15

    Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.

  4. An inverse approach for elucidating dendritic function

    Directory of Open Access Journals (Sweden)

    Benjamin Torben-Nielsen

    2010-09-01

    Full Text Available We outline an inverse approach for investigating dendritic function-structure relationships by optimizing dendritic trees for a-priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a `hypothesis generator' in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a `function confirmation' by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions.

  5. Exercise Maintains Dendritic Complexity in an Animal Model of Posttraumatic Stress Disorder.

    Science.gov (United States)

    Hoffman, Jay R; Cohen, Hadas; Ostfeld, Ishay; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2016-12-01

    This study examined the effect of endurance exercise on dendritic arborization in the dentate gyrus subregion in rodents exposed to a predator scent stress (PSS). Sprague-Dawley rats were randomly assigned to one of four treatment groups. In two of the groups, rats were unexposed to PSS but either remained sedentary (SED + UNEXP) or were exercised (EX + UNEXP). In the other two groups, rats were exposed to the PSS but either remained sedentary (SED + PSS) or were exercised (EX + PSS). After 6 wk of either exercise or sedentary lifestyle, rats were exposed to either the PSS or a sham protocol. During exercise, the animals ran on a treadmill at 15 m·min, 5 min·d gradually increasing to 20 min·d, 5 d·wk for 6 wk. Eight days after exposure to either PSS or sham protocol, changes in the cytoarchitecture (dendritic number, dendritic length, and dendrite spine density) of the dentate gyrus subregion of the hippocampus were assessed. No differences (P = 0.493) were noted in dendritic number between the groups. However, dendritic length and dendrite spine density for SED + PSS was significantly smaller (P animals in SED + PSS had significantly fewer (P stress. This provides further evidence for supporting the inclusion of an exercise regimen for reducing the risk of posttraumatic stress disorder.

  6. Phase field modeling of dendritic coarsening during isothermal

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo

    2011-08-01

    Full Text Available Dendritic coarsening in Al-2mol%Si alloy during isothermal solidification at 880K was investigated by phase field modeling. Three coarsening mechanisms operate in the alloy: (a melting of small dendrite arms; (b coalescence of dendrites near the tips leading to the entrapment of liquid droplets; (c smoothing of dendrites. Dendrite melting is found to be dominant in the stage of dendritic growth, whereas coalescence of dendrites and smoothing of dendrites are dominant during isothermal holding. The simulated results provide a better understanding of dendrite coarsening during isothermal solidification.

  7. Orientations of dendritic growth during solidification

    Science.gov (United States)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  8. POMT1-associated walker-warburg syndrome: a disorder of dendritic development of neocortical neurons.

    Science.gov (United States)

    Judas, M; Sedmak, G; Rados, M; Sarnavka, V; Fumić, K; Willer, T; Gross, C; Hehr, U; Strahl, S; Cuk, M; Barić, I

    2009-02-01

    We have analyzed the morphology and dendritic development of neocortical neurons in a 2.5-month-old infant with Walker-Warburg syndrome homozygotic for a novel POMT1 gene mutation, by Golgi methods. We found that pyramidal neurons frequently displayed abnormal (oblique, horizontal, or inverted) orientation. A novel finding of this study is that members of the same population of pyramidal neurons display different stages of development of their dendritic arborizations: some neurons had poorly developed dendrites and thus resembled pyramidal neurons of the late fetal cortex; for some neurons, the level of differentiation corresponded to that in the newborn cortex; finally, some neurons had quite elaborate dendritic trees as expected for the cortex of 2.5-month-old infant. In addition, apical dendrites of many pyramidal neurons were conspiciously bent to one side, irrespective to the general orientation of the pyramidal neuron. These findings suggest that Walker-Warburg lissencephaly is characterized by two hitherto unnoticed pathogenetic changes in the cerebral cortex: (a) heterochronic decoupling of dendritic maturation within the same neuronal population (with some members significantly lagging behind the normal maturational schedule) and (b) anisotropically distorted shaping of dendritic trees, probably caused by patchy displacement of molecular guidance cues for dendrites in the malformed cortex. Copyright Georg Thieme Verlag KG Stuttgart New York.

  9. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus

    Directory of Open Access Journals (Sweden)

    Alexandra ePfister

    2013-08-01

    Full Text Available Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2 send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5. Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 hours, as well as at 3, 5, 7, 14 and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.

  10. Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures

    International Nuclear Information System (INIS)

    Howard, Angela S.; Bucelli, Robert; Jett, David A.; Bruun, Donald; Yang, Dongren; Lein, Pamela J.

    2005-01-01

    Evidence that children are widely exposed to organophosphorus pesticides (OPs) and that OPs cause developmental neurotoxicity in animal models raises significant concerns about the risks these compounds pose to the developing human nervous system. Critical to assessing this risk is identifying specific neurodevelopmental events targeted by OPs. Observations that OPs alter brain morphometry in developing rodents and inhibit neurite outgrowth in neural cell lines suggest that OPs perturb neuronal morphogenesis. However, an important question yet to be answered is whether the dysmorphogenic effect of OPs reflects perturbation of axonal or dendritic growth. We addressed this question by quantifying axonal and dendritic growth in primary cultures of embryonic rat sympathetic neurons derived from superior cervical ganglia (SCG) following in vitro exposure to chlorpyrifos (CPF) or its metabolites CPF-oxon (CPFO) and trichloropyridinol (TCP). Axon outgrowth was significantly inhibited by CPF or CPFO, but not TCP, at concentrations ≥0.001 μM or 0.001 nM, respectively. In contrast, all three compounds enhanced BMP-induced dendritic growth. Acetylcholinesterase was inhibited only by the highest concentrations of CPF (≥1 μM) and CPFO (≥1 nM); TCP had no effect on this parameter. In summary, these compounds perturb neuronal morphogenesis via opposing effects on axonal and dendritic growth, and both effects are independent of acetylcholinesterase inhibition. These findings have important implications for current risk assessment practices of using acetylcholinesterase inhibition as a biomarker of OP neurotoxicity and suggest that OPs may disrupt normal patterns of neuronal connectivity in the developing nervous system

  11. Regulation of dendrite growth and maintenance by exocytosis

    Science.gov (United States)

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z.; Kim, Michael D.

    2015-01-01

    ABSTRACT Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential requirements for exocytosis in the growth and maintenance of different dendritic compartments. Rop promotes dendrite growth together with the exocyst, an octameric protein complex involved in tethering vesicles to the plasma membrane, with Rop–exocyst complexes and exocytosis predominating in primary dendrites over terminal dendrites. By contrast, membrane-associated proteins readily diffuse from primary dendrites into terminals, but not in the reverse direction, suggesting that diffusion, rather than targeted exocytosis, supplies membranous material for terminal dendritic growth, revealing key differences in the distribution of materials to these expanding dendritic compartments. PMID:26483382

  12. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits

    Directory of Open Access Journals (Sweden)

    David LaBerge

    2017-06-01

    Full Text Available Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz. Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local “clock,” which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system’s timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.

  13. Electrochemical migration of tin in electronics and microstructure of the dendrites

    Energy Technology Data Exchange (ETDEWEB)

    Minzari, Daniel, E-mail: dmin@mek.dtu.d [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark); Grumsen, Flemming Bjerg; Jellesen, Morten S.; Moller, Per; Ambat, Rajan [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark)

    2011-05-15

    Graphical abstract: The electrochemical migration of tin in electronics forms dendritic structures, consisting of a metallic tin core, which is surrounded by oxide layers having various thickness. Display Omitted Research highlights: Electrochemical migration occurs if two conductors are connected by condensed moisture. Metallic ions are dissolved and grow in a dendritic structure that short circuit the electrodes. The dendrite consists of a metallic tin core with oxide layers of various thickness surrounding. Detailed microstructure of dendrites is investigated using electron microscopy. The dendrite microstructure is heterogeneous along the growth direction. - Abstract: The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb ({approx}2 wt.%) was investigated by scanning electron microscopy and transmission electron microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12 V potential bias in 10 ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have heterogeneous microstructure along the growth direction, which is attributed to unstable growth conditions inside the micro-volume of electrolyte. Selected area electron diffraction showed that the dendrites are metallic tin having sections of single crystal orientation and lead containing intermetallic particles embedded in the structure. At certain areas, the dendrite structure was found to be surrounded by an oxide crust, which is believed to be due to unstable growth conditions during the dendrite formation. The oxide layer was found to be of nanocrystalline structure, which is expected to be formed by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.

  14. Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3β signaling.

    Science.gov (United States)

    Fuchs, Claudia; Trazzi, Stefania; Torricella, Roberta; Viggiano, Rocchina; De Franceschi, Marianna; Amendola, Elena; Gross, Cornelius; Calzà, Laura; Bartesaghi, Renata; Ciani, Elisabetta

    2014-10-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a neurodevelopmental disorder characterized by early-onset intractable seizures, severe developmental delay, intellectual disability, and Rett's syndrome-like features. Since the physiological functions of CDKL5 still need to be elucidated, in the current study we took advantage of a new Cdkl5 knockout (KO) mouse model in order to shed light on the role of this gene in brain development. We mainly focused on the hippocampal dentate gyrus, a region that largely develops postnatally and plays a key role in learning and memory. Looking at the process of neurogenesis, we found a higher proliferation rate of neural precursors in Cdkl5 KO mice in comparison with wild type mice. However, there was an increase in apoptotic cell death of postmitotic granule neuron precursors, with a reduction in total number of granule cells. Looking at dendritic development, we found that in Cdkl5 KO mice the newly-generated granule cells exhibited a severe dendritic hypotrophy. In parallel, these neurodevelopmental defects were associated with impairment of hippocampus-dependent memory. Looking at the mechanisms whereby CDKL5 exerts its functions, we identified a central role of the AKT/GSK-3β signaling pathway. Overall our findings highlight a critical role of CDKL5 in the fundamental processes of brain development, namely neuronal precursor proliferation, survival and maturation. This evidence lays the basis for a better understanding of the neurological phenotype in patients carrying mutations in the CDKL5 gene. Copyright © 2014. Published by Elsevier Inc.

  15. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  16. Bursopentin (BP5 protects dendritic cells from lipopolysaccharide-induced oxidative stress for immunosuppression.

    Directory of Open Access Journals (Sweden)

    Tao Qin

    Full Text Available Dendritic cells (DCs play a vital role in the regulation of immune-mediated inflammatory diseases. Thus, DCs have been regarded as a major target for the development of immunomodulators. However, oxidative stress could disturb inflammatory regulation in DCs. Here, we examined the effect of bursopentine (BP5, a novel pentapeptide isolated from chicken bursa of fabricius, on the protection of DCs against oxidative stress for immunosuppression. BP5 showed potent protective effects against the lipopolysaccharide (LPS-induced oxidative stress in DCs, including nitric oxide, reactive oxygen species and lipid peroxidation. Furthermore, BP5 elevated the level of cellular reductive status through increasing the reduced glutathione (GSH and the GSH/GSSG ratio. Concomitant with these, the activities of several antioxidative redox enzymes, including glutathione peroxidase (GPx, catalase (CAT and superoxide dismutase (SOD, were obviously enhanced. BP5 also suppressed submucosal DC maturation in the LPS-stimulated intestinal epithelial cells (ECs/DCs coculture system. Finally, we found that heme oxygenase 1 (HO-1 was remarkably upregulated by BP5 in the LPS-induced DCs, and played an important role in the suppression of oxidative stress and DC maturation. These results suggested that BP5 could protect the LPS-activated DCs against oxidative stress and have potential applications in DC-related inflammatory responses.

  17. From neurodevelopment to neurodegeneration: the interaction of neurofibromin and valosin-containing protein/p97 in regulation of dendritic spine formation.

    Science.gov (United States)

    Hsueh, Yi-Ping

    2012-03-26

    Both Neurofibromatosis type I (NF1) and inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.

  18. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons.

    Science.gov (United States)

    Harnett, Mark T; Magee, Jeffrey C; Williams, Stephen R

    2015-01-21

    The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/351024-14$15.00/0.

  19. Specific Disruption of Hippocampal Mossy Fiber Synapses in a Mouse Model of Familial Alzheimer's Disease

    Science.gov (United States)

    Wilke, Scott A.; Raam, Tara; Antonios, Joseph K.; Bushong, Eric A.; Koo, Edward H.; Ellisman, Mark H.; Ghosh, Anirvan

    2014-01-01

    The earliest stages of Alzheimer's disease (AD) are characterized by deficits in memory and cognition indicating hippocampal pathology. While it is now recognized that synapse dysfunction precedes the hallmark pathological findings of AD, it is unclear if specific hippocampal synapses are particularly vulnerable. Since the mossy fiber (MF) synapse between dentate gyrus (DG) and CA3 regions underlies critical functions disrupted in AD, we utilized serial block-face electron microscopy (SBEM) to analyze MF microcircuitry in a mouse model of familial Alzheimer's disease (FAD). FAD mutant MF terminal complexes were severely disrupted compared to control – they were smaller, contacted fewer postsynaptic spines and had greater numbers of presynaptic filopodial processes. Multi-headed CA3 dendritic spines in the FAD mutant condition were reduced in complexity and had significantly smaller sites of synaptic contact. Significantly, there was no change in the volume of classical dendritic spines at neighboring inputs to CA3 neurons suggesting input-specific defects in the early course of AD related pathology. These data indicate a specific vulnerability of the DG-CA3 network in AD pathogenesis and demonstrate the utility of SBEM to assess circuit specific alterations in mouse models of human disease. PMID:24454724

  20. Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons.

    Science.gov (United States)

    Zhou, Wen-Liang; Yan, Ping; Wuskell, Joseph P; Loew, Leslie M; Antic, Srdjan D

    2008-02-01

    Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of > 15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 microm) and medium (150-200 microm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients.

  1. Genetically modified dendritic cell-based cancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 47, č. 5 (2001), s. 153-155 ISSN 0015-5500 R&D Projects: GA MZd NC5526 Keywords : dendritic cell s * cancer vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.519, year: 2001

  2. Divergent Effects of Dendritic Cells on Pancreatitis

    Science.gov (United States)

    2015-09-01

    role of dendritic cells in pancreatitis. Dendritic cells are professional antigen presenting cells which initiate innate and adaptive immune... Lymphoid -tissue-specific homing of bone- marrow-derived dendritic cells . Blood. 113:6638–6647. http://dx.doi .org/10.1182/blood-2009-02-204321 Dapito...Award Number: W81XWH-12-1-0313 TITLE: Divergent Effects of Dendritic Cells on Pancreatitis PRINCIPAL INVESTIGATOR: Dr. George Miller

  3. 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Tobias Müller

    Full Text Available Beside its well described role in the central and peripheral nervous system 5-hydroxytryptamine (5-HT, commonly known as serotonin, is also a potent immuno-modulator. Serotoninergic receptors (5-HTR are expressed by a broad range of inflammatory cell types, including dendritic cells (DCs. In this study, we aimed to further characterize the immuno-biological properties of serotoninergic receptors on human monocyte-derived DCs. 5-HT was able to induce oriented migration in immature but not in LPS-matured DCs via activation of 5-HTR(1 and 5-HTR(2 receptor subtypes. Accordingly, 5-HT also increased migration of pulmonary DCs to draining lymph nodes in vivo. By binding to 5-HTR(3, 5-HTR(4 and 5-HTR(7 receptors, 5-HT up-regulated production of the pro-inflammatory cytokine IL-6. Additionally, 5-HT influenced chemokine release by human monocyte-derived DCs: production of the potent Th1 chemoattractant IP-10/CXCL10 was inhibited in mature DCs, whereas CCL22/MDC secretion was up-regulated in both immature and mature DCs. Furthermore, DCs matured in the presence of 5-HT switched to a high IL-10 and low IL-12p70 secreting phenotype. Consistently, 5-HT favoured the outcome of a Th2 immune response both in vitro and in vivo. In summary, our study shows that 5-HT is a potent regulator of human dendritic cell function, and that targeting serotoninergic receptors might be a promising approach for the treatment of inflammatory disorders.

  4. CO2-switchable fluorescence of a dendritic polymer and its applications

    Science.gov (United States)

    Gao, Chunmei; Lü, Shaoyu; Liu, Mingzhu; Wu, Can; Xiong, Yun

    2015-12-01

    solubility of curcumin, and the drug released faster in the presence of CO2. Such CO2 responsive fluorescent dendritic polymers are potentially applicable in cellular imaging or drug controlled release. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06729d

  5. Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection

    Directory of Open Access Journals (Sweden)

    Jintao Xu

    2016-07-01

    Full Text Available Anti-tumor necrosis factor alpha (anti-TNF-α therapies have been increasingly used to treat inflammatory diseases and are associated with increased risk of invasive fungal infections, including Cryptococcus neoformans infection. Using a mouse model of cryptococcal infection, we investigated the mechanism by which disruption of early TNF-α signaling results in the development of nonprotective immunity against C. neoformans. We found that transient depletion of TNF-α inhibited pulmonary fungal clearance and enhanced extrapulmonary dissemination of C. neoformans during the adaptive phase of the immune response. Higher fungal burdens in TNF-α-depleted mice were accompanied by markedly impaired Th1 and Th17 responses in the infected lungs. Furthermore, early TNF-α depletion also resulted in disrupted transcriptional initiation of the Th17 polarization program and subsequent upregulation of Th1 genes in CD4+ T cells in the lung-associated lymph nodes (LALN of C. neoformans-infected mice. These defects in LALN T cell responses were preceded by a dramatic shift from a classical toward an alternative activation of dendritic cells (DC in the LALN of TNF-α-depleted mice. Taken together, our results indicate that early TNF-α signaling is required for optimal DC activation, and the initial Th17 response followed by Th1 transcriptional prepolarization of T cells in the LALN, which further drives the development of protective immunity against cryptococcal infection in the lungs. Thus, administration of anti-TNF-α may introduce a particularly greater risk for newly acquired fungal infections that require generation of protective Th1/Th17 responses for their containment and clearance.

  6. From neurodevelopment to neurodegeneration: the interaction of neurofibromin and valosin-containing protein/p97 in regulation of dendritic spine formation

    Directory of Open Access Journals (Sweden)

    Hsueh Yi-Ping

    2012-03-01

    Full Text Available Abstract Both Neurofibromatosis type I (NF1 and inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.

  7. LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes.

    Science.gov (United States)

    Takano, Tetsuya; Urushibara, Tomoki; Yoshioka, Nozomu; Saito, Taro; Fukuda, Mitsunori; Tomomura, Mineko; Hisanaga, Shin-Ichi

    2014-06-01

    Neurons extend two types of neurites-axons and dendrites-that differ in structure and function. Although it is well understood that the cytoskeleton plays a pivotal role in neurite differentiation and extension, the mechanisms by which membrane components are supplied to growing axons or dendrites is largely unknown. We previously reported that the membrane supply to axons is regulated by lemur kinase 1 (LMTK1) through Rab11A-positive endosomes. Here we investigate the role of LMTK1 in dendrite formation. Down-regulation of LMTK1 increases dendrite growth and branching of cerebral cortical neurons in vitro and in vivo. LMTK1 knockout significantly enhances the prevalence, velocity, and run length of anterograde movement of Rab11A-positive endosomes to levels similar to those expressing constitutively active Rab11A-Q70L. Rab11A-positive endosome dynamics also increases in the cell body and growth cone of LMTK1-deficient neurons. Moreover, a nonphosphorylatable LMTK1 mutant (Ser34Ala, a Cdk5 phosphorylation site) dramatically promotes dendrite growth. Thus LMTK1 negatively controls dendritic formation by regulating Rab11A-positive endosomal trafficking in a Cdk5-dependent manner, indicating the Cdk5-LMTK1-Rab11A pathway as a regulatory mechanism of dendrite development as well as axon outgrowth. © 2014 Takano et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    Science.gov (United States)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  9. Regulation of dendrite growth and maintenance by exocytosis

    OpenAIRE

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z.; Kim, Michael D.

    2015-01-01

    Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential req...

  10. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    Directory of Open Access Journals (Sweden)

    Mala Misra

    2016-08-01

    Full Text Available Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.

  11. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    Science.gov (United States)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  12. Vertical solidification of dendritic binary alloys

    Science.gov (United States)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  13. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum.

    Science.gov (United States)

    Ziegler, Anja; Everett, Helen; Hamza, Eman; Garbani, Mattia; Gerber, Vinzenz; Marti, Eliane; Steinbach, Falko

    2016-11-15

    Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including horses. Currently, the gold standard protocol for generating dendritic cells from monocytes across various species relies upon a combination of GM-CSF and IL-4 added to cell culture medium which is supplemented with FBS. The aim of this study was to substitute FBS with heterologous horse serum. For this purpose, equine monocyte-derived dendritic cells (eqMoDC) were generated in the presence of horse serum or FBS and analysed for the effect on morphology, phenotype and immunological properties. Changes in the expression of phenotypic markers (CD14, CD86, CD206) were assessed during dendritic cell maturation by flow cytometry. To obtain a more complete picture of the eqMoDC differentiation and assess possible differences between FBS- and horse serum-driven cultures, a transcriptomic microarray analysis was performed. Lastly, immature eqMoDC were primed with a primary antigen (ovalbumin) or a recall antigen (tetanus toxoid) and, after maturation, were co-cultured with freshly isolated autologous CD5 + T lymphocytes to assess their T cell stimulatory capacity. The microarray analysis demonstrated that eqMoDC generated with horse serum were indistinguishable from those generated with FBS. However, eqMoDC incubated with horse serum-supplemented medium exhibited a more characteristic dendritic cell morphology during differentiation from monocytes. A significant increase in cell viability was also observed in eqMoDC cultured with horse serum. Furthermore, eqMoDC generated in the presence of horse serum

  14. Synaptic Control of Secretory Trafficking in Dendrites

    Directory of Open Access Journals (Sweden)

    Cyril Hanus

    2014-06-01

    Full Text Available Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK. Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.

  15. Dendritic solidification and thermal expansion of refractory Nb-Zr alloys investigated by electrostatic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.J.; Hu, L.; Wang, L.; Wei, B. [Northwestern Polytechnical University, Department of Applied Physics, Xi' an (China)

    2017-05-15

    The dendritic growth and thermal expansion of isomorphous refractory Nb-5%Zr, Nb-10%Zr, and Nb-15%Zr alloys were studied by electrostatic levitation technique. The obtained maximum undercoolings for the three alloys were 534 (0.2T{sub L}), 498 (0.19T{sub L}), and 483 K (0.18T{sub L}), respectively. Within these undercooling ranges, the dendritic growth velocities of the three alloys all exhibited power laws, and achieved 38.5, 34.0, and 27.1 m s{sup -1} at each maximum undercooling. The microstructures were characterized by coarse dendrites at small undercooling, while they transformed into refined dendrites under large undercooling condition. In addition, the measured thermal expansion coefficients of solid Nb-Zr alloys increased linearly with temperature. The values at liquid state were more than double of those at solid state, which also displayed linear dependence on temperature. (orig.)

  16. Coding and decoding with dendrites.

    Science.gov (United States)

    Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota

    2014-02-01

    Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Dendritic Ni(Cu)-polypyrrole hybrid films for a pseudo-capacitor.

    Science.gov (United States)

    Choi, Bit Na; Chun, Woo Won; Qian, Aniu; Lee, So Jeong; Chung, Chan-Hwa

    2015-11-28

    Dendritic Ni(Cu)-polypyrrole hybrid films are fabricated for a pseudo-capacitor in a unique morphology using two simple methods: electro-deposition and electrochemical de-alloying. Three-dimensional structures of porous dendrites are prepared by electro-deposition within the hydrogen evolution reaction (HER) at a high cathodic potential; the high-surface-area structure provides sufficient redox reactions between the electrodes and the electrolyte. The dependence of the active-layer thickness on the super-capacitor performance is also investigated, and the 60 μm-thick Ni(Cu)PPy hybrid electrode presents the highest performance of 659.52 F g(-1) at the scan rate of 5 mV s(-1). In the thicker layers, the specific capacitance became smaller due to the diffusion limitation of the ions in an electrolyte. The polypyrrole-hybridization on the porous dendritic Ni(Cu) electrode provides superior specific capacitance and excellent cycling stability due to the improvement in electric conductivity by the addition of conducting polypyrrole in the matrices of the dendritic nano-porous Ni(Cu) layer and the synergistic effect of composite materials.

  18. Electrochemical migration of tin in electronics and microstructure of the dendrites

    DEFF Research Database (Denmark)

    Minzari, Daniel; Grumsen, Flemming Bjerg; Jellesen, Morten Stendahl

    2011-01-01

    The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electr...... by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.......The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electron...... microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12V potential bias in 10ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have...

  19. Randomly oriented twin domains in electrodeposited silver dendrites

    Directory of Open Access Journals (Sweden)

    Ivanović Evica R.

    2015-01-01

    Full Text Available Silver dendrites were prepared by electrochemical deposition. The structures of Ag dendrites, the type of twins and their distribution were investigated by scanning electron microscopy (SEM, Z-contrast high angle annular dark field transmission electron microscopy (HAADF, and crystallografically sensitive orientation imaging microscopy (OIM. The results revealed that silver dendrites are characterized by the presence of randomly distributed 180° rotational twin domains. The broad surface of dendrites was of the {111} type. Growth directions of the main dendrite stem and all branches were of type. [Projekat Ministarstva nauke Republike Srbije, br. 172054

  20. Selective, retrieval-independent disruption of methamphetamine-associated memory by actin depolymerization.

    Science.gov (United States)

    Young, Erica J; Aceti, Massimiliano; Griggs, Erica M; Fuchs, Rita A; Zigmond, Zachary; Rumbaugh, Gavin; Miller, Courtney A

    2014-01-15

    Memories associated with drugs of abuse, such as methamphetamine (METH), increase relapse vulnerability to substance use disorder. There is a growing consensus that memory is supported by structural and functional plasticity driven by F-actin polymerization in postsynaptic dendritic spines at excitatory synapses. However, the mechanisms responsible for the long-term maintenance of memories, after consolidation has occurred, are largely unknown. Conditioned place preference (n = 112) and context-induced reinstatement of self-administration (n = 19) were used to assess the role of F-actin polymerization and myosin II, a molecular motor that drives memory-promoting dendritic spine actin polymerization, in the maintenance of METH-associated memories and related structural plasticity. Memories formed through association with METH but not associations with foot shock or food reward were disrupted by a highly-specific actin cycling inhibitor when infused into the amygdala during the postconsolidation maintenance phase. This selective effect of depolymerization on METH-associated memory was immediate, persistent, and did not depend upon retrieval or strength of the association. Inhibition of non-muscle myosin II also resulted in a disruption of METH-associated memory. Thus, drug-associated memories seem to be actively maintained by a unique form of cycling F-actin driven by myosin II. This finding provides a potential therapeutic approach for the selective treatment of unwanted memories associated with psychiatric disorders that is both selective and does not rely on retrieval of the memory. The results further suggest that memory maintenance depends upon the preservation of polymerized actin. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Orchestration of transplantation tolerance by regulatory dendritic cell therapy or in-situ targeting of dendritic cells.

    Science.gov (United States)

    Morelli, Adrian E; Thomson, Angus W

    2014-08-01

    Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCregs) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCregs (donor or recipient) and their mode of action, in-situ targeting of DCregs, and optimal therapeutic regimens to promote DCreg function. Recent studies have defined protocols and mechanisms whereby ex-vivo-generated DCregs of donor or recipient origin subvert allogeneic T-cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen is acquired, processed and presented by autologous dendritic cells, on the stability of DCregs, and on in-situ targeting of dendritic cells to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCregs in a clinically relevant nonhuman primate organ transplant model and production of clinical grade DCregs support early evaluation of DCreg therapy in human graft recipients. We discuss strategies currently used to promote dendritic cell tolerogenicity, including DCreg therapy and in-situ targeting of dendritic cells, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application.

  2. Molecular identity of dendritic voltage-gated sodium channels.

    Science.gov (United States)

    Lorincz, Andrea; Nusser, Zoltan

    2010-05-14

    Active invasion of the dendritic tree by action potentials (APs) generated in the axon is essential for associative synaptic plasticity and neuronal ensemble formation. In cortical pyramidal cells (PCs), this AP back-propagation is supported by dendritic voltage-gated Na+ (Nav) channels, whose molecular identity is unknown. Using a highly sensitive electron microscopic immunogold technique, we revealed the presence of the Nav1.6 subunit in hippocampal CA1 PC proximal and distal dendrites. Here, the subunit density is lower by a factor of 35 to 80 than that found in axon initial segments. A gradual decrease in Nav1.6 density along the proximodistal axis of the dendritic tree was also detected without any labeling in dendritic spines. Our results reveal the characteristic subcellular distribution of the Nav1.6 subunit, identifying this molecule as a key substrate enabling dendritic excitability.

  3. Sequence learning in differentially activated dendrites

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2003-01-01

    . It is proposed that the neural machinery required in such a learning/retrieval mechanism could involve the NMDA receptor, in conjunction with the ability of dendrites to maintain differentially activated regions. In particular, it is suggested that such a parcellation of the dendrite allows the neuron......Differentially activated areas of a dendrite permit the existence of zones with distinct rates of synaptic modification, and such areas can be individually accessed using a reference signal which localizes synaptic plasticity and memory trace retrieval to certain subregions of the dendrite...... to participate in multiple sequences, which can be learned without suffering from the 'wash-out' of synaptic efficacy associated with superimposition of training patterns. This is a biologically plausible solution to the stability-plasticity dilemma of learning in neural networks....

  4. Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations

    Directory of Open Access Journals (Sweden)

    Anja Konietzny

    2017-05-01

    Full Text Available Actin is a versatile and ubiquitous cytoskeletal protein that plays a major role in both the establishment and the maintenance of neuronal polarity. For a long time, the most prominent roles that were attributed to actin in neurons were the movement of growth cones, polarized cargo sorting at the axon initial segment, and the dynamic plasticity of dendritic spines, since those compartments contain large accumulations of actin filaments (F-actin that can be readily visualized using electron- and fluorescence microscopy. With the development of super-resolution microscopy in the past few years, previously unknown structures of the actin cytoskeleton have been uncovered: a periodic lattice consisting of actin and spectrin seems to pervade not only the whole axon, but also dendrites and even the necks of dendritic spines. Apart from that striking feature, patches of F-actin and deep actin filament bundles have been described along the lengths of neurites. So far, research has been focused on the specific roles of actin in the axon, while it is becoming more and more apparent that in the dendrite, actin is not only confined to dendritic spines, but serves many additional and important functions. In this review, we focus on recent developments regarding the role of actin in dendrite morphology, the regulation of actin dynamics by internal and external factors, and the role of F-actin in dendritic protein trafficking.

  5. Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation

    Science.gov (United States)

    Zhang, Ke; Xu, Hui; Yan, Bo; Wang, Jin; Gu, Zhulan; Du, Yukou

    2017-12-01

    This article reports a rapid synthetic method for the preparation of dendritic platinum-lead bimetallic catalysts by using an oil bath for 5 min in the presence of hexadecyltrimethylammonium chloride (CTAC) and ascorbic acid (AA). CTAC acts as a shape-direction agent, and AA acts as a reducing agent during the reaction process. A series of physical techniques are used to characterize the morphology, structure and electronic properties of the dendritic Pt/Pb nanoparticles, indicating the Pt/Pb dendrites are porous, highly alloying, and self-supported nanostructures. Various electrochemical techniques were also investigated the catalytic performance of the Pt/Pb catalysts toward the ethanol electrooxidation reaction. Cyclic voltammetry and chronoamperometry indicated that the synthesized dendritic Pt/Pb nanoparticles possessed much higher electrocatalytic performance than bulk Pt catalyst. This study may inspire the engineering of dendritic bimetallic catalysts, which are expected to have great potential applications in fuel cells.

  6. Variability in millimeter wave scattering properties of dendritic ice crystals

    International Nuclear Information System (INIS)

    Botta, Giovanni; Aydin, Kültegin; Verlinde, Johannes

    2013-01-01

    A detailed electromagnetic scattering model for ice crystals is necessary for calculating radar reflectivity from cloud resolving model output in any radar simulator. The radar reflectivity depends on the backscattering cross sections and size distributions of particles in the radar resolution volume. The backscattering cross section depends on the size, mass and distribution of mass within the crystal. Most of the available electromagnetic scattering data for ice hydrometeors rely on simple ice crystal types and a single mass–dimensional relationship for a given type. However, a literature survey reveals that the mass–dimensional relationships for dendrites cover a relatively broad region in the mass–dimensional plane. This variability of mass and mass distribution of dendritic ice crystals cause significant variability in their backscattering cross sections, more than 10 dB for all sizes (0.55 mm maximum dimension) and exceeding 20 dB for the larger ones at X-, Ka-, and W-band frequencies. Realistic particle size distributions are used to calculate radar reflectivity and ice water content (IWC) for three mass–dimensional relationships. The uncertainty in the IWC for a given reflectivity spans an order of magnitude in value at all three frequencies because of variations in the unknown mass–dimensional relationship and particle size distribution. The sensitivity to the particle size distribution is reduced through the use of dual frequency reflectivity ratios, e.g., Ka- and W-band frequencies, together with the reflectivity at one of the frequencies for estimating IWC. -- Highlights: • Millimeter wave backscattering characteristics of dendritic crystals are modeled. • Natural variability of dendrite shapes leads to large variability in their mass. • Dendrite mass variability causes large backscattering cross section variability. • Reflectivity–ice water content relation is sensitive to mass and size distribution. • Dual frequency

  7. Analyzing dendritic growth in a population of immature neurons in the adult dentate gyrus using laminar quantification of disjointed dendrites

    Directory of Open Access Journals (Sweden)

    Shira eRosenzweig

    2011-03-01

    Full Text Available In the dentate gyrus of the hippocampus, new granule neurons are continuously produced throughout adult life. A prerequisite for the successful synaptic integration of these neurons is the sprouting and extension of dendrites into the molecular layer of the dentate gyrus. Thus, studies aimed at investigating the developmental stages of adult neurogenesis often use dendritic growth as an important indicator of neuronal health and maturity. Based on the known topography of the dentate gyrus, characterized by distinct laminar arrangement of granule neurons and their extensions, we have developed a new method for analysis of dendritic growth in immature adult-born granule neurons. The method is comprised of laminar quantification of cell bodies, primary, secondary and tertiary dendrites separately and independently from each other. In contrast to most existing methods, laminar quantification of dendrites does not require the use of exogenous markers and does not involve arbitrary selection of individual neurons. The new method relies on immonuhistochemical detection of endogenous markers such as doublecortin to perform a comprehensive analysis of a sub-population of immature neurons. Disjointed, orphan dendrites that often appear in the thin histological sections are taken into account. Using several experimental groups of rats and mice, we demonstrate here the suitable techniques for quantifying neurons and dendrites, and explain how the ratios between the quantified values can be used in a comparative analysis to indicate variations in dendritic growth and complexity.

  8. The Complete Reconfiguration of Dendritic Gold

    Science.gov (United States)

    Paneru, Govind; Flanders, Bret

    2014-03-01

    Reconfigurability-by-design is an important strategy in modern materials science, as materials with this capability could potentially be used to confer hydrophobic, lipophobic, or anti-corrosive character to substrates in a regenerative manner. The present work extends the directed electrochemical nanowire assembly (DENA) methodology, which is a technique that employs alternating voltages to grow single crystalline metallic nanowires and nano-dendrites from simple salt solutions, to enable the complete dissolution of macroscopic arrays of metallic dendrites following their growth. Our main finding is that structural reconfiguration of dendritic gold is induced by changes in the MHz-level frequencies of voltages that are applied to the dendrites. Cyclic voltammetry and micro-Raman spectroscopy have been used to show that dendritic gold grows and dissolves by the same chemical mechanisms as bulk gold. Hence, the redox chemistry that occurs at the crystal-solution interface is no different than the established electrochemistry of gold. What differs in this process and allows for reconfiguration to occur is the diffusive behavior of the gold chloride molecules in the solution adjacent to the interface. We will present a simple model that captures the physics of this behavior.

  9. Steady-state dynamics and experience-dependent plasticity of dendritic spines of layer 4/5a pyramidal neurons in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Amaya Miquelajauregui

    2014-04-01

    Full Text Available The steady state dynamics and experience-dependent plasticity of dendritic spines of layer (L 2/3 and L5B cortical pyramidal neurons have recently been assessed using in vivo two-photon microscopy (Trachtenberg et al., 2002; Zuo et al., 2005; Holtmaat et al., 2006. In contrast, not much is known about spine dynamics in L4/5a neurons, regarded as direct recipients of thalamocortical input (Constantinople and Bruno, 2013. In the adult mouse somatosensory cortex (SCx, the transcription factor Ebf2 is enriched in excitatory neurons of L4/5a, including pyramidal neurons. We assessed the molecular and electrophysiological properties of these neurons as well as the morphology of their apical tufts (Scholl analysis and cortical outputs (optogenetics within the SCx. To test the hypothesis that L4/5a pyramidal neurons play an important role in sensory processing (given their key laminar position; soma depth ~450-480 µm, we successfully labeled them in Ebf2-Cre mice with EGFP by expressing recombinant rAAV vectors in utero. Using longitudinal in vivo two-photon microscopy through a craniotomy (Mostany and Portera-Cailliau, 2008, we repeatedly imaged spines in apical dendritic tufts of L4/5a neurons under basal conditions and after sensory deprivation. Under steady-state conditions in adults, the morphology of the apical tufts and the mean spine density were stable at 0.39 ± 0.05 spines/μm (comparable to L5B, Mostany et al., 2011. Interestingly, spine elimination increases 4-8 days after sensory deprivation, probably due to input loss. This suggests that Ebf2+ L4/5a neurons could be involved in early steps of processing of thalamocortical information.

  10. Dendritic ion channelopathy in acquired epilepsy

    Science.gov (United States)

    Poolos, Nicholas P.; Johnston, Daniel

    2012-01-01

    Summary Ion channel dysfunction or “channelopathy” is a proven cause of epilepsy in the relatively uncommon genetic epilepsies with Mendelian inheritance. But numerous examples of acquired channelopathy in experimental animal models of epilepsy following brain injury have also been demonstrated. Our understanding of channelopathy has grown due to advances in electrophysiology techniques that have allowed the study of ion channels in the dendrites of pyramidal neurons in cortex and hippocampus. The apical dendrites of pyramidal neurons comprise the vast majority of neuronal surface membrane area, and thus the majority of the neuronal ion channel population. Investigation of dendritic ion channels has demonstrated remarkable plasticity in ion channel localization and biophysical properties in epilepsy, many of which produce hyperexcitability and may contribute to the development and maintenance of the epileptic state. Here we review recent advances in dendritic physiology and cell biology, and their relevance to epilepsy. PMID:23216577

  11. Dendritic cell nuclear protein-1, a novel depression-related protein, upregulates corticotropin-releasing hormone expression

    NARCIS (Netherlands)

    Zhou, Tian; Wang, Shanshan; Ren, Haigang; Qi, Xin-Rui; Luchetti, Sabina; Kamphuis, Willem; Zhou, Jiang-Ning; Wang, Guanghui; Swaab, Dick F.

    2010-01-01

    The recently discovered dendritic cell nuclear protein-1 is the product of a novel candidate gene for major depression. The A allele encodes full-length dendritic cell nuclear protein-1, while the T allele encodes a premature termination of translation at codon number 117 on chromosome 5. In the

  12. Self-organized dendritic patterns in the polymer Langmuir-Blodgett film

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Jun, E-mail: jun_m@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai, 980-8577 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi 332-0012 (Japan); Suzuki, Toshio; Mikayama, Takeshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai, 980-8577 (Japan); Aoki, Atsushi [Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology Gokiso, Shouwa-ku, Nagoya 466-8555 (Japan); Miyashita, Tokuji [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai, 980-8577 (Japan)

    2011-01-03

    We report the formation of a self-organized dendritic pattern of nanometer thickness in polymer Langmuir-Blodgett (LB) films. Poly(N-dodecylacrylamide) (pDDA)/chloroform solution was spread on a water surface to form a stable polymer monolayer. A pDDA monolayer was deposited onto a hydrophilic silicon substrate by upward deposition from a water subphase, and a second layer was then deposited by downward deposition. The substrate with the two layers was withdrawn from a clean water surface at a high speed to form the dendritic pattern, which was imaged by atomic force microscopy. The height of the pattern, 3.5 nm, corresponds to the height of a bilayer pDDA LB film, suggesting that the pattern forms when the deposited outermost layer overturns by meniscus oscillation. A similar dendritic structure of narrower width and lower height was fabricated on a hydrophobic silicon substrate.

  13. Two-dimensional multi-scale dendrite needle network modeling and x-ray radiography of equiaxed alloy solidification in grain-refined Al-3.5 wt-%Ni

    International Nuclear Information System (INIS)

    Sturz, Laszlo; Theofilatos, Angelos

    2016-01-01

    The aim of this work is to investigate multiple dendritic equiaxed grain formation during directional solidification of grain-refined Al-3.5 wt-%Ni under a range of different solidification conditions. This is achieved by comparing the results of in-situ x-ray radiographic experiments involving thin samples (as reported in the literature) to the results of 2D multi-scale dendrite needle network (DNN) modeling covering the essential experimental length scale. The model takes into account heterogeneous nucleation, branched dendritic growth and solutal interaction between branches and multiple equiaxed grains. The decrease in equivalent circular diameter of the steady-state average grain size with pulling velocity, as observed in the Bridgman-type experiments, is well captured by the modeling results, and likewise the ratio of activated nucleation seeds. Using experimentally estimated nucleation parameters in the modeling, a log normal nucleation undercooling distribution provided slightly but not significantly better agreement with experiments than a Gaussian distribution, with remaining absolute differences in the equivalent circular diameter of up to 31%. Thus, even with the 2D modeling of an essentially 3D experiment, fairly good agreement is achieved. This is attributed to a solutal undercooling of the equiaxed front region in the modeling which is similar in comparison to the dendrite tip undercooling predicted by an analytical 3D calculation, on which the estimation of nucleation parameters was based. Moreover, dendrite side-branching in modeling is of minor impact, due to a ratio between solutal diffusion length and equivalent circular diameter inferior to 0.49 under all solidification conditions. Additionally, at low pulling velocities, the computed grain density is only slightly dependent on which unknown dendrite selection parameter σ* over a wider range is selected. On the other hand, at high pulling velocities there is no dependence. In short

  14. Immune monitoring using mRNA-transfected dendritic cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m......RNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  15. Serotonin receptor and dendritic plasticity in the spinal cord mediated by chronic serotonergic pharmacotherapy combined with exercise following complete SCI in the adult rat.

    Science.gov (United States)

    Ganzer, Patrick D; Beringer, Carl R; Shumsky, Jed S; Nwaobasi, Chiemela; Moxon, Karen A

    2018-06-01

    Severe spinal cord injury (SCI) damages descending motor and serotonin (5-HT) fiber projections leading to paralysis and serotonin depletion. 5-HT receptors (5-HTRs) subsequently upregulate following 5-HT fiber degeneration, and dendritic density decreases indicative of atrophy. 5-HT pharmacotherapy or exercise can improve locomotor behavior after SCI. One might expect that 5-HT pharmacotherapy acts on upregulated spinal 5-HTRs to enhance function, and that exercise alone can influence dendritic atrophy. In the current study, we assessed locomotor recovery and spinal proteins influenced by SCI and therapy. 5-HT, 5-HT 2A R, 5-HT 1A R, and dendritic densities were quantified both early (1 week) and late (9 weeks) after SCI, and also following therapeutic interventions (5-HT pharmacotherapy, bike therapy, or a combination). Interestingly, chronic 5-HT pharmacotherapy largely normalized spinal 5-HTR upregulation following injury. Improvement in locomotor behavior was not correlated to 5-HTR density. These results support the hypothesis that chronic 5-HT pharmacotherapy can mediate recovery following SCI, despite acting on largely normal spinal 5-HTR levels. We next assessed spinal dendritic plasticity and its potential role in locomotor recovery. Single therapies did not normalize the loss of dendritic density after SCI. Groups displaying significantly atrophied dendritic processes were rarely able to achieve weight supported open-field locomotion. Only a combination of 5-HT pharmacotherapy and bike therapy enabled significant open-field weigh-supported stepping, mediated in part by restoring spinal dendritic density. These results support the use of combined therapies to synergistically impact multiple markers of spinal plasticity and improve motor recovery. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Transient potentials in dendritic systems of arbitrary geometry.

    Science.gov (United States)

    Butz, E G; Cowan, J D

    1974-09-01

    A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic "current" inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells.

  17. Statistical Physics of Neural Systems with Nonadditive Dendritic Coupling

    Directory of Open Access Journals (Sweden)

    David Breuer

    2014-03-01

    Full Text Available How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such nonadditive dendritic processing on single-neuron responses and the performance of associative-memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain network convergence and increase the robustness of memory performance against noise. Interestingly, an intermediate number of dendritic branches is optimal for memory functionality.

  18. Fragile X Mental Retardation Protein and Dendritic Local Translation of the Alpha Subunit of the Calcium/Calmodulin-Dependent Kinase II Messenger RNA Are Required for the Structural Plasticity Underlying Olfactory Learning.

    Science.gov (United States)

    Daroles, Laura; Gribaudo, Simona; Doulazmi, Mohamed; Scotto-Lomassese, Sophie; Dubacq, Caroline; Mandairon, Nathalie; Greer, Charles August; Didier, Anne; Trembleau, Alain; Caillé, Isabelle

    2016-07-15

    In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Identification and Structural Characterization of Novel A-kinase Anchoring Proteins

    NARCIS (Netherlands)

    Burgers, P.P.

    2014-01-01

    The work described in this thesis initially focusses on the discovery of a novel PKA-RI specific AKAP: small membrane AKAP (smAKAP). Afterwards we centre on the structural interaction between smAKAP and PKA-RI to reveal the first PKA-RI specific AKAP bound to PKA-RI crystal structure. Interestingly,

  20. Modification of dendritic development.

    Science.gov (United States)

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  1. Dendritic cells in Barrett's esophagus and esophageal adenocarcinoma.

    Science.gov (United States)

    Bobryshev, Yuri V; Tran, Dinh; Killingsworth, Murray C; Buckland, Michael; Lord, Reginald V N

    2009-01-01

    Like other premalignant conditions that develop in the presence of chronic inflammation, the development and progression of Barrett's esophagus is associated with the development of an immune response, but how this immune response is regulated is poorly understood. A comprehensive literature search failed to find any report of the presence of dendritic cells in Barrett's intestinal metaplasia and esophageal adenocarcinoma and this prompted our study. We used immunohistochemical staining and electron microscopy to examine whether dendritic cells are present in Barrett's esophagus and esophageal adenocarcinoma. Immunohistochemical staining with CD83, a specific marker for dendritic cells, was performed on paraffin-embedded sections of Barrett's intestinal metaplasia (IM, n = 12), dysplasia (n = 11) and adenocarcinoma (n = 14). CD83+ cells were identified in the lamina propria surrounding intestinal type glands in Barrett's IM, dysplasia, and cancer tissues. Computerized quantitative analysis showed that the numbers of dendritic cells were significantly higher in cancer tissues. Double immunostaining with CD83, CD20, and CD3, and electron microscopy demonstrated that dendritic cells are present in Barrett's esophagus and form clusters with T cells and B cells directly within the lamina propria. These findings demonstrate that dendritic cells are present in Barrett's tissues, with a significant increase in density in adenocarcinoma compared to benign Barrett's esophagus. Dendritic cells may have a role in the pathogenesis and immunotherapy treatment of Barrett's esophagus and adenocarcinoma.

  2. A Quantitative Golgi Study of Dendritic Morphology in the Mice Striatal Medium Spiny Neurons

    Directory of Open Access Journals (Sweden)

    Ana Hladnik

    2017-04-01

    Full Text Available In this study we have provided a detailed quantitative morphological analysis of medium spiny neurons (MSNs in the mice dorsal striatum and determined the consistency of values among three groups of animals obtained in different set of experiments. Dendritic trees of 162 Golgi Cox (FD Rapid GolgiStain Kit impregnated MSNs from 15 adult C57BL/6 mice were 3-dimensionally reconstructed using Neurolucida software, and parameters of dendritic morphology have been compared among experimental groups. The parameters of length and branching pattern did not show statistically significant difference and were highly consistent among groups. The average neuronal soma surface was between 160 μm2 and 180 μm2, and the cells had 5–6 primary dendrites with close to 40 segments per neuron. Sholl analysis confirmed regular pattern of dendritic branching. The total length of dendrites was around 2100 μm with the average length of individual branching (intermediate segment around 22 μm and for the terminal segment around 100 μm. Even though each experimental group underwent the same strictly defined protocol in tissue preparation and Golgi staining, we found inconsistency in dendritic volume and soma surface. These changes could be methodologically influenced during the Golgi procedure, although without affecting the dendritic length and tree complexity. Since the neuronal activity affects the dendritic thickness, it could not be excluded that observed volume inconsistency was related with functional states of neurons prior to animal sacrifice. Comprehensive analyses of tree complexity and dendritic length provided here could serve as an additional tool for understanding morphological variability in the most numerous neuronal population of the striatum. As reference values they could provide basic ground for comparisons with the results obtained in studies that use various models of genetically modified mice in explaining different pathological conditions that

  3. The role of dendritic non-linearities in single neuron computation

    Directory of Open Access Journals (Sweden)

    Boris Gutkin

    2014-05-01

    Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.

  4. [Peripheral facial nerve lesion induced long-term dendritic retraction in pyramidal cortico-facial neurons].

    Science.gov (United States)

    Urrego, Diana; Múnera, Alejandro; Troncoso, Julieta

    2011-01-01

    Little evidence is available concerning the morphological modifications of motor cortex neurons associated with peripheral nerve injuries, and the consequences of those injuries on post lesion functional recovery. Dendritic branching of cortico-facial neurons was characterized with respect to the effects of irreversible facial nerve injury. Twenty-four adult male rats were distributed into four groups: sham (no lesion surgery), and dendritic assessment at 1, 3 and 5 weeks post surgery. Eighteen lesion animals underwent surgical transection of the mandibular and buccal branches of the facial nerve. Dendritic branching was examined by contralateral primary motor cortex slices stained with the Golgi-Cox technique. Layer V pyramidal (cortico-facial) neurons from sham and injured animals were reconstructed and their dendritic branching was compared using Sholl analysis. Animals with facial nerve lesions displayed persistent vibrissal paralysis throughout the five week observation period. Compared with control animal neurons, cortico-facial pyramidal neurons of surgically injured animals displayed shrinkage of their dendritic branches at statistically significant levels. This shrinkage persisted for at least five weeks after facial nerve injury. Irreversible facial motoneuron axonal damage induced persistent dendritic arborization shrinkage in contralateral cortico-facial neurons. This morphological reorganization may be the physiological basis of functional sequelae observed in peripheral facial palsy patients.

  5. Primary Dendrite Array Morphology: Observations from Ground-based and Space Station Processed Samples

    Science.gov (United States)

    Tewari, Surendra; Rajamure, Ravi; Grugel, Richard; Erdmann, Robert; Poirier, David

    2012-01-01

    Influence of natural convection on primary dendrite array morphology during directional solidification is being investigated under a collaborative European Space Agency-NASA joint research program, "Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST)". Two Aluminum-7 wt pct Silicon alloy samples, MICAST6 and MICAST7, were directionally solidified in microgravity on the International Space Station. Terrestrially grown dendritic monocrystal cylindrical samples were remelted and directionally solidified at 18 K/cm (MICAST6) and 28 K/cm (MICAST7). Directional solidification involved a growth speed step increase (MICAST6-from 5 to 50 micron/s) and a speed decrease (MICAST7-from 20 to 10 micron/s). Distribution and morphology of primary dendrites is currently being characterized in these samples, and also in samples solidified on earth under nominally similar thermal gradients and growth speeds. Primary dendrite spacing and trunk diameter measurements from this investigation will be presented.

  6. Naive helper T cells from BCG-vaccinated volunteers produce IFN-gamma and IL-5 to mycobacterial antigen-pulsed dendritic cells.

    Directory of Open Access Journals (Sweden)

    JoĂŤl Pestel

    2008-06-01

    Full Text Available Mycobacterium bovis bacillus Calmette-GuĂŠrin (BCG is a live vaccine that has been used in routine vaccination against tuberculosis for nearly 80 years. However, its efficacy is controversial. The failure of BCG vaccination may be at least partially explained by the induction of poor or inappropriate host responses. Dendritic cells (DCs are likely to play a key role in the induction of immune response to mycobacteria by polarizing the reactivity of T lymphocytes toward a Th1 profile, contributing to the generation of protective cellular immunity against mycobacteria. In this study we aimed to investigate the production of Th1 and Th2 cytokines by naive CD4+ T cells to mycobacterial antigen-pulsed DCs in the group of young, healthy BCG vaccinated volunteers. The response of naive helper T cells was compared with the response of total blood lymphocytes. Our present results clearly showed that circulating naive CD45RA+CD4+ lymphocytes from BCG-vaccinated subjects can become effector helper cells producing IFN-gamma and IL-5 under the stimulation by autologous dendritic cells presenting mycobacterial protein antigen-PPD or infected with live M. bovis BCG bacilli.

  7. Naive helper T cells from BCG-vaccinated volunteers produce IFN-gamma and IL-5 to mycobacterial antigen-pulsed dendritic cells.

    Science.gov (United States)

    Kowalewicz-Kulbat, Magdalena; Kaźmierczak, Dominik; Donevski, Stefan; Biet, Franck; Pestel, Joël; Rudnicka, Wiesława

    2008-01-01

    Mycobacterium bovis bacillus Calmette-Guérin (BCG) is a live vaccine that has been used in routine vaccination against tuberculosis for nearly 80 years. However, its efficacy is controversial. The failure of BCG vaccination may be at least partially explained by the induction of poor or inappropriate host responses. Dendritic cells (DCs) are likely to play a key role in the induction of immune response to mycobacteria by polarizing the reactivity of T lymphocytes toward a Th1 profile, contributing to the generation of protective cellular immunity against mycobacteria. In this study we aimed to investigate the production of Th1 and Th2 cytokines by naive CD4+ T cells to mycobacterial antigen-pulsed DCs in the group of young, healthy BCG vaccinated volunteers. The response of naive helper T cells was compared with the response of total blood lymphocytes. Our present results clearly showed that circulating naive CD45RA+CD4+ lymphocytes from BCG-vaccinated subjects can become effector helper cells producing IFN-gamma and IL-5 under the stimulation by autologous dendritic cells presenting mycobacterial protein antigen-PPD or infected with live M. bovis BCG bacilli.

  8. Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin

    NARCIS (Netherlands)

    van Gisbergen, Klaas P. J. M.; Aarnoudse, Corlien A.; Meijer, Gerrit A.; Geijtenbeek, Teunis B. H.; van Kooyk, Yvette

    2005-01-01

    Dendritic cells play a pivotal role in the induction of antitumor immune responses. Immature dendritic cells are located intratumorally within colorectal cancer and intimately interact with tumor cells, whereas mature dendritic cells are present peripheral to the tumor. The majority of colorectal

  9. Tau causes synapse loss without disrupting calcium homeostasis in the rTg4510 model of tauopathy.

    Directory of Open Access Journals (Sweden)

    Katherine J Kopeikina

    Full Text Available Neurofibrillary tangles (NFTs of tau are one of the defining hallmarks of Alzheimer's disease (AD, and are closely associated with neuronal degeneration. Although it has been suggested that calcium dysregulation is important to AD pathogenesis, few studies have probed the link between calcium homeostasis, synapse loss and pathological changes in tau. Here we test the hypothesis that pathological changes in tau are associated with changes in calcium by utilizing in vivo calcium imaging in adult rTg4510 mice that exhibit severe tau pathology due to over-expression of human mutant P301L tau. We observe prominent dendritic spine loss without disruptions in calcium homeostasis, indicating that tangles do not disrupt this fundamental feature of neuronal health, and that tau likely induces spine loss in a calcium-independent manner.

  10. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    Science.gov (United States)

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  11. The unfolded protein response is required for dendrite morphogenesis

    Science.gov (United States)

    Wei, Xing; Howell, Audrey S; Dong, Xintong; Taylor, Caitlin A; Cooper, Roshni C; Zhang, Jianqi; Zou, Wei; Sherwood, David R; Shen, Kang

    2015-01-01

    Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homolog of mammalian BiP/ grp78). Surprisingly, a single transmembrane leucine-rich repeat protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.06963.001 PMID:26052671

  12. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  13. Adolescent cocaine exposure simplifies orbitofrontal cortical dendritic arbors

    Directory of Open Access Journals (Sweden)

    Lauren M DePoy

    2014-10-01

    Full Text Available Cocaine and amphetamine remodel dendritic spines within discrete cortico-limbic brain structures including the orbitofrontal cortex (oPFC. Whether dendrite structure is similarly affected, and whether pre-existing cellular characteristics influence behavioral vulnerabilities to drugs of abuse, remain unclear. Animal models provide an ideal venue to address these issues because neurobehavioral phenotypes can be defined both before, and following, drug exposure. We exposed mice to cocaine from postnatal days 31-35, corresponding to early adolescence, using a dosing protocol that causes impairments in an instrumental reversal task in adulthood. We then imaged and reconstructed excitatory neurons in deep-layer oPFC. Prior cocaine exposure shortened and simplified arbors, particularly in the basal region. Next, we imaged and reconstructed orbital neurons in a developmental-genetic model of cocaine vulnerability – the p190rhogap+/- mouse. p190RhoGAP is an actin cytoskeleton regulatory protein that stabilizes dendrites and dendritic spines, and p190rhogap+/- mice develop rapid and robust locomotor activation in response to cocaine. Despite this, oPFC dendritic arbors were intact in drug-naïve p190rhogap+/- mice. Together, these findings provide evidence that adolescent cocaine exposure has long-term effects on dendrite structure in the oPFC, and they suggest that cocaine-induced modifications in dendrite structure may contribute to the behavioral effects of cocaine more so than pre-existing structural abnormalities in this cell population.

  14. Murid herpesvirus-4 exploits dendritic cells to infect B cells.

    Directory of Open Access Journals (Sweden)

    Miguel Gaspar

    2011-11-01

    Full Text Available Dendritic cells (DCs play a central role in initiating immune responses. Some persistent viruses infect DCs and can disrupt their functions in vitro. However, these viruses remain strongly immunogenic in vivo. Thus what role DC infection plays in the pathogenesis of persistent infections is unclear. Here we show that a persistent, B cell-tropic gamma-herpesvirus, Murid Herpesvirus-4 (MuHV-4, infects DCs early after host entry, before it establishes a substantial infection of B cells. DC-specific virus marking by cre-lox recombination revealed that a significant fraction of the virus latent in B cells had passed through a DC, and a virus attenuated for replication in DCs was impaired in B cell colonization. In vitro MuHV-4 dramatically altered the DC cytoskeleton, suggesting that it manipulates DC migration and shape in order to spread. MuHV-4 therefore uses DCs to colonize B cells.

  15. Cellular Automaton Modeling of Dendritic Growth Using a Multi-grid Method

    International Nuclear Information System (INIS)

    Natsume, Y; Ohsasa, K

    2015-01-01

    A two-dimensional cellular automaton model with a multi-grid method was developed to simulate dendritic growth. In the present model, we used a triple-grid system for temperature, solute concentration and solid fraction fields as a new approach of the multi-grid method. In order to evaluate the validity of the present model, we carried out simulations of single dendritic growth, secondary dendrite arm growth, multi-columnar dendritic growth and multi-equiaxed dendritic growth. From the results of the grid dependency from the simulation of single dendritic growth, we confirmed that the larger grid can be used in the simulation and that the computational time can be reduced dramatically. In the simulation of secondary dendrite arm growth, the results from the present model were in good agreement with the experimental data and the simulated results from a phase-field model. Thus, the present model can quantitatively simulate dendritic growth. From the simulated results of multi-columnar and multi-equiaxed dendrites, we confirmed that the present model can perform simulations under practical solidification conditions. (paper)

  16. Active action potential propagation but not initiation in thalamic interneuron dendrites

    Science.gov (United States)

    Casale, Amanda E.; McCormick, David A.

    2012-01-01

    Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033

  17. Equiaxed and columnar dendrite growth simulation in Al-7Si- Mg ternary alloys using cellular automaton method

    International Nuclear Information System (INIS)

    Chen, Rui; Xu, Qingyan; Liu, Baicheng

    2015-01-01

    In this paper, a modified cellular automaton (MCA) model allowing for the prediction of dendrite growth of Al-Si-Mg ternary alloys in two and three dimensions is presented. The growth kinetic of S/L interface is calculated based on the solute equilibrium approach. In order to describe the dendrite growth with arbitrarily crystallographic orientations, this model introduces a modified decentered octahedron algorithm for neighborhood tracking to eliminate the effect of mesh dependency on dendrite growth. The thermody namic and kinetic data needed for dendrite growth is obtained through coupling with Pandat software package in combination with thermodynamic/kinetic/equilibrium phase diagram calculation databases. The effect of interactions between various alloying elements on solute diffusion coefficient is considered in the model. This model has first been used to simulate Al-7Si (weight percent) binary dendrite growth followed by a validation using theoretical predictions. For ternary alloy, Al-7Si-0.5Mg dendrite simulation has been carried out and the effects of solute interactions on diffusion matrix as well as the differences of Si and Mg in solute distribution have been analyzed. For actual application, this model has been applied to simulate the equiaxed dendrite growth with various crystallographic orientations of Al-7Si-0.36Mg ternary alloy, and the predicted secondary dendrite arm spacing (SDAS) shows a reasonable agreement with the experimental ones. Furthermore, the columnar dendrite growth in directional solidification has also been simulated and the predicted primary dendrite arm spacing (PDAS) is in good agreement with experiments. The simulated results effectively demonstrate the abilities of the model in prediction of dendritic microstructure of Al-Si-Mg ternary alloy. (paper)

  18. Equiaxed and columnar dendrite growth simulation in Al-7Si- Mg ternary alloys using cellular automaton method

    Science.gov (United States)

    Chen, Rui; Xu, Qingyan; Liu, Baicheng

    2015-06-01

    In this paper, a modified cellular automaton (MCA) model allowing for the prediction of dendrite growth of Al-Si-Mg ternary alloys in two and three dimensions is presented. The growth kinetic of S/L interface is calculated based on the solute equilibrium approach. In order to describe the dendrite growth with arbitrarily crystallographic orientations, this model introduces a modified decentered octahedron algorithm for neighborhood tracking to eliminate the effect of mesh dependency on dendrite growth. The thermody namic and kinetic data needed for dendrite growth is obtained through coupling with Pandat software package in combination with thermodynamic/kinetic/equilibrium phase diagram calculation databases. The effect of interactions between various alloying elements on solute diffusion coefficient is considered in the model. This model has first been used to simulate Al-7Si (weight percent) binary dendrite growth followed by a validation using theoretical predictions. For ternary alloy, Al-7Si-0.5Mg dendrite simulation has been carried out and the effects of solute interactions on diffusion matrix as well as the differences of Si and Mg in solute distribution have been analyzed. For actual application, this model has been applied to simulate the equiaxed dendrite growth with various crystallographic orientations of Al-7Si-0.36Mg ternary alloy, and the predicted secondary dendrite arm spacing (SDAS) shows a reasonable agreement with the experimental ones. Furthermore, the columnar dendrite growth in directional solidification has also been simulated and the predicted primary dendrite arm spacing (PDAS) is in good agreement with experiments. The simulated results effectively demonstrate the abilities of the model in prediction of dendritic microstructure of Al-Si-Mg ternary alloy.

  19. Con-nectin axons and dendrites.

    Science.gov (United States)

    Beaudoin, Gerard M J

    2006-07-03

    Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.

  20. Dendrites Enable a Robust Mechanism for Neuronal Stimulus Selectivity.

    Science.gov (United States)

    Cazé, Romain D; Jarvis, Sarah; Foust, Amanda J; Schultz, Simon R

    2017-09-01

    Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.

  1. Anti tumor vaccination with hybrid dendritic-tumour cells

    International Nuclear Information System (INIS)

    Barbuto, Jose Alexandre M.; Neves, Andreia R.; Ensina, Luis Felipe C.; Anselmo, Luciene B.

    2005-01-01

    Dendritic cells are the most potent antigen-presenting cells, and the possibility of their use for cancer vaccination has renewed the interest in this therapeutic modality. Nevertheless, the ideal immunization protocol with these cells has not been described yet. In this paper we describe the preliminary results of a protocol using autologous tumor and allogeneic dendritic hybrid cell vaccination every 6 weeks, for metastatic melanoma and renal cell carcinoma (RCC) patients. Thirty-five patients were enrolled between March 2001 and March 2003. Though all patients included presented with large tumor burdens and progressive diseases, 71% of them experienced stability after vaccination, with durations up to 19 months. Among RCC patients 3/22 (14%) presented objective responses. The median time to progression was 4 months for melanoma and 5.7 months for RCC patients; no significant untoward effects were noted. Furthermore, immune function, as evaluated by cutaneous delayed-type hypersensitivity reactions to recall antigens and by peripheral blood proliferative responses to tumor-specific and nonspecific stimuli, presented a clear tendency to recover in vaccinated patients. These data indicate that dendritic cell-tumor cell hybrid vaccination affects the natural history of advanced cancer and provide support for its study in less advanced patients, who should, more likely, benefit even more from this approach. (author)

  2. Blastic plasmacytoid dendritic cell neoplasm with absolute monocytosis at presentation

    Directory of Open Access Journals (Sweden)

    Jaworski JM

    2015-02-01

    Full Text Available Joseph M Jaworski,1,2 Vanlila K Swami,1 Rebecca C Heintzelman,1 Carrie A Cusack,3 Christina L Chung,3 Jeremy Peck,3 Matthew Fanelli,3 Micheal Styler,4 Sanaa Rizk,4 J Steve Hou1 1Department of Pathology and Laboratory Medicine, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 2Department of Pathology, Mercy Fitzgerald Hospital, Darby, PA, USA; 3Department of Dermatology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 4Department of Hematology/Oncology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA Abstract: Blastic plasmacytoid dendritic cell neoplasm is an uncommon malignancy derived from precursors of plasmacytoid dendritic cells. Nearly all patients present initially with cutaneous manifestations, with many having extracutaneous disease additionally. While response to chemotherapy initially is effective, relapse occurs in most, with a leukemic phase ultimately developing. The prognosis is dismal. While most of the clinical and pathologic features are well described, the association and possible prognostic significance between peripheral blood absolute monocytosis (>1.0 K/µL and blastic plasmacytoid dendritic cell neoplasm have not been reported. We report a case of a 68-year-old man who presented with a rash for 4–5 months. On physical examination, there were multiple, dull-pink, indurated plaques on the trunk and extremities. Complete blood count revealed thrombocytopenia, absolute monocytosis of 1.7 K/µL, and a negative flow cytometry study. Biopsy of an abdominal lesion revealed typical features of blastic plasmacytoid dendritic cell neoplasm. Patients having both hematologic and nonhematologic malignancies have an increased incidence of absolute monocytosis. Recent studies examining Hodgkin and non-Hodgkin lymphoma patients have suggested that this is a negative prognostic factor. The association between

  3. Large-area sheet task advanced dendritic web growth development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.

    1984-01-01

    The thermal models used for analyzing dendritic web growth and calculating the thermal stress were reexamined to establish the validity limits imposed by the assumptions of the models. Also, the effects of thermal conduction through the gas phase were evaluated and found to be small. New growth designs, both static and dynamic, were generated using the modeling results. Residual stress effects in dendritic web were examined. In the laboratory, new techniques for the control of temperature distributions in three dimensions were developed. A new maximum undeformed web width of 5.8 cm was achieved. A 58% increase in growth velocity of 150 micrometers thickness was achieved with dynamic hardware. The area throughput goals for transient growth of 30 and 35 sq cm/min were exceeded.

  4. Formation mechanism of PbTe dendritic nanostructures grown by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sangwoo; Kim, Hyunghoon; Lee, Ho Seong, E-mail: hs.lee@knu.ac.kr

    2017-02-01

    The formation mechanism of PbTe dendritic nanostructures grown at room temperature by electrodeposition in nitric acid electrolytes containing Pb and Te was investigated. Scanning electron microscopy and transmission electron microscopy analyses indicated that the PbTe dendritic nanostructures were composed of triangular-shaped units surrounded by {111} and {110} planes. Because of the interfacial energy anisotropy of the {111} and {110} planes and the difference in the current density gradient, the growth rate in the vertical direction of the (111) basal plane was slower than that in the direction of the tip of the triangular shape, leading to growth in the tip direction. In contrast to the general growth direction of fcc dendrites, namely <100>, the tip direction of the {111} basal plane for our samples was <112>, and the PbTe dendritic nanostructures grew in the tip direction. The angles formed by the main trunk and first branches were regular and approximately 60°, and those between the first and second branches were also approximately 60°. Finally, the nanostructures grew in single-crystalline dendritic form. - Highlights: • PbTe dendrite nanostructures were grown by electrodeposition. • PbTe dendritic nanostructures were composed of triangular-shaped units. • The formation mechanism of PbTe dendrite nanostructures was characterized.

  5. Mechanism of ad5 vaccine immunity and toxicity: fiber shaft targeting of dendritic cells.

    Directory of Open Access Journals (Sweden)

    Cheng Cheng

    2007-02-01

    Full Text Available Recombinant adenoviral (rAd vectors elicit potent cellular and humoral immune responses and show promise as vaccines for HIV-1, Ebola virus, tuberculosis, malaria, and other infections. These vectors are now widely used and have been generally well tolerated in vaccine and gene therapy clinical trials, with many thousands of people exposed. At the same time, dose-limiting adverse responses have been observed, including transient low-grade fevers and a prior human gene therapy fatality, after systemic high-dose recombinant adenovirus serotype 5 (rAd5 vector administration in a human gene therapy trial. The mechanism responsible for these effects is poorly understood. Here, we define the mechanism by which Ad5 targets immune cells that stimulate adaptive immunity. rAd5 tropism for dendritic cells (DCs was independent of the coxsackievirus and adenovirus receptor (CAR, its primary receptor or the secondary integrin RGD receptor, and was mediated instead by a heparin-sensitive receptor recognized by a distinct segment of the Ad5 fiber, the shaft. rAd vectors with CAR and RGD mutations did not infect a variety of epithelial and fibroblast cell types but retained their ability to transfect several DC types and stimulated adaptive immune responses in mice. Notably, the pyrogenic response to the administration of rAd5 also localized to the shaft region, suggesting that this interaction elicits both protective immunity and vector-induced fevers. The ability of replication-defective rAd5 viruses to elicit potent immune responses is mediated by a heparin-sensitive receptor that interacts with the Ad5 fiber shaft. Mutant CAR and RGD rAd vectors target several DC and mononuclear subsets and induce both adaptive immunity and toxicity. Understanding of these interactions facilitates the development of vectors that target DCs through alternative receptors that can improve safety while retaining the immunogenicity of rAd vaccines.

  6. Recrystallization phenomena of solution grown paraffin dendrites

    NARCIS (Netherlands)

    Hollander, F.F.A.; Hollander, F.; Stasse, O.; van Suchtelen, J.; van Enckevort, W.J.P.

    2001-01-01

    Paraffin crystals were grown from decane solutions using a micro-Bridgman set up for in-situ observation of the morphology at the growth front. It is shown that for large imposed velocities, dendrites are obtained. After dendritic growth, aging or recrystallization processes set in rather quickly,

  7. Effect of inhibitors on Zn-dendrite formation for zinc-polyaniline secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Kan Jinqing; Xue Huaiguo; Mu Shaolin [Dept. of Chemistry, Teacher`s College, Yangzhou Univ. (China)

    1998-07-15

    The effects of Pb{sup 2+}, sodium lauryl sulfate and Triton X-100 on inhibition of Zn-dendrite growth in Zn-polyaniline batteries were studied by scanning electron micrograph and cyclic voltammetry. The results show that Triton X-100 in the region of 0.02-500 ppm in the electrolyte containing 2.5 M ZnCl{sub 2} and 2.0 M NH{sub 4}Cl with pH 4.40 can effectively inhibit zinc-dendrite growth during charge-discharge cycles of the battery and yield longer cycles. (orig.)

  8. miR126-5p down-regulation facilitates axon degeneration and NMJ disruption via a non-cell-autonomous mechanism in ALS.

    Science.gov (United States)

    Maimon, Roy; Ionescu, Ariel; Bonnie, Avichai; Sweetat, Sahar; Wald-Altman, Shane; Inbar, Shani; Gradus, Tal; Trotti, Davide; Weil, Miguel; Behar, Oded; Perlson, Eran

    2018-05-17

    Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in Amyotrophic Lateral Sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR-126-5p in pre-symptomatic ALS male mice models, and an increase in its targets: axon destabilizing type-3 Semaphorins and their co-receptor Neuropilins. Utilizing compartmentalized in vitro co-cultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 (NRP1) blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS. SIGNIFICANCE STATEMENT In spite of some progress, currently no effective treatment is available for ALS. We suggest a novel regulatory role for miR126-5p in ALS and demonstrate for the first time a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo. Copyright © 2018 Maimon et al.

  9. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Karuppasamy, A., E-mail: karuppasamy@psnacet.edu.in

    2015-12-30

    Graphical abstract: - Highlights: • Dendrite structured Ti doped WO{sub 3} (WTO) thin films are grown by co-sputtering. • Sputtering condition influences structure and surface morphology of WTO films. • Titanium doping and annealing lead to dendritic surface structures in WTO films. • Structural, optical, electrochromic and photocatalytic properties of WTO films. • Enhanced electrochromism and photocatalysis in dendrite structured WTO thin films. - Abstract: Titanium doped tungsten oxide (Ti:WO{sub 3}) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O{sub 2} atmosphere. Ti:WO{sub 3} thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10{sup −3}–5.0 × 10{sup −3} mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm{sup 2}) and tungsten (3 W/cm{sup 2}) were kept constant. Ti:WO{sub 3} films deposited at an oxygen pressure of 5 × 10{sup −3} mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm{sup 2}/C at λ = 550 nm), electron/ion storage and removal capacity (Qc: −22.01 mC/cm{sup 2}, Qa: 17.72 mC/cm{sup 2}), reversibility (80%) and methylene blue decomposition rate (−1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO{sub 3} films.

  10. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    International Nuclear Information System (INIS)

    Karuppasamy, A.

    2015-01-01

    Graphical abstract: - Highlights: • Dendrite structured Ti doped WO 3 (WTO) thin films are grown by co-sputtering. • Sputtering condition influences structure and surface morphology of WTO films. • Titanium doping and annealing lead to dendritic surface structures in WTO films. • Structural, optical, electrochromic and photocatalytic properties of WTO films. • Enhanced electrochromism and photocatalysis in dendrite structured WTO thin films. - Abstract: Titanium doped tungsten oxide (Ti:WO 3 ) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O 2 atmosphere. Ti:WO 3 thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10 −3 –5.0 × 10 −3 mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm 2 ) and tungsten (3 W/cm 2 ) were kept constant. Ti:WO 3 films deposited at an oxygen pressure of 5 × 10 −3 mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm 2 /C at λ = 550 nm), electron/ion storage and removal capacity (Qc: −22.01 mC/cm 2 , Qa: 17.72 mC/cm 2 ), reversibility (80%) and methylene blue decomposition rate (−1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO 3 films.

  11. Mannan-MUC1-pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma.

    Science.gov (United States)

    Loveland, Bruce E; Zhao, Anne; White, Shane; Gan, Hui; Hamilton, Kate; Xing, Pei-Xiang; Pietersz, Geoffrey A; Apostolopoulos, Vasso; Vaughan, Hilary; Karanikas, Vaios; Kyriakou, Peter; McKenzie, Ian F C; Mitchell, Paul L R

    2006-02-01

    Tumor antigen-loaded dendritic cells show promise for cancer immunotherapy. This phase I study evaluated immunization with autologous dendritic cells pulsed with mannan-MUC1 fusion protein (MFP) to treat patients with advanced malignancy. Eligible patients had adenocarcinoma expressing MUC1, were of performance status 0 to 1, with no autoimmune disease. Patients underwent leukapheresis to generate dendritic cells by culture ex vivo with granulocyte macrophage colony-stimulating factor and interleukin 4 for 5 days. Dendritic cells were then pulsed overnight with MFP and harvested for reinjection. Patients underwent three cycles of leukapheresis and reinjection at monthly intervals. Patients with clinical benefit were able to continue with dendritic cell-MFP immunotherapy. Ten patients with a range of tumor types were enrolled, with median age of 60 years (range, 33-70 years); eight patients were of performance status 0 and two of performance status 1. Dendritic cell-MFP therapy led to strong T-cell IFNgamma Elispot responses to the vaccine and delayed-type hypersensitivity responses at injection sites in nine patients who completed treatments. Immune responses were sustained at 1 year in monitored patients. Antibody responses were seen in three patients only and were of low titer. Side effects were grade 1 only. Two patients with clearly progressive disease (ovarian and renal carcinoma) at entry were stable after initial therapy and went on to further leukapheresis and dendritic cell-MFP immunotherapy. These two patients have now each completed over 3 years of treatment. Immunization produced T-cell responses in all patients with evidence of tumor stabilization in 2 of the 10 advanced cancer patients treated. These data support further clinical evaluation of this dendritic cell-MFP immunotherapy.

  12. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.

    Science.gov (United States)

    Koenig, S; Müller, L; Smith, D K

    2001-03-02

    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  13. Wound Disruption Following Colorectal Operations.

    Science.gov (United States)

    Moghadamyeghaneh, Zhobin; Hanna, Mark H; Carmichael, Joseph C; Mills, Steven; Pigazzi, Alessio; Nguyen, Ninh T; Stamos, Michael J

    2015-12-01

    Postoperative wound disruption is associated with high morbidity and mortality. We sought to identify the risk factors and outcomes of wound disruption following colorectal resection. The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database was used to examine the clinical data of patients who underwent colorectal resection from 2005 to 2013. Multivariate regression analysis was performed to identify risk factors of wound disruption. We sampled a total of 164,297 patients who underwent colorectal resection. Of these, 2073 (1.3 %) had wound disruption. Patients with wound disruption had significantly higher mortality (5.1 vs. 1.9 %, AOR: 1.46, P = 0.01). The highest risk of wound disruption was seen in patients with wound infection (4.8 vs. 0.9 %, AOR: 4.11, P disruption such as chronic steroid use (AOR: 1.71, P disruption compared to open surgery (AOR: 0.61, P disruption occurs in 1.3 % of colorectal resections, and it correlates with mortality of patients. Wound infection is the strongest predictor of wound disruption. Chronic steroid use, obesity, severe COPD, prolonged operation, non-elective admission, and serum albumin level are strongly associated with wound disruption. Utilization of the laparoscopic approach may decrease the risk of wound disruption when possible.

  14. Characteristics of the Dendrite Growth in the Electrochemical Alane Production Process

    Directory of Open Access Journals (Sweden)

    Park Hyun-Kyu

    2016-01-01

    Full Text Available The electrochemical alane production process was proposed for a feasible production of alane. The operation of process was difficult because of short circuit by a dendrite growth in the reactor. Therefore, characteristics of the dendrite growth in the process were investigated. We conducted the electrochemical alane production process using Teflon block for inhibition of the dendrite growth. The obtained dendrite was characterized by XRD, SEM and ICP-AES. It was concluded that the dendrite growth was attributed to a melting and agglomeration of Al fine particles existed in the solution.

  15. Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity.

    Science.gov (United States)

    Prado, Carolina; Contreras, Francisco; González, Hugo; Díaz, Pablo; Elgueta, Daniela; Barrientos, Magaly; Herrada, Andrés A; Lladser, Álvaro; Bernales, Sebastián; Pacheco, Rodrigo

    2012-04-01

    Dendritic cells (DCs) are responsible for priming T cells and for promoting their differentiation from naive T cells into appropriate effector cells. Emerging evidence suggests that neurotransmitters can modulate T cell-mediated immunity. However, the involvement of specific neurotransmitters or receptors remains poorly understood. In this study, we analyzed the role of dopamine in the regulation of DC function. We found that DCs express dopamine receptors as well as the machinery necessary to synthesize, store, and degrade dopamine. Notably, the expression of D5R decreased upon LPS-induced DC maturation. Deficiency of D5R on the surface of DCs impaired LPS-induced IL-23 and IL-12 production and consequently attenuated the activation and proliferation of Ag-specific CD4(+) T cells. To determine the relevance of D5R expressed on DCs in vivo, we studied the role of this receptor in the modulation of a CD4(+) T cell-driven autoimmunity model. Importantly, D5R-deficient DCs prophylactically transferred into wild-type recipients were able to reduce the severity of experimental autoimmune encephalomyelitis. Furthermore, mice transferred with D5R-deficient DCs displayed a significant reduction in the percentage of Th17 cells infiltrating the CNS without differences in the percentage of Th1 cells compared with animals transferred with wild-type DCs. Our findings demonstrate that by contributing to CD4(+) T cell activation and differentiation to Th17 phenotype, D5R expressed on DCs is able to modulate the development of an autoimmune response in vivo.

  16. Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Yi Zao; Chen Shanjun; Chen Yan; Luo Jiangshan; Wu Weidong; Yi Yougen; Tang Yongjian

    2012-01-01

    Dendritic Ag/Au bimetallic nanostructures have been synthesized via a multi-stage galvanic replacement reaction of Ag dendrites in a chlorauric acid (HAuCl 4 ) solution at room temperature. After five stages of replacement reaction, one obtains structures with protruding nanocubes; these will mature into many porous structures with a few Ag atoms that are left over dendrites. The morphological and compositional changes which evolved with reaction stages were analyzed by using scanning electron microscopy, transmission electron microscopy, UV–visible spectroscopy, selected area electron diffraction and energy-dispersive X-ray spectrometry. The replacement of Ag with Au was confirmed. A formation mechanism involving the original development of Ag dendrites into porous structures with the growth of Au nanocubes on this underlying structure as the number of reaction stages is proposed. This was confirmed by surface-enhanced Raman scattering (SERS). The dendritic Ag/Au bimetallic nanostructures could be used as efficient SERS active substrates. It was found that the SERS enhancement ability was dependent on the stage of galvanic replacement reaction. - Highlights: ► Dendritic Ag/Au bimetallic nanostructures have been synthesized. ► Protruding cubic nanostructures obtained after 5 stages mature into porous structures. ► SERS results allow confirm the proposed formation mechanism. ► The nanostructures could be used as efficient SERS active substrates.

  17. A dendrite-suppressing composite ion conductor from aramid nanofibres.

    Science.gov (United States)

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A

    2015-01-27

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  18. Thermosolutal convection and macrosegregation in dendritic alloys

    Science.gov (United States)

    Poirier, David R.; Heinrich, J. C.

    1993-01-01

    A mathematical model of solidification, that simulates the formation of channel segregates or freckles, is presented. The model simulates the entire solidification process, starting with the initial melt to the solidified cast, and the resulting segregation is predicted. Emphasis is given to the initial transient, when the dendritic zone begins to develop and the conditions for the possible nucleation of channels are established. The mechanisms that lead to the creation and eventual growth or termination of channels are explained in detail and illustrated by several numerical examples. A finite element model is used for the simulations. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. The major task was to develop the solidification model. In addition, other tasks that were performed in conjunction with the modeling of dendritic solidification are briefly described.

  19. Dendritic growth forms of borax crystals

    International Nuclear Information System (INIS)

    Takoo, R.K.; Patel, B.R.; Joshi, M.S.

    1983-01-01

    A variety of dendritic forms of borax grown from solutions by the film formation method is given. The changing growth morphology is followed as a function of concentration and temperature. The initial, intermediate and final growth morphologies are described and discussed. Influence of evaporation rate and supersaturation on the mechanism of growth is assessed. It is suggested that under all crystallization conditions, borax crystals have dendritic form in the initial stages of growth. (author)

  20. Thermosolutal convection during dendritic solidification

    Science.gov (United States)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  1. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice.

    Science.gov (United States)

    Molas, Susanna; Gener, Thomas; Güell, Jofre; Martín, Mairena; Ballesteros-Yáñez, Inmaculada; Sanchez-Vives, Maria V; Dierssen, Mara

    2014-11-11

    Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.

  2. Phase evolution and dendrite growth in laser cladding of aluminium on zirconium

    International Nuclear Information System (INIS)

    Yue, T.M.; Xie, H.; Lin, X.; Yang, H.O.

    2011-01-01

    Research highlights: → Laser cladding of Al on pure Zr. → A series of phase evolutions occurred across the laser-clad coating. → Epitaxial crystal growth, backward dendrite growth and two-phase eutectic dendritic growth. → Phase and microstructure evolution is discussed. - Abstract: Aluminium was laser clad on a pure zirconium substrate using the blown powder method. The microstructure across the laser-clad coating was studied. Starting from the bottom to the top surface of the coating, a series of phase evolutions had occurred: (Zr) → (Zr) + AlZr 2 + AlZr 3 → Al 4 Zr 5 + Al 3 Zr 2 → Al 3 Zr 2 + AlZr 2 → Al 2 Zr → Al 2 Zr + Al 3 Zr. This resulted in an epitaxial columnar crystal growth at the re-melt substrate boundary, a band of backward growth Al 3 Zr 2 dendrites towards the lower half of the coating, and a two-phase eutectic dendritic growth of Al 2 Zr + Al 3 Zr towards the top of the coating. The evolution of the various phases and microstructures is discussed in conjunction with the Al-Zr phase diagram, the criteria for planar interface instability, and the theory of eutectic growth under rapid solidification conditions (the TMK model).

  3. CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection

    Science.gov (United States)

    Liu, Jingjing; Zhang, Di; Kimata, Jason T.; Zhou, Paul

    2014-01-01

    CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1. PMID:25541967

  4. Supramolecular effects in dendritic systems containing photoactive groups

    Directory of Open Access Journals (Sweden)

    GIANLUCA CAMILLO AZZELLINI

    2000-03-01

    Full Text Available In this article are described dendritic structures containing photoactive groups at the surface or in the core. The observed supramolecular effects can be attributed to the nature of the photoactive group and their location in the dendritic architecture. The peripheric azobenzene groups in these dendrimeric compounds can be regarded as single residues that retain the spectroscopic and photochemical properties of free azobenzene moiety. The E and Z forms of higher generation dendrimer, functionalized with azobenzene groups, show different host ability towards eosin dye, suggesting the possibility of using such dendrimer in photocontrolled host-guest systems. The photophysical properties of many dendritic-bipyridine ruthenium complexes have been investigated. Particularly in aerated medium more intense emission and a longer excited-state lifetime are observed as compared to the parent unsubstituted bipyridine ruthenium complexes. These differences can be attributed to a shielding effect towards dioxygen quenching originated by the dendritic branches.

  5. Disruption of STAT5b-Regulated Sexual Dimorphism of the Liver Transcriptome by Diverse Factors Is a Common Event

    Science.gov (United States)

    Signal transducer and activator of transcription 5b (STAT5b) is a growth hormone (GH)-activated transcription factor and a master regulator of sexually dimorphic gene expression in the liver. Disruption ofthe GH hypothalamo-pituitary-liver axis controlling STAT5b activation can ...

  6. Numerical Simulation on Dendrite Growth During Solidification of Al-4%Cu Alloy

    Directory of Open Access Journals (Sweden)

    ZHANG Min

    2016-06-01

    Full Text Available A new two-dimensional cellular automata and finite difference (CA-FD model of dendritic growth was improved, which a perturbation function was introduced to control the growth of secondary and tertiary dendrite, the concentration of the solute was clearly defined as the liquid solute concentration and the solid-phase solute concentration in dendrite growth processes, and the eight moore calculations method was used to reduce the anisotropy caused by the shape of the grid in the process of redistribution and diffusion of solute. Single and multi equiaxed dendrites along different preferential direction, single and multi directions of columnar dendrites of Al-4% Cu alloy were simulated, as well as the distribution of liquid solute concentration and solid solute concentration. The simulation results show that the introduced perturbation function can promote the dendrite branching, liquid/solid phase solute calculation model is able to simulate the solute distribution of liquid/solid phase accurately in the process of dendritic growth, and the improved model can realize competitive growth of dendrite in any direction.

  7. Evaluating the Effects of Cytomegalovirus Glycoprotein B on the Maturation and Function of Monocyte-derived dendritic cells

    Directory of Open Access Journals (Sweden)

    Afsson shariat

    2015-11-01

    Full Text Available Background & Objectives: Interaction of cytomegalovirus glycoprotein B with toll-like receptors of dendritic cells leads to early signaling and innate immune responses. The aim of this study is to evaluate the effects of cytomegalovirus glycoprotein B on the maturation and function of monocyte-derived dendritic cells in treated groups in comparison with control groups. Materials & Methods: Blood samples were taken from 5 healthy volunteers. Following the generation of monocyte-derived dendritic cells on the fifth day of cell culture, half of the immature dendritic cells were treated with cytomegalovirus glycoprotein B, and the rest of them were induced to mature dendritic untreated cells and were used as the control group. The maturation and function of dendritic cells were evaluated in these two groups. Results: The gene expression level of toll-like receptor-4 significantly increased in the group treated with glycoprotein B (p < 0.05, whereas there were no significant differences in the expression rates of CD83, CD86, CD1a, and HLA-DR and the secretion of IL-23 from monocyte-derived dendritic cells between the treated groups and the controls. Conclusion: The increase in the gene expression of toll-like receptor-4 in monocyte-derived dendritic cells treated with cytomegalovirus glycoprotein B showed that cell contact is required to elicit cellular antiviral response and toll-like receptor activation. Thus, it is critical to recognize the viral and cellular determinants of the immune system in order to develop new therapeutic strategies against cytomegalovirus.

  8. The natural hallucinogen 5-MeO-DMT, component of Ayahuasca, disrupts cortical function in rats: reversal by antipsychotic drugs.

    Science.gov (United States)

    Riga, Maurizio S; Soria, Guadalupe; Tudela, Raúl; Artigas, Francesc; Celada, Pau

    2014-08-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen component of Ayahuasca, an Amazonian beverage traditionally used for ritual, religious and healing purposes that is being increasingly used for recreational purposes in US and Europe. 5MeO-DMT is of potential interest for schizophrenia research owing to its hallucinogenic properties. Two other psychotomimetic agents, phencyclidine and 2,5-dimethoxy-4-iodo-phenylisopropylamine (DOI), markedly disrupt neuronal activity and reduce the power of low frequency cortical oscillations (<4 Hz, LFCO) in rodent medial prefrontal cortex (mPFC). Here we examined the effect of 5-MeO-DMT on cortical function and its potential reversal by antipsychotic drugs. Moreover, regional brain activity was assessed by blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). 5-MeO-DMT disrupted mPFC activity, increasing and decreasing the discharge of 51 and 35% of the recorded pyramidal neurons, and reducing (-31%) the power of LFCO. The latter effect depended on 5-HT1A and 5-HT2A receptor activation and was reversed by haloperidol, clozapine, risperidone, and the mGlu2/3 agonist LY379268. Likewise, 5-MeO-DMT decreased BOLD responses in visual cortex (V1) and mPFC. The disruption of cortical activity induced by 5-MeO-DMT resembles that produced by phencyclidine and DOI. This, together with the reversal by antipsychotic drugs, suggests that the observed cortical alterations are related to the psychotomimetic action of 5-MeO-DMT. Overall, the present model may help to understand the neurobiological basis of hallucinations and to identify new targets in antipsychotic drug development.

  9. PKA RIα/A-kinase anchoring proteins 10 signaling pathway and the prognosis of colorectal cancer.

    Science.gov (United States)

    Wang, Mojin; Li, Yuan; Wang, Rui; Wang, Ziqiang; Chen, Keling; Zhou, Bin; Zhou, Zongguang; Sun, Xiaofeng

    2015-03-01

    Previously study showed that the loss of the control of cAMP-dependent protein kinase A RIα (PKA RIα)/ A-kinase anchoring proteins 10 (AKAP10) signaling pathway initiate dysregulation of cellular healthy physiology leading to tumorigenesis. The aim of this study was to investigate the role of PKA RIα/AKAP10 signaling pathway in colorectal cancer (CRC). The AKAP10 expression at the mRNA and protein level have been analyzed in colon cancer cell lines, primary CRCs and matched normal mucosa samples, and compared in accordance with specific clinicopathological features of CRC. The correlation between expression of AKAP10 and PKA RIα were also analyzed. Compared with HCT116 and SW480 cells, the AKAP10 was significantly upregulated in the colon cell line KM12C and its metastatic counterparts, KM12SM and KM12L4A. Moreover, the KM12SM and KM12L4A having high metastatic potentials displayed the elevated levels of AKAP10 compared with KM12C having poor metastatic potential. A notably higher level of AKAP10 expression was found in CRC tissues at both mRNA and protein levels. Increased expression of AKAP10 in CRC patients was positively associated with the depth of invasion and the grade of differentiation. Univariate survival analysis showed that the increased expression of AKAP10 was related to poorer survival. Cox multivariate regression analysis confirmed that AKAP10 was an independent predictor of the overall survival of CRC patients. PKA RIα mRNA was also expressed at high levels in CRC. The correlation coefficient between mRNA expression of AKAP10 and PKA RIα in CRC was 0.417. AKAP10 mRNA overexpression was correlated significantly with PKA RIα. Our data indicated that PKA RIα/AKAP10 signaling pathway is associated with the progression and prognosis of CRC. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  10. Structural and optical properties of solid-state synthesized Au dendritic structures

    International Nuclear Information System (INIS)

    Gentile, A.; Ruffino, F.; Romano, L.; Boninelli, S.; Reitano, R.; Piccitto, G.; Grimaldi, M.G.

    2014-01-01

    Graphical abstract: - Highlights: • Au dendritic structures were produced on surfaces. • The chemical and structural properties of the dendritic structures are presented. • The optical properties of the dendritic structures are presented. • The ability of the dendritic structures to serve as light scattering centers is presented. - Abstract: Au dendrites (Au Ds) are synthesized, on various substrates, by a simple physical methodology involving the deposition of a thin Au film on a Si surface followed by thermal processes at high temperatures (>1273 K) in an inert ambient (N 2 ), using fast heating and cooling rates (1273 K/min). Microscopic analyses reveal the evolution, thanks to the thermal processes, of the Au film from a continuous coating to dendritic structures covering the entire sample surface. In particular, transmission electron microscopy analyses indicate that, below the Au surface, the dendritic structures consist of Si atoms originating from the substrate. Furthermore, optical characterizations reveal the ability of the Au Ds to serve as scattering centers in the infrared region. Finally, on the basis of the experimental observations, a phenomenological model for the growth of the Au Ds is proposed

  11. Effects of dendritic load on the firing frequency of oscillating neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Lewis, Timothy J

    2011-03-01

    We study the effects of passive dendritic properties on the dynamics of neuronal oscillators. We find that the addition of a passive dendrite can sometimes have counterintuitive effects on firing frequency. Specifically, the addition of a hyperpolarized passive dendritic load can either increase, decrease, or have negligible effects on firing frequency. We use the theory of weak coupling to derive phase equations for "ball-and-stick" model neurons and two-compartment model neurons. We then develop a framework for understanding how the addition of passive dendrites modulates the frequency of neuronal oscillators. We show that the average value of the neuronal oscillator's phase response curves measures the sensitivity of the neuron's firing rate to the dendritic load, including whether the addition of the dendrite causes an increase or decrease in firing frequency. We interpret this finding in terms of to the slope of the neuronal oscillator's frequency-applied current curve. We also show that equivalent results exist for constant and noisy point-source input to the dendrite. We note that the results are not specific to neurons but are applicable to any oscillator subject to a passive load.

  12. Developmental shaping of dendritic arbors in Drosophila relies on tightly regulated intra-neuronal activity of protein kinase A (PKA).

    Science.gov (United States)

    Copf, Tijana

    2014-09-15

    Dendrites develop morphologies characterized by multiple levels of complexity that involve neuron type specific dendritic length and particular spatial distribution. How this is developmentally regulated and in particular which signaling molecules are crucial in the process is still not understood. Using Drosophila class IV dendritic arborization (da) neurons we test in vivo the effects of cell-autonomous dose-dependent changes in the activity levels of the cAMP-dependent Protein Kinase A (PKA) on the formation of complex dendritic arbors. We find that genetic manipulations of the PKA activity levels affect profoundly the arbor complexity with strongest impact on distal branches. Both decreasing and increasing PKA activity result in a reduced complexity of the arbors, as reflected in decreased dendritic length and number of branching points, suggesting an inverted U-shape response to PKA. The phenotypes are accompanied by changes in organelle distribution: Golgi outposts and early endosomes in distal dendritic branches are reduced in PKA mutants. By using Rab5 dominant negative we find that PKA interacts genetically with the early endosomal pathway. We test if the possible relationship between PKA and organelles may be the result of phosphorylation of the microtubule motor dynein components or Rab5. We find that Drosophila cytoplasmic dynein components are direct PKA phosphorylation targets in vitro, but not in vivo, thus pointing to a different putative in vivo target. Our data argue that tightly controlled dose-dependent intra-neuronal PKA activity levels are critical in determining the dendritic arbor complexity, one of the possible ways being through the regulation of organelle distribution. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Dendrite tungsten liquation in molybdenum alloys

    International Nuclear Information System (INIS)

    Kantor, M.M.; Ageeva, E.N.; Kolotinskij, V.N.

    1992-01-01

    A study was made on primary crystallization structure of ingots of Mo-W-B system alloys with electron microscopy were used to establish, that cells and cellular dendrites were the main elements of primary crystallization structure. Method of local X-ray spectral analysis enabled to establish, that intracrystallite liquation at cellular growth developed more intensively, as compared to the case of cellular dendrite formation. Change of boron content in alloys didn't practically affect the degree of development of intracrystallite W liquation in Mo

  14. Conserved RNA-Binding Proteins Required for Dendrite Morphogenesis in Caenorhabditis elegans Sensory Neurons

    Science.gov (United States)

    Antonacci, Simona; Forand, Daniel; Wolf, Margaret; Tyus, Courtney; Barney, Julia; Kellogg, Leah; Simon, Margo A.; Kerr, Genevieve; Wells, Kristen L.; Younes, Serena; Mortimer, Nathan T.; Olesnicky, Eugenia C.; Killian, Darrell J.

    2015-01-01

    The regulation of dendritic branching is critical for sensory reception, cell−cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans. PMID:25673135

  15. Soft-template synthesis of single-crystalline CdS dendrites.

    Science.gov (United States)

    Niu, Haixia; Yang, Qing; Tang, Kaibin; Xie, Yi; Zhu, Yongchun

    2006-01-01

    The single-crystalline CdS dendrites have been fabricated from the reaction of CdCl2 and thiourea at 180 degrees C, in which glycine was employed as a soft template. The obtained products were explored by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and selected area electronic diffraction. The optical properties of CdS dendrites have been investigated by ultraviolet and visible light (UV-vis) and photoluminescence techniques. The investigations indicated that the dendrites were grown due to the anisotropic properties enhanced by the use of Glycine in the route.

  16. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study

    Directory of Open Access Journals (Sweden)

    Yi Eunhee S

    2010-04-01

    Full Text Available Abstract Background Abnormal immune responses are believed to be highly relevant in the pathogenesis of chronic obstructive pulmonary disease (COPD. Dendritic cells provide a critical checkpoint for immunity by their capacity to both induce and suppress immunity. Although evident that cigarette smoke, the primary cause of COPD, significantly influences dendritic cell functions, little is known about the roles of dendritic cells in the pathogenesis of COPD. Methods The extent of dendritic cell infiltration in COPD tissue specimens was determined using immunohistochemical localization of CD83+ cells (marker of matured myeloid dendritic cells, and CD1a+ cells (Langerhans cells. The extent of tissue infiltration with Langerhans cells was also determined by the relative expression of the CD207 gene in COPD versus control tissues. To determine mechanisms by which dendritic cells accumulate in COPD, complimentary studies were conducted using monocyte-derived human dendritic cells exposed to cigarette smoke extract (CSE, and dendritic cells extracted from mice chronically exposed to cigarette smoke. Results In human COPD lung tissue, we detected a significant increase in the total number of CD83+ cells, and significantly higher amounts of CD207 mRNA when compared with control tissue. Human monocyte-derived dendritic cells exposed to CSE (0.1-2% exhibited enhanced survival in vitro when compared with control dendritic cells. Murine dendritic cells extracted from mice exposed to cigarette smoke for 4 weeks, also demonstrated enhanced survival compared to dendritic cells extracted from control mice. Acute exposure of human dendritic cells to CSE induced the cellular pro-survival proteins heme-oxygenase-1 (HO-1, and B cell lymphoma leukemia-x(L (Bcl-xL, predominantly through oxidative stress. Although activated human dendritic cells conditioned with CSE expressed diminished migratory CCR7 expression, their migration towards the CCR7 ligand CCL21 was not

  17. A Model of Dendritic Cell Therapy for Melanoma

    Directory of Open Access Journals (Sweden)

    Ami eRadunskaya

    2013-03-01

    Full Text Available Dendritic cells are a promising immunotherapy tool for boosting an individual's antigen specific immune response to cancer. We develop a mathematical model using differential and delay-differential equations to describe the interactions between dendritic cells, effector-immune cells and tumor cells. We account for the trafficking of immune cells between lymph, blood, and tumor compartments. Our model reflects experimental results both for dendritic-cell trafficking and for immune suppression of tumor growth in mice. In addition, in silico experiments suggest more effective immunotherapy treatment protocols can be achieved by modifying dose location and schedule. A sensitivity analysis of the model reveals which patient-specific parameters have the greatest impact on treatment efficacy.

  18. Thy-1+ dendritic cells in murine epidermis are bone marrow-derived

    International Nuclear Information System (INIS)

    Breathnach, S.M.; Katz, S.I.

    1984-01-01

    Thy-1+, Ly-5+ dendritic cells have recently been described as a resident cell population in murine epidermis, but their ontogeny and function are unknown. The origin and turnover of epidermal Thy-1+ cells utilizing chimeric mice were investigated. Lethally x-irradiated AKR/J (Thy-1.1+) and AKR/Cum (Thy-1.2+) mice were reconstituted with allogeneic bone marrow cells with or without thymocytes from congenic AKR/Cum or AKR/J mice, respectively. The density of residual indigenous Thy-1.1+ cells in AKR/J chimeras and Thy-1.2+ cells in AKR/Cum chimeras was substantially reduced following x-irradiation, as determined by immunofluorescence staining of epidermal sheets. Epidermal repopulation by allogeneic Thy-1+ dendritic epidermal cells was first observed at 5 weeks in AKR/J chimeras and at 7 weeks in AKR/Cum chimeras and progressed slowly. Repopulation was not enhanced by increasing the number of allogeneic bone marrow cells injected from 2 X 10(7) to 10(8) cells or by the addition of 8 X 10(7) allogeneic thymocytes to the donor inoculate. Epidermal repopulation by allogeneic Thy-1.2+ cells was not seen in AKR/J mice reconstituted with syngeneic bone marrow cells and allogeneic Thy-1.2+ AKR/Cum thymocytes. Taken together, these results indicate that Thy-1+ dendritic epidermal cells are derived from the bone marrow and suggest that they are not related to conventional peripheral T-lymphocytes

  19. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    Science.gov (United States)

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  20. DSM-5 intermittent explosive disorder: Relationship with Disruptive Mood Dysregulation Disorder.

    Science.gov (United States)

    Coccaro, Emil F

    2018-04-30

    This study was designed to estimate how many adults with DSM-5 Intermittent Explosive Disorder (IED) would also meet diagnostic criteria for Disruptive Mood Dysregulation Disorder (DMDD). This was done by examining how many individuals with IED would meet the DMDD criterion of being persistently angry in between impulsive aggressive outbursts. The first one-hundred study participants diagnosed with DSM-5 IED in our clinical research program were included in this study. Two questions were added to the IED module from the Structured Clinical Interview for DSM-5 Disorders (SCID) inquiring about the duration of anger in between impulsive aggressive outbursts in IED study participants. Data regarding aggression, impulsivity, anger expression, and related dysphoric variables were also collected. The proportion of time spent as angry in between impulsive aggressive outbursts was DSM-5 IED. Despite this, persistently-angry (i.e., angry >50% time in between outbursts) IED study participants displayed no differences from not-persistently-angry IED study participants in dysphoric and aggression/impulsivity related variables. These data indicate that inter-outburst anger in those with IED is relatively brief and that such individuals do not generally display the kind of persistent anger that is a diagnostic feature of DMDD. Copyright © 2018. Published by Elsevier Inc.

  1. Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders

    Science.gov (United States)

    2016-12-01

    1 AWARD NUMBER: W81XWH-14-1-0433 TITLE: Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders PRINCIPAL INVESTIGATOR: Anis...SUBTITLE 5a. CONTRACT NUMBER Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders 5b. GRANT NUMBER W81XWH-14-1-0433 5c. PROGRAM...chloride co-transporters that control EGABA could be used as a corrective strategy for the synaptic and circuit disruptions demonstrated in the

  2. Xenopus laevis Retinal Ganglion Cell Dendritic Arbors Develop Independently of Visual Stimulation

    Directory of Open Access Journals (Sweden)

    Barbara Lom

    2004-01-01

    Full Text Available Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arborization. Neuronal activity is known to be an important factor in shaping dendritic and axonal arborization. Thus, we reared tadpoles in dark and light environments then used rhodamine dextran retrograde labeling to identify RGCs in the retina. When we compared RGC dendritic arbors from tadpoles reared in dark and light environments, we found no morphological differences, suggesting that physiological visual activity did not contribute to the morphological development of Xenopus RGC dendritic arbors.

  3. Neuronal gain modulability is determined by dendritic morphology: A computational optogenetic study.

    Science.gov (United States)

    Jarvis, Sarah; Nikolic, Konstantin; Schultz, Simon R

    2018-03-01

    The mechanisms by which the gain of the neuronal input-output function may be modulated have been the subject of much investigation. However, little is known of the role of dendrites in neuronal gain control. New optogenetic experimental paradigms based on spatial profiles or patterns of light stimulation offer the prospect of elucidating many aspects of single cell function, including the role of dendrites in gain control. We thus developed a model to investigate how competing excitatory and inhibitory input within the dendritic arbor alters neuronal gain, incorporating kinetic models of opsins into our modeling to ensure it is experimentally testable. To investigate how different topologies of the neuronal dendritic tree affect the neuron's input-output characteristics we generate branching geometries which replicate morphological features of most common neurons, but keep the number of branches and overall area of dendrites approximately constant. We found a relationship between a neuron's gain modulability and its dendritic morphology, with neurons with bipolar dendrites with a moderate degree of branching being most receptive to control of the gain of their input-output relationship. The theory was then tested and confirmed on two examples of realistic neurons: 1) layer V pyramidal cells-confirming their role in neural circuits as a regulator of the gain in the circuit in addition to acting as the primary excitatory neurons, and 2) stellate cells. In addition to providing testable predictions and a novel application of dual-opsins, our model suggests that innervation of all dendritic subdomains is required for full gain modulation, revealing the importance of dendritic targeting in the generation of neuronal gain control and the functions that it subserves. Finally, our study also demonstrates that neurophysiological investigations which use direct current injection into the soma and bypass the dendrites may miss some important neuronal functions, such as gain

  4. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    Science.gov (United States)

    Hausselt, Susanne E; Euler, Thomas; Detwiler, Peter B; Denk, Winfried

    2007-07-01

    Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca(2+) signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+)] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+) channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  5. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    Directory of Open Access Journals (Sweden)

    Susanne E Hausselt

    2007-07-01

    Full Text Available Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs playing a major role. SACs generate larger dendritic Ca(2+ signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+ channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  6. Dendritic azo compounds as a new type amorphous molecular material with quick photoinduced surface-relief-grating formation ability

    Science.gov (United States)

    He, Yaning; Gu, Xinyu; Guo, Miaocai; Wang, Xiaogong

    2008-09-01

    A series of dendritic azobenzene-containing compounds have been synthesized as a new type amorphous molecular material, which can show quick surface-relief-grating (SRG) formation ability upon light irradiation. For the synthesis, the dendritic precursor tris(2-(ethyl(phenyl)amino)ethyl)benzene-1,3,5-tricarboxylate and tris(3,5-bis(2-(ethyl(phenyl)amino)ethoxy)benzyl)benzene-1,3,5-tricarboxylate were prepared by esterification reactions between 1,3,5-benzenetricarbonyl chloride and N-ethyl- N-hydroxyethyl-aniline and 3,5-bis[2-( N-ethylanilino)ethoxy] benzylalcohol. The precursors were, respectively reacted with the diazonium salts of 4-nitroaniline, 4-aminobenzoic acid, and 4-aminobenzonitrile to introduce different types of donor-acceptor azo chromophores at the peripheral positions. The structure and properties of the dendritic azo compounds were characterized by the spectroscopic methods and thermal analysis. The surface-relief-grating (SRG) formation behavior of the dendritic azo compounds was studied by exposing the spin-coated thin films to an interference pattern of laser beams (532 nm) at modest intensity (100 mW/cm 2). The results show that the azo compounds can form stable amorphous glasses in a broad temperature range. The glass transition temperatures ( Tgs) depend on the backbone structures and the type of the peripheral azo chromophors. The type of the electron withdrawing groups in the p-positions of the terminal azobenzene units shows a significant influence on the SRG inscription rate. For the compounds containing the same type azo chromophores, the SRG inscription rate is also affected by the backbone structure.

  7. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  8. Galactic Pal-eontology: abundance analysis of the disrupting globular cluster Palomar 5

    Science.gov (United States)

    Koch, Andreas; Côté, Patrick

    2017-05-01

    We present a chemical abundance analysis of the tidally disrupted globular cluster (GC) Palomar 5. By co-adding high-resolution spectra of 15 member stars from the cluster's main body, taken at low signal-to-noise with the Keck/HIRES spectrograph, we were able to measure integrated abundance ratios of 24 species of 20 elements including all major nucleosynthetic channels (namely the light element Na; α-elements Mg, Si, Ca, Ti; Fe-peak and heavy elements Sc, V, Cr, Mn, Co, Ni, Cu, Zn; and the neutron-capture elements Y, Zr, Ba, La, Nd, Sm, Eu). The mean metallicity of -1.56 ± 0.02 ± 0.06 dex (statistical and systematic errors) agrees well with the values from individual, low-resolution measurements of individual stars, but it is lower than previous high-resolution results of a small number of stars in the literature. Comparison with Galactic halo stars and other disrupted and unperturbed GCs renders Pal 5 a typical representative of the Milky Way halo population, as has been noted before, emphasizing that the early chemical evolution of such clusters is decoupled from their later dynamical history. We also performed a test as to the detectability of light element variations in this co-added abundance analysis technique and found that this approach is not sensitive even in the presence of a broad range in sodium of 0.6 dex, a value typically found in the old halo GCs. Thus, while methods of determining the global abundance patterns of such objects are well suited to study their overall enrichment histories, chemical distinctions of their multiple stellar populations is still best obtained from measurements of individual stars. Full Table 3 is is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A41

  9. Electroless Growth of Aluminum Dendrites in NaCl-AlCl3 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H.A.; Berg, Rolf W.

    1989-01-01

    The spontaneous growth of aluminum dendrites after deposition was observed and examined in sodium chloride-aluminumchloride melts. The concentration gradient of AlCl3 in the vicinity of the cathode surface resulting from electrolysisconstitutes a type of concentration cell with aluminum dendrites...... as electrodes. The short-circuit discharge of thecell is found to be the driving force for the growth of aluminum dendrites. Such a concentration gradient is proposed to beone of the causes for dendrite formation in the case of metal deposition....

  10. Yersinia enterocolitica YopP inhibits MAP kinase-mediated antigen uptake in dendritic cells

    Czech Academy of Sciences Publication Activity Database

    Autenrieth, S. E.; Adkins, Irena; Rösemann, R.; Gunst, D.; Zahir, N.; Kracht, M.; Ruckdeschel, K.; Wagner, H.; Borgmann, S.; Autenrieth, I. B.

    2007-01-01

    Roč. 9, č. 2 (2007), s. 425-437 ISSN 1462-5814 Institutional research plan: CEZ:AV0Z50200510 Keywords : yersinia enterocolitica * dendritic cell s * immunity Subject RIV: EC - Immunology Impact factor: 5.293, year: 2007

  11. Preferential control of basal dendritic protrusions by EphB2.

    Directory of Open Access Journals (Sweden)

    Matthew S Kayser

    2011-02-01

    Full Text Available The flow of information between neurons in many neural circuits is controlled by a highly specialized site of cell-cell contact known as a synapse. A number of molecules have been identified that are involved in central nervous system synapse development, but knowledge is limited regarding whether these cues direct organization of specific synapse types or on particular regions of individual neurons. Glutamate is the primary excitatory neurotransmitter in the brain, and the majority of glutamatergic synapses occur on mushroom-shaped protrusions called dendritic spines. Changes in the morphology of these structures are associated with long-lasting modulation of synaptic strength thought to underlie learning and memory, and can be abnormal in neuropsychiatric disease. Here, we use rat cortical slice cultures to examine how a previously-described synaptogenic molecule, the EphB2 receptor tyrosine kinase, regulates dendritic protrusion morphology in specific regions of the dendritic arbor in cortical pyramidal neurons. We find that alterations in EphB2 signaling can bidirectionally control protrusion length, and knockdown of EphB2 expression levels reduces the number of dendritic spines and filopodia. Expression of wild-type or dominant negative EphB2 reveals that EphB2 preferentially regulates dendritic protrusion structure in basal dendrites. Our findings suggest that EphB2 may act to specify synapse formation in a particular subcellular region of cortical pyramidal neurons.

  12. File list: Unc.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...203,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Dendritic_Cells.bed ...

  13. File list: Unc.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...189,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.Dendritic_Cells.bed ...

  14. R5 HIV-1 envelope attracts dendritic cells to cross the human intestinal epithelium and sample luminal virions via engagement of the CCR5.

    Science.gov (United States)

    Cavarelli, Mariangela; Foglieni, Chiara; Rescigno, Maria; Scarlatti, Gabriella

    2013-05-01

    The gastrointestinal tract is a principal route of entry and site of persistence of human immunodeficiency virus type 1 (HIV-1). The intestinal mucosa, being rich of cells that are the main target of the virus, represents a primary site of viral replication and CD4(+) T-cell depletion. Here, we show both in vitro and ex vivo that HIV-1 of R5 but not X4 phenotype is capable of selectively triggering dendritic cells (DCs) to migrate within 30 min between intestinal epithelial cells to sample virions and transfer infection to target cells. The engagement of the chemokine receptor 5 on DCs and the viral envelope, regardless of the genetic subtype, drive DC migration. Viruses penetrating through transient opening of the tight junctions likely create a paracellular gradient to attract DCs. The formation of junctions with epithelial cells may initiate a haptotactic process of DCs and at the same time favour cell-to-cell viral transmission. Our findings indicate that HIV-1 translocation across the intestinal mucosa occurs through the selective engagement of DCs by R5 viruses, and may guide the design of new prevention strategies. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  15. Denervation-induced homeostatic dendritic plasticity in morphological granule cell models

    Directory of Open Access Journals (Sweden)

    Hermann Cuntz

    2014-03-01

    Full Text Available Neuronal death and subsequent denervation of target areas are major consequences of several neurological conditions such asischemia or neurodegeneration (Alzheimer's disease. The denervation-induced axonal loss results in reorganization of the dendritic tree of denervated neurons. The dendritic reorganization has been previously studied using entorhinal cortex lesion (ECL. ECL leads to shortening and loss of dendritic segments in the denervated outer molecular layer of the dentate gyrus. However, the functional importance of these long-term dendritic alterations is not yet understood and their impact on neuronal electrical properties remains unclear. Here we analyzed what happens to the electrotonic structure and excitability of dentate granule cells after lesion-induced alterations of their dendritic morphology, assuming all other parameters remain equal. We performed comparative electrotonic analysis in anatomically and biophysically realistic compartmental models of 3D-reconstructed healthy and denervated granule cells. Using the method of morphological modeling based on optimization principles minimizing the amount of wiring and maximizing synaptic democracy, we built artificial granule cells which replicate morphological features of their real counterparts. Our results show that somatofugal and somatopetal voltage attenuation in the passive cable model are strongly reduced in denervated granule cells. In line with these predictions, the attenuation both of simulated backpropagating action potentials and forward propagating EPSPs was significantly reduced in dendrites of denervated neurons. Intriguingly, the enhancement of action potential backpropagation occurred specifically in the denervated dendritic layers. Furthermore, simulations of synaptic f-I curves revealed a homeostatic increase of excitability in denervated granule cells. In summary, our morphological and compartmental modeling indicates that unless modified by changes of

  16. [Influence of dendritic cell infiltration on prognosis and biologic characteristics of progressing gastric cancer].

    Science.gov (United States)

    Huang, Hai-li; Wu, Ben-yan; You, Wei-di; Shen, Ming-shi; Wang, Wen-ju

    2003-09-01

    To study the relation between dendritic cell (DC) infiltration and clinicopathologic parameters, biologic characteristics and prognosis of progressing gastric cancer. The development of apoptotic cell death (apoptotic index, AI) in 61 progressing gastric carcinoma tissues was analyzed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL) method. The PCNA labeling index (PCNA-LI), density of dendritic cells in the tumor were detected by immunohistochemical method by the LSAB kit using antibody against S-100 protein and PC-10. DC infiltration was negatively correlated with lymph node metastasis, clinical stage and PCNA-LI, but positively with AI. The DCs in gastric cancer groups with and without lymph node metastasis were (5.63 +/- 4.37)/HPF and (8.51 +/- 5.57)/HPF with difference significant (P stage lesions were (11.23 +/- 6.05)/HPF, (6.28 +/- 4.37)/HPF and (5.53 +/- 5.19)/HPF also with differences significant (P gastric carcinoma.

  17. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite

    DEFF Research Database (Denmark)

    Chen, Wei R; Shen, Gongyu Y; Shepherd, Gordon M

    2002-01-01

    recordings with computational modeling to analyze action-potential initiation and propagation in the primary dendrite. In response to depolarizing current injection or distal olfactory nerve input, fast Na(+) action potentials were recorded along the entire length of the primary dendritic trunk. With weak......-to-moderate olfactory nerve input, an action potential was initiated near the soma and then back-propagated into the primary dendrite. As olfactory nerve input increased, the initiation site suddenly shifted to the distal primary dendrite. Multi-compartmental modeling indicated that this abrupt shift of the spike......-initiation site reflected an independent thresholding mechanism in the distal dendrite. When strong olfactory nerve excitation was paired with strong inhibition to the mitral cell basal secondary dendrites, a small fast prepotential was recorded at the soma, which indicated that an action potential was initiated...

  18. Influence of submelting on formation of single crystals of nickel alloy with cellular-dendritic structure

    International Nuclear Information System (INIS)

    Pankin, G.N.; Esin, V.O.; Ponomarev, V.V.

    1996-01-01

    A study was made into specific features of cellular - dendritic structure formation in single crystals of nickel base alloy ZhS26 which had been crystallized following the pattern of solid solution. The single crystals in growing were subjected to periodic partial remelting to suppress the transition of cellular structure into a cellular - dendritic one during directional solidification. The results obtained showed the possibility to stabilize cellular growth of solid solution by way of inversion of interphase surface motion in the process of directional crystallization. 4 refs.; 5 figs

  19. Contextual Learning Induces Dendritic Spine Clustering in Retrosplenial Cortex

    Directory of Open Access Journals (Sweden)

    Adam C Frank

    2014-03-01

    Full Text Available Molecular and electrophysiological studies find convergent evidence suggesting that plasticity within a dendritic tree is not randomly dispersed, but rather clustered into functional groups. Further, results from in silico neuronal modeling show that clustered plasticity is able to increase storage capacity 45 times compared to dispersed plasticity. Recent in vivo work utilizing chronic 2-photon microscopy tested the clustering hypothesis and showed that repetitive motor learning is able to induce clustered addition of new dendritic spines on apical dendrites of L5 neurons in primary motor cortex; moreover, clustered spines were found to be more stable than non-clustered spines, suggesting a physiological role for spine clustering. To further test this hypothesis we used in vivo 2-photon imaging in Thy1-YFP-H mice to chronically examine dendritic spine dynamics in retrosplenial cortex (RSC during spatial learning. RSC is a key component of an extended spatial learning and memory circuit that includes hippocampus and entorhinal cortex. Importantly, RSC is known from both lesion and immediate early gene studies to be critically involved in spatial learning and more specifically in contextual fear conditioning. We utilized a modified contextual fear conditioning protocol wherein animals received a mild foot shock each day for five days; this protocol induces gradual increases in context freezing over several days before the animals reach a behavioral plateau. We coupled behavioral training with four separate in vivo imaging sessions, two before training begins, one early in training, and a final session after training is complete. This allowed us to image spine dynamics before training as well as early in learning and after animals had reached behavioral asymptote. We find that this contextual learning protocol induces a statistically significant increase in the formation of clusters of new dendritic spines in trained animals when compared to home

  20. Dendritic development of Drosophila high order visual system neurons is independent of sensory experience

    Directory of Open Access Journals (Sweden)

    Reuter John E

    2003-06-01

    Full Text Available Abstract Background The complex and characteristic structures of dendrites are a crucial part of the neuronal architecture that underlies brain function, and as such, their development has been a focal point of recent research. It is generally believed that dendritic development is controlled by a combination of endogenous genetic mechanisms and activity-dependent mechanisms. Therefore, it is of interest to test the relative contributions of these two types of mechanisms towards the construction of specific dendritic trees. In this study, we make use of the highly complex Vertical System (VS of motion sensing neurons in the lobula plate of the Drosophila visual system to gauge the importance of visual input and synaptic activity to dendritic development. Results We find that the dendrites of VS1 neurons are unchanged in dark-reared flies as compared to control flies raised on a 12 hour light, 12 hour dark cycle. The dendrites of these flies show no differences from control in dendrite complexity, spine number, spine density, or axon complexity. Flies with genetically ablated eyes show a slight but significant reduction in the complexity and overall length of VS1 dendrites, although this effect may be due to a reduction in the overall size of the dendritic field in these flies. Conclusions Overall, our results indicate no role for visual experience in the development of VS dendrites, while spontaneous activity from photoreceptors may play at most a subtle role in the formation of fully complex dendrites in these high-order visual processing neurons.

  1. Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB.

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    2009-08-01

    Full Text Available Projection neurons of mammalian olfactory bulb (OB, mitral and tufted cells, have dendrites whose morphologies are specifically differentiated for efficient odor information processing. The apical dendrite extends radially and arborizes in single glomerulus where it receives primary input from olfactory sensory neurons that express the same odor receptor. The lateral dendrites extend horizontally in the external plexiform layer and make reciprocal dendrodendritic synapses with granule cells, which moderate mitral/tufted cell activity. The molecular mechanisms regulating dendritic development of mitral/tufted cells is one of the unsolved important problems in the olfactory system. Here, we focused on TrkB receptors to test the hypothesis that neurotrophin-mediate mechanisms contributed to dendritic differentiation of OB mitral/tufted cells.With immunohistochemical analysis, we found that the TrkB neurotrophin receptor is expressed by both apical and lateral dendrites of mitral/tufted cells and that expression is evident during the early postnatal days when these dendrites exhibit their most robust growth and differentiation. To examine the effect of TrkB activation on mitral/tufted cell dendritic development, we cultured OB neurons. When BDNF or NT4 were introduced into the cultures, there was a significant increase in the number of primary neurites and branching points among the mitral/tufted cells. Moreover, BDNF facilitated filopodial extension along the neurites of mitral/tufted cells.In this report, we show for the first time that TrkB activation stimulates the dendritic branching of mitral/tufted cells in developing OB. This suggests that arborization of the apical dendrite in a glomerulus is under the tight regulation of TrkB activation.

  2. Functional Identification of Dendritic Cells in the Teleost Model, Rainbow Trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Bassity, Elizabeth; Clark, Theodore G.

    2012-01-01

    Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro. PMID:22427987

  3. Dendritic spine pathology in autism: lessons learned from mouse models

    Institute of Scientific and Technical Information of China (English)

    Qiangge Zhang; Dingxi Zhou; Guoping Feng

    2016-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that affect up to 1.5% of population in the world. Recent large scale genomic studies show that genetic causes of ASD are very heterogeneous. Gene ontology, pathway analysis and animal model studies have revealed several potential converging mechanisms including postsynaptic dysfunction of excitatory synapses. In this review, we focus on the structural and functional specializations of dendritic spines, and describe their defects in ASD. We use Fragile X syndrome, Rett syndrome and Phe-lan-McDermid syndrome, three of the most studied neurodevelopmental disorders with autism features, as examples to demonstrate the significant contribution made by mouse models towards the understanding of monogenic ASD. We envision that the development and application of new technologies to study the function of dendritic spines in valid animal models will eventually lead to innovative treatments for ASD.

  4. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    Directory of Open Access Journals (Sweden)

    Bardia F Behabadi

    Full Text Available Neocortical pyramidal neurons (PNs receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  5. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum

    OpenAIRE

    Ziegler, Anja; Everett, Helen; Hamza, Eman; Garbani, Mattia; Gerber, Vinzenz; Marti, Eliane; Steinbach, Falko

    2016-01-01

    BACKGROUND: Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including hor...

  6. Development of non-dendritic microstructures in AA6061 cast billets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.-D.; Chadwick, T.A.; Bryant, J.D. [Reynolds Metals Co., Chester, VA (United States)

    2000-07-01

    Non-dendritic structures have been shown to have many advantages over conventional, dendritic structures in castable aluminum alloys. Examples include high structural integrity, reduced porosity, excellent formability and enhanced near net-shape forming capability. Non-dendritic materials are characterized by an equiaxed, globularized grain structure. Previous work has focused on the application of these structures in traditional casting alloys such as A356 and A357, and on the processing of these alloys during semi-solid forming and squeeze casting. There is considerably less information on the impact of non-dendritic microstructures upon solid state deformation, and the use of such microstructures in the processing of traditional wrought aluminum alloys. In this paper, we will present our recent work in casting non-dendritic AA6061 alloy using different techniques, and discuss the effects of cast structure on deformation behavior during solid state processing at elevated temperatures. Cast microstructures were modified during direct chill casting using three different methods: magneto-hydrodynamic (MHD) agitation, mechanical stirring, and high loadings of grain refiner. A detailed microstructure characterization will be presented and discussed in terms of structural integrity, grain morphology, and their effects on deformation in the solid state. (orig.)

  7. Nanofibrous nonwovens based on dendritic-linear-dendritic poly(ethylene glycol) hybrids

    DEFF Research Database (Denmark)

    Kikionis, Stefanos; Ioannou, Efstathia; Andren, Oliver C.J.

    2017-01-01

    unsuccessful. Nevertheless, when these DLD hybrids were blended with an array of different biodegradable polymers as entanglement enhancers, nanofibrous nonwovens were successfully prepared by electrospinning. The pseudogeneration degree of the DLDs, the nature of the co-electrospun polymer and the solvent...... nanofibers. Such dendritic nanofibrous scaffolds can be promising materials for biomedical applications due to their biocompatibility, biodegradability, multifunctionality, and advanced structural architecture....

  8. D1 receptors regulate dendritic morphology in normal and stressed prelimbic cortex.

    Science.gov (United States)

    Lin, Grant L; Borders, Candace B; Lundewall, Leslie J; Wellman, Cara L

    2015-01-01

    Both stress and dysfunction of prefrontal cortex are linked to psychological disorders, and structure and function of medial prefrontal cortex (mPFC) are altered by stress. Chronic restraint stress causes dendritic retraction in the prelimbic region (PL) of mPFC in rats. Dopamine release in mPFC increases during stress, and chronic administration of dopaminergic agonists results in dendritic remodeling. Thus, stress-induced alterations in dopaminergic transmission in PL may contribute to dendritic remodeling. We examined the effects of dopamine D1 receptor (D1R) blockade in PL during daily restraint stress on dendritic morphology in PL. Rats either underwent daily restraint stress (3h/day, 10 days) or remained unstressed. In each group, rats received daily infusions of either the D1R antagonist SCH23390 or vehicle into PL prior to restraint; unstressed and stressed rats that had not undergone surgery were also examined. On the final day of restraint, rats were euthanized and brains were processed for Golgi histology. Pyramidal neurons in PL were reconstructed and dendritic morphology was quantified. Vehicle-infused stressed rats demonstrated dendritic retraction compared to unstressed rats, and D1R blockade in PL prevented this effect. Moreover, in unstressed rats, D1R blockade produced dendritic retraction. These effects were not due to attenuation of the HPA axis response to acute stress: plasma corticosterone levels in a separate group of rats that underwent acute restraint stress with or without D1R blockade were not significantly different. These findings indicate that dopaminergic transmission in mPFC during stress contributes directly to the stress-induced retraction of apical dendrites, while dopamine transmission in the absence of stress is important in maintaining normal dendritic morphology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. File list: InP.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627429...,SRX627427 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.Dendritic_Cells.bed ...

  10. Data for spatial characterization of AC signal propagation over primary neuron dendrites

    Directory of Open Access Journals (Sweden)

    Hojeong Kim

    2016-03-01

    Full Text Available Action potentials generated near the soma propagate not only into the axonal nerve connecting to the adjacent neurons but also into the dendrites interacting with a diversity of synaptic inputs as well as voltage gated ion channels. Measuring voltage attenuation factors between the soma and all single points of the dendrites in the anatomically reconstructed primary neurons with the same cable properties, we report the signal propagation data showing how the alternating current (AC signal such as action potentials back-propagates over the dendrites among different types of primary neurons. Fitting equations and their parameter values for the data are also presented to quantitatively capture the spatial profile of AC signal propagation from the soma to the dendrites in primary neurons. Our data is supplemental to our original study for the dependency of dendritic signal propagation and excitability, and their relationship on the cell type-specific structure in primary neurons (DOI: 10.1016/j.neulet.2015.10.017 [1]. Keywords: Primary neurons, Dendritic signal processing, AC signal propagation, Voltage attenuation analysis

  11. Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Wu Kong-Yan

    2010-06-01

    Full Text Available Abstract Background During cerebellar development, Purkinje cells (PCs form the most elaborate dendritic trees among neurons in the brain, but the mechanism regulating PC arborization remains largely unknown. Geranylgeranyltransferase I (GGT is a prenyltransferase that is responsible for lipid modification of several signaling proteins, such as Rho family small GTPase Rac1, which has been shown to be involved in neuronal morphogenesis. Here we show that GGT plays an important role in dendritic development of PCs. Results We found that GGT was abundantly expressed in the developing rat cerebellum, in particular molecular layer (ML, the region enriched with PC dendrites. Inhibition or down-regulation of GGT using small interference RNA (siRNA inhibited dendritic development of PCs. In contrast, up-regulation of GGT promoted dendritic arborization of PCs. Furthermore, neuronal depolarization induced by high K+ or treatment with brain-derived neurotrophic factor (BDNF promoted membrane association of Rac1 and dendritic development of PCs in cultured cerebellar slices. The effect of BDNF or high K+ was inhibited by inhibition or down-regulation of GGT. Conclusion Our results indicate that GGT plays an important role in Purkinje cell development, and suggest a novel role of GGT in neuronal morphogenesis in vivo.

  12. Apparatus for growing a dendritic web

    International Nuclear Information System (INIS)

    Duncan, C.S.; Mchugh, J.P.; Piotrowski, P.A.; Skutch, M.E.

    1983-01-01

    A melt system including a susceptor-crucible assembly having improved gradient control when melt replenishment is used during dendritic web growth. The improvement lies in the formation of a thermal barrier in the base of the receptor which is in the form of a vertical slot in the region of the susceptor underlying the crucible at the location of a compartmental separator dividing the crucible into a growth compartment and a melt replenishment compartment. The result achieved is a step change in temperature gradient in the melt thereby providing a more uniform temperature in the growth compartment from which the dendritic web is drawn

  13. Chemoresistance of human monocyte-derived dendritic cells is regulated by IL-17A.

    Directory of Open Access Journals (Sweden)

    Selma Olsson Åkefeldt

    Full Text Available Dendritic cells initiate adaptive immune responses, leading either to control cancer by effector T cells or to exacerbate cancer by regulatory T cells that inhibit IFN-γ-mediated Th1-type response. Dendritic cells can also induce Th17-type immunity, mediated by IL-17A. However, the controversial role of this cytokine in cancer requires further investigations. We generated dendritic cells from peripheral blood monocytes to investigate lifespan, phenotype and chemoresistance of dendritic cells, treated with IL-17A with or without IFN-γ. Studying the expression of Bcl-2 family members, we demonstrated that dendritic cells constitutively express one pro-survival Bcl-2 member: MCL1. Immature dendritic cells were CD40(lowHLADR(low CD1a(+ MCL1(+, did not express CD14, CD68 or BCL2A1, and displayed a short 2-day lifespan. IL-17A-treated DC exhibited a semi-mature (CD40(high HLADR(low pre-M2 (CCL22(+ CD206(+ CD163(+ IL1RN(+ IL-10(- CXCL10(- IL-12(- mixed (CD1a(+ CD14+ CD68(+ macrophage-dendritic cell phenotype. They efficiently exerted mannose receptor-mediated endocytosis and did not produce superoxide anions, in the absence of TLR engagement. Interestingly, IL-17A promoted a long-term survival of dendritic cells, beyond 12 days, that correlated to BCL2A1 induction, a pro-survival Bcl-2 family member. BCL2A1 transcription was activated by NF-κB, downstream of IL-17A transduction. Thus, immature dendritic cells only express MCL1, whereas IL-17A-treated dendritic cells concomitantly expressed two pro-survival Bcl-2 family members: MCL1 and BCL2A1. These latter developed chemoresistance to 11 of the 17 chemotherapy agents tested. However, high doses of either vinblastine or cytarabine decreased MCL1 expression and induced dendritic cell death. When IL-17A is produced in vivo, administration of anti-IL-17A biotherapy may impair dendritic cell survival by targeting BCL2A1 expression. Consequently, depending on the effector or regulatory role of dendritic

  14. hamlet, a binary genetic switch between single- and multiple- dendrite neuron morphology.

    Science.gov (United States)

    Moore, Adrian W; Jan, Lily Yeh; Jan, Yuh Nung

    2002-08-23

    The dendritic morphology of neurons determines the number and type of inputs they receive. In the Drosophila peripheral nervous system (PNS), the external sensory (ES) neurons have a single nonbranched dendrite, whereas the lineally related multidendritic (MD) neurons have extensively branched dendritic arbors. We report that hamlet is a binary genetic switch between these contrasting morphological types. In hamlet mutants, ES neurons are converted to an MD fate, whereas ectopic hamlet expression in MD precursors results in transformation of MD neurons into ES neurons. Moreover, hamlet expression induced in MD neurons undergoing dendrite outgrowth drastically reduces arbor branching.

  15. Immunological Characterization of Whole Tumour Lysate-Loaded Dendritic Cells for Cancer Immunotherapy

    Science.gov (United States)

    Ottobrini, Luisa; Biasin, Mara; Borelli, Manuela; Lucignani, Giovanni; Trabattoni, Daria; Clerici, Mario

    2016-01-01

    Introduction Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. Matherials & Methods We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. Results Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. Conclusion Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer. PMID:26795765

  16. Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, D.Q. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Jiao, W.T. [College of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhang, Y.F. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Vocational and Technical College of Building Materials, Qinhuangdao 066004 (China); Wang, B.A.; Li, J.; Zhang, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, M.Z., E-mail: mz550509@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-03-05

    Highlights: • Hardness of dendrite of TiZr-based BMGMCs increases. • Strong work-hardening behavior is obtained after solid solution strengthening. • Lattice distortions of dendrite suffering from rapid cooling are detected. - Abstract: A series of TiZr-based bulk metallic glass matrix composites (BMGMCs) with distinguished mechanical properties are successfully fabricated by adding different volume fractions of Ta (Ti{sub 38.8}Zr{sub 28.8}Cu{sub 6.2}Be{sub 16.2}Nb{sub 10} as the basic composition, denoted as Ta{sub 0.0}–Ta{sub 8.0}). Along with the growth of precipitated phase, typical dendritic morphology is fully developed in the TiZr-based BMGMCs of Ta{sub 8.0}. Energy-dispersive spectrometry analysis of the dendrites and glass matrix indicates that the metallic elements of Nb and Ta should preferentially form solid solution into dendrites. The chaotic structure of high-temperature precipitate phase is trapped down by the rapid cooling of the copper-mould. The detected lattice distortions in the dendrites are attributed to the strong solid solution strengthening of the metallic elements of Ti, Zr, Nb, and Ta. These lattice distortions increase the resistance of the dislocation motion and pin the dislocations, thus the strength and hardness of dendrite increase. Dendrites create a strong barrier for the shear band propagation and generate multiple shear bands after solid solution strengthening, thereby providing the TiZr-based BMGMCs with greatly improved capacity to sustain plastic deformation and resistance to brittle fracture. Thus, the TiZr-based BMGMCs possess distinguished work-hardening capability. Among these TiZr-based BMGMCs, the sample Ta{sub 0.5} possesses the largest plastic strain (ε{sub p}) at 20.3% and ultimate strength (σ{sub max}) of 2613 MPa during compressive loading. In addition, the sample of Ta{sub 0.5} exhibits work-hardening up to an ultrahigh tensile strength of 1680 MPa during the tensile process, and then progressively

  17. The shaping of two distinct dendritic spikes by A-type voltage-gated K+ channels

    Directory of Open Access Journals (Sweden)

    Sungchil eYang

    2015-12-01

    Full Text Available Dendritic ion channels have been a subject of intense research in neuroscience because active ion channels in dendrites shape input signals. Ca2+-permeable channels including NMDA receptors (NMDARs have been implicated in supralinear dendritic integration, and the IA conductance in sublinear integration. Despite their essential roles in dendritic integration, it has remained uncertain whether these conductances coordinate with, or counteract, each other in the process of dendritic integration. To address this question, experiments were designed in hippocampal CA1 neurons with a recent 3D digital holography system that has shown excellent performance for spatial photoactivation. The results demonstrated a role of IA as a key contributor to two distinct dendritic spikes, low- and high-threshold Ca2+ spikes, through a preferential action of IA on Ca2+-permeable channel-mediated currents, over fast AMPAR-mediated currents. It is likely that the rapid kinetics of IA provides feed-forward inhibition to counteract the delayed Ca2+ channel-mediated dendritic excitability. This research reveals one dynamic ionic mechanism of dendritic integration, and may contribute to a new understanding of neuronal hyperexcitability embedded in several neural diseases such as epilepsy, fragile X syndrome and Alzheimer's disease.

  18. File list: InP.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Dendritic_Cells mm9 Input control Blood Dendritic Cells SRX885956,...76,SRX122481,SRX667880,SRX667874,SRX667878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.05.AllAg.Dendritic_Cells.bed ...

  19. Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit

    Science.gov (United States)

    Sherlock, R. L.; Lehrman, N. J.

    1995-06-01

    Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.

  20. Sarcomeres pattern proprioceptive sensory dendritic endings through Perlecan/UNC-52 in C. elegans

    Science.gov (United States)

    Liang, Xing; Dong, Xintong; Moerman, Donald G.; Shen, Kang; Wang, Xiangming

    2015-01-01

    Sensory dendrites innervate peripheral tissues through cell-cell interactions that are poorly understood. The proprioceptive neuron PVD in C. elegans extends regular terminal dendritic branches between muscle and hypodermis. We found that the PVD branch pattern was instructed by adhesion molecule SAX-7/L1CAM, which formed regularly spaced stripes on the hypodermal cell. The regularity of the SAX-7 pattern originated from the repeated and regularly spaced dense body of the sarcomeres in the muscle. The extracellular proteoglycan, UNC-52/Perlecan, links the dense body to the hemidesmosome on the hypodermal cells, which in turn instructed the SAX-7 stripes and PVD dendrites. Both UNC-52 and hemidesmosome components exhibited highly regular stripes that interdigitated with the SAX-7 stripe and PVD dendrites, reflecting the striking precision of subcellular patterning between muscle, hypodermis and dendrites. Hence, the muscular contractile apparatus provides the instructive cues to pattern proprioceptive dendrites. PMID:25982673

  1. Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites

    Science.gov (United States)

    Colgan, Lesley A.; Cavolo, Samantha L.; Commons, Kathryn G.; Levitan, Edwin S.

    2012-01-01

    Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here three-photon (3P) microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence and immuno-gold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca2+ channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines and NMDA receptor antagonists. PMID:23136413

  2. Disruption of crystalline structure of Sn3.5Ag induced by electric current

    International Nuclear Information System (INIS)

    Huang, Han-Chie; Lin, Kwang-Lung; Wu, Albert T.

    2016-01-01

    This study presented the disruption of the Sn and Ag_3Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10"3 A/cm"2 with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag_3Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density of up to 10"1"7/m"2. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.

  3. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Szepesi

    Full Text Available Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs, a family of extracellularly acting and Zn(2+-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.

  4. A Simulation Study on the Effects of Dendritic Morphology on Layer V Prefontal Pyramidal Cell Firing Behavior

    Directory of Open Access Journals (Sweden)

    Maria ePsarrou

    2014-09-01

    Full Text Available Pyramidal cells, the most abundant neurons in neocortex, exhibit significant structural variability across different brain areas and layers in different species. Moreover, in response to a somatic step current, these cells display a range of firing behaviors, the most common being (1 repetitive action potentials (Regular Spiking - RS, and (2 an initial cluster of 2-5 action potentials with short ISIs followed by single spikes (Intrinsic Bursting - IB. A correlation between firing behavior and dendritic morphology has recently been reported. In this work we use computational modeling to investigate quantitatively the effects of the basal dendritic tree morphology on the firing behavior of 112 three-dimensional reconstructions of layer V PFC rat pyramidal cells. Particularly, we focus on how different morphological (diameter, total length, volume and branch number and passive (Mean Electrotonic Path length features of basal dendritic trees shape somatic firing when the spatial distribution of ionic mechanisms in the basal dendritic trees is uniform or non-uniform. Our results suggest that total length, volume and branch number are the best morphological parameters to discriminate the cells as RS or IB, regardless of the distribution of ionic mechanisms in basal trees. The discriminatory power of total length, volume and branch number remains high in the presence of different apical dendrites. These results suggest that morphological variations in the basal dendritic trees of layer V pyramidal neurons in the PFC influence their firing patterns in a predictive manner and may in turn influence the information processing capabilities of these neurons.

  5. Location matters: the endoplasmic reticulum and protein trafficking in dendrites

    Directory of Open Access Journals (Sweden)

    Omar A Ramírez

    2011-01-01

    Full Text Available Neurons are highly polarized, but the trafficking mechanisms that operate in these cells and the topological organization of their secretory organelles are still poorly understood. Particularly incipient is our knowledge of the role of the neuronal endoplasmic reticulum. Here we review the current understanding of the endoplasmic reticulum in neurons, its structure, composition, dendritic distribution and dynamics. We also focus on the trafficking of proteins through the dendritic endoplasmic reticulum, emphasizing the relevance of transport, retention, assembly of multi-subunit protein complexes and export. We additionally discuss the roles of the dendritic endoplasmic reticulum in synaptic plasticity.

  6. Calcium transient prevalence across the dendritic arbour predicts place field properties.

    Science.gov (United States)

    Sheffield, Mark E J; Dombeck, Daniel A

    2015-01-08

    Establishing the hippocampal cellular ensemble that represents an animal's environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons, and the acquisition of different spatial firing properties across the active population. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells, but recent studies suggest instead that place cells themselves may play an active role through regenerative dendritic events. However, owing to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons and dendrites in mice navigating a virtual environment, here we show that regenerative dendritic events do exist in place cells of behaving mice, and, surprisingly, their prevalence throughout the arbour is highly spatiotemporally variable. Furthermore, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbour may play a key role in forming the hippocampal representation of space.

  7. Effect of the dendritic morphology on hot tearing of carbon steels

    International Nuclear Information System (INIS)

    Ridolfi, M R

    2016-01-01

    Hot tears form during solidification in the brittle region of the dendritic front. Most hot tearing criteria are based on solid and fluid mechanics, being the phenomenon strictly depending on the solid resistance to applied strains and on the liquid capability of filling the void spaces. Modelling both mechanisms implies the precise description of the dendritic morphology. To this scope, the theory of coalescence of the dendritic arms at grain boundaries of Rappaz et al. has been applied, in this work, to the columnar growth of carbon steels by means of a simple mathematical model. Depending on the alloy composition, solid bridging starts at solid fractions down to about 0.8 and up to above 0.995 (very low carbon). The morphology of the brittle region changes drastically with increasing carbon and adding other solutes. In particular, ferritic dendrites, typical of low carbon steels, tend to offer short and wide interdendritic spaces to the surrounding liquid making possible their complete filling, and few solid bridges; peritectic steels show the rise of austenite growing and bridging rapidly in the interdendritic spaces, preventing void formation; austenitic dendrites form long and narrow interdendritic spaces difficult to reach for the liquid and with a lot of solid bridges. Sulphur addition mainly acts in delaying the coalescence end, more markedly in ferritic dendrites. (paper)

  8. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.

    Science.gov (United States)

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-12-24

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.

  9. Anchored PKA as a gatekeeper for gap junctions.

    Science.gov (United States)

    Pidoux, Guillaume; Taskén, Kjetil

    2015-01-01

    Anchored protein kinase A (PKA) bound to A Kinase Anchoring Protein (AKAP) mediates effects of localized increases in cAMP in defined subcellular microdomains and retains the specificity in cAMP-PKA signaling to distinct extracellular stimuli. Gap junctions are pores between adjacent cells constituted by connexin proteins that provide means of communication and transfer of small molecules. While the PKA signaling is known to promote human trophoblast cell fusion, the gap junction communication through connexin 43 (Cx43) is a prerequisite for this process. We recently demonstrated that trophoblast fusion is regulated by ezrin, a known AKAP, which binds to Cx43 and delivers PKA in the vicinity gap junctions. We found that disruption of the ezrin-Cx43 interaction abolished PKA-dependent phosphorylation of Cx43 as well as gap junction communication and subsequently cell fusion. We propose that the PKA-ezrin-Cx43 macromolecular complex regulating gap junction communication constitutes a general mechanism to control opening of Cx43 gap junctions by phosphorylation in response to cAMP signaling in various cell types.

  10. Motor Deficits and Cerebellar Atrophy in Elovl5 Knock Out Mice.

    Science.gov (United States)

    Hoxha, Eriola; Gabriele, Rebecca M C; Balbo, Ilaria; Ravera, Francesco; Masante, Linda; Zambelli, Vanessa; Albergo, Cristian; Mitro, Nico; Caruso, Donatella; Di Gregorio, Eleonora; Brusco, Alfredo; Borroni, Barbara; Tempia, Filippo

    2017-01-01

    Spino-Cerebellar-Ataxia type 38 (SCA38) is caused by missense mutations in the very long chain fatty acid elongase 5 gene, ELOVL5 . The main clinical findings in this disease are ataxia, hyposmia and cerebellar atrophy. Mice in which Elovl5 has been knocked out represent a model of the loss of function hypothesis of SCA38. In agreement with this hypothesis, Elovl5 knock out mice reproduced the main symptoms of patients, motor deficits at the beam balance test and hyposmia. The cerebellar cortex of Elovl5 knock out mice showed a reduction of thickness of the molecular layer, already detectable at 6 months of age, confirmed at 12 and 18 months. The total perimeter length of the Purkinje cell (PC) layer was also reduced in Elovl5 knock out mice. Since Elovl5 transcripts are expressed by PCs, whose dendrites are a major component of the molecular layer, we hypothesized that an alteration of their dendrites might be responsible for the reduced thickness of this layer. Reconstruction of the dendritic tree of biocytin-filled PCs, followed by Sholl analysis, showed that the distribution of distal dendrites was significantly reduced in Elovl5 knock out mice. Dendritic spine density was conserved. These results suggest that Elovl5 knock out mice recapitulate SCA38 symptoms and that their cerebellar atrophy is due, at least in part, to a reduced extension of PC dendritic arborization.

  11. REMOD: a computational tool for remodeling neuronal dendrites

    Directory of Open Access Journals (Sweden)

    Panagiotis Bozelos

    2014-05-01

    Full Text Available In recent years, several modeling studies have indicated that dendritic morphology is a key determinant of how individual neurons acquire a unique signal processing profile. The highly branched dendritic structure that originates from the cell body, explores the surrounding 3D space in a fractal-like manner, until it reaches a certain amount of complexity. Its shape undergoes significant alterations not only in various neuropathological conditions, but in physiological, too. Yet, despite the profound effect that these alterations can have on neuronal function, the causal relationship between structure and function remains largely elusive. The lack of a systematic approach for remodeling neuronal cells and their dendritic trees is a key limitation that contributes to this problem. In this context, we developed a computational tool that allows the remodeling of any type of neurons, given a set of exemplar morphologies. The tool is written in Python and provides a simple GUI that guides the user through various options to manipulate selected neuronal morphologies. It provides the ability to load one or more morphology files (.swc or .hoc and choose specific dendrites to operate one of the following actions: shrink, remove, extend or branch (as shown in Figure 1. The user retains complete control over the extent of each alteration and if a chosen action is not possible due to pre-existing structural constraints, appropriate warnings are produced. Importantly, the tool can also be used to extract morphology statistics for one or multiple morphologies, including features such as the total dendritic length, path length to the root, branch order, diameter tapering, etc. Finally, an experimental utility enables the user to remodel entire dendritic trees based on preloaded statistics from a database of cell-type specific neuronal morphologies. To our knowledge, this is the first tool that allows (a the remodeling of existing –as opposed to the de novo

  12. Early endoscopic realignment of traumatic anterior and posterior urethral disruptions under caudal anaesthesia - a 5-year review.

    Science.gov (United States)

    Olapade-Olaopa, E O; Atalabi, O M; Adekanye, A O; Adebayo, S A; Onawola, K A

    2010-01-01

    We recently described early rigid retrograde endoscopic realignment of the disrupted urethra under caudal anaesthesia in the outpatient setting. This retrospective study was performed to evaluate our medium-term results. A retrospective review of patients who had early rigid retrograde endoscopic realignment of traumatic urethral disruptions in our institution over a 5-year period was done and the relevant data extracted and analyzed. Fourteen acutely ruptured urethras (10 posterior and four anterior) were endoscopically realigned early in the study period. Nine (90%) of the posterior disruptions occurred at bulbo-membranous urethra (distal to the external sphincter mechanism). Thirteen of the ruptured urethras (93%) were successfully realigned (nine posterior and four anterior) and postoperative clean intermittent self-calibration (CIC) was instituted in 10 patients. The mean follow-up period was 36.6 months (range 18-54 months). The mean operating time and the median hospital stay were 22 min (range 8-68 min) and 3 days (range 1-10 days), respectively, and were shorter in patients with injuries of the anterior urethra than those with posterior urethral tears (p < or = 0.0001). Post-realignment, all 13 patients were potent and continent. Two patients required additional procedures (direct vision internal urethrotomy or urethral dilation) and one patient has remained on CIC i.e. a stricture rate of 21%. Early retrograde endoscopic realignment under caudal analgesia is suitable and cost-effective for patients with acute traumatic urethral disruptions and has good medium-term results. In addition, an early postoperative regimen of CIC significantly reduced stricture-formation in our series.

  13. Simulation of dendritic growth of magnesium alloys with fluid flow

    Directory of Open Access Journals (Sweden)

    Meng-wu Wu

    2017-11-01

    Full Text Available Fluid flow has a significant impact on the microstructure evolution of alloys during solidification. Based on the previous work relating simulation of the dendritic growth of magnesium alloys with hcp (hexagonal close-packed structure, an extension was made to the formerly established CA (cellular automaton model with the purpose of studying the effect of fluid flow on the dendritic growth of magnesium alloys. The modified projection method was used to solve the transport equations of flow field. By coupling the flow field with the solute field, simulation results of equiaxed and columnar dendritic growth of magnesium alloys with fluid flow were achieved. The simulated results were quantitatively compared with those without fluid flow. Moreover, a comparison was also made between the present work and previous works conducted by others. It can be concluded that a deep understanding of the dendritic growth of magnesium alloys with fluid flow can be obtained by applying the present numerical model.

  14. Thermo-solutal growth of an anisotropic dendrite with six-fold symmetry

    Science.gov (United States)

    Alexandrov, D. V.; Galenko, P. K.

    2018-03-01

    A stable growth of dendritic crystal with the six-fold crystalline anisotropy is analyzed in a binary nonisothermal mixture. A selection criterion representing a relationship between the dendrite tip velocity and its tip diameter is derived on the basis of morphological stability analysis and solvability theory. A complete set of nonlinear equations, consisting of the selection criterion and undercooling balance condition, which determines implicit dependencies of the dendrite tip velocity and tip diameter as functions of the total undercooling, is formulated. Exact analytical solutions of these nonlinear equations are found in a parametric form. Asymptotic solutions describing the crystal growth at small Péclet numbers are determined. Theoretical predictions are compared with experimental data obtained for ice dendrites growing in binary water-ethylenglycol solutions as well as in pure water.

  15. The Isothermal Dendritic Growth Experiment Archive

    Science.gov (United States)

    Koss, Matthew

    2009-03-01

    The growth of dendrites is governed by the interplay between two simple and familiar processes---the irreversible diffusion of energy, and the reversible work done in the formation of new surface area. To advance our understanding of these processes, NASA sponsored a project that flew on the Space Shuttle Columbia is 1994, 1996, and 1997 to record and analyze benchmark data in an apparent-microgravity ``laboratory.'' In this laboratory, energy transfer by gravity driven convection was essentially eliminated and one could test independently, for the first time, both components of dendritic growth theory. The analysis of this data shows that although the diffusion of energy can be properly accounted for, the results from interfacial physics appear to be in disagreement and alternate models should receive increased attention. Unfortunately, currently and for the foreseeable future, there is no access or financial support to develop and conduct additional experiments of this type. However, the benchmark data of 35mm photonegatives, video, and all supporting instrument data are now available at the IDGE Archive at the College of the Holy Cross. This data may still have considerable relevance to researchers working specifically with dendritic growth, and more generally those working in the synthesis, growth & processing of materials, multiscale computational modeling, pattern formation, and systems far from equilibrium.

  16. Separate transcriptionally regulated pathways specify distinct classes of sister dendrites in a nociceptive neuron.

    Science.gov (United States)

    O'Brien, Barbara M J; Palumbos, Sierra D; Novakovic, Michaela; Shang, Xueying; Sundararajan, Lakshmi; Miller, David M

    2017-12-15

    The dendritic processes of nociceptive neurons transduce external signals into neurochemical cues that alert the organism to potentially damaging stimuli. The receptive field for each sensory neuron is defined by its dendritic arbor, but the mechanisms that shape dendritic architecture are incompletely understood. Using the model nociceptor, the PVD neuron in C. elegans, we determined that two types of PVD lateral branches project along the dorsal/ventral axis to generate the PVD dendritic arbor: (1) Pioneer dendrites that adhere to the epidermis, and (2) Commissural dendrites that fasciculate with circumferential motor neuron processes. Previous reports have shown that the LIM homeodomain transcription factor MEC-3 is required for all higher order PVD branching and that one of its targets, the claudin-like membrane protein HPO-30, preferentially promotes outgrowth of pioneer branches. Here, we show that another MEC-3 target, the conserved TFIIA-like zinc finger transcription factor EGL-46, adopts the alternative role of specifying commissural dendrites. The known EGL-46 binding partner, the TEAD transcription factor EGL-44, is also required for PVD commissural branch outgrowth. Double mutants of hpo-30 and egl-44 show strong enhancement of the lateral branching defect with decreased numbers of both pioneer and commissural dendrites. Thus, HPO-30/Claudin and EGL-46/EGL-44 function downstream of MEC-3 and in parallel acting pathways to direct outgrowth of two distinct classes of PVD dendritic branches. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Spiny Neurons of Amygdala, Striatum and Cortex Use Dendritic Plateau Potentials to Detect Network UP States

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2014-09-01

    Full Text Available Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: [1] they are the most abundant cell type within their respective brain area, [2] covered by thousands of thorny protrusions (dendritic spines, [3] possess high levels of dendritic NMDA conductances, and [4] experience sustained somatic depolarizations in vivo and in vitro (UP states. In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (dendritic UP states characterized by (i fast rise, (ii plateau phase lasting several hundred milliseconds and (iii abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates towards the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200 – 800 ms steady depolarization (~20 mV amplitude, which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states. We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

  18. Barriers in the brain : resolving dendritic spine morphology and compartmentalization

    NARCIS (Netherlands)

    Adrian, Max; Kusters, Remy; Wierenga, Corette J; Storm, Cornelis; Hoogenraad, Casper C; Kapitein, Lukas C

    2014-01-01

    Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and

  19. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E

    2007-01-01

    Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injury......, develop de novo axons. Our goal was to determine whether spinal commissural interneurons (CINs), axotomized by 3-4-mm midsagittal transection at C3, form de novo axons from distal dendrites. All experiments were performed on adult cats. CINs in C3 were stained with extracellular injections of Neurobiotin...... at 4-5 weeks post injury. The somata of axotomized CINs were identified by the presence of immunoreactivity for the axonal growth-associated protein-43 (GAP-43). Nearly half of the CINs had de novo axons that emerged from distal dendrites. These axons lacked immunoreactivity for the dendritic protein...

  20. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn; Zhang, Wendong, E-mail: wdzhang@tyut.edu.cn; Li, Gang; Hu, Jie [Micro and Nano-system Research Centre, College of Information Engineering, Taiyuan University of Technology, 030024, Taiyuan (China); Zhou, Zhaoying, E-mail: zhouzy@mail.tsinghua.edu.cn; Yang, Xing; Dong, Hualai [MEMS Laboratory, Department of Precision Instruments, Tsinghua University, 100084, Beijing (China)

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

  1. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Directory of Open Access Journals (Sweden)

    Jianlong Ji

    2014-03-01

    Full Text Available Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM, energy dispersive X-ray spectrometer (EDS, transmission electron microscopy (TEM and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS activity, using 4-mercaptopyridine (4-MP as model molecules.

  2. Search for a solute-drag effect in dendritic solidification

    International Nuclear Information System (INIS)

    Eckler, K.; Herlach, D.M.; Aziz, M.J.

    1994-01-01

    The authors report the results of an indirect experimental test for the solute-drag effect in alloy solidification by fitting the data of Eckler et.al. for Ni-B dendrite tip velocities vs undercooling to models in several ways. The unknown equilibrium partition coefficient, k e , was varied as a fitting parameter. When they combine the dendrite growth model of Boettinger et al. with the Continuous Growth Model (CGM) of Aziz and Kaplan with solute drag, they cannot fit the data for any value of k e . When they combine dendrite growth theory with the CGM without solute drag, they obtain a reasonable fit to the data for k e = 4 x 10 -6 . When they combine dendrite growth theory with a new partial-solute-drag interpolation between the with-solute-drag and the without-solute-drag versions of the CGM, they obtain a still better fit to the data for k e = 2.8 x 10 - 4. This result points out the possibility of partial solute-drag during solidification and the importance of an independent determination of k e in order to distinguish between models

  3. High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants.

    Science.gov (United States)

    Arjunan, P; El-Awady, A; Dannebaum, R O; Kunde-Ramamoorthy, G; Cutler, C W

    2016-02-01

    The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Age-Based Comparison of Human Dendritic Spine Structure Using Complete Three-Dimensional Reconstructions

    Science.gov (United States)

    Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; Robles, Victor; Yuste, Rafael; DeFelipe, Javier

    2013-01-01

    Dendritic spines of pyramidal neurons are targets of most excitatory synapses in the cerebral cortex. Recent evidence suggests that the morphology of the dendritic spine could determine its synaptic strength and learning rules. However, unfortunately, there are scant data available regarding the detailed morphology of these structures for the human cerebral cortex. In the present study, we analyzed over 8900 individual dendritic spines that were completely 3D reconstructed along the length of apical and basal dendrites of layer III pyramidal neurons in the cingulate cortex of 2 male humans (aged 40 and 85 years old), using intracellular injections of Lucifer Yellow in fixed tissue. We assembled a large, quantitative database, which revealed a major reduction in spine densities in the aged case. Specifically, small and short spines of basal dendrites and long spines of apical dendrites were lost, regardless of the distance from the soma. Given the age difference between the cases, our results suggest selective alterations in spines with aging in humans and indicate that the spine volume and length are regulated by different biological mechanisms. PMID:22710613

  5. Photoinduced electron transfer between the dendritic zinc phthalocyanines and anthraquinone

    Science.gov (United States)

    Chen, Kuizhi; Wen, Junri; Liu, Jiangsheng; Chen, Zhenzhen; Pan, Sujuan; Huang, Zheng; Peng, Yiru

    2015-03-01

    The intermolecular electron transfer between the novel dendritic zinc (II) phthalocyanines (G1-DPcB and G2-DPcB) and anthraquinone (AQ) was studied by steady-state fluorescence and UV/Vis absorption spectroscopic methods. The effect of dendron generation on intermolecular electron transfer was investigated. The results showed that the fluorescence emission of these dendritic phthalocyanines could be greatly quenched by AQ upon excitation at 610 nm. The Stern- Volmer constant (KSV) of electron transfer was decreased with increasing the dendron generations. Our study suggested that these novel dendritic phthalocyanines were effective new electron donors and transmission complexes and could be used as a potential artifical photosysthesis system.

  6. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System

    Science.gov (United States)

    Ercu, Maria; Klussmann, Enno

    2018-01-01

    A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases. PMID:29461511

  7. Disruption of crystalline structure of Sn3.5Ag induced by electric current

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Han-Chie; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Albert T. [Department of Chemical and Material Engineering, National Central University, Jhongli 32001, Taiwan (China)

    2016-03-21

    This study presented the disruption of the Sn and Ag{sub 3}Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10{sup 3} A/cm{sup 2} with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag{sub 3}Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density of up to 10{sup 17}/m{sup 2}. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.

  8. Dendritic protein synthesis in the normal and diseased brain

    Science.gov (United States)

    Swanger, Sharon A.; Bassell, Gary J.

    2015-01-01

    Synaptic activity is a spatially-limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases. PMID:23262237

  9. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Julio Aliberti

    2016-01-01

    Full Text Available Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response against pathogens. A potential result of unbalanced tolerogenic versus proinflammatory responses mediated by dendritic cells is associated with chronic inflammatory conditions, such as Crohn’s disease, ulcerative colitis, food allergies, and celiac disease. Herein, we review the dendritic cell population involved in mediating tolerance and immunity in mucosal surfaces, the progress in unveiling their development in vivo, and factors that can influence their functions.

  10. Investigating Disruption

    DEFF Research Database (Denmark)

    Lundgaard, Stine Schmieg; Rosenstand, Claus Andreas Foss

    This book shares knowledge collected from 2015 and onward within the Consortium for Digital Disruption anchored at Aalborg University (www.dd.aau.dk). Evidenced by this publication, the field of disruptive innovation research has gone through several stages of operationalizing the theory. In recent...... years, researchers are increasingly looking back towards the origins of the theory in attempts to cure it from its most obvious flaws. This is especially true for the use of the theory in making predictions about future disruptions. In order to continue to develop a valuable theory of disruption, we...... find it useful to first review what the theory of disruptive innovation initially was, how it has developed, and where we are now. A cross section of disruptive innovation literature has been reviewed in order to form a general foundation from which we might better understand the changing world...

  11. Dendritic calcium activity precedes inspiratory bursts in preBotzinger complex neurons

    DEFF Research Database (Denmark)

    Del Negro, Christopher A; Hayes, John A; Rekling, Jens C

    2011-01-01

    to evoke a Ca(2+)-activated inward current that contributes to inspiratory burst generation. We measured Ca(2+) transients by two-photon imaging dendrites while recording neuronal somata electrophysiologically. Dendritic Ca(2+) accumulation frequently precedes inspiratory bursts, particularly at recording...

  12. Early increase and late decrease of purkinje cell dendritic spine density in prion-infected organotypic mouse cerebellar cultures.

    Science.gov (United States)

    Campeau, Jody L; Wu, Gengshu; Bell, John R; Rasmussen, Jay; Sim, Valerie L

    2013-01-01

    Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4-5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis.

  13. Dendritic polyglycerol sulfate as a novel platform for paclitaxel delivery: pitfalls of ester linkage

    Science.gov (United States)

    Sousa-Herves, Ana; Würfel, Patrick; Wegner, Nicole; Khandare, Jayant; Licha, Kai; Haag, Rainer; Welker, Pia; Calderón, Marcelo

    2015-02-01

    In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by 1H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These observations suggest a fast ester hydrolysis and premature drug release, as confirmed by HPLC measurements in the presence of plasma enzymes.In this study, dendritic polyglycerol sulfate (dPGS) is evaluated as a delivery platform for the anticancer, tubulin-binding drug paclitaxel (PTX). The conjugation of PTX to dPGS is conducted via a labile ester linkage. A non-sulfated dendritic polyglycerol (dPG) is used as a control, and the labeling with an indocarbocyanine dye (ICC) renders multifunctional conjugates that can be monitored by fluorescence microscopy. The conjugates are characterized by 1H NMR, UV-vis measurements, and RP-HPLC. In vitro cytotoxicity of PTX and dendritic conjugates is evaluated using A549 and A431 cell lines, showing a reduced cytotoxic efficacy of the conjugates compared to PTX. The study of uptake kinetics reveals a linear, non saturable uptake in tumor cells for dPGS-PTX-ICC, while dPG-PTX-ICC is hardly taken up. Despite the marginal uptake of dPG-PTX-ICC, it prompts tubulin polymerization to a comparable extent as PTX. These

  14. βIII Spectrin Is Necessary for Formation of the Constricted Neck of Dendritic Spines and Regulation of Synaptic Activity in Neurons.

    Science.gov (United States)

    Efimova, Nadia; Korobova, Farida; Stankewich, Michael C; Moberly, Andrew H; Stolz, Donna B; Wang, Junling; Kashina, Anna; Ma, Minghong; Svitkina, Tatyana

    2017-07-05

    Dendritic spines are postsynaptic structures in neurons often having a mushroom-like shape. Physiological significance and cytoskeletal mechanisms that maintain this shape are poorly understood. The spectrin-based membrane skeleton maintains the biconcave shape of erythrocytes, but whether spectrins also determine the shape of nonerythroid cells is less clear. We show that βIII spectrin in hippocampal and cortical neurons from rodent embryos of both sexes is distributed throughout the somatodendritic compartment but is particularly enriched in the neck and base of dendritic spines and largely absent from spine heads. Electron microscopy revealed that βIII spectrin forms a detergent-resistant cytoskeletal network at these sites. Knockdown of βIII spectrin results in a significant decrease in the density of dendritic spines. Surprisingly, the density of presynaptic terminals is not affected by βIII spectrin knockdown. However, instead of making normal spiny synapses, the presynaptic structures in βIII spectrin-depleted neurons make shaft synapses that exhibit increased amplitudes of miniature EPSCs indicative of excessive postsynaptic excitation. Thus, βIII spectrin is necessary for formation of the constricted shape of the spine neck, which in turn controls communication between the synapse and the parent dendrite to prevent excessive excitation. Notably, mutations of SPTNB2 encoding βIII spectrin are associated with neurodegenerative syndromes, spinocerebellar ataxia Type 5, and spectrin-associated autosomal recessive cerebellar ataxia Type 1, but molecular mechanisms linking βIII spectrin functions to neuronal pathologies remain unresolved. Our data suggest that spinocerebellar ataxia Type 5 and spectrin-associated autosomal recessive cerebellar ataxia Type 1 pathology likely arises from poorly controlled synaptic activity that leads to excitotoxicity and neurodegeneration. SIGNIFICANCE STATEMENT Dendritic spines are small protrusions from neuronal

  15. Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus.

    Science.gov (United States)

    Yasui, Fumihiko; Itoh, Yasushi; Ikejiri, Ai; Kitabatake, Masahiro; Sakaguchi, Nobuo; Munekata, Keisuke; Shichinohe, Shintaro; Hayashi, Yukiko; Ishigaki, Hirohito; Nakayama, Misako; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa; Kohara, Michinori

    2016-11-28

    H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.

  16. Modelling dendritic ecological networks in space: An integrated network perspective

    Science.gov (United States)

    Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...

  17. Studies on the control mechanism and the degenerative immune function of dendritic cells using radiation

    International Nuclear Information System (INIS)

    Yee, Sung Tae; Kim, Jong Jin; Choi, Ji Na; Park, Jung Eun; Jeong, Young Ran

    2010-05-01

    Dendritic cells are actively used as cellular adjuvant in cancer immunotherapy. However, although DC immunotherapies primarily target the elderly population, little is known about the effect of aging on DC functions. Here, we compared the T-cell stimulation, cytokine production, and costimulatory molecule expression of spleen or bone marrow-derived CD11c + DCs of C57BL/6 mice. In the first year, we compared various function of dendritic cells isolated from young and gamma-irradiated 57BL/6 mice(5 weeks after γ-radiation) for the development of aging models using radiation. In the second year, we also compared the function of spleen- and bone marrow-derived dendritic cells of young(2-3 months) and old(23-24 months) 57BL/6 mice. And we studied the differences of spleen- and bone marrow-derived dendritic cells of young and gamma-irradiated 57BL/6 mice(2, 4, 6 months after γ-radiation) for the development of aging models in third year. And we obtained various differences between spleen- and bone marrow-derived dendritic cells of normal and old(23-24 months) or γ-irradiated 57BL/6 mice. It is possible to use our results as age-associated model for modulation of the declined immunity and hematopoiesis for treatment of cancer, adult diseases and stress in aging. Such studies on the mechanism of aging model would further lead to new avenues for the development of functional foods which effect such as pathogenesis, inflammatory and autoimmune disorders. It will contributed to activation of related industry conforming quality and diversity of radiation industry. The techniques developed in our research may provide novel therapeutic modalities for age-associated immune dysfunctions

  18. Specific and Novel microRNAs Are Regulated as Response to Fungal Infection in Human Dendritic Cells

    Science.gov (United States)

    Dix, Andreas; Czakai, Kristin; Leonhardt, Ines; Schäferhoff, Karin; Bonin, Michael; Guthke, Reinhard; Einsele, Hermann; Kurzai, Oliver; Löffler, Jürgen; Linde, Jörg

    2017-01-01

    Within the last two decades, the incidence of invasive fungal infections has been significantly increased. They are characterized by high mortality rates and are often caused by Candida albicans and Aspergillus fumigatus. The increasing number of infections underlines the necessity for additional anti-fungal therapies, which require extended knowledge of gene regulations during fungal infection. MicroRNAs are regulators of important cellular processes, including the immune response. By analyzing their regulation and impact on target genes, novel therapeutic and diagnostic approaches may be developed. Here, we examine the role of microRNAs in human dendritic cells during fungal infection. Dendritic cells represent the bridge between the innate and the adaptive immune systems. Therefore, analysis of gene regulation of dendritic cells is of particular significance. By applying next-generation sequencing of small RNAs, we quantify microRNA expression in monocyte-derived dendritic cells after 6 and 12 h of infection with C. albicans and A. fumigatus as well as treatment with lipopolysaccharides (LPS). We identified 26 microRNAs that are differentially regulated after infection by the fungi or LPS. Three and five of them are specific for fungal infections after 6 and 12 h, respectively. We further validated interactions of miR-132-5p and miR-212-5p with immunological relevant target genes, such as FKBP1B, KLF4, and SPN, on both RNA and protein level. Our results indicate that these microRNAs fine-tune the expression of immune-related target genes during fungal infection. Beyond that, we identified previously undiscovered microRNAs. We validated three novel microRNAs via qRT-PCR. A comparison with known microRNAs revealed possible relations with the miR-378 family and miR-1260a/b for two of them, while the third one features a unique sequence with no resemblance to known microRNAs. In summary, this study analyzes the effect of known microRNAs in dendritic cells during

  19. Thermal noise due to surface-charge effects within the Debye layer of endogenous structures in dendrites.

    Science.gov (United States)

    Poznanski, Roman R

    2010-02-01

    An assumption commonly used in cable theory is revised by taking into account electrical amplification due to intracellular capacitive effects in passive dendritic cables. A generalized cable equation for a cylindrical volume representation of a dendritic segment is derived from Maxwell's equations under assumptions: (i) the electric-field polarization is restricted longitudinally along the cable length; (ii) extracellular isopotentiality; (iii) quasielectrostatic conditions; and (iv) homogeneous medium with constant conductivity and permittivity. The generalized cable equation is identical to Barenblatt's equation arising in the theory of infiltration in fissured strata with a known analytical solution expressed in terms of a definite integral involving a modified Bessel function and the solution to a linear one-dimensional classical cable equation. Its solution is used to determine the impact of thermal noise on voltage attenuation with distance at any particular time. A regular perturbation expansion for the membrane potential about the linear one-dimensional classical cable equation solution is derived in terms of a Green's function in order to describe the dynamics of free charge within the Debye layer of endogenous structures in passive dendritic cables. The asymptotic value of the first perturbative term is explicitly evaluated for small values of time to predict how the slowly fluctuating (in submillisecond range) electric field attributed to intracellular capacitive effects alters the amplitude of the membrane potential. It was found that capacitive effects are almost negligible for cables with electrotonic lengths L>0.5 , contributes up to 10% of the signal for cables with electrotonic lengths in the range between 0.255 , and dominates the membrane potential for electrotonically short cables (L<0.2) . These results show that electrotonically short dendritic cables with both ends sealed are prone to significant neurobiological thermal noise due to

  20. Transformation of Leaf-like Zinc Dendrite in Oxidation and Reduction Cycle

    International Nuclear Information System (INIS)

    Nakata, Akiyoshi; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Arai, Hajime; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi

    2015-01-01

    Highlights: • Leaf-like zinc dendrites change to leaf-like residual oxides at high oxidation current density (10 mA cm −2 ) whereas it completely dissolves at low oxidation current density (1 mA cm −2 ). • Leaf-like residual oxide products is transformed to zinc deposits with particulate morphology, resulting in good rechargeability. • The residual zinc oxide provides sufficient zincate on its reduction, preventing the diffusion-limited condition that causes leaf-like dendrite formation. - Abstract: Zinc is a promising negative electrode material for aqueous battery systems whereas it shows insufficient rechargeability for use in secondary batteries. It has been reported that leaf-like dendrite deposits are often the origin of cell-failure, however, their nature and behavior on discharge (oxidation) - charge (reduction) cycling have been only poorly understood. Here we investigate the transformation of the leaf-like zinc dendrites using ex-situ scanning electron microscopy, X-ray computational tomography and in-situ X-ray diffraction. It is shown that the leaf-like zinc dendrites obtained under diffusion-limited conditions are nearly completely dissolved at a low oxidation current density of 1 mA cm −2 and cause re-evolution of the zinc dendrites. Oxidation at a high current density of 10 mA cm −2 leads to the formation of leaf-like zinc oxide residual products that result in particulate zinc deposits in the following reduction process, enabling good rechargeability. The reaction behavior of this oxide residue is detailed and discussed for the development of long-life zinc electrodes

  1. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells

    Science.gov (United States)

    Lakshminarayanan, Abirami; Reddy, B. Uma; Raghav, Nallani; Ravi, Vijay Kumar; Kumar, Anuj; Maiti, Prabal K.; Sood, A. K.; Jayaraman, N.; Das, Saumitra

    2015-10-01

    A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting ``out'' in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the `proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated

  2. Active signal conduction through the sensory dendrite of a spider mechanoreceptor neuron.

    Science.gov (United States)

    Gingl, Ewald; French, Andrew S

    2003-07-09

    Rapid responses to sensory stimulation are crucial for survival. This must be especially true for mechanical stimuli containing temporal information, such as vibration. Sensory transduction occurs at the tips of relatively long sensory dendrites in many mechanoreceptors of both vertebrates and invertebrates, but little is known about the electrical properties of these crucial links between transduction and action potential generation. The VS-3 slit-sense organ of the spider Cupiennius salei contains bipolar mechanosensory neurons that allow voltage-clamp recording from the somata, whereas mechanotransduction occurs at the tips of 100- to 200-microm-long sensory dendrites. We studied the properties of VS-3 sensory dendrites using three approaches. Voltage-jump experiments measured the spread of voltage outward from the soma by observing total mechanically transduced charge recovered at the soma as a function of time after a voltage jump. Frequency-response measurements between pseudorandom mechanical stimulation and somatic membrane potential estimated the passive cable properties of the dendrite for voltage spread in the opposite direction. Both of these sets of data indicated that the dendritic cable would significantly attenuate and retard a passively propagated receptor potential. Finally, current-clamp observations of receptor potentials and action potentials indicated that action potentials normally start at the distal dendrites and propagate regeneratively to the soma, reducing the temporal delay of passive conduction.

  3. Selected mode of dendritic growth with n-fold symmetry in the presence of a forced flow

    Science.gov (United States)

    Alexandrov, D. V.; Galenko, P. K.

    2017-07-01

    The effect of n-fold crystal symmetry is investigated for a two-dimensional stable dendritic growth in the presence of a forced convective flow. We consider dendritic growth in a one-component undercooled liquid. The theory is developed for the parabolic solid-liquid surface of dendrite growing at arbitrary growth Péclet numbers keeping in mind small anisotropies of surface energy and growth kinetics. The selection criterion determining the stable growth velocity of the dendritic tip and its stable tip diameter is found on the basis of solvability analysis. The obtained criterion includes previously developed theories of thermally and kinetically controlled dendritic growth with convection for the case of four-fold crystal symmetry. The obtained nonlinear system of equations (representing the selection criterion and undercooling balance) for the determination of dendrite tip velocity and dendrite tip diameter is analytically solved in a parametric form. These exact solutions clearly demonstrate a transition between thermally and kinetically controlled growth regimes. In addition, we show that the dendrites with larger crystal symmetry grow faster than those with smaller symmetry.

  4. Digital Disruption

    DEFF Research Database (Denmark)

    Rosenstand, Claus Andreas Foss

    det digitale domæne ud over det niveau, der kendetegner den nuværende debat, så præsenteres der ny viden om digital disruption. Som noget nyt udlægges Clayton Christens teori om disruptiv innovation med et særligt fokus på små organisationers mulighed for eksponentiel vækst. Specielt udfoldes...... forholdet mellem disruption og den stadig accelererende digitale udvikling i konturerne til ny teoridannelse om digital disruption. Bogens undertitel ”faretruende og fascinerende forandringer” peger på, at der er behov for en nuanceret debat om digital disruption i modsætning til den tone, der er slået an i...... videre kalder et ”disruption-råd”. Faktisk er rådet skrevet ind i 2016 regeringsgrundlaget for VLK-regeringen. Disruption af organisationer er ikke et nyt fænomen; men hastigheden, hvormed det sker, er stadig accelererende. Årsagen er den globale mega-trend: Digitalisering. Og derfor er specielt digital...

  5. Dendrite short-circuit and fuse effect on Li/polymer/Li cells

    International Nuclear Information System (INIS)

    Rosso, Michel; Brissot, Claire; Teyssot, Anna; Dolle, Mickael; Sannier, Lucas; Tarascon, Jean-Marie; Bouchet, Renaud; Lascaud, Stephane

    2006-01-01

    We report on experimental and theoretical studies of dendritic growth in Li/polymer/Li symmetric cells. Potential evolution with time, impedance and in situ microscopy experiments enable to characterise the onset and evolution of dendrites. In particular we observe that dendrites may burn when a high enough current goes through them, a thermo-fusible effect predicted in a previous paper and confirmed by SEM experiments. We present a calculation that gives a quantitative description of this effect: our results enable to understand a series of experimental data published in the literature concerning impedance variations observed while cycling lithium-polymer cells

  6. Bortezomib as a new therapeutic approach for blastic plasmacytoid dendritic cell neoplasm.

    Science.gov (United States)

    Philippe, Laure; Ceroi, Adam; Bôle-Richard, Elodie; Jenvrin, Alizée; Biichle, Sabeha; Perrin, Sophie; Limat, Samuel; Bonnefoy, Francis; Deconinck, Eric; Saas, Philippe; Garnache-Ottou, Francine; Angelot-Delettre, Fanny

    2017-11-01

    Blastic plasmacytoid dendritic cell neoplasm is an aggressive hematologic malignancy with a poor prognosis. No consensus regarding optimal treatment modalities is currently available. Targeting the nuclear factor-kappa B pathway is considered a promising approach since blastic plasmacytoid dendritic cell neoplasm has been reported to exhibit constitutive activation of this pathway. Moreover, nuclear factor-kappa B inhibition in blastic plasmacytoid dendritic cell neoplasm cell lines, achieved using either an experimental specific inhibitor JSH23 or the clinical drug bortezomib, interferes in vitro with leukemic cell proliferation and survival. Here we extended these data by showing that primary blastic plasmacytoid dendritic cell neoplasm cells from seven patients were sensitive to bortezomib-induced cell death. We confirmed that bortezomib efficiently inhibits the phosphorylation of the RelA nuclear factor-kappa B subunit in blastic plasmacytoid dendritic cell neoplasm cell lines and primary cells from patients in vitro and in vivo in a mouse model. We then demonstrated that bortezomib can be associated with other drugs used in different chemotherapy regimens to improve its impact on leukemic cell death. Indeed, when primary blastic plasmacytoid dendritic cell neoplasm cells from a patient were grafted into mice, bortezomib treatment significantly increased the animals' survival, and was associated with a significant decrease of circulating leukemic cells and RelA nuclear factor-kappa B subunit expression. Overall, our results provide a rationale for the use of bortezomib in combination with other chemotherapy for the treatment of patients with blastic plasmacytoid dendritic cell neoplasm. Based on our data, a prospective clinical trial combining proteasome inhibitor with classical drugs could be envisaged. Copyright© Ferrata Storti Foundation.

  7. Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH

    Science.gov (United States)

    Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.

    2018-03-01

    In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.

  8. Visual deprivation alters dendritic bundle architecture in layer 4 of rat visual cortex.

    Science.gov (United States)

    Gabbott, P L; Stewart, M G

    2012-04-05

    The effect of visual deprivation followed by light exposure on the tangential organisation of dendritic bundles passing through layer 4 of the rat visual cortex was studied quantitatively in the light microscope. Four groups of animals were investigated: (I) rats reared in an environment illuminated normally--group 52 dL; (II) rats reared in the dark until 21 days postnatum (DPN) and subsequently light exposed for 31 days-group 21/31; (III) rats dark reared until 52 DPN and then subsequently light exposed for 3 days--group 3 dL; and (IV) rats totally dark reared until 52 DPN--group 52 DPN. Each group contained five animals. Semithin 0.5-1-μm thick resin-embedded sections were collected from tangential sampling levels through the middle of layer 4 in area 17 and stained with Toluidine Blue. These sections were used to quantitatively analyse the composition and distribution of dendritic clusters in the tangential plane. The key result of this study indicates a significant reduction in the mean number of medium- and small-sized dendritic profiles (diameter less than 2 μm) contributing to clusters in layer 4 of groups 3 dL and 52 dD compared with group 21/31. No differences were detected in the mean number of large-sized dendritic profiles composing a bundle in these experimental groups. Moreover, the mean number of clusters and their tangential distribution in layer 4 did not vary significantly between all four groups. Finally, the clustering parameters were not significantly different between groups 21/31 and the normally reared group 52 dL. This study demonstrates, for the first time, that extended periods of dark rearing followed by light exposure can alter the morphological composition of dendritic bundles in thalamorecipient layer 4 of rat visual cortex. Because these changes occur in the primary region of thalamocortical input, they may underlie specific alterations in the processing of visual information both cortically and subcortically during periods of

  9. Responsive linear-dendritic block copolymers.

    Science.gov (United States)

    Blasco, Eva; Piñol, Milagros; Oriol, Luis

    2014-06-01

    The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrical and Structural Characterization of Web Dendrite Crystals

    Science.gov (United States)

    Schwuttke, G. H.; Koliwad, K.; Dumas, K. A.

    1985-01-01

    Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.

  11. Kinetics and structure-activity relationship of dendritic bridged hindered phenol antioxidants to protect styrene against free radical induced peroxidation

    Science.gov (United States)

    Li, Cui-Qin; Guo, Su-Yue; Wang, Jun; Shi, Wei-Guang; Zhang, Zhi-Qiu; Wang, Peng-Xiang

    2017-12-01

    A series of dendritic poly(amido-amine) (PAMAM) bridged hindered phenols antioxidants were synthesized. The active antioxidant group (3-(3,5-di- tert-butyl-4-hydroxyphenyl)propionic acid) was attached to two generations of PAMAM dendrimers, and their structure was verified by nuclear magnetic resonance (NMR) and fourier transform infrared spectra (FT-IR). The antioxidant abilities of the dendritic phenols to inhibit the oxidation of styrene were evaluated and the relationships between the length of core, the generation of dendrimers and the antioxidant activities were established. The reaction kinetics of scavenging peroxyl radicals was followed by oxygen consumption. The inhibition time ( t inh) values showed the dendritic phenols had the ability of scavenging peroxyl radicals, and that the antioxidant ability increased with the increasing length of the core and the generation. The kinetic analysis demonstrated that dendritic phenols could slow the rate of styrene peroxidation induced by AIBN, as shown by the number of trapping ROO· ( n), and this role was in accordance with that of the t inh values.

  12. Dscam1-mediated self-avoidance counters netrin-dependent targeting of dendrites in Drosophila.

    Science.gov (United States)

    Matthews, Benjamin J; Grueber, Wesley B

    2011-09-13

    Dendrites and axons show precise targeting and spacing patterns for proper reception and transmission of information in the nervous system. Self-avoidance promotes complete territory coverage and nonoverlapping spacing between processes from the same cell [1, 2]. Neurons that lack Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) show aberrant overlap, fasciculation, and accumulation of dendrites and axons, demonstrating a role in self-recognition and repulsion leading to self-avoidance [3-11]. Fasciculation and accumulation of processes suggested that Dscam1 might promote process spacing by counterbalancing developmental signals that otherwise promote self-association [9, 12]. Here we show that Dscam1 functions to counter Drosophila sensory neuron dendritic targeting signals provided by secreted Netrin-B and Frazzled, a netrin receptor. Loss of Dscam1 function resulted in aberrant dendrite accumulation at a Netrin-B-expressing target, whereas concomitant loss of Frazzled prevented accumulation and caused severe deficits in dendritic territory coverage. Netrin misexpression was sufficient to induce ectopic dendritic targeting in a Frazzled-dependent manner, whereas Dscam1 was required to prevent ectopic accumulation, consistent with separable roles for these receptors. Our results suggest that Dscam1-mediated self-avoidance counters extrinsic signals that are required for normal dendritic patterning, but whose action would otherwise favor neurite accumulation. Counterbalancing roles for Dscam1 may be deployed in diverse contexts during neural circuit formation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Investigations of the functional states of dendritic cells under different conditioned microenvironments by Fourier transformed infrared spectroscopy.

    Science.gov (United States)

    Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu

    2014-01-10

    Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and standardization of dendritic cell-based vaccination clinical preparation protocols.

  14. Basal Dendritic Morphology of Cortical Pyramidal Neurons in Williams Syndrome: Prefrontal Cortex and Beyond.

    Science.gov (United States)

    Hrvoj-Mihic, Branka; Hanson, Kari L; Lew, Caroline H; Stefanacci, Lisa; Jacobs, Bob; Bellugi, Ursula; Semendeferi, Katerina

    2017-01-01

    Williams syndrome (WS) is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we examined two areas in the prefrontal cortex (PFC)-the frontal pole (Brodmann area 10) and the orbitofrontal cortex (Brodmann area 11)-and three areas in the motor, sensory, and visual cortex (BA 4, BA 3-1-2, BA 18). The findings suggest that the morphology of basal dendrites on the pyramidal neurons is altered in the cortex of WS, with differences that were layer-specific, more prominent in PFC areas, and displayed an overall pattern of dendritic organization that differentiates WS from other disorders. In particular, and unlike what was expected based on typically developing brains, basal dendrites in the two PFC areas did not display longer and more branched dendrites compared to motor, sensory and visual areas. Moreover, dendritic branching, dendritic length, and the number of dendritic spines differed little within PFC and between the central executive region (BA 10) and BA 11 that is part of the orbitofrontal region involved into emotional processing. In contrast, the relationship between the degree of neuronal branching in supra- versus infra-granular layers was spared in WS. Although this study utilized tissue held in formalin for a prolonged period of time and the number of neurons available for analysis was limited, our findings indicate that WS cortex, similar to that in other neurodevelopmental disorders such as Down syndrome, Rett syndrome, Fragile X, and idiopathic autism, has altered morphology of basal dendrites on pyramidal neurons, which appears more prominent in selected areas of the PFC. Results were examined from developmental perspectives and discussed in the context of other neurodevelopmental disorders

  15. Basal Dendritic Morphology of Cortical Pyramidal Neurons in Williams Syndrome: Prefrontal Cortex and Beyond

    Directory of Open Access Journals (Sweden)

    Branka Hrvoj-Mihic

    2017-08-01

    Full Text Available Williams syndrome (WS is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we examined two areas in the prefrontal cortex (PFC—the frontal pole (Brodmann area 10 and the orbitofrontal cortex (Brodmann area 11—and three areas in the motor, sensory, and visual cortex (BA 4, BA 3-1-2, BA 18. The findings suggest that the morphology of basal dendrites on the pyramidal neurons is altered in the cortex of WS, with differences that were layer-specific, more prominent in PFC areas, and displayed an overall pattern of dendritic organization that differentiates WS from other disorders. In particular, and unlike what was expected based on typically developing brains, basal dendrites in the two PFC areas did not display longer and more branched dendrites compared to motor, sensory and visual areas. Moreover, dendritic branching, dendritic length, and the number of dendritic spines differed little within PFC and between the central executive region (BA 10 and BA 11 that is part of the orbitofrontal region involved into emotional processing. In contrast, the relationship between the degree of neuronal branching in supra- versus infra-granular layers was spared in WS. Although this study utilized tissue held in formalin for a prolonged period of time and the number of neurons available for analysis was limited, our findings indicate that WS cortex, similar to that in other neurodevelopmental disorders such as Down syndrome, Rett syndrome, Fragile X, and idiopathic autism, has altered morphology of basal dendrites on pyramidal neurons, which appears more prominent in selected areas of the PFC. Results were examined from developmental perspectives and discussed in the context of other

  16. Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death

    Directory of Open Access Journals (Sweden)

    Sugimura Kaoru

    2009-10-01

    Full Text Available Abstract Background For the establishment of functional neural circuits that support a wide range of animal behaviors, initial circuits formed in early development have to be reorganized. One way to achieve this is local remodeling of the circuitry hardwiring. To genetically investigate the underlying mechanisms of this remodeling, one model system employs a major group of Drosophila multidendritic sensory neurons - the dendritic arborization (da neurons - which exhibit dramatic dendritic pruning and subsequent growth during metamorphosis. The 15 da neurons are identified in each larval abdominal hemisegment and are classified into four categories - classes I to IV - in order of increasing size of their receptive fields and/or arbor complexity at the mature larval stage. Our knowledge regarding the anatomy and developmental basis of adult da neurons is still fragmentary. Results We identified multidendritic neurons in the adult Drosophila abdomen, visualized the dendritic arbors of the individual neurons, and traced the origins of those cells back to the larval stage. There were six da neurons in abdominal hemisegment 3 or 4 (A3/4 of the pharate adult and the adult just after eclosion, five of which were persistent larval da neurons. We quantitatively analyzed dendritic arbors of three of the six adult neurons and examined expression in the pharate adult of key transcription factors that result in the larval class-selective dendritic morphologies. The 'baseline design' of A3/4 in the adult was further modified in a segment-dependent and age-dependent manner. One of our notable findings is that a larval class I neuron, ddaE, completed dendritic remodeling in A2 to A4 and then underwent caspase-dependent cell death within 1 week after eclosion, while homologous neurons in A5 and in more posterior segments degenerated at pupal stages. Another finding is that the dendritic arbor of a class IV neuron, v'ada, was immediately reshaped during post

  17. Resistivity and thickness effects in dendritic web silicon solar cells

    Science.gov (United States)

    Meier, D. L.; Hwang, J. M.; Greggi, J.; Campbell, R. B.

    1987-01-01

    The decrease of minority carrier lifetime as resistivity decreases in dendritic-web silicon solar cells is addressed. This variation is shown to be consistent with the presence of defect levels in the bandgap which arise from extended defects in the web material. The extended defects are oxide precipitates (SiOx) and the dislocation cores they decorate. Sensitivity to this background distribution of defect levels increases with doping because the Fermi level moves closer to the majority carrier band edge. For high-resistivity dendritic-web silicon, which has a low concentration of these extended defects, cell efficiencies as high as 16.6 percent (4 sq cm, 40 ohm-cm boron-doped base, AM1.5 global, 100 mW/sq cm, 25 C JPL LAPSS1 measurement) and a corresponding electron lifetime of 38 microsec have been obtained. Thickness effects occur in bifacial cell designs and in designs which use light trapping. In some cases, the dislocation/precipitate defect can be passivated through the full thickness of web cells by hydrogen ion implantation.

  18. Stochastic modeling of columnar dendritic grain growth in weld pool of Al-Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Z.B.; Tian, N. [The State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin (China); Wei, Y.H. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing (China); The State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin (China); Zhan, X.H.

    2009-04-15

    A multi-scale model is used to simulate columnar dendritic growth in TIG (tungsten inert-gas) weld molten pool of Al-Cu alloy. The grain morphologies at the edge of the weld pool are studied. The simulated results indicate that the average primary dendrite spacing changes during the solidification process in the weld pool because of the complicated thermal field, solute diffusion field and competitive growth. And it is shown that the secondary dendrite arms grow insufficiently in the space between dendrite trunks if the primary dendrite spacing is small. And the phenomenon has been explained by analyzing the influence of the solute accumulation on the constitutional undercooling and undercooling gradient when there are two different opposite solute diffusion fields. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Retinoid-induced expression and activity of an immediate early tumor suppressor gene in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Streb

    2011-04-01

    Full Text Available Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β in cultured smooth muscle cells (SMC as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall.

  20. C. elegans bicd-1, homolog of the Drosophila dynein accessory factor Bicaudal D, regulates the branching of PVD sensory neuron dendrites.

    Science.gov (United States)

    Aguirre-Chen, Cristina; Bülow, Hannes E; Kaprielian, Zaven

    2011-02-01

    The establishment of cell type-specific dendritic arborization patterns is a key phase in the assembly of neuronal circuitry that facilitates the integration and processing of synaptic and sensory input. Although studies in Drosophila and vertebrate systems have identified a variety of factors that regulate dendrite branch formation, the molecular mechanisms that control this process remain poorly defined. Here, we introduce the use of the Caenorhabditis elegans PVD neurons, a pair of putative nociceptors that elaborate complex dendritic arbors, as a tractable model for conducting high-throughput RNAi screens aimed at identifying key regulators of dendritic branch formation. By carrying out two separate RNAi screens, a small-scale candidate-based screen and a large-scale screen of the ~3000 genes on chromosome IV, we retrieved 11 genes that either promote or suppress the formation of PVD-associated dendrites. We present a detailed functional characterization of one of the genes, bicd-1, which encodes a microtubule-associated protein previously shown to modulate the transport of mRNAs and organelles in a variety of organisms. Specifically, we describe a novel role for bicd-1 in regulating dendrite branch formation and show that bicd-1 is likely to be expressed, and primarily required, in PVD neurons to control dendritic branching. We also present evidence that bicd-1 operates in a conserved pathway with dhc-1 and unc-116, components of the dynein minus-end-directed and kinesin-1 plus-end-directed microtubule-based motor complexes, respectively, and interacts genetically with the repulsive guidance receptor unc-5.

  1. Dendritic cells in chronic myelomonocytic leukaemia.

    Science.gov (United States)

    Vuckovic, S; Fearnley, D B; Gunningham, S; Spearing, R L; Patton, W N; Hart, D N

    1999-06-01

    Blood dendritic cells (DC) differentiate in vitro via two separate pathways: either directly from blood DC precursors (DCp) or from CD14+ monocytes. In chronic myelomonocytic leukaemia (CMML) abnormal bone marrow precursors contribute to blood monocyte development but DC development has not been studied previously. Monocytes comprised 60% of blood MNC in 15 CMML patients studied, compared with 20% in 16 age-matched controls. The increase in blood monocytes was accompanied by a reciprocal decrease in mean blood DC percentage (from 0.42% of MNC in normal individuals to 0.16% of MNC in CMML patients). Absolute blood DC numbers showed a minimal (non-significant) reduction from 9.8 x 10(6)/l in normal individuals to 7.5 x 10(6)/l in CMML patients. The CD14(low) WCD16+ monocyte subpopulation was not found in CMML patients. After culture in GM-CSF/IL-4, CMML CD14+ monocytes acquired the phenotype of immature monocyte derived DC (Mo-DC) with similar yields to normal blood Mo-DC generation. Addition of TNF-alpha or LPS induced both normal and CMML Mo-DC to express prominent dendritic processes, the CMRF44+ and CD83+ antigens and high levels of HLA-DR, CD80 and CD86. Treatment either with TNF-alpha or LPS increased the allostimulatory activity of normal Mo-DC, but had little effect on the allostimulatory activity of CMML Mo-DC, perhaps reflecting the underlying neoplastic changes in monocyte precursors. We conclude that the blood DC numbers are relatively unaffected in CMML, suggesting discrete regulation of monocyte and DC production.

  2. Spiking Neural Classifier with Lumped Dendritic Nonlinearity and Binary Synapses: A Current Mode VLSI Implementation and Analysis.

    Science.gov (United States)

    Bhaduri, Aritra; Banerjee, Amitava; Roy, Subhrajit; Kar, Sougata; Basu, Arindam

    2018-03-01

    We present a neuromorphic current mode implementation of a spiking neural classifier with lumped square law dendritic nonlinearity. It has been shown previously in software simulations that such a system with binary synapses can be trained with structural plasticity algorithms to achieve comparable classification accuracy with fewer synaptic resources than conventional algorithms. We show that even in real analog systems with manufacturing imperfections (CV of 23.5% and 14.4% for dendritic branch gains and leaks respectively), this network is able to produce comparable results with fewer synaptic resources. The chip fabricated in [Formula: see text]m complementary metal oxide semiconductor has eight dendrites per cell and uses two opposing cells per class to cancel common-mode inputs. The chip can operate down to a [Formula: see text] V and dissipates 19 nW of static power per neuronal cell and [Formula: see text] 125 pJ/spike. For two-class classification problems of high-dimensional rate encoded binary patterns, the hardware achieves comparable performance as software implementation of the same with only about a 0.5% reduction in accuracy. On two UCI data sets, the IC integrated circuit has classification accuracy comparable to standard machine learners like support vector machines and extreme learning machines while using two to five times binary synapses. We also show that the system can operate on mean rate encoded spike patterns, as well as short bursts of spikes. To the best of our knowledge, this is the first attempt in hardware to perform classification exploiting dendritic properties and binary synapses.

  3. Two-photon imaging during prolonged middle cerebral artery occlusion in mice reveals recovery of dendritic structure after reperfusion.

    Science.gov (United States)

    Li, Ping; Murphy, Timothy H

    2008-11-12

    Filament occlusion of the middle cerebral artery (MCA) is a well accepted animal model of focal ischemia. Advantages of the model are relatively long occlusion times and a large penumbra region that simulates aspects of human stroke. Here, we use two-photon and confocal microscopy in combination with regional measurement of blood flow using laser speckle to assess the spatial relationship between the borders of the MCA ischemic territory and loss of dendrite structure, as well as the effect of reperfusion on dendritic damage in adult YFP (yellow fluorescent protein) and GFP (green fluorescent protein) C57BL/6 transgenic mice with fluorescent (predominantly layer 5) neurons. By examining the spatial extent of dendritic damage, we determined that 60 min of MCA occlusion produced a core with severe structural damage that did not recover after reperfusion (begins approximately 3.8 mm lateral to midline), a reversibly damaged area up to 0.6 mm medial to the core that recovered after reperfusion (penumbra), and a relatively structurally intact area ( approximately 1 mm wide; medial penumbra) with hypoperfusion. Loss of structure was preceded by a single ischemic depolarization 122.1 +/- 10.2 s after occlusion onset. Reperfusion of animals after 60 min of ischemia was not associated with exacerbation of damage (reperfusion injury) and resulted in a significant restoration of blebbed dendritic structure, but only within approximately 0.6 mm lateral of the dendritic damage structural border. In summary, we find that recovery of dendritic structure can occur after reperfusion after even 60 min of ischemia, but is likely restricted to a relatively small penumbra region with partial blood flow or oxygenation.

  4. Disruption?

    DEFF Research Database (Denmark)

    2016-01-01

    This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray......This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray...

  5. Risk factors for wound disruption following cesarean delivery.

    Science.gov (United States)

    Subramaniam, Akila; Jauk, Victoria C; Figueroa, Dana; Biggio, Joseph R; Owen, John; Tita, Alan T N

    2014-08-01

    Risk factors for post-cesarean wound infection, but not disruption, are well-described in the literature. The primary objective of this study was to identify risk factors for non-infectious post-cesarean wound disruption. Secondary analysis was conducted using data from a single-center randomized controlled trial of staple versus suture skin closure in women ≥24 weeks' gestation undergoing cesarean delivery. Wound disruption was defined as subcutaneous skin or fascial dehiscence excluding primary wound infections. Composite wound morbidity (disruption or infection) was examined as a secondary outcome. Patient demographics, medical co-morbidities, and intrapartum characteristics were evaluated as potential risk factors using multivariable logistic regression. Of the 398 randomized patients, 340, including 26 with disruptions (7.6%) met inclusion criteria and were analyzed. After multivariable adjustments, African-American race (aOR 3.9, 95% CI 1.1-13.8) and staple - as opposed to suture - wound closure (aOR 5.4, 95% CI 1.8-16.1) remained significant risk factors for disruption; non-significant increases were observed for body mass index ≥30 (aOR 2.1, 95% CI 0.6-7.5), but not for diabetes mellitus (aOR 0.9, 95% CI 0.3-2.9). RESULTS for composite wound morbidity were similar. Skin closure with staples, African-American race, and considering the relatively small sample size, potentially obesity are associated with increased risk of non-infectious post-cesarean wound disruption.

  6. Sensitivity of Dendritic Cells to Microenvironment Signals

    Directory of Open Access Journals (Sweden)

    Juliana Maria Motta

    2016-01-01

    Full Text Available Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies.

  7. Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys

    Science.gov (United States)

    Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2014-01-01

    The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.

  8. Studies on the control mechanism and the degenerative immune function of dendritic cells using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Sung Tae; Kim, Jong Jin; Choi, Ji Na; Park, Jung Eun; Jeong, Young Ran [Sunchon National University, Sunchon (Korea, Republic of)

    2010-05-15

    Dendritic cells are actively used as cellular adjuvant in cancer immunotherapy. However, although DC immunotherapies primarily target the elderly population, little is known about the effect of aging on DC functions. Here, we compared the T-cell stimulation, cytokine production, and costimulatory molecule expression of spleen or bone marrow-derived CD11c{sup +} DCs of C57BL/6 mice. In the first year, we compared various function of dendritic cells isolated from young and gamma-irradiated 57BL/6 mice(5 weeks after {gamma}-radiation) for the development of aging models using radiation. In the second year, we also compared the function of spleen- and bone marrow-derived dendritic cells of young(2-3 months) and old(23-24 months) 57BL/6 mice. And we studied the differences of spleen- and bone marrow-derived dendritic cells of young and gamma-irradiated 57BL/6 mice(2, 4, 6 months after {gamma}-radiation) for the development of aging models in third year. And we obtained various differences between spleen- and bone marrow-derived dendritic cells of normal and old(23-24 months) or {gamma}-irradiated 57BL/6 mice. It is possible to use our results as age-associated model for modulation of the declined immunity and hematopoiesis for treatment of cancer, adult diseases and stress in aging. Such studies on the mechanism of aging model would further lead to new avenues for the development of functional foods which effect such as pathogenesis, inflammatory and autoimmune disorders. It will contributed to activation of related industry conforming quality and diversity of radiation industry. The techniques developed in our research may provide novel therapeutic modalities for age-associated immune dysfunctions

  9. A Novel Forward Genetic Screen for Identifying Mutations Affecting Larval Neuronal Dendrite Development in Drosophila melanogaster

    OpenAIRE

    Medina, Paul Mark B.; Swick, Lance L.; Andersen, Ryan; Blalock, Zachary; Brenman, Jay E.

    2006-01-01

    Vertebrate and invertebrate dendrites are information-processing compartments that can be found on both central and peripheral neurons. Elucidating the molecular underpinnings of information processing in the nervous system ultimately requires an understanding of the genetic pathways that regulate dendrite formation and maintenance. Despite the importance of dendrite development, few forward genetic approaches have been used to analyze the latest stages of dendrite development, including the ...

  10. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    International Nuclear Information System (INIS)

    Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier; Vernhet, Laurent

    2013-01-01

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  11. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Macoch, Mélinda; Morzadec, Claudie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  12. ADHD and Disruptive behavior scores – associations with MAO-A and 5-HTT genes and with platelet MAO-B activity in adolescents

    Directory of Open Access Journals (Sweden)

    Larsson Jan-Olov

    2008-04-01

    Full Text Available Abstract Background Pharmacological and genetic studies suggest the importance of the dopaminergic, serotonergic, and noradrenergic systems in the pathogenesis of Attention Deficit Hyperactivity Disorder (ADHD and Disruptive Behavior Disorder (DBD. We have, in a population-based sample, studied associations between dimensions of the ADHD/DBD phenotype and Monoamine Oxidase B (MAO-B activity in platelets and polymorphisms in two serotonergic genes: the Monoamine Oxidase A Variable Number of Tandem Repeats (MAO-A VNTR and the 5-Hydroxytryptamine Transporter gene-Linked Polymorphic Region (5-HTT LPR. Methods A population-based sample of twins, with an average age of 16 years, was assessed for ADHD/DBD with a clinical interview; Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL. Blood was drawn from 247 subjects and analyzed for platelet MAO-B activity and polymorphisms in the MAO-A and 5-HTT genes. Results We found an association in girls between low platelet MAO-B activity and symptoms of Oppositional Defiant Disorder (ODD. In girls, there was also an association between the heterozygote long/short 5-HTT LPR genotype and symptoms of conduct disorder. Furthermore the heterozygote 5-HTT LPR genotype in boys was found to be associated with symptoms of Conduct Disorder (CD. In boys, hemizygosity for the short MAO-A VNTR allele was associated with disruptive behavior. Conclusion Our study suggests that the serotonin system, in addition to the dopamine system, should be further investigated when studying genetic influences on the development of Disruptive Behavior Disorders.

  13. Dendritic morphology observed in the solid-state precipitation in binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Husain, S.W.; Ahmed, M.S.; Qamar, I. [Dr. A.Q. Khan Research Labs., Rawalpindi (Pakistan)

    1999-06-01

    The precipitation of {gamma}{sub 2} phase in Cu-Al {beta}-phase alloys has been observed to occur in the dendritic morphology. Such morphology is rarely observed in the solid-state transformations. Earlier it was reported that the {gamma} precipitates were formed in the dendritic shape when Cu-Zn {beta}-phase alloys were cooled from high temperature. The characteristics of these two alloy systems have been examined to find the factors promoting the dendritic morphology in the solid-state transformations. Rapid bulk diffusion and fast interfacial reaction kinetics would promote such morphology. The kinetics of atom attachment to the growing interface is expected to be fast when crystallographic similarities exist between the parent phase and the precipitate. The authors have predicted the dendritic morphology in the solid-state precipitation in many binary alloy systems simply based on such crystallographic similarities. These alloys include, in addition to Cu-Al and Cu-Zn, the {beta}-phase alloys in Ag-Li, Ag-Zn, Cu-Ga, Au-Zn, and Ni-Zn systems, {gamma}-phase alloys in Cu-Sn and Ag-Cd systems, and {delta}-phase alloys in Au-Cd system. Of these, the alloys in Ag-Zn, Ni-Zn, Ag-Cd, and Cu-Sn systems were prepared and it was indeed found that the precipitates formed in the dendritic shape.

  14. The scavenger receptor MARCO modulates TLR-induced responses in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Haydn T Kissick

    Full Text Available The scavenger receptor MARCO mediates macrophage recognition and clearance of pathogens and their polyanionic ligands. However, recent studies demonstrate MARCO expression and function in dendritic cells, suggesting MARCO might serve to bridge innate and adaptive immunity. To gain additional insight into the role of MARCO in dendritic cell activation and function, we profiled transcriptomes of mouse splenic dendritic cells obtained from MARCO deficient mice and their wild type counterparts under resting and activating conditions. In silico analysis uncovered major alterations in gene expression in MARCO deficient dendritic cells resulting in dramatic alterations in key dendritic cell-specific pathways and functions. Specifically, changes in CD209, FCGR4 and Complement factors can have major consequences on DC-mediated innate responses. Notably, these perturbations were magnified following activation with the TLR-4 agonist lipopolysaccharide. To validate our in silico data, we challenged DC's with various agonists that recognize all mouse TLRs and assessed expression of a set of immune and inflammatory marker genes. This approach identified a differential contribution of MARCO to TLR activation and validated a major role for MARCO in mounting an inflammatory response. Together, our data demonstrate that MARCO differentially affects TLR-induced DC activation and suggest targeting of MARCO could lead to different outcomes that depend on the inflammatory context encountered by DC.

  15. Constancy and variability in cortical structure. A study on synapses and dendritic spines in hedgehog and monkey.

    Science.gov (United States)

    Schüz, A; Demianenko, G P

    1995-01-01

    Synapses and dendritic spines were investigated in the parietal cortex of the hedgehog (Erinaceus europaeus) and the monkey (Macaca mulatta). There was no significant difference in the density of synapses between the two species (14 synapses/100 microns2 in the hedgehog, 15/100 microns2 in the monkey), neither in the size of the synaptic junctions, in the proportion of Type I and Type II synapses (8-10% were of Type II in the hedgehog, 10-14% in the monkey) nor in the proportion of perforated synapses (8% in the hedgehog, 5% in the monkey). The only striking difference at the electron microscopic level concerned the frequency of synapses in which the postsynaptic profile was deeply indented into the presynaptic terminal. Such synapses were 10 times more frequent in the monkey. Dendritic spines were investigated in Golgi-preparations. The density of spines along dendrites was similar in both species. The results are discussed with regard to connectivity in the cortex of small and large brains.

  16. Dendritic Spines in Depression: What We Learned from Animal Models

    OpenAIRE

    Qiao, Hui; Li, Ming-Xing; Xu, Chang; Chen, Hui-Bin; An, Shu-Cheng; Ma, Xin-Ming

    2016-01-01

    Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have ...

  17. Neuron array with plastic synapses and programmable dendrites.

    Science.gov (United States)

    Ramakrishnan, Shubha; Wunderlich, Richard; Hasler, Jennifer; George, Suma

    2013-10-01

    We describe a novel neuromorphic chip architecture that models neurons for efficient computation. Traditional architectures of neuron array chips consist of large scale systems that are interfaced with AER for implementing intra- or inter-chip connectivity. We present a chip that uses AER for inter-chip communication but uses fast, reconfigurable FPGA-style routing with local memory for intra-chip connectivity. We model neurons with biologically realistic channel models, synapses and dendrites. This chip is suitable for small-scale network simulations and can also be used for sequence detection, utilizing directional selectivity properties of dendrites, ultimately for use in word recognition.

  18. Extrinsic Repair of Injured Dendrites as a Paradigm for Regeneration by Fusion in Caenorhabditis elegans

    Science.gov (United States)

    Oren-Suissa, Meital; Gattegno, Tamar; Kravtsov, Veronika; Podbilewicz, Benjamin

    2017-01-01

    Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans. Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries. PMID:28283540

  19. Developmental disorders of the brain can be caused by PCBs; low doses of hydroxy-PCBs disrupt thyroid hormone-dependent dendrite formation from Purkinje neurons in culture

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Y; Kimura-Kuroda, J [Tokyo Metropol. Inst. for Neuroscience, Tokyo (Japan); Nagata, I [CREST/ JST, Tokyo (Japan)

    2004-09-15

    Exposure to some environmental chemicals during the perinatal period causes developmental disorders of the brain. Cognitive impairment and hyperactivity in infants were reported in Taiwan, known as Yu-cheng incidents caused by the accidental contamination of polychlorinated biphenyls (PCBs). Together with recent experimental data, Kuroda proposes a hypothesis that spatio-temporal disruptions of developing neuronal circuits by PCB exposure can cause the comobidity of learning disorders (LD), attention deficit hyperactivity disorder (ADHD) and autsm with the co-exposure to other environmental chemicals. PCBs and hydroxylated PCBs (OH-PCBs) have similar chemical structures to thyroid hormones (TH), thyroxine (T4) and triiodothyronine (T3). TH deficiency in the perinatal period causes cretinism children with severe cognitive and mental retardation. In primate model, Rice demonstrates that postnatal exposure to PCBs can dramatically influence later behavioral function. Epidemiological studies also indicate the possible developmental neurotoxicity of PCBs accumulated in human bodies. However, the precise underlying mechanisms and which types of PCB or OH-PCB with such effects have yet to be elucidated. It is important to establish a simple, reproducible, and sensitive in vitro assay for determining the effects of PCBs and OH-PCBs on the development of the central nervous system. Recently Iwasaki et al. established a reporter assay system and disclosed that low doses of PCBs potentially interfere TH-dependent gene expressions. This is the first demonstration that PCBs and OH-PCBs directly affect TH-receptor (TR)-mediated gene expressions crucial to the brain development, through unique mechanism. We also have demonstrated TH-dependent development of Purkinje neurons in vitro using a serum-free chemically defined medium. The degree of dendritic development of Purkinje cells is TH dose-dependent and exhibits high sensitivity in the pM order. Therefore, in the present study

  20. Loss of dendritic connectivity in southern California's urban riverscape facilitates decline of an endemic freshwater fish

    Science.gov (United States)

    Richmond, Jonathan Q.; Backlin, Adam R.; Galst-Cavalcante, Carey; O'Brien, John W.; Fisher, Robert N.

    2018-01-01

    Life history adaptations and spatial configuration of metapopulation networks allow certain species to persist in extreme fluctuating environments, yet long-term stability within these systems relies on the maintenance of linkage habitat. Degradation of such linkages in urban riverscapes can disrupt this dynamic in aquatic species, leading to increased extinction debt in local populations experiencing environment-related demographic flux. We used microsatellites and mtDNA to examine the effects of collapsed network structure in the endemic Santa Ana sucker Catostomus santaanae of southern California, a threatened species affected by natural flood-drought cycles, ‘boom-and-bust’ demography, hybridization, and presumed artificial transplantation. Our results show a predominance of drift-mediated processes in shaping population structure, and that reverse mechanisms for counterbalancing the genetic effects of these phenomena have dissipated with the collapse of dendritic connectivity. We use approximate Bayesian models to support two cases of artificial transplantation, and provide evidence that one of the invaded systems better represents the historic processes that maintained genetic variation within watersheds than any remaining drainages where C. santaanae is considered native. We further show that a stable dry gap in the northern range is preventing genetic dilution of pure C. santaanae persisting upstream of a hybrid assemblage involving a non-native sucker, and that local accumulation of genetic variation in the same drainage is influenced by position within the network. This work has important implications for declining species that have historically relied on dendritic metapopulation networks to maintain source-sink dynamics in phasic environments, but no longer possess this capacity in urban-converted landscapes.

  1. Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress.

    Science.gov (United States)

    Papale, Ligia A; Li, Sisi; Madrid, Andy; Zhang, Qi; Chen, Li; Chopra, Pankaj; Jin, Peng; Keleş, Sündüz; Alisch, Reid S

    2016-12-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Cranial irradiation alters dendritic spine density and morphology in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Ayanabha Chakraborti

    Full Text Available Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9% and 1 month (26.9% after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7% in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.

  3. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries

    Science.gov (United States)

    Raj, R.; Wolfenstine, J.

    2017-03-01

    We build upon the concept that nucleation of lithium dendrites at the lithium anode-solid state electrolyte interface is instigated by the higher resistance of grain boundaries that raises the local electro-chemical potential of lithium, near the lithium-electrode. This excess electro-chemo-mechanical potential, however, is reduced by the mechanical back stress generated when the dendrite is formed within the electrolyte. These parameters are coalesced into an analytical model that prescribes a specific criterion for dendrite formation. The results are presented in the form of current limit diagrams that show the "safe" and "fail" regimes for battery function. A higher conductivity of the electrolyte can reduce dendrite formation.

  4. Age-related patterns in human myeloid dendritic cell populations in people exposed to Schistosoma haematobium infection.

    Directory of Open Access Journals (Sweden)

    Norman Nausch

    Full Text Available Urogenital schistosomiasis is caused by the helminth parasite Schistosoma haematobium. In high transmission areas, children acquire schistosome infection early in life with infection levels peaking in early childhood and subsequently declining in late childhood. This age-related infection profile is thought to result from the gradual development of protective acquired immunity. Age-related differences in schistosome-specific humoral and cellular responses have been reported from several field studies. However there has not yet been a systematic study of the age-related changes in human dendritic cells, the drivers of T cell polarisation.Peripheral blood mononuclear cells were obtained from a cohort of 61 Zimbabwean aged 5-45 years with a S. haematobium prevalence of 47.5%. Two subsets of dendritic cells, myeloid and plasmacytoid dendritic cells (mDCs and pDCs, were analyzed by flow cytometry.In this population, schistosome infection levels peaked in the youngest age group (5-9 years, and declined in late childhood and adulthood (10+ years. The proportions of both mDCs and pDCs varied with age. However, for mDCs the age profile depended on host infection status. In the youngest age group infected people had enhanced proportions of mDCs as well as lower levels of HLA-DR on mDCs than un-infected people. In the older age groups (10-13 and 14-45 years infected people had lower proportions of mDCs compared to un-infected individuals, but no infection status-related differences were observed in their levels of HLA-DR. Moreover mDC proportions correlated with levels of schistosome-specific IgG, which can be associated with protective immunity. In contrast proportions of pDCs varied with host age, but not with infection status.Our results show that dendritic cell proportions and activation in a human population living in schistosome-endemic areas vary with host age reflecting differences in cumulative history of exposure to schistosome infection.

  5. GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy

    International Nuclear Information System (INIS)

    Sakane, S; Takaki, T; Ohno, M; Shimokawabe, T; Aoki, T

    2015-01-01

    Phase-field method has emerged as the most powerful numerical scheme to simulate dendrite growth. However, most phase-field simulations of dendrite growth performed so far are limited to two-dimension or single dendrite in three-dimension because of the large computational cost involved. To express actual solidification microstructures, multiple dendrites with different preferred growth directions should be computed at the same time. In this study, in order to enable large-scale phase-field dendrite growth simulations, we developed a phase-field code using multiple graphics processing units in which a quantitative phase-field method for binary alloy solidification and moving frame algorithm for directional solidification were employed. First, we performed strong and weak scaling tests for the developed parallel code. Then, dendrite competitive growth simulations in three-dimensional binary alloy bicrystal were performed and the dendrite interactions in three-dimensional space were investigated. (paper)

  6. Unusual patch-matrix organization in the retrosplenial cortex of the reeler mouse and Shaking rat Kawasaki.

    Science.gov (United States)

    Ichinohe, Noritaka; Knight, Adrian; Ogawa, Masaharu; Ohshima, Toshio; Mikoshiba, Katsuhiko; Yoshihara, Yoshihiro; Terashima, Toshio; Rockland, Kathleen S

    2008-05-01

    The rat granular retrosplenial cortex (GRS) is a simplified cortex, with distinct stratification and, in the uppermost layers, distinct modularity. Thalamic and cortical inputs are segregated by layers and in layer 1 colocalize, respectively, with apical dendritic bundles originating from neurons in layers 2 or 5. To further investigate this organization, we turned to reelin-deficient reeler mouse and Shaking rat Kawasaki. We found that the disrupted lamination, evident in Nissl stains in these rodents, is in fact a patch-matrix mosaic of segregated afferents and dendrites. Patches consist of thalamocortical connections, visualized by vesicular glutamate transporter 2 (VGluT2) or AChE. The surrounding matrix consists of corticocortical terminations, visualized by VGluT1 or zinc. Dendrites concentrate in the matrix or patches, depending on whether they are OCAM positive (matrix) or negative (patches). In wild-type rodents and, presumably, mutants, OCAM(+) structures originate from layer 5 neurons. By double labeling for dendrites (filled by Lucifer yellow in fixed slice) and OCAM immunofluorescence, we ascertained 2 populations in reeler: dendritic branches either preferred (putative layer 5 neurons) or avoided (putative supragranular neurons) the OCAM(+) matrix. We conclude that input-target relationships are largely preserved in the mutant GRS and that dendrite-dendrite interactions involving OCAM influence the formation of the mosaic configuration.

  7. Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites.

    Science.gov (United States)

    Das, Anindita; Rathour, Rahul K; Narayanan, Rishikesh

    2017-01-01

    Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.

  8. Dendritic Cytoskeletal Architecture Is Modulated by Combinatorial Transcriptional Regulation in Drosophila melanogaster.

    Science.gov (United States)

    Das, Ravi; Bhattacharjee, Shatabdi; Patel, Atit A; Harris, Jenna M; Bhattacharya, Surajit; Letcher, Jamin M; Clark, Sarah G; Nanda, Sumit; Iyer, Eswar Prasad R; Ascoli, Giorgio A; Cox, Daniel N

    2017-12-01

    Transcription factors (TFs) have emerged as essential cell autonomous mediators of subtype specific dendritogenesis; however, the downstream effectors of these TFs remain largely unknown, as are the cellular events that TFs control to direct morphological change. As dendritic morphology is largely dictated by the organization of the actin and microtubule (MT) cytoskeletons, elucidating TF-mediated cytoskeletal regulatory programs is key to understanding molecular control of diverse dendritic morphologies. Previous studies in Drosophila melanogaster have demonstrated that the conserved TFs Cut and Knot exert combinatorial control over aspects of dendritic cytoskeleton development, promoting actin and MT-based arbor morphology, respectively. To investigate transcriptional targets of Cut and/or Knot regulation, we conducted systematic neurogenomic studies, coupled with in vivo genetic screens utilizing multi-fluor cytoskeletal and membrane marker reporters. These analyses identified a host of putative Cut and/or Knot effector molecules, and a subset of these putative TF targets converge on modulating dendritic cytoskeletal architecture, which are grouped into three major phenotypic categories, based upon neuromorphometric analyses: complexity enhancer, complexity shifter, and complexity suppressor. Complexity enhancer genes normally function to promote higher order dendritic growth and branching with variable effects on MT stabilization and F-actin organization, whereas complexity shifter and complexity suppressor genes normally function in regulating proximal-distal branching distribution or in restricting higher order branching complexity, respectively, with spatially restricted impacts on the dendritic cytoskeleton. Collectively, we implicate novel genes and cellular programs by which TFs distinctly and combinatorially govern dendritogenesis via cytoskeletal modulation. Copyright © 2017 by the Genetics Society of America.

  9. Advanced dendritic web growth development

    Science.gov (United States)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  10. Integrated disruption avoidance and mitigation in KSTAR

    International Nuclear Information System (INIS)

    Kim, Jayhyun; Woo, M.H.; Han, H.; In, Y.; Bak, J.G.; Eidietis, N.W.

    2014-01-01

    The final target of Korea Superconducting Tokamak Advanced Research (KSTAR) aims advanced tokamak operation at plasma current 2 MA and toroidal field 3.5 T. In order to safely achieve the target, disruption counter-measures are unavoidable when considering the disruption risks, inevitably accompanied with high performance discharges, such as electro-magnetic load on conducting structures, collisional damage by run-away electrons, and thermal load on plasma facing components (PFCs). In this reason, the establishment of integrated disruption mitigation system (DMS) has been started for routine mega-ampere class operations of KSTAR since 2013 campaign. The DMS mainly consists of the disruption prediction and its avoidance/mitigation in company with logical/technical integration of them. We present the details of KSTAR DMS and the related experimental results in this article. (author)

  11. Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways

    International Nuclear Information System (INIS)

    Laxmanan, Sreenivas; Robertson, Stuart W.; Wang Enfeng; Lau, Julie S.; Briscoe, David M.; Mukhopadhyay, Debabrata

    2005-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic cytokine that plays an important role in tumor growth and progression. Recent evidence suggests an alternate, albeit indirect, role of VEGF on host immune response to tumors. VEGF appears to diminish host immunity by altering the function of major antigen-presenting cells such as dendritic cells (DCs) [D.I. Gabrilovich, T. Ishida, S. Nadaf, J.E. Ohm, D.P. Carbone, Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function, Clin. Cancer Res. 5 (1999) 2963-2970, D. Gabrilovich, T. Ishida, T. Oyama, S. Ran, V. Kravtsov, S. Nadaf, D.P. Carbone, Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo, Blood 92 (1998) 4150-4166, T. Oyama, S. Ran, T. Ishida, S. Nadaf, L. Kerr, D.P. Carbone, D.I. Gabrilovich, Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells, J. Immunol. 160 (1998) 1224-1232.]. DCs are prime initiators of host immunity as they are known to activate both primary as well as secondary immune responses [J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pulendran, K. Palucka, Immunobiology of dendritic cells, Ann. Rev. Immunol. 18 (2000) 767-811.]. However, the exact nature of how VEGF suppresses DC function is not fully clear. In this report, we show that DCs cultured in the presence of VEGF are less potent in stimulating antigen-specific T-cells. Furthermore, by using DCs derived from Id1 -/- mice that are defective in Flt-1 signaling, we demonstrated that the inhibitory function of VEGF on DC function is most likely mediated by Flt-1. Thus, the role of VEGF in downregulating host immunity may highlight a unique role of VEGF in the pathogenesis of cancer

  12. The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes

    Science.gov (United States)

    Schwenk, Benjamin M; Lang, Christina M; Hogl, Sebastian; Tahirovic, Sabina; Orozco, Denise; Rentzsch, Kristin; Lichtenthaler, Stefan F; Hoogenraad, Casper C; Capell, Anja; Haass, Christian; Edbauer, Dieter

    2014-01-01

    TMEM106B is a major risk factor for frontotemporal lobar degeneration with TDP-43 pathology. TMEM106B localizes to lysosomes, but its function remains unclear. We show that TMEM106B knockdown in primary neurons affects lysosomal trafficking and blunts dendritic arborization. We identify microtubule-associated protein 6 (MAP6) as novel interacting protein for TMEM106B. MAP6 over-expression inhibits dendritic branching similar to TMEM106B knockdown. MAP6 knockdown fully rescues the dendritic phenotype of TMEM106B knockdown, supporting a functional interaction between TMEM106B and MAP6. Live imaging reveals that TMEM106B knockdown and MAP6 overexpression strongly increase retrograde transport of lysosomes in dendrites. Downregulation of MAP6 in TMEM106B knockdown neurons restores the balance of anterograde and retrograde lysosomal transport and thereby prevents loss of dendrites. To strengthen the link, we enhanced anterograde lysosomal transport by expressing dominant-negative Rab7-interacting lysosomal protein (RILP), which also rescues the dendrite loss in TMEM106B knockdown neurons. Thus, TMEM106B/MAP6 interaction is crucial for controlling dendritic trafficking of lysosomes, presumably by acting as a molecular brake for retrograde transport. Lysosomal misrouting may promote neurodegeneration in patients with TMEM106B risk variants. PMID:24357581

  13. Dendritic cells: biology of the skin

    NARCIS (Netherlands)

    Toebak, M.J.; Gibbs, S.; Bruynzeel, D.P.; Scheper, R.J.; Rustemeyer, T.

    2009-01-01

    Allergic contact dermatitis results from a T-cell-mediated, delayed-type hypersensitivity immune response induced by allergens. Skin dendritic cells (DCs) play a central role in the initiation of allergic skin responses. Following encounter with an allergen, DCs become activated and undergo

  14. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Yin-Peng Chen

    Full Text Available Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  15. DMPD: Proximal effects of Toll-like receptor activation in dendritic cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17142025 Proximal effects of Toll-like receptor activation in dendritic cells. Watt...) (.svg) (.html) (.csml) Show Proximal effects of Toll-like receptor activation in dendritic cells. PubmedID... 17142025 Title Proximal effects of Toll-like receptor activation in dendritic ce

  16. Self-referential forces are sufficient to explain different dendritic morphologies

    Directory of Open Access Journals (Sweden)

    Heraldo eMemelli

    2013-01-01

    Full Text Available Dendritic morphology constrains brain activity, as it determines first which neuronal circuits are possible and second which dendritic computations can be performed over a neuron's inputs. It is known that a range of chemical cues can influence the final shape of dendrites during development. Here, we investigate the extent to which self-referential influences, cues generated by the neuron itself, might influence morphology. To this end, we developed a phenomenological model and algorithm to generate virtual morphologies, which are then compared to experimentally reconstructed morphologies. In the model, branching probability follows a Galton-Watson process, while the geometry is determined by "homotypic forces" exerting influence on the direction of random growth in a constrained space. We model three such homotypic forces, namely an inertial force based on membrane stiffness, a soma-oriented tropism, and a force of self avoidance, as directional biases in the growth algorithm. With computer simulations we explored how each bias shapes neuronal morphologies. We show that based on these principles, we can generate realistic morphologies of several distinct neuronal types. We discuss the extent to which homotypic forces might influence real dendritic morphologies, and speculate about the influence of other environmental cues on neuronal shape and circuitry.

  17. Self-referential forces are sufficient to explain different dendritic morphologies

    Science.gov (United States)

    Memelli, Heraldo; Torben-Nielsen, Benjamin; Kozloski, James

    2013-01-01

    Dendritic morphology constrains brain activity, as it determines first which neuronal circuits are possible and second which dendritic computations can be performed over a neuron's inputs. It is known that a range of chemical cues can influence the final shape of dendrites during development. Here, we investigate the extent to which self-referential influences, cues generated by the neuron itself, might influence morphology. To this end, we developed a phenomenological model and algorithm to generate virtual morphologies, which are then compared to experimentally reconstructed morphologies. In the model, branching probability follows a Galton–Watson process, while the geometry is determined by “homotypic forces” exerting influence on the direction of random growth in a constrained space. We model three such homotypic forces, namely an inertial force based on membrane stiffness, a soma-oriented tropism, and a force of self-avoidance, as directional biases in the growth algorithm. With computer simulations we explored how each bias shapes neuronal morphologies. We show that based on these principles, we can generate realistic morphologies of several distinct neuronal types. We discuss the extent to which homotypic forces might influence real dendritic morphologies, and speculate about the influence of other environmental cues on neuronal shape and circuitry. PMID:23386828

  18. Dendritic Spines in Depression: What We Learned from Animal Models

    Directory of Open Access Journals (Sweden)

    Hui Qiao

    2016-01-01

    Full Text Available Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS, chronic unpredictable mild stress (CUMS, and chronic social defeat stress (CSDS, have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms.

  19. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.

    Science.gov (United States)

    Luo, Kui; Liu, Gang; He, Bin; Wu, Yao; Gong, Qingyong; Song, Bin; Ai, Hua; Gu, Zhongwei

    2011-04-01

    The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Spindle-F Is the Central Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neurons.

    Directory of Open Access Journals (Sweden)

    Tzu Lin

    2015-11-01

    Full Text Available During development, certain Drosophila sensory neurons undergo dendrite pruning that selectively eliminates their dendrites but leaves the axons intact. How these neurons regulate pruning activity in the dendrites remains unknown. Here, we identify a coiled-coil protein Spindle-F (Spn-F that is required for dendrite pruning in Drosophila sensory neurons. Spn-F acts downstream of IKK-related kinase Ik2 in the same pathway for dendrite pruning. Spn-F exhibits a punctate pattern in larval neurons, whereas these Spn-F puncta become redistributed in pupal neurons, a step that is essential for dendrite pruning. The redistribution of Spn-F from puncta in pupal neurons requires the phosphorylation of Spn-F by Ik2 kinase to decrease Spn-F self-association, and depends on the function of microtubule motor dynein complex. Spn-F is a key component to link Ik2 kinase to dynein motor complex, and the formation of Ik2/Spn-F/dynein complex is critical for Spn-F redistribution and for dendrite pruning. Our findings reveal a novel regulatory mechanism for dendrite pruning achieved by temporal activation of Ik2 kinase and dynein-mediated redistribution of Ik2/Spn-F complex in neurons.

  1. Controlling T-Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect

    NARCIS (Netherlands)

    Hammink, R.; Mandal, S.; Eggermont, L.J.; Nooteboom, M.; Willems, P.H.G.M.; Tel, J.; Rowan, A.E.; Figdor, C.G.; Blank, K.G.

    2017-01-01

    Artificial antigen-presenting cells (aAPCs) have recently gained a lot of attention. They efficiently activate T cells and serve as powerful replacements for dendritic cells in cancer immunotherapy. Focusing on a specific class of polymer-based aAPCs, so-called synthetic dendritic cells (sDCs), we

  2. The Role of Actin Cytoskeleton in Dendritic Spines in the Maintenance of Long-Term Memory.

    Science.gov (United States)

    Basu, Sreetama; Lamprecht, Raphael

    2018-01-01

    Evidence indicates that long-term memory formation involves alterations in synaptic efficacy produced by modifications in neural transmission and morphology. However, it is not clear how such alterations induced by learning, that encode memory, are maintained over long period of time to preserve long-term memory. This is especially intriguing as the half-life of most of the proteins that underlie such changes is usually in the range of hours to days and these proteins may change their location over time. In this review we describe studies that indicate the involvement of dendritic spines in memory formation and its maintenance. These studies show that learning leads to changes in the number and morphology of spines. Disruption in spines morphology or manipulations that lead to alteration in their number after consolidation are associated with impairment in memory maintenance. We further ask how changes in dendritic spines morphology, induced by learning and reputed to encode memory, are maintained to preserve long-term memory. We propose a mechanism, based on studies described in the review, whereby the actin cytoskeleton and its regulatory proteins involved in the initial alteration in spine morphology induced by learning are also essential for spine structural stabilization that maintains long-term memory. In this model glutamate receptors and other synaptic receptors activation during learning leads to the creation of new actin cytoskeletal scaffold leading to changes in spines morphology and memory formation. This new actin cytoskeletal scaffold is preserved beyond actin and its regulatory proteins turnover and dynamics by active stabilization of the level and activity of actin regulatory proteins within these memory spines.

  3. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents.

    Science.gov (United States)

    Seibt, Julie; Richard, Clément J; Sigl-Glöckner, Johanna; Takahashi, Naoya; Kaplan, David I; Doron, Guy; de Limoges, Denis; Bocklisch, Christina; Larkum, Matthew E

    2017-09-25

    How sleep influences brain plasticity is not known. In particular, why certain electroencephalographic (EEG) rhythms are linked to memory consolidation is poorly understood. Calcium activity in dendrites is known to be necessary for structural plasticity changes, but this has never been carefully examined during sleep. Here, we report that calcium activity in populations of neocortical dendrites is increased and synchronised during oscillations in the spindle range in naturally sleeping rodents. Remarkably, the same relationship is not found in cell bodies of the same neurons and throughout the cortical column. Spindles during sleep have been suggested to be important for brain development and plasticity. Our results provide evidence for a physiological link of spindles in the cortex specific to dendrites, the main site of synaptic plasticity.Different stages of sleep, marked by particular electroencephalographic (EEG) signatures, have been linked to memory consolidation, but underlying mechanisms are poorly understood. Here, the authors show that dendritic calcium synchronisation correlates with spindle-rich sleep phases.

  4. CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion

    DEFF Research Database (Denmark)

    Pedersen, Anders E; Ronchese, Franca

    2007-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and critical for the priming of CD8+ T cells. Therefore the use of these cells as adjuvant cells has been tested in a large number of experimental and clinical vaccination studies, in particular cancer vaccine studies. A number of protocols...

  5. Numerical model for dendritic solidification of binary alloys

    Science.gov (United States)

    Felicelli, S. D.; Heinrich, J. C.; Poirier, D. R.

    1993-01-01

    A finite element model capable of simulating solidification of binary alloys and the formation of freckles is presented. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. Numerical simulations are shown in which an NH4Cl-H2O mixture and a Pb-Sn alloy melt are cooled. The solidification process is followed in time. Instabilities in the process can be clearly observed and the final compositions obtained.

  6. Total glucosides of paeony attenuated functional maturation of dendritic cells via blocking TLR4/5 signaling in vivo.

    Science.gov (United States)

    Zhou, Zhou; Lin, Jinpiao; Huo, Rongfen; Huang, Wenkang; Zhang, Jian; Wang, Li; Sun, Yue; Shen, Baihua; Li, Ningli

    2012-11-01

    It is well known that dendritic cells (DCs) play a critical role in the initiation and development of an immune response. Inhibitory effect on DC maturation alters immune-mediated inflammatory reaction in vivo. Total glucosides of paeony (TGP) are active compounds extracted from the roots of Paeonia lactiflora and have been widely used to ameliorate inflammation in therapy for autoimmune diseases. However, whether TGP act on DC maturation remains unknown. In this study, we investigated the effect of TGP on DC maturation in ovalbumin (OVA) immunized mice. Ear inflammation was inhibited by TGP (150 mgkg(-1), i.p.×11 days) obviously. The antigen presenting capacity of DC derived from TGP-treated mice was arrested. Meanwhile, OVA specific T cell proliferation was inhibited. In addition, we found that maturation of DCs was decreased by TGP treatment. Furthermore, OVA specific T cell proliferation was rescued by the adoptive transfer of mature DCs (mDCs) into TGP treated OVA-challenged mice. The research on the mechanism showed that TGP significantly inhibited activation of TLR4/5 singling. All these results demonstrated that TGP inhibited DC maturation and function by selectively blocking TLR4/5 activation in vivo, which in turn leads to reduce immune-mediated inflammation in vivo, adding a novel mechanism and therapeutic target of TGP for inflammatory and autoimmune disease treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Paternal deprivation during infancy results in dendrite- and time-specific changes of dendritic development and spine formation in the orbitofrontal cortex of the biparental rodent Octodon degus.

    Science.gov (United States)

    Helmeke, C; Seidel, K; Poeggel, G; Bredy, T W; Abraham, A; Braun, K

    2009-10-20

    The aim of this study in the biparental rodent Octodon degus was to assess the impact of paternal deprivation on neuronal and synaptic development in the orbitofrontal cortex, a prefrontal region which is essential for emotional and cognitive function. On the behavioral level the quantitative comparison of parental behaviors in biparental and single-mother families revealed that (i) degu fathers significantly participate in parental care and (ii) single-mothers do not increase their maternal care to compensate the lack of paternal care. On the brain structural level we show in three-week-old father-deprived animals that layer II/III pyramidal neurons in the orbitofrontal cortex displayed significantly lower spine densities on apical and basal dendrites. Whereas biparentally raised animals have reached adult spine density values at postnatal day 21, fatherless animals seem "to catch up" by a delayed increase of spine density until reaching similar values as biparentally raised animals in adulthood. However, in adulthood reduced apical spine numbers together with shorter apical dendrites were observed in father-deprived animals, which indicates that dendritic growth and synapse formation (seen in biparental animals between postnatal day 21 and adulthood) were significantly suppressed. These results demonstrate that paternal deprivation delays and partly suppresses the development of orbitofrontal circuits. The retarded dendritic and synaptic development of the apical dendrites of layer II/III pyramidal neurons in the orbitofrontal cortex of adult fatherless animals may reflect a reduced excitatory connectivity of this cortical subregion.

  8. Peptides and proteins in dendritic assemblies

    NARCIS (Netherlands)

    Baal, van I.

    2007-01-01

    Multiple, simultaneous interactions are often used in biology to enhance the affinity and specificity of binding, an effect referred to as multivalency. This multivalency can be mimicked by anchoring multiple peptides and proteins onto synthetic dendritic scaffolds. The aim of this research was to

  9. Antigen dynamics of follicular dendritic cells

    NARCIS (Netherlands)

    Heesters, B.A.

    2015-01-01

    Stromal-derived follicular dendritic cells (FDCs) are a major depot for antigen that are essential for formation of germinal centers, the site where memory and effector B cells differentiate and high-affinity antibody production takes place. Historically, FDCs have been characterized as ‘accessory’

  10. [Quantitative analysis of the structure of neuronal dendritic spines in the striatum using the Leitz-ASM system].

    Science.gov (United States)

    Leontovich, T A; Zvegintseva, E G

    1985-10-01

    Two principal classes of striatum long axonal neurons (sparsely ramified reticular cells and densely ramified dendritic cells) were analyzed quantitatively in four animal species: hedgehog, rabbit, dog and monkey. The cross section area, total dendritic length and the area of dendritic field were measured using "LEITZ-ASM" system. Classes of neurons studied were significantly different in dogs and monkeys, while no differences were noted between hedgehog and rabbit. Reticular neurons of different species varied much more than dendritic ones. Quantitative analysis has revealed the progressive increase in the complexity of dendritic tree in mammals from rabbit to monkey.

  11. TGF-β Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning

    Directory of Open Access Journals (Sweden)

    Sarah X. Luo

    2016-12-01

    Full Text Available Neural circuits involving midbrain dopaminergic (DA neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor β (TGF-β signaling to promote the growth of axons and dendrites. Surprisingly, removing TGF-β type II receptor in DA neurons also disrupts the balance in TGF-β1 expression in DA neurons and neighboring GABAergic neurons, which increases inhibitory input, reduces excitatory synaptic input, and alters phasic firing patterns in DA neurons. Mice lacking TGF-β signaling in DA neurons are hyperactive and exhibit inflexibility in relinquishing learned behaviors and re-establishing new stimulus-reward associations. These results support a role for TGF-β in regulating the delicate balance of excitatory/inhibitory synaptic input in local microcircuits involving DA and GABAergic neurons and its potential contributions to neuropsychiatric disorders.

  12. Clinical application of dendritic cells in cancer vaccination therapy

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Soot, Mette Line; Buus, Søren

    2003-01-01

    During the last decade use of dendritic cells (DC) has moved from murine and in vitro studies to clinical trials as adjuvant in cancer immunotherapy. Here they function as delivery vehicles for exogenous tumor antigens, promoting an efficient antigen presentation. The development of protocols...... for large-scale generation of dendritic cells for clinical applications has made possible phase I/II studies designed to analyze the toxicity, feasibility and efficacy of this approach. In clinical trials, DC-based vaccination of patients with advanced cancer has in many cases led to immunity...

  13. Disruptions in JET

    International Nuclear Information System (INIS)

    Wesson, J.A.; Gill, R.D.; Hugon, M.

    1989-01-01

    In JET, both high density and low-q operation are limited by disruptions. The density limit disruptions are caused initially by impurity radiation. This causes a contraction of the plasma temperature profile and leads to an MHD unstable configuration. There is evidence of magnetic island formation resulting in minor disruptions. After several minor disruptions, a major disruption with a rapid energy quench occurs. This event takes place in two stages. In the first stage there is a loss of energy from the central region. In the second stage there is a more rapid drop to a very low temperature, apparently due to a dramatic increase in impurity radiation. The final current decay takes place in the resulting cold plasma. During the growth of the MHD instability the initially rotating mode is brought to rest. This mode locking is believed to be due to an electromagnetic interaction with the vacuum vessel and external magnetic field asymmetries. The low-q disruptions are remarkable for the precision with which they occur at q ψ = 2. These disruptions do not have extended precursors or minor disruptions. The instability grows and locks rapidly. The energy quench and current decay are generally similar to those of the density limit. (author). 43 refs, 35 figs, 3 tabs

  14. THE KINETICS OF MULTIBRANCH INTEGRATION ON THE DENDRITIC ARBOR OF CA1 PYRAMIDAL NEURONS

    Directory of Open Access Journals (Sweden)

    Sunggu eYang

    2014-05-01

    Full Text Available The process by which synaptic inputs separated in time and space are integrated by the dendritic arbor to produce a sequence of action potentials is among the most fundamental signal transformations that takes place within the central nervous system. Some aspects of this complex process, such as integration at the level of individual dendritic branches, have been extensively studied. But other aspects, such as how inputs from multiple branches are combined, and the kinetics of that integration have not been systematically examined. Using a 3D digital holographic photolysis technique to overcome the challenges posed by the complexities of the 3D anatomy of the dendritic arbor of CA1 pyramidal neurons for conventional photolysis, we show that integration on a single dendrite is fundamentally different from that on multiple dendrites. Multibranch integration occurring at oblique and basal dendrites allows somatic action potential firing of the cell to faithfully follow the driving stimuli over a significantly wider frequency range than what is possible with single branch integration. However, multibranch integration requires greater input strength to drive the somatic action potentials. This tradeoff between sensitivity and kinetics may explain the puzzling report of the predominance of multibranch, rather than single branch, integration from in vivo recordings during presentation of visual stimuli.

  15. Disruption of FGF5 in Cashmere Goats Using CRISPR/Cas9 Results in More Secondary Hair Follicles and Longer Fibers

    Science.gov (United States)

    Zhu, Haijing; Niu, Yiyuan; Ma, Baohua; Yu, Honghao; Lei, Anmin; Yan, Hailong; Shen, Qiaoyan; Shi, Lei; Zhao, Xiaoe; Hua, Jinlian; Huang, Xingxu; Qu, Lei; Chen, Yulin

    2016-01-01

    Precision genetic engineering accelerates the genetic improvement of livestock for agriculture and biomedicine. We have recently reported our success in producing gene-modified goats using the CRISPR/Cas9 system through microinjection of Cas9 mRNA and sgRNAs targeting the MSTN and FGF5 genes in goat embryos. By investigating the influence of gene modification on the phenotypes of Cas9-mediated goats, we herein demonstrate that the utility of this approach involving the disruption of FGF5 results in increased number of second hair follicles and enhanced fiber length in Cas9-mediated goats, suggesting more cashmere will be produced. The effects of genome modifications were characterized using H&E and immunohistochemistry staining, quantitative PCR, and western blotting techniques. These results indicated that the gene modifications induced by the disruption of FGF5 had occurred at the morphological and genetic levels. We further show that the knockout alleles were likely capable of germline transmission, which is essential for goat population expansion. These results provide sufficient evidences of the merit of using the CRISPR/Cas9 approach for the generation of gene-modified goats displaying the corresponding mutant phenotypes. PMID:27755602

  16. Induction and identification of rabbit peripheral blood derived dendritic cells

    Science.gov (United States)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  17. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

    Science.gov (United States)

    Rudolph, Stephanie; Hull, Court; Regehr, Wade G

    2015-11-25

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The

  18. Haemorrhagic snake venom metalloproteases and human ADAMs cleave LRP5/6, which disrupts cell-cell adhesions in vitro and induces haemorrhage in vivo.

    Science.gov (United States)

    Seo, Tadahiko; Sakon, Taketo; Nakazawa, Shiori; Nishioka, Asuka; Watanabe, Kohei; Matsumoto, Kaori; Akasaka, Mari; Shioi, Narumi; Sawada, Hitoshi; Araki, Satohiko

    2017-06-01

    Snake venom metalloproteases (SVMPs) are members of the a disintegrin and metalloprotease (ADAM) family of proteins, as they possess similar domains. SVMPs are known to elicit snake venom-induced haemorrhage; however, the target proteins and cleavage sites are not known. In this work, we identified a target protein of vascular apoptosis-inducing protein 1 (VAP1), an SVMP, relevant to its ability to induce haemorrhage. VAP1 disrupted cell-cell adhesions by relocating VE-cadherin and γ-catenin from the cell-cell junction to the cytosol, without inducing proteolysis of VE-cadherin. The Wnt receptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) are known to promote catenin relocation, and are rendered constitutively active in Wnt signalling by truncation. Thus, we examined whether VAP1 cleaves LRP5/6 to induce catenin relocation. Indeed, we found that VAP1 cleaved the extracellular region of LRP6 and LRP5. This cleavage removes four inhibitory β-propeller structures, resulting in activation of LRP5/6. Recombinant human ADAM8 and ADAM12 also cleaved LRP6 at the same site. An antibody against a peptide including the LRP6-cleavage site inhibited VAP1-induced VE-cadherin relocation and disruption of cell-cell adhesions in cultured cells, and blocked haemorrhage in mice in vivo. Intriguingly, animals resistant to the effects of haemorrhagic snake venom express variants of LRP5/6 that lack the VAP1-cleavage site, or low-density lipoprotein receptor domain class A domains involved in formation of the constitutively active form. The results validate LRP5/6 as physiological targets of ADAMs. Furthermore, they indicate that SVMP-induced cleavage of LRP5/6 causes disruption of cell-cell adhesion and haemorrhage, potentially opening new avenues for the treatment of snake bites. © 2017 Federation of European Biochemical Societies.

  19. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica

    2017-04-01

    Dendrites and spines are the main neuronal structures receiving input from other neurons and glial cells. Dendritic and spine number, size, and morphology are some of the crucial factors determining how signals coming from individual synapses are integrated. Much remains to be understood about the characteristics of neuronal dendrites and dendritic spines in autism and related disorders. Although there have been many studies conducted using autism mouse models, few have been carried out using postmortem human tissue from patients. Available animal models of autism include those generated through genetic modifications and those non-genetic models of the disease. Here, we review how dendrite and spine morphology and number is affected in autism and related neurodevelopmental diseases, both in human, and genetic and non-genetic animal models of autism. Overall, data obtained from human and animal models point to a generalized reduction in the size and number, as well as an alteration of the morphology of dendrites; and an increase in spine densities with immature morphology, indicating a general spine immaturity state in autism. Additional human studies on dendrite and spine number and morphology in postmortem tissue are needed to understand the properties of these structures in the cerebral cortex of patients with autism. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017. © 2016 Wiley Periodicals, Inc.

  20. Changes in dendritic architecture: not your "usual suspect" in control of the onset of puberty in male rats.

    Science.gov (United States)

    Hemond, Peter J; O'Boyle, Michael P; Hemond, Zoe; Gay, Vernon L; Suter, Kelly

    2013-01-01

    Until the recent past, the search for the underlying drive for the pubertal increase in gonadotropin-releasing hormone (GnRH) hormone from the GnRH-containing neurons in the hypothalamus was largely focused on extrinsic factors. The most recent evidence however indicates changes in the structure of GnRH neurons themselves may contribute to this fundamental event in development. Based on our studies in males, dendritic architecture is not static from birth until adulthood. Instead, dendrites undergo a dramatic remodeling during the postnatal period which is independent of testosterone and occurs before the pubertal increase in GnRH release. First, the number of dendrites emanating from somata is reduced between infancy and adulthood. Moreover, a dendrite of adult GnRH neurons invariability arises at angle of 180°from the axon as opposed to the extraordinary variability in location during infancy. In fact, in some neurons from infants, no dendrite even resides in the adult location. Thus, there is a spatially selective remodeling of primary dendrites. Secondly, dendrites of GnRH neurons from infants were highly branched prior to assuming the compact morphology of adults. Finally, other morphological aspects of GnRH neurons such as total dendritic length, the numbers of dendrite branches and the lengths of higher order branches were significantly greater in infants than adults, indicating a consolidation of dendritic arbors. Activity in multi-compartment models of GnRH neurons, suggest the impact of structure on neuronal activity is exerted with both active and passive dendrites. Thus, passive properties make a defining contribution to function. Accordingly, changes in morphology alone are likely to have functional consequences for the pattern of activity in GnRH neurons. Our findings suggest structural remodeling of dendrites during the postnatal period likely facilitates repetitive action potentials and thus, GnRH release at the time of puberty.

  1. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines.

    Science.gov (United States)

    Peterson, Brittni M; Mermelstein, Paul G; Meisel, Robert L

    2015-03-15

    Structural plasticity, such as changes in dendritic spine morphology and density, reflect changes in synaptic connectivity and circuitry. Procedural variables used in different methods for labeling dendritic spines have been quantitatively evaluated for their impact on the ability to resolve individual spines in confocal microscopic analyses. In contrast, there have been discussions, though no quantitative analyses, of the potential effects of choosing specific mounting media and immersion oils on dendritic spine resolution. Here we provide quantitative data measuring the impact of these variables on resolving dendritic spines in 3D confocal analyses. Medium spiny neurons from the rat striatum and nucleus accumbens are used as examples. Both choice of mounting media and immersion oil affected the visualization of dendritic spines, with choosing the appropriate immersion oil as being more imperative. These biologic data are supported by quantitative measures of the 3D diffraction pattern (i.e. point spread function) of a point source of light under the same mounting medium and immersion oil combinations. Although not a new method, this manuscript provides quantitative data demonstrating that different mounting media and immersion oils can impact the ability to resolve dendritic spines. These findings highlight the importance of reporting which mounting medium and immersion oil are used in preparations for confocal analyses, especially when comparing published results from different laboratories. Collectively, these data suggest that choosing the appropriate immersion oil and mounting media is critical for obtaining the best resolution, and consequently more accurate measures of dendritic spine densities. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling.

    Science.gov (United States)

    Chazeau, Anaël; Giannone, Grégory

    2016-08-01

    In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.

  3. Digital disruption ?syndromes.

    Science.gov (United States)

    Sullivan, Clair; Staib, Andrew

    2017-05-18

    The digital transformation of hospitals in Australia is occurring rapidly in order to facilitate innovation and improve efficiency. Rapid transformation can cause temporary disruption of hospital workflows and staff as processes are adapted to the new digital workflows. The aim of this paper is to outline various types of digital disruption and some strategies for effective management. A large tertiary university hospital recently underwent a rapid, successful roll-out of an integrated electronic medical record (EMR). We observed this transformation and propose several digital disruption "syndromes" to assist with understanding and management during digital transformation: digital deceleration, digital transparency, digital hypervigilance, data discordance, digital churn and post-digital 'depression'. These 'syndromes' are defined and discussed in detail. Successful management of this temporary digital disruption is important to ensure a successful transition to a digital platform. What is known about this topic? Digital disruption is defined as the changes facilitated by digital technologies that occur at a pace and magnitude that disrupt established ways of value creation, social interactions, doing business and more generally our thinking. Increasing numbers of Australian hospitals are implementing digital solutions to replace traditional paper-based systems for patient care in order to create opportunities for improved care and efficiencies. Such large scale change has the potential to create transient disruption to workflows and staff. Managing this temporary disruption effectively is an important factor in the successful implementation of an EMR. What does this paper add? A large tertiary university hospital recently underwent a successful rapid roll-out of an integrated electronic medical record (EMR) to become Australia's largest digital hospital over a 3-week period. We observed and assisted with the management of several cultural, behavioural and

  4. Persistence of the cell-cycle checkpoint kinase Wee1 in SadA- and SadB-deficient neurons disrupts neuronal polarity.

    Science.gov (United States)

    Müller, Myriam; Lutter, Daniela; Püschel, Andreas W

    2010-01-15

    Wee1 is well characterized as a cell-cycle checkpoint kinase that regulates the entry into mitosis in dividing cells. Here we identify a novel function of Wee1 in postmitotic neurons during the establishment of distinct axonal and dendritic compartments, which is an essential step during neuronal development. Wee1 is expressed in unpolarized neurons but is downregulated after neurons have extended an axon. Suppression of Wee1 impairs the formation of minor neurites but does not interfere with axon formation. However, neuronal polarity is disrupted when neurons fail to downregulate Wee1. The kinases SadA and SadB (Sad kinases) phosphorylate Wee1 and are required to initiate its downregulation in polarized neurons. Wee1 expression persists in neurons that are deficient in SadA and SadB and disrupts neuronal polarity. Knockdown of Wee1 rescues the Sada(-/-);Sadb(-/-) mutant phenotype and restores normal polarity in these neurons. Our results demonstrate that the regulation of Wee1 by SadA and SadB kinases is essential for the differentiation of polarized neurons.

  5. Lithium dendrite and solid electrolyte interphase investigation using OsO4

    Science.gov (United States)

    Zier, Martin; Scheiba, Frieder; Oswald, Steffen; Thomas, Jürgen; Goers, Dietrich; Scherer, Torsten; Klose, Markus; Ehrenberg, Helmut; Eckert, Jürgen

    2014-11-01

    Osmium tetroxide (OsO4) staining, commonly used to enhance scattering contrast in electron microscopy of biologic tissue and polymer blends, has been adopted for studies of graphite anodes in lithium-ion batteries. OsO4 shows a coordinated reaction with components of the solid electrolyte interphase (SEI) and lithium dendrites, thereby increasing material contrast for scanning electron microscopy investigations. Utilizing the high affinity of lithium metal to react with osmium tetroxide it was possible to localize even small lithium deposits on graphite electrodes. In spite of their reaction with the OsO4 fume, the lithium dendrite morphology remains almost untouched by the staining procedure, offering information on the dendrite growth process. Correlating the quantity of osmium detected with the amount of residual ("dead") lithium of a discharged electrode, it was possible to obtain a practical measure for lithium plating and stripping efficiencies. EDX mappings allowed for a localization of electrochemically stripped lithium dendrites by their residual stained SEI shells. Cross sections, prepared by focused ion beam (FIB) of cycled graphite electrodes treated with OsO4, revealed important information about deposition and distribution of metallic lithium and the electrolyte reduction layer across the electrode.

  6. Astrocyte-secreted factors modulate a gradient of primary dendritic arbors in nucleus laminaris of the avian auditory brainstem.

    Directory of Open Access Journals (Sweden)

    Matthew J Korn

    Full Text Available Neurons in nucleus laminaris (NL receive binaural, tonotopically matched input from nucleus magnocelluaris (NM onto bitufted dendrites that display a gradient of dendritic arbor size. These features improve computation of interaural time differences, which are used to determine the locations of sound sources. The dendritic gradient emerges following a period of significant reorganization at embryonic day 15 (E15, which coincides with the emergence of astrocytes that express glial fibrillary acidic protein (GFAP in the auditory brainstem. The major changes include a loss of total dendritic length, a systematic loss of primary dendrites along the tonotopic axis, and lengthening of primary dendrites on caudolateral NL neurons. Here we have tested whether astrocyte-derived molecules contribute to these changes in dendritic morphology. We used an organotypic brainstem slice preparation to perform repeated imaging of individual dye-filled NL neurons to determine the effects of astrocyte-conditioned medium (ACM on dendritic morphology. We found that treatment with ACM induced a decrease in the number of primary dendrites in a tonotopically graded manner similar to that observed during normal development. Our data introduce a new interaction between astrocytes and neurons in the auditory brainstem and suggest that these astrocytes influence multiple aspects of auditory brainstem maturation.

  7. Interplay of dendritic avalanches and gradual flux penetration in superconducting MgB2 films

    International Nuclear Information System (INIS)

    Shantsev, D V; Goa, P E; Barkov, F L; Johansen, T H; Kang, W N; Lee, S I

    2003-01-01

    Magneto-optical imaging was used to study a zero-field-cooled MgB 2 film at 9.6 K where in a slowly increasing field the flux penetrates by an abrupt formation of large dendritic structures. Simultaneously, a gradual flux penetration takes place, eventually covering the dendrites, and a detailed analysis of this process is reported. We find an anomalously high gradient of the flux density across a dendrite branch, and a peak value that decreases as the applied field increases. This unexpected behaviour is reproduced by flux creep simulations based on the non-local field-current relation in the perpendicular geometry. The simulations also provide indirect evidence that flux dendrites are formed at an elevated local temperature, consistent with a thermo-magnetic mechanism of the instability

  8. Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics.

    Science.gov (United States)

    Karim, M Rezaul; Moore, Adrian W

    2011-11-07

    Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as

  9. Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation.

    Science.gov (United States)

    Suh, Sang Won

    2009-02-15

    Translocation of the endogenous cation zinc from presynaptic terminals to postsynaptic neurons after brain insult has been implicated as a potential neurotoxic event. Several studies have previously demonstrated that a brief electrical stimulation is sufficient to induce the translocation of zinc from presynaptic vesicles into the cytoplasm (soma) of postsynaptic neurons. In the present work I have extended those findings in three ways: (i) providing evidence that zinc translocation occurs into apical dendrites, (ii) presenting data that there is an apparent translocation into apical dendrites when only a zinc-containing synaptic input is stimulated, and (iii) presenting data that there is no zinc translocation into apical dendrite of ZnT3 KO mice following electrical stimulation. Hippocampal slices were preloaded with the "trappable" zinc fluorescent probe, Newport Green. After washout, a single apical dendrite in the stratum radiatum of hippocampal CA1 area was selected and focused on. Burst stimulation (100Hz, 500microA, 0.2ms, monopolar) was delivered to either the adjacent Schaffer-collateral inputs (zinc-containing) or to the adjacent temporo-ammonic inputs (zinc-free) to the CA1 dendrites. Stimulation of the Schaffer collaterals increased the dendritic fluorescence, which was blocked by TTX, low-Ca medium, or the extracellular zinc chelator, CaEDTA. Stimulation of the temporo-ammonic pathway caused no significant rise in the fluorescence. Genetic depletion of vesicular zinc by ZnT3 KO showed no stimulation-induced apical dendrite zinc rise. The present study provides evidence that synaptically released zinc translocates into postsynaptic neurons through the apical dendrites of CA1 pyramidal neurons during physiological synaptic activity.

  10. Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation.

    Science.gov (United States)

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures.

  11. Maturational steps of bone marrow-derived dendritic murine epidermal cells. Phenotypic and functional studies on Langerhans cells and Thy-1+ dendritic epidermal cells in the perinatal period.

    Science.gov (United States)

    Elbe, A; Tschachler, E; Steiner, G; Binder, A; Wolff, K; Stingl, G

    1989-10-15

    The adult murine epidermis harbors two separate CD45+ bone marrow (BM)-derived dendritic cell systems, i.e., Ia+, ADPase+, Thy-1-, CD3- Langerhans cells (LC) and Ia-, ADPase-, Thy-1+, CD3+ dendritic epidermal T cells (DETC). To clarify whether the maturation of these cells from their ill-defined precursors is already accomplished before their entry into the epidermis or, alternatively, whether a specific epidermal milieu is required for the expression of their antigenic determinants, we studied the ontogeny of CD45+ epidermal cells (EC). In the fetal life, there exists a considerable number of CD45+, Ia-, ADPase+ dendritic epidermal cells. When cultured, these cells become Ia+ and, in parallel, acquire the potential of stimulating allogeneic T cell proliferation. These results imply that CD45+, Ia-, ADPase+ fetal dendritic epidermal cells are immature LC precursors and suggest that the epidermis plays a decisive role in LC maturation. The day 17 fetal epidermis also contains a small population of CD45+, Thy-1+, ADPase-, CD3- round cells. Over the course of 2 to 3 wk, they are slowly replaced by an ever increasing number of round and, finally, dendritic CD45+, Thy-1+, CD3+ EC. Thus, CD45+, Thy-1+, ADPase-, CD3- fetal EC may either be DETC precursors or, alternatively, may represent a distinctive cell system of unknown maturation potential. According to this latter theory, these cells would be eventually outnumbered by newly immigrating CD45+, Thy-1+, CD3+ T cells--the actual DETC.

  12. Longitudinal association between marital disruption and child BMI and obesity.

    Science.gov (United States)

    Arkes, Jeremy

    2012-08-01

    This research examines whether family disruptions (i.e., divorces and separation) contribute to children's weight problems. The sample consists of 7,299 observations for 2,333 children, aged 5-14, over the 1986-2006 period, from a US representative sample from the Child and Young Adult Survey accompanying the National Longitudinal Survey of Youth (NLSY). The study uses individual-fixed-effects models in a longitudinal framework to compare children's BMI and weight problems before and after a disruption. Furthermore, besides doing a before-after comparison for children, the study also estimates the effects at various periods relative to the disruption in order to examine whether children are affected before the disruption and whether any effects change as time passes from the disruption, as some effects may be temporary or slow to develop. Despite having a larger sample than the previous studies, the results provide no evidence that, on average, children's BMI and BMI percentile scores (measured with continuous outcomes) are affected before the disruption, after the disruption, and as time passes from the disruption, relative to a baseline period a few years before the disruption. However, children experiencing a family disruption do have an increased risk of obesity (having a BMI percentile score of 95 or higher) in the two years leading up to the disruption as well as after the disruption, and as time passes from the disruption.

  13. Synthesis of Dendritic Silver Nanoparticles and Their Applications as SERS Substrates

    Directory of Open Access Journals (Sweden)

    Jinshan Yu

    2013-01-01

    Full Text Available The silver nanoparticles are synthesized by electrodeposition in ultradilute Ag+ concentration electrolyte under high overpotential. The as prepared Ag nanoparticles, with the sizes ranging from 20 to 30 nm, are arrayed orderly and formed dendritic morphology. The formation of this special dendritic nanoparticle structure can be contributed to the relatively high growth rate and the preferential growth directions along 111 due to the high overpotential, as well as the relative small number of Ag+ ions arriving at the Ag crystal surface per unit time due to the ultradilute Ag+ concentration. Surface enhanced Raman scattering (SERS experiments reveal that the as-prepared dendritic Ag nanoparticles possess high SERS properties and can be used as a candidate substrate for practical SERS applications to detect the Rhodamine 6G molecules.

  14. Genetically engineered dendritic cell-based cancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 18, č. 3 (2001), s. 475-478 ISSN 1019-6439 R&D Projects: GA MZd NC5526 Keywords : dendritic cell s * tumour vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.330, year: 2001

  15. Disruption mitigation on Tore Supra

    International Nuclear Information System (INIS)

    Martin, G.; Sourd, F.; Saint-Laurent, F.; Bucalossi, J.; Eriksson, L.G.

    2004-01-01

    During disruptions, the plasma energy is lost on the first wall within 1 ms, forces up to hundred tons are applied to the structures and kA of electrons are accelerated up to 50 MeV (runaway electrons). Already sources of concern in present day tokamaks, extrapolation to ITER shows the necessity of mitigation procedures, to avoid serious damages to in-vessel components. Massive gas injection was proposed, and encouraging tests have been done on Textor and DIII-D. Similar experiments where performed on Tore Supra, with the goal to validate their effect on runaway electrons, observed during the majority of disruptions. 0.1 mole of helium was injected within 5 ms in ohmic plasmas, up to 1.2 MA, either stable, or in a pre-disruptive phase (argon puffing). Beneficial effects where obtained: reduction of the current fall rate and eddy currents, total disappearance of runaway electrons and easy recovery for the next pulse, without noticeable helium pollution of following plasmas. Analysis of the 4 ms period between injection and disruption indicates that to reach these goals, one need to inject enough helium to keep it only partially ionised. It corresponds to 0.1 g for Tore Supra, and extrapolate to hundreds of grams for ITER. (authors)

  16. Disruption mitigation on Tore Supra

    International Nuclear Information System (INIS)

    Martin, G.; Sourd, F.; Saint-Laurent, F.; Bucalossi, J.; Eriksson, L.G.

    2005-01-01

    During disruptions, the plasma energy is lost on the first wall within 1 ms, forces up to hundred tons are applied to the structures and kA of electrons are accelerated up to 50 MeV (runaway electrons). Already sources of concern in present day tokamaks, extrapolation to ITER shows the necessity of mitigation procedures, to avoid serious damages to in-vessel components. Massive gas injection was proposed, and encouraging tests have been done on Textor and DIII-D. Similar experiments where performed on Tore Supra, with the goal to validate their effect on runaway electrons, observed during the majority of disruptions. 0.1 mole of helium was injected within 5 ms in ohmic plasmas, up to 1.2 MA, either stable, or in a pre-disruptive phase (argon puffing). Beneficial effects where obtained: reduction of the current fall rate and eddy currents, total disappearance of runaway electrons and easy recovery for the next pulse, without noticeable helium pollution of following plasmas. Analysis of the 4 ms period between injection and disruption indicates that to reach these goals, one need to inject enough helium to keep it only partially ionised. It correspond to 0.1 g for Tore Supra, and extrapolate to hundred's of grams for ITER. (author)

  17. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex

    Science.gov (United States)

    Truong, Quang Duc; Kakihana, Masato

    2012-06-01

    A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.

  18. Modulation of Dendritic Cell Responses by Parasites: A Common Strategy to Survive

    Directory of Open Access Journals (Sweden)

    César A. Terrazas

    2010-01-01

    Full Text Available Parasitic infections are one of the most important causes of morbidity and mortality in our planet and the immune responses triggered by these organisms are critical to determine their outcome. Dendritic cells are key elements for the development of immunity against parasites; they control the responses required to eliminate these pathogens while maintaining host homeostasis. However, there is evidence showing that parasites can influence and regulate dendritic cell function in order to promote a more permissive environment for their survival. In this review we will focus on the strategies protozoan and helminth parasites have developed to interfere with dendritic cell activities as well as in the possible mechanisms involved.

  19. Disruption avoidance by means of electron cyclotron waves

    International Nuclear Information System (INIS)

    Esposito, B; Granucci, G; Nowak, S; Lazzaro, E; Maraschek, M; Giannone, L; Gude, A; Igochine, V; McDermott, R; Poli, E; Reich, M; Sommer, F; Stober, J; Suttrop, W; Treutterer, W; Zohm, H

    2011-01-01

    Disruptions are very challenging to ITER operation as they may cause damage to plasma facing components due to direct plasma heating, forces on structural components due to halo and eddy currents and the production of runaway electrons. Electron cyclotron (EC) waves have been demonstrated as a tool for disruption avoidance by a large set of recent experiments performed in ASDEX Upgrade and FTU using various disruption types, plasma operating scenarios and power deposition locations. The technique is based on the stabilization of magnetohydrodynamic (MHD) modes (mainly m/n = 2/1) through the localized injection of EC power on the resonant surface. This paper presents new results obtained in ASDEX Upgrade regarding stable operation above the Greenwald density achieved after avoidance of density limit disruptions by means of ECRH and suitable density feedback control (L-mode ohmic plasmas, I p = 0.6 MA, B t = 2.5 T) and NTM-driven disruptions at high-β limit delayed/avoided by means of both co-current drive (co-ECCD) and pure heating (ECRH) with power ≤1.7 MW (H-mode NBI-heated plasmas, P NBI ∼ 7.5 MW, I p = 1 MA, B t = 2.1 T, q 95 ∼ 3.6). The localized perpendicular injection of ECRH/ECCD onto a resonant surface leads to the delay and/or complete avoidance of disruptions. The experiments indicate the existence of a power threshold for mode stabilization to occur. An analysis of the MHD mode evolution using the generalized Rutherford equation coupled to the frequency and phase evolution equations shows that control of the modes is due to EC heating close to the resonant surface. The ECRH contribution (Δ' H term) is larger than the co-ECCD one in the initial and more important phase when the discharge is 'saved'. Future research and developments of the disruption avoidance technique are also discussed.

  20. DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology

    NARCIS (Netherlands)

    Geijtenbeek, Teunis B. H.; Engering, Anneke; van Kooyk, Yvette

    2002-01-01

    Dendritic cells (DC) are present in essentially every tissue where they operate at the interface of innate and acquired immunity by recognizing pathogens and presenting pathogen-derived peptides to T cells. It is becoming clear that not all C-type lectins on DC serve as antigen receptors recognizing

  1. Recruitment of Staufen2 Enhances Dendritic Localization of an Intron-Containing CaMKIIα mRNA

    Directory of Open Access Journals (Sweden)

    Raúl Ortiz

    2017-07-01

    Full Text Available Regulation of mRNA localization is a conserved cellular process observed in many types of cells and organisms. Asymmetrical mRNA distribution plays a particularly important role in the nervous system, where local translation of localized mRNA represents a key mechanism in synaptic plasticity. CaMKIIα is a very abundant mRNA detected in neurites, consistent with its crucial role at glutamatergic synapses. Here, we report the presence of CaMKIIα mRNA isoforms that contain intron i16 in dendrites, RNA granules, and synaptoneurosomes from primary neurons and brain. This subpopulation of unspliced mRNA preferentially localizes to distal dendrites in a synaptic-activity-dependent manner. Staufen2, a well-established marker of RNA transport in dendrites, interacts with intron i16 sequences and enhances its distal dendritic localization, pointing to the existence of intron-mediated mechanisms in the molecular pathways that modulate dendritic transport and localization of synaptic mRNAs.

  2. Tumor-Mediated Suppression of Dendritic Cell Vaccines

    National Research Council Canada - National Science Library

    Akporiaye, Emmanuel

    2004-01-01

    .... One of these factors is Transforming Growth Factor-beta (TGF-beta). TGF-beta is produced in large quantities by different types of cancer including breast cancer and inhibits the actions of several immune cells including dendritic cells (DC...

  3. Loss of dendritic connectivity in southern California's urban riverscape facilitates decline of an endemic freshwater fish.

    Science.gov (United States)

    Richmond, Jonathan Q; Backlin, Adam R; Galst-Cavalcante, Carey; O'Brien, John W; Fisher, Robert N

    2018-01-01

    Life history adaptations and spatial configuration of metapopulation networks allow certain species to persist in extreme fluctuating environments, yet long-term stability within these systems relies on the maintenance of linkage habitat. Degradation of such linkages in urban riverscapes can disrupt this dynamic in aquatic species, leading to increased extinction debt in local populations experiencing environment-related demographic flux. We used microsatellites and mtDNA to examine the effects of collapsed network structure in the endemic Santa Ana sucker Catostomus santaanae of southern California, a threatened species affected by natural flood-drought cycles, "boom-and-bust" demography, hybridization and presumed artificial transplantation. Our results show a predominance of drift-mediated processes in shaping population structure and that reverse mechanisms for counterbalancing the genetic effects of these phenomena have dissipated with the collapse of dendritic connectivity. We use approximate Bayesian models to support two cases of artificial transplantation and provide evidence that one of the invaded systems better represents the historic processes that maintained genetic variation within watersheds than any remaining drainages where C. santaanae is considered native. We further show that a stable dry gap in the northern range is preventing genetic dilution of pure C. santaanae persisting upstream of a hybrid assemblage involving a non-native sucker and that local accumulation of genetic variation in the same drainage is influenced by position within the network. This work has important implications for declining species that have historically relied on dendritic metapopulation networks to maintain source-sink dynamics in phasic environments, but no longer possess this capacity in urban-converted landscapes. © 2017 John Wiley & Sons Ltd.

  4. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    Science.gov (United States)

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337

  5. Transduction of skin-migrating dendritic cells by human adenovirus 5 occurs via an actin-dependent phagocytic pathway.

    Science.gov (United States)

    Guzman, Efrain; Taylor, Geraldine; Hope, Jayne; Herbert, Rebecca; Cubillos-Zapata, Carolina; Charleston, Bryan

    2016-10-01

    Dendritic cells (DC) are central to the initiation of immune responses, and various approaches have been used to target vaccines to DC in order to improve immunogenicity. Cannulation of lymphatic vessels allows for the collection of DC that migrate from the skin. These migrating DC are involved in antigen uptake and presentation following vaccination. Human replication-deficient adenovirus (AdV) 5 is a promising vaccine vector for delivery of recombinant antigens. Although the mechanism of AdV attachment and penetration has been extensively studied in permissive cell lines, few studies have addressed the interaction of AdV with DC. In this study, we investigated the interaction of bovine skin-migrating DC and replication-deficient AdV-based vaccine vectors. We found that, despite lack of expression of Coxsackie B-Adenovirus Receptor and other known adenovirus receptors, AdV readily enters skin-draining DC via an actin-dependent endocytosis. Virus exit from endosomes was pH independent, and neutralizing antibodies did not prevent virus entry but did prevent virus translocation to the nucleus. We also show that combining adenovirus with adjuvant increases the absolute number of intracellular virus particles per DC but not the number of DC containing intracellular virus. This results in increased trans-gene expression and antigen presentation. We propose that, in the absence of Coxsackie B-Adenovirus Receptor and other known receptors, AdV5-based vectors enter skin-migrating DC using actin-dependent endocytosis which occurs in skin-migrating DC, and its relevance to vaccination strategies and vaccine vector targeting is discussed.

  6. Dendritic cells modified by vitamin D

    DEFF Research Database (Denmark)

    Pedersen, Ayako Wakatsuki; Claesson, Mogens Helweg; Zocca, Mai-Britt

    2011-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells of the immune system, express nuclear receptors for 1,25-dihydroxyvitamin D(3) (VD3) and they are one of its main targets. In the presence of VD3, DCs differentiate into a phenotype that resembles semimature DCs, with reduced T cell ...

  7. Effect of temperature gradient and crystallization rate on morphological peculiarities of cellular-dendrite structure in iron-nickel alloys

    International Nuclear Information System (INIS)

    Kralina, A.A.; Vorontsov, V.B.

    1977-01-01

    Cellular and dendritic structure of Fe-Ni single crystals (31 and 45 wt%Ni) grown according to Bridgeman have been studied by metallography. Growth rates at which the crystallization frontier becomes unstable and splits into cells have been determined for three temperature gradients. The transition from cells to dendrites occurs gradually through the changes in the cells regular structure and formation of secondary and tertiary branches. The dependence of cell diameter and distance between dendrites on crystallization rate and temperature gradient are discussed in terms of the admixture substructures development according to the schedule: cells - cellular dendrites - dendrites

  8. Disruptions in Tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.

    1987-01-01

    This paper discusses major and minor disruptions in Tokamaks. A number of models and numerical simulations of disruptions based on resistive MHD are reviewed. A discussion is given of how disruptive current profiles are correlated with the experimentally known operational limits in density and current. It is argued that the q a =2 limit is connected with stabilization of the m=2/n=1 tearing mode for a approx.< 2.7 by resistive walls and mode rotation. Experimental and theoretical observations indicate that major disruptions usually occur in at least two phases, first a 'predisruption', or loss of confinement in the region 1 < q < 2, leaving the q approx.= 1 region almost unaffected, followed by a final disruption of the central part, interpreted here as a toroidal n = 1 external kink mode. (author)

  9. Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Sebastian Jessberger

    2008-11-01

    Full Text Available Newborn granule cells become functionally integrated into the synaptic circuitry of the adult dentate gyrus after a morphological and electrophysiological maturation process. The molecular mechanisms by which immature neurons and the neurites extending from them find their appropriate position and target area remain largely unknown. Here we show that single-cell-specific knockdown of cyclin-dependent kinase 5 (cdk5 activity in newborn cells using a retrovirus-based strategy leads to aberrant growth of dendritic processes, which is associated with an altered migration pattern of newborn cells. Even though spine formation and maturation are reduced in cdk5-deficient cells, aberrant dendrites form ectopic synapses onto hilar neurons. These observations identify cdk5 to be critically involved in the maturation and dendrite extension of newborn neurons in the course of adult neurogenesis. The data presented here also suggest a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation.

  10. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  11. In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells

    Energy Technology Data Exchange (ETDEWEB)

    Brissot, C.; Rosso, M.; Chazalviel, J.N.; Lascaud, S.

    1999-12-01

    The authors report on three different in situ and ex situ concentration measurement methods in symmetric lithium/polymer-electrolyte/lithium cells. The results were examined on the basis of a simple calculation of ionic concentration within the electrolyte, in the case where no dendrite is observed, this calculation accounts quantitatively for all experimental results. In the case of dendritic growth, the authors can measure the concentration distribution around the dendrites; this permits correlation of the active parts of the electrodes and of the growing dendrites with local ionic depletion in the vicinity of these active parts.

  12. Batf3-dependent CD8α+ Dendritic Cells Aggravates Atherosclerosis via Th1 Cell Induction and Enhanced CCL5 Expression in Plaque Macrophages.

    Science.gov (United States)

    Li, Yalin; Liu, Xueyan; Duan, Wei; Tian, Hua; Zhu, Guangming; He, Hao; Yao, Shutong; Yi, Shuying; Song, Wengang; Tang, Hua

    2017-04-01

    Dendritic cells (DCs) play an important role in controlling T cell-mediated adaptive immunity in atherogenesis. However, the role of the basic leucine zipper transcription factor, ATF-like 3 (Batf3)-dependent CD8α + DC subset in atherogenesis remains unclear. Here we show that Batf3 -/- Apoe -/- mice, lacking CD8α + DCs, exhibited a significant reduction in atherogenesis and T help 1 (Th1) cells compared with Apoe -/- controls. Then, we found that CD8α + DCs preferentially induce Th1 cells via secreting interleukin-12 (IL-12), and that the expression of interferon-gamma (IFN-γ)or chemokine (C-C motif) ligand 5 (CCL5) in aorta were significantly decreased in Batf3 -/- Apoe -/- mice. We further demonstrated that macrophages were the major CCL5-expressing cells in the plaque, which was significantly reduced in Batf3 -/- Apoe -/- mice. Furthermore, we found CCL5 expression in macrophages was promoted by IFN-γ. Finally, we showed that Batf3 -/- Apoe -/- mice displayed decreased infiltration of leukocytes in the plaque. Thus, CD8α + DCs aggravated atherosclerosis, likely by inducing Th1 cell response, which promoted CCL5 expression in macrophages and increased infiltration of leukocytes and lesion inflammation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Fuel retention and recovery in natural and MGI disruptions on KSTAR

    International Nuclear Information System (INIS)

    Yu, Y.W.; Hong, S.H.; Yoon, S.W.; Kim, K.P.; Kim, W.C.; Seo, D.C.

    2013-01-01

    Fuel retention and recovery are studied during natural and Massive Gas Injection (MGI) induced disruptions in KSTAR with full graphite wall. The amount of released particles in natural disruptions in 15 s after the discharge is ∼5–10 times higher than that of non-disruption shots, but the difference is only ∼ 2 MGI induced disruptions depends on magnetic field (B t ) and MGI amount. The MGI disruption under a low B t and a medium MGI amount shows shorter thermal quench (TQ) and current quench (CQ), thereby higher fuel recovery. High B t plasma requires higher MGI amount for both disruption mitigation and fuel recovery. A high recovery of 4.2 × 10 22 D (∼0.78 monolayers) is obtained by MGI disruption in KSTAR 2011

  14. Domain shape instabilities and dendrite domain growth in uniaxial ferroelectrics

    Science.gov (United States)

    Shur, Vladimir Ya.; Akhmatkhanov, Andrey R.

    2018-01-01

    The effects of domain wall shape instabilities and the formation of nanodomains in front of moving walls obtained in various uniaxial ferroelectrics are discussed. Special attention is paid to the formation of self-assembled nanoscale and dendrite domain structures under highly non-equilibrium switching conditions. All obtained results are considered in the framework of the unified kinetic approach to domain structure evolution based on the analogy with first-order phase transformation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  15. Isoflurane reversibly destabilizes hippocampal dendritic spines by an actin-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Jimcy Platholi

    Full Text Available General anesthetics produce a reversible coma-like state through modulation of excitatory and inhibitory synaptic transmission. Recent evidence suggests that anesthetic exposure can also lead to sustained cognitive dysfunction. However, the subcellular effects of anesthetics on the structure of established synapses are not known. We investigated effects of the widely used volatile anesthetic isoflurane on the structural stability of hippocampal dendritic spines, a postsynaptic structure critical to excitatory synaptic transmission in learning and memory. Exposure to clinical concentrations of isoflurane induced rapid and non-uniform shrinkage and loss of dendritic spines in mature cultured rat hippocampal neurons. Spine shrinkage was associated with a reduction in spine F-actin concentration. Spine loss was prevented by either jasplakinolide or cytochalasin D, drugs that prevent F-actin disassembly. Isoflurane-induced spine shrinkage and loss were reversible upon isoflurane elimination. Thus, isoflurane destabilizes spine F-actin, resulting in changes to dendritic spine morphology and number. These findings support an actin-based mechanism for isoflurane-induced alterations of synaptic structure in the hippocampus. These reversible alterations in dendritic spine structure have important implications for acute anesthetic effects on excitatory synaptic transmission and synaptic stability in the hippocampus, a locus for anesthetic-induced amnesia, and have important implications for anesthetic effects on synaptic plasticity.

  16. Targeting nanoparticles to dendritic cells for immunotherapy.

    NARCIS (Netherlands)

    Cruz, L.J.; Tacken, P.J.; Rueda, F.; Domingo, J.C.; Albericio, F.; Figdor, C.G.

    2012-01-01

    Dendritic cells (DCs) are key players in the initiation of adaptive immune responses and are currently exploited in immunotherapy for treatment of cancer and infectious diseases. Development of targeted nanodelivery systems carrying vaccine components, including antigens and adjuvants, to DCs in

  17. Unimpaired dendritic cell functions in MVP/LRP knockout mice.

    Science.gov (United States)

    Mossink, Marieke H; de Groot, Jan; van Zon, Arend; Fränzel-Luiten, Erna; Schoester, Martijn; Scheffer, George L; Sonneveld, Pieter; Scheper, Rik J; Wiemer, Erik A C

    2003-09-01

    Dendritic cells (DCs) act as mobile sentinels of the immune system. By stimulating T lymphocytes, DCs are pivotal for the initiation of both T- and B-cell-mediated immune responses. Recently, ribonucleoprotein particles (vaults) were found to be involved in the development and/or function of human DCs. To further investigate the role of vaults in DCs, we examined the effects of disruption of the major vault protein (MVP/LRP) on the development and antigen-presenting capacity of DCs, using our MVP/LRP knockout mouse model. Mononuclear bone marrow cells were isolated from wild-type and knockout mice and stimulated to differentiate to DCs. Like human DCs, the wild-type murine DC cultures strongly expressed MVP/LRP. Nevertheless, the MVP/LRP-deficient DCs developed normally and showed similar expression levels of several DC surface markers. No differences were observed in in vitro studies on the antigen uptake and presenting capacities of the wild-type and MVP/LRP knockout DCs. Moreover, immunization of the MVP/LRP-deficient mice with several T-cell antigens led to responses similar to those observed in the wild-type mice, indicating that the in vivo DC migration and antigen-presentation capacities are intact. Moreover, no differences were observed in the induction of the T cell-dependent humoral responses and orally induced peripheral T-cell tolerance. In conclusion, vaults are not required for primary DC functions. Their abundance in DCs may, however, still reflect basic roles in myeloid cell proliferation and DC development.

  18. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice.

    Science.gov (United States)

    Wang, I-Ting Judy; Allen, Megan; Goffin, Darren; Zhu, Xinjian; Fairless, Andrew H; Brodkin, Edward S; Siegel, Steve J; Marsh, Eric D; Blendy, Julie A; Zhou, Zhaolan

    2012-12-26

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in neurodevelopmental disorders including atypical Rett syndrome (RTT), autism spectrum disorders (ASDs), and early infantile epileptic encephalopathy. The biological function of CDKL5 and its role in the etiology of these disorders, however, remain unclear. Here we report the development of a unique knockout mouse model of CDKL5-related disorders and demonstrate that mice lacking CDKL5 show autistic-like deficits in social interaction, as well as impairments in motor control and fear memory. Neurophysiological recordings reveal alterations in event-related potentials (ERPs) similar to those observed in RTT and ASDs. Moreover, kinome profiling uncovers disruption of multiple signal transduction pathways, including the AKT-mammalian target of rapamycin (mTOR) cascade, upon Cdkl5 loss-of-function. These data demonstrate that CDKL5 regulates signal transduction pathways and mediates autistic-like phenotypes and together establish a causal role for Cdkl5 loss-of-function in neurodevelopmental disorders.

  19. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI. Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.

  20. Power loading on the first wall during disruptions in TFTR

    International Nuclear Information System (INIS)

    Janos, A.; Fredrickson, E.D.; McGuire, K.M.; Nagayama, Y.; Owens, D.K.; Wilfrid, E.

    1992-01-01

    Heating of the first wall of TFTR due to disruptions is investigated experimentally using an extensive array of thermocouples. By comparing results from discharges with and without disruptions, we extract effects due to the disruption alone. Disruptions preferentially heat the same areas which are heated during discharges without disruptions. Hot areas are inward protrusions or regions unshielded by neighboring areas. Peaking factors in the toroidal direction, defined as peak temperature divided by average toroidal temperature, as a function of poloidal angle, are calculated. For nondisruptive discharges, the peaking factor varies between 2 and 4. For the disruptive portion of a discharge only, the peaking factor near the midplane, where most of the energy is deposited, ranges from 3 to 5. Further away from the midplane, the peaking factor can reach 28, although the heat load is less in that region. (orig.)

  1. Golgi Outpost Synthesis Impaired by Toxic Polyglutamine Proteins Contributes to Dendritic Pathology in Neurons

    Directory of Open Access Journals (Sweden)

    Chang Geon Chung

    2017-07-01

    Full Text Available Dendrite aberration is a common feature of neurodegenerative diseases caused by protein toxicity, but the underlying mechanisms remain largely elusive. Here, we show that nuclear polyglutamine (polyQ toxicity resulted in defective terminal dendrite elongation accompanied by a loss of Golgi outposts (GOPs and a decreased supply of plasma membrane (PM in Drosophila class IV dendritic arborization (da (C4 da neurons. mRNA sequencing revealed that genes downregulated by polyQ proteins included many secretory pathway-related genes, including COPII genes regulating GOP synthesis. Transcription factor enrichment analysis identified CREB3L1/CrebA, which regulates COPII gene expression. CrebA overexpression in C4 da neurons restores the dysregulation of COPII genes, GOP synthesis, and PM supply. Chromatin immunoprecipitation (ChIP-PCR revealed that CrebA expression is regulated by CREB-binding protein (CBP, which is sequestered by polyQ proteins. Furthermore, co-overexpression of CrebA and Rac1 synergistically restores the polyQ-induced dendrite pathology. Collectively, our results suggest that GOPs impaired by polyQ proteins contribute to dendrite pathology through the CBP-CrebA-COPII pathway.

  2. Using magnetic resonance imaging to evaluate dendritic cell-based vaccination.

    Directory of Open Access Journals (Sweden)

    Peter M Ferguson

    Full Text Available Cancer immunotherapy with antigen-loaded dendritic cell-based vaccines can induce clinical responses in some patients, but further optimization is required to unlock the full potential of this strategy in the clinic. Optimization is dependent on being able to monitor the cellular events that take place once the dendritic cells have been injected in vivo, and to establish whether antigen-specific immune responses to the tumour have been induced. Here we describe the use of magnetic resonance imaging (MRI as a simple, non-invasive approach to evaluate vaccine success. By loading the dendritic cells with highly magnetic iron nanoparticles it is possible to assess whether the injected cells drain to the lymph nodes. It is also possible to establish whether an antigen-specific response is initiated by assessing migration of successive rounds of antigen-loaded dendritic cells; in the face of a successfully primed cytotoxic response, the bulk of antigen-loaded cells are eradicated on-route to the node, whereas cells without antigen can reach the node unchecked. It is also possible to verify the induction of a vaccine-induced response by simply monitoring increases in draining lymph node size as a consequence of vaccine-induced lymphocyte trapping, which is an antigen-specific response that becomes more pronounced with repeated vaccination. Overall, these MRI techniques can provide useful early feedback on vaccination strategies, and could also be used in decision making to select responders from non-responders early in therapy.

  3. Modeling variability in dendritic ice crystal backscattering cross sections at millimeter wavelengths using a modified Rayleigh–Gans theory

    International Nuclear Information System (INIS)

    Lu, Yinghui; Clothiaux, Eugene E.; Aydin, Kültegin; Botta, Giovanni; Verlinde, Johannes

    2013-01-01

    Using the Generalized Multi-particle Mie-method (GMM), Botta et al. (in this issue) [7] created a database of backscattering cross sections for 412 different ice crystal dendrites at X-, Ka- and W-band wavelengths for different incident angles. The Rayleigh–Gans theory, which accounts for interference effects but ignores interactions between different parts of an ice crystal, explains much, but not all, of the variability in the database of backscattering cross sections. Differences between it and the GMM range from −3.5 dB to +2.5 dB and are highly dependent on the incident angle. To explain the residual variability a physically intuitive iterative method was developed to estimate the internal electric field within an ice crystal that accounts for interactions between the neighboring regions within it. After modifying the Rayleigh–Gans theory using this estimated internal electric field, the difference between the estimated backscattering cross sections and those from the GMM method decreased to within 0.5 dB for most of the ice crystals. The largest percentage differences occur when the form factor from the Rayleigh–Gans theory is close to zero. Both interference effects and neighbor interactions are sensitive to the morphology of ice crystals. Improvements in ice-microphysical models are necessary to predict or diagnose internal structures within ice crystals to aid in more accurate interpretation of radar returns. Observations of the morphology of ice crystals are, in turn, necessary to guide the development of such ice-microphysical models and to better understand the statistical properties of ice crystal morphologies in different environmental conditions. -- Highlights: • Significant variability exists in radar backscattering cross sections of dendrites. • Source of variability depends upon detailed distribution of mass within dendrites. • The Rayleigh–Gans theory (RG) captures most of the variability. • Improving RG by estimating dendrite

  4. Modelling dendritic ecological networks in space: anintegrated network perspective

    Science.gov (United States)

    Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of ecological networks, or in 2-D space, may be inadequate for studying the influence of structure and connectivity on ecological processes within DENs. We propose a conceptual taxonomy of network analysis methods that account for DEN characteristics to varying degrees and provide a synthesis of the different approaches within

  5. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells

    Directory of Open Access Journals (Sweden)

    Fabian eSalazar

    2013-11-01

    Full Text Available Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells, culminating in mast cell sensitization and triggering. Dendritic cells have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors dendritic cells are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence dendritic cells behaviour through the release of a number of Th2 promoting cytokines. In this review we will summarise current understanding of how allergens are recognised by dendritic cells and epithelial cells and what are the consequences of such interaction in the context of allergic sensitisation and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signalling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitisation hence hindering development or progression of allergic diseases.

  6. Living in the branches: population dynamics and ecological processes in dendritic networks

    Science.gov (United States)

    Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.

    2007-01-01

    Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.

  7. Esterified dendritic TAM radicals with very high stability and enhanced oxygen sensitivity.

    Science.gov (United States)

    Song, Yuguang; Liu, Yangping; Hemann, Craig; Villamena, Frederick A; Zweier, Jay L

    2013-02-15

    In this work, we have developed a new class of dendritic TAM radicals (TG, TdG, and dTdG) through a convergent method based on the TAM core CT-03 or its deuterated analogue dCT-03 and trifurcated Newkome-type monomer. Among these radicals, dTdG exhibits the best EPR properties with sharpest EPR singlet and highest O(2) sensitivity due to deuteration of both the ester linker groups and the TAM core CT-03. Like the previous dendritic TAM radicals, these new compounds also show extremely high stability toward various reactive species owing to the dendritic encapsulation. The highly charged nature of these molecules resulting from nine carboxylate groups prevents concentration-dependent EPR line broadening at physiological pH. Furthermore, we demonstrate that these TAM radicals can be easily derivatized (e.g., PEGylation) at the nine carboxylate groups and the resulting PEGylated analogue dTdG-PEG completely inhibits the albumin binding, thereby enhancing suitability for in vivo applications. These new dendritic TAM radicals show great potential for in vivo EPR oximetric applications and provide insights on approaches to develop improved and targeted EPR oximetric probes for biomedical applications.

  8. Primary Dendrite Arm Spacing and Trunk Diameter in Al-7-Weight-Percentage Si Alloy Directionally Solidified Aboard the International Space Station

    Science.gov (United States)

    Ghods, M.; Tewari, S. N.; Lauer, M.; Poirier, D. R.; Grugel, R. N.

    2016-01-01

    Under a NASA-ESA collaborative research project, three Al-7-weight-percentage Si samples (MICAST-6, MICAST-7 and MICAST 2-12) were directionally solidified aboard the International Space Station to determine the effect of mitigating convection on the primary dendrite array. The samples were approximately 25 centimeters in length with a diameter of 7.8 millimeter-diameter cylinders that were machined from [100] oriented terrestrially grown dendritic Al-7Si samples and inserted into alumina ampoules within the Sample Cartridge Assembly (SCA) inserts of the Low Gradient Furnace (LGF). The feed rods were partially remelted in space and directionally solidified to effect the [100] dendrite-orientation. MICAST-6 was grown at 5 microns per second for 3.75 centimeters and then at 50 microns per second for its remaining 11.2 centimeters of its length. MICAST-7 was grown at 20 microns per second for 8.5 centimeters and then at 10 microns per second for 9 centimeters of its remaining length. MICAST2-12 was grown at 40 microns per second for 11 centimeters. The thermal gradient at the liquidus temperature varied from 22 to 14 degrees Kelvin per centimeter during growth of MICAST-6, from 26 to 24 degrees Kelvin per centimeter for MICAST-7 and from 33 to 31 degrees Kelvin per centimeter for MICAST2-12. Microstructures on the transverse sections along the sample length were analyzed to determine nearest-neighbor spacing of the primary dendrite arms and trunk diameters of the primary dendrite-arrays. This was done along the lengths where steady-state growth prevailed and also during the transients associated with the speed-changes. The observed nearest-neighbor spacings during steady-state growth of the MICAST samples show a very good agreement with predictions from the Hunt-Lu primary spacing model for diffusion controlled growth. The observed primary dendrite trunk diameters during steady-state growth of these samples also agree with predictions from a coarsening-based model

  9. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Der-Yuan Chen

    2013-01-01

    Full Text Available Dendritic cells (DCs play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM, a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS, proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs. These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases.

  10. Commensal oral bacteria antigens prime human dendritic cells to induce Th1, Th2 or Treg differentiation.

    Science.gov (United States)

    Kopitar, A N; Ihan Hren, N; Ihan, A

    2006-02-01

    In various immunopathologic conditions, bacterial flora induce an immune response which results in inflammatory manifestations, e.g. periapical granuloma. Dendritic cells provide the main orchestration of specific immune responses. The aim of our study was to test the capacity of distinct oral bacterial antigens (prepared from Streptococcus mitis, Propionibacterium acnes, and Bacteroides spp.) to prime human dendritic cells for stimulation of the T-lymphocyte response. To assess the T-lymphocyte response, the expression of CD25, CD69, intracellular interferon gamma (cIFN-gamma), and intracellular interleukin 4 (cIL-4) was determined. Dendritic cells were prepared from leukocyte buffy coat from healthy blood donors. Monocytes were stimulated with IL-4 and GM-CSF and dendritic cells activated with bacterial lysates. Cell suspensions contained up to 90% dendritic cells, which represented 2-12% of the initial number of mononuclear cells. Lymphocyte subsets that developed in lymphocyte cultures after 1 week of stimulation were analyzed by flow cytometry. Dendritic cells, primed with antigens of Bacteroides fragilis have shown significantly higher activation and expression of intercellular IFN-gamma by T lymphocytes compared to negative controls. The dendritic cells primed with antigens of P. acnes had no effect on T-lymphocyte activation or cytokine production; instead they induced differentiation of T lymphocytes into CD25bright cells (regulatory T cells) with a potentially inhibitory effect on immune response. Dendritic cells primed with antigens of S. mitis induced increased expression of cIL-4. We conclude that commensal oral bacteria antigens prepared from B. fragilis, S. mitis, and P. acnes prime human dendritic cells to induce Th1, Th2, and T(reg) differentiation, respectively. This may advance our understanding of immunopathologic manifestations in the oral cavity and offer new possibilities for redirecting immune responses in mucosal vaccination.

  11. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Hansen, Thomas Steen; Met, Özcan

    2016-01-01

    with high cell survival. Continuous flow of suspended dendritic cells through a channel incorporating spatially separated microporous meshes with a synchronized electrical pulsing sequence can yield dendritic cell transfection rates of >75 % with survival rates of >90 %. This chapter describes...

  12. Stable Density and Dynamics of Dendritic Spines of Cortical Neurons Across the Estrous Cycle While Expressing Differential Levels of Sensory-Evoked Plasticity

    Directory of Open Access Journals (Sweden)

    Bailin H. Alexander

    2018-03-01

    Full Text Available Periodic oscillations of gonadal hormone levels during the estrous cycle exert effects on the female brain, impacting cognition and behavior. While previous research suggests that changes in hormone levels across the cycle affect dendritic spine dynamics in the hippocampus, little is known about the effects on cortical dendritic spines and previous studies showed contradictory results. In this in vivo imaging study, we investigated the impact of the estrous cycle on the density and dynamics of dendritic spines of pyramidal neurons in the primary somatosensory cortex of mice. We also examined if the induction of synaptic plasticity during proestrus, estrus, and metestrus/diestrus had differential effects on the degree of remodeling of synapses in this brain area. We used chronic two-photon excitation (2PE microscopy during steady-state conditions and after evoking synaptic plasticity by whisker stimulation at the different stages of the cycle. We imaged apical dendritic tufts of layer 5 pyramidal neurons of naturally cycling virgin young female mice. Spine density, turnover rate (TOR, survival fraction, morphology, and volume of mushroom spines remained unaltered across the estrous cycle, and the values of these parameters were comparable with those of young male mice. However, while whisker stimulation of female mice during proestrus and estrus resulted in increases in the TOR of spines (74.2 ± 14.9% and 75.1 ± 12.7% vs. baseline, respectively, sensory-evoked plasticity was significantly lower during metestrus/diestrus (32.3 ± 12.8%. In males, whisker stimulation produced 46.5 ± 20% increase in TOR compared with baseline—not significantly different from female mice at any stage of the cycle. These results indicate that, while steady-state density and dynamics of dendritic spines of layer 5 pyramidal neurons in the primary somatosensory cortex of female mice are constant during the estrous cycle, the susceptibility of these neurons to

  13. Preparing Methods and Its Influencing Factors about Nanoparticles Based on Dendritic Polymer

    OpenAIRE

    Zhang Jianwei; Li Jeff

    2017-01-01

    Based on the properties, structure and application of dendritic polymer, this paper analysed the methods of the preparation of nanoparticles using dendritic polymer, detailed preparation process, technical parameters and application effect about a single metal nanoparticles, bimetallic nanoparticles, sulfide and halide nanoparticles. The influencing factors of the preparation about nanoparticles were discussed, including the molecular algebra, the molar ratio of the metal ions to the dendriti...

  14. Potassium conductances mediate bidirectional state-dependent modulation of action potential evoked dendritic calcium signals in dentate gyrus granule cells

    Directory of Open Access Journals (Sweden)

    János Brunner

    2014-03-01

    Full Text Available Backpropagating action potentials (bAPs and local calcium signals that they trigger are fundamental for dendritic functions. Here we addressed the question what extent the changes of local dendritic membrane properties can contribute to the shaping of the coupling between dendritic action potentials and the local calcium responses. Using a combination of in vitro electrophysiological and confocal imaging techniques we found that activation of dendritic GIRK channels via mGlu2 or GABAB receptors enhanced the bAP¬-triggered calcium signals in the dendrites of dentate gyrus granule cells (GCs. The enhancement of calcium signals was significant only in those dendritic regions, where these receptors are predominantly expressed. Similarly to GIRK channel activation, somatic hyperpolarization by DC current injection (from -64 mV to -77 mV, significantly increased bAP-associated calcium signals in the proximal dendrites. The hyperpolarization was associated with a decrease in the input resistance due to the rectification of the membrane potential of GCs. The effect of hyperpolarization on the calcium signals was maintained when T-type calcium currents were blocked but it decreased when GIRK channels were inhibited. Simultaneous dual somato-dendritic recordings from GCs showed that somatic hyperpolarization accelerated the repolarization phase of dendritic bAP in the proximal region whereas the rising phase and peak amplitude was not affected. We hypothesize that the larger driving force for calcium ions during the faster repolarization can contribute to the increasing in calcium signals. Employment of previously recorded dendritic bAP waveforms from hyperpolarized membrane potential as voltage command evoked larger calcium currents in nucleated patches compared to bAP waveform from the same recording at depolarized membrane potential. Furthermore, addition of native, high-voltage activated, inactivating potassium conductance by somatic dynamic clamp

  15. Transition from a planar interface to cellular and dendritic structures during rapid solidification processing

    Science.gov (United States)

    Laxmanan, V.

    1986-01-01

    The development of theoretical models which characterize the planar-cellular and cell-dendrite transitions is described. The transitions are analyzed in terms of the Chalmers number, the solute Peclet number, and the tip stability parameter, which correlate microstructural features and processing conditions. The planar-cellular transition is examined using the constitutional supercooling theory of Chalmers et al., (1953) and it is observed that the Chalmers number is between 0 and 1 during dendritic and cellular growth. Analysis of cell-dendrite transition data reveal that the transition occurs when the solute Peclet number goes through a minimum, the primary arm spacings go through a maximum, and the Chalmers number is equal to 1/2. The relation between the tip stability parameter and the solute Peclet number is investigated and it is noted that the tip stability parameter is useful for studying dendritic growth in alloys.

  16. CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling.

    Science.gov (United States)

    Chen, Qian; Zhu, Yong-Chuan; Yu, Jing; Miao, Sheng; Zheng, Jing; Xu, Li; Zhou, Yang; Li, Dan; Zhang, Chi; Tao, Jiong; Xiong, Zhi-Qi

    2010-09-22

    Mutations in cyclin-dependent kinase-like 5 (CDKL5), also known as serine/threonine kinase 9 (STK9), have been identified in patients with Rett syndrome (RTT) and X-linked infantile spasm. However, the function of CDKL5 in the brain remains unknown. Here, we report that CDKL5 is a critical regulator of neuronal morphogenesis. We identified a neuron-specific splicing variant of CDKL5 whose expression was markedly induced during postnatal development of the rat brain. Downregulating CDKL5 by RNA interference (RNAi) in cultured cortical neurons inhibited neurite growth and dendritic arborization, whereas overexpressing CDKL5 had opposite effects. Furthermore, knocking down CDKL5 in the rat brain by in utero electroporation resulted in delayed neuronal migration, and severely impaired dendritic arborization. In contrast to its proposed function in the nucleus, we found that CDKL5 regulated dendrite development through a cytoplasmic mechanism. In fibroblasts and in neurons, CDKL5 colocalized and formed a protein complex with Rac1, a critical regulator of actin remodeling and neuronal morphogenesis. Overexpression of Rac1 prevented the inhibition of dendrite growth caused by CDKL5 knockdown, and the growth-promoting effect of ectopically expressed CDKL5 on dendrites was abolished by coexpressing a dominant-negative form of Rac1. Moreover, CDKL5 was required for brain-derived neurotrophic factor (BDNF)-induced activation of Rac1. Together, these results demonstrate a critical role of CDKL5 in neuronal morphogenesis and identify a Rho GTPase signaling pathway which may contribute to CDKL5-related disorders.

  17. Dendritic cells in peripheral tolerance and immunity

    DEFF Research Database (Denmark)

    Gad, Monika; Claesson, Mogens Helweg; Pedersen, Anders Elm

    2003-01-01

    Dendritic cells capable of influencing immunity exist as functionally distinct subsets, T cell-tolerizing and T cell-immunizing subsets. The present paper reviews how these subsets of DCs develop, differentiate and function in vivo and in vitro at the cellular and molecular level. In particular...

  18. Interactive HIV-1 Tat and morphine-induced synaptodendritic injury is triggered through focal disruptions in Na⁺ influx, mitochondrial instability, and Ca²⁺ overload.

    Science.gov (United States)

    Fitting, Sylvia; Knapp, Pamela E; Zou, Shiping; Marks, William D; Bowers, M Scott; Akbarali, Hamid I; Hauser, Kurt F

    2014-09-17

    Synaptodendritic injury is thought to underlie HIV-associated neurocognitive disorders and contributes to exaggerated inflammation and cognitive impairment seen in opioid abusers with HIV-1. To examine events triggering combined transactivator of transcription (Tat)- and morphine-induced synaptodendritic injury systematically, striatal neuron imaging studies were conducted in vitro. These studies demonstrated nearly identical pathologic increases in dendritic varicosities as seen in Tat transgenic mice in vivo. Tat caused significant focal increases in intracellular sodium ([Na(+)]i) and calcium ([Ca(2+)]i) in dendrites that were accompanied by the emergence of dendritic varicosities. These effects were largely, but not entirely, attenuated by the NMDA and AMPA receptor antagonists MK-801 and CNQX, respectively. Concurrent morphine treatment accelerated Tat-induced focal varicosities, which were accompanied by localized increases in [Ca(2+)]i and exaggerated instability in mitochondrial inner membrane potential. Importantly, morphine's effects were prevented by the μ-opioid receptor antagonist CTAP and were not observed in neurons cultured from μ-opioid receptor knock-out mice. Combined Tat- and morphine-induced initial losses in ion homeostasis and increases in [Ca(2+)]i were attenuated by the ryanodine receptor inhibitor ryanodine, as well as pyruvate. In summary, Tat induced increases in [Na(+)]i, mitochondrial instability, excessive Ca(2+) influx through glutamatergic receptors, and swelling along dendrites. Morphine, acting via μ-opioid receptors, exacerbates these excitotoxic Tat effects at the same subcellular locations by mobilizing additional [Ca(2+)]i and by further disrupting [Ca(2+)]i homeostasis. We hypothesize that the spatiotemporal relationship of μ-opioid and aberrant AMPA/NMDA glutamate receptor signaling is critical in defining the location and degree to which opiates exacerbate the synaptodendritic injury commonly observed in neuro

  19. Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Hiroaki Mochizuki

    2011-05-01

    Full Text Available Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport.In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II, an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM and No distributive disjunction (Nod, remains unaltered. Genetic analyses of kinesin light chain (Klc and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations.Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules and organelles that regulate elongation and compartmentalization of

  20. Estrogen levels regulate the subcellular distribution of phosphorylated Akt in hippocampal CA1 dendrites.

    Science.gov (United States)

    Znamensky, Vladimir; Akama, Keith T; McEwen, Bruce S; Milner, Teresa A

    2003-03-15

    In addition to genomic pathways, estrogens may regulate gene expression by activating specific signal transduction pathways, such as that involving phosphatidylinositol 3-kinase (PI3-K) and the subsequent phosphorylation of Akt (protein kinase B). The Akt pathway regulates various cellular events, including the initiation of protein synthesis. Our previous studies showed that synaptogenesis in hippocampal CA1 pyramidal cell dendritic spines is highest when brain estrogen levels are highest. To address the role of Akt in this process, the subcellular distribution of phosphorylated Akt immunoreactivity (pAkt-I) in the hippocampus of female rats across the estrous cycle and male rats was analyzed by light microscopy (LM) and electron microscopy (EM). By LM, the density of pAkt-I in stratum radiatum of CA1 was significantly higher in proestrus rats (or in estrogen-supplemented ovariectomized females) compared with diestrus, estrus, or male rats. By EM, pAkt-I was found throughout the shafts and in select spines of stratum radiatum dendrites. Quantitative ultrastructural analysis identifying pAkt-I with immunogold particles revealed that proestrus rats compared with diestrus, estrus, and male rats contained significantly higher pAkt-I associated with (1) dendritic spines (both cytoplasm and plasmalemma), (2) spine apparati located within 0.1 microm of dendritic spine bases, (3) endoplasmic reticula and polyribosomes in the cytoplasm of dendritic shafts, and (4) the plasmalemma of dendritic shafts. These findings suggest that estrogens may regulate spine formation in CA1 pyramidal neurons via Akt-mediated signaling events.

  1. Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study

    International Nuclear Information System (INIS)

    Tang Sai; Wang Zhijun; Guo Yaolin; Wang Jincheng; Yu Yanmei; Zhou Yaohe

    2012-01-01

    Using the phase-field crystal model, we investigate the orientation selection of the cubic dendrite growth at the atomic scale. Our simulation results reproduce how a face-centered cubic (fcc) octahedral nucleus and a body-centered cubic (bcc) truncated-rhombic dodecahedral nucleus choose the preferred growth direction and then evolve into the dendrite pattern. The interface energy anisotropy inherent in the fcc crystal structure leads to the fastest growth velocity in the 〈1 0 0〉 directions. New { 1 1 1} atomic layers prefer to nucleate at positions near the tips of the fcc octahedron, which leads to the directed growth of the fcc dendrite tips in the 〈1 0 0〉 directions. A similar orientation selection process is also found during the early stage of bcc dendrite growth. The orientation selection regime obtained by phase-field crystal simulation is helpful for understanding the orientation selection processes of real dendrite growth.

  2. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    Science.gov (United States)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  3. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons

    Science.gov (United States)

    Murphy, Diane D.; Cole, Nelson B.; Segal, Menahem

    1998-01-01

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons. PMID:9736750

  4. Different roles of the small GTPases Rac1, Cdc42, and RhoG in CALEB/NGC-induced dendritic tree complexity.

    Science.gov (United States)

    Schulz, Jana; Franke, Kristin; Frick, Manfred; Schumacher, Stefan

    2016-10-01

    Rho GTPases play prominent roles in the regulation of cytoskeletal reorganization. Many aspects have been elaborated concerning the individual functions of Rho GTPases in distinct signaling pathways leading to cytoskeletal rearrangements. However, major questions have yet to be answered regarding the integration and the signaling hierarchy of different Rho GTPases in regulating the cytoskeleton in fundamental physiological events like neuronal process differentiation. Here, we investigate the roles of the small GTPases Rac1, Cdc42, and RhoG in defining dendritic tree complexity stimulated by the transmembrane epidermal growth factor family member CALEB/NGC. Combining gain-of-function and loss-of-function analysis in primary hippocampal neurons, we find that Rac1 is essential for CALEB/NGC-mediated dendritic branching. Cdc42 reduces the complexity of dendritic trees. Interestingly, we identify the palmitoylated isoform of Cdc42 to adversely affect dendritic outgrowth and dendritic branching, whereas the prenylated Cdc42 isoform does not. In contrast to Rac1, CALEB/NGC and Cdc42 are not directly interconnected in regulating dendritic tree complexity. Unlike Rac1, the Rac1-related GTPase RhoG reduces the complexity of dendritic trees by acting upstream of CALEB/NGC. Mechanistically, CALEB/NGC activates Rac1, and RhoG reduces the amount of CALEB/NGC that is located at the right site for Rac1 activation at the cell membrane. Thus, Rac1, Cdc42, and RhoG perform very specific and non-redundant functions at different levels of hierarchy in regulating dendritic tree complexity induced by CALEB/NGC. Rho GTPases play a prominent role in dendritic branching. CALEB/NGC is a transmembrane member of the epidermal growth factor (EGF) family that mediates dendritic branching, dependent on Rac1. CALEB/NGC stimulates Rac1 activity. RhoG inhibits CALEB/NGC-mediated dendritic branching by decreasing the amount of CALEB/NGC at the plasma membrane. Palmitoylated, but not prenylated form

  5. Vaporization studies of plasma interactive materials in simulated plasma disruption events

    International Nuclear Information System (INIS)

    Stone, C.A. IV; Croessmann, C.D.; Whitley, J.B.

    1988-03-01

    The melting and vaporization that occur when plasma facing materials are subjected to a plasma disruption will severely limit component lifetime and plasma performance. A series of high heat flux experiments was performed on a group of fusion reactor candidate materials to model material erosion which occurs during plasma disruption events. The Electron Beam Test System was used to simulate single disruption and multiple disruption phenomena. Samples of aluminum, nickel, copper, molybdenum, and 304 stainless steel were subjected to a variety of heat loads, ranging from 100 to 400 msec pulses of 8 to 18 kWcm 2 . It was found that the initial surface temperature of a material strongly influences the vaporization process and that multiple disruptions do not scale linearly with respect to single disruption events. 2 refs., 9 figs., 5 tabs

  6. Endocrine Disrupting Chemicals (EDCs)

    Science.gov (United States)

    ... Center Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ... Hormones and Health › Endocrine Disrupting Chemicals (EDCs) The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) EDCs Myth vs. ...

  7. Phosphoproteome and transcription factor activity profiling identify actions of the anti-inflammatory agent UTL-5g in LPS stimulated RAW 264.7 cells including disrupting actin remodeling and STAT-3 activation.

    Science.gov (United States)

    Carruthers, Nicholas J; Stemmer, Paul M; Chen, Ben; Valeriote, Frederick; Gao, Xiaohua; Guatam, Subhash C; Shaw, Jiajiu

    2017-09-15

    UTL-5g is a novel small-molecule TNF-alpha modulator. It reduces cisplatin-induced side effects by protecting kidney, liver, and platelets, thereby increasing tolerance for cisplatin. UTL-5g also reduces radiation-induced acute liver toxicity. The mechanism of action for UTL-5g is not clear at the present time. A phosphoproteomic analysis to a depth of 4943 phosphopeptides and a luminescence-based transcription factor activity assay were used to provide complementary analyses of signaling events that were disrupted by UTL-5g in RAW 264.7 cells. Transcriptional activity downstream of the interferon gamma, IL-6, type 1 Interferon, TGF-β, PKC/Ca 2+ and the glucocorticoid receptor pathways were disrupted by UTL-5g. Phosphoproteomic analysis indicated that hyperphosphorylation of proteins involved in actin remodeling was suppressed by UTL-5g (gene set analysis, FDR 5g. This global characterization of UTL-5g activity in a macrophage cell line discovered that it disrupts selected aspects of LPS signaling including Stat3 activation and actin remodeling providing new insight on how UTL-5g acts to reduce cisplatin-induced side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. p16 expression in follicular dendritic cell sarcoma: a potential mimicker of human papillomavirus-related oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Lingxin; Yang, Chen; Lewis, James S; El-Mofty, Samir K; Chernock, Rebecca D

    2017-08-01

    Follicular dendritic cell sarcoma is a rare mesenchymal neoplasm that most commonly occurs in cervical lymph nodes. It has histologic and clinical overlap with the much more common p16-positive human papillomavirus (HPV)-related squamous cell carcinoma of the oropharynx, which characteristically has nonkeratinizing morphology and often presents as an isolated neck mass. Not surprisingly, follicular dendritic cell sarcomas are commonly misdiagnosed as squamous cell carcinoma. Immunohistochemistry is helpful in separating the 2 entities. Follicular dendritic cell sarcoma expresses dendritic markers such as CD21 and CD23 and is almost always cytokeratin negative. However, in many cases of HPV-related oropharyngeal carcinoma, only p16 immunohistochemistry as a prognostic and surrogate marker for HPV is performed. p16 expression in follicular dendritic cell sarcoma has not been characterized. Here, we investigate the expression of p16 in follicular dendritic cell sarcoma and correlate it with retinoblastoma protein expression. A pilot study of dendritic marker expression in HPV-related oropharyngeal squamous cell carcinoma was also performed. We found that 4 of 8 sarcomas expressed p16 with strong and diffuse staining in 2 cases. In 2 of the 4 cases, p16 expression corresponded to loss of retinoblastoma protein expression. Dendritic marker expression (CD21 and CD23) was not found in HPV-related oropharyngeal squamous cell carcinomas. As such, positive p16 immunohistochemistry cannot be used as supportive evidence for the diagnosis of squamous cell carcinoma as strong and diffuse p16 expression may also occur in follicular dendritic cell sarcoma. Cytokeratins and dendritic markers are critical in separating the two tumor types. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Exploiting the Physicochemical Properties of Dendritic Polymers for Environmental and Biological Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Geitner, Nicholas K.; Sarupria, Sapna; Ke, Pu Chun

    2013-04-07

    In this Perspective we first examine the rich physicochemical properties of dendritic polymers for hosting cations, anions, and polyaromatic hydrocarbons. We then extrapolate these conceptual discussions to the use of dendritic polymers for humic acid antifouling, oil dispersion, copper sensing, and fullerenol remediation. In addition, we review the state-of-the-art of dendrimer research and elaborate on their 10 implications for water purification, environmental remediation, nanomedicine, and energy harvesting.

  10. Parents’ Education, Personality, and Their Children’s Disruptive Behaviour

    Directory of Open Access Journals (Sweden)

    Purwati

    2017-07-01

    Full Text Available The aims of this study were (1 to understand the effects of parents' education and personality aspects on child disruptive behavior, (2 to know the correlation between the parents' personality aspects (N-Deference, N-Succorance, NDominance and N-Aggression and the children' disruptive behavior. A quantitative approach to the correlational design was employed. Three variables were studied, namely parents' education and personality as the independent variables and child disruptive behavior as the independent variable. The applied instruments are questionnaires, (2 personality test (EPPS, and (3 observation with time and interval samplings approach. The population is from Magelang, Indonesia, while the participants are 100 children at the age of 5 – 7 years and their parents. The results show that (1 there are some effects of parents' education and personality on child disruptive behavior, and (2 aggressive aspects of the parents' personality gave great effects on child disruptive behavior, followed by the succorance, deference, and at the lowest level, the dominance aspects

  11. Molecule Matters-Dendritic Architecture-A Clever Route to ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. Molecule Matters - Dendritic Architecture - A Clever Route to Monodispersed Macromolecules. N Jayaraman. Feature Article Volume 12 Issue 1 January 2007 pp 60-66 ...

  12. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    Science.gov (United States)

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  13. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses

    Directory of Open Access Journals (Sweden)

    Kathryn M. Lehigh

    2017-04-01

    Full Text Available Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes.

  14. A bifunctional electrolyte additive for separator wetting and dendrite suppression in lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hao; Xie, Yong; Xiang, Hongfa; Shi, Pengcheng; Liang, Xin; Xu, Wu

    2018-04-01

    Reformulation of electrolyte systems and improvement of separator wettability are vital to electrochemical performances of rechargeable lithium (Li) metal batteries, especially for suppressing Li dendrites. In this work we report a bifunctional electrolyte additive that improves separator wettability and suppresses Li dendrite growth in LMBs. A triblock polyether (Pluronic P123) was introduced as an additive into a commonly used carbonate-based electrolyte. It was found that addition of 0.2~1% (by weight) P123 into the electrolyte could effectively enhance the wettability of polyethylene separator. More importantly, the adsorption of P123 on Li metal surface can act as an artificial solid electrolyte interphase layer and contribute to suppress the growth of Li dendrites. A smooth and dendritic-free morphology can be achieved in the electrolyte with 0.2% P123. The Li||Li symmetric cells with the 0.2% P123 containing electrolyte exhibit a relatively stable cycling stability at high current densities of 1.0 and 3.0 mA cm-2.

  15. The microRNA bantam regulates a developmental transition in epithelial cells that restricts sensory dendrite growth

    OpenAIRE

    Jiang, Nan; Soba, Peter; Parker, Edward; Kim, Charles C.; Parrish, Jay Z.

    2014-01-01

    As animals grow, many early born structures grow by cell expansion rather than cell addition; thus growth of distinct structures must be coordinated to maintain proportionality. This phenomenon is particularly widespread in the nervous system, with dendrite arbors of many neurons expanding in concert with their substrate to sustain connectivity and maintain receptive field coverage as animals grow. After rapidly growing to establish body wall coverage, dendrites of Drosophila class IV dendrit...

  16. Disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Janos, A.; Fredrickson, E.D.; McGuire, K.; Batha, S.H.; Bell, M.G.; Bitter, M.; Budny, R.; Bush, C.E.; Efthimion, P.C.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Jobes, F.C.; Johnson, D.W.; Levinton, F.; Mansfield, D.; Meade, D.; Medley, S.S.; Monticello, D.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.; Park, W.; Post, D.E.; Schivell, J.; Strachan, J.D.; Taylor, G.; Ulrickson, M.; Goeler, S. von; Wilfrid, E.; Wong, K.L.; Yamada, M.; Young, K.M.; Zarnstorff, M.C.; Zweben, S.J.; Drake, J.F.; Kleva, R.G.; Fleischmann, H.H.

    1993-03-01

    For a successful reactor, it will be useful to predict the occurrence of disruptions and to understand disruption effects including how a plasma disrupts onto the wall and how reproducibly it does so. Studies of disruptions on TFTR at both high-β pol and high-density have shown that, in both types, a fast growing m/n=1/1 mode plays an important role. In highdensity disruptions, a newly observed fast m/n = 1/1 mode occurs early in the thermal decay phase. For the first time in TFTR q-profile measurements just prior to disruptions have been made. Experimental studies of heat deposition patterns on the first wall of TFTR due to disruptions have provided information on MHD phenomena prior to or during the disruption, how the energy is released to the wall, and the reproducibility of the heat loads from disruptions. This information is important in the design of future devices such as ITER. Several new processes of runaway electron generation are theoretically suggested and their application to TFTR and ITER is considered, together with a preliminary assessment of x-ray data from runaways generated during disruptions

  17. Dendritic cells support production of IgA and other non-IgM isotypes in clonal microculture.

    Science.gov (United States)

    Schrader, C E; George, A; Kerlin, R L; Cebra, J J

    1990-01-01

    Microcultures of helper T (Th) cells and a few appropriately primed murine B cells can be used to detect cognate T-B interactions which lead to clonal production of IgM, IgG1, and IgE. However, IgG2, IgG3, and IgA are very rarely expressed. We have found that the addition of dendritic cells to such cultures creates an extremely supportive environment for clones expressing IgA with other isotypes, as well as clones expressing only detectable IgA. Typically, 400 dendritic cells were added to 3000 conalbumin-specific Th cells (D10.G4.1) and 30 hapten-specific Peyer's patch (PP) B cells with antigen in 15 microliters. The response was antigen dependent and clonal. Almost half of the clones expressed only non-IgM isotypes, 43% expressed some IgA, and 14% expressed some IgG3; isotype diversity increased over time. Dendritic cells from PP and spleen were found to be equally supportive, and allowed the number of T cells required in microculture to be decreased from 3000 to 400. However, T cell proliferation was not required for the supportive effect of dendritic cells. Surface IgD-bearing cells were also found to switch to IgA production in microculture as judged by their generating clones expressing IgM along with IgA and other isotypes. Again, IgA was usually expressed only in the presence of dendritic cells. The mechanism may involve dendritic cell-induced T cell activation and/or dendritic cell factors, and is under investigation.

  18. The ergodic divertor a way to prevent major disruptions

    International Nuclear Information System (INIS)

    Vallet, J.C.; Poutchy, L.; Mohamed-Benkadda, M.S.; Edery, D.; Joffrin, E.; Lecoustey, P.; Pecquet, A.L.; Samain, A.; Talvard, M.

    1991-01-01

    The disruptions are one of the major obstacles to present day tokamaks extrapolation to fusion reactors. We have recently proposed a piloting discharge strategy on TORE SUPRA to prevent density limit disruptions. This strategy is based on the use of the Ergodic Divertor (ED). We have observed that the ED stabilizes the m=2 n=1 tearing mode and that in deuterium discharges limited by the outboard limiter it induces a fast decrease of the plasma density. The piloting strategy is taken in three steps: 1) the approach of the density limit is detected by a threshold on the MHD activity amplitude; 2) the gas puff is switched off; 3) the ED is turned on. Then the m=2 n=1 tearing mode is stabilized the density decreases and the disruption is avoided. This strategy has already been successully tested on about 20 specific deuterium shots with 2.5< q(a)<4.5 in which the density limit is approached by ramping up the density with gas puffing. In this paper, experimental data are reported and analyzed. First, the principle of the ED and the density limit disruption phenomenology are briefly recalled. Then the ED effect on plasma density, radiated power and MHD activity are analyzed, and the piloting strategy to prevent density limit disruptions is discussed

  19. Easy Formation of Nanodisk-Dendritic ZnO Film via Controlled Electrodeposition Process

    Directory of Open Access Journals (Sweden)

    Nur Azimah Abd Samad

    2015-01-01

    Full Text Available A facile electrodeposition synthesis was introduced to prepare the nanodisk-dendritic ZnO film using a mixture solution of zinc chloride (ZnCl2 with potassium chloride (KCl that acted as a directing agent. This study aims to determine the best photoelectrochemical response for solar-induced water splitting. Based on our results obtained, it was found that an average diagonal of nanodisk was approximately 1.70 µm with the thickness of ≈150 nm that was successfully grown on the surface of substrate. The photocatalytic and photoelectrochemical responses of the resultant wurtzite type based-nanodisk-dendrite ZnO film as compared to the as-prepared ZnO film were monitored and evaluated. A photocurrent density of 19.87 mA/cm2 under ultraviolet rays and 14.05 mA/cm2 under visible light (500 nm was recorded for the newly developed nanodisk-dendritic ZnO thin film. It was believed that nanodisk-dendritic ZnO film can harvest more incident photons from the illumination to generate more photoinduced charge carriers to trigger the photocatalytic and photoelectrochemical reactions. Moreover, strong light scattering effects and high specific surface area of 2D nanostructures aid in the incident light absorption from any direction.

  20. Layer 5 Callosal Parvalbumin-Expressing Neurons: A Distinct Functional Group of GABAergic Neurons.

    Science.gov (United States)

    Zurita, Hector; Feyen, Paul L C; Apicella, Alfonso Junior

    2018-01-01

    Previous studies have shown that parvalbumin-expressing neurons (CC-Parv neurons) connect the two hemispheres of motor and sensory areas via the corpus callosum, and are a functional part of the cortical circuit. Here we test the hypothesis that layer 5 CC-Parv neurons possess anatomical and molecular mechanisms which dampen excitability and modulate the gating of interhemispheric inhibition. In order to investigate this hypothesis we use viral tracing to determine the anatomical and electrophysiological properties of layer 5 CC-Parv and parvalbumin-expressing (Parv) neurons of the mouse auditory cortex (AC). Here we show that layer 5 CC-Parv neurons had larger dendritic fields characterized by longer dendrites that branched farther from the soma, whereas layer 5 Parv neurons had smaller dendritic fields characterized by shorter dendrites that branched nearer to the soma. The layer 5 CC-Parv neurons are characterized by delayed action potential (AP) responses to threshold currents, lower firing rates, and lower instantaneous frequencies compared to the layer 5 Parv neurons. Kv1.1 containing K + channels are the main source of the AP repolarization of the layer 5 CC-Parv and have a major role in determining both the spike delayed response, firing rate and instantaneous frequency of these neurons.

  1. The mass disruption of Jupiter Family comets

    Science.gov (United States)

    Belton, Michael J. S.

    2015-01-01

    I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).

  2. Anisotropic corner diffusion as origin for dendritic growth on hexagonal substrates

    DEFF Research Database (Denmark)

    Brune, H.; Röder, H.; Bromann, K.

    1996-01-01

    Ag aggregation on Ag(111), Pt(111), and 1 ML Ag pseudomorphically grown on Pt(111), has been studied with variable temperature STM. These systems all have in common that dendritic patterns with trigonal symmetry rather than randomly ramified aggregates, which would be expected for a simple hit an...... theory show that this relaxation is highly asymmetric with respect to the two different kinds of close-packed steps. It leads to dendritic growth as verified by kinetic Monte-Carlo simulations which agree well with experiment....

  3. A route for direct retinal input to the preoptic hypothalamus: dendritic projections into the optic chiasm.

    Science.gov (United States)

    Silver, J; Brand, S

    1979-07-01

    With the use of Golgi, horseradish peroxidase, and electron microscopic techniques, neurons within a broad region of the preoptic hypothalamus of the mouse were shown to have dendrites that projected well into the depths of the optic chiasm. Further experimental and ultrastructural investigation demonstrated synapses between these dendrites and retinal axonal boutons within the chiasm. All synapses located in the chiasm were classified as Gray's type I. The possible function of these dendritic projections is discussed.

  4. Statistical analysis of JET disruptions

    International Nuclear Information System (INIS)

    Tanga, A.; Johnson, M.F.

    1991-07-01

    In the operation of JET and of any tokamak many discharges are terminated by a major disruption. The disruptive termination of a discharge is usually an unwanted event which may cause damage to the structure of the vessel. In a reactor disruptions are potentially a very serious problem, hence the importance of studying them and devising methods to avoid disruptions. Statistical information has been collected about the disruptions which have occurred at JET over a long span of operations. The analysis is focused on the operational aspects of the disruptions rather than on the underlining physics. (Author)

  5. Disruptions in DIII-D

    International Nuclear Information System (INIS)

    Reiman, A.; Taylor, P.; Kellman, A.; LaHaye, R.

    1996-01-01

    We report on the results of a statistical analysis of the DIII-D disruption data base, and on an examination of a selected subset of the shots to determine the likely causes of disruptions. The statistical analysis focuses on the dependence of the disruption rate on key dimensionless parameters. We find that the disruption frequency is high at modest values of the parameters, and that it can be relatively low at operational limits. For example, the disruption frequency in an ITER relevant regime (β N /l i ∼ 2, 3 G > 0.6, where n G is the Greenwald limit) is approximately 23%. For this range of q, the disruption frequency rises only modestly to about 35% at the β limit, consistent with previous observations of a soft β limit for this q regime. For the range 6 95 G G < .9) in all q regimes we have studied. The location of the minimum moves to higher density with increasing q

  6. Changes in cytokine and biomarker blood levels in patients with colorectal cancer during dendritic cell-based vaccination

    DEFF Research Database (Denmark)

    Burgdorf, Stefan K; Claesson, Mogens Helweg; Nielsen, Hans J

    2009-01-01

    Introduction. Immunotherapy based on dendritic cell vaccination has exciting perspectives for treatment of cancer. In order to clarify immunological mechanisms during vaccination it is essential with intensive monitoring of the responses. This may lead to optimization of treatment and prediction...... of responding patients. The aim of this study was to evaluate cytokine and biomarker responses in patients with colorectal cancer treated with a cancer vaccine based on dendritic cells pulsed with an allogeneic melanoma cell lysate. Material and methods. Plasma and serum samples were collected prior...... disease showed increasing levels of plasma GM-CSF, TNF-alpha, IFN-gamma, IL-2, and IL-5. Patients with progressive disease showed significant increase in CEA and TIMP-1 levels, while patients with stable disease showed relatively unaltered levels. Conclusion. The increased levels of key pro...

  7. Blood-Brain Barrier Disruption After Cardiopulmonary Bypass: Diagnosis and Correlation to Cognition.

    Science.gov (United States)

    Abrahamov, Dan; Levran, Oren; Naparstek, Sharon; Refaeli, Yael; Kaptson, Shani; Abu Salah, Mahmud; Ishai, Yaron; Sahar, Gideon

    2017-07-01

    Cardiopulmonary bypass (CPB) elicits a systemic inflammatory response that may impair blood-brain barrier (BBB) integrity. BBB disruption can currently be detected by dynamic contrast enhancement magnetic resonance imaging (MRI), reflected by an increase in the permeability constant (K trans ). We aimed to determine (1) whether CPB induces BBB disruption, (2) duration until BBB disruption resolution, and (3) the obtainable correlation between BBB injury (location and intensity) and neurocognitive dysfunction. Seven patients undergoing CPB with coronary artery bypass grafting (CABG) were assigned to serial cerebral designated MRI evaluations, preoperatively and on postoperative day (POD) 1 and 5. Examinations were analyzed for BBB disruption and microemboli using dynamic contrast enhancement MRI and diffusion-weighted imaging methods, respectively. Neuropsychologic tests were performed 1 day preoperatively and on POD 5. A significant local K trans increase (0.03 min -1 vs 0.07 min -1 , p = 0.033) compatible with BBB disruption was evident in 5 patients (71%) on POD 1. Resolution was observed by POD 5 (mean, 0.012 min -1 ). The location of the disruption was most prominent in the frontal lobes (400% vs 150% K trans levels upsurge, p = 0.05). MRI evidence of microembolization was demonstrated in only 1 patient (14%). The postoperative global cognitive score was reduced in all patients (98.2 ± 12 vs 95.1 ± 11, p = 0.032), predominantly in executive and attention (frontal lobe-related) functions (91.8 ± 13 vs 86.9 ± 12, p = 0.042). The intensity of the dynamic contrast enhancement MRI BBB impairment correlated with the magnitude of cognition reduction (r = 0.69, p = 0.04). BBB disruption was evident in most patients, primarily in the frontal lobes. The location and intensity of the BBB disruption, rather than the microembolic load, correlated with postoperative neurocognitive dysfunction. Copyright © 2017 The Society of Thoracic Surgeons. Published by

  8. Disruption model

    International Nuclear Information System (INIS)

    Murray, J.G.; Bronner, G.

    1982-07-01

    Calculations of disruption time and energy dissipation have been obtained by simulating the plasma as an electrical conducting loop that varies in resistivity, current density, major radius. The calculations provide results which are in good agreement with experimental observations. It is believed that this approach allows engineering designs for disruptions to be completed in large tokamaks such as INTOR or FED

  9. Macrophage and dendritic cell subsets in IBD: ALDH+ cells are reduced in colon tissue of patients with ulcerative colitis regardless of inflammation

    DEFF Research Database (Denmark)

    Magnusson, M. K.; Brynjólfsson, S. F.; Dige, A.

    2016-01-01

    Disruption of the homeostatic balance of intestinal dendritic cells (DCs) and macrophages (MQs) may contribute to inflammatory bowel disease. We characterized DC and MQ populations, including their ability to produce retinoic acid, in clinical material encompassing Crohn’s ileitis, Crohn’s colitis....... In MLNs, two CD14− DC populations were identified: CD11cintHLADRhi and CD11chiHLADRint cells. A marked increase of CD11chiHLADRint DC, particularly DRintCD1c+ DCs, characterized MLNs draining inflamed intestine. The fraction of DC and MQ populations expressing aldehyde dehydrogenase (ALDH) activity......, reflecting retinoic acid synthesis, in UC colon, both in active disease and remission, were reduced compared to controls and inflamed Crohn’s colon. In contrast, no difference in the frequency of ALDH+ cells among blood precursors was detected between UC patients and non-inflamed controls. This suggests...

  10. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons.

    Science.gov (United States)

    Perrin, Laura; Roudeau, Stéphane; Carmona, Asuncion; Domart, Florelle; Petersen, Jennifer D; Bohic, Sylvain; Yang, Yang; Cloetens, Peter; Ortega, Richard

    2017-07-19

    Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.

  11. Opposite effects of fear conditioning and extinction on dendritic spine remodelling.

    Science.gov (United States)

    Lai, Cora Sau Wan; Franke, Thomas F; Gan, Wen-Biao

    2012-02-19

    It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.

  12. Internal disruption in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    A review of results of experimental and theoretical investigations of internal disruption in tokamaks is given. Specific features of various types of saw-tooth oscillations are described and their classification is performed. Theoretical models of the process of development of internal disruption instability are discussed. Effect of internal disruption on parameters of plasma, confined in tokamak, is considered. Scalings of period and amplitude of saw-tooth oscillations, as well as version radius are presented. Different methods for stabilizing instability of internal disruption are described

  13. Internal disruptions in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    Experimental and theoretical studies of the phenomenon of internal disruptions in tokamaks are reviewed. A classification scheme is introduced and the features of different types of sawtooth oscillations are described. A theoretical model for the development of the internal disruption instability is discussed. The effect of internal disruptions on the parameters of plasma confined in tokamaks is discussed. Scaling laws for the period and amplitude of sawtooth oscillations, as well as for the inversion radius, are presented. Different methods of stabilizing the internal disruption instability are described

  14. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    Directory of Open Access Journals (Sweden)

    Alexandra Wittmann

    Full Text Available In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  15. Embryonic origins of a motor system: motor dendrites form a myotopic map in Drosophila.

    Directory of Open Access Journals (Sweden)

    Matthias Landgraf

    2003-11-01

    Full Text Available The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.

  16. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    Science.gov (United States)

    Wittmann, Alexandra; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2013-01-01

    In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  17. Regulatory dendritic cell infusion prolongs kidney allograft survival in non-human primates

    OpenAIRE

    Ezzelarab, M.; Zahorchak, A.F.; Lu, L.; Morelli, A.E.; Chalasani, G.; Demetris, A.J.; Lakkis, F.G.; Wijkstrom, M.; Murase, N.; Humar, A.; Shapiro, R.; Cooper, D.K.C.; Thomson, A.W.

    2013-01-01

    We examined the influence of regulatory dendritic cells (DCreg), generated from cytokine-mobilized donor blood monocytes in vitamin D3 and IL-10, on renal allograft survival in a clinically-relevant rhesus macaque model. DCreg expressed low MHC class II and costimulatory molecules, but comparatively high levels of programmed death ligand-1 (B7-H1), and were resistant to pro-inflammatory cytokine-induced maturation. They were infused intravenously (3.5–10×106/kg), together with the B7-CD28 cos...

  18. Essential Roles for ARID1B in Dendritic Arborization and Spine Morphology of Developing Pyramidal Neurons

    Science.gov (United States)

    Ka, Minhan; Chopra, Divyan A.; Dravid, Shashank M.

    2016-01-01

    De novo truncating mutations in ARID1B, a chromatin-remodeling gene, cause Coffin–Siris syndrome, a developmental disorder characterized by intellectual disability and speech impairment; however, how the genetic elimination leads to cognitive dysfunction remains unknown. Thus, we investigated the neural functions of ARID1B during brain development. Here, we show that ARID1B regulates dendritic differentiation in the developing mouse brain. We knocked down ARID1B expression in mouse pyramidal neurons using in utero gene delivery methodologies. ARID1B knockdown suppressed dendritic arborization of cortical and hippocampal pyramidal neurons in mice. The abnormal development of dendrites accompanied a decrease in dendritic outgrowth into layer I. Furthermore, knockdown of ARID1B resulted in aberrant dendritic spines and synaptic transmission. Finally, ARID1B deficiency led to altered expression of c-Fos and Arc, and overexpression of these factors rescued abnormal differentiation induced by ARID1B knockdown. Our results demonstrate a novel role for ARID1B in neuronal differentiation and provide new insights into the origin of cognitive dysfunction associated with developmental intellectual disability. SIGNIFICANCE STATEMENT Haploinsufficiency of ARID1B, a component of chromatin remodeling complex, causes intellectual disability. However, the role of ARID1B in brain development is unknown. Here, we demonstrate that ARID1B is required for neuronal differentiation in the developing brain, such as in dendritic arborization and synapse formation. Our findings suggest that ARID1B plays a critical role in the establishment of cognitive circuitry by regulating dendritic complexity. Thus, ARID1B deficiency may cause intellectual disability via abnormal brain wiring induced by the defective differentiation of cortical neurons. PMID:26937011

  19. Overview of the Tusas Code for Simulation of Dendritic Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Amelia J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Newman, Christopher Kyle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Francois, Marianne M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-07

    The aim of this project is to conduct a parametric investigation into the modeling of two dimensional dendrite solidification, using the phase field model. Specifically, we use the Tusas code, which is for coupled heat and phase-field simulation of dendritic solidification. Dendritic solidification, which may occur in the presence of an unstable solidification interface, results in treelike microstructures that often grow perpendicular to the rest of the growth front. The interface may become unstable if the enthalpy of the solid material is less than that of the liquid material, or if the solute is less soluble in solid than it is in liquid, potentially causing a partition [1]. A key motivation behind this research is that a broadened understanding of phase-field formulation and microstructural developments can be utilized for macroscopic simulations of phase change. This may be directly implemented as a part of the Telluride project at Los Alamos National Laboratory (LANL), through which a computational additive manufacturing simulation tool is being developed, ultimately to become part of the Advanced Simulation and Computing Program within the U.S. Department of Energy [2].

  20. Suppressing Lithium Dendrite Growth with a Single-Component Coating.

    Science.gov (United States)

    Liu, Haodong; Zhou, Hongyao; Lee, Byoung-Sun; Xing, Xing; Gonzalez, Matthew; Liu, Ping

    2017-09-13

    A single-component coating was formed on lithium (Li) metal in a lithium iodide/organic carbonate [dimethyl carbonate (DMC) and ethylene carbonate (EC)] electrolyte. LiI chemically reacts with DMC to form lithium methyl carbonate (LMC), which precipitates and forms the chemically homogeneous coating layer on the Li surface. This coating layer is shown to enable dendrite-free Li cycling in a symmetric Li∥Li cell even at a current density of 3 mA cm -2 . Adding EC to DMC modulates the formation of LMC, resulting in a stable coating layer that is essential for long-term Li cycling stability. Furthermore, the coating can enable dendrite-free cycling after being transferred to common LiPF 6 /carbonate electrolytes, which are compatible with metal oxide cathodes.

  1. Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons

    Directory of Open Access Journals (Sweden)

    Sei-ichi Yoshihara

    2014-08-01

    Full Text Available Sensory experience regulates the development of various brain structures, including the cortex, hippocampus, and olfactory bulb (OB. Little is known about how sensory experience regulates the dendritic spine development of OB interneurons, such as granule cells (GCs, although it is well studied in mitral/tufted cells. Here, we identify a transcription factor, Npas4, which is expressed in OB GCs immediately after sensory input and is required for dendritic spine formation. Npas4 overexpression in OB GCs increases dendritic spine density, even under sensory deprivation, and rescues reduction of dendrite spine density in the Npas4 knockout OB. Furthermore, loss of Npas4 upregulates expression of the E3-ubiquitin ligase Mdm2, which ubiquitinates a microtubule-associated protein Dcx. This leads to reduction in the dendritic spine density of OB GCs. Together, these findings suggest that Npas4 regulates Mdm2 expression to ubiquitinate and degrade Dcx during dendritic spine development in newborn OB GCs after sensory experience.

  2. Alterations to dendritic spine morphology, but not dendrite patterning, of cortical projection neurons in Tc1 and Ts1Rhr mouse models of Down syndrome.

    Directory of Open Access Journals (Sweden)

    Matilda A Haas

    Full Text Available Down Syndrome (DS is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines--the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.

  3. Full restoration of Brucella-infected dendritic cell functionality through Vγ9Vδ2 T helper type 1 crosstalk.

    Directory of Open Access Journals (Sweden)

    Ming Ni

    Full Text Available Vγ9Vδ2 T cells play an important role in the immune response to infectious agents but the mechanisms contributing to this immune process remain to be better characterized. Following their activation, Vγ9Vδ2 T cells develop cytotoxic activity against infected cells, secrete large amounts of cytokines and influence the function of other effectors of immunity, notably cells playing a key role in the initiation of the adaptive immune response such as dendritic cells. Brucella infection dramatically impairs dendritic cell maturation and their capacity to present antigens to T cells. Herein, we investigated whether V T cells have the ability to restore the full functional capacities of Brucella-infected dendritic cells. Using an in vitro multicellular infection model, we showed that: 1/Brucella-infected dendritic cells activate Vγ9Vδ2 T cells through contact-dependent mechanisms, 2/activated Vγ9Vδ2 T cells induce full differentiation into IL-12 producing cells of Brucella-infected dendritic cells with functional antigen presentation activity. Furthermore, phosphoantigen-activated Vγ9Vδ2 T cells also play a role in triggering the maturation process of dendritic cells already infected for 24 h. This suggests that activated Vγ9Vδ2 T cells could be used to modulate the outcome of infectious diseases by promoting an adjuvant effect in dendritic cell-based cellular therapies.

  4. The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease

    Science.gov (United States)

    Merino-Serrais, Paula; Benavides-Piccione, Ruth; Blazquez-Llorca, Lidia; Kastanauskaite, Asta; Rábano, Alberto; Avila, Jesús

    2013-01-01

    The dendritic spines on pyramidal cells represent the main postsynaptic elements of cortical excitatory synapses and they are fundamental structures in memory, learning and cognition. In the present study, we used intracellular injections of Lucifer yellow in fixed tissue to analyse over 19 500 dendritic spines that were completely reconstructed in three dimensions along the length of the basal dendrites of pyramidal neurons in the parahippocampal cortex and CA1 of patients with Alzheimer’s disease. Following intracellular injection, sections were immunostained for anti-Lucifer yellow and with tau monoclonal antibodies AT8 and PHF-1, which recognize tau phosphorylated at Ser202/Thr205 and at Ser396/404, respectively. We observed that the diffuse accumulation of phospho-tau in a putative pre-tangle state did not induce changes in the dendrites of pyramidal neurons, whereas the presence of tau aggregates forming intraneuronal neurofibrillary tangles was associated with progressive alteration of dendritic spines (loss of dendritic spines and changes in their morphology) and dendrite atrophy, depending on the degree of tangle development. Thus, the presence of phospho-tau in neurons does not necessarily mean that they suffer severe and irreversible effects as thought previously but rather, the characteristic cognitive impairment in Alzheimer’s disease is likely to depend on the relative number of neurons that have well developed tangles. PMID:23715095

  5. Enzyme-free and label-free ultrasensitive electrochemical detection of DNA and adenosine triphosphate by dendritic DNA concatamer-based signal amplification.

    Science.gov (United States)

    Liu, Shufeng; Lin, Ying; Liu, Tao; Cheng, Chuanbin; Wei, Wenji; Wang, Li; Li, Feng

    2014-06-15

    Hybridization chain reaction (HCR) strategy has been well developed for the fabrication of various biosensing platforms for signal amplification. Herein, a novel enzyme-free and label-free ultrasensitive electrochemical DNA biosensing platform for the detection of target DNA and adenosine triphosphate (ATP) was firstly proposed, in which three auxiliary DNA probes were ingeniously designed to construct the dendritic DNA concatamer via HCR strategy and used as hexaammineruthenium(III) chloride (RuHex) carrier for signal amplification. With the developed dendritic DNA concatamer-based signal amplification strategy, the DNA biosensor could achieve an ultrasensitive electrochemical detection of DNA and ATP with a superior detection limit as low as 5 aM and 20 fM, respectively, and also demonstrate a high selectivity for DNA and ATP detection. The currently proposed dendritic DNA concatamer opens a promising direction to construct ultrasensitive DNA biosensing platform for biomolecular detection in bioanalysis and clinical biomedicine, which offers the distinct advantages of simplicity and cost efficiency owing to no need of any kind of enzyme, chemical modification or labeling. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. High resolution micro-XRF maps of iron oxides inside sensory dendrites of putative avian magnetoreceptors

    International Nuclear Information System (INIS)

    Falkenberg, G; Fleissner, G E; Fleissner, G U E; Schuchardt, K; Kuehbacher, M; Chalmin, E; Janssens, K

    2009-01-01

    Iron mineral containing sensory dendrites in the inner lining of the upper beak of homing pigeons and various bird species are the first candidate structures for an avian magnetic field receptor. A new concept of magnetoreception is based on detailed ultra-structural optical and electron microscopy analyses in combination with synchrotron radiation microscopic X-ray fluorescence analysis (micro-XRF) and microscopic X-ray absorption near edge structures (micro-XANES). Several behavioral experiments and first mathematical simulations affirm our avian magnetoreceptor model. The iron minerals inside the dendrites are housed in three different subcellular compartments (bullets, platelets, vesicles), which could be clearly resolved and identified by electron microscopy on ultrathin sections. Micro-XRF and micro-XANES data obtained at HASYLAB beamline L added information about the elemental distribution and Fe speciation, but are averaged over the complete dendrite due to limited spatial resolution. Here we present recently performed micro-XRF maps with sub-micrometer resolution (ESRF ID21), which reveal for the first time subcellular structural information from almost bulk-like dendrite sample material. Due to the thickness of 30 μm the microarchitecture of the dendrites can be considered as undisturbed and artefacts introduced by sectioning might be widely reduced.

  7. A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans

    Science.gov (United States)

    Zou, Wei; Shen, Ao; Dong, Xintong; Tugizova, Madina; Xiang, Yang K; Shen, Kang

    2016-01-01

    Ligand receptor interactions instruct axon guidance during development. How dendrites are guided to specific targets is less understood. The C. elegans PVD sensory neuron innervates muscle-skin interface with its elaborate dendritic branches. Here, we found that LECT-2, the ortholog of leukocyte cell-derived chemotaxin-2 (LECT2), is secreted from the muscles and required for muscle innervation by PVD. Mosaic analyses showed that LECT-2 acted locally to guide the growth of terminal branches. Ectopic expression of LECT-2 from seam cells is sufficient to redirect the PVD dendrites onto seam cells. LECT-2 functions in a multi-protein receptor-ligand complex that also contains two transmembrane ligands on the skin, SAX-7/L1CAM and MNR-1, and the neuronal transmembrane receptor DMA-1. LECT-2 greatly enhances the binding between SAX-7, MNR-1 and DMA-1. The activation of DMA-1 strictly requires all three ligands, which establishes a combinatorial code to precisely target and pattern dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.18345.001 PMID:27705746

  8. Suppressive effects of primed eosinophils on single epicutaneous sensitization through regulation of dermal dendritic cells.

    Science.gov (United States)

    Lin, Jing-Yi; Ta, Yng-Cun; Liu, I-Lin; Chen, Hsi-Wen; Wang, Li-Fang

    2016-07-01

    Eosinophils are multifunctional innate immune cells involved in many aspects of innate and adaptive immunity. Epicutaneous sensitization with protein allergen is an important sensitization route for atopic dermatitis. In this study, using a murine single protein-patch model, we show that eosinophils of a primed status accumulate in draining lymph nodes following single epicutaneous sensitization. Further, depletion of eosinophils results in enhancement of the induced Th1/Th2 immune responses, whereas IL-5-induced hypereosinophilia suppresses these responses. Mechanistically, primed eosinophils cause a reduction in the numbers and activation status of dermal dendritic cells in draining lymph nodes. Collectively, these results demonstrate that primed eosinophils exert suppressive effects on single epicutaneous sensitization through regulation of dermal dendritic cells. Thus, these findings highlight the critical roles of eosinophils in the pathogenesis of atopic dermatitis with important clinical implications for the prevention of allergen sensitization. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Symposium on disruptive instabilities at Garching

    International Nuclear Information System (INIS)

    Lackner, K.

    1979-01-01

    The phenomenon of disruptive instabilities was investigated with a special care at the IPP at Garching. After lectures and panel sessions it appears suitable, to subdivide the disruptive phenomena into four classes: 1. The internal disruption (the socalled saw-tooth oscillators). 2. the socalled reconnection disruptions. 3. The large disruptions. 4. The small disruptions. The four appearance forms of the phenomena are briefly explained. (GG) [de

  10. Orientation selection of equiaxed dendritic growth by three-dimensional cellular automaton model

    Energy Technology Data Exchange (ETDEWEB)

    Wei Lei [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Lin Xin, E-mail: xlin@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Wang Meng; Huang Weidong [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China)

    2012-07-01

    A three-dimensional (3-D) adaptive mesh refinement (AMR) cellular automata (CA) model is developed to simulate the equiaxed dendritic growth of pure substance. In order to reduce the mesh induced anisotropy by CA capture rules, a limited neighbor solid fraction (LNSF) method is presented. It is shown that the LNSF method reduced the mesh induced anisotropy based on the simulated morphologies for isotropic interface free energy. An expansion description using two interface free energy anisotropy parameters ({epsilon}{sub 1}, {epsilon}{sub 2}) is used in the present 3-D CA model. It is illustrated by present 3-D CA model that the positive {epsilon}{sub 1} favors the dendritic growth with the Left-Pointing-Angle-Bracket 100 Right-Pointing-Angle-Bracket preferred directions, and negative {epsilon}{sub 2} favors dendritic growth with the Left-Pointing-Angle-Bracket 110 Right-Pointing-Angle-Bracket preferred directions, which has a good agreement with the prediction of the spherical plot of the inverse of the interfacial stiffness. The dendritic growths with the orientation selection between Left-Pointing-Angle-Bracket 100 Right-Pointing-Angle-Bracket and Left-Pointing-Angle-Bracket 110 Right-Pointing-Angle-Bracket are also discussed using the different {epsilon}{sub 1} with {epsilon}{sub 2}=-0.02. It is found that the simulated morphologies by present CA model are as expected from the minimum stiffness criterion.

  11. Variation of Neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced T helper responses.

    Directory of Open Access Journals (Sweden)

    Sandra J van Vliet

    2009-10-01

    Full Text Available Gonorrhea is one of the most prevalent sexually transmitted diseases in the world. A naturally occurring variation of the terminal carbohydrates on the lipooligosaccharide (LOS molecule correlates with altered disease states. Here, we investigated the interaction of different stable gonoccocal LOS phenotypes with human dendritic cells and demonstrate that each variant targets a different set of receptors on the dendritic cell, including the C-type lectins MGL and DC-SIGN. Neisseria gonorrhoeae LOS phenotype C constitutes the first bacterial ligand to be described for the human C-type lectin receptor MGL. Both MGL and DC-SIGN are locally expressed at the male and female genital area, the primary site of N. gonorrhoeae infection. We show that targeting of different C-type lectins with the N. gonorrhoeae LOS variants results in alterations in dendritic cell cytokine secretion profiles and the induction of distinct adaptive CD4(+ T helper responses. Whereas N. gonorrhoeae variant A with a terminal N-acetylglucosamine on its LOS was recognized by DC-SIGN and induced significantly more IL-10 production, phenotype C, carrying a terminal N-acetylgalactosamine, primarily interacted with MGL and skewed immunity towards the T helper 2 lineage. Together, our results indicate that N. gonorrhoeae LOS variation allows for selective manipulation of dendritic cell function, thereby shifting subsequent immune responses in favor of bacterial survival.

  12. Granulocyte-macrophage stimulating factor (GM-CSF increases circulating dendritic cells but does not abrogate suppression of adaptive cellular immunity in patients with metastatic colorectal cancer receiving chemotherapy

    Directory of Open Access Journals (Sweden)

    Martinez Micaela

    2012-01-01

    Full Text Available Abstract Background Advanced cancer and chemotherapy are both associated with immune system suppression. We initiated a clinical trial in patients receiving chemotherapy for metastatic colorectal cancer to determine if administration of GM-CSF in this setting was immunostimulatory. Methods Between June, 2003 and January, 2007, 20 patients were enrolled in a clinical trial (NCT00257322 in which they received 500 ug GM-CSF daily for 4 days starting 24 hours after each chemotherapy cycle. There were no toxicities or adverse events reported. Blood was obtained before chemotherapy/GM-CSF administration and 24 hours following the final dose of GM-CSF and evaluated for circulating dendritic cells and adaptive immune cellular subsets by flow cytometry. Peripheral blood mononuclear cell (PBMC expression of γ-interferon and T-bet transcription factor (Tbx21 by quantitative real-time PCR was performed as a measure of Th1 adaptive cellular immunity. Pre- and post-treatment (i.e., chemotherapy and GM-CSF samples were evaluable for 16 patients, ranging from 1 to 5 cycles (median 3 cycles, 6 biologic sample time points. Dendritic cells were defined as lineage (- and MHC class II high (+. Results 73% of patients had significant increases in circulating dendritic cells of ~3x for the overall group (5.8% to 13.6%, p = 0.02 and ~5x excluding non-responders (3.2% to 14.5%, p Tbx21 levels declined by 75% following each chemotherapy cycle despite administration of GM-CSF (p = 0.02. PBMC γ-interferon expression, however was unchanged. Conclusions This clinical trial confirms the suppressive effects of chemotherapy on Th1 cellular immunity in patients with metastatic colorectal cancer but demonstrates that mid-cycle administration of GM-CSF can significantly increase the proportion of circulating dendritic cells. As the role of dendritic cells in anti-tumor immunity becomes better defined, GM-CSF administration may provide a non-toxic intervention to augment this arm

  13. Survey of disruption causes at JET

    International Nuclear Information System (INIS)

    De Vries, P.C.; Johnson, M.F.; Alper, B.; Hender, T.C.; Riccardo, V.; Buratti, P.; Koslowski, H.R.

    2011-01-01

    A survey has been carried out into the causes of all 2309 disruptions over the last decade of JET operations. The aim of this survey was to obtain a complete picture of all possible disruption causes, in order to devise better strategies to prevent or mitigate their impact. The analysis allows the effort to avoid or prevent JET disruptions to be more efficient and effective. As expected, a highly complex pattern of chain of events that led to disruptions emerged. It was found that the majority of disruptions had a technical root cause, for example due to control errors, or operator mistakes. These bring a random, non-physics, factor into the occurrence of disruptions and the disruption rate or disruptivity of a scenario may depend more on technical performance than on physics stability issues. The main root cause of JET disruptions was nevertheless due to neo-classical tearing modes that locked, closely followed in second place by disruptions due to human error. The development of more robust operational scenarios has reduced the JET disruption rate over the last decade from about 15% to below 4%. A fraction of all disruptions was caused by very fast, precursorless unpredictable events. The occurrence of these disruptions may set a lower limit of 0.4% to the disruption rate of JET. If one considers on top of that human error and all unforeseen failures of heating or control systems this lower limit may rise to 1.0% or 1.6%, respectively.

  14. Dendritic cell fate is determined by BCL11A

    Science.gov (United States)

    Ippolito, Gregory C.; Dekker, Joseph D.; Wang, Yui-Hsi; Lee, Bum-Kyu; Shaffer, Arthur L.; Lin, Jian; Wall, Jason K.; Lee, Baeck-Seung; Staudt, Louis M.; Liu, Yong-Jun; Iyer, Vishwanath R.; Tucker, Haley O.

    2014-01-01

    The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed “default” pathway for common dendritic cell progenitors. PMID:24591644

  15. The actin-binding protein capulet genetically interacts with the microtubule motor kinesin to maintain neuronal dendrite homeostasis.

    Directory of Open Access Journals (Sweden)

    Paul M B Medina

    Full Text Available BACKGROUND: Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS: From a Drosophila forward genetic screen, we identified a mutation in capulet--encoding a conserved actin-binding protein--that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer's models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other. CONCLUSIONS/SIGNIFICANCE: The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer's and Parkinson's cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease.

  16. Oral chronic graft-versus-host disease: analysis of dendritic cells subpopulations*

    Science.gov (United States)

    Botari, Clara Marino Espricigo; Nunes, Adauto José Ferreira; de Souza, Mair Pedro; Orti-Raduan, Érica Sinara Lenharo; Salvio, Ana Gabriela

    2014-01-01

    The graft-versus-host disease is the major cause of morbidity and mortality in patients who have undergone hematopoietic stem cell transplantation. Aiming at contributing to the understanding of the role of myeloid and plasmacytoid dendritic cells, and natural killer cells in chronic graft-versus-host disease, we examined biopsies of jugal mucosa of 26 patients with acute myeloid leukemia who had undergone allogenic hematopoietic stem cell transplantation. Half of these patients developed oral chronic graft-versus-host disease. Microscopic sections were immunohistochemically stained for anti-CD1a, anti-CD123 and anti-CD56. We calculated the number of immunostained cells in the corium per square millimeter and applied the Mann-Whitney test. Results showed a statistically significant increase of myeloid dendritic cells (CD1a+; p=0,02) and natural killer cells (CD56; p=0,04) in patients with oral chronic graft-versus-host disease. CD123 immunostaining showed no statistical difference between groups. It was concluded that myeloid dendritic cells and natural killer cells participate in the development of oral chronic graft-versus-host disease. PMID:25054751

  17. Oral chronic graft-versus-host disease: analysis of dendritic cells subpopulations.

    Science.gov (United States)

    Botari, Clara Marino Espricigo; Nunes, Adauto José Ferreira; Souza, Mair Pedro de; Orti-Raduan, Erica Sinara Lenharo; Salvio, Ana Gabriela

    2014-01-01

    The graft-versus-host disease is the major cause of morbidity and mortality in patients who have undergone hematopoietic stem cell transplantation. Aiming at contributing to the understanding of the role of myeloid and plasmacytoid dendritic cells, and natural killer cells in chronic graft-versus-host disease, we examined biopsies of jugal mucosa of 26 patients with acute myeloid leukemia who had undergone allogenic hematopoietic stem cell transplantation. Half of these patients developed oral chronic graft-versus-host disease. Microscopic sections were immunohistochemically stained for anti-CD1a, anti-CD123 and anti-CD56. We calculated the number of immunostained cells in the corium per square millimeter and applied the Mann-Whitney test. Results showed a statistically significant increase of myeloid dendritic cells (CD1a+; p=0,02) and natural killer cells (CD56; p=0,04) in patients with oral chronic graft-versus-host disease. CD123 immunostaining showed no statistical difference between groups. It was concluded that myeloid dendritic cells and natural killer cells participate in the development of oral chronic graft-versus-host disease.

  18. Dendritic solidification in undercooled Ni-Zr-Al melts: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Galenko, P.K., E-mail: Peter.Galenko@dlr.de [Institut fuer Materialsphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), D-51170 Koeln (Germany); Reutzel, S.; Herlach, D.M. [Institut fuer Materialsphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), D-51170 Koeln (Germany); Fries, S.G. [ICAMS, Ruhr-Universitaet Bochum, Stiepeler Strasse 129, D-44780 Bochum (Germany)] [SGF Scientific Consultancy, Arndtstr 9, D-52064 Aachen (Germany); Steinbach, I. [ICAMS, Ruhr-Universitaet Bochum, Stiepeler Strasse 129, D-44780 Bochum (Germany); Apel, M. [ACCESS eV, Intzestrasse 5, D-52072 Aachen (Germany)

    2009-12-15

    The kinetics of dendritic solidification in a ternary Ni{sub 98}Zr{sub 1}Al{sub 1} alloy is investigated experimentally in a range of melt undercoolings 40K{<=}{Delta}T{<=}320K. The growth velocity is measured for samples processed by the electromagnetic levitation technique using a high-speed video camera. With {Delta}T{<=}220K the measured growth rates are the same as those of a binary Ni{sub 99}Zr{sub 1} alloy. In the regime of rapid solidification, especially within the regime of thermal dendritic growth at {Delta}T{>=}220K, growth rates are decreased. Sharp-interface modeling predicts growth rates over the whole range of undercooling. Phase-field simulations give quantitative predictions for the dendritic growth velocity in the solute-controlled growth regime. Results show that the composition and temperature dependency of the thermodynamic data, e.g. liquidus slope and solute partition coefficient, are important for describing the alloys. Our findings give improved sharp-interface model predictions compared to calculations based on an approximation of the thermodynamic data derived from binary phase diagrams.

  19. Fine structure of synapses on dendritic spines

    Directory of Open Access Journals (Sweden)

    Michael eFrotscher

    2014-09-01

    Full Text Available Camillo Golgi’s Reazione Nera led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF, which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin, an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as

  20. Facile fabrication of dendritic silver structures and their surface ...

    Indian Academy of Sciences (India)

    have high sensitivity to surface enhanced Raman spectroscopy response. ... of interfaces and molecularly thin-films. SERS is a ... face plasmon polaritons, while the second is attributed ... 2.2 Fabrication and characterization of dendritic.

  1. Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia.

    Science.gov (United States)

    Jaako, P; Debnath, S; Olsson, K; Zhang, Y; Flygare, J; Lindström, M S; Bryder, D; Karlsson, S

    2015-11-01

    Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by haploinsufficiency of genes encoding ribosomal proteins (RPs). Perturbed ribosome biogenesis in DBA has been shown to induce a p53-mediated ribosomal stress response. However, the mechanisms of p53 activation and its relevance for the erythroid defect remain elusive. Previous studies have indicated that activation of p53 is caused by the inhibition of mouse double minute 2 (Mdm2), the main negative regulator of p53, by the 5S ribonucleoprotein particle (RNP). Meanwhile, it is not clear whether this mechanism solely mediates the p53-dependent component found in DBA. To approach this question, we crossed our mouse model for RPS19-deficient DBA with Mdm2(C305F) knock-in mice that have a disrupted 5S RNP-Mdm2 interaction. Upon induction of the Rps19 deficiency, Mdm2(C305F) reversed the p53 response and improved expansion of hematopoietic progenitors in vitro, and ameliorated the anemia in vivo. Unexpectedly, disruption of the 5S RNP-Mdm2 interaction also led to selective defect in erythropoiesis. Our findings highlight the sensitivity of erythroid progenitor cells to aberrations in p53 homeostasis mediated by the 5S RNP-Mdm2 interaction. Finally, we provide evidence indicating that physiological activation of the 5S RNP-Mdm2-p53 pathway may contribute to functional decline of the hematopoietic system in a cell-autonomous manner over time.

  2. Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell.

    Directory of Open Access Journals (Sweden)

    Michael J Schachter

    2010-08-01

    Full Text Available The On-Off direction-selective ganglion cell (DSGC in mammalian retinas responds most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs (postsynaptic potentials are only weakly directional, indicating that spike generation includes marked enhancement of the directional signal. We used a realistic computational model based on anatomical and physiological measurements to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS in the local dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of the cell's dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there could be analogous mechanisms within

  3. Dendritic spikes amplify the synaptic signal to enhance detection of motion in a simulation of the direction-selective ganglion cell.

    Science.gov (United States)

    Schachter, Michael J; Oesch, Nicholas; Smith, Robert G; Taylor, W Rowland

    2010-08-19

    The On-Off direction-selective ganglion cell (DSGC) in mammalian retinas responds most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs (postsynaptic potentials) are only weakly directional, indicating that spike generation includes marked enhancement of the directional signal. We used a realistic computational model based on anatomical and physiological measurements to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS) in the local dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of the cell's dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there could be analogous mechanisms within cortical circuitry.

  4. Classic cadherin expressions balance postnatal neuronal positioning and dendrite dynamics to elaborate the specific cytoarchitecture of the mouse cortical area.

    Science.gov (United States)

    Egusa, Saki F; Inoue, Yukiko U; Asami, Junko; Terakawa, Youhei W; Hoshino, Mikio; Inoue, Takayoshi

    2016-04-01

    A unique feature of the mammalian cerebral cortex is in its tangential parcellation via anatomical and functional differences. However, the cellular and/or molecular machinery involved in cortical arealization remain largely unknown. Here we map expression profiles of classic cadherins in the postnatal mouse barrel field of the primary somatosensory area (S1BF) and generate a novel bacterial artificial chromosome transgenic (BAC-Tg) mouse line selectively illuminating nuclei of cadherin-6 (Cdh6)-expressing layer IV barrel neurons to confirm that tangential cellular assemblage of S1BF is established by postnatal day 5 (P5). When we electroporate the cadherins expressed in both barrel neurons and thalamo-cortical axon (TCA) terminals limited to the postnatal layer IV neurons, S1BF cytoarchitecture is disorganized with excess elongation of dendrites at P7. Upon delivery of dominant negative molecules for all classic cadherins, tangential cellular positioning and biased dendritic arborization of barrel neurons are significantly altered. These results underscore the value of classic cadherin-mediated sorting among neuronal cell bodies, dendrites and TCA terminals in postnatally elaborating the S1BF-specific tangential cytoarchitecture. Additionally, how the "protocortex" machinery affects classic cadherin expression profiles in the process of cortical arealization is examined and discussed. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  5. Supramolecular dendritic pi-conjugated systems: synthesis of glycinylurea functionalized pi-conjugated diphenylanthracene guests and their complexation with dendritic hosts. Part I.

    NARCIS (Netherlands)

    Precup, F.S.; Schenning, A.P.H.J.; Meijer, E.W.; Hubca, G.

    2007-01-01

    Glycinylurea functionalized p-conjugated diphenylanthracene guests (DPA guests) that bind to adamantyl urea modified dendritic hosts were synthesized and fully characterized by NMR spectroscopy (1H-NMR, 13C-NMR) and MALDI-TOF-MS. The resulting supramolecular assemblies have been investigated with

  6. Statistical analysis of disruptions in JET

    International Nuclear Information System (INIS)

    De Vries, P.C.; Johnson, M.F.; Segui, I.

    2009-01-01

    The disruption rate (the percentage of discharges that disrupt) in JET was found to drop steadily over the years. Recent campaigns (2005-2007) show a yearly averaged disruption rate of only 6% while from 1991 to 1995 this was often higher than 20%. Besides the disruption rate, the so-called disruptivity, or the likelihood of a disruption depending on the plasma parameters, has been determined. The disruptivity of plasmas was found to be significantly higher close to the three main operational boundaries for tokamaks; the low-q, high density and β-limit. The frequency at which JET operated close to the density-limit increased six fold over the last decade; however, only a small reduction in disruptivity was found. Similarly the disruptivity close to the low-q and β-limit was found to be unchanged. The most significant reduction in disruptivity was found far from the operational boundaries, leading to the conclusion that the improved disruption rate is due to a better technical capability of operating JET, instead of safer operations close to the physics limits. The statistics showed that a simple protection system was able to mitigate the forces of a large fraction of disruptions, although it has proved to be at present more difficult to ameliorate the heat flux.

  7. Improvements in disruption prediction at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Aledda, R., E-mail: raffaele.aledda@diee.unica.it; Cannas, B., E-mail: cannas@diee.unica.it; Fanni, A., E-mail: fanni@diee.unica.it; Pau, A., E-mail: alessandro.pau@diee.unica.it; Sias, G., E-mail: giuliana.sias@diee.unica.it

    2015-10-15

    Highlights: • A disruption prediction system for AUG, based on a logistic model, is designed. • The length of the disruptive phase is set for each disruption in the training set. • The model is tested on dataset different from that used during the training phase. • The generalization capability and the aging of the model have been tested. • The predictor performance is compared with the locked mode detector. - Abstract: In large-scale tokamaks disruptions have the potential to create serious damage to the facility. Hence disruptions must be avoided, but, when a disruption is unavoidable, minimizing its severity is mandatory. A reliable detection of a disruptive event is required to trigger proper mitigation actions. To this purpose machine learning methods have been widely studied to design disruption prediction systems at ASDEX Upgrade. The training phase of the proposed approaches is based on the availability of disrupted and non-disrupted discharges. In literature disruptive configurations were assumed appearing into the last 45 ms of each disruption. Even if the achieved results in terms of correct predictions were good, it has to be highlighted that the choice of such a fixed temporal window might have limited the prediction performance. In fact, it generates confusing information in cases of disruptions with disruptive phase different from 45 ms. The assessment of a specific disruptive phase for each disruptive discharge represents a relevant issue in understanding the disruptive events. In this paper, the Mahalanobis distance is applied to define a specific disruptive phase for each disruption, and a logistic regressor has been trained as disruption predictor. The results show that enhancements on the achieved performance on disruption prediction are possible by defining a specific disruptive phase for each disruption.

  8. Improvements in disruption prediction at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Aledda, R.; Cannas, B.; Fanni, A.; Pau, A.; Sias, G.

    2015-01-01

    Highlights: • A disruption prediction system for AUG, based on a logistic model, is designed. • The length of the disruptive phase is set for each disruption in the training set. • The model is tested on dataset different from that used during the training phase. • The generalization capability and the aging of the model have been tested. • The predictor performance is compared with the locked mode detector. - Abstract: In large-scale tokamaks disruptions have the potential to create serious damage to the facility. Hence disruptions must be avoided, but, when a disruption is unavoidable, minimizing its severity is mandatory. A reliable detection of a disruptive event is required to trigger proper mitigation actions. To this purpose machine learning methods have been widely studied to design disruption prediction systems at ASDEX Upgrade. The training phase of the proposed approaches is based on the availability of disrupted and non-disrupted discharges. In literature disruptive configurations were assumed appearing into the last 45 ms of each disruption. Even if the achieved results in terms of correct predictions were good, it has to be highlighted that the choice of such a fixed temporal window might have limited the prediction performance. In fact, it generates confusing information in cases of disruptions with disruptive phase different from 45 ms. The assessment of a specific disruptive phase for each disruptive discharge represents a relevant issue in understanding the disruptive events. In this paper, the Mahalanobis distance is applied to define a specific disruptive phase for each disruption, and a logistic regressor has been trained as disruption predictor. The results show that enhancements on the achieved performance on disruption prediction are possible by defining a specific disruptive phase for each disruption.

  9. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons.

    Science.gov (United States)

    Díez-García, Andrea; Barros-Zulaica, Natali; Núñez, Ángel; Buño, Washington; Fernández de Sevilla, David

    2017-01-01

    According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca 2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca 2+ spike and Ca 2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information.

  10. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons

    Science.gov (United States)

    Díez-García, Andrea; Barros-Zulaica, Natali; Núñez, Ángel; Buño, Washington; Fernández de Sevilla, David

    2017-01-01

    According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca2+ spike and Ca2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information. PMID:28203145

  11. Fractal analysis of electrolytically-deposited palladium hydride dendrites

    International Nuclear Information System (INIS)

    Bursill, L.A.; Julin, Peng; Xudong, Fan.

    1990-01-01

    The fractal scaling characteristics of the surface profile of electrolytically-deposited palladium hydride dendritic structures have been obtained using conventional and high resolution transmission electron microscopy. The results are in remarkable agreement with the modified diffusion-limited aggregation model. 19 refs., 3 tabs., 13 figs

  12. PKB/SGK-dependent GSK3-phosphorylation in the regulation of LPS-induced Ca2+ increase in mouse dendritic cells.

    Science.gov (United States)

    Russo, Antonella; Schmid, Evi; Nurbaeva, Meerim K; Yang, Wenting; Yan, Jing; Bhandaru, Madhuri; Faggio, Caterina; Shumilina, Ekaterina; Lang, Florian

    2013-08-02

    The function of dendritic cells (DCs) is modified by glycogen synthase kinase GSK3 and GSK3 inhibitors have been shown to protect against inflammatory disease. Regulators of GSK3 include the phosphoinositide 3 kinase (PI3K) pathway leading to activation of protein kinase B (PKB/Akt) and serum and glucocorticoid inducible kinase (SGK) isoforms, which in turn phosphorylate and thus inhibit GSK3. The present study explored, whether PKB/SGK-dependent inhibition of GSK3 contributes to the regulation of cytosolic Ca(2+) concentration following stimulation with bacterial lipopolysaccharides (LPS). To this end DCs from mutant mice, in which PKB/SGK-dependent GSK3α,β regulation was disrupted by replacement of the serine residues in the respective SGK/PKB-phosphorylation consensus sequence by alanine (gsk3(KI)), were compared to DCs from respective wild type mice (gsk3(WT)). According to Western blotting, GSK3 phosphorylation was indeed absent in gsk3(KI) DCs. According to flow cytometry, expression of antigen-presenting molecule major histocompatibility complex II (MHCII) and costimulatory molecule CD86, was similar in unstimulated and LPS (1μg/ml, 24h)-stimulated gsk3(WT) and gsk3(KI) DCs. Moreover, production of cytokines IL-6, IL-10, IL-12 and TNFα was not significantly different in gsk3(KI) and gsk3(WT) DCs. In gsk3(WT) DCs, stimulation with LPS (1μg/ml) within 10min led to transient phosphorylation of GSK3. According to Fura2 fluorescence, LPS (1μg/ml) increased cytosolic Ca(2+) concentration, an effect significantly more pronounced in gsk3(KI) DCs than in gsk3(WT) DCs. Conversely, GSK3 inhibitor SB216763 (3-[2,4-Dichlorophenyl]-4-[1-methyl-1H-indol-3-yl]-1H-pyrrole-2,5-dione, 10μM, 30min) significantly blunted the increase of cytosolic Ca(2+) concentration following LPS exposure. In conclusion, PKB/SGK-dependent GSK3α,β activity participates in the regulation of Ca(2+) signaling in dendritic cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Low-Dose Cyclophosphamide Synergizes with Dendritic Cell-Based Immunotherapy in Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Joris D. Veltman

    2010-01-01

    Full Text Available Clinical immunotherapy trials like dendritic cell-based vaccinations are hampered by the tumor's offensive repertoire that suppresses the incoming effector cells. Regulatory T cells are instrumental in suppressing the function of cytotoxic T cells. We studied the effect of low-dose cyclophosphamide on the suppressive function of regulatory T cells and investigated if the success rate of dendritic cell immunotherapy could be improved. For this, mesothelioma tumor-bearing mice were treated with dendritic cell-based immunotherapy alone or in combination with low-dose of cyclophosphamide. Proportions of regulatory T cells and the cytotoxic T cell functions at different stages of disease were analyzed. We found that low-dose cyclophosphamide induced beneficial immunomodulatory effects by preventing the induction of Tregs, and as a consequence, cytotoxic T cell function was no longer affected. Addition of cyclophosphamide improved immunotherapy leading to an increased median and overall survival. Future studies are needed to address the usefulness of this combination treatment for mesothelioma patients.

  14. EphB/syndecan-2 signaling in dendritic spine morphogenesis

    DEFF Research Database (Denmark)

    Ethell, I M; Irie, F; Kalo, M S

    2001-01-01

    We previously reported that the cell surface proteoglycan syndecan-2 can induce dendritic spine formation in hippocampal neurons. We demonstrate here that the EphB2 receptor tyrosine kinase phosphorylates syndecan-2 and that this phosphorylation event is crucial for syndecan-2 clustering and spine...... formation. Syndecan-2 is tyrosine phosphorylated and forms a complex with EphB2 in mouse brain. Dominant-negative inhibition of endogenous EphB receptor activities blocks clustering of endogenous syndecan-2 and normal spine formation in cultured hippocampal neurons. This is the first evidence that Eph...... receptors play a physiological role in dendritic spine morphogenesis. Our observations suggest that spine morphogenesis is triggered by the activation of Eph receptors, which causes tyrosine phosphorylation of target molecules, such as syndecan-2, in presumptive spines....

  15. Blood-brain barrier disruption induced by diagnostic ultrasound combined with microbubbles in mice.

    Science.gov (United States)

    Zhao, Bingxia; Chen, Yihan; Liu, Jinfeng; Zhang, Li; Wang, Jing; Yang, Yali; Lv, Qing; Xie, Mingxing

    2018-01-12

    To investigate the effects of the microbubble (MB) dose, mechanism index (MI) and sonication duration on blood-brain barrier (BBB) disruption induced by diagnostic ultrasound combined with MBs as well as to investigate the potential molecular mechanism. The extent of BBB disruption increased with MB dose, MI and sonication duration. A relatively larger extent of BBB disruption associated with minimal tissue damage was achieved by an appropriate MB dose and ultrasound exposure parameters with diagnostic ultrasound. Decreased expression of ZO-1, occludin and claudin-5 were correlated with disruption of the BBB, as confirmed by paracellular passage of the tracer lanthanum nitrate into the brain parenchyma after BBB disruption. These findings indicated that this technique is a promising tool for promoting brain delivery of diagnostic and therapeutic agents in the diagnosis and treatment of brain diseases. The extent of BBB disruption was qualitatively assessed by Evans blue (EB) staining and quantitatively analyzed by an EB extravasation measurement. A histological examination was performed to evaluate tissue damage. Expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5 was determined by western blotting analysis and immunohistofluorescence. Transmission electron microscopy was performed to observe ultrastructure changes of TJs after BBB disruption.

  16. Disruption prediction at JET

    International Nuclear Information System (INIS)

    Milani, F.

    1998-12-01

    The sudden loss of the plasma magnetic confinement, known as disruption, is one of the major issue in a nuclear fusion machine as JET (Joint European Torus). Disruptions pose very serious problems to the safety of the machine. The energy stored in the plasma is released to the machine structure in few milliseconds resulting in forces that at JET reach several Mega Newtons. The problem is even more severe in the nuclear fusion power station where the forces are in the order of one hundred Mega Newtons. The events that occur during a disruption are still not well understood even if some mechanisms that can lead to a disruption have been identified and can be used to predict them. Unfortunately it is always a combination of these events that generates a disruption and therefore it is not possible to use simple algorithms to predict it. This thesis analyses the possibility of using neural network algorithms to predict plasma disruptions in real time. This involves the determination of plasma parameters every few milliseconds. A plasma boundary reconstruction algorithm, XLOC, has been developed in collaboration with Dr. D. O'Brien and Dr. J. Ellis capable of determining the plasma wall/distance every 2 milliseconds. The XLOC output has been used to develop a multilayer perceptron network to determine plasma parameters as l i and q ψ with which a machine operational space has been experimentally defined. If the limits of this operational space are breached the disruption probability increases considerably. Another approach for prediction disruptions is to use neural network classification methods to define the JET operational space. Two methods have been studied. The first method uses a multilayer perceptron network with softmax activation function for the output layer. This method can be used for classifying the input patterns in various classes. In this case the plasma input patterns have been divided between disrupting and safe patterns, giving the possibility of

  17. Detection of Dendritic Spines Using Wavelet-Based Conditional Symmetric Analysis and Regularized Morphological Shared-Weight Neural Networks

    Directory of Open Access Journals (Sweden)

    Shuihua Wang

    2015-01-01

    Full Text Available Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological and psychiatric disorders (e.g., Alzheimer’s disease, Parkinson’s diseases, and autism. In this paper, we have proposed a novel automatic approach using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks (RMSNN for dendritic spine identification involving the following steps: backbone extraction, localization of dendritic spines, and classification. First, a new algorithm based on wavelet transform and conditional symmetric analysis has been developed to extract backbone and locate the dendrite boundary. Then, the RMSNN has been proposed to classify the spines into three predefined categories (mushroom, thin, and stubby. We have compared our proposed approach against the existing methods. The experimental result demonstrates that the proposed approach can accurately locate the dendrite and accurately classify the spines into three categories with the accuracy of 99.1% for “mushroom” spines, 97.6% for “stubby” spines, and 98.6% for “thin” spines.

  18. DMPD: The role of the interferon regulatory factor (IRF) family in dendritic celldevelopment and function. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17702640 The role of the interferon regulatory factor (IRF) family in dendritic celldevelopment and function...in dendritic celldevelopment and function. PubmedID 17702640 Title The role of th...e interferon regulatory factor (IRF) family in dendritic celldevelopment and function. Authors Gabriele L, O

  19. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability

    Science.gov (United States)

    Wang, Ya-Qiao; Lyu, Shu-Shen; Luo, Jia-Li; Luo, Zhi-Yong; Fu, Yuan-Xiang; Heng, Yi; Zhang, Jian-Hui; Mo, Dong-Chuan

    2017-11-01

    Micro pin fin arrays have been widely used in electronic cooling, micro reactors, catalyst support, and wettability modification and so on, and a facile way to produce better micro pin fin arrays is demanded. Herein, a simple electrochemical method has been developed to fabricate copper vertical micro dendrite fin arrays (Cu-VMDFA) with controllable shapes, number density and height. High copper sulphate concentration is one key point to make the dendrite stand vertically. Besides, the applied current should rise at an appropriate rate to ensure the copper dendrite can grow vertically on its own. The Cu-VMDFA can significantly enhance the heat transfer coefficient by approximately twice compared to the plain copper surface. The Cu-VMDFA may be widely used in boiling heat transfer areas such as nuclear power plants, electronic cooling, heat exchangers, and so on.

  20. Four-Phase Dendritic Model for the Prediction of Macrosegregation, Shrinkage Cavity, and Porosity in a 55-Ton Ingot

    Science.gov (United States)

    Ge, Honghao; Ren, Fengli; Li, Jun; Han, Xiujun; Xia, Mingxu; Li, Jianguo

    2017-03-01

    A four-phase dendritic model was developed to predict the macrosegregation, shrinkage cavity, and porosity during solidification. In this four-phase dendritic model, some important factors, including dendritic structure for equiaxed crystals, melt convection, crystals sedimentation, nucleation, growth, and shrinkage of solidified phases, were taken into consideration. Furthermore, in this four-phase dendritic model, a modified shrinkage criterion was established to predict shrinkage porosity (microporosity) of a 55-ton industrial Fe-3.3 wt pct C ingot. The predicted macrosegregation pattern and shrinkage cavity shape are in a good agreement with experimental results. The shrinkage cavity has a significant effect on the formation of positive segregation in hot top region, which generally forms during the last stage of ingot casting. The dendritic equiaxed grains also play an important role on the formation of A-segregation. A three-dimensional laminar structure of A-segregation in industrial ingot was, for the first time, predicted by using a 3D case simulation.